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Abstract 

 Molluscum Contagiosum Virus (MCV) is an obligate human, tumorigenic 

poxvirus which causes benign skin neoplasms. Reduced inflammation during an MCV 

infection has been attributed to production of MCV immune evasion molecules (IEMs). 

IEMs antagonize host immune responses allowing MCV to evade the host immune 

system and reprogram the host cell for viral growth. MCV IEMs alter apoptosis (MC159, 

MC160), deregulate the cell cycle targeting retinoblastoma (MC007), and produce a 

chemokine homolog (MC148). Bioinformatics analysis identified MC163, as another 

potential host-interacting protein. Further analysis of MC163 resulted in the identification 

of a mitochondrial localization sequence, putative superoxide dismutase (SOD)-like 

Cu
2+

/Zn
2+

 metal binding domain, a transmembrane domain and a large C-terminal 

domain that contains no identified homology to other viral or host proteins. Confocal 

microscopy was utilized to verify the predicted mitochondrial localization. MC163 was 

detected at the mitochondria, whereas a truncated MC163 lacking the mitochondria 

localization sequence was diffused throughout the cell.  Mitochondria are important 

moderators in apoptotic and anti-viral signaling. Many viral proteins that localize to the 

mitochondria affect mitochondria immune signaling pathways such as apoptosis.  

Preliminary data suggests that expression of MC163 inhibits TNF-induced mitochondrial 

membrane permeabilization MMP.  Therefore, MC163 expression may contribute to 

MCV immune evasion by antagonizing apoptotic signaling events. 
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Introduction 

 Molluscum Contagiosum Virus (MCV), a member of the Poxviridae family, 

causes benign skin lesions characterized by reduced inflammation. MCV lesions persist 

for months in otherwise healthy individuals.  MCV lesions are spread by skin to skin 

contact, fomites, or autoinoculation and are most prevalent in children and immune 

compromised individuals, such as those with HIV (Koning et al. 1994; Tyring 2003; 

Mohammedamin et al. 2006). Although MCV infection is non-lethal, it causes scarring 

and disfigurement which can result in emotional damage, especially in children. MCV 

affects 2-10% of the world population and can account for 1% of the skin disorders in the 

United States with a higher percent in children (5%) and those infected with Human 

immunodeficiency virus (HIV) (5-18%) (Guan et al. 2014; Sherwani et al. 2012).  

With the eradication of Smallpox, MCV remains the only poxvirus that 

exclusively infects humans.  In 2010, 122 million cases of MCV infection were reported, 

highlighting the importance in understanding MCV infection and the development of 

effective treatment strategies. Currently, there are no antiviral treatments specific for 

MCV. Anti-MCV strategies rely primarily on mechanical means of removal such as 

curettage and cryotherapy.  However, these strategies are extremely painful for patients 

suffering from chronic MCV infection and can result in suffering and anxiety, with 

limited success rates.  Cidofovir is available as a drug of last resort, but off target affects 

limit its wide-spread use.  Therefore, identification of novel anti-MCV strategies should 

remain a top research priority.  Unfortunately, research on MCV is hampered due to the 
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inability to propagate MCV in cell culture or an animal model as well as a lack of 

understanding basic MCV-host interactions.  

The Poxviridae family possess large, linear dsDNA genomes.  Unlike most DNA 

viruses, poxviruses replicate exclusively in the cytoplasm of host cells.  Therefore, to 

replicate and transcribe the viral genome, members of the poxvirus family must encode 

their own replication and transcription machinery.  Further, by replicating inside the 

cytoplasm of host cells, poxviruses are exposed to a multitude of cellular innate immune 

responses (IIRs) that recognize and respond to viral infection.  To combat innate immune 

defenses, poxviruses devote a substantial portion of their genome to code for a variety of 

host interacting proteins to modulate of cellular IIRs, such as apoptosis (Haller et al. 

2014). Given that MCV persists for months in otherwise healthy individuals, it seems 

reasonable to speculate that like other poxviruses, MCV must possess a myriad of 

strategies to dampen host IIRs to sustain a persistent infection.  Analysis of the MCV 

genome revealed that MCV encodes approximately 182 proteins, 77 of which are 

potential host-interacting proteins (Senkevich, et al. 1997). However, MCV host defense 

strategies are extremely understudied.  Of these 77 predicted host-interacting molecules, 

only 7 have been characterized for function in host signal pathways. The 7 immune 

modulating proteins of MCV that have been characterized are MC007, MC054, MC066, 

MC132, MC148, MC159, and MC160. MC007 is a mitochondrial localizing protein that 

sequesters the retinoblastoma protein (pRb) (Mohr et al. 2008). MC054 is involved in 

binding Interlukin-18 (IL-18) blocking the pro-inflammatory cytokines function in innate 

and adaptive immunity (Xiang et al. 2003). MC066 is a putative glutathione peroxidase 
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that blocks apoptosis induced by ultraviolet light and hydrogen peroxide (Shisler et al. 

1998). MC132 inhibits NF-B activation by interaction with the p65 subunit and causes 

p65 degradation (Brady et al. 2015). MC148 functions as a chemokine-like protein 

binding to CxC12a and CCR8 and blocks chemotaxis (Jin et al. 2011; Luttichau et al. 

2001). MC159 inhibits Tumor Necrosis factor- (TNF-), Fas, and TRAIL-induced 

apoptosis and blocks activation of Nuclear Factor kappa B (NF-B) (Murao & Shisler 

2005; Randall et al. 2012, Struzik et al. 2014).  MC160 binds Heat Shock protein 90 and 

induces I kappa Kinase (IKK) degradation resulting in the inhibition of TNF--induced 

NF-B activation (Nichols & Shisler 2006; Nichols & Shisler 2009).  In this study we 

present evidence for a role of another MCV host-interaction protein, MC163R.  

 Apoptosis is a powerful antiviral response.  Apoptosis can be triggered by both 

extrinsic and intrinsic mechanisms. The extrinsic pathway is activated by binding of 

ligands such as Fas Ligand (FasL), TNF- and TNF-related apoptosis inducing ligand 

(TRAIL) to their respective receptors inducing a signal cascade that leads to the 

activation of caspases and the pro-inflammatory transcription factor NF-B (Green & 

Llambi 2015).  

Tumor necrosis factor-alpha (TNF- is a pro-inflammatory cytokine produced in 

response to a viral infection.  Binding of TNF-α to its receptor can result in multiple 

responses.  One outcome is the activation of the host Nuclear Factor-kappa B (NF-B) 

transcription factor, which leads to the transcriptional activation of NF-B regulated 

genes. Once bound to the TNF R1 receptor, TNF induces the formation of a signal 

complex comprised of TNF-R-associated death domain protein (TRADD), TNF-R-



4 
 

associated factor 2 (TRAF2), and receptor-interacting protein 1 (RIP1) (Li & Lin. 2007). 

