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ABSTRACT 

Macrophages differentiate from circulating monocytes and perform critical roles 

in the innate and adaptive immune systems, including phagocytosis and foreign 

pathogen walling off. Macrophage cell fusion is a fundamental event underlying 

biological processes, such as bone remodeling and chronic inflammation. This thesis 

explores the molecular processes behind the macrophage formation of multinucleated 

giant cells (MGC). Using a homogenous, murine monocyte cell line, RAW 264.7, we 

examine the cellular response to bacterial endotoxins, crucial signaling molecules that 

activate macrophage pattern recognition receptors. RAW 264.7 mouse macrophages 

treated with lipopolysaccharide (LPS), a Gram negative bacterial endotoxin, or 

lipoteichoic acid (LTA), a Gram positive bacterial endotoxin, we observed cellular fusion 

and the formation of MGC. The time, cell density and concentration of endotoxin were 

quantified by phase contrast microscopy. Since LPS and LTA both elicit the release of 

Tumor Necrosis Factor Alpha (TNF-a) from macrophages, we examined the role of TNF

a in cellular fusion. TNF-a was shown to also induce cellular fusion. Taken together, 

our results show that a macrophage cell line provides a robust and reliable model for 

examining endotoxin-induced MGC formation. 
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INTRODUCTIO/N 

1 

1 
1 Metazoans use cellular fusion and multinucleation in a number of wellI 

characterized fundamental biological processes, including bone remodeling, fertilization, 

1 
placental development, and myoblast fusion (reviewed in Helming and Gordon, 2007). 

1 

I 
I For example, cell fusion is observed in bone remodeling where the fusion of 

osteoclasts is essential for renewing skeletal bone (Helming and Gordon, 2008). 

However, in recent years our understanding of cell fusion has expanded. For example, in 

i 
the 1960's, osteoclasts were thought to derive from fusion of osteoblasts. Subsequent f 

I 

I 
l 

I 
studies have shown conclusively that the osteoclast is hematopoietic in origin and 

therefore, unrelated to the stromal lineage (Vignery, 2005). Within the immune system, 

j 
i 

multinucleated giant cell (MGC) formation is critical to controlling invading pathogens 

I and the resulting cell mediated inflammatory response, which is a tightly orchestrated 

I multicellular response. By definition, a giant cell is a mass formed by the union of 

I several distinct cells (usually macrophages) which undergo a defined set of intercellular 

interactions that ultimately result in a multinucleated cell with a single cytoplasmic 

I compartment (Vignery, 2005). A foreign-body giant cell is a collection of fused 


I macrophages which are generated in response to the presence of a large foreign body. 


I 
! This is particularly evident with parasitic infections, or implants that elicit a chronic 
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inflammation response such as a rejection of cosmetic implants or even body organs 

from donor to recipient. 

Macrophages also exist at a critical juncture in the metazoan immune system, 

with involvement in both the innate and adaptive immune responses. Pattern 

recognition receptors on the macrophage cell surface detect foreign invaders, such as 

bacterial and viral antigens, and trigger the macrophage pro~inflammatory response. 

While short~term antigen exposure elicits an acute inflammatory response, a chronic 

inflammatory response develops if antigens persist. This chronic inflammatory event is 

poorly understood, but as macrophages replace neutrophils and T cells at the ! 
i 
i 
.1 inflammation site, tissue macrophages surround and attempt to phagocytize the foreign 
J 
1 
I body. If macrophages fail to engulf the invader, the macrophages isolate it from the 

surrounding tissue via MGC formation, or in the case of parasitic invasion, granuloma 

formation (Vignery, 2008). MGC is an evolutionarily conserved cellular response with 

the earliest observed response in fruit flies, yet the molecular mechanism involved 

remains unknown. In vitro isolated cells can be influenced to fuse and form multi-

nucleated giant cells, showing that the fusion response is inherent in the macrophage 

MGCs elicit a sustained immune response, which may ultimately prove beneficial 

to the host organism. This thesis research focuses on eliciting the cell fusion event in 

immortalized mammalian macrophages, quantifying the cell fusion event, as well as 

examining the roles of the bacterial endotoxins, the Gram negative bacterial endotoxin, 
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lipopolysaccharide (LPS), and the Gram positive bacterial endotoxin, lipoteichoic Acid 

(LTA), to stimulate macrophage multi-nucleated giant cell formation. 

LPS, the major constituent of the outer membrane of all Gram-negative bacteria, 

both pathogens and mutua lists, was independently discovered as a bacterial-associated 

substance called endotoxin that elicits septic shock in animals (Beutler and Rietschel, 

2003). It is now known that LPS acts as a toxin by over-stimulating Toll-like receptor 

(TLR) innate immune signaling, which induces acute defensive inflammatory responses. 

An example of this is presented by mice deficient for Toll like Receptor 4 (TLR4), an 

integral membrane protein which serves as a pattern-recognition receptor protein (PRP) 

for LPS (Akira et aL, 2006). Although multiple PRPs exist for a wide range of microbial 

components, TLR4 recognizes bacterial-derived for LPS, which, working in association 

with the intracellular MyD88 adaptor protein serves to initiate an intracellular protein 

kinase cascade (Figure 1; Akira et aL, 2006). As shown in Figure 1, LPS acts as the 

prototypical bacterial endotoxin because it binds the CD14/TLR4/MD2 receptor complex, 

which promotes the transcription, translation and the secretion of pro-inflammatory 

cytokines in many immune cells, including macrophages. The short term release of pro

inflammatory cytokines serves to initiate an immune response to the detected pathogen. 

