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Abstract 

 
Pseudomonas is a genus of gram-negative gammaproteobacteria with a large range of diversity. 

Because of its ability to grow at low temperature, Pseudomonas is a cause of food spoilage. This 

bacterium is also a very common nosocomial infection of hospital patients.  In this study, we 

investigated the effects of different natural products on Pseudomonas. The products included a 

polysaccharide, two flavonoids tangeretin and nobiletin and their derivatives, 5’OH-tangeretin 

and 5’OH-nobiletin, black tea polyphenol – theaflavins (TFs), as well as an herb named Fallopia 

multiflora (Chinese Knotweed). P. fluorescens and P. aeruginosa were used as model organisms. 

Antimicrobial effects were evaluated at various concentrations by using a microtiter plate assay 

or culture tube assay. The inhibition of biofilm formation was also determined using crystal 

violet assay.  The results indicated that the selected natural products have antibacterial effect and 

anti-biofilm formation on Pseudomonas. Of the seven compounds studied 2.5% theaflavin, 2.5% 

Chinese Knotweed, and 500 µM of tangeretin showed the greatest antimicrobial effect.  
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Introduction 

Pseudomonas is a genus of gram-negative bacteria that is the source of many acute and chronic 

infections. The bacteria can be isolated from environmental sources such as freshwater and soil.  

Pseudomonas has a unique resistance to many microbicides.  This makes these bacteria a problem in its 

removal from equipment and surfaces in hospitals (Lavoie et al 2011). Pseudomonas aeruginosa is a 

primary concern in healthcare.  The bacteria are the major causing agents in immunocompromised 

patients (Martin-Espada et al 2013).  P. aeruginosa can cause ventilator-associated pneumonia in 

intubated patients. Chronic infections are common in patients in intensive care units.  These chronic 

infections occur in the respiratory tracts of 80% of adults with cystic fibrosis. Chronic Pseudomonas 

infection also occurs in heart, middle ears, and para-nasal sinuses (Alhede et al 2014).    

 

The Pseudomonas genus is a very common source of food spoilage after harvest.  The bacteria are so 

harmful because they can infect almost all types of vegetables.  The bacteria can enter the plant tissue 

after mechanical injuries or the barrier being broken by other organisms.  The contamination rate is very 

high in vegetables due to frequent contact with the soil during the growing process.  The high infection 

rate of food after harvest not only causes an economic loss, but can be very harmful to humans.  

Pseudomonas infections can be seen in cabbage, lettuce, beans, tomatoes, and soybeans (Tournas 2005).        

 

The water systems act as a source of P. aeruginosa infection in healthcare.  Although the direct mode of 

transmission is unclear, the correlation between P. aeruginosa and the water system is strong.  Compared 

to other waterborne pathogens, P. aeruginosa excels because of its ability to adapt to a wide range of 

temperatures.  P. aeruginosa also has the ability to grow in poor nutrient environments.  Water treatments 

remove most microbial contamination from the water but P. aeruginosa problems remain in large 

buildings such as hospitals.  Issues with P. aeruginosa arise because the plumbing installation allows the 

bacteria to proliferate and form a biofilm.  This is seen in the areas of the plumbing where there are high 
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levels of nutrients for bacteria such as infrequently used outlets.  P. aeruginosa growth is best seen near 

the distal ends of the plumbing like the sink because of the aerobic conditions (Loveday et al 2013).  

 

P. aeruginosa infection is a serious healthcare issue as not only it can grow aerobically, but it also has the 

ability to grow in the microaerobic and anaerobic environment.  One major example is the chronic lung 

infection in cystic fibrosis. With cystic fibrosis, P. aeruginosa is the dominant pathogen that cannot be 

treated with antibiotics. P. aeruginosa has the ability to adapt to different conditions because of its 

complex enzyme system.  The enzyme systems are used to generate enzymes needed under oxygen-

restricted or anaerobic conditions.  Because of the heterogeneous environment of the cystic fibrosis 

produced by the mucus in the lungs, P. aeruginosa has the ability to produce enzymes for microaerobic 

growth, de-nitrification, and fermentation.  The stress response system and universal stress proteins 

produced by the P. aeruginosa allow the bacteria to survive during anaerobic energy starvation conditions 

(Schobert and Jahn 2010). 

 

When P. aeruginosa is grown under hypoxic conditions, causing the stress proteins secretion, 

physiological changes occur such as alterations to the outer membrane.  These alterations can lead to 

increased tolerance to antibiotics (Schobert and Jahn 2010). Because the bacterium is gram-negative, it 

has an outer membrane, lipopolysaccharide (LPS), which protects it from the outside environment.  The 

membrane also works as a sieve using specific and general pre-forming proteins.  The pores allow for 

small molecules to cross the membrane, but larger molecules that are needed to be transported as well.  