Subsequent recruitment of the I kappa Kinase (IKK) complex to the receptor complex 

and activation of the IKK and IKK subunits causes the phosphorylation of inhibitor of 

kappa B alpha (IB one of the NF-B inhibitory proteins (Chen et al. 1995; DiDonato 

et al. 1997). Ubiquitination-dependent degradation of IB leads to its dissociation from 

NF-B and allows for transcription of NF-B regulated genes resulting in the 

transcription of pro-inflammatory mediators such as IL-6 (Li & Lin. 2007).  

 Alternatively, apoptosis can be induced through TNF- signaling through TNF-

R1 activation. Recruitment of the death-inducing signal complex (DISC) including 

TRADD, RIP1 and Fas-associated death domain (FADD) leads to the recruitment of pro-

caspase 8 and activation to its active form, caspase 8 (Micheau & Tschopp 2003). 

Caspase 8 leads to the activation of the intrinsic apoptosis pathway through the cleavage 

of BH3 interacting-domain death agonist (Bid) and activation of effector caspases 3 and 7 

(Elmore et al. 2013). Additionally, caspase 8 can directly activate a caspase cascade by 

activating effector caspases 3 and 7 (Kiraz et al. 2015).  A summary of the TNF- 

signaling pathway can be found in figure 1. 
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Figure 1: Tumor necrosis factor alpha (TNF- Signal Pathway.  Activation of the TNF-

-induced response occurs after TNF-binds its receptor.  Recruitment of TRADD, 

TRAF2 and RIP1 to the TNF-receptor lead to activation of NF-B and promote cell 

survival and inflammation, whereas, recruitment of the TRADD, FADD, RIP1 and 

procaspase 8 lead to apoptosis. TNF-, tumor necrosis factor alpha; TNF-R1, TNF-

receptor 1; TRADD, TNF-associated death domain; TRAF2, TNF receptor-associated 

factor 2; RIP1, receptor-interacting protein kinase 1; FADD, Fas-associated death 

domain; Bid, BH3 interacting-domain death agonist; IKK, Inhibitor of kappa B alpha; 

IKKInhibitor of kappa B betaNF-B, Nuclear factor kappa B; ROS, reactive oxygen 

species.  



6 
 

 During a viral infection, the intrinsic apoptotic pathway can be induced by 

numerous intracellular responses, all being mediated through the mitochondria. 

Mitochondrial membrane permeabilization (MMP) is the key step in apoptotic signaling 

through the mitochondria and is regulated by B-cell lymphoma 2 (BcL-2) family 

proteins. The BcL-2 family is comprised of three classes of proteins containing Bcl-2 

homology regions (BH1-4). BCL-2 associated X protein (Bax) and Bcl-2 homologous 

antagonist/killer (Bak) function as pro-apoptotic effector proteins that are activated by the 

pro-apoptotic BH3 only proteins, Bid, Bcl-2-like protein 11 (Bim),  p53 upregulated 

modulator of apoptosis (Puma), Phorbol-12-myristate-13-acetate-induced protein 1 

(Noxa) and B lymphocyte kinase (Blk). The anti-apoptotic members of the Bcl-2 family 

include BcL-2, B-cell lymphoma-extra large (BcL-XL) and Induced myeloid leukemia 

cell differentiation protein (McL-1). An intracellular death signal induces the activation 

and oligomerization of Bax or Bak which form pores in the mitochondrial outer 

membrane (MOM) allowing for the release of pro-apoptotic factors from the inter-

mitochondrial space including cytochrome c, apoptotic protease activating factor 1 

(Apaf1), and the second mitochondria-derived activator of caspases/ direct inhibitor of 

apoptosis-binding protein with low pI (SMAC/Diablo) (Kiraz et al. 2015; Upreti et al. 

2008). Cytochrome c binds to Apaf1 and recruits caspase 9 to form what is known as the 

apoptosome (Yuan et al. 2013). Apoptosis occurs by the activation of effector caspases 3, 

6 and 7 (Kiraz et al. 2015). SMAC/Diablo antagonizes anti-apoptotic inhibitors of 

apoptosis (IAP) proteins thus removing the inhibition on the formation of the apoptosome 

(Green & Llambi 2015; Kiraz et al. 2015). The intrinsic and extrinsic pathways are not 
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mutually exclusive wherein activation of one pathway typically leads to secondary 

activation of the other pathway. An alternative activation of the intrinsic pathway is 

through Bid cleavage by caspase 8 which leads to MMP activated by extrinsic apoptotic 

signals initiated at the TNF family receptors (Kiraz et al. 2015).  

Poxviruses encode numerous viral BcL-2-like proteins (vBcL-2) that function to 

antagonize and modulate the apoptotic signal induced by host death response 

mechanisms. VACV contains at least 5 vBcL-2 proteins that all function to modulate 

various aspects of apoptosis at the mitochondria (Boya et al. 2004). So far, no equivalent 

proteins have been found in MCV.  
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Figure 2: Intrinsic Apoptosis Pathway: Pro-apoptotic stimuli cause the permeabilization 

of the mitochondrial outer membrane causing the release of pro-apoptotic factors 

including SMAC and cytochrome c. SMAC binds IAP allowing for the activation of 

caspase 9 and caspase 3. Cytochrome c binds Apaf1 and recruits caspase 9 to form the 

apoptosome which activates the effector caspase 3 leading to apoptosis.  Bid, BH3 

interacting-domain death agonist; Bax, BCL-2 associated X protein; Cyt c, cytochrome c; 

BcL-2, B-cell lymphoma 2; Apaf1, apoptotic protease activating factor 1; IAP, inhibitor 

of apoptosis; SMAC, second mitochondria-derived activator of caspases; DNA, 

deoxyribonucleic acid; ER, endoplasmic reticulum.  
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 Another pathway that is activated in response to a viral infection is the MAVS 

signaling pathway in which over-expression of the MAVS protein has been shown to 

induce apoptosis (Lei et al. 2009). MAVS mediated signaling involves the recruitment of 

Heat-shock protein 90 (HSP90), the IKK complex (Inhibitor of nuclear factor kappa-B 

kinase (IKK) alpha, -beta and -epsilon (IKK and TANK binding kinase 1 

(TBK1) which elicit the production of INF’s through activation of the interferon 

regulatory factor 3 (IRF3) and NF-B transcription factors (Huang et al. 2014; Amaya et 

al. 2014). Viral modulation at the MAVS complex has been shown with MC159 

interactions blocking TBK1 signaling through the direct interaction with TBK1 and 

MC160 preventing TBK1 activation through a still undetermined mechanism (Randall et 

al. 2013). If the MAVS complex is disrupted, Bax is imbedded into the mitochondrial 

membrane causing MMP and subsequent activation of apoptosis (Chattopadhyay et al. 