Lipoteichoic acid (LTA), a cell wall component of Gram-positive bacteria is an 

amphiphilic, negatively charged glycolipid which interacts with a distinct set of cell 

surface PRPs, termed TLR2/TLR6 (Tang et aL, 2010). LTA activation ofthe TLR2/6 

pathway shares common features with the TLR4 pathway induced by LPS, but in 
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addition, LTA bound to targets can interact with circulating antibodies and activate the 

complement cascade to induce a passive immune kill phenomenon. LTA also triggers 

the immune cell release of reactive oxygen and nitrogen species, as well as acid 

hydrolases, highly cationic proteinases, bactericidal cationic peptides, growth factors, 

and cytotoxic cytokines, all of which may act in synergy to amplify cell damage. LTA 

shares many pathogenic similarities with LPS in cellular pathogen responses and 

therefore provides a starting point for examining two distinct microbial components on 

macrophage cell function (Figure 1). 
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Toll-Like Receptor (TLRj Cartoon 

Figure 1: This is an artistic depiction of the two pathways looked at in this research 
study. To the left there is LPS interacting with TLR-4 and to the right LTA interacts 
with TLR-2. A convergence point (NF-KB) can be seen towards the bottom. 

We are interested in the convergence point and how this influences giant cell 
formations. 

Modified and adapted from www.invitsogen.com. 

http:www.invitsogen.com


In the events immediately following cell responses to microbial components, PRP 

activation elicits a tightly controlled release of pro-inflammatory cytokines (Akira et aI., 

2006). An early cytokine in the cellular response, Tumor Necrosis Factor a (TNF-a), is a 

key mediator of host immune responses. Acute release ofTNF-a is an essential immune 

response to pathogens, while prolonged TNF-a is associated with an extended, and 

often inappropriate, inflammation response. Macrophages acutely respond to bacterial 

and viral pathogens by releasing TNF-a, which is beneficial; however, a sustained TNF-a 

release can have deleterious consequences for host tissues (Tak and Firestein, 2001). 

An additional macrophage response to invading pathogens is an attempt to 

engulf foreign pathogens as a means to neutralize and isolate the threat (Cario, 2008). 

If engulfment is unsuccessful, a number of macrophages can surround the pathogen, 

and by fusing their cell plasma membranes, effectively creating a cellular barrier around 

the threat (Beutler and Rietschel, 2003). This cellular fusion is the basis for granuloma 

formation and multi-nucleated giant cell formations. 

Despite the marked evolutionary conservation of the granuloma response, the 

molecular basis for granuloma formation and giant cell formation remains unknown. 

Although progress has been made in delineating molecular mediators involved in MGC 

formation, no clear macromolecular cohort has emerged (Helming and Gordon, 2009). 

This lack of defined macromolecular mediators may be due, in part, to the variety of 

macrophage populations studied and the differences in the fusion mediators employed 

(Helming and Gordon, 2009). To circumvent the heterogeneous nature of resident 
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monocytic cells in animals (Gordon and Taylor, 2005), it was chosen to examine the 

MGC formation in a defined rodent monocytic cell line, the RAW 264.7 cell. RAW 264.7 

cells have been shown to undergo MGC formation in response to eliciting molecules, 

such as the bacterial endotoxin, LPS (Yangashita et aI., 2005). Understanding the steps 

involved in MGC biogenesis could provide an important link between chronic pathogen 

recognition and macrophage responsiveness. This study proposes a straightforward 

model of pro-inflammatory cytokine-induced giant cell formation. Upon exposure to 

bacterial endotoxin, these cell line monocytes fuse together to form MGC. Since MGC 

formation can be studied in an isolated homogenous cell population, it should be 

possible to link the underlying intracellular biochemical events with the pronounced cell 

structure changes observed in cell fusion. 

MGC formation represents a unique cellular response, which macrophages 

engage when challenged with bacterial endotoxins or large foreign bodies that cannot 

be ingested. The macrophage response to both cytokine exposure and bacterial 

components, such as endotoxins, is to increase phagocytosis. Despite the importance 

of the macrophage cell fusion response in a number of diseases, the molecular 

mechanism remains elusive. This study seeks to establish an assay for giant cell 

formation and determine the role of bacterial endotoxins in MGC development. In the 

current thesis, the goal is to examine the role of LPS and LTA on MGC formation. 
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MATERIALS AND METHODS 

RAW 264.7 cell culture 

The mouse macrophage cell line, RAW 264.7 (American Type Culture Collection, 

Manhasset, VA) was propagated in suspension culture as described (Dos Santos et aI., 

2007). Briefly, cell suspensions of the RAW 264.7 cells were maintained in 100 mm2 

culture dishes in Rosewell Park Memorial Institute (RPMI), medium with heat-

inactivated, endotoxin tested, 5% fetal calf serum, and GlutaMAX™, high glucose, 

containing 1% streptomycin/penicillin, in a humidified atmosphere with 5% CO2• All 

solutions and plastic ware used were certified cell culture grade, endotoxin free 