Many known soluble exoproteins are secreted from P. aeruginosa.  Of these exoproteins, most of them 

are virulence factors. P. aeruginosa is also known as one of the most actively secreting gram-negative 

bacteria (Bitter 2003). In addition to the chaperone/usher pathway, there are five more protein secretion 

systems including Type I (T1SS), II (T2SS), III (T3SS), IV (T4SS) and V (T5SS) secretion systems in 

Gram-negative bacteria. An example of the complexity of the protein secretion system was observed in 

the Type III secretion system (T3SS). P. aeruginosa can have one of more of the four genes with encode 
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for four cytotoxins.  The cytotoxins being produced can lead to migration of the bacteria from the site of 

infection and inhibition of host cell DNA synthesis (Jabalameli et al 2012).  Another example of the 

cytotoxins being produced is seen in the production of autotransporters mainly by P. fluorescens.  This 

autotransporter PfaI is a part of the type V protein secretion system (T5SS).  This system is unique 

because it has all of the components necessary for protein translocation within a single polypeptide.  PfaI 

also has a virulence factor involved in the interaction with the host cell and modulating the immune 

response (Hu et al 2009). Along with the cytotoxins being produces, P. aeruginosa produces 

biosurfactants.  One of the most studied biosurfactants is rhamnolipids produced by P. aeruginosa. 

Rhamnolipids have potential industry and environmental applications because the antimicrobial properties 

(Samadi et al 2012).  Pseudomonas has the ability to produce the gamma-aminobutyric acid (GABA) and 

the GABA-binding proteins.  In the presence of GABA, P. fluorescens does not produce the 

biosurfactants (Dagorn et al 2013). Pseudomonas also produces extracellular proteases which typically 

help to provide nutrient for the bacteria by hydrolyzing large proteins.  The proteases can also play a role 

in plant pathogenesis (Anderson et al 2004). 

 

Along with the cases previously mentioned, P. aeruginosa is the source of many other infections 

including urinary tract infections, upper and lower respiratory tract infections, and bloodstream infection 

(Lavoie et al 2011).  P. aeruginosa is also a major pathogen in infections of burn patients (Jabalameli et al 

2012).  There are certain innate immune responses that primarily control P. aeruginosa.  These responses 

are very important to recognize and clear the pathogen. In respiratory tract infections, this has to be done 

while maintaining minimum inflammation-mediated damage. P. aeruginosa has the ability to alter the 

host immune response after infection.  It also has many variability factors that affect the host immune 

response to the bacteria. In the mammalian respiratory tract, the bacteria have the ability to change the 

expression and structure of ligands that normally are known to be immutable.  These changes cause the 

innate immune response to the P. aeruginosa to vary (Lavoie et al 2011).  The acquired differences were 

seen in a study observing the difference between P. aeruginosa from an infected wound and an isolated 
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colony (Ramos et al 2008).  The variability was also seen in P. fluorescens with its ability to change its 

metabolism to adjust to the dangers of toxic compounds.  To combat oxidative stress, P. fluorescens 

decreases the formation of the pro-oxidant NADH and increase in the anti-oxidant NADPH (Mailloux et 

al 2011). 

 

Bacteria have different abilities to adapt to rapid changes of environmental conditions (Baumgarten et al 

2012).  In addition to the metabolic effects of Pseudomonas, the genus of bacteria is notoriously harmful 

because of its ability to grow a biofilm.  Biofilm is the accumulation of the microorganism in an 

exopolysaccharide matrix.  P. aeruginosa biofilm is usually present in infections in acute burn wounds.  

Because of this biofilm formation, the survival rate in hostile environments increases.  Biofilm formation 

protects the bacteria from the host immune response (Jabalameli et al 2012) so the immune response 

cannot eradicate the biofilm (Alhede 2014). The growth of this biofilm leads to a more persistent 

infection.  It also increases the bacteria’s tolerance to antibiotics by creating a physical barrier to the host 

defense system (Schobert and Jahn 2010).  Biofilm formation can promote horizontal gene transfer.  This 

can lead to genetic diversity (Ramos et al 2010).   Biofilm formation can also lead to sharing of metabolic 

by-products within the biofilm community (Baumgarten et al 2012).     

 

The physical barrier created by Pseudomonas becomes problematic because it has a reduced susceptibility 

to antimicrobial agents.  The formation of a biofilm occurs by coordinating different cells to participate in 

certain surface-association behaviors.  The formation occurs in a five-stage process including (1) Initial 

attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II and (5) Dispersion (Sauer et al 

2002).  The cells first enter a transitional state of reversible surface attachment, which must be stabilized 

for biofilm formation.  As the biofilm matures, it forms microcolonies and macrocolonies.  These colonies 

are encased in an extracellular matrix.  This matrix is to organize and structure the bacteria community. 

The biofilm matrix consists of proteinaceous material, membrane vesicles, DNA, and exopolysaccharides 

(Merritt et al 2007). Biofilm formation is in part regulated by flagellum-based motility.  The two-



5 
 

component system SadC/B influences motility and biofilm formation.  Mutations in flagellar regulation or 

biogenesis in Pseudomonas effects the formation of the biofilm (Mastropaolo et al 2012).       

 

Biofilm formation plays a major role in Pseudomonas infections in a clinical setting. Patients with cystic 

fibrosis and chronic P. aeruginosa infections show biofilm formation in the conductive airways within the 

mucus in the lungs.  Patients with diabetes and cardiovascular disease are showing an increase in chronic 

wounds.  The intense accumulation of biofilm found in cystic fibrosis patients is also seen in chronic 

wounds.  Another location of the intense accumulation of biofilm is in otitis media in the middle ear.  

Biofilm formation is detrimental in healthcare because of medical device related infections.  These 

infections may occur from contamination from a patient’s skin or mucous membrane.  The infection can 

also occur from the surgical or clinical staff. P. aeruginosa biofilm infections are almost unavoidable in 

prolonged catheterization (Alhede et al 2014).       