2010). Another signal pathway mediated by MAVS is through the recruitment of FADD 

and Pro-caspase 8 which mediates apoptosis similar to the activation of apoptosis through 

extrinsic signals (Maadidi et al. 2014).  
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Figure 3: MAVS-induced Apoptosis Pathway. Activation of the MAVS-induced antiviral 

response occurs downstream of cellular danger sensors.  Recruitment of Hsp90, TBK1 

and IKK to the MAVS complex lead to activation of transcription factors (NF-B, 

IRF3) and promote cell survival, inflammation and the production of interferon’s, 

whereas, recruitment of the Hsp90, FADD, and procaspase 8 lead to apoptosis. MAVS, 

mitochondrial antiviral signaling protein; HSP90, Heat-shock protein 90; FADD, Fas-

associated death domain; Bid, BH3 interacting-domain death agonist; TBK1, TANK 

binding kinase 1; IKKe, Inhibitor of nuclear factor kappa-B kinase epsilon; Bax, BCL-2 

associated X protein; IRF3, ; NF-kB, Nuclear factor kappa B; IFN, Interferon; MMP, 

mitochondrial membrane permeabilization.  
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Lack of a cell culture or animal model to study MCV severely hampers efforts to 

understand MCV immune evasion strategies.  Current efforts to understand MCV 

pathogenesis are being done studying primary lesions and the use of a luciferase reporter 

based system, but this approach can lead to experimental difficulties resulting from MCV 

strain variations and large differences in viral yields between lesions (Sherwani et al. 

2012). The approach taken in this report was to isolate a particular gene product of MCV 

and to study the role on apoptotic processes in vitro by transient transfection. The 

advantages of this system are the relative ease of implementation and the wide range of 

studies that can be done relatively quickly. The downside is that all of the results need to 

be taken with the understanding that the results obtained here may or may not represent 

what would be seen in an actual viral infection.  A more detailed review of current 

strategies for studying MCV can be found in Shisler 2015.  

 The purpose of this thesis was to characterize a novel MCV protein, MC163, and 

determine its role in the modulation of apoptosis. Bioinformatics analysis of the MC163R 

ORF revealed a mitochondrial localization sequence (MLS), a metal binding domain and 

a putative transmembrane domain. Since all viral proteins that localize to the 

mitochondria have a role in the modulation of death pathways, the working hypothesis is 

that MC163 modulates apoptosis. Mutants of MC163R were made by splitting the full 

length protein at a predicted protease site. A mutant lacking the MLS could give valuable 

clues as to the function and role of MC163R in apoptosis. The role of MC163 in 

apoptosis was assessed by JC-1 staining as an indicator of mitochondria membrane 

permeabilization, a hallmark in both extrinsic and intrinsic apoptosis pathways.   
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Materials and Methods  

Expression vectors for MC163R Mutants: 

To construct the C-terminal mutant plasmid, the MCV genomic plasmid library (a gift 

from Dr. Joachim J. Bugert) containing ORF MC163R was amplified by PCR using the 

forward primer MC163Pr3For, 5'- TTT TC GAATTC G CCA TGT TGT CGC CGG 

CGG AC-3', containing the EcoRI restriction site (underlined), and reverse primer, 

MC163.HARev1, 5'- GTC ATA CGG GTA CAG CGC GCC CTC CG -3', containing the 

first half of the HA tag.  Subsequent PCR was done to add the second half of the HA 

oligonucleotide sequence using the forward primer MC163Pr3For, and the reverse 

primer, MC163.HARev2, 5'- AAT TCTAGA TTA GGC ATA GTC CGG CAC GTC 

ATA CGG GTA C -3', containing the XbaI restriction site (underlined). The amplified 

sequence was digested using EcoRI/XbaI cloned into the pCI vector (Promega). Multiple 

attempts were made to clone the N-terminal and full length MC163 constructs.  However, 

the high GC rich content in the upstream region of MC163R made cloning the N-terminal 

portion difficult. To circumvent this problem, the N-terminal region of MC163R 

(MC163N, a.a. 1-132) was codon optimized and synthesized in vitro by GenScript and 

inserted into pcDNA3.1-HA. To construct the full length MC163R plasmid, overlapping 

PCR was used by amplifying the N-terminal portion from the synthesized MC163N 

construct by PCR using the forward primer MC163NGSFor, 5'- TCC GAA TTC GCC 

ACC ATG GGA CCA AGA G-3', and reverse primer, MC163NGS Rev, 5'- GGC TCG 

CTA TGG TTC CAG AAG ACC TGC CTC TCC AG-3'. The C-terminal portion was 

amplified from the MC163C/pCI construct made previously by PCR using the forward 
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primer, MC163C_For, 5'- GAG AGG CAG GTC TTC TGG AAC CAT AGC GAG CCT 

C-3', and the reverse primer, MC163.CRevHA2. The N-terminal and C-terminal 

sequences were PCR amplified using MC163NGSFor and the reverse primer MC163 to 

generate the full length MC163 construct,.CRevHA2. All constructs were engineered to 

contain a C-terminal HA-tag. Constructs were cloned into the pCDNA3.1 vector and 

sequenced (Genewiz) to verify the correct nucleotides. PCR conditions used can be found 

in Table 3. 

Plasmid DNA preparations:  

 Plasmid DNA was isolated from bacterial cultures using the PureYield Plasmid 

Miniprep system (Promega) according to the manufactures protocol. Briefly, bacteria 

(DH5α, TOP10, BL-21) harboring plasmid inserts containing experimental constructs 

were grown for 16-20 hours in Luria broth supplemented with the proper antibiotic 

(ampicillin, 100 g/mL, Life Technologies; kanamycin, 50 g/mL). Bacteria were 

harvested by centrifugation at 14,000 rpm for 1 minute, resuspended in 600mL of Tris-

EDTA buffer (TE) and the Promega protocol was followed.  Plasmid DNA was eluted in 

TE buffer, assessed for purity and concentration using a Nanovue Plus spectrophotometer 

and stored at 4
o
C. OD260/OD280 values of 1.8-2.0 were deemed acceptable and utilized in 

subsequent experiments.  

Cell culture and Transfections 

Human embryonic kidney 293T (HEK 293T) and HeLa cells were maintained in 

Dulbecco’s modified eagle medium (DMEM, Sigma or HiMedia) supplemented with 
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10% fetal bovine serum and 1% penicillin-streptomycin (Sigma) at 37
o
C, with 5% CO2 in 

a humidified incubator. Stable transfected HeLa cell lines (HeLa-163F, HeLa-163C, 

HeLa-163N) were maintained as described above with the addition of the selection 

marker, G-418 (Life Technologies, 1mg/mL) to the growth media. Transfection of 

HEK293T cells or HeLa cells was performed using Mirus Trans-IT 2020 reagent in Opti-

MEM (Gibco/Life Technologies) at 3 L/g or 2 L/g of total DNA, respectively.  

