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Abstract 

In humans, early embryo development is a complex process that consists of sequential events: 

oocyte maturation, fertilization, embryonic growth and implantation. Disruption of these highly 

regulated processes results in reproductive failure and infertility. This study characterizes and 

describes embryonic aneuploidy, mitochondrial content level and endometrial microbial 

environment related to reproductive competence, in particular instances in which failure results. 

To examine the molecular underpinnings of mammalian gamete and early embryo chromosome 

segregation, we established a comprehensive chromosomal screening (CCS) method for mice 

poly bodies, oocytes and embryos by the application of whole genome amplification (WGA) and 

next generation sequencing (NGS).  First, we validated this approach using single mouse 

embryonic fibroblasts engineered to have stable trisomy 16. We further validated this method by 

identifying reciprocal chromosome segregation errors in the products of meiosis I (gamete and 

polar body) in oocytes from reproductively aged mice.  Finally, we applied this technology to 

investigate the incidence of aneuploidy in IVM- and IVF- derived blastocysts from both young 

and reproductively aged mice. 

It was reported that mtDNA was significantly increased in aneuploid human embryos compared 

to euploid embryos and also associated with maternal age. In this study, we established the 

mouse model of mitochondrial DNA (mtDNA) quantitation in reproductive samples based on 

WGA and NGS. The method was validated on a tumor-derived mouse cell line, and then applied 

to mouse reproductive samples. Cells in blastocysts from younger mice contained significantly 

lower amounts of mtDNA compared to aged mice (P<0.001). Cells in blastocysts produced via 

IVO had higher mtDNA content than IVM-derived blastocysts (P=0.0052). Cells in aneuploid 

blastocysts were found to have significantly higher (1.74-fold) levels of mtDNA compared to 
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euploid blastocysts (P=0.0045). WGA and NGS provided a reliable method to assess mtDNA 

content in mouse gametes and embryos. We also established a quantitative method to detect 

mtDNA copy number in human embryos. The maternal age of the embryos displayed a 

significant correlation with mtDNA content (p=0.007). This well controlled study demonstrated 

that mtDNA quantitation provided no additional selection advantage between euploid sibling 

embryos in a double embryo transfer model. 

There is growing interest in the microbiome of the reproductive tract. The vaginal and placental 

microbiome have been partially characterized and shown to be related to obstetric outcomes. In 

this study, we assessed the quality of Ion PGM- and Illumina MiSeq-generated data for 16S 

rRNA metagenomics, established the sensitivity of Illumnia 16S V4 metagenomics, then studied 

the endometrial microbial environment by analyzing the embryo transfer (ET) tip after embryo 

transfer. There were a total of 248 genera detected amongst all specimens. Lactobacillus genera 

were detected in all of the samples. When analyzing fraction of lactobacillus reads, there were no 

differences (p=0.464) The Shannon Diversity Index did not differ between the two groups 

(p=0.164). The data in this study showed the microbiome at the time of ET may differ by 

pregnancy outcome but highlighted the challenge of low bacterial load and read counts when 

analyzing ET catheter tips alone. 

Keywords: 

IVF, aneuploidy, aging, embryo, oocytes, comprehensive chromosome screening, mitochondrial 

DNA, NGS, microbiome, 16S rRNA. 
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Introduction 

Infertility is the inability to get pregnant after at least 12 consecutive months of appropriately 

times, unprotected intercourse. There are over 1.5 million women ages 15-44 that are infertile in 

the USA, which represented 6.0% of the population in 2006-20101. Age alone has an effect on 

fertility by reducing the production of oocyes2,3 and decreasing the quality of oocytes4. Oocyte 

quality is dictated by acquisition of both meiotic and cytoplasmic competence5. The implantation 

failure of euploid embryos also relates to the uterine endometrial microbial environment of the 

patient6. In this study, we investigate aneuploidy associated with meiotic competence, 

mitochondrial level related to cytoplasmic competence and endometrial microbiome on the day 

of embryo transfer. 

Mouse aneuploidy model and Reproductive Competence 

In humans, early embryo development is a complex process that consists of sequential events: 

oocyte maturation, fertilization, embryonic growth and implantation. Disruption of these highly 

regulated processes results in reproductive failure and infertility. Advances in clinical and 

laboratory practice have resulted in steady improvements in in vitro fertilization (IVF) outcomes 

since the birth of the first IVF baby in 1978. However, this technique remains inefficient. 

Much of assisted reproductive technology success depends on the oocyte quality achieved during 

the maturation process7 as well as the inflammatory and immune milieu at the time of embryo 

implantation. Oocyte quality involves primarily acquisition of both meiotic and cytoplasmic 

competence8. Meiotic competence refers to the ability of the oocyte to reverse meiotic arrest at 

prophase I and drive the progress of meiosis to produce a haploid gamete9. Errors in this process 

leads to aneuploidy, which is the leading cause of failed implantation, miscarriage, and can result 
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in congenital birth defects10. Indeed, chromosomal abnormalities are likely the most prevalent 

cause of failed reproductive competence in human embryos11. Cytoplasmic competence refers to 

the ability of the oocyte to accumulate critical stores of maternally derived proteins, mRNAs, and 

organelles, most prominent of which are the mitochondria, during oogenesis. This process is 

essential for preparing the egg for activation and preimplantation development12. 

Use of comprehensive aneuploidy screening (CCS) in clinical Assisted Reproductive 

Technology (ART) has shown that advanced reproductive age is associated with increased 

aneuploidy, largely due to chromosome segregation errors in the oocyte during meiosis13. The 

age-related decline in fertility is accompanied by significant increases in the rate of aneuploidy, 

which contributes to adverse reproductive outcomes including miscarriages, infertility, and birth 

defects14.  It is critical to understanding the mechanism of aneuploidy associated with age 

because of the increased maternal age in the United States15. 

Model organisms allow for better understanding the aneuploidy mechanisms without the added 

risk of harming an actual human embryo. Polar body biopsy may impair on human embryonic 

implantation potential and it is not feasible to study human oocytes due to direct testing a human 

oocyte would destroy its potential for IVF. In an animal model, all the reproductive samples can 

be studied to discover the aneuploidy mechanisms.  

The age-related increase in aneuploidy has been observed in both human and mouse. The 

aneuploidy rate increased from 3% to 60% in 1-month-old versus 15-month-old mice16, 

mirroring the incidence of common age-associated trisomies in human oocytes17. Therefore, 

mice have the potential to be a useful model system to study origins/etiology/mechanisms of 

human aneuploidy. Most studies for evaluating aneuploidy in mouse gametes and early embryos 

are based on chromosome spreads and FISH18. These methods are technically challenging, and 
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not all the chromosomes can be reliably and efficiently detected in single cells, which put 

limitations on the mouse studies.  An affordable method for comprehensive and chromosome-

specific evaluation of aneuploidy in individual mouse cells is needed.  

Methods of preimplantation comprehensive chromosome screening of human embryos has been 

well established and widely used in clinical ART to improve the outcome. The successful rate of 

IVF outcome has improved with the application of CCS in ART. The transfer of euploid 

embryos selected by CCS has improved the implantation rate from 47.9% to 66.4% and delivery 

rate from 67.5% to 84.7% in a well-designed randomized clinic trial19.  Those methods 

incorporate an amplification of a targeted region or whole genome first. Quantitative real-time 

PCR(qPCR) is used to access aneuploidy for targeted amplification20. However, the targeted 

amplification requires the design and validation of species-specific primers. Array comparative 

genomic hybridization (array CGH), single nucleotide polymorphism (SNP) arrays, or next 

generation sequencing (NGS) can be used to access aneuploidy for whole genome amplification 

(WGA)21. Of note, array CGH and SNP array also require species-specific design due to the 

special probes required. One advantage of using WGA and NGS is the ability to amplify and 

analyze DNA from any species, and the copy number of each chromosome can be calculated 

based on normal male references. This study is establishing a comprehensive chromosomal 

screening method for mice poly bodies, oocytes and embryos by application of WGA and NGS. 

This technology can be applied to discover the mechanism of aneuploidy associated with age in 

mammals. 

This is the first time WGA and NGS have been applied to comprehensively screen aneuploidies 

in individual mouse reproductive oocytes, polar bodies and embryos. This method overcomes the 

technical challenges associated with fluorescence in situ hybridization (FISH) which led to poor 
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accuracy and reproducibility, as well as the ability to assess only a limited number of 

chromosomes with FISH technology. This strategy provides the fields of reproductive science 

and medicine with a new research tool to improve the basic understanding of mechanisms 

contributing to maternal age-associated aneuploidy in mammals. The mouse model can be used 

to assess meiotic and mitotic segregation errors, distinguish aneuploidy due to premature 

separation of sister chromatids and classical non-disjunction, and evaluate the aneuploidy rate 

affected by age, drugs, environmental factors, and disease conditions. 

Mitochondria in Reproductive Competence 

The success of in vitro fertilization (IVF) has increased greatly with the application of 

comprehensive chromosome screening (CCS) in Assisted Reproductive Technology (ART). The 

transfer of euploid embryos selected by CCS improved the implantation rate from 47.9% to 

66.4% and delivery rate from 67.5% to 84.7% in a well-designed randomized clinical trial22. 

However, not every transferred euploid embryo results in implantation and delivery because 

embryo competence is also related to cytoplasmic content23.  

Mitochondria are well-defined cytoplasmic organelles that produce the energy currency 

(adenosine triphosphate; ATP) of the cell through respiration and regulate cellular metabolism24. 

Mitochondria are also an important source of reactive oxygen species (ROS) from complexes I 

and III of the electron transport chain25, which cause oxidative stress in the mitochondria and 

may contribute to the decline in mitochondrial function associated with the aging process26. In 

addition to supplying cellular energy, mitochondria are involved in other tasks, such as signaling, 

cellular differentiation, and cell death, as well as maintaining control of the cell cycle and cell 

growth. Unlike other cell organelles, mitochondria contain their own genome. Each 

mitochondrion is estimated to contain 2-10 mtDNA copies27. Eighty percent of mitochondrial 

https://en.wikipedia.org/wiki/Metabolism
https://en.wikipedia.org/wiki/Oxidative_stress
https://en.wikipedia.org/wiki/Cell_signaling
https://en.wikipedia.org/wiki/Cellular_differentiation
https://en.wikipedia.org/wiki/Apoptosis
https://en.wikipedia.org/wiki/Cell_cycle
https://en.wikipedia.org/wiki/Cell_growth
https://en.wikipedia.org/wiki/Cell_growth
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DNA codes for mitochondrial RNA, and therefore most mitochondrial DNA disorders lead to 

functional problems. The mtDNA copy number in early embryonic development has become the 

subject of a number of clinical and basic studies. It was reported that mtDNA was significantly 

increased in aneuploid human embryos compared to euploid embryos28 and associated with 

maternal age29. The less mtDNA content in embryos was an indicator for better embryonic 

implantation potential30,31. However, the underlying mechanism remains largely unknown. 

Research on early embryo development using model organisms obviates the need for using 

human eggs and preimplantation embryos, which would destroy their potential use for IVF and 

may not be feasible due to ethical and legal restrictions. Animal models also have the benefit of 

reduced genetic background variability. Mouse early embryo developmental stages are similar to 

those of the human embryo, and it is feasible to manipulate mouse embryos. Therefore, mice 

have the potential to be a useful model system to study the mtDNA levels as a biomarker in pre-

implantation embryo development.  

Previously, a method using whole genome amplification (WGA) and next generation sequencing 

(NGS) was developed for CCS of mouse reproductive samples32. We observed that increased 

aneuploidy was associated with advanced reproductive age, which was consistent with other 

studies33,34,35. The origin of aneuploidy is primarily attributed to errors during maternal meiosis 

in the oocyte36. The number of mitochondria increases sharply during oogenesis, and may play 

an important roles for aneuploidy.  

In the previous study, we also observed that blastocysts derived via in vitro maturation (IVM) 

had a higher aneuploidy rate than the blastocysts produced via in vivo maturation (IVO)32. 

Oocyte maturation is the final phase of oogenesis which involves both nuclear and cytoplasmic 

maturation37. In IVO, this process involves a number of signaling pathways and depends on the 

https://en.wikipedia.org/wiki/Genetic_code
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close interaction between the cumulus cells and the oocyte38. For IVM, while nuclear maturation 

is supported, cytoplasmic maturation is not assured34. The gradual accumulation of 

mitochondrial copy number and activity as oocyte development progresses is important for 

cytoplasmic maturation39. Understanding the association between blastocyst mtDNA level and 

the oocyte maturation methods will provide insight into cytoplasmic maturation under different 

maturation conditions. 

In this study, we validated the WGA and NGS based mtDNA assessment on a tumor-derived 

mouse cell line with ethidium bromide (EtBr) treatment. EtBr impairs mtDNA replication, and 

mtDNA levels decrease upon exposure to EtBr40. After validating our method, relative mtDNA 

copy number in individual mouse reproductive samples including polar bodies, oocytes, and 

embryos were assessed, providing insight into mtDNA levels in the preimplantation embryo and 

their relationship with chromosomal ploidy status, maternal age, and oocyte maturation methods. 