 

There have been many approaches to inhibit growth of this dangerous Pseudomonas genus. A novel 

approach would be to use natural products.  Of the drugs in clinical use, approximately half of them are 

derived natural products.  Even though this statistic is fairly high, chemists do not usually embrace the use 

of natural products. A major downfall of the natural products is the compounds are usually found in small 

quantities in comparison to synthesized compounds.  This leads to the need for drugs with a greater 

quality than quantity. Many treatments, such as cancer chemotherapy, are ideal opportunities for natural 

product. Natural products are beneficial in comparison to artificially designed molecules because they 

naturally have a high specify and potency.   Natural products also have well defined three dimensional 

structures with many functional groups. The targets of the natural products are well conserved  

(Paterson and Anderson 2005).  

 

One major group of natural products is commonly seen in herb and spices called essential oils.  The 

essential oils of thyme, oregano, clove, and cinnamon have been shown to have strong antimicrobial 
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effects.  The complexity and synergy of essential oils make them very useful against multidrug resistant 

bacterial strains such as Pseudomonas (Sienkiewicz et al 2012).  The use of essential oils is seen in 

mouthwash. The active ingredients in commercial mouthwashes are menthol, eucalyptol, thymol, and 

methyl salicylate (Erriu et al 2013).  The use of natural products is also seen in other extracts from various 

microbes.  Crude extracts from endophylic fungi of mangrove plants were analyzed for antimicrobial 

activity.  It was found that the extracts had an antimicrobial effect over a wide range of bacteria, including 

Pseudomonas (Buatong et al 2011).   

 

In this study, a variety of natural products were studied to observe any antimicrobial effect. One of the 

products used was theaflavin. Theaflavin is a type of polyphenol found in black tea extract. The formation 

of theaflavins occurs after the fermentation of monomeric flavan-3-ols.  This leads to the production of 

theaflavins along with other oligomers.  Theaflavins and its oligomers normally consist of 1-2% of the 

total dry matter in tea.  In this study, the powder was 20% theaflavin.  Many studies have been performed 

to observe the properties and structure of theaflavin and the oligomers (Figure 1).  More recently, the 

pharmacological functions have been studied (Vermeer et al 2008).    

 

The next polyphenol used in this study was Fallopia multiflora (Polygonum multiflorum).  This tuberous 

root is also known as Chinese Knotweed (Figure 2). Chinese Knotweed grows in Guangxi, Henan, and 

Guizhou (Wang et al 2010). Chinese Knotweed is known as a tonic and anti-aging agent in traditional 

Chinese medicine.  The herb also has a protective effect on the cardiovascular system (Liu et al 2010). 

Other tradition uses include nerve injury, constipation, and premature white hair (Wang et al 2010).  

Figure 3 showed the major constituents of the herb include emodin, rhein, other phenolic compounds and 

their glycosides (Yao et al 2006). 
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Theaflavin (TF1) 

 
Theaflavin-3-Gallate and Theaflavin-3’-Gallate (TF2a and TF2b) 

 
Theaflavin-3-3’-digallate (TF3) 

 

Figure 1: Molecular structure of major Theaflavins (TF1, TF2 & TF3) found in black tea. 
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Figure 2:  Fallopia multiflora root. 

 

 

 

 

 
Figure 3:  Active components of Fallopia multiflora root. 
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The next natural product studied were two polymethoxyflavones (PMFs) (Figure 4), a subgroup of 

flavonoids, and two derivatives. Aside from black tea, flavonoids are present in fruits, vegetables, nuts, 

and seeds.  About 800 varieties of flavonoids have been identified (Mohan and Nandhakumar 2013). 

Flavonoids are polyphenol compounds involved in plant secondary metabolite processing.  Flavonoids 

have the ability to modulate protein kinases.  They also modulate epidermal growth factor receptors, 

cyclin-dependent kinases, vascular endothelial growth factor receptors, and platelet derived growth factor 

receptors.  Flavonoids also have the ability to inhibit multiple enzymes involved in inflammation and 

cancer pathology (Ravishankar et al 2013).  Nobiletin and tangeretin are PMFs derived from orange and 

tangerine peel.  PMFs play a role in numerous biological functions.  They also have neuroprotective, 

anticancer, and antimetastatic properties. More recent studies show that nobiletin and tangeretin can 

modulate adipocytokine secretion balance leading to treatment of insulin resistance (Miyata et al 2011).  

Antimicrobial effects of nobiletin and tangeretin against Pseudomonas have been previously studied at 

3.6 mg/mL (Yao et al 2011).  This is why derivatives of the two products were also studied. Structural 

modifications can be acquired by adding a functional group or using genetic engineering to reconstruct 

the pathways. In this study, the derivatives of nobiletin and tangeretin had an addition 5’-hydroxyl group.  