Immunoblotting 

 HEK293T cells or HeLa cells were harvested using RIPA lysis buffer 

supplemented with protease inhibitor cocktail added according to the manufactures 

recommended concentration (Amresco, M250: AEBSF, Aprotinin, E-64, Bestatin, 

Leupeptin, Pepstatin) and assayed for total protein content using the BCA assay (Pierce) 

for total protein according to the manufactures protocol (Thermo Scientific). Samples 

were boiled for 5 minutes with 5% 2-mercaptoethanol in sodium dodecyl sulfate (SDS) 

sample buffer (62.5 mM Tris pH 6.8, 2% SDS, 10% Glycerol, 100 mM DTT, 0.01% 

bromophenol blue) and placed on ice until use. Lysates were resolved by 10% SDS-

PAGE, transferred to polyvinylidene difluoride (PVFD) membranes (Millipore), blocked 

in 5% milk (Carnation non-fat dry milk) in 1X Phosphate-buffered saline with Tween® 

20 (PBST, 50 mM Tris.HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20) for 30 minutes and 

probed for 1 hour using the appropriate antibody (-HA, 1:2,500; -PARP-1, 1:1,250; -

FLAG, 1:2,500) diluted in 0.5% milk in TBST. The PVDF membranes were washed 

three times with 0.5% milk in TBST then incubated with secondary antibodies (goat--
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mouse-HRP, 1:10,000; goat--rabbit-HRP, 1:10,000; HRP, horseradish peroxidase) for 1 

hour, washed three times with 0.5% milk in TBST then visualized using SuperSignal
TM

 

West Pico or SuperSignal
TM

 West Femto (Thermo Scientific) chemiluminescent reagent 

according to manufactures instruction. Blots were visualized using a FluorChem E 

imaging system (Protein Simple).  

JC-1 Staining for Detection of Mitochondrial Membrane Permeabilization  

Subconfluent HeLa cells were transfected with either pCDNA3.1 (500 ng); pHA-

MC159 (500 ng), pHA-MC163F (500 ng), pHA-MC163N or pHA-MC163C (500 ng). 

Twenty four hours later cells were treated with TNF- (10 ng/mL) and cyclohexamide 

(CHX, 10 ng/mL) or CCCP (Carbonyl cyanide m-chlorophenyl hydrazone, 100M) and 

incubated at 37
o
C for 6 hours (TNF-) or 30 minutes (CCCP) in a 5% CO2 humidified 

incubator. Cells were stained with JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimi- 

dazolylcarbocyanine iodide, Cayman Chemical, 1 M ) and incubated in a 5% CO2 

incubator at 37
o
C for 20 minutes in the dark. Immediately after incubation, the cells were 

analyzed by confocal microscopy (Olympus, Monomer detection: Ex/Em = 514 nm/529 

nm, J-aggregate detection: Ex/Em = 585 nm/590 nm). Multiple images were taken for 

each condition using constant voltage settings and analyzed with ImageJ software using 

the Fiji image processing package (Schindelin, et al. 2012). Composite images were split 

into separate color channels, binarized and analyzed for % area for each color. The ratio 

of J-aggregate to monomer form of JC-1 was calculated and normalized to the control. 
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This experiment was repeated 5 times (n=5) with a minimum of 3 images taken for each 

condition in each experiment.   

Lucerifase Assay  

HEK293T cells were plated at 2.5 x 10
5
 cells per well in a 12-well plate and 

grown for 24 hours at 37
o
C in a 5% CO2 humidified incubator. After 24 hours, the cells 

were transfected with 500 ng of plasmid DNA (pCDNA3.1, pHA-MC159, pHA-

MC163F, pHA-MC163C or pHA-MC163N), 225 ng reporter plasmids (200 ng pNF-kB-

Luciferase or pIFN-b-luciferase, 25 ng pRenilla TK) and 275 ng of pCDNA3.1 using 

Mirus Trans-IT 2020 reagent (Mirus) at a ratio of 3 L/g of total DNA.  The cells were 

then incubated for another 24 hours at 37
o
C in a 5% CO2 incubator prior to treatment 

with 10 ng/mL TNF-α.  6-8 hours? post treatment, the cells were lysed at room 

temperature for 30 minutes with 1X passive lysis buffer (Promega) supplemented with 

protease inhibitors added according to manufactures recommended concentration 

(Amresco, M250: AEBSF, Aprotinin, E-64, Bestatin, Leupeptin, Pepstatin). The lysates 

were assayed for firefly and sea pansy luciferase activity using the Dual-reporter assay 

according to manufactures instructions (Promega).  Statistical significance was 

determined by utilizing the student’s t-test. 

Immunofluorescence and confocal microscopy for localization of MC163R mutants: 

HEK293T cells or HeLa cells were plated at 2.5 x 10
5
 cells per well on glass 

coverslips in a 12-well plate and grown for 24 hours at 37
o
C in a 5% CO2 humidified 

incubator. After 24 hours, the cells were transfected with 1 µg of plasmid DNA 



17 
 

(pCDNA3.1, pHA-MC163F, pHA-MC163C or pHA-MC163N) and 500 ng 

pmTurquoise2-Mito [pmTurquoise2-Mito was a gift from Dorus Gadella (Addgene 

plasmid # 36208))] using Mirus Trans-IT 2020 reagent (Mirus) at a ratio of 3 L/g 

(HEK293T) or 2 L/g (HeLa) of total DNA. The cells were then incubated for another 

24 hours at 37
o
C in a 5% CO2 incubator prior to fixation with 4% paraformalyhyde 

(Mpbio) for 1 hour at 4
o
C. Cells were rinsed twice with PBS, permeabilized with 0.5% 

Triton X-100 for 5 minutes, rinsed with PBS twice, incubated with 50 mM glycine for 10 

minutes then blocked with 5% milk (Carnation non-fat dry milk) in 1X Phosphate-

buffered saline with Tween® 20 (PBST, 50 mM Tris HCl, pH 7.4, 150 mM NaCl, 0.1% 

Tween 20) for 30 minutes. To detect MC163R mutants, the cells were incubated with an 

anti-HA (Sigma Aldrich) conjugated to an Alexa Fluor
TM

 647 dye (Thermo Fisher 

antibody labeling kit) for 1 hour at 18-22
o
C, rinsed three times with 0.5% milk in PBST 

for 10 minutes, rinsed twice with PBST for 15 minutes then mounted to microscope 

slides with 50% glycerol in PBS. The plasmid pmTurquoise2-Mito encodes a cyan-

fluorescent protein that localizes to the mitochondria (Stetten, et al. 2012). Fluorescence 

was detected using an Olympus microscope (software) for pmTurquoise2-Mito (Ex = 488 

nm, Em = 519 nm) and MC163R mutants (Ex = 633 nm, Em = 671 nm). Images were 

false colored using Olympus Fluoview software and exported as JPEG files for each of 

the fluorescence signals.  
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Results 

Cloning the MCV MC163 Gene:  

 The goal of our research was to identify novel MCV immune evasion molecules. 