A recent study demonstrated that relative mtDNA content was affected by embryo gender and 

ploidy41, therefore, we implemented the correction based on gender and ploidy when the relative 

mtDNA content was evaluated. 

This study also developed a qPCR based method to access the relative copy number of mtDNA 

in trophectoderm biopsies from human embryos. A recent study showed an increased amount of 

mtDNA in euploid embryos was related to poor implantation potential and may be indicative of 

reduced metabolic fuel during oocyte maturation42.This study is based on single embryo transfer 

and compares the implanted and unimplanted embryos from different individuals. The variation 

among patients may have an impact on the results. With the application of embryonic DNA 

finger printing in our study, the implanted embryo for multiple embryo transfer can be 

identified43, 44. Our study compares the mitochondrial content in the euploid and aneuploidy 
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sibling embryos and implanted and nonimplanted transferred euploid sibling embryos from the 

same individual. This design within the same individual patients eliminates the variation from 

individuals, embryo incubation conditions, and different operators for the IVF cycles. 

Endometrial Microbiome and Reproductive Competence 

The human body contains over 10 times more microbial cells than human cells, and the human 

microbiome can significantly affect human physiology45. Disrupting microbial ecosystems has 

been linked to diseases and many disease processes disrupt the microbial ecosystems which 

make up the human microbiome46. The taxonomic identification of microorganisms is critical to 

our understanding of the microbiome’s role in reproductive physiology and pathophysiology. 

Indeed, in the wake of the Human Genome Project, a “second human genome project” was 

proposed that would investigate the normal microbiome at various sites in order to understand its 

synergistic interactions with the host47,48.  

The human microbiome affects the inflammatory and immune response throughout the body and 

it is likely this interaction is important in human reproductive tracts at the time of embryo 

implantation. A recent 16S RNA sequencing based study showed that the vaginal microbiome on 

the day of embryo transfer in assisted reproductive technology (ART) affects pregnancy 

outcome49. However, little is known about this interaction in uterus to date. 

It was widely assumed that the uterine cavity in non-pregnant women was a sterile environment; 

however, recent studies have proved this to be incorrect50. The human uterine endometrium is 

governed by a delicate balance of microbes, cellular immune response, and cytokines which 

regulate the endometrial receptivity of an embryo.  A receptive endometrial lining is a rate-limiting 

step in embryonic implantation and is essential for sustaining a viable clinical pregnancy. 
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Characterization of the endometrial microbial environment could be important in understanding 

endometrial proliferation, embryo implantation, and development of early pregnancies. In this 

study, we characterized the endometrial microbial environment by analyzing the embryo transfer 

tip after embryo transfer. 

A major concern when describing the human microbiome is ensuring that the diversity of species 

in a particular environment is properly captured and characterized. Previous culture based 

microbial studies significantly underrepresent the diversity in a particular microbiome; in fact,  

less than 1% of bacteria reliably grow and form colonies even in appropriate culture conditions 

resulting in significant underreporting of biodiversity51. Because of this, more recent data in 

metagenomics rely upon 16S ribosomal RNA (rRNA) gene sequencing. The key to utilizing the 

16S gene is that it contains both conserved regions and hypervariable regions (V1-V9). The 

conserved regions can be used to design universal primers while the hypervariable regions allow 

for specific taxonomic distinction52. 

16S rRNA hypervariable regions exhibit different degrees of sequence diversity, and not every 

hypervariable region is able to distinguish among all bacteria with equal specificity. Ion 16S 

metagenomics workflow uses two primer pools to amplify seven hypervariable regions (V2, V3, 

V4, V6, V7, V8, and V9) of bacterial 16S rRNA. Illumina 16S metagenomics workflow can target 

any hypervariable regions. The most widely used 16S hypervariable regions include V453,54 and 

V3-V455,56 of the 16S rRNA gene. In this study, we assessed the quality of Ion PGM- and MiSeq-

generated data and determine their advantages and disadvantages for 16S rRNA metagenomics. 

The current sequencing based human microbiome studies require DNA isolation and nanograms 

of input DNA for library preparation57,58. Therefore, a large amount of starting bacteria is needed. 

However, certain environmental samples and/or human body samples may contain very limited 
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amount of bacteria. Analyzing ultra-low amount of bacteria is technically challenging because of 

the DNA loss in the purification procedure and requirement of input DNA amount for NGS. Some 

clinically relevant minority populations, including potentially pathogenic bacteria, might be 

missed because of the depth bias. Culturomics had been used to overcome the depth bias in 

metagenomics approaches59,60. However, a more sensitive method is in need for the low bacterial 

mass samples. Presently, there are no studies showing minimum number of bacterial cells from 

the environmental samples are required for taxonomic classification. In this study, we developed 

a method to prepare 16S V4 NGS library followed by lysis directly for ultra-low amount of bacteria 

with great sensitivity for the first time.  

This technique was then utilized to analyze the embryo transfer catheter tip, which contains the 

ultra-low amount of bacteria after embryo transfer in an IVF cycle. The microbial profiling from 

the transfer catheter tip represents the microbial structure of human uterine endometrium at the 

time of embryo transfer. The human uterine endometrium is governed by a delicate balance of 

microbes, cellular immune response, and cytokines which regulate the endometrial receptivity of 

an embryo.  A receptive endometrial lining is a rate-limiting step in embryonic implantation and 

is essential for sustaining a viable clinical pregnancy. Characterization of the endometrial 

microbial environment could be important in understanding endometrial proliferation, embryo 

implantation, and development of early pregnancies. 
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Materials and Methods 

Aim 1: Establishment of CCS for mouse model 

Phase I: validation of WGA and NGS in individual mouse cells. 

Cell lines 

Cell lines include previously characterized mouse embryonic fibroblasts with trisomy 16 female 

(8474_2) and normal male (8474_1) karyotypes61 (a generous gift from A. Amon, Massachusetts 

Institute of Technology; MIT, Cambridge, MA).  Cells are cultured in Minimum Essential Media 

with 2X nonessential amino acids, 15% fetal bovine serum, 1% penicillin–streptomycin–

glutamine (Invitrogen Corp., Carlsbad, CA, USA) at 37°C and 5% CO2. DNA from large 

quantities of cells is purified with QIAGEN columns as recommended for cell cultures by the 

supplier (QIAGEN Inc, Valencia, CA).  Single cells are obtained in 1ul medium using a 

dissecting microscope and loaded into PCR tubes. 7ul molecular biological water is added into 

PCR tubes, followed by adding 1μl alkaline lysis buffer [200 mM KOH and 50 mM DTT]. The 

samples are then incubated at 65°C for 10 min. 1ul neutralization buffer [0.9 M Tris–HCl, pH 

8.3, 0.3 M KCl and 0.2 M HCl] is added to the sample to neutralize the lysis buffer62. The lysates 

are stored at -20C for future analysis. 

Whole genome amplification (WGA) 

Single fibroblast cells are lysed in alkaline lysis buffer as previously described [31], and 

processed through whole genome amplification (WGA) using the GenomePlex WGA4 kit as 

recommended by the supplier (Sigma Aldrich Inc).  WGA DNA is purified using GenElute PCR 

cleanup columns (Sigma Aldrich Inc) and quantified using a Nanodrop 8000 spectrophotometer 

(Fisher Scientific Inc., Waltham, MA). 
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Next generation sequencing (NGS) 

WGA DNA is normalized to 200 ng in a total volume of 35ul of molecular biological grade 

water (Lonza, Rockland, ME). Ion Plus Fragment Library Kit, Ion Xpress Plus Fragment Library 

Kit, and Ion Xpress Barcode Adapters 1-96 Kit are used to construct the WGA library as 

recommended by the supplier (Thermo Fisher Scientific). WGA DNA is fragmented with Ion 

Shear Plus reagent for 20 minutes to generate 150 to 250 base pair fragments. Fragmented DNA 

is then purified with Agencourt AMPure XP Reagent beads as recommended (Beckman Coulter 

Inc., Brea, CA). Barcoded adapter ligation and nick-repair are performed, followed by another 

Agencourt AMPure XP Reagent bead purification.  A peak size of 270 base pairs is selected with 

an E‑Gel® SizeSelect™ Agarose Gel (Thermo Fisher Scientific). Size-selected DNA is 

amplified with 8 cycles using Platinum PCR SuperMix High Fidelity (Life Technologies). After 

Agencourt AMPure XP Reagent bead purification, 1ul of amplified library is assessed with D1k 

ScreenTape (Agilent Technologies Inc., Wilmington, DE). Individual libraries are diluted to 

100picomolar with low TE buffer (Thermo Fisher Scientific).  An equal amount of each of 24 

samples (including four normal male control samples) is pooled together for one Ion PI Chip V2 

(Thermo Fisher Scientific).  Ion Sphere particles containing clonally amplified DNA are 

prepared with Ion PI Template OT2 200 Kit v3, and the template-positive Ion Sphere particles 

are then enriched with the Ion OneTouch ES (Thermo Fisher Scientific). The enriched template-

positive Ion Sphere particles are sequenced with Ion PI Chip V2 and the Ion PI Sequencing 200 

Kit v3 on the Ion Proton instrument (Thermo Fisher Scientific). 

Data processing and Chromosomal copy number calculation 

Ten bases are trimmed from the 5’ and 3’ end of each read, and the trimmed reads are aligned to 
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the reference Mus musculus genome (mm10) using Bowtie2 version 2.1.0 with the “sensitive-

local” preset mode. The number of reads mapping to each chromosome are counted using 

samtools version 0.1.19, ignoring alignments with MAPQ<20. 

For each sample, the normalized read count for each chromosome is calculated by dividing the 

raw read count of that chromosome by the average read count across all autosomes for that 

sample. Next, for each chromosome, the normalized read count is divided by the mean of the 

normalized read counts for the chromosome across all euploid male reference samples. To obtain 

the copy, this result is multiplied by 2 for autosomes or multiplied by 1 for sex chromosomes. 

Phase II: Investigation of reciprocal errors of mice oocytes and polar bodies and incidence of 

aneuploidy rate from young and reproductively aged mice embryos. 

Animals 

In the validation study examining reciprocal chromosome segregation errors in the oocyte and 

polar body, sample collection will be performed at Northwestern University.  CD-1 mice (Harlan 

Laboratories, Indianapolis, IN) of advanced reproductive age (16-19 months old) are housed in a 

controlled barrier facility at Northwestern University’s Center of Comparative Medicine under 

constant temperature, humidity, and light (12h light/12h dark). Food and water are provided ad 

libitum. Oocytes derived from spontaneous IVM (in vitro maturation) are used for this study. 

Ovaries are harvested from the 8 CD-1 female mice. Cumulus-oocyte-complexes (COCs) are 

then collected from the oviduct. Polar bodies and oocytes are obtained and washed with 

Hypotonic Wash Buffer (HWB) and collected into PCR tubes for lysis, WGA, NGS and CCS 

analysis. 
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In the application study determining the incidence of aneuploidy in IVM (in vitro maturation) - 

and IVF-derived blastocysts, sample collection will be performed at the National Foundation for 

Fertility Research. CF-1 mice are obtained from Harlan Laboratories (14 females 6-9 weeks 

(young)  and 65 females 13.5 months (aged)) and maintained on a 14:10h light:dark cycle with 

ad libitum access to food and water.  To obtain COCs for IVM, mice are stimulated with 5 I.U. 

pregnant mare’s serum gonadotropin (PMSG; Calbiochem, Billerica, MA) administered via 

injection (i.p.).  Ovaries are harvested 46 to 48 h after PMSG. To obtain in vivo matured oocytes, 

46 to 48 h after PMSG ovulation, mice are stimulated with 5 I.U. of human chorionic 

gonadotrophin (Calbiochem, Billerica, MA).  COCs are collected from the oviduct 16 h later. 

Maturated oocytes are fertilized. Individual blastocysts are washed with HWB and placed into 

PCR tubes in 1 μl HWB for lysis, WGA, NGS and CCS analysis.  

Ethical approval 

All animal experiments were approved by the Institutional Animal Care and Use Committee 

(Northwestern University) or the National Foundation for Fertility Research Ethics in Research 

Committee, and were in accordance with National Institutes of Health Guidelines and SSR’s 

specific guidelines and standards. 

Aim 2: Evaluation of mitochondrial level 

Mouse model 

Experimental design 

A two-phase design was implemented in the mouse study. First, to validate mouse embryonic 

mtDNA assessment by WGA and NGS, single-cell samples from a tumor-derived mouse cell 

line were tested to mimic oocyte and polar body samples, and 100-cell samples were tested to 
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mimic blastocysts. Cells were exposed to ethidium bromide to reduce mtDNA content. In the 

second phase, MtDNA levels were assessed in oocytes, polar bodies, and blastocysts. MtDNA 

content of blastocysts was compared between two age groups (young versus aged), different 

oocyte maturation methods (IVM versus IVO), and different embryo ploidy status (euploid 

versus aneuploid). 

Cell line  

A tumor-derived mouse cell line (Coriell Cell Repository ID GM05384) was cultured in 

Minimum Essential Media with 2X nonessential amino acids, 15% fetal bovine serum and 1% 

penicillin–streptomycin–glutamine (Invitrogen Corp., Carlsbad, CA, USA) at 37°C and 5% CO2. 