A new alternative in medicine is using combinational chemistry and diversity goaled synthesis.  This 

offers a range of structural differences that are based on a common core.  This provides a larger screening 

library in a shorter amount of time (Paterson and Anderson 2005).
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Figure 4:  Molecular structure of the polymethoxyflavones nobiletin (A) and tangeretin (B).  
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A sulfated polysaccharide extracted from red microalgae Porphyridium was used to observe any 

antimicrobial effects.  The red microalgae used were a habitat was fresh water, sea water, and brackish 

water. The red microalgae were cultivated in a large scale algae cultures (Figure 5).  This improved the 

light availability by increasing the surface volume ratio. The red microalgae were encapsulated with 

sulfated polysaccharide (Figure 6).  The polysaccharide was sulfated at the bioactive groups. These 

polysaccharides are believed to have a wide range of uses.  The uses include antibacterial, antifungal, and 

anti-inflammatory. The sulfated polysaccharide has shown antiviral effects against herpes simplex virus 1 

and 2.  It also has shown antiviral effects against a variety of other viruses (Huheihel et al 2001).   The 

polysaccharide also has a buffer layer to protect against extreme environments such as temperature, pH, 

and salinity. The polysaccharides in the cell wall have different compositions, but similar functions 

(Geresh and Arad 1991).   

 

In this study, the mentioned seven natural products were used to observe any antimicrobial effects on the 

very harmful bacteria Pseudomonas.  Biofilm inhibitory effects by natural products were also determined.  
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Figure 5: Large scale cultivation of red microalgae Porphyridium. 

 

 

 

 

Figure 6: Proposed structure of the polysaccharide extracted from the microalgae species Porphyridium. 
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Materials and Methods 

Bacterial culture 

P. aeruginosa and P. fluorescens were obtained from Carolina Biological Supply Company. The 

bacteria were cultured using Difco™ LB Broth (LB), Difco™ Tryptic Soy Broth (TSB), and 

Carolina Nutrient Broth (NB) dehydrated media. The bacteria was cultured at 37o C and 

constantly shaken at 250 rpm.  

 

Preparation of compound solutions 

The red algae polysaccharide was obtained from Dr.  Shoshana Arad of the Institutes of Applied 

Research at Ben-Gurion University of the Negev in Be’er-Sheva, Israel.  Because of its high 

viscosity, the polysaccharide was diluted to 1% using diH2O.  The pure flavonoids tangeretin and 

nobiletin, as well as their derivatives, were received from the laboratory of Dr. Chih-Yu Lo of 

National Chiayi University in Chiayi, Taiwan.  3mM stock solutions were made by dissolving 

the compounds in DMSO.  The solutions were then filtered using Acrodisc® 13 mm sterilized 

syringe filters with 0.2 µm Supor® membranes. The black tea polyphenol was purchased from 

Jiangyin Dehe Biotechnology Company in Edison, NJ. The 20% theaflavin powder was 

dissolved in DMSO to prepare a 5% stock solution.  The solutions were then filtered using 

Acrodisc® 13 mm sterilized syringe filters with 0.2 µm Supor® membranes. The Fallopia 

multiflora (Chinese Knotweed) was obtained from Dr. Lo as well. All compounds were stored at 

4oC. For the experiments, a vehicle control was used to observe any toxic effects of the solvents.   
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Table 1:  Complete list of the natural products used as potential anti-Pseudomonas agents.  

Natural Product Stock Concentration Working Concentration 

Theaflavin 5% 5% 

Chinese Knotweed 5% 5% 

Polysaccharide 5% 1% 

Nobiletin 3 mM 1 mM 

Tangeretin 3 mM 1 mM 

5'OH-Nobiletin 3 mM 1 mM 

5'OH-Tangeretin 3 mM 1 mM 

 

Microtiter plate antimicrobial inhibition assay 

A microtiter plate assay was used to observe any antimicrobial effects of the natural compounds 

using P. fluorescens. The P. fluorescens was inoculated in a 5-7 mL culture overnight to grow to 

stationary phase.  The appropriate amount of NB or LB was added to the wells in a clear Corning 

96-well microtiter plate so that each well had a total volume of 120 µL.  The desired 

concentration of the natural product was then added to the well.  The same amount of P. 

fluorescens (5 µL) was added to the wells. The growth of the bacteria in the presence and 

absence of the natural products was then observed. The growth was monitored over a 24-hour 

period obtaining the OD600 at 0, 1, 2, 3, 4, 5, 6, 7, 8, 12, and 24 hours. The absorbance was 

measured at 600 nm wavelength using a SpectraMax M5 from Molecular Devices.  Over the 24 

hours, the microtiter plate was maintained at 37o C and constantly shaken at 250 rpm.  Any 

antimicrobial effects of the natural product were then observed.   
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Culture tube antimicrobial inhibition assay 

A culture tube assay was used to observe any antimicrobial effects of the natural compounds 

using P. aeruginosa.  The P. aeruginosa was inoculated in a 5-7 mL culture overnight to grow to 

stationary phase.  The appropriate amount of NB or LB was added to the VWR 17x100 mm 

culture tubes with closures so that each tube had a total volume of 6 mL.  The desired 

concentration of the natural product was then added to the culture tubes.  The same amount of P. 

aeruginosa (250 µL) was added to the culture tubes. The growth of the bacteria in the presence 

and absence of the natural products was then observed. The growth was monitored over a 24-

hour period obtaining the OD600 at 0, 1, 2, 3, 4, 5, 6, 7, 8, 12, and 24 hours. Using proper aseptic 

technique, 1mL of the bacteria culture was removed to gather the absorbance using a Pharmacia 

LKB Ultraspec III and returned to the culture tube.  Over the 24 hours, the culture tubes were 

maintained at 37oC and constantly shaken at 250 rpm.  Any antimicrobial effects of the natural 

product were then observed.   