MC163R was previously reported to contain a putative Cu
2+

/Zn
2+

 binding domain (REF; 

amino acids (a.a.) 46-108, Figure 4). Our bioinformatics analysis revealed the presence of 

a mitochondrial localization sequence (MLS) located in the N-terminus portion of 

MC163R (a.a. 1-30, (http://psort.ims.u-tokyo.ac.jp/) and a putative transmembrane 

domain (TMD, a.a. 109-132,) immediately downstream of the predicted metal binding 

domain (a.a. 30-46) (http://www.ch.embnet.org/software/TMPRED_form.html). The 

predicted TMD is flanked by positively charged amino acids similar to other 

mitochondrial outer membrane (MOM) proteins anchored by the N-terminus, for 

example, Tom70 (translocase of the outer mitochondrial membrane 70) (Rapoport, D., 

2003; Figure 6). Further analysis of the C-terminal portion of MC163R identified no 

regions of homology in the amino acid sequence to other viral or host proteins. MC163R 

protein folding representations using Phyre2 server and iTasser prediction website, 

respectively, can be seen in Figure 7. MC163R contains a GC rich upstream region which 

made cloning of this gene particularly difficult. To circumvent this problem the N-

Terminal portion of MC163R (MC163N, a.a. 1-132) was synthesized in vitro, while the 

C-terminal region (MC163C, a.a. 132-620) was cloned using PCR (Figure 5, Table1, 

Table 2). The synthesized MC163N construct was codon optimized (Figure 8) to remove 

high GC content, but maintained the wild-type amino acid sequence (Figure 9). 

Overlapping PCR was used to generate the full length construct (MC163F, a.a. 1-620) 
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(Figure 5, Table 1, Table 2).  All constructs were engineered to contain a C-terminal HA 

epitope tag to detect expression.  PCR amplicons were cloned into the pCDNA3.1 vector 

and sequenced. Expression of the constructs in HEK293T cells was verified by 

immunoblotting and detection with anti-HA antibodies (Figure 10A). Both the MC163F 

and MC163C were easily detected at 67 kD and 50 kD respectively. We also detected a 

50 kD product in the MC163F lanes corresponding to a predicted cleavage site in 

between the N- and C-terminal MC163 constructs. Relative to MC163F and MC163C, 

MC163N expressed at lower levels, but was detected as a band of approximately 17 kD 

with longer exposure time (Figure 10B).  
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Figure 4: Representation of domains predicted by bioinformatics in MC163R. 

Mitochondrial localization sequence was identified using ipSORT prediction website 

(Bannai et al. 2001; Bannai et al. 2002) and TargetP 1.1 Server (Emanuelsson et al. 2000) 
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Figure 5: MC163R mutants characterized in this study. Full length, a.a. 1-620; N-terminal 

mutant, a.a. 1-132; C-terminal mutant, a.a. 132-620 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

A) 

 

B) 

 

C)

 

Figure 6: Amino acid sequence of the predicted transmembrane domain and Metal 

Binding domain of MC163R. A) The N-terminal portion of MC163R contains a 

hydrophobic sequence flanked by positively charged amino acids similar to TOMM70, a 

mitochondrial outer membrane (MOM) resident protein. Hydrophobic sequence is 

underlined, Bold indicate positive charged amino acids. MCV, Molluscum Contagiosum 

virus, H.s., Homo sapiens. B) Histidine rich metal binding domain of MC163R (a.a. 46-

108). C) Amino acid alignment of MC163R and HHSV-8 K7 protein. 

 

 

 

 

 

 

Metal Binding Domain 

MC163R (MCV) EHGYAHTHTCEDTPAKEHGHLGEHECLRGHGHAHAYEERCENKHKHLHAHEHTHERHGRAPRR  

MC163R (MCV)     RHGRAPRR    LALTAPLPLLLLPLLLPPMILLFF   LSPADAKPVLER 

TOM 70 (H.s.)                  PRWQ     LALAVGAPLLLGAGAIYLWS        RQQRRREARGR 
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Figure 7: MC163F protein folding predictions using Phyre2 (A) and iTasser (B-F) 

predictions. Blue, Mitochondrial localization sequence; Yellow, Metal binding domain; 

Red, Transmembrane domain; Grey, C-terminal domain. 
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Primer Name: Primer Sequence: 

MC163Pr3For  5'- TTT TCG AAT TCG CCA TGT TGT CGC CGG CGG AC-3' 

MC163C_For 5'- GAG AGG CAG GTC TTC TGG AAC CAT AGC GAG CCT C-3' 

MC163NGSFor 5'- TCC GAA TTC GCC ACC ATG GGA CCA AGA G-3' 

MC163.HARev1 5'- GTC ATA CGG GTA CAG CGC GCC CTC CG -3' 

MC163.HARev2 5'- AAT TCT AGA TTA GGC ATA GTC CGG CAC GTC ATA CGG GTA C -3' 

MC163NGS Rev 5'- GGC TCG CTA TGG TTC CAG AAG ACC TGC CTC TCC AG-3' 

Table 1: Polymerase chain reaction primer sequences used for cloning MC163R Mutants.  

Primers MC163Pr3For, MC163.HARev1 and MC163.HARev2 were used to clone the C-

terminal mutant into the pCI vector. Primers MC163NGSFor and MC163NGSRev were 

used to produce the N-terminal portion of the full length clone with MC163C_For and 

MC163.HARev2 to produce the C-terminal portion. Overlapping PCR was used to create 

the full length clone using the MC163NGSFor forward primer and the MC163.HARev2 

reverse primer.  
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Mutant Vector backbone Forward Primer Reverse Primer 

MC163C pCI MC163Pr3For MC163.HARev1, MC163.HARev2 

MC163C pCDNA3.1 MC163C_For MC163.HARev2 

MC163N pCDNA3.1 MC163NGSFor MC163NGS Rev 

MC163F pCDNA3.1 MC163NGSFor MC163.HARev2 

Table 2: Polymerase chain reaction primers used to construct MC163 Mutants.  
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Figure 8: DNA sequence comparison of wild type MC163N vs GenScript codon 

optimized MC163N.  
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Figure 9: The protein alignment for wild-type MC163N and codon optimized MC163N 

(GenScript). Amino acid sequence comparison shows the codon optimized DNA 

sequence maintains the wild-type amino acid sequence.  
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Figure 10: The expression of MC163R mutants by immunoblotting. A) MC163F and 

MC163C were readily detected. MC163N, however, expressed at weaker levels then 

MC163F and MC163C and additional detection time was required to observe MC163N 

(*). 
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The N-terminal portion of MC163 is required for mitochondrial localization 

 To determine the localization of the MC163R constructs, HeLa cells were co-

transfected with the indicated MC163R construct and pmTurquise2Mito, a cyan 

fluorescent protein engineered to contain a mitochondrial localization sequence 

(Goedhart, J., et al, 2012). For detection of MC163R constructs, HeLa cells were 

incubated with an anti-HA antibody conjugated to an Alexa Fluor 647 dye to ensure that 

no overlap was seen between the two detection channels. The excitation and emission 

spectra for pmTurquise2Mito is Ex/Em = 488 nm/519 nm and the anti- HA antibody 

conjugated to Alexa Fluor™ 647 dye  is Ex/Em = 633 nm/671 nm. Both MC163F and 

MC163N contain the mitochondrial localization sequence and were readily detected to 

co-localize with the mitochondrial marker pmTurquise2Mito (Figure 11, Top and Bottom 

panels). MC163C, however, which lacks both the MLS and the putative transmembrane 

domain, did not localize to the mitochondria, but was detected in a diffuse staining 

pattern throughout the cell (Figure 11, Middle panel). It is worth noting that the deletion 

of the entire C-terminal region of MC163 did not affect the localization of the N-terminal 