Cultures were exposed to 25 ng/ml EtBr in full growth medium for 6 days to deplete 

mitochondrial DNA. Six single cell and six one hundred cell samples were picked up in 1 μl of 

media using a 100 μm stripper tip (Midatlantic Diagnostics, NJ, USA) under a dissecting 

microscope and placed into PCR tubes on day 3 and day 6. Six single cells and six one hundred 

cells on day 0 without EtBr exposure were picked as base line controls.  

Cell lysis and WGA 

Single-cell and one hundred-cell samples were lysed in alkaline lysis buffer prepared by adding 7 

μl molecular biology grade water (Lonza, ME, USA) into PCR tubes, followed by 1 μl alkaline 

lysis buffer [200 mM KOH and 50 mM DTT]. Samples were incubated in lysis buffer at 65°C 

for 10 min before 1 μl of neutralization buffer [0.9 M Tris–HCl, pH 8.3, 0.3 M KCl and 0.2 M 

HCl] was added63. The lysates were stored at -20°C until the DNA was amplified by whole 

genome amplification (WGA) using the GenomePlex WGA4 kit as recommended by the supplier 

(Sigma Aldrich Inc. MO, USA).  WGA DNA was purified using GenElute PCR cleanup 

https://www.google.com/search?biw=2021&bih=980&q=St.+Louis&stick=H4sIAAAAAAAAAOPgE-LUz9U3sLC0SK5U4gAxzcoryrW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQDMHhGVQwAAAA&sa=X&ved=0ahUKEwjPusX_pdbQAhUq4IMKHUsQB7MQmxMIhQEoATAU
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columns (Sigma Aldrich Inc. MO, USA) and quantified using a Nanodrop 8000 

spectrophotometer (Fisher Scientific Inc., MA, USA). 

Next generation sequencing (NGS) 

WGA DNA was normalized to 200 ng in a total volume of 35 μl of molecular biology grade 

water. Ion Plus Fragment Library Kit, Ion Xpress Plus Fragment Library Kit, and Ion Xpress 

Barcode Adapters 1-96 Kit were used to construct the WGA library as recommended by the 

supplier (Thermo Fisher Scientific, CA, USA). WGA DNA was fragmented with Ion Shear Plus 

reagent for 20 minutes to generate 150 to 250 base pair fragments. Fragmented DNA was then 

purified with Agencourt AMPure XP Reagent beads as recommended (Beckman Coulter Inc., 

Brea, CA). Barcoded adapter ligation and nick-repair were performed, followed by another 

Agencourt AMPure XP Reagent bead purification.  A peak size of 270 base pairs was selected 

with an E‑Gel® SizeSelect™ Agarose Gel (Thermo Fisher Scientific, CA, USA). Size-selected 

DNA was amplified with 8 cycles using Platinum PCR SuperMix High Fidelity (Life 

Technologies, CA, USA). After Agencourt AMPure XP Reagent bead purification, 1 μl of 

amplified library was assessed with D1k ScreenTape (Agilent Technologies Inc., DE. USA). 

Individual libraries were diluted to 100 pM with low TE buffer (Thermo Fisher Scientific, CA, 

USA).  An equal amount of each of 24 samples was pooled together for one Ion PI Chip V2 

(Thermo Fisher Scientific, CA, USA).  Ion Sphere particles containing clonally amplified DNA 

were prepared with Ion PI Template OT2 200 Kit v3, and the template-positive Ion Sphere 

particles were then enriched with the Ion OneTouch ES (Thermo Fisher Scientific, CA, USA). 

The enriched template-positive Ion Sphere particles were sequenced with Ion PI Chip V2 and the 

Ion PI Sequencing 200 Kit v3 on the Ion Proton instrument (Thermo Fisher Scientific, CA, 

USA). 

https://www.google.com/search?biw=2021&bih=980&q=St.+Louis&stick=H4sIAAAAAAAAAOPgE-LUz9U3sLC0SK5U4gAxzcoryrW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQDMHhGVQwAAAA&sa=X&ved=0ahUKEwjPusX_pdbQAhUq4IMKHUsQB7MQmxMIhQEoATAU
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Relative mtDNA assessment 

Ten bases were trimmed from both ends of each read before the reads were aligned to the Mus 

musculus nuclear and mitochondrial reference genome (mm10) using Bowtie2 version 2.1.0 with 

the “sensitive-local” preset mode. The number of reads mapped to each chromosome were 

counted using samtools version 0.1.19 while ignoring alignments with MAPQ<20. Relative 

mtDNA content was assessed by dividing the number of reads aligned to the mitochondrial 

genome (Rm) by the count of reads aligned to nuclear genome (Rn) from the same sample: 

𝑅𝑒𝑙𝑎𝑡𝑣𝑖𝑒 𝑚𝑡𝐷𝑁𝐴 =
𝑅𝑚

𝑅𝑛
. This normalization strategy removes the impact of different cell 

numbers from the quantitative process and is therefore a relative measure of mtDNA per cell. 

Then the resulting value from the blastocysts was multiplied by the correction factor F to 

accounts for genomic variation due to embryo gender and ploidy.  𝐹 =

∑ (𝐶𝐿𝑖∗𝐶𝑁𝑖)𝑛=𝑖

𝐸𝑢𝑝𝑙𝑜𝑖𝑑 𝑓𝑒𝑚𝑎𝑙𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
, where i is the chromosome number, CL is the 

chromosome length (Table 1) and CN is the chromosome copy number.  
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Table 1. Mouse chromosome length  
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Mouse reproductive samples 

Oocyte and polar body samples were collected from a total of 8 CD-1 female mice (Harlan 

Laboratories, IN, USA) of advanced reproductive age (16-19 month old) at Northwestern 

University. Ovaries were harvested from each animal, and cumulus-oocyte-complexes (COC) 

were isolated from antral follicles. Cumulus cells were mechanically removed, and oocytes were 

cultured in a-MEM-Glutamax (Life Technologies) medium containing 3 mg/ml bovine serum 

albumin (MP Biomedicals, CA, USA) at 37°C in a humidified atmosphere of 5% CO2 in air to 

induce spontaneous meiotic maturation. Only mature MII oocytes were used for subsequent 

processing. Polar bodies and mature oocytes were collected into PCR tubes for further analysis. 

Blastocysts derived from IVM or IVO were collected from CF-1 mice (Harlan Laboratories, IN, 

USA) at Colorado Center for Reproductive Medicine. A total of 14 young females (6–9 week 

old) and 65 aged females (13.5 month old) were used for this application. To obtain COC for 

IVM, mice were stimulated with 5 IU of pregnant mare’s serum gonadotropin (PMSG; 

Calbiochem, MA, USA). Ovaries were harvested 46 to 48 hours after PMSG injection, and 

COCs were recovered and subsequently matured in vitro for 18 h and then used for IVF. To 

obtain in vivo-matured oocytes, 46 to 48 hours after PMSG ovulation, mice were stimulated with 

5 IU of human chorionic gonadotrophin (Calbiochem, CA, USA), and fully-expanded COC were 

collected from the oviduct 16 h later. Mature oocytes were fertilized using spermatozoa from 

B6D2F1 males (8 weeks old). After IVF and blastulation, Zona pellucida was removed from the 

embryos, and single whole blastocysts were collected into PCR tubes, followed by lysis, WGA 

and NGS. 

Sequencing data from polar bodies, oocytes and blastocysts were analyzed for relative mtDNA 

content with or without normalization by the correction factor F. To investigate the possible 
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association of relative mtDNA level in blastocysts with ploidy status, maternal age and oocyte 

maturation methods, statistical analysis was carried out with ANOVA using a linear model with 

the natural logarithm of the mitochondrial level as the dependent variable. Independent variables 

include the embryo ploidy status (aneuploid versus euploid), maternal age (young versus old), 

and the oocyte maturation method (IVM versus IVO).  

All animal experiments were approved by the Institutional Animal Care and Use Committee 

(Northwestern University) or Colorado Center for Reproductive Medicine Ethics in Research 

Committee and were carried out in accordance with National Institutes of Health Guidelines and 

the Society for the Study of Reproduction’s specific guidelines and standards. 

Human embryo study 

Strategy 

This study was conducted in multiple phases.  First, to establish the validity of quantifying 

limited amounts of mitochondria from the number of cells typically obtained from a 

trophectoderm biopsy a cell line was used to create 5-cell samples and the results were compared 

to data obtained from large quantities of cells from the same cell culture.  Cells were treated with 

ethidium bromide in order to create samples expected to possess less mitochondria as a positive 

control.  The second phase, additional validation involved characterizing the consistency of 

mitochondrial DNA copy number results obtained from biological replicates of the same cell line 

and within the same embryo.  The third phase involved characterization of DNA quantity in 

euploid embryos selected for transfer.  By comparing mitochondrial DNA content in sibling 

embryos, all patient specific variables were eliminated from the evaluation of whether embryonic 

preimplantation mitochondrial DNA copy number was predictive of reproductive potential. 
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Cell line 

A lymphocyte cell line (GM13118) was cultured and passaged as recommended by the supplier 

(Coriell Cell Repository, Camden, NJ).  Ethidium bromide was added to the culture medium in 

order to reduce mitochondrial DNA content.  Cells were obtained at multiple passages before 

and after treatment.  In parallel, a large aliquot (>1 million cells) was obtained at the same time 

points for conventional DNA isolation with QIAgen columns.  Results from large quantities were 

compared to results from 5-cell quantities. 

Embryos 

374 blastocysts were evaluated from patients that had undergone CCS for euploid embryo 

selection and a subsequent double embryo transfer in which one embryo was female and one 

embryo was male.  Each embryo had previously undergone qPCR based CCS using a previously 

described protocol with preclinical validation on control cell lines, and 2 randomized controlled 

trials demonstrating improved outcomes.  In the process of qPCR based CCS testing, excess 

material (one half of the preamplification reaction) not used in the procedure was made available 

for analysis of the mitochondrial DNA content as described below.  Newborn gender and CCS 

based gender determination were used to determine which embryo implanted in the event of a 

singleton pregnancy.   

Assays 

Eleven different cataloged mtDNA-targeting TaqMan assays (Table 2) and a previously 

described custom-made AluYa5 nuclear DNA assay [16] were used to perform preamplification 

(multiplex PCR) of the leftover PCR product (Figure 1A).  Each 50ul reaction consisted of 25ul 

of the left over PCR reaction, 12.5ul of 0.2X of each TaqMan assay, and 25ul of 2X TaqMan 
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PreAmp Master Mix and was run for 18 cycles as recommended by the supplier (Thermo Fisher 

Scientific).  Subsequent qPCR was performed with each assay run in quadruplicate 5ul reactions 

with 1ul of the mtDNA preamp reaction, 0.25ul of each TaqMan assay (20X), and 2.5ul of 

TaqMan Gene Expression Master Mix.  Standard TaqMan PCR settings were used and real-time 

data was collected on an ABI 7900 Instrument. Individual mtDNA assays that result in more 

variable assay cycle threshold (CT) measurements as compared to other assays are recursively 

eliminated until there was a set of 3 assays that have highly consistent results across hundreds of 

samples (Figure 1B). These 3 most robust assays (ATP6, Hs02596862_g1; ND6, 

Hs02596879_g1; and RNR1, Hs02596859_g1) are used for measuring the mitochondrial level of 

samples in the current study. Each assay is carried out 4 times for each sample in final 

experiments. 
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Table 2. List of TaqMan® Assays 

 

Eleven different TaqMan assays targeting mtDNA and a custom-made TaqMan assays targeting 

nuclear AluYa5 gene were used to analyze relative mtDNA amount.    
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Figure 1. Selection of mitochondrial TaqMan assays. Some assays yield results that are 

sometimes inconsistent with other assays (A). Such assays are recursively eliminated until there 

is a set of 3 most robust assays for the quantitation of mtDNA level (B). 

Reprinted from Human Reproduction Volume 32, Issue 4, 954-962, Treff NR, Zhan Y, Tao X, 

Olcha M, Han M, Rajchel J, Morrison L, Morin SJ, Scott RT Jr. Levels of trophectoderm 

mitochondrial DNA do not predict the reproductive potential of sibling embryos.  Copyright 

(2017) Open Access article distributed under the terms of the Creative Commons Attribution 

Non-Commercial License 

  

https://www.ncbi.nlm.nih.gov/pubmed/28333210
https://www.ncbi.nlm.nih.gov/pubmed/28333210


24 
 

Data Analysis 

For relative quantitation of mtDNA of a sample, the median CT value for the 4 measurements for 

each individual assay is calculated first, followed by the calculation of a ΔCT between each 

mtDNA assay and the reference AluY5a assay. Relative mtDNA quantity is defined as the 

additive inverse of the average ΔCT for the 3 mtDNA assays. 

In the first phase of the study, multiple replicates using 5-cell samples were processed and 

compared with a large aliquot of cells (>1 million cells) at the time points described above in 

order to validate the assay for use on limited quantities of mitochondria. Subsequently, ΔCT 

values from replicates were averaged and compared with ΔCT values from the large aliquot at 

each time point. 