 

Biofilm inhibition using crystal violet assay  

A crystal violet assay was performed to observe any biofilm inhibition properties of the natural 

products. The P. aeruginosa and P. fluorescens were inoculated in a 5-7 mL culture overnight to 

grow to stationary phase.  The appropriate amount TSB was added to the non-treated Cellstar® 

24-well suspension culture plate so that the total volume was 2 mL.  The desired treatment 

concentration of the natural product was then added to the appropriate well.  The bacteria were 

grown to stationary phase (OD600=~1) was then diluted to 1:5 using TSB, and 1mL of the diluted 

bacteria was added to the wells.  The plates were then covered and incubated at 37o C and 250 

rpm for 5 days.  After the incubation period, a crystal violet staining was performed. Four small 
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trays were set up in a series adding 1-2 inches of tap water to the last three.  The planktonic 

bacteria were removed by shaking it over the first dish.  The plate was then submerged in the 

first water tray to wash the wells.  Two hundred microliters of a 0.1% crystal violet/water 

solution was then added to each well.  The plates were incubated at room temperature for 10 

minutes to stain the biofilm.  The crystal violet solution was then removed by shaking it over the 

waste tray.  The plates were then washed in the remaining 2 trays.  As much liquid as possible 

was removed after each wash.  After the washes, the plate was inverted and tapped on paper 

towels to remove excess liquid.  The plate was then allowed to air dry. The dye was solubilized 

by adding 500 µL of 95% ethanol.  The plate was incubated at room temperature for 10 minutes.  

The mixture was resuspended using a pipette. The absorbance was then read at 570 nm 

wavelength. 

 

Microscopic observation of biofilms 

A crystal violet assay with cover slips was performed to visualize any biofilm inhibition 

properties of the natural products. The P. aeruginosa and P. fluorescens were inoculated in a 5-7 

mL culture overnight to grow to stationary phase.  The non-treated Cellstar® 24-well suspension 

culture plate was prepared by adding 500 µL of TSA and allowing it to solidify.  A glass 

microscope cover slip (12 mm) was then added to the agar in each well at a 90o angle. The 

appropriate amount TSB was added to the culture plate so that the total liquid volume was 1.5 

mL.  The desired treatment concentration of the natural product was then added to the 

appropriate well.  The bacteria grown to stationary phase (OD600=~1) was then diluted to 1:5 

using TSB, and 1 mL was added to the wells.  The plates were then covered and incubated at 

37oC and 250 rpm for 5 days.  After the incubation period, a crystal violet staining was 
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performed on the cover slips.  The cover slips were carefully removed from the wells.  A sterile 

pipette was used to add 3-4 drops of a 0.1% crystal violet/water solution to the cover slip. The 

cover slip was incubated at room temperature for 10 minutes.  At the end of the incubation, the 

cover slip was washed by adding drops of diH2O using a sterile pipette.  The cover slip was then 

allowed to air dry. Images were then obtained of the cover slip using the bright field on an 

Olympus Fluoview FV1000 microscope. 

 

Statistical Analysis 

Each experiment was performed in triplicate.  The p value was obtained to determine the 

statistical significance (p<0.05) using student’s t-test.  Standard deviation error bars were added 

to the growth curves.   
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Results 

Antimicrobial Inhibition Assay 

Antimicrobial effects of the seven natural products on P. fluorescens and P. aeruginosa were 

determined.  The growth curves of the bacteria were monitored by turbidity study at 600 nm 

wavelength.  The percent inhibition of the natural products on the bacteria was also determined.  

The first graph for each compound shows the growth monitoring, followed by the percentage of 

inhibition. The percentages reported are from the 8 hour time point because this is the time point 

the bacteria were found to reach stationary phase.    

 

1. Theaflavin 

The concentration of P. fluorescens treated with the theaflavin compared to the untreated 

bacteria was lower, and demonstrated the antimicrobial effect of theaflavin.  P. fluorescens 

treated with 2.5% theaflavin showed completely inhibition of growth.  P. fluorescens treated 

with 1.25% theaflavin showed the growth was reduced by half of the control.  P. fluorescens 

treated with 0.625% theaflavin showed slight inhibitory effect.  There was a statistically 

significant difference (p<0.05) between the control and treated group (with 2.5% TF) from the 

second hour and on (Figure 7).  P. fluorescens treated with 2.5% theaflavin showed 90.89% 

growth inhibition.  P. fluorescens treated with 1.25% theaflavin showed 50.24% growth 

inhibition. P. fluorescens treated with 0.625% theaflavin showed 28.37% growth inhibition 

(Figure 8).    
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Figure 7:  Growth curve of Pseudomonas fluorescens treated with theaflavin. * indicates 
statistically significant. 

 

 

Figure 8: Percent inhibition of Pseudomonas fluorescens treated with theaflavin. 
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The concentration of P. aeruginosa treated with the theaflavin compared to the bacteria not 

treated was lower and demonstrated the antimicrobial effect of theaflavin.  P. aeruginosa treated 

with 2.5% theaflavin showed the growth was completely inhibited.  P. aeruginosa treated with 

1.25% theaflavin showed strong inhibition of growth, but not to the effect as 2.5% theaflavin. 

There was a statistically significant difference (p<0.05) between control and treatment group 

(1.25% TF) since the third hour and 2.5% TF from the second hour and on (Figure 9).  P. 

aeruginosa treated with 2.5% theaflavin showed 82.76% growth inhibition.  P. aeruginosa 

treated with 1.25% theaflavin showed 67.14% growth inhibition (Figure 10).    
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Figure 9:  Growth curve of Pseudomonas aeruginosa treated with theaflavin. * indicates 
statistically significant. 