(InVitrogen; Carlsbad CAl. Cells were routinely passaged at 70% confluence and split 1:5 

(dish: dish ratio). Cells used in experiments were allowed to recover for 48 h before 

experiments. Cells were cultured in 6-well, 12-well, 24-well, or 48-well culture dishes 

purchased from Corning (Corning, NY) in RPMI, prior to experimentation. 
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Preliminary assays 

RAW 264.7 cells monolayers were plated in 6-well, 12-well, 24-well, and 48-well 

tissue culture grade plastic dishes at varying seeding cell densities of 10,000 cells/well to 

250,000 cells/well at different time intervals. After 48 hours in culture, the cells were 

rinsed with Oulbecco's phosphate-buffered saline, PBS, (Invitrogen; Carlsbad, CAl to 

remove growth medium and treated with Dpti-MEM (Invitrogen; Carlsbad, CAl, a 

serum-free medium alternative. Following D/N incubation, the monolayers were 

designated as control (no endotoxin treatment) or treated with increasing 

concentrations of lipopolysaccharide (LPS) (Invitrogen; Carlsbad, CAl over the range of 1 

IJ,g/mL to 100 IJ,g/mL. MGC formation was monitored every 12 hours by phase contrast 

light microscopy, at 100 X magnification, (Inverted, Phase-Contrast Leicae OMIL 

Microscope) and documented with a Leicae digital camera (Leicae OFC300FX CCO). All 

plates were also blindly observed and scored by an independent observer. 
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MGC formation morphological analysis and quantification 

RAW 264.7 cells monolayers were plated in 12-well tissue culture grade plastic 

dishes at a seeding cell density of 100,000 cells/well and a total of 2 mL media per well. 

After 48 hours in culture, the cells were rinsed with PBS to remove growth medium and 

treated with Opti-MEM. Following O/N incubation, the monolayers were designated as 

control (no endotoxin treatment) or treated with 10 ~g/mL LPS. Following 4 days 

incubation, morphological analysis of Multi-nucleated giant cell formation was viewed 

by phase contrast light microscopy (100 X magnification) and documented with a Leica® 

digital camera. Quantification was done by manually counting MGC formations. All 

quantifications were also blindly observed and scored by an independent observer. 
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Time-Course assay of giant cell formation 

RAW 264.7 cells monolayers were plated in 24-well tissue culture grade plastic 

dishes at a seeding cell density of 100,000 cells/well and a total of 1 mL media per well. 

After 48 hours in culture, the cells were rinsed with PBS to remove growth medium and 

treated with Opti-MEM. Following O/N incubation, the monolayers were deSignated as 

control (no endotoxin treatment) or treated with 10 Ilg/mL LPS. Following each hour of 

incubation, phase contrast light microscopy (100 X magnification) was used to review 5 

views of well treated with LPS so determine if giant cell formations had occurred. A 

"yes" or tlno" designated was used based on the presence of absence of a formation 

respectively. All results were also observed and scored by an independent observer. 
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Cell viability assay 

RAW 264.7 cells monolayers were plated in 24-well tissue culture grade plastic 

dishes at a seeding cell density of 100,000 cells/well and 1 ml media per well. After 48 

hours in culture, the cells were rinsed with PBS to remove growth medium and treated 

with Opti-MEM. Following O/N incubation, the monolayers were designated as control 

(no endotoxin treatment) or treated with 10 jJ.g/mllPS. Calcein AM (485 nm/530 nm 

excitation/emission; Invitrogen; Carlsbad, CAl was prepared in a 1:100 ratio compared 

to well volume and diluted with Opti-MEM. After 96 hours incubation, each well was 

treated with 1jJ.M Calcein AM and incubated for 20 minutes. After 20 minutes, the 

Calcein AM solution was aspirated and the cell monolayers rinsed with PBS to remove 

residual Calcein AM. Opti-MEM was added to each well and the plates analyzed using 

an automated Cytofluor 4000 temperature-controlled fluorescence plate reader. Wells 

were also analyzed using epi-fluorescent microscopy (at 100 X magnification) and 

captured using a leica® digital camera. 
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Endotoxin comparison assay 

RAW 264.7 cells monolayers were plated in 12-well tissue culture grade plastic 

dishes at a seeding cell density of 100,000 cells/well and 1 mL media per well. After 48 

hours in culture, the cells were rinsed with PBS to remove growth medium and treated 

with Opti-MEM. Following O/N incubation, wells were designated control (no 

treatment), LPS treated, and Lipoteichoic Acid, LTA, (Invitrogen; Carlsbad, CA), and 

treated accordingly. LTA treated wells were varied in concentration being 1llg/mL, 10 

Ilg/mL, or 100 llg/mL. Following 4 days incubation, giant cell formation was viewed by 

phase contrast light microscopy (100 X magnification) and documented with a Leica® 

digital camera. Quantification was done by manually counting MGC formations. All 

quantifications were also observed and scored by an independent observer. 
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i TNF-a dependency assay 

j 

I 
i 

RAW 264.7 cells monolayers were plated in 24-well tissue culture grade plastic 

! dishes at a seeding cell density of 100,000 cells/well and 1 mL media per well. After 48 
1 

hours in culture, the cells were rinsed with PBS to remove growth medium and treated 