(MC163N) mutant. Therefore, we conclude the N-terminal portion of MC163R is 

required for mitochondrial localization.  
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Figure 11:  Localization of MC163R mutants. Mitochondrial localization was confirmed 

for MC163F and MC163N mutant (Top and Bottom panels). MC163C mutant does not 

localize to the mitochondria (Middle panels). Colocalization was done with a 

mitochondria localizing fluorescent protein, pmTurquise2Mito (green). MC163R mutants 

were labeled using an-HA antibody conjugated with an Alexa Flour 647 (-

HA:AF647) dye. Images were acquired using an Olympus confocal microscope 

(pmTurquise2Mito: Ex/Em = 488 nm/519 nm; -HA:AF647: Ex/Em = 633 nm/671 nm) 

and processed using Olympus FluoView Ver4.2 software. Co-localization events are 

depicted with white arrows. F, MC163F; C, MC163C; N, MC163N. 
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MC163R inhibits TNF--induced mitochondrial membrane permeabilization  

 As of the date of this report, all viral proteins that localize to the mitochondria 

have been shown to modulate cellular death pathways.  Therefore, the working 

hypothesis was that MC163R dampens the extrinsic apoptotic pathway. To examine the 

effect of MC163R on mitochondrial membrane permeabilization (MMP) we utilized the 

cationic dye JC-1. JC-1 forms J-aggregates in the mitochondria that fluoresce with an 

emission maximum at 590 nm and also forms monomers when diffuse in the cytoplasm 

with an emission maximum at 529 nm. Treatment with TNF- induces MMP and can be 

seen as a shift from J-aggregate to monomer JC-1 which can be detected by confocal 

microscopy. Treatment with TNF- (10ng/mL) and cycloheximide (CHX, 10ng/mL) 

induced MMP in cells transfected with empty vector and was detected by the loss of the 

J-aggregate JC-1 signal (Figure 12). In contrast, cells expressing pHA-MC159, an MCV 

protein that antagonizes both Fas and TNF-induced apoptosis by binding FADD and 

procaspase-8 (Thome et al. 1997; Shisler & Moss 2001; Nichols & Shisler 2009), were 

protected from MMP (Figure 12). Cells expressing MC163F and MC163N were 

protected from TNF--induced MMP similar to MC159. In contrast, cells expressing 

MC163C, which lack the ability to localize to the mitochondria, resulted in the loss of the 

mitochondria membrane potential and subsequent MMP similar to cells expressing empty 

vector alone (Figure 12). The results were quantified using ImageJ software using the Fiji 

image processing package (Schindelin, J., et al., 2012). The ratio of J-aggregate to 

monomer form of JC-1 was calculated and normalized to the control. TNF- treatment of 

cells expressing vector alone resulted in a shift from J-aggregate to monomer JC-1 
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indicating a loss of mitochondrial membrane potential and MMP. In contrast, the J-

aggregate to monomer ratio of MC159, MC163F and MC163N expressing cells remained 

unchanged after TNF-/CHX treatment, whereas MC163C expressing cells resulted in a 

shift in the J-aggregate to monomer ratio similar to vector alone (Figure 13). Taken 

together, our data indicates that the N-terminal region of the MC163R protein is required 

to prevent MMP induced by TNF-.  
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Figure 12: TNF--induced MMP: Mitochondrial membrane permeabilization (MMP) 

detected by JC-1 staining of HeLa cells with and without TNF- treatment (10ng/mL, 6 

hours). J-aggregate channel is shown (detection: Ex/Em = 585 nm/590 nm).  

Subconfluent HeLa cells were transfected with pCDNA3.1 (500 ng);  pHA-MC159 (500 

ng); pHA-MC163F (500 ng); pHA-MC163N; or pHA-MC63C (500 ng) then stained with 

cyanine dye JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimi- dazolylcarbocyanine 

iodide, Cayman Chemical) for 20 minutes then immediately imaged using an Olympus 

confocal microscope. J-aggregate channel is shown (detection: Ex/Em = 585 nm/590 

nm). Untreated HeLa cells transfected with pCDNA3.1 (A); pHA-MC159 (C); pHA-

MC163F (E); pHA-MC163N (G) and pHA-MC163C (I). MMP in pCDNA3.1 transfected 

cells (B). No MMP in positive control (pHA-MC159, D). MC163F and MC163N block 

MMP induced by TNF- treatment (F, H) MC163C does not block MMP (J).  Images 

represent the J-aggregate form of JC-1 and are shown from one representative 

experiment, (n=5).  
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Figure 13: The effect of MC163F on the mitochondrial membrane permeabilization 

induced by TNF- treatment. Subconfluent HeLa cells were transfected with pCDNA3.1 

(500 ng); pHA-MC159 (500 ng), pHA-MC163F (500 ng), pHA-MC163N or pHA-

MC163C (500 ng). Twenty four hours later cells were treated with TNF- (10 ng/mL) 

and cyclohexamide (CHX, 10 ng/mL) and incubated at 37
o
C for 6 hours in a 5% CO2 

humidified incubator. Cells were stained with the cyanine dye JC-1 (5,5′,6,6′-tetrachloro-

1,1′,3,3′-tetraethylbenzimi- dazolylcarbocyanine iodide, Cayman Chemical) for 20 

minutes then immediately imaged using an Olympus confocal microscope (Olympus, 

Monomer detection: Ex/Em = 514 nm/529 nm, J-aggregate detection: Ex/Em = 585 

nm/590 nm). Multiple images were taken for each sample (minimum = 3 images / 

sample) and analyzed with ImageJ software using the Fiji image processing package 

(Schindelin, J., et al. 2012). Values represent the ratio of J-aggregate to monomer form of 

JC-1 normalized to the control and are shown from one representative experiment, (n=5) 
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as mean +/- standard deviations (SD). Significant differences between MC163F, 

MC163N, MC159 and vector control were determined by two-tailed t-test with 

significance (*) = P < 0.01, (**) = P < 0.001.  
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MC163R modulates NF-B activation induced by TNF- 

  In addition to TNF-induced apoptosis, treatment with TNF-a can induce 

activation of NF-B. NF-B is activated by numerous factors including viral infection 

and modulates the inflammatory response through the transcription of pro-inflammatory 

cytokines (TNF-, IL-1, IL-6, IL-12) and immune regulatory molecules (MHC I, TCR, 

) (Oeckinghaus & Ghosh 2009).  Viral regulation of NF-B is a key component to 

immune evasion. MCV encodes three proteins, MC132, MC159 and MC160, which have 

been shown to block the activation of NF-B through different mechanisms targeting the 

same pathway (Brady et al.  2015; Murao & Shisler 2005; Randall et al. 2012; Struzik  et 

al. 2014; Nichols & Shisler 2006; Nichols & Shisler 2009). Seeing that another poxvirus, 