 
 

 

Figure 10:   Percent inhibition of Pseudomonas aeruginosa treated with theaflavin. 
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2. Chinese Knotweed 

The concentration of P. fluorescens treated with the Chinese knotweed compared to the untreated 

bacteria was lower and demonstrates the Chinese knotweed antimicrobial effect.  P. fluorescens 

treated with 2.5% and 1.25% Chinese knotweed showed completely inhibition of its growth.  P. 

fluorescens treated with 0.625% Chinese knotweed showed some inhibitory effect on the growth.  

The difference between control group and the treatment groups (all three concentrations: 2.5%, 

1.25% and 0.625%) are statistically significant (p<0.05) from the third hour (Figure 11).  P. 

fluorescens treated with 2.5% Chinese knotweed showed 97.54% growth inhibition.  P. 

fluorescens treated with 1.25% Chinese knotweed showed 94.95% growth inhibition. P. 

fluorescens treated with 0.6% Chinese knotweed showed 63.91% growth inhibition (Figure 12).    
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Figure 11: Growth curve of Pseudomonas fluorescens treated with Chinese Knotweed. * 
indicates statistically significant. 

 

 
 
Figure 12: Percent inhibition of Pseudomonas fluorescens treated with Chinese knotweed. 
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3. Red Algae Polysaccharide 

The concentration of P. fluorescens treated with the red algae polysaccharide compared to the 

bacteria not treated was lower demonstrating the polysaccharides antimicrobial effect.  P. 

fluorescens treated with 1.0% polysaccharide showed completely inhibition of growth.  P. 

fluorescens treated with 0.5% polysaccharide showed slight inhibition of its growth.  P. 

fluorescens treated with 0.1% polysaccharide showed very little inhibitory effect.  For 

polysaccharide, 0.5% showed statistically significant difference (p<0.05) when compared with 

control (Figure 13).  P. fluorescens treated with 1% of the red algae polysaccharide showed 

75.09% growth inhibition.  P. fluorescens treated with 0.5% of the polysaccharide showed 

12.66% growth inhibition (Figure 14).    
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Figure 13:  Growth curve of P. fluorescens treated with the red microalgae polysaccharide. * 
indicates statistically significant. 

 

 

Figure 14: Percent inhibition of P. fluorescens treated with the red microalgae polysaccharide 
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4. Nobiletin  

The concentration of P. fluorescens treated with the nobiletin compared to the bacteria not 

treated was lower demonstrating the nobiletin antimicrobial effect.  P. fluorescens treated with 

500 µM nobiletin showed completely inhibition of growth.  P. fluorescens treated with 250 µM 

nobiletin showed 63% inhibition.  P. fluorescens treated with 125 µM nobiletin showed little 

inhibition or the growth was slightly inhibited.  The bacteria treated with 500 µM nobiletin were 

shown almost complete inhibition from the second hour with statistically significant difference 

(p<0.05) while 250 µM nobiletin showed significant inhibition (p<0.05) from the third hour and 

on compared with the control (Figure 15).  P. fluorescens treated with 500 µM nobiletin showed 

87.18% growth inhibition.  P. fluorescens treated with 250 µM nobiletin showed 62.90% growth 

inhibition. P. fluorescens treated with 125 µM nobiletin showed 32.04% growth inhibition 

(Figure 16).    
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Figure 15: Growth curve of Pseudomonas fluorescens treated with nobiletin. * indicates 
statistically significant. 

 

 
 

Figure 16: Percent inhibition of Pseudomonas fluorescens treated with nobiletin. 
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5. Tangeretin  

The concentration of P. fluorescens treated with the tangeretin compared to the bacteria not 

treated was lower demonstrating the tangeretin antimicrobial effect.  P. fluorescens treated with 

500 µM tangeretin showed completely inhibition of its growth.  P. fluorescens treated with 250 

µM tangeretin showed inhibition of growth by half.  P. fluorescens treated with 125 µM 

tangeretin showed little inhibition of growth.  Both 250 and 500 µM tangeretin showed 

statistically significant difference (p<0.05) compared with control groups (Figure 17).  P. 

fluorescens treated with 500 µM tangeretin showed 91.80% growth inhibition.  P. fluorescens 

treated with 250 µM tangeretin showed 53.66% growth inhibition. P. fluorescens treated with 

125 µM tangeretin showed 24.63% growth inhibition (Figure 18).    
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Figure 17: Growth curve of Pseudomonas fluorescens treated with tangeretin. * indicates 
statistically significant. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 12

%
 In

hi
bi

tio
n 

Time (hrs)

500uMTan
250uMTan
125uMTan

 

Figure 18: Percent inhibition of Pseudomonas fluorescens treated with tangeretin. 
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6. 5’OH-nobiletin  

The concentration of P. fluorescens treated with the 5’OH-nobiletin compared to the bacteria not 

treated was lower demonstrating the 5’OH-nobiletin antimicrobial effect.  P. fluorescens treated 

with 500 µM 5’OH-nobiletin showed highest inhibition (p<0.05).  P. fluorescens treated with 

250 µM 5’OH-nobiletin showed the growth was inhibited severely.  P. fluorescens treated with 

125 µM 5’OH-nobiletin showed little inhibition of growth (Figure 19).  P. fluorescens treated 

with 500 µM 5’OH-nobiletin showed 85.27% growth inhibition.  P. fluorescens treated with 250 

µM 5’OH-nobiletin showed 42.92% growth inhibition. P. fluorescens treated with 125 µM 

5’OH-nobiletin showed 18.67% growth inhibition (Figure 20).    
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Figure 19: Growth curve of Pseudomonas fluorescens treated with 5’-OH nobiletin. * indicates 
statistically significant. 