1 with Opti-MEM. Following O/N incubation, plates were divided in three parts - negative

I control (no treatment), positive control (10 ll8/mL LPS treatment), or TNF-a removal. 
~ 

Once daily, for the entirety of the incubation duration, the media and hence the TNF-a 

build-up that was produced by the RAW 264.7 cells, was removed and replaced with a 

fresh milliliter of RPMI medium. Post 4 days incubation, and four TNF-a build-up 

removals, giant cell formation was viewed by phase contrast light microscopy (100 X 

magnification) and documented with a Leica llD digital camera. Quantification was done 

by manually counting MGC formations. All quantifications were also observed and 

scored by an independent observer. 
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Soluble TNF-a treatment assay 

RAW 264.7 cells monolayers were plated in 24-well tissue culture grade plastic 

dishes at a seeding cell density of 100,000 cells/well and 1 mL media per well. After 48 

hours in culture, the cells were rinsed with PBS to remove growth medium and treated 

with Opti-MEM. Following O/N incubation, plates were divided into negative control 

(no treatment), positive control (10 Ilg/mL LPS treatment), or 1llg/mL TNF-a (Invitrogen; 

Carlsbad, CAl treatment. Post 4 days incubation, and four TNF-a build-up removals, 

giant cell formation was viewed by phase contrast light microscopy (100 X magnification) 

and documented with a Leica® digital camera. Quantification was done by manually 

counting MGC formations. All quantifications were also blindly observed and scored by 

an independent observer. 
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Data analysis 

All results from the different treatments and data groups were calculated and 

presented as the mean ± SEM for each control or treatment (n = 3 or greater for the 

wells in each plate, with three plate replicates). Statistical comparisons between the 

means of different groups were performed by multiple ANOVA with a Neuman-Keuls 

multiple comparison post-test. Data was analyzed using GraphPad® Prism 4 and 

statistical significance was defined as p < 0.05. 

16 




RESULTS 


Preliminary Cell Culture Assays 

Cell monolayers of RAW 264.7 cells were plated in 6-well, 12-well, 24-well, and 

48-well culture plates and treated with increasing concentrations of LPS. Cell plating 

concentrations included 10,000 cells/well, 25,000 cells/well, 50,OOOcelis/well, 100,000 

cells/well, 150,000 cells/well, 200,000 cells/well, and 250,000 cells/well. Final LPS 

treatment concentrations were 1 jlg/mL, 5 IJ,g/mL, 10 IJ,g/mL, 20 IJ,g/mL, 50 IJ,g/mL, and 

100 IJ,g/mL. The treated cells were incubated at 37°C for times intervals of 4 to 10 days. 

It was found that optimal conditions for the RAW 264.7 cell growth and maintenance 

included no more than a 5 day incubation period, plating of cells in a 24-well culture 

plate, a cell plating density of 100,000 cells/well, and a LPS treatment concentration of 

no more than 10 IJ,g/mL. At an optimal LPS concentration, the maximum number of 

giant cell formations observed was .... 30 % of the total cell population (Figure 2a, 2b). 

The time course results show that fusion of RAW 264.7 macrophages into MGC s 

is time dependent, concentration dependent, cell density dependent, and growth 

dependent. These findings expand on the work done by Yanagishita, et al., 2007, and 
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provide an experimental template for examining the factors involved in endotoxin

mediated RAW 264.7 cell fusion. 

It was also observed that increasing the concentration of LPS treatment caused 

the cells to undergo apoptosis, which was evident at concentrations of 20 ~g LPS 

treatment and above and appears to be related with LPS toxicity. However, despite the 

toxicity, even at the higher LPS concentrations MNC formation was still observed. 

18 




Treated RAW 264.7 cells post incubation. 

RAW 264.7 cells were plated at lOOk cells/well, treated, and incubated for 5 days. 

Figure 2a: View of a control well. No MGC are observed. Six wells and a total of 5 
views per well observed and formations averaged. (100 X magnification). 

Figure 2b: View of a well with cells treated with 10 Ilg/mL LPS. MGC are indicated by 
arrows. Not all multi-nucleated giant cell formations are shown. Six wells and a total 
of 5 views per well observed and formations averaged. (100 X magnification). 
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Potential toxicity of LPS. 

RAW 264.7 cells were plated at lOOk cells/well, treated, and incubated for 5 days. 

Figure 3: View of a well with cells treated with 20 J,lg/mL LPS. The observed result 
showed marked cell toxicity. The toxicity of LPS can be seen with increasing LPS 
concentrations. The cell mortality rate is approximately 75 %. Arrows indicate cell 
fusion. Not all formations are shown. (100 X magnification). 
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MGC: Morphological analysis and quantification 

Defining the experimental parameters for MGC formation was a critical 

determinant for further experimentation. In order to document a giant cell formation, 

morphological analysis was done using phase-contrast microscopy with a final 

magnification 400 X. Figure 4 shows that multiple nuclei are present inside this 

individual giant cell formation. 