Embryo relative mtDNA quantity was evaluated in order to assess putative associations with 

reproductive success and other cycle parameters.  First, nested logistic regression models were 

utilized to test if ΔCT values predicted overall embryo outcome (implanted and delivered vs 

failed). A subset analysis was performed including only the 69 DETs where one of the two 

sibling embryos successfully implanted and delivered. To test for a difference in relative mtDNA 

level between the successful and failed embryos within each pair, a one-sided (lower mtDNA 

levels with better pregnancy outcome) paired t-test on the average ΔCT  was carried out for the 

69 pairs of embryos with single births. Lastly, utilizing simple linear models, other parameters 

such as oocyte maternal age, embryo biopsy day, and embryo morphology were tested for 

correlations with mtDNA quantity. 

All data collection and analysis was approved by the IRB. Subjects provided written consent for 

use of these samples in research. 
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Aim 3: Characterization of endometrial microbial environment 

Control samples for platform validation 

Single colonies of three different bacterial strains (Table 3) were picked from the LB agar plates 

and inoculated into the tube with liquid LB. The bacterial cultures were incubated at 37°C for 12-

18 hours in a shaking incubator with loosened caps. The growth of the bacteria was measured by 

OD600. The DNA was isolated from an aliquot of each culture (Procedure for DNA isolation is 

needed).  

Artificial mixture of the culture and DNA were prepared to validate that polymicrobial samples 

can be identified by the NGS based method. 1ul of each 1:1000 diluted culture including the 

mixtures was loaded into PCR tubes. 7ul molecular biological water was added into PCR tubes, 

followed by adding 1μl alkaline lysis buffer [200 mM KOH and 50 mM DTT]. The samples were 

then incubated at 65°C for 10 min. 1ul neutralization buffer [0.9 M Tris–HCl, pH 8.3, 0.3 M KCl 

and 0.2 M HCl] was added to the sample to neutralize the lysis buffer. 1ng of DNA including the 

mixtures was normalized in 10ul molecular biological grade water. 

Ion 16S Metagenomics workflow (Thermo Fisher Scientific)  

Ion 16S Metagenomics workflow analyzes seven out of nine hypervariable regions of 16S rRNA 

gene. Hypervariable regions 2, 3, 4, 6, 7, 8 and 9 are amplified as individual 200~300 bp fragments 

in one of two multiplex PCR reactions (Primer A and B) (Figure 2, Thermo Fisher Scientific).  
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Table 3. Ten samples from three different bacterial strains for validation; Negative control is 

included 
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Validation samples including NTC were amplified by the two multiplex primer pools.  After 

purification with Agencourt AMPure XP Reagent beads (Beckman Coulter Inc., Brea, CA), 1ul of 

amplified DNA was assessed with D1k ScreenTape (Agilent Technologies Inc., Wilmington, DE). 

Equal amounts of the purified V2-4-8 and V3-67–9 amplification reactions were combined for 

each sample. 100ng of each pooled sample was used for the library preparation by using Ion Xpress 

Plus Fragment Library Kit, and Ion Xpress Barcode Adapters 1-96 Kit (Thermo Fisher Scientific). 

The ends of the amplicons were repaired to generate blunt ends, followed by Agencourt AMPure 

XP Reagent beads purification. Barcoded adapter ligation and nick-repair were performed, 

followed by another Agencourt AMPure XP Reagent bead purification. Adaptors and Barcodes 

ligated DNA was amplified with 8 cycles using Platinum PCR SuperMix High Fidelity (Life 

Technologies). After Agencourt AMPure XP Reagent bead purification, 1ul of amplified library 

was assessed with D1k ScreenTape (Agilent Technologies Inc., Wilmington, DE). Individual 

libraries were diluted to 100pM with low TE buffer (Thermo Fisher Scientific). An equal amount 

of each of the 15 validation samples was pooled together as the final library for sequencing on one 

Ion 318 Chip V2 (Thermo Fisher Scientific).  Ion Sphere particles containing clonally amplified 

DNA was prepared with Ion PGM Hi-Q Template OT2 Kit, and the template-positive Ion Sphere 

particles were then enriched with the Ion OneTouch ES (Thermo Fisher Scientific). The enriched 

template-positive Ion Sphere particles were sequenced with Ion Chip 318 V2 and the Ion PGM 

Hi-Q Sequencing Kit on the Ion PGM instrument (Thermo Fisher Scientific) (Figure 5). Data was 

uploaded into Ion Reporter TM software version 4.4 to perform 16S Metagenomics beta 

workflows. 
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Figure 2. Two sets of primers pools are used to amplify 7 of the 9 hypervariable regions of the 16S rDNA 

gene in bacteria: (Thermo Fisher Scientific) 

• Pool A: Primer set to amplify V2-4-8 • Pool B: Primer set to amplify V3-6,7-9 
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Illumina 16S V3-V4 and V4 workflow 

The target sequences used in Illumina 16S workflow are the 16S V3-V4 region and V4 region 

only. The library preparation of this workflow involves a two-step, tailed amplicon approach. The 

locus-specific primers contain sequence tails that allow a second PCR to add Nextera XT indexed 

adapters. Fusion primers increase melting point, efficiency, and specificity while avoiding the 

disadvantages of long primers, such as hairpins, self-dimers, primer dimers and chimreas 

(Illumina). 

10ul of the validation samples including NTC were amplified with 0.2uM forward and reverse 

primers and 25ul 2X TaqMan Preamplification Master Mix (Thermo Fisher Scientific) in 50ul 

reactions. PCR cycling conditions were set to 10 min at 95°C followed by 18 cycles of 15 sec at 

95°C and 4 min at 60°C on Applied Biosystems 2720 thermocycler. 7.5ul of preamplified DNA 

was used to set up the first PCR with 0.2uM  forward and reverse primers (Table 4) and 12.5 ul 

2X Kapa HiFi HotStart ReadyMix (KapaBiosystems) in 25ul reactions. The PCR cycling 

conditions were 3 min at 95°C, 25 cycles of 30 sec at 95°C, 30 sec at 55°C and 30 sec at 72°C, 

followed by 5 min at 72°C on Applied Biosystems 2720 thermocycler.  

The amplified DNA was purified with Agencourt AMPure XP Reagent beads. The second PCR 

was set up to add indexes to the amplified DNA by adding 5ul of purified DNA to 25ul 2X Kapa 

HiFi HotStart ReadyMix, 5ul Nextera XT Index 1 and 2 primers (FC-121-1002, Illumina) in 50ul 

reactions. Each sample must have a unique combination of indexes. The reaction was set at 3 min 

at 95°C, 8 cycles of 30 sec at 95°C, 30 sec at 55°C and 30 sec at 72°C, followed by 5 min at 72°C 

on Applied Biosystems 2720 thermocycler, followed by another Agencourt AMPure XP Reagent 

beads purification.   
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Table 4. Illumina 16S workflow V3V4 and V4 primers 

 

16S V3V4 amplicon is about 430 bps, and 16S V4 amplicon is about 210 bps after amplification 

with the primer pairs.  
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1ul of library DNA was access with D1k ScreenTape (Agilent Technologies Inc., Wilmington, 

DE). Individual libraries were diluted to 4nM with resuspension buffer (Illumina). An equal 

amount of each of the 15 validation samples was pooled together as the final library. The final 

loading concentration of 4pM was used for sequencing on one MiSeq v3 reagent kit (Illumina) 

using paired 300bp reads. The Metagenomics Workflow performed a build in taxonomic 

classification using the Greengenes database and showed genus or species level classification in a 

graphical format. 

Customized Data analysis 

Ion 16S Metagenomics 

For each amplicon region, sequence reads were assigned to OTUs with modified 16S 

Metagenomics beta workflows in Ion Reporter TM software version 4.4. OTU clustering was 

performed with the UCLUST on the QIIME package. Taxonomy assignments of these OTUs based 

on the Greengenes database were carried out using the RDP classifier version 2.2 within the QIIME 

package. 

Illumina 16S Metagenomics 

Paired-end sequencing from Illlumina MiSeq platform produced two separate read files, called 

SE1 for the first read, and SE2 for the second. Poor quality nucleotides at the 5’ ends were trimmed 

for both SE1 and SE2 until a reliable base quality score (above 33) was reached. Ea-utils Fastq-

mcf was used to identify and trim primer sequences, filter reads without primer sequence, and trim 

nucleotides with poor quality at the 3’ ends. The V4 amplicon is ~240 base pairs. To generate 

about 100bp overlap between SE1 and SE2, the V4 reads were shortened to 180bp. The filtered 

and trimmed SE1 and SE2 reads are then joined by overlapping read-pairs together using Ea-utils 



32 
 

Fastq-join. The joined sequences with improper length for V3-V4 (~470bp) and V4 (~240bp) 

amplicons are filtered out. The fastq files with correct read length were then converted to fasta 

files for further analysis using the QIIME package. Chimera sequences were identified with the 

USEARCH 6.1 on QIIME and removed by the QIIME package. OTU clustering was performed 

with the UCLUST on the QIIME package. Taxonomy assignments of these OTUs based on the 

Greengenes database were carried out using the RDP classifier version 2.2 within the QIIME 

package. 

Validation on genomic DNA mixture of 20 bacterial strains on Illumina 16S V4 workflow 

Microbial Mock Community B was obtained through BEI Resources, NIAID, NIH as part of the 

Human Microbiome Project: Genomic DNA from Microbial Mock Community B (Even, Low 

Concentration), v5.1L, for 16S RNA Gene Sequencing, HM-782D 

The genomic DNA was amplified by V4 primers.  Library was prepared and sequenced on one 

MiSeq v3 reagent kit (Illumina) by using paired 300bp reads as previously described. Taxonomy 

assignments were performed to identify the bacterial strains. 

Control samples for establishing sensitivity 

Single colonies of four different bacterial strains including two Gram-positive and two Gram-

negative bacteria (Table 5) were picked from the LB agar plates and inoculated into the tube with 

liquid LB broth. The bacterial cultures were incubated at 37°C for 6-10 hours in a shaking 

incubator with loosened caps until the OD600nm reached 0.6. The bacterial gDNA was isolated from 

an aliquot of each culture using bacterial genomic DNA isolation kit following manufacturer’s 

recommendation (Norgen Biotek Corp, ON, Canada).  Artificial mixtures of the culture and gDNA 

were prepared to validate that poly-microbial samples can be identified by this NGS based method.  

http://code.google.com/p/ea-utils/wiki/FastqJoin
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A ten-fold serial dilution was performed on single- and poly-microbial cultures (Table 6). 1 µl of 

each diluted culture including the mixtures was loaded into PCR tubes. 7 µl molecular biology 

water (Lonza, ME, USA) was added into PCR tubes, followed by adding 1 μl alkaline lysis buffer 

[200 mM KOH and 50 mM DTT]. The samples were then incubated at 65°C for 10 min. 1 µl 

neutralization buffer [0.9 M Tris–HCl, pH 8.3, 0.3 M KCl and 0.2 M HCl] was added to the sample 

to neutralize the lysis buffer. 1 ng of DNA including the mixtures was normalized in 10 µl 

molecular biology water (Lonza, ME, USA). 

Characterizing the microbiome at the time of embryo transfer on Illumina 16S V4 workflow 

The patients underwent in vitro fertilization cycle using standard protocol. Embryo transfer was 

performed with a Wallace Classic soft tip catheter (Smiths Medical, Dublin, OH, USA) with the 

formable outer sheath advanced under ultrasound guidance. All patient samples were collected 

under approval from the Internal Review Board (IRB). After embryo transfer, the distal 5mm 

portion of the transfer catheter tip was placed in a PCR tube. Lysis, amplification, library 

preparation, sequencing and taxonomy assignment were performed as previously described. The 

Shannon Diversity Index (SDI), total OTU counts, and fraction of reads were compared utilizing 

generalized linear models. 
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Table 5. Single- or poly-microbial samples from four different bacterial strains for validation; 

Negative control is included. 

 

The validation study included two Gram-positive and two Gram-negative bacteria. Cultures with 

different cell number were lysed directly to establish the sensitivity of the methodology, and the 

gDNA isolated from a large amount of cells was served as control. Artificial mixtures 

represented the poly-microbial samples. 

Reprinted from Human Microbiome Journal Volume 3, March 2017, 15-21, Tao X, Franasiak 

JM, Zhan Y, Scott RT III, Rajchel J, Bedard J, Newby R, Scott RT Jr, Treff NR, Scott RT Jr. Chu 

T. Copyright (2017) Open Access article distributed under the terms of the Creative Commons 

Attribution Non-Commercial-No Derivatives License (CC BY NC ND).  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Table 6. A ten-fold serial dilution on single and poly-microbial cultures. 

 

 

There were 6 serial dilutions of the bacterial culture. The highest dilutions contained about 6 

cells in the lysates.  

Reprinted from Human Microbiome Journal Volume 3, March 2017, 15-21, Tao X, Franasiak 

JM, Zhan Y, Scott RT III, Rajchel J, Bedard J, Newby R, Scott RT Jr, Treff NR, Scott RT Jr. Chu 

T. Copyright (2017) Open Access article distributed under the terms of the Creative Commons 
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Results 

Aim 1: Establishment of CCS for mouse model 

Phase I: NGS based CCS successfully identifies aneuploidy in single mouse cells 

Two mouse embryonic fibroblasts with trisomy 16 female (8474_2) and normal male (8474_1) 

karyotypes were used for validation. Genomic DNA from large quantities of cells was purified. 