 

 
 

Figure 20: Percent inhibition of Pseudomonas fluorescens treated with 5’-OH nobiletin. 
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7. 5’OH-tangeretin  

The concentration of P. fluorescens treated with the 5’OH-tangeretin compared to the bacteria 

not treated was lower demonstrating the 5’OH-tangeretin antimicrobial effect.  P. fluorescens 

treated with 500 µM 5’OH-tangeretin the growth was completely inhibited from the third hour 

and on (p<0.05).  P. fluorescens treated with 250 µM 5’OH-tangeretin showed the growth 

severely inhibited.  P. fluorescens treated with 125 µM 5’OH-tangeretin showed little inhibition 

of growth (Figure 21).  P. fluorescens treated with 500 µM 5’OH-tangeretin showed 87.64% 

growth inhibition.  P. fluorescens treated with 250 µM 5’OH-tangeretin showed 47.37% growth 

inhibition. P. fluorescens treated with 125 µM 5’OH-tangeretin showed 25.40% growth 

inhibition (Figure 22).    
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Figure 21: Growth curve of Pseudomonas fluorescens treated with 5’OH-tangeretin. * indicates 
statistically significant. 

 

 
 

Figure 22:  Percent inhibition of Pseudomonas fluorescens treated with 5’OH-tangeretin. 
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The percent inhibition of P. fluorescens treated with the natural products at the highest 

concentration was observed at the 8 hour time point (Figure 23). At 8 hours the bacteria reached 

stationary phase. The noteworthy antimicrobial effects with a growth inhibition above 50% were 

compiled to compare the effects on Pseudomonas (Table 2).   
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Figure 23: Percent inhibition at 8 hours of P. fluorescens treated with all seven natural products. 
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Table 2: Summary of the antimicrobial effects of natural products on Pseudomonas fluorescens.                 

Natural Product Percent Inhibition Concentration 

Theaflavin (P. flu) 
50.24% 1.25% 

90.89% 2.50% 

Theaflavin (P. aeru) 
67.14% 1.25% 

82.76% 2.50% 

Chinese Knotweed 

63.91% 0.625% 

94.95% 1.25% 

97.54% 2.50% 

Red Microalgae Polysaccharide 75.09% 0.5% 

Nobiletin 
62.90% 250µM 

87.18% 500µM 

Tangeretin 
53.66% 250µM 

91.8% 500µM 

5'OH-Nobiletin 85.27% 500µM 

5'OH-Tangeretin 87.64% 500µM 
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Microscopic Observations 

The antimicrobial effects of the natural products on P. aeruginosa were observed using the 

bright field on an Olympus Fluoview FV1000 microscope. The images were analyzed looked at 

characteristics such as morphology and cell population (Figure 24-30).  P. aeruginosa treated 

with the theaflavin showed a lower cell population in comparison to the untreated bacteria.  The 

morphology of the bacteria also appeared to be elongated. P. aeruginosa treated with the Chinese 

knotweed did not show a morphology change, however the cell population was greatly reduced. 

P. aeruginosa treated with the polysaccharide show a slightly lower cell population. P. 

aeruginosa treated with tangeretin showed a lower cell population in comparison to the 

untreated.  The morphology of the bacteria appeared more elongated.  P. aeruginosa treated with 

nobiletin showed a lower cell population in comparison to the untreated.  The morphology of the 

bacteria appeared more elongated.  P. aeruginosa treated with 5’OH-tangeretin showed a slightly 

lower cell population in comparison to the untreated.  The morphology of the bacteria appeared 

to be a mixture of the wild type and elongated cells. P. aeruginosa treated with 5’OH-nobiletin 

showed a lower cell population in comparison to the untreated.  The morphology of the bacteria 

appeared more elongated.  All images are shown in a total magnification of 600X.         
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Figure 24: Pseudomonas aeruginosa untreated (A) and treated with 2.5% theaflavin (B).   
             
  

              

Figure 25: Pseudomonas aeruginosa untreated (A) and treated with 2.5% Chinese Knotweed 
(B).              
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Figure 26: Pseudomonas aeruginosa untreated (A) and treated with the 0.5% red microalgae 
polysaccharide (B). 

 

 
 
Figure 27: Pseudomonas aeruginosa untreated (A) and treated with 500 µM nobiletin (B).   
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Figure 28: Pseudomonas aeruginosa untreated (A) and treated with 500 µM tangeretin (B).   

 

 
 
Figure 29: Pseudomonas aeruginosa untreated (A) and treated with 500 µM 5’OH-nobiletin (B).  