Quantification of these giant cell formations was done in two independent 

experiments. Multiple views of each well were digitally captured using phase-contrast 

microscopy and Leica® digital camera. Each picture was then corroborated by an 

independent observer. As shown in Figure 5 the results show that at a 10 Ilg/mL LPS 

treatment, an increasing cell density yields a greater number of giant cell formations. As 

compared to the control groups, the treatment of RAW 264.7 cells with LPS caused a 

significant increase in MGC formations observed. These results indicate that the 

increasing cell density results in an increasing probability of cell fusion. It should be 

noted that an upper limit of cell density is determined by non-fusing cell overgrowth 

(Figure 4). At higher cell plating densities it becomes harder to count formations due to 

potential over growth in each well over time. (Data not shown) 
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Close-up view offused RAW 264. 7 cells. 


RAW 264.7 cells were plated at lOOk cells/well, treated, and incubated for 96 hours. 


Figure 4: A digital image of multi-nucleated giant cell formation in RAW 264.7 mouse 

cells treated with 10 ~/mL LPS. 
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Giant cell formation analysis after 95 hours ofincubation at 37°C with 5 % CO2 . 

Figure 5: The concentration of LPS added was 10 III of 10 Ilg/ml. The assay was 
carried out in 12 well plates with 2 ml of cell solution per well. The data shown is 
the average number of formations observed per random view per well. A total of 
five random views per well were taken for each seeding density with quantification 
done via manual techniques. 

Data are means ±SEM from three independent experiments. Data were analyzed 
by multiple ANOVA with Newman-Keuls post hoc test. USing GraphPad® Prism 
statistical significance was defined as p < 0.05. **p < 0.001 

As compared to each densities' control group; LPS is shown to significantly increase 
the number of MGC formations observed with increasing cell number. 
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Time-course assay of MGC formation 

To further investigate giant cell formations, we performed a time course for 

giant cell formation. Control and endotoxin treated RAW 264.7 cell cultures observed 

every hour for 24 consecutive hours, with 5 random views of each well documented by 

phase contrast microscopy and a "yes" or "no" result assigned based upon the observed 

MGC formation. Each view was cross-checked by an independent observer. The initial 

giant cell formation was seen to form within 24 hours, at the 22/23 hour time period. 

The experiment was repeated six times to verify the time course results. 

Cells were also incubated until 10 days to reconfirm the appropriate length of 

incubation time. rhe optimal time of incubation was found to be approximately 4-5 

days (a time point which avoided cell overcrowding in the control wells and minimized 

cell death in the treated wells). The four day time point is used in future experiments .. 
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Table 1: 100,000 cells/well 

Treated with 10 lJg/mL LPS 
Hour View View View View View Hour View View View View View 
1 1 2 3 4 5 2 1 2 3 4 5 
Weill No No No No No Weill No No No No No 
Well 2 No No No No No 

IweJ 
No No No No No 

Well 3 No No No No No No No No No No 
Well 4 No No No No No No No No No No 
Hour View View View View View View View View View View i 

3 1 2 3 4 5 JI 1 2 3 4 5 I 
Weill No No No No No Weill No No No No No 

No No No No Well 2 No No No No No 

Well 3 No No No No No Well 3 No No No No No 

Well 4 No No No No No Well 4 No No No No No 
Hour View View View View View Hour View View View View View 
5 1 2 3 4 5 6 1 2 3 4 5 
Weill No No No No No Weill No No No No No 

Well 2 No No No No No Well 2 No No No No No 

Well 3 No No No No No Well 3 No No No No No 

Well 4 No No No No No Well 4 No No No No No 

Hour View View View View ! View Hour View View View View View 
7 1 2 3 4 ! 5 8 1 2 3 4 5 
Weill No No No No No Weill No No No No No 

Well 2 No No No No Well 2 No No No No No 

Well 3 No No No No No Well 3 No No No No No 

Well 4 No No No No No Well 4 No No No No No 

Hour View View View View View Hour View View View View View 
9 1 2 3 4 5 10 1 2 3 4 5 
Weill No No No No No Weill No . No No No No 

Well 2 No No No No No Well 2 No No No 

Well 3 No No No No No Well 3 No No No 

Well 4 No No No No No Well 4 No No No No 
Hour View View View View View Hour View View View View 
11 1 2 3 4 5 12 3 4 5 

well~~ No No No Well No No No 

Well 2 No No No No No Well 2 No No No No No 

~ 
No No No Well 3 No No No No No 

Well No No No Well 4 No No No No No 
View View View Hour View View View View View 

13 1 2 3 4 5 14 1 2 3 4 5 
Weill No No No No No Weill No No No No No 

Well 2 No No No No No Well 2 No No No No No 

Well 3 No No No No No Well 3 No No No No No 

Well 4 No No No No No Well 4 No No No No No 
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Hour View View View View View Hour View View View View View I 
15 1 2 3 4 5 16 1 2 3 4 5 
Weill No No No No No Weill No No No No No 
Well 2 No No No No No Well 2 No No No No No 
Well 3 No No No No No Well 3 No No No No No 
Well 4 No No No No No Well 4 No No No No No I 

Hour View View View View View Hour View View View View View • 
·17 1 2 3 4 5 18 1 2 3 4 5 
Weill No No No No No Weill No No ~NO No I 
Well 2 No No No No No Well 2 No "" No No 
Well 3 No No No No No Well 3 No No No No No 
Well 4 No No No No No Well 4 No No No No ! 