Vaccinia virus (VACV) encodes multiple proteins that modulate NF-B, it is reasonable 

to assume that MCV might also encode additional proteins to block NF-B activation 

(Bahar et al., 2011; Smith et al., 2013). Therefore, we tested if MC163R expression might 

also affect TNF--induced NF-B activation. HEK293T cells were transfected with 

either empty vector, pHA-MC160, pHA-MC159, or pHA-MC163F as well as pNK-B 

firefly luciferase and pRL-null Renilla luciferase. In cells transfected with empty vector, 

treatment with TNF- resulted in a significant increase in the levels of NF-B activation 

as detected by an increase in firefly luciferase values. Expression of both HA-MC160 and 

HA-MC159 dampened TNF-induced NF-B regulated luciferase activity consistent with 

previous results (Murao & Shisler 2005; Nichols & Shisler 2009). Interestingly HA-
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MC163F expressing cells resulted in a two-fold decrease in the relative activation of NF-

B relative to cells transfected with empty vector after TNF- treatment (Figure 14).  
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Figure 14: The effect of MC163F on the activation of NF-B induced by TNF- 

treatment. Subconfluent HEK293T cells were transfected with reporter plasmids (pNF-

B-lucerferase, (225ng); pRL-null Renilla, (25ng)); pCDNA3.1 (500ng); pHA-MC160 

(500ng), pHA-MC159 (500ng) and pHA-MC163F (500ng). Twenty four hours later cells 

were treated with TNF- (10ng/mL, 6 hours), lysed in passive lysis buffer supplemented 

with protease inhibitors and assayed for firefly and sea pansy luciferase activity. Values 

represent the fold change as compared to untreated empty vector transfected cells (3.1 (-)) 

and are shown from one representative experiment, run in triplicate (n=3) as mean +/- 

standard deviations (SD). Significant differences between MC163F, MC160, MC159 and 

cells transfected with empty vector were determined by two-tailed t-test with significance 

(*) = P < 0.001. 
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MC163R inhibits CCCP-induced  Mitchondrial Membrane Permeabilization 

Viruses can induce cellular stress and induce apoptosis in a variety of ways. The 

mitochondria are a vital component of apoptotic signaling. Given that MC163R localizes 

to the mitochondria and inhibits TNF--induced mitochondrial membrane 

permeabilization (MMP), MC163 might also protect cells from CCCP-induced apoptosis 

as well. CCCP (carbonyl cyanide m-chlorophenyl hydrazone) is a protonophore that 

induces mitochondrial stress by disrupting the proton motive force. Treatment with 

CCCP (100ng/mL) induced MMP in cells transfected with empty vector and was detected 

by the loss of the J-aggregate JC-1 signal (Figure 15). In contrast, cells expressing pHA-

MC163F were protected from MMP (Figure 15). The results were quantified using 

ImageJ software using the Fiji image processing package (Schindelin et al. 2012). The 

ratio of J-aggregate to monomer form of JC-1 was calculated and normalized to the 

control. CCCP treatment of cells expressing vector alone resulted in a shift from J-

aggregate to monomer JC-1 indicating a loss of mitochondrial membrane potential and 

MMP. In contrast, the J-aggregate to monomer ratio MC163F expressing cells remained 

unchanged after CCCP treatment.   
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Figure 15: JC-1 staining of HeLa cells treated with and without CCCP (carbonyl cyanide 

m-chlorophenyl hydrazone). Subconfluent HeLa cells were transfected with pCDNA3.1 

(500 ng); pHA-MC159 (500 ng); or pHA-MC163F (500 ng). Twenty four hours later 

cells were treated with CCCP (100M/mL) and incubated at 37
o
C for 30 minutes in a 5% 

CO2 humidified incubator. Cells were stained with the cyanine dye JC-1 (5,5′,6,6′-

tetrachloro-1,1′,3,3′-tetraethylbenzimi- dazolylcarbocyanine iodide, Cayman Chemical) 

for 20 minutes then immediately imaged using an Olympus confocal microscope. J-

aggregate channel is shown (detection: Ex/Em = 585 nm/590 nm). Untreated cells 

transfected with pCDNA3.1 (A) and pHA-MC163F (C). Vector control does not block 
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MMP induced by CCCP treatment (B), however, MC163F does blocks MMP induced by 

CCCP treatment (D).  
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Figure 16: The effect of MC163F on the mitochondrial membrane permeabilization 

induced by CCCP treatment. Subconfluent HeLa cells were transfected with pCDNA3.1 

(500 ng); pHA-MC159 (500 ng); and pHA-MC163F (500 ng). Twenty four hours later 

cells were treated with CCCP (100M/mL) and incubated at 37
o
C for 30 minutes in a 5% 

CO2 humidified incubator. Cells were stained with the cyanine dye JC-1 (5,5′,6,6′-

tetrachloro-1,1′,3,3′-tetraethylbenzimi- dazolylcarbocyanine iodide, Cayman Chemical) 

for 20 minutes then immediately imaged using an Olympus confocal microscope 

(Olympus, Monomer detection: Ex/Em = 514 nm/529 nm, J-aggregate detection: Ex/Em 

= 585 nm/590 nm). Multiple images were taken for each sample (minimum = 3 images / 

sample) and analyzed with ImageJ software using the Fiji image processing package 

(Schindelin, J., et al., 2012). Values represent the ratio of J-aggregate to monomer form 
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of JC-1 normalized to the control and are shown from one representative experiment, 

(n=3) as mean +/- standard deviations (SD).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

Discussion 

In this thesis, we show that MCV contains an MC163R ORF that functions in 

modulation of apoptosis through modulation of mitochondrial membrane 

permeabilization (MMP). An N-terminal mitochondrial localization sequence targets 

MC163R to the mitochondria. The exact mitochondrial location is yet to be determined. 

MC163R possesses a hydrophobic trans-membrane domain (TMD) flanked by positively 

charged residues similar to Tom70, a mitochondrial outer membrane protein (Figure 6A). 

Poxvirus proteins M11L of Myxoma virus and F1L of Vaccinia virus locate to the 

mitochondria, block apoptosis and contain a similar TMD (Everett et al. 2000; Stewart et 

al. 2005; Boya et al. 2004). An interesting feature of MC163R is the predicted 

Copper/Zinc binding domain. This type of domain is typically found in superoxide 

dismutase proteins. The Myxoma virus protein M131R and Shope fibroma virus S131R 

proteins modulate apoptosis through inhibition of SOD1 activity by binding to copper 

chaperone proteins (Teoh et al. 2005). Interestingly, MC163R expressing cells did not 

exhibit significant changes in SOD1 activity when compared to controls (data not 

shown).  