 

10 µm 10 µm 

10 µm 10 µm 



41 
 

 
 
Figure 30: Pseudomonas aeruginosa untreated (A) and treated with 500 µM 5’OH-tangeretin 
(B).   
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Biofilm Inhibition Assay 

The inhibitory effects of the natural products on the biofilm formation of P. fluorescens and P. 

aeruginosa were observed.  A crystal violet assay was performed on the 24-well plate to detect 

the biofilm and obtain visual and quantitative results.  The absorbance at 570nm was used to 

quantitatively analyze biofilm.  P. fluorescens treated with both 1.25% and 2.5% theaflavin 

showed a lower amount of biofilm present demonstrating biofilm inhibition. Each concentration 

had a p<0.05 meaning there was a statistically significant difference among the groups (Figure 

31).  P. fluorescens treated with 2.5% theaflavin inhibited biofilm formation by 70.57%. P. 

fluorescens treated with 1.25% theaflavin inhibited biofilm formation by 62.61%. P. aeruginosa 

treated with two different concentrations of theaflavin demonstrated a very strong biofilm 

inhibition. . Each concentration had a p<0.05 meaning there was a statistically significant 

difference among the groups (Figure 33).  P. aeruginosa treated with 2.5% theaflavin inhibited 

biofilm formation by 97.72%.  P. aeruginosa treated with 1.25% theaflavin inhibited biofilm 

formation by 97.50% (Figure 34). 
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Figure 31: Crystal violet assay of Pseudomonas fluorescens biofilm treated with theaflavin. 

 

 

 
 
Figure 32: Biofilm inhibition of Pseudomonas fluorescens treated with theaflavin. 
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Figure 33: Crystal violet assay of Pseudomonas aeruginosa biofilm treated with theaflavin. 

 

 

 
 
Figure 34: Biofilm inhibition of Pseudomonas aeruginosa treated with theaflavin. 
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The inhibitory effects of theaflavin on the biofilm formation of P. aeruginosa were observed by 

using microscopic analysis.  An example of the experimental setup is shown in Figure 35.  A 

simple stain with methylene blue was performed on the bacteria biofilm grown on a cover slip 

and the images were obtained by using the bright field on an Olympus Fluoview FV1000 

microscope.  P. aeruginosa treated with theaflavin showed a lower amount of biofilm present 

demonstrating biofilm inhibition (Figure 36).   
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Figure 35: Pseudomonas aeruginosa biofilm formation experimental setup. (Top) The 24-well 
plate with glass cover slip positioned perpendicular to the bottom of the well in each well. 
(Bottom) The coverslips were removed and stained with methylene blue for microscopic 
observations under total magnification of 600X. 
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Figure 36: Microscope images of Pseudomonas aeruginosa biofilm untreated (A) and treated 
with 1.25% (B) and 2.5% (C) of theaflavin using a cover slip.   
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Conclusions and Discussion  

In this study, seven natural products were studied to observe the antimicrobial effects on the 

harmful Pseudomonas.  The biofilm inhibitory effects were also observed.  The products 

included polyphenolic compounds found in black tea theaflavins, tuberous root Fallopia 

multiform (Chinese Knotweed), polysaccharide found in red microalgae, flavonoids found in 

citrus pith and peels: nobiletin, tangeretin, and their derivatives, 5’OH-nobiletin and 5’OH-

tangeretin.   

 

The results from antimicrobial assays showed that all selected natural products contain anti-

Pseudomonas activities as the bacterial growth was severely (if not completely) inhibited. The 

top three natural products, theaflavins, Chinese Knotweed and Tangeretin, displayed a growth 

inhibition above 90%. P. fluorescens treated with 2.5% theaflavin showed 90.89% growth 

inhibition.  P. fluorescens treated with 2.5% Chinese knotweed showed 97.54% growth 

inhibition.  P. fluorescens treated with 1.25% Chinese knotweed showed 94.95% growth 

inhibition.  P. fluorescens treated with 500 µM tangeretin showed 91.80% growth inhibition.  

This is very interesting because theaflavin and Chinese Knotweed are both polyphenols.  From 

findings, it may be significant to explore the antimicrobial effects of other phenolic constituents 

in the flavones.  Fallopia multiform (Chinese Knotweed) showed the greatest effect as it 

completely inhibited Pseudomonas growth at both 2.5% and 1.25%.  The results encourage us to 

investigate more natural products used in traditional Chinese medicine.  From the microscopic 

observations, the bacteria population significantly reduced when treated with the compounds in 

comparison to the control.  This correlates with the results obtained from other assays shown 

above.  
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Biofilm formation has been significantly reduced or completely inhibited when the bacteria were 

treated with the natural compounds. Theaflavin showed a greater biofilm inhibition in P. 

aeruginosa than in P. fluorescens treated with the theaflavin.  Microscopic observations of the 

biofilms confirmed the results.  The biofilm was clearly present for untreated bacteria.  With 

2.5% theaflavin, P. fluorescens showed significant biofilm reduction while P. aeruginosa 

showed no biofilm with a few isolated cells remained.  This suggests that theaflavin and other 

polyphenols may serve as potential anti-Pseudomonas biofilm agent.        

 

The infections of gram-negative bacteria Pseudomonas has been an ongoing problem in 

healthcare, especially in the intensive care unit. This study provides an initial profile for several 

different types of natural products that could be good antibacterial agents for Pseudomonas and 

its biofilms. The synergistic antibacterial activity of natural products and antiseptics should be 

explored so we may be able to find a natural way to eradicate Pseudomonas infection.  The 

results also lead to the need for the discovery of the anti-Pseudomonas mechanism of the natural 

products.  The natural products should be tested on other biofilm forming bacteria. We should 

also explore the possibilities of using the natural products in therapeutic application.  To perform 

this, the natural products should be used on mammalian cells.   
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