Hour View View View View View Hour View View View View Vi;W I 
19 1 2 3 4 5 20 1 2 3 4 

~ No No No No No Weill No No No No No 
Well 2 No No No No No Well 2 No No No No No 
Well 3 No No No No No Well 3 No No No No No I 

Well 4 No No No No No Well 4 No No No No No 
Hour View View View View View Hour View View View View View I 
21 1 2 3 4 5 22 1 2 3 4 5 • 

~o No No No No Weill Yes No No Yes No 

12 No No No No No Well 2 No No No No No 

ell 3 No No No No No Well 3 No Yes No No No ! 

Well 4 No No No No No Well 4 No No No No Yes 
Hour View View View View View Hour View View View View View 
23 1 2 3 4 5 24 1 2 3 4 5 

Weill Yes Yes No Yes No Weill Yes Yes No Yes No 

Well 2 No No No No No Well 2 No No Yes Yes No 

Well 3 Yes No No No Well 3 No Yes No No I No 
Well 4 No No Yes Yes Well 4 No No No Yes Yes 

24-hour Time Course Analysis 0/Giant Cell Formations 

Table 1: LPS added was at 10 lJ,g/ml. Each view was checked hourly for MGC 
formations. Results were compared and condensed from the primary researcher 
and independent viewer. Results show that at the 22/23 hour time marks, the first 
MGC formation is observed. 
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Comparison between treated and untreated RA W 264. 7 cells. 

Figure 6a: No giant cell formation was observed with untreated RAW 264.7 mouse 
macrophage cell line after 4 days of incubation plated at lOOK seeding density. Four 
wells and a total of 5 views per well observed and formations averaged. (100 X 
magnification). 

Figure 6b: Giant cell formation observed with LPS treated RAW 264.7 mouse 
macrophage cell line after 4 days of incubation. Some, not all formations are marked 
with an arrow. Four wells and a total of 5 views per well observed and formations 
averaged. Results indicate that 96 hours is the optimal time length of incubation. 
(100 X magnification). 
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Cell viability assay 

To determine if the cells were still viable after treatment with the LPS endotoxin, 

Calcein AM was used. Being a fluorogenic esterase substrate, Calcein AM passively 

enters viable RAW 264.7 cells and is enzymatically cleaved by intracellular esterases. 

The newly formed negatively charged product is trapped in the intracellular 

compartment, and fluoresces (485 ext 530 em). Calcein AM product fluorescence 

indicates cell viability despite endotoxin treatment (Blake, 1994). 
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Calcein staining of RA W 264. 7 cells. 

Figure 7a: Epifluorescent digital image of Calcein AM stained RAW 264.7 MGC 
formation cells post 4 days incubation and treatment of 10 IJ,g/ml LPS. Seeding 
density being 100,000 cells/well. 

Figure 7b: Corresponding phase-contrast image. The red circles show images of 
giant cell formation. This is limited to a few, as the picture has many formations. 
(100 X magnification). 
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Endotoxin comparison assay 

Both Gram negative and Gram positive bacteria contain endotoxins that 

stimulate the innate immune system. In order to establish a comparison point between 

endotoxins and cell fusion, we compared treatment of RAW 264.7 cells with the gram

negative endotoxin LPS to the gram-positive endotoxin LTA. These distinct endotoxins 

activate distinct intracellular protein kinase signaling pathways with a convergence point 

at the level of pro-inflammatory transcriptional controlling the outcome of the pathway. 

We observed that both endotoxins elicited MGC formation, albeit at different effective 

concentrations. The concentration at which LTA causes a similar number offormations 

as LPS is 100 Ilg/mL. A ten-fold increase over the concentration of LPS was used. These 

results show that LPS elicits a greater MGC RAW 264.7 cells as compared to LTA (Figure 

8). 
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LPS and LTA elicit MGCformation in RAW 264.7 cell mono/ayers 

Figure 8: The concentration of LPS added was at 10 III of 10 Ilg/mL. The data shown 
is the average number of formations observed per random view (5) per well (4). LTA 
treated wells were at a concentration of 100 Ilg/mL. 

Data are means ±SEM from three independent experiments. Data were analyzed by 
multiple ANOVA with Newman-Keuls post hoc test. Using GraphPad Prism statistical 
significance was defined as p < 0.05. up < 0.001 compared to untreated control cells 

Using GraphPad Prism® and manual quantification techniques. 
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LTA induces MGCformation in RAW 264. 7 cells. 

Figure 9: View of a well with cells treated with 100 Jlg/mL LTA. Representative 
MGC formations are marked with an arrow. Four wells and a total of five views 
per well observed and formations averaged. (lOa x magnification). 
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TNF-a dependency assay 

In order to establish the significance of endotoxin-stimulated TNF a cell fusion 

pathway, we removed the cell culture media which contained TNF-a every 24 hours for 

the entire incubation time. The experiment is designed to test the importance of 

endotoxin-stimulated TNF-a in stimulating MGC formation 

The results shown in Figure 10 indicate that removal of the TNF-a decreases the 

total number of giant cell formations observed. There is an approximate 40 % decrease 

in MGC formations seen with daily removal of cell culture (Figure 10). These results 

suggest that TNF-a may be a significant factor in stimulating MGC formation in the RAW 

264.7 cell model. 
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Giant cell formation analysis following daily media removal and after 96 hours of 
incubation at 3rC with 5 % C02. 