Single cell lysates were amplified by WGA and the concentration was measured using a 

Nanodrop 8000 spectrophotometer (Figure 3A). The libraries of Genomic DNA and single cell 

WGA DNA for NGS were constructed (Figure 3B). For the normal male cell line (8474_1), in 

both Genomic DNA and single cell WGA DNA, the copy number for all autosomes was two, but 

the sex chromosomes (X and Y) each had a copy number of one (Figure 4A and 4B).  For the 

trisomy 16 female cell line, the presence of the extra copy of chromosome 16, two copies of 

chromosome X, and zero copies of chromosome Y were detected in both Genomic DNA and 

single cell WGA DNA , as expected (Figure 4C and 4D). These findings validated the 

application of CCS using WGA and NGS to individual mouse somatic cells. 
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A                                                                                  B 

 

 

 

Figure 3.   Amplification and library construction of single cells 

                  A) Single cell lysates were amplified by WGA with concentration ~282 ± 25 ng/ul.  

                  B) The libraries of Genomic DNA and single cell WGA DNA. 
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Figure 4. NGS was used to identify the karyotype of mouse cells of known ploidy. Copy number 

plots of genomic DNA isolated from pooled cells(A) and single cell WGA DNA (B) for normal 

male mouse embryonic fibroblasts (8474_1) showed one copy of chromosome X and Y is 

detected. Copy number plots of genomic DNA isolated from pooled cells(C) and single cell 

WGA DNA (D) for trisomy 16 female mouse embryonic fibroblasts (8474_2) showed three 

copies of chromosome 16 were detected. 
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Phase II: Investigation of reciprocal errors of mice oocytes and polar bodies and incidence of 

aneuploidy rate from young and reproductively aged mice embryos.  

NGS-based CCS successfully detects reciprocal errors in polar bodies and oocytes 

An average of 15 ± 3 oocytes from 8 individual CD-1 mice ranging in age from 15-19 months. 

Following IVM, an average of 80% (range 57%-96%) of oocytes from these reproductively aged 

mice were able to resume meiosis and reach MII. The oocyte was separated from the first polar 

body and then performed WGA and NGS using these matched cells (Figure 5, A and B).  40 

matched oocytes and first bodies were analyzed, representing a subset of 2–8 oocytes per mouse. 

Interpretable sequencing data were obtained from 37 of 40 oocytes and 35 of 40 polar bodies 

(Table 7). The remaining sequencing data from the oocytes (3 of 40) and polar bodies (5 of 40) 

were considered chaotic due to the noise level in the observed copy number assignment patterns. 

Such patterns could potentially reflect complex aneuploidy, biological mosaicism, sample 

degradation, or methodological artifacts (Table 7 and Figure 6). Because we were unable to 

distinguish among these possibilities, we considered these data nonresults, unless we were able 

to obtain clear sequencing results from the reciprocal polar body or gamete (Table 8). As 

expected, euploid mouse oocytes and their matched polar bodies had a copy number of 2 for all 

nineteen autosomes and the X chromosome but a copy number of zero for the Y chromosome 

(Figure 53, C and D). Any copy number pattern that differed from this was considered aneuploid. 

In the subset of 40 oocytes that were sequenced, we observed an overall aneuploidy incidence of 

15% (6 of 40 oocytes) and a euploidy incidence of 85% (34 of 40 oocytes) (Table 8). From an 

individual animal standpoint, 6 of 8 mice had aneuploid oocytes, with an incidence ranging from 

13% to 20%, whereas 2 mice did not (Table 8). 
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In the 6 aneuploid oocytes, we identified chromosome segregation errors in seven different 

autosomes: 2, 5, 7, 9, 11, 12, and 15 (Table 8). In five of the oocytes, the aneuploidy was 

attributed to premature separation of sister chromatids (PSSC). This was evident as a reciprocal 

gain or loss of a single chromatid, or a copy number of three or one for a particular 

chromosome(s), in the respective matched oocyte and polar body samples (Table 8 and Figure 7, 

A and B, chromosomes 2, 5, 7, 11, 12, and 15). In one oocyte, we identified nondisjunction of 

chromosome 9 homologs that resulted in a copy number of 4 in the polar body and a reciprocal 

copy number of zero in the oocyte (Table 8 and Figure 7, C and D). In the majority of the 

aneuploid oocytes (5 of 6), we detected the mis-segregation of a single chromosome/chromatid. 

However, in one oocyte, we identified PSSC of two chromosomes, 11 and 12 (Table 8 and 

Figure 7, E and F). Taken together, these results demonstrate that NGS-based CCS is a reliable 

and quantitative tool with which to identify chromosome- specific aneuploidy and the type of 

mis-segregation in the mouse oocyte.  
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Figure 5. Use of WGA and NGS for chromosome assessment in individual matched polar bodies 

and occytess is shown. A) MII oocytes with visible polar bodies were used for sequencing 

analysis. A representative image is shown in the left panel (*polar body). The oocyte and polar 

body were separated from each other following removal of the zona pellucida. The matched 

oocyte and polar body (inset) are shown in the right panel following separation. Bar ¼ 50 lm. B) 

Schematic shows the experimental workflow. The zona pellucida was removed from each MII 

oocyte using acidic Tyrode solution, the matched polar body and oocyte were gently separated 

by aspiration and WGA, and NGS was performed in each cell. Representative sequencing plots 

of a euploid oocyte (C) and its matched polar body (D) are shown. Note, all autosomes and the X 

chromosome have a copy number of 2, whereas the Y chromosome has a copy number of 0. 
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Figure 6. Examples of chaotic sequencing results. Representative sequencing plots of chaotic 

reads obtained from an individual (A) oocyte and (B) polar body.  These chaotic reads were 

observed infrequently and only in the oocyte and polar body samples. 
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Table 7.  Summary of Chaotic Egg Reads 

Animal ID Egg 
# chaotic/total (%) 

PB 
# chaotic/total (%) 

A 0/5 (0%) 1/5 (20%) 

B 0/5 (0%) 1/5 (20%) 

C 2/5 (40%) 0/5 (0%) 

D 0/5 (0%) 0/5 (0%) 

E 0/8 (0%) 2/8 (25%) 

F 0/2 (0%) 0/2 (0%) 

G 0/5 (0%) 0/5 (0%) 

H 1/5 (20%) 1/5 (20%) 

Total 3/40 (8%) 5/40 (13%) 
 

Chaotic results were detected only in the oocytes and polar bodies, which could be caused by 

complex aneuploidy, sample degradation, or methodology artifacts.  
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Table 8.  Summary of Egg Aneuploidy 

Animal ID # Aneuploid eggs/total (%) Egg Aneuploidy  Reciprocal PB 
Aneuploidy 

A 1/5 (20%) +11, -12 -11, +12 

B 1/5 (20%) --9  ++9 

C 1/5 (20%) chaotic  -5 

D 0/5 (0%) N/A N/A 

E 1/8 (13%) +15  -15 

F 0/2 (0%) N/A N/A 

G 1/5 (20%) +7  -7 

H 1/5 (20%) chaotic  +2 
 

The overall aneuploidy rate was 15%. Five aneuploidies were caused by MI PSSC and one was 

caused by MI non-disjunction.  
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Figure 7. Detection of reciprocal aneuploidies in metaphase II oocytes and matched polar bodies. 

Sequencing plots from matched polar bodies (A, C, and E) and oocytes (B, D, and F) that reveal 

reciprocal aneuploidies, including premature separation of sister chromatids (loss/gain of 1 copy 

of chromosome 15 [A and B]) non-disjunction of homologs (loss/gain of 2 copies of 

chromosome 9 [C and D]), and complex aneuploidy (loss/gain of 1 copy of chromosomes 11 and 

12 [E and F]). *Chromosomes with an abnormal copy number indicative of aneuploidy. 
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NGS Based CCS Successfully Identifies Aneuploidy in mouse reproductive samples 

We next applied our NGS based CCS technology for aneuploidy detection in individual 

preimplantation mouse blastocysts produced via IVM or IVO from reproductively young and 

aged females (Figure 8).  Importantly, our analysis was done on intact blastocysts, which 

precludes detection of mitotic errors.  Thus, the aneuploidy we determined with this particular 

approach was limited to meiotic errors. 

In young animals more COC were collected per female. A total of 199 and 89 COC were 

collected from 5 (39.8 COC/female) and 9 (9.9 COC/female) mice after IVO and IVM, 

respectively. 56.1% of fertilized IVM oocytes and 56.4% of fertilized IVO oocytes from young 

females developed to blastocyst. A subset of 33 IVM blastocysts from young females was 

analyzed by CCS; WGA was successful in 32 of them. Forty-six percent of the embryos were 

male. Aneuploidy in three blastocysts was detected (9.4%) (Table 9), with mis-segregation of 

single chromosomes (chromosomes 2 and 13) (Table 10). WGA was successful in 27 of 29 IVO 

embryos examined; 15% of the embryos were male. Only one blastocyst was aneuploid (3.7%, 

Table 9), with a segregation error in chromosome 8 (Table 10). 

In contrast to reproductively young mice, aged mice had fewer morphologically healthy COCs to 

be used for IVM, fewer ovulated COCs following IVO, and an increased incidence of aneuploidy 

compared to younger counterparts, despite successful fertilization and blastocyst development. 

For aged IVM oocytes, 223 COC were obtained from a total of 55 CF1 mice age 13.5 months 

(4.1 COC/female). Following IVF and embryo culture, 75.8% of the fertilized eggs reached the 

blastocyst stage (160/211). A subset of 50 blastocysts was analyzed, and WGA was successful in 

47 cases. Six of 47 blastocysts were aneuploid (12.8%) (Table 9), with segregation errors 

involving chromosomes 7, 8, 9, 12, 13, 15, 16, 18, and 19 (Table 10). Twenty-eight of 47 



47 
 

embryos were male (59.6%); 5 of the 6 aneuploid embryos had aneuploidy of a single 

chromosome (Table 10). For aged IVO oocytes, 10 CF1 females age 13.5 months were used to 

obtain 106 COC (10.6 COC/female), of which 72.7% of fertilized oocytes reached the blastocyst 

stage (64/88). A subset of 67 IVM blastocysts was submitted for chromosomal analysis, and 

WGA was successful in 65 cases. Twenty of the 65 embryos (30.8%) were aneuploid (Table 9), 

with segregation errors involving multiple chromosomes (Table 10). Thirteen of the 20 

aneuploid embryos possessed aneuploidy of a single chromosome, whereas the remaining 

embryos each had 2, 4, or 6 different chromosomes that contributed to aneuploidy (Table 10). 
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Figure 8. Use of WGA and NGS for chromosome assessment in individual blastocysts 

originating from young and reproductively aged female. A) Blastocysts derived after IVM and 

IVF were used for sequencing. A representative blastocyst is shown. Representative sequencing 

plots of euploid (B) and aneuploid blastocysts (C and D) are shown. Aneuploidy is due to a gain 

of 1 copy of chromosome 13 (C) and a gain of 1 copy of chromosome 8 (D). *Chromosomes 

with an abnormal copy number indicative of aneuploidy. 
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Table 9.  Summary of embryo aneuploidy 

Age 
group 

Maturation Aneuploid Euploid Total No result 
% 

Aneuploidy 

Young 
IVO 1 26 27 2 3.7a 
IVM 3 29 32 1 9.4a 

       

Aged 
IVO 6 41 47 3 12.8a 
IVM 20 45 65 2 30.8b 

a,b Groups with different superscripts are statistically different from each other (P<0.05) 

The aneuploid rate from old mice was higher than young mice with both oocyte maturation 

methods (IVO and IVM). The frequency of aneuploidy observed in IVM-derived blastocysts was 

higher than IVO-derived blastocysts in both age groups. 
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Table 10.  Description of embryo aneuploidy 

Group Maturation Embryo 
 ID 

Aneuploidy Sex 

Aged IVM 1 +1, +5, +8, +13 Female 

Aged IVM 2 +3, -14, -17, +19 Male 

Aged IVM 3 +16 Female 

Aged IVM 4 +19 Male 

Aged IVM 5 -12 Female 

Aged IVM 6 +2 Male 

Aged IVM 7 +8 Female 

Aged IVM 8 +3 Male 

Aged IVM 9 +3, +10 Female 

Aged IVM 10 +13 Female 

Aged IVM 11 +15 Male 

Aged IVM 12 -19 Male 

Aged IVM 13 +10,+12 Male 

Aged IVM 14 +7,+11 Male 

Aged IVM 15 -9,+19 Female 

Aged IVM 16 -3 Female 

Aged IVM 17 -4 Female 

Aged IVM 18 -3,+11,+14,+19 Male 

Aged IVM 19 +12 Female 

Aged IVM 20 +1 Male 

Aged IVO 21 +13 Male 

Aged IVO 22 +8 Female 

Aged IVO 23 +19 Male 

Aged IVO 24 +15 Male 

Aged IVO 25 +7,-9,+12,+15,+16,+18 Female 

Aged IVO 26 -13 Female 

Young IVM 27 +2 Female 

Young IVM 28 +13 Male 

Young IVM 29 +13 Female 

Young IVO 30 +8 Female 
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Aim 2: Evaluation of mitochondrial level 

Mouse model 

Reliability analysis of mtDNA content on cultured cells 

Relative mtDNA levels were assessed in six single- and 100-cell samples following day 0, day 3, 

and day 6 treatment with EtBr.  Exposure to EtBr for three and six days resulted in a decrease in 

relative mtDNA levels in both the single and 100-cell samples as expected (Figure 9). The 

standard deviation of six single cell samples was higher than that samples containing 100 cells,as 

would be expected based on the variation between different single cells.  