 MC163R mutants were generated after bioinformatics analysis identified protease 

sites immediately downstream of the TMD (https://prosper.erc.monash.edu.au; calpain-1, 

GTLY-LIPS, a. a. 180-187; cathespsin K, QVFW-NHSE, a. a. 145-152). The cellular 

cleavage product of the full length MC163R mutant was identified and can be seen in 

figure 10A, 50kD band. Both the full length, MC163F and N-terminal MC163N 

truncated mutants were shown to block TNF--induced mitochondrial membrane 

https://prosper.erc.monash.edu.au/
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permeabilization (MMP) (Figure 13). In contrast, the MC163C mutant loses its ability to 

block TNF--induced MMP (Figure 13). It is not known if the cleavage of MC163R full 

length is required for its anti-apoptotic function in preventing mitochondrial membrane 

permeabilization. Additional mutagenesis of these protease cleavage sites may yield clues 

into the molecular mechanism of MC163R function.  

 Although The C-terminal domain contains no regions of homology to other 

proteins it does interestingly contain potential BCL-2 homology (BH) domains (BH1-like 

domain: a. a. 347-354, 383-399; BH2-like domain, a. a. 558-569; BH3-like domain: a. a. 

345-355). Most viral proteins containing BH-like domains are not conserved in the amino 

acid sequence. However, the viral protein maintains the required structural homology to 

the cellular BH-containing proteins (Franklin & Khan 2013). The presence of BH-like 

domains in MC163R might reveal a potential mechanism of function mimicking the anti-

apoptotic BcL-2 (Figure 17).  

 Poxviruses antagonize extrinsic cellular death signaling by competing with 

receptors for ligands, preventing the activation of caspases, modulating reactive oxygen 

(ROS) signals and dampening pro-apoptotic signals at the mitochondria (Pogo et al. 

2004). MCV contains the death effector domain containing protein, MC159, which 

blocks apoptotic signals at the death receptor as well as TNF--induced MMP (Murao & 

Shisler 2005; Randall et al. 2012, Struzik et al. 2014; Figure 13). MC163 also blocked 

TNF--induced MMP as shown utilizing the JC-1 stain as an indicator of mitochondrial 

membrane potential (Figure 13). Whereas, MC159 binds FADD and procaspase-8 at the 

receptor preventing the formation of the signalsome, the current data suggests MC163 
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inhibits the extrinsic apoptotic pathway by at the level of the mitochondria, downstream 

of the activation of caspase 8.  

 TNF- is a powerful pro-inflammatory cytokine that activates death pathways as 

well as the activation of the NF-B transcription factor which plays a crucial role in the 

activation of the pro-inflammatory response to viral infection. Viruses have adapted with 

their host to antagonize the activation of NF-B at many points within the signal 

pathway. Two MCV proteins, MC159 and MC160 attenuate NF-B activation through 

interaction with the IKK complex, (Nichols & Shisler 2006; Nichols & Shisler 2009; 

Randall et al. 2012; Struzik et al. 2014). Using a luciferase reporter assay under the 

control of NF-B, cells transfected with pHA-MC159 or pHA-MC160 showed a 

significant reduction in the activation of NF-B similarly to what has been previously 

shown (Brady et al.,  2015; Murao & Shisler 2005; Randall et al. 2012; Struzik  et al. 

2014; Nichols & Shisler 2006; Nichols & Shisler 2009). Interestingly, MC163R showed a 

two-fold decrease in luciferase activity compared to cells transfected with empty vector 

(Figure 14). Three MCV proteins, so far, have been shown to block NF-B activation 

(MC132, MC159, and MC160). Due to the importance in NF-B signaling in the 

antiviral response, it makes sense that MCV would have multiple proteins that are 

capable of attenuating the activation of NF-B. This work is the first to characterize 

MC163R and it would be too speculative to make any prediction as to the molecular 

mechanism of action on NF-B activation.  

 Intrinsic activation of apoptosis arises through cellular damage (DNA damage, 

ER stress) that lead to activation of pro-apoptotic signals converging at the mitochondria. 
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CCCP is a protonophore that mimics mitochondrial damage and induces MMP and 

subsequent apoptosis (de Graaf et al. 2004). MC163R blocked CCCP-induced MMP as 

shown utilizing the JC-1 stain as an indicator of mitochondrial membrane potential 

(Figure 16). Interestingly, BcL-2 overexpression has also been shown to block CCCP 

induced MMP, but it not able to prevent m (de Graaf et al. 2004). MC163R contains 

potential BH domains in the uncharacterized C-terminal region making it plausible that 

MC163R could function to prevent MMP similarly to cBcL-2. Calcium regulation is an 

important factor in apoptotic signaling. Calcium influx into the mitochondria can cause 

the opening of the permeability transition pore (Gunter & Sheu 2009). An influx of 

calcium into the mitochondria signals mitochondrial uncoupling and membrane 

permeability transition pore (MPTP) opening. Blocking the MPTP opening by 

Cyclosporin A (CsA) prevents CCCP-induced apoptosis. (Ganote & Armstrong 2003). 

Interaction of the K7 protein from Kaposi’s sarcoma virus has been shown to prevent 

apoptosis through the binding of the calcium-modulating cyclophilin ligand (CAML) 

(Feng et al. 2002). Interestingly, the N-terminal MLS and TMD of MC163R has 

homology to the region in K7 that is responsible for binding CAML (Figure 6C). These 

data may lead to the discovery of the molecular mechanism for MMP protection by 

MC163R. It is proposed that MC163 might function in modulating calcium signals at the 

mitochondria, thus preventing apoptosis (Figure 17).  

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Gunter%20TE%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sheu%20SS%5Bauth%5D


49 
 

Future Directions 

 This work is the first to identify a novel function for the previously 

uncharacterized MC163 protein as a novel inhibitor of cellular apoptotic responses. 

MC163R expression likely contributes to MCV pathogenesis by preventing cellular death 

induced by viral stress during an MCV infection. Experiments are in progress to further 

confirm the protective effect that MC163 has after stimulation with TNF- or CCCP. To 

this end, a fluorescent protein called pBabe-puro-IMS-RP containing the localization 

sequence of SMAC/Diablo will be utilized (pBabe-puro-IMS-RP was a gift from Peter 

Sorger (Addgene plasmid # 24535) (Albeck et al. 2008). This protein will localize to the 

inner-mitochondrial space and upon MMP will dissociate into the cytoplasm.  

Additionally, experiments are planned to determine the degree that MC163 contributes to 

MCV pathogenesis using a recombinant vaccinia virus expressing MC163 in a mouse 

model. 
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Figure 17: MC163R Model. The MC163 N-terminal region is proposed to modulate 

calcium-induced apoptosis through the interaction of CAML or the MPTP. BcL-2 

homology-like domains in the C-terminal region of MC163 are proposed to interact with 

pro-apoptotic factors Bax or Bid and help to modulate apoptosis. Bid, BH3 interacting-

domain death agonist; Bax, BCL-2 associated X protein; Cyt c, cytochrome c; BcL-2, B-

cell lymphoma 2; CAML, calcium-modulating cyclophilin ligand; MPTP, mitochondrial 

permeability transition pore 
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