Figure 10: The concentration of lPS added was 10 Ilg/ml. The assay was carried 
out in a 24 well plates. The data shown is the average number of formations 
observed per random view (5) per well (8). 

Data are means ±SEM from three independent experiments. Data were analyzed 
by multiple ANOVA with Newman-Keuls post hoc test. Using GraphPad® Prism 
statistical significance was defined as p < 0.05. up < 0.001 (TNF-a media 
removed versus control with media present) 
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RAW 264. 7 cells were plated (24-well culture plate used) at lOOk cells/well, 
treated, and incubated for 96 hours. 

Figure lla: View of a well with cells treated with 10 Ilg/mL LPS. Representative 
MGC formations are indicated with an arrow. Eight wells and a total of 5 views 
per well observed and formations averaged. (100 X magnification). 

Figure llb: View of a well with cells treated with 10 Ilg/mL LPS and TNF-a 
removed daily. Representative MGC formations are indicated with an arrow. 
Eight wells and a total of 5 views per well observed and formations averaged. 
(100X magnification). 
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Soluble TNF-a Treatment Assay 

In order to establish that TNF-a contributes to giant cell formations, RAW 264.7 

monolayers were treated with commercially available, soluble TNF-a and compared 

these results with parallel cultures treated with LPS. 

The results in Figure 12 show that the addition of exogenous, soluble TNF-a 

caused MGC formations. A treatment of 1llg/mL soluble TNF-a induced fusion at levels 

of approximately 33 percent of that of a LPS endotoxin treated well. As compared to 

the untreated cell group, the treatment of RAW 264.7 cells with soluble TNF-a caused a 

significant increase in MGC formations observed. 
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Giant cell formation analysis following soluble TNF-a treatment and after 96 
hours of incubation at 3rC with 5 % CO2 . 

Figure 12: The data shown is the average number of formations observed per 
random view (5) per well (8). 

Data are means ±SEM from three independent experiments. Data were analyzed 
by multiple ANOVA with Newman-Keuls post hoc test. Using GraphPad® Prism 
statistical significance was defined as p < 0.05. **p < 0.001 (soluble TNF- a 
treatment versus LPS treatment) 

As compared to the negative control group (untreated group); treatment of RAW 
264.7 cells with soluble TNF-a is shown to significantly increase the number of 
MGC formations observed. 
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DISCUSSION 

Macrophage fusion resulting in the formation of MGC or granuloma formation 

represents a unique cellular response, which macrophages engage when challenged 

with bacterial endotoxins or large foreign bodies. Macrophages have a pronounced cell 

fusion capacity when compared to other cells, making the macrophage an ideal model 

for examining the cell biology of MGC formation (Helming and Gordon, 2009). Despite 

the importance of the macrophage granuloma response in a number of diseases, 

including parasitic infections and chronic inflammatory diseases, such as rheumatoid 

arthritis, the molecular mechanisms involved remain elusive. However, cell cultured 

based approaches may provide unique insights to this process and provide a valuable 

model for identifying the molecular components involved (Helming and Gordon, 2008; 

Vignery, 2008). 

In the current study, we establish the utility of an in vitro cell culture system to 

examine the roles of bacterial endotoxins in triggering cell fusion. RAW 264.7 cells are a 

mouse monocytic cell line that provides a renewal supply of monocytic cells, that when 

stimulated with bacterial endotoxins, respond by secreting pro-inflammatory mediators, 

as well as forming MGC formations (Yangashita et aI., 2007). We have been able to 

trigger the formation of multi-nucleated giant cells, which resembles that of a 
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granuloma formation but without the walling off of a pathogen or invader, with the 

treatment of bacterial endotoxins LPS and LTA. 

Yanagishita and colleagues (Yangashita et 01., 2007) first established the ability 

of RAW 264.7 cells to fuse. The base requirements were discovered to include plate size, 

incubation time, seeding cell density, and treCltment concentration. LPS causes the RAW 

264.7 macrophages to fuse in a linear fashion with regards to seeding cell density, 

suggesting a direct link between endotoxin stimulated cellular events and the capacity 

for cell fusion. Our studies delineated the methodological requirements needed for 

endotoxin-mediated fusion with regard to optimizing the cell fusion assay conditions. 

Obstacles arise when using higher seeding densities because of the cell nutrient 

requirements, and cell overgrowth. Our results established that 100,000 cells/well is 

optimal for plating and allowing growth when using manual observation and 

quantification methods. 