Assessment of mtDNA content in mouse reproductive samples 

The mtDNA level was determined and compared for 40 oocytes and their corresponding polar 

bodies as well as 171 blastocysts (Fig 10). Polar bodies contained an average of 0.9% of mtDNA 

relative to oocytes due to asymmetric segregation of cytoplasmic content during meiosis. 

Oocytes contained 180-fold higher mtDNA content compared to the cells in blastocysts. This is 

consistent with current understanding of the timing of mitochondrial biogenesis during early 

development: mitochondria accumulate in the oocyte during oogenesis and reaches a peak in the 

fully grown oocyte. There is little mitochondrial biogenesis and mtDNA replication and 

mitochondria are split into daughter cells in post-fertilization cell division during preimplantation 

development18, and there is much less mtDNA in the blastocyst cells compared to oocytes. 

Analysis of mtDNA content in mouse blastocysts  

A total of 171 blastocysts in which CCS results had been obtained were analyzed for the relative 

mtDNA content with or without normalization by the correction factor F. In the young age 
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group:  27 IVO blastocyst were analyzed, and 1 was aneuploid; 32 IVM blastocysts were 

analyzed, and 3 of them were aneuploid. In the old age group: 47 IVO blastocysts were assessed, 

6 of them were aneuploid; 65 IVM blastocysts were assessed, 20 of them were aneuploid (Table 

3). In both one-way ANOVA and multiple factor ANOVA with interaction terms (model 

log(mtDNA.level) = ploidy.status + age.group + oocyte.maturation.method + 

ploidy.status:age.group + age.group:oocyte.maturation.method + 

oocyte.maturation.method:ploidy.status), embryo ploidy status, maternal age group, and oocyte 

maturation method were all found to be associated with embryo mtDNA level (Before F factor 

correction: one way ANOVA p-values were 0.0045, 4.5e-7, and 0.0052, respectively; After F 

factor correction: p-values were 0.0006, 2.0e-6, and 0.0001, respectively). Cell in aneuploid 

blastocysts contained higher quantity of mtDNA compared to euploid blastocysts (Figure 11A 

and 11B). Younger age was associated with lower relative mtDNA level (Figure 11C and 11D). 

And IVO treatment for oocyte maturation was associated with higher relative mitochondrial level 

(Figure 11E and 11F). 
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Table 11. Total of 171 blastocysts with CCS results 

 

171 blastocysts with CCS results were analyzed for mtDNA level. The relative mtDNA content 

of blastocysts were compared between different ploidy status (euploid versus aneuploid), distinct 

age groups (young versus aged), and different oocyte maturation methods (IVM versus IVO)  
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Fig 9. Reltive mtDNA content in single- and 100-cell samples with EtBr treatment. Six single- 

and 100- cell samples were collected with EtBr exposure for 0, 3, and 6 days. EtBr treatment 

impairs the mtDNA replication, therefore, mtDNA content decreased in single- and 100-cell 

samples with longer exposure to EtBr as expected. 
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Fig 10. Box plots for relative mtDNA content level in mouse reproductive samples. Y-axis 

represented the nature logarithmic scale of relative mtDNA level. Relative mtDNA level from 40 

oocytes had a median of 0.18, 40 polar body had a median of 0.0017, and 171 blastocyst had a 

median of 0.001. 
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Figure 11. Box plots for relative mtDNA content in mouse blastocysts. Y-axis represented the 

nature logarithmic of relative mtDNA level. NGS analysis of 171 blastocysts showed a 

statistically significant increase () in aneuploidy blastocytes before (A) (P = 0.0045) and after F 

factor correction (B) (P = 0.0006). Cells in blastocysts from old mice contained a significantly 

higher level of mtDNA before (C) (P = 4.5e-7) and after F factor correction (D) (P = 2.0e-6). 

NGS analysis also showed cells in blastocysts derived from IVO contained a significantly higher 

amount of mtDNA compared to IVM before (E) (P = 0.0052) and after F factor correction (F) (P 

= 0.0001). 
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Human embryo study 

Assay Development 

Accurate quantitation of mtDNA was achieved with qPCR using 3 mitochondrial-specific 

primers and an AluY5a assay for normalization. Using a cell line treated with ethidium bromide 

to reduce mitochondria content, large aliquots of cells were evaluated for relative mitochondrial 

copy number and processed. As expected, ΔCT values increased from Day 0 to Day 6 indicating 

a decreasing mitochondrial copy number (Figure 12).  In order to evaluate the assay’s 

performance using limited amounts of DNA resembling excess material available from clinical 

specimens, 5-cell samples were subsequently evaluated in a similar fashion. Samples processed 

in replicates of six resulted in consistent results and likewise had increasing ΔCT values 

signifying decreasing copies of mtDNA.   

Clinical Outcomes 

A total of 374 embryos utilized in 187 DETs (one embryo of each gender per transfer) were 

available for analysis. Of these, 69 (36.9%) resulted in the live birth of a singleton, 84 (44.9%) 

resulted in multiple births, and 34 (18.2%) failed to result in any birth. Association testing was 

carried out to identify if mtDNA quantity predicted overall pregnancy success (Figure 13A). 

Analysis of the entire cohort of 374 embryos did not identify a significant association between 

relative mtDNA quantity and embryo outcome (p=0.488 when maternal age is included as a 

covariate). 

In order to eliminate patient-specific variables from the evaluation of whether embryonic 

preimplantation mitochondrial content was predictive of reproductive potential, the 69 DETs 

resulting in singleton delivery were subsequently analyzed separately. Since a male and a female 
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embryo were always transferred together, offspring gender was used to distinguish the implanted 

embryo from the non-implanted one allowing a powerful and well-controlled assessment of 

reproductive potential. Relative mtDNA quantity from embryos that implanted and delivered 

versus those that did not were compared (Figure 13 B,C,D). A paired t-test showed that mtDNA 

levels were not predictive of a successful outcome (p=0.402 for a one-sided test). 

Additional clinical and embryological parameters were also evaluated for associations with 

mitochondrial copy number (Figure 14). Relative mtDNA content for each of the 374 embryos 

was evaluated for correlations with the following parameters: maternal age at time of retrieval, 

embryo biopsy day, and embryo morphology. Mitochondrial copy number decreased with 

increasing age (p=0.00020).   Embryos biopsied on day 5 were more likely to have higher 

quantities of mtDNA compared with those biopsied on day 6 (p=7.2 x 10-21).  Embryo 

morphology was evaluated per practice routine using a grading system based on assessment of 

certain characteristics such as expansion, inner cell mass (ICM) quality and  trophectoderm 

quality. Blastocyst expansion was graded from 1 to 6 with the latter representing a fully hatched 

embryo. Trophoblast and ICM were graded as A, B, or C with grade A representing good quality 

and grade C representing poor quality. Superior blastocyst expansion was correlated with lower 

mitochondrial content (p=2.3 x 10-23). Higher quality trophoblast and ICM were similarly 

correlated with lower mitochondrial quantity (p=0.00040 and p=0.0010, respectively). 
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Figure 12. Average ΔCT values for 5-cell and large aliquot samples using cell lines exposed to 

ethidium bromide for 0, 2, 4, and 6 days 
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Figure 13. Relative mtDNA quantity versus pregnancy success. A. Relative mtDNA quantity 

stratified by embryo pregnancy success status for all 374 embryos in the current study; B. 

Relative mtDNA quantity stratified by embryo pregnancy success status for the 69 pairs of 

embryos used in DET that resulted in single births; C. Relative mtDNA quantity ratio between 

each of the 69 pairs of embryos used in DET that resulted in single births. Blue bars indicate the 

ratios between two embryos within each pair; D. Comparison of the relative mtDNA quantity for 

the successful versus failed embryo for each of the 69 pairs. The identify line is shown in gray. 
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Figure 14.  Association of secondary clinical parameters with mitochondrial quantity.  

A. Relative mtDNA quantity stratified by maternal age group; B. mitochondrial quantity in 

biopsy samples stratified by biopsy day; C.-E. mitochondrial quantity in biopsy samples 

stratified by embryo expansion stage, trophectoderm grading, and ICM grading, respectively. 

 

Reprinted from Human Reproduction Volume 32, Issue 4, 954-962, Treff NR, Zhan Y, Tao X, 

Olcha M, Han M, Rajchel J, Morrison L, Morin SJ, Scott RT Jr. Levels of trophectoderm 

mitochondrial DNA do not predict the reproductive potential of sibling embryos.  Copyright 

(2017) Open Access article distributed under the terms of the Creative Commons Attribution 

Non-Commercial License  

https://www.ncbi.nlm.nih.gov/pubmed/28333210
https://www.ncbi.nlm.nih.gov/pubmed/28333210


62 
 

Aim 3: Characterization of endometrial microbial environment 

Ion 16S Metagenomics workflow 

Ion Reporter™ Software enabled the identification of microbes present in complex polybacterial 

samples by using both curated GreenGenes and curated MicroSeq® ID 16S reference databases 

(Figure 15). Ion 16S metagenomics workflow detected family level for all of the samples. 

However, only two single organism samples were detected at the genus level. The mixed samples 

showed consistent results with single organism samples (Figure 16). Our lowest target is the 

identification of genus level, so the customized data analysis was performed to improve the 

taxonomic assignment. 

Illumina 16S V3-V4 and V4 workflow 

MiSeq build-in Metagenomics Workflow performed a taxonomic classification using the 

Greengenes database. Table 12 showed the example data of taxonomic assignment of V3-V4 and 

V4 from sample C1 (Escherichia coli Culture). For both V3-V4 and V4 amplicons, over 70% of 

the reads were assigned to the genus level, but the species level did not match the known strain. 

The genus level assignment had been improved for all the other samples through Illumina 16S 

Metagenomics Workflow.  
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Figure 15. Example of data visualization with Krona charts from sample MC1 (Artificial mixture 

of three bacterial culture) A) Visualizing results by primers. B) Consensus view of sample MC1.  
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Figure 16. Identification in single and polymicrobial samples from Ion 16S metagenomics 

workflow. Only two organism samples C2 and D2were detected at the genus level and all other 

single organism samples were detected at the family level. The mixed samples were consistent 

with the single organism samples. 
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Table 12. Taxonomic classification from V3V4 and V4 of sample C1 (Escherichia coli Culture) using 

MiSeq build-in Metagenomics Workflow. 
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Customized Data analysis 

Ion 16S Metagenomics 

Our customized analysis improved the results. ~37% reads of C1 (Escherichia coli Culture) were 

assigned to the species level, and 1% reads were assigned to the genus level, but the majority reads 

are still at the family level (Figure 17).  All the other single and polymicrobial samples showed the 

similar improvement.  

It was found that there were variations of read counts among the seven hypervariable regions in 

the same samples (Figure 18). C3 showed dominant amplification of V3 region. However, MD1 

and MD2 contained the genomic DNA of the five strains, but there was no amplification of V9, 

which was amplified in D1. The bias of amplification caused the problem of quantitative analysis 

of the microbiome. 

Illumina 16S V3-V4 and V4 workflow 

The customized data analysis was performed to identify the taxonomy of the samples. After the 

quality control and joining steps, V3-V4 had over 70% of reads filtered out for each sample, but 

V4 only had ~10% failed reads. V3-V4 was longer than V4 and the error frequency of the 

sequencing increased with longer reaction. Moreover, the overlap sequence for joining of V3-V4 

was shorter than V4, which made the overlapping more difficult (Figure 19). Taxonomic 

assignments of these OTUs based on the Greengenes database were carried out using the RDP 

classifier version 2.2 within the QIIME package. Figure 21 showed accurate species identification 

of V3V4 and V4 for sample C1 (Escherichia coli Culture). V4 (Figure 20B) had higher OUT 

counts than V3V4 (Figure 20A). For both amplicons V3-V4 and V4, the genus or species level 

were identified in the single and polymicrobial samples (Figure 21).  
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Figure 17. Customized taxonomic assignment of C1 (Escherichia coli Culture). Over 60% reads 

are assigned to family level. 
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Figure 18. The mapped counts of seven individual hypervariable regions for validation samples. 

There is amplification variation among these regions. 
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Figure 19. Amplicon V3V4 has higher failed reads compared to amplicon V4. 
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Figure 20. Customized data analysis from Illumina metagenomics workflow allows accurate 

species identification in C1 (Escherichia coli Culture) for both amplicons V3V4 (A) and V4 (B). 
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Figure 21. Identification in single and polymicrobial samples from customized Ion 16S 

metagenomics workflow for both amplicons V3-V4 (A) and V4 (B). Genus or species level was 

identified in all samples.  
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Validation on genomic DNA mixture of 20 bacterial strains on illumina 16S V4 workflow 

To further investigate Illumina V4 metagenoics workflow, Genomic DNA from Microbial Mock 

Community B containing twenty different bacteria strains was analyzed. All the strains were 

classified at the genus or species level accurately (Figure 22). Illumina V4 metagenoics 

workflow with customized analysis provided a rapid and sensitive method for the identification 

of bacterial species in polymicrobial samples. Samples can be highly multiplexed to reduce time 

and cost. 

Establishing the sensitivity of illumina 16S V4 workflow 

One microliter of library DNA from culture lysates and genomic DNA was accessed with D1k 

ScreenTape. Figure 23 showed the library of Escherichia coli, Proteus vulgaris, Staphylococcus 

epidermidis, and Bacillus cereus. The culture lysates showed the same amplicon size with genomic 

DNA. With index and adaptor, the amplicon size was 380 bp as expected. With further dilution, 

the library concentration decreased. All the single- and poly-microbial samples showed same 

amplification pattern. The library can be prepared from the culture lysates directly without DNA 

isolation. The NTC showed less amplification than 6-cell samples. 

The libraries were sequenced and the proportion of final OTUs for the taxonomic assignment 

compared to the original read counts was calculated for different dilutions of culture lysates and 

genomic DNA after the QC and filtering steps as previous described. The different dilutions of 

culture lysates with above 60 bacterial cells generated the similar or even higher proportion of 

final usable OTUs for taxonomic assignment with bacterial genomic DNA. With decrease of the 

cell number to about 6, the fraction of final OTUs decreased. The NTC showed less final usable 

OTUs compared to gDNA (Figure 24).  
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Taxonomy was assigned to all the samples based on the final OTUs. For the single-microbial 

samples, the genus or species taxonomy was accurately assigned to each isolated bacterial genomic 

DNA. The culture lysates with above 60 cells showed consistent taxonomic identification with 

genomic DNA. More than 99% of total reads were assigned to the correct genus or species level. 

For the culture lysates with about 6 cells, a dominant fraction of reads were assigned to correct 

genus or species level. None of the four bacterial strains were detected in the NTC sample (Figure 

25A). For the poly-microbial samples, all the total reads were accurately assigned to genus or 

species level for the artificial genomic DNA mixture and for the mixed culture lysates with above 

60 cells. The four dilutions of culture lysates with more than 600 cells showed consistent 

composition of the four bacterial strains, which suggested that this method had the potential to be 

used for quantitative analysis of microbial structure when there are more than 600 bacterial cells.  

For the mixed culture lysates with around 6 cells, a dominant fraction of reads were assigned to 

correct genus or species level (Figure 25B).  

Figure 26 shows all the genera detected on the single- or poly-microbial samples and NTC. 

When there were around 6 cells in the cultures, the contamination started to appear. The common 

contamination for Molecular Biology Grade water and PCR reagents including Acinetobacter, 

Cupriavidus, Mesorhizobium, Pseudomonas, Ralstonia, Streptococcus, and Xanthomonas were 

detected in the NTC sample64. None of the four bacterial strains discussed earlier were detected 

in the NTC sample. 
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Figure 22. Taxonomic classification of microbial mock Community B containing twenty different 

bacteria strains. Illumina V4 metagenoics workflow with customized analysis was able to assign 

correct species or genus level identification in the mock polymicrobial sample. 
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Figure 23. Library from cultures and DNA of single- or poly-microbial samples. With decrease of 

the cell number, the concentration of library decreased.  The library size from the culture lysates 

was the same with genomic DNA. 

Reprinted from Human Microbiome Journal Volume 3, March 2017, 15-21, Tao X, Franasiak 

JM, Zhan Y, Scott RT III, Rajchel J, Bedard J, Newby R, Scott RT Jr, Treff NR, Scott RT Jr. Chu 

T. Copyright (2017) Open Access article distributed under the terms of the Creative Commons 

Attribution Non-Commercial-No Derivatives License (CC BY NC ND). 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 24. Proportion of final OTUs from cultures and DNA of single- or poly-microbial samples. 

The red bars represent the genomic DNA, the blue bars represent different dilution of cultures, and 

the yellow bar represents the negative control.  The culture lysates with above 60 bacterial cells 

showed the similar proportion of final usable OTUs with bacterial genomic DNA. With decrease 

of the cell number to around 6, the fraction of OTUs for taxonomic assignment decreased.  

Reprinted from Human Microbiome Journal Volume 3, March 2017, 15-21, Tao X, Franasiak 

JM, Zhan Y, Scott RT III, Rajchel J, Bedard J, Newby R, Scott RT Jr, Treff NR, Scott RT Jr. Chu 

T. Copyright (2017) Open Access article distributed under the terms of the Creative Commons 

Attribution Non-Commercial-No Derivatives License (CC BY NC ND). 

 

  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 25. Taxonomic identification in single- (A) and poly-microbial (B) samples. Blue 

represents the genus level assignment and purple represents the species level assignment. In NTC 

sample, there is no detection of any of the four bacterial strains. 

Reprinted from Human Microbiome Journal Volume 3, March 2017, 15-21, Tao X, Franasiak 

JM, Zhan Y, Scott RT III, Rajchel J, Bedard J, Newby R, Scott RT Jr, Treff NR, Scott RT Jr. Chu 

T. Copyright (2017) Open Access article distributed under the terms of the Creative Commons 

Attribution Non-Commercial-No Derivatives License (CC BY NC ND). 

 

  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 26. Abundance of genera from single- and poly-microbial samples and NTC.   

Reprinted from Human Microbiome Journal Volume 3, March 2017, 15-21, Tao X, Franasiak 

JM, Zhan Y, Scott RT III, Rajchel J, Bedard J, Newby R, Scott RT Jr, Treff NR, Scott RT Jr. Chu 

T. Copyright (2017) Open Access article distributed under the terms of the Creative Commons 

Attribution Non-Commercial-No Derivatives License (CC BY NC ND). 
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Characterizing the microbiome at the time of embryo transfer 

A total of 395 patients were included in the study. Genus-level taxonomy was assigned based on 

the final OTUs from the 395 patients. The data-set was then filtered to consider only those genus 

calls that were present in at least one sample at a relative abundance > 1%. There were a total of 

248 different genus calls present across patient samples. Vaginal bacteria Lactobacillus, 

Corynebacterium, Bifidobacterium, Staphylococcus and Streptococcus were detected. These 

bacteria strains had been identified in other endometrium studies65,66,67. 

The fraction of read counts of each genus was charactrized at time of transfer for those patients 

with ongoing pregnancy vs. those without ongoing pregnancy. No differences between the two 

status groups were large enough to survive multiple test corrections. Lactobacillus was detected 

in all the samples. Figure 27 represented the fraction of read counts of Lactobacillus, which didn’t 

differ between the two groups (p=0.464). To characterize the diversity of the samples, the Shannon 

diversity index (SDI) were utilized (Figure 28). There was no difference between the two groups 

(p=0.164). 
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Figure 27. Fraction of Lactobacillu. Lactobacillus was detected in all 395 samples, but there is no 

difference between the two patient groups.  
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Figure 28. Shannon Diversity Index, which is a quantitative measure that reflects how many 

different species in a community. There was no difference between the two patient groups. 

  

https://en.wikipedia.org/wiki/Species
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Discussion 

Given the need to develop more robust markers for reproductive success and the fact that oocyte 

competence, both ploidy status and cytoplasmic competence, as well as the inflammatory and 

immune environment at the time of embryo implantation have been identified as major barriers 

to reproductive success, our goal was to address key markers involved in each of these processes. 

Mouse aneuploidy model and Reproduction 

In these studies we validated a sophisticated comprehensive chromosome screening method 

using single cell controls from MEFs of known trisomy, then applied this method in mouse 

gametes (oocytes and polar bodies) and preimplantation embryos. Using WGA, DNA from 

single gametes (polar bodies and oocytes) and blastocysts was reliably amplified, and 

comprehensive and quantitative analysis of the ploidy status was performed using NGS. The lack 

of the Y chromosome in oocytes, and the identification of reciprocal aneuploidies in matched 

oocyte and polar body pairs further validated our WGA and NGS based CCS.  

We observed that aneuploid rate from mice of advanced reproductive age was from 1-20% per 

female in our study, which is lower that what has been reported previously12,68,69,70. It was 

reported that the incidence of aneuploidy to be 50% in B6D2F1 mice of advanced reproductive 

age12, and 37.5% in CD1 mice at 12 months20. There are several explanations for this apparent 

discrepancy. The sequencing method we used may not distinguish sister chromatids that have 

prematurely separated at metaphase II that would mis-segregate and contribute to aneuploidy 

upon completion of meiosis II following fertilization. This could result in an underestimation of 

the aneuploidy incidence because premature dyad separation in meiosis II may be a major origin 

of segregation error in mouse oocytes.  To fully elucidate these mechanisms, future studies 
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performing CCS in the oocyte, first and second polar bodies are warranted to distinguish 

reproductive age-associated aneuploidies specifically due to meiosis I and II errors.  

It was also found that the frequency of aneuploidy observed in IVM blastocysts (30.8%) from 

aged mice was markedly higher than in the IVM oocytes (15%) in our study.  This may be due to 

a number of factors including the additional contribution of meiosis II and post-zygotic mitotic 

errors, the use of ovarian stimulation to obtain eggs for blastocyst production, the potential 

strain-specific differences in susceptibility to age related aneuploidy, and the difference in media 

and protocols used for obtaining oocytes and embryos. All of these factors represent areas of 

great interest for future investigation using this technology and model system. 

With this technology, we were able to obtain quantitative copy number information, providing 

insight into the type of meiotic errors that occur – either nondisjunction of homologous 

chromosomes (a copy number of four or zero for a particular chromosome in the respective 

matched oocyte and polar body samples) or premature separation of sister chromatids (PSSC) (a 

copy number of three or one for a particular chromosome in the respective matched oocyte and 

polar body samples). We identified 6 aneuploid oocytes in this study, and the aneuploidy was 

attributed to PSSC in 5 of the oocytes. Only one was due to nondisjunction of homologous 

chromosomes. These findings are consistent with previous mouse studies and clinical data from 

human ART in which most aneuploidies are due to PSSC rather than nondisjunction71,72. In fact, 

age-associated loss of centromeric cohesion has been identified as a prime mechanism 

underlying PSSC in the mouse and human18,73.  Our findings, therefore, add to the evidence that 

the aging mouse may provide a relevant model for the mechanisms of aneuploidy development 

in the human oocyte. 
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When analyzing blastocysts, CCS using WGA and NGS confirmed the lower incidence of 

aneuploidy in blastocysts originating from young females compared to aged females, which is 

consistent with previous mouse and human studies 7,8,10,11,12. Whereas there was no difference in 

aneuploidy in young females associated with the type of oocyte maturation used, blastocysts 

from females of advanced maternal age produced after IVM had more aneuploid embryos 

compared to IVO blastocysts, suggesting a susceptibility of older females to chromosome errors 

after IVM. In IVO, the oocyte maturation process involves a number of signaling pathways and 

depends on the close interaction between the cumulus cells and the oocyte74. It has been reported 

that mouse oocytes produced via IVO had higher fertilization and blastocyst formation rates than 

IVM75,76. It was also found that oocytes have a higher frequency of abnormal meiotic spindles 

and chromosomal mis-alignment after IVM77.  This finding implies that oocyte maturation 

method play an important role in the oogenesis and embryogenesis, especially in the older mice.  

Taken together, our results demonstrate that CCS using WGA and NGS is a robust technique to 

evaluate chromosome segregation errors that can be applied to gametes and embryos of any 

species with a published and annotated genome. Moreover, this method is highly cost-effective 

making it accessible for use in most laboratories78. Because this technology identifies aneuploidy 

in a chromosome-specific and quantitative manner, this approach provides the field of 

reproductive science and medicine with a new tool for evaluating how age, environmental 

factors, and disease conditions influence aneuploidy in the gamete and preimplantation embryo.  

In addition, it could be used in future research to assess the effectiveness of therapeutic 

interventions to lower the incidence of oocyte and embryo aneuploidy in aged females. 

Competence Mitochondria in Reproductive Competence 
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The mouse model has been widely used as a model system to gain insight into the key aspects of 

human reproductive biology. Recently, we were the first to establish a WGA and NGS based 

CCS method to further inform our fundamental understanding of aneuploidy in mouse oocytes 

and preimplantation embryos.  Here we extended these studies by validating a method for 

simultaneous quantification of mtDNA content from limited amounts of starting material. 

Cultured mouse cells were treated with EtBr to generate cells with reduced levels of mtDNA. 

Single-cell samples were collected to mimic a polar body or oocyte, and 100-cell samples were 

collected to represent a blastocyst. The WGA and NGS based method detected the decrease in 

mtDNA content with longer exposure to EtBr in both samples. Single cells showed higher 

variation than 100-cell samples, which may be due to cell cycle asynchrony or differences 

between individual cells in how they were affected by EtBr treatment.  