We discovered that the ideal LPS endotoxin concentration to elicit maximal 

macrophage fusions without causing cell death is 10 ~g/mL. In order to check the cell 

viability per well, fluorescent microscopy is used in combination with Calcein AM, a 

fluorescent esterase substrate. The use of Calcein AM shows that the giant cell 

formations take in a great amount of the substrate and therefore has a higher intensity 

when being visualized with a fluorescent microscope (Figure 7a). Calcein use also 

showed that the cells were still viable after endotoxin treatment of 10 ~g/mL, 

eliminating the thought that only cells that fused actually survived the treatment. 
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The plate used matters only with respect to the space distance between each 

cell in the well. At 100,000 cells/well, the larger the well, the less likely one cell is to be 

close enough for fusion to actually occur. The best spacing is provided with the use of 

24-well plates (Figure 10, Figure 12) followed next by the use of 12-well plates (Figure 5, 

Figure 8). Our experiments were carried out on both 12 and 24 well plates. The larger 

the well (12 well plates), allow a greater amount of media to be inserted per well and 

hence the cells will have nutrients and growth factors for a longer period of time. The 

length of incubation found to work the best when trying to quantify giant cell 

formations was 4 days or 96 hours. At this point there was maximal giant cell formation 

with minimal stress on the cells and zero overgrowth of cells. Giant cells were seen to 

form at the 22/23 hours marks and not prior to these timestamps when doing a time 

course analysis (Table 1). Since giant cells in deed form within 24 hours, it can be 

assumed that the cause of the formations is at a post-transcriptional level. 

lipoteichoic acid (lTA) was shown to have a similar effect on RAW 264.7 

macrophages over the same time course, with the same seeding density; however, with 

a 10-fold treatment concentration as compared to that of lPS treated cells (Figure 9). 

We have shown, through manual quantification methods and independent verifications 

that cells treated with lTA with a concentration of 100 Ilg/ml form a similar number of 

giant cell formations as cells treated with lPS with a concentration of 10llg/ml (Figure 

8), Even though lTA and lPS have different kinase-kinase cascades, they have the same 

translational effect on RAW 264.7 cells. Both treatments elicit an immune response in 
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the cells causing them to fuse with their neighboring macrophages forming 

multinucleated giant cells. This can be attributed to the convergence point of both 

endotoxin treatments being NF-KB. The transcription factor NF-KB performs a seminal 

role in the TLR inflammation response, in particular with LPS activation of TLR4, as well 

as serving as a convergence point for TLRs that recognize other bacterial signals (Cario, 

2008). 

The transcription factor NF-KB controls the dominant pro-inflammatory genes 

which are activated by LPS and LTA. Post activation of NF-KB, there is a flow of TNF-a 

into the surrounding media from the activated cells. We hypothesized that this release 

of protein caused the cells to fuse and form multi-nucleated giant cells. To test said 

hypothesis, we removed the media daily for the whole incubation time and therefore 

removed the protein build-up. If the protein was responsible for fusion then it would 

make sense that a removal of this protein would in turn yield a lower number of giant 

cell formations. As shown in Figure 10, the removal of the TNF-a does yield a lower 

number of formations over the same incubation time, same seeding cell density, and 

treatment concentration. All variables were the same between the positive controls 

and the TNF-a wells except that the protein build-up was removed from the TNF-a wells. 

A removal of the media in turn yielded an approximate 40 percent decrease in the total 

number of giant cell formations observed. These results were verified by an 

independent viewer and by repeating it multiple times. 

41 



To confirm that it was in fact the TNF-a was a contributor to MGC formation; we 

treated monolayers of RAW 264.7 macrophages with soluble TNF-a and compared the 

results with LPS treated controls. Our results verified that TNF-a promotes MGC 

formation, a result which also was observed with the endotoxin, LTA.. LPS or LTA 

treatments ultimately result in the activation of the pro-inflammatory transcription 

factor, NF-KB, It is clear that pro-inflammatory mediators, such as TNF a contribute to 

MGC formation, however, a number of other potential mediators have been identified 

(Helming and Gordon, 2009). Included among the permissive inducing factors are the 

cytokines Interleukin-4, myobacterial envelope glycoprotins, interferons, and several 

cytokines (Helming and Gordon, 2009). Although the present study does not directly 

address the potential role for these factors, the use of a defined, homogeneous cell 

population, in conjunction with defined bacterial endotoxins, clearly demonstrates that 

endotoxin exposure can stimulate a defined and readily quantifiable cell fusion event. 

By establishing a cell line macrophage model of MGC cell formation, we have set a 

precedent for examining the mediators of cell fusion in a homogenous cell population, 

devoid of the cellular heterogeneity seen in primary cell models derived from isolated 

tissues. 
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CONCLUSION 


In this study, we reveal the cellular biology of multi-nucleated giant cell 

formation and tested theories behind the formations of giant cells. We have 

determined that giant cell formations are dependent on the treatment concentration, 

growth space allocation, available food source, original cell seeding density, and total 

incubation time. The main basis being that the cells have to be in an environment 

conducive for growth, while having neighboring cells in reach to allow fusion. We have 

also shown that different endotoxins (LPS and LTA), which have different kinase-kinase 

cascades, can yield the same result - stimulation of multi-nucleated giant cell 

formations. To better analyze the cell biology of giant cell formation we attempted to 

conclude what in fact is the cause of the formations. We used TNF-a removal assays to 

indicate said protein as the contributor to giant cell formations. P.ost verifying the need 

of TNF-a in giant cell formation, we treated monolayers with soluble TNF-a in an 

attempt to induce giant cell formations without the kinase-kinase cascade caused by 

endotoxin (LPS or LTA) treatment. Soluble TNF-a treatment also caused giant cell 

formations. We therefore conclude that TNF-a is a culprit that is responsible for multi 

nucleated giant cell formations in RAW 264.7 cells. 
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