In addition to in vitro validation, our detection of a much higher level of mtDNA in oocytes as 

compared to polar bodies is consistent with the expectation that highly asymmetric division of 

the cytoplasm in meiosis results in accumulation of mtDNA in the oocyte for later embryo 

development 79. The assay was further validated by the comparison of mtDNA content in oocytes 

and blastocysts. Most publications suggested that there is no mtDNA replication until 

implantation, so each newly divided blastomere within the pre-implantation embryo will possess 

fewer copies of the mtDNA at each stage of post-fertilization cell division80,81,82. In our study, 

the average mtDNA content in oocytes was 180- fold higher than the cells in blastocysts, 

indicating that there are about 7 to 8 rounds of cell division from fertilized oocytes to blastocysts. 

This finding is consistent with mouse embryonic development, in which a zygote undergoes 8 to 

10 cell divisions to form a morula and then further develops into a blastocyst. 
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In this study, we found that relative mtDNA content was associated with ploidy status, maternal 

age, and oocyte maturation methods in mouse blastocysts. The difference of relative mtDNA 

level between the groups was significant with the implementation of the correction factor based 

on the gender and ploidy.   

Relative mtDNA content in aneuploid mouse embryos was found to be significantly higher than 

euploid embryos, which is consistent with observations in humans6,7. Increased mtDNA copy 

number was observed in aneuploid oocytes from diabetic mice83. Mitochondrial biogenesis and 

adequate energy production are important for cytoplasmic maturation, embryogenesis and 

placentation84,85.  There is a hypothesis that the mtDNA copy number in the embryo is not a 

direct indicator of energetic capability but rather is an indicator of energetic stress10. The 

observation of increased mtDNA content in aneuploid embryos in our study suggests that 

aneuploid embryos may need more energy for chromosome segregation, and activate 

mitochondrial biogenesis at an earlier stage of embryo development.  

Mouse maternal age was associated with the relative mtDNA content of embryos; relaitive 

mtDNA content in mouse embryos increased with maternal age. Previous studies showed that 

reproductively old humans and animals tend to have lower mtDNA copy numbers or more 

dysfunctional mitochondria in their oocytes86,87,88. One explanation for the age related mtDNA 

increase in the embryos is that a reduced number of mitochondria may produce an inadequate 

energy supply for embryonic development and therefore trigger early mitochondrial biogenesis 

and increased mitochondrial number in preimplantation embryos. Similar results were observed 

in human embryos7,89. Another explanation is related to mitophagy, which is the selective 

degradation of mitochondria by autophagy and occurs to defective mitochondria following 

damage or stress. It promotes turnover of mitochondria and prevents accumulation of 

https://en.wikipedia.org/wiki/Mitochondria
https://en.wikipedia.org/wiki/Autophagy
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dysfunctional mitochondria90. It was found that mitophagy may play a key role in retarding 

accumulation of somatic mutations of mtDNA with aging91. In the process of embryogenesis, 

mitophagy might be impaired in the embryos from old mice, which causes the accumulation of 

dysfunctional mitochondria, and therefore higher level of mtDNA is observed. 

It has been reported that mouse oocytes produced via IVO had higher fertilization and blastocyst 

formation rates than IVM92,93. Embryos derived via IVO also had a lower anueploidy rate11. 

Those findings imply that oocyte maturation method play an important role in the oogenesis and 

embryogenesis. In our study, we quantified the relative mtDNA level related to cytoplasmic 

maturation, and we found relative mtDNA content was higher in embryos derived from IVO 

compared to IVM. Oocytes derived from IVO have higher quality compared to IVM, so they 

may accumulate higher quantity of mtDNA during oogenesis, which could facilitate fertilization 

and embryo development94. Lower level of mtDNA in embryos derived from IVM, due to 

inadequate mitochondrial biogenesis or cytoplasmic maturation, may adversely affect oocyte 

quality, so age and IVM may have different mechanisms that underlie oocyte quality.  

In conclusion, the mouse study provides a validated method to assess the relative mtDNA 

content in mouse oocytes, polar bodies and blastocysts that can be performed simultaneously and 

in conjunction with CCS. The method could be applied in future research to assess the 

effectiveness of therapeutic interventions involving mitochondrial copy number and distribution. 

Although this study suggests that mtDNA copy number alone can be associated with embryonic 

reproductive competence, future work is needed to understand the relationship between mtDNA 

quantity and implantation success after embryo transfer in mice. Studies of mitochondrial 

number and function in mouse oocytes and embryos may help to elucidate basic mechanisms of 

mitochondrial biogenesis and function related to reproductive competence.   
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Prior human studies observed a relationship between mtDNA content and outcomes, it is unclear 

whether this relationship only identified poor prognosis patients from good prognosis patients. In 

other words, mtDNA content may have been a surrogate for age and not an additional variable 

that improves selection. In our human embryo study, a stepwise approach was used to preform 

accurate mtDNA quantification on embryo biopsy material.  Paired comparisons of 

mitochondrial DNA content were performed on euploid sibling embryos as opposed to 

comparing embryos belonging to different parents. This methodology eliminates patient-specific 

variables leading to a well-controlled investigation of the predictive value of mtDNA for 

reproductive outcome in a single cohort.  

This study investigated the relationships between mtDNA quantity and multiple clinical 

parameters available during IVF cycles. A significant association was found between 

mitochondrial quantity and maternal age providing evidence that preimplantation blastocysts 

developed from older patients have lower levels of mtDNA compared with those from younger 

ones. The association of age and mtDNA content has been studied previously in both oocytes 

and embryos. Studies evaluating oocyte mitochondrial levels appear to be in agreement with the 

present study, showing decreasing levels in older patients[21]. However, the opposite effect was 

recently shown in a study evaluating blastocyst levels, explaining that perhaps blastocysts from 

older women have more demanding energy requirements due to a continuously declining 

organelle function over time95 [10]. Additionally, a comparison of embryos biopsied on Day 5 

versus Day 6 identified that mitochondrial content per cell may decline during blastocyst 

development. Evaluation of blastocyst morphology also revealed significant associations.  

Embryos identified to have superior morphologic qualities were found to contain lower 

quantities of mtDNA. These associations may reflect that mitochondrial DNA content is 
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impacted by the degree of expansion and mitogenic activity of the blastocyst. For example, 

blastocysts that have experienced more cell divisions may be expected to have different levels 

mitochondrial DNA than those that have not based on partitioning of available mitochondria.  

Of particular clinical importance is the potential use of mtDNA quantity as a modality to predict 

embryo success. Proper evaluation of a marker for its ability to predict outcomes among sibling 

embryos is challenging, but it can be accomplished using a variety of study designs that allow for 

control over known and unknown patient-specific variables. By analyzing only those patients 

undergoing DET’s and identifying the implanted embryo, the predictive values of a marker for 

reproductive potential can be truly isolated. Identification can be achieved using gender if sibling 

embryos are of different sex. Alternatively, fingerprinting analysis on the delivered offspring can 

be utilized regardless of gender. This approach is more complicated and costly, but the 

technology has been available and used in prior studies successfully96,97,98. This is the largest 

study to date evaluating the predictive value of mtDNA content using a sibling embryo study 

design. We identified 69 cases where both a euploid male and female embryo were transferred 

simultaneously and resulted in a singleton outcome. A paired analysis revealed that mtDNA 

levels were not predictive of a successful outcome. Based on these results, the current available 

data suggests that mtDNA quantification is insufficient in its ability to enhance embryo selection 

over current, more validated techniques. 

Endometrial Microbiome and Reproductive Competence 

The population of microbes in and on the human body has become better characterized as a result 

of the National Institute of Health’s Human Microbiome Project. The vaginal microbiome at the 

lower part of female reproductive tract has been widely studied; however, the uterine microbiome 

in general and, in particular, at the time of embryo transfer in the peri-implantation period is largely 
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uncharacterized. Recent studies of the uterine endometrial microbiome99 suggest that further 

characterization of this microbial environment could be vital in understanding endometrial 

proliferation; embryo apposition, attachment, and invasion; and the development of early 

pregnancies.  

Given that during IVF embryos are placed into the uterine cavity utilizing a transfer catheter, this 

represents an ideal time to obtain biological material for microbiome analysis without altering 

clinical care provided the catheter tip can be analyzed requiring no further sampling. This 

technique involves no additional trauma to the endometrial cavity which might impact clinical 

outcomes and does not require endometrial tissue sample processing in the laboratory. However, 

the major challenge presented in this approach, as is often the case when approaching diagnostics 

in the pre- and peri-implantation period, is that the amount of bacteria in the catheter tips and the 

starting DNA material may be very little and thus difficult to be analyzed. In this study, we 

developed the 16S rRNA based NGS to characterize endometrial microbial environment by 

analyzing the transfer catheter tips. 

A small amount of bacterial culture (1000 bacteria) was lysed and followed by amplification 

directly to validate the classification of the bacteria. Both Ion and Illumina 16S metagenomics 

workflows were tested in our study. The analyses from Ion reporter detected only the family level 

for the validation samples, and the built-in analyses from Illumina MiSeq didn’t assign the correct 

genus or species calls for all the validation samples. Customized analyses were carried out which 

was able to improve the taxonomic assignment. Although the genus and species level assignment 

were improved with the custom analysis when comparted to the Ion 16S Metagenomics workflow, 

the majority of the reads were still only able to be characterized at the family level. Another issue 
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with the Ion 16S workflow was the bias amplification of the seven hypervariable regions, which 

caused issues with quantitative analysis of the microbiome.   

For Illumina 16S Metagenomics workflow, our customized analyses identified genus or species 

for all the samples for both V3-V4 and V4 amplicons. Amplicon V4 had higher final usable reads 

compared to amplicon V3-V4 for all the samples, which was due to the fact that V3-V4 is longer 

than V4. The error frequency of the sequencing is increased for longer reactions, and joining the 

longer sequence is more difficult because the overlap sequences for read 1 and read 2 are shorter. 

To further validate the taxonomic identification of V4 amplicon, genomic DNA mixture of 20 

bacterial strains was tested and all the species or genus were detected. Further, the Illumina 16S 

rRNA V4 metagenomics workflow allowed higher number of multiplexed samples for one 

sequencing run to reduce time and cost with reliable genus and species classification.  

To validate the direct lysis procedure based on Illumina V4 workflow, two Gram-negative 

bacteria (Escherichia coli and Proteus vulgaris) and two Gram-positive bacteria (Staphylococcus 

epidermidis, and Bacillus cereus) were tested on lysates from different culture dilution and 

isolated genomic DNA. Artificial mixtures of bacterial culture and DNA were tested to prove 

that taxonomy can be assigned to poly-microbial samples, which represented the real human 

microbial community. For both Gram-positive and negative bacteria, despite cell wall structural 

differences, the genus and/or species taxonomic level was accurately detected for both single- 

and poly-microbial samples when there were more than 60 bacterial cells in the culture lysates. 

This method can reliably detect the taxonomy from the cell lysates with more than 60 bacterial 

cells directly. One bacterial cell has 1.5 to 4 fg DNA, therefore 60 cells have about 90 to 240 fg 

DNA. The current Illumina 16S metagenomic workflow requires 12.5 ng DNA to start with, 
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which requires a large amount of bacterial cells. Our method provided a sensitive approach to 

study the ultra-low amount of bacteria from the environment. 

Recent studies of the uterine endometrial microbiome suggest that further characterization of this 

microbial environment could be vital in understanding endometrial proliferation; embryo 

apposition, attachment, and invasion; and the development of early pregnancies100. Given that 

during IVF embryos are placed into the uterine cavity utilizing a transfer catheter, this represents 

an ideal time to obtain biological material without altering clinical care provided, and the catheter 

tip can be analyzed requiring no further sampling. This technique involves no additional trauma to 

the endometrial cavity which might impact clinical outcomes and does not require endometrial 

tissue sample processing in the laboratory. However, the major challenge presented in this 

approach, as is often the case when approaching diagnostics in the pre- and peri-implantation 

period, is that the amount of bacteria in the catheter tips may be very low and thus difficult to be 

analyzed. The lysis direct technique overcame the challenge and characterized endometrial 

microbial environment by analyzing the transfer catheter tips. 

A total of 395 embryo transfer catheter tips were analyzed in this study. Vaginal bacteria 

Lactobacillus, Corynebacterium, Bifidobacterium, Staphylococcus and Streptococcus were 

detected in the uterus endometrium. Lactobacillus abundance was detected in all the samples as 

might be expected. Lactobacillus species have major functions in the reproductive tract including 

pH maintenance, prevention of long-term colonization of the harmful bacteria by adhering to 

reproductive tract epithelial cells, and production of lactic acid, hydrogen peroxide and 

bacteriocins. This allows for competitive inhibition of other pathologic bacteria in the reproductive 

tract.  
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The data in this study showed the microbiome at the time of ET may differ by pregnancy outcome 

but highlighted the challenge of low bacterial load and read counts when analyzing ET catheter 

tips alone. In order to more fully investigate the microbiome’s affect utilizing this robust analytic 

technique, specimens with a more reliable and higher bacterial load would be required. Better 

characterization of the microbiome at the time of embryo transfer may yield microbiome profiles 

which are favorable and unfavorable when it comes to reproductive outcomes. Once this is 

established, intervening, either with antibiotics or probiotics, would be a natural clinical 

application to see if the microbiome profile could alter the reproductive outcomes. 
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