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Abstract 

 

 With the advent of cancer immunotherapy and the rise in applications of synthetic 

biologics, there has been a steady decline in the incidence of cancer. Despite this trend, there is an 

anticipated 1.7 million new cancer cases with an estimated 610,000 deaths expected by the end of 

2018.2 Therefore, the call for continued efforts in creating more effective treatment options are 

still in high demand. In this thesis, the rational design of a semi-synthetic cancer-targeting 

immunostimulatory peptide-protein bioconjugate—using N-succinimidyl carbamate chemistry is 

described. This bio-orthogonal chemistry approach was used to conjugate the synthetic Pep42, 

cancer-targeting peptide (CTP) and the immunostimulatory recombinant B7H6 tumor associated 

antigen (TAA). Also reported within this thesis is the design, synthesis and biological evaluation 

of bifunctional tripeptides composed of the CTP and TAA targeting and effector ligands, 

respectively. The purported CTP was anticipated to bind to cell surface GRP78—a phenotype 

found exclusively in several cancers, while the TAA, was expected to bind and activate NKp30, 

an activating natural cytotoxicity receptor (NCR) found on the surface of NK cells. In this manner, 

the cancer-targeting immunostimulatory peptide-protein conjugates and tripeptides were 

hypothesized to behave as bifunctional antibody mimics, targeting and activating NK cells towards 

selective tumor cytolysis. Using Fmoc-SPPS, we have generated a library of tripeptides that were 

isolated and characterized by RP-LC/MS and UV/Vis spectroscopy. Using flow cytometry, the 

preliminary data confirmed tripeptide-GRP78 binding of the HepG2 cells and tripeptide-NKp30 

binding of NK92-MI cells. We anticipate the specific binding of the tripeptides to their intended 

targets will provide the best candidates for translating our cancer immunotherapy approach in-

vivo. 

Keywords: Bioconjugation, CTP, TAA, GRP78, NKp30, cancer immunotherapy 
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Introduction 

Cancer is a devastating disease characterized by a variety of biological hallmarks 

including: a reduced dependence of mitogenic growth factors, growth-inhibitory signal resistance, 

immortalization via indefinite proliferation, reduced influence by apoptosis, angiogenesis, 

metastatic ability, genomic instability, and ability to evade the immune system.1 According the 

American Cancer Society, there have been over 2 million cancer deaths in the past 5 years and a 

predicted 1.7 million new cases with an estimated 610,000 additional deaths expected by the end 

of 2018. Despite the modern advances in cancer treatment and detection methods, the decline of 

cancer incidences have decreased by only about 2% over this same period of time.2 This steady, 

yet small, decline in cancer incidence is in large part due to the advent of cancer immunotherapy 

and synthetic biologics which have led to more effective treatment options. In spite of their utility, 

synthetic biologics such as the monoclonal antibodies are plagued by poor pharmacological and 

pharmacodynamics properties in addition to immunotoxicity which limits their clinical utility and 

raises the need for new and improved therapeutics in the fight against cancer.3    

Cancer-targeting peptides (CTPs) are a novel class of biologicals that have the ability to 

target tumor cells with high specificity, binding affinity, and modularity.4  In this regard, CTPs are 

advantageous over conventional, nonselective forms of cancer therapies such as chemotherapy or 

radiation due to their ability to target and treat tumors while mitigating off-target side effects. One 

such example, the cyclic CTP Pep42 (CTVALPGGYVRVC-CONH2), that has been identified 

through phage display as an excellent binding candidate towards the glucose regulated protein 78 

(GRP78).5 GRP78 is classified as a 78 kDa chaperone protein found in the lumen of the 

endoplasmic reticulum (ER) that assists in protein folding events as part of the unfolded protein 

response (UPR).6 As such, GRP78 is ubiquitously expressed in all cells where, under normal 
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physiological conditions, it assists with protein folding in the ER, modulates Ca2+ flux, interacts 

with pro-apoptotic executors in the mitochondria and regulates nuclear gene expression.7 

However, under pathological conditions (i.e. cancer) GRP78 is translocated to the plasma 

membrane where it regulates proliferative and metabolic cell signaling pathways as a surface 

receptor.7 In transformed cells, GRP78 has been found to be oncogenic in nature.8 It is 

overexpressed and localized on the cell membrane where it is involved in the signaling pathways 

that lead to cancer proliferation, metastasis and chemo-resistance.8 Moreover, although GRP78 is 

constitutively expressed in all healthy cells, it is exclusively expressed on the cell surface of many 

advanced cancers making it an excellent biomarker in the selective detection and treatment of 

resilient tumors.9 Towards this goal, a wide range of small molecule10, peptidic11 and antibody 

ligands to GRP7812 have been developed as tumor homing agents, in order to direct the payload at 

the targeted tumor site for selective detection and treatment.  

B7H6, a member of the B7 protein family, is a transmembrane glycoprotein that has a 

molecular weight around 51 kDa, depending on its variable glycosylation pattern which contains 

immunoglobulin-like features on its ectodomain region.13 B7H6 is expressed exclusively on the 

surface of tumor cells and has been identified as a tumor-associated antigen (TAA) for the NKp30 

receptor found on NK cells.14 Moreover, B7H6 has been shown to function, in conjunction with 

the absence of MHC class I, to activate the NK cell degranulation and enable the release of 

inflammatory cytokines (e.g. TNF and IFN) which trigger tumor cell death via cytolysis.14 In 

spite of its immunostimulatory activity, B7H6 retains moderate NKp30 binding affinity, limited 

stability and bioavailability which hinders its therapeutic efficacy.13 Furthermore, cancers have 

evolved the ability to evade B7H6:NKp30 dependent immunity by using metalloprotease activity 

to cleave the B7H6 ectodomains from their cell surfaces, preventing NK cell effector functions.13 
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Moreover, certain tumors express minimal if any B7H6 in order to escape NK-dependent 

immunosurveillance.15 Thus, new NKp30 binding and activating ligands are needed to address the 

shortcomings of B7H6 as a cancer immunotherapy target. Towards this goal, the discovery of the 

B7H6:NKp30 binding interaction provided the capabilities for developing new peptidic ligands 

that bound to NK cells and triggered NKp30-dependent immunostimulatory activity16 Particularly, 

it was found that the TVPLN peptide sequence exhibited binding to NK92-MI cells in an NKp30 

dependent manner that resulted in the release of TNF-, an important pro-inflammatory cytokine 

that can result in direct tumor cytolysis.16 This finding has provided the opportunity to design and 

develop cancer targeting immunostimulatory peptides (CTIPs) that can incorporate the targeting 

and effector functions of potent cancer immunotherapeutics. 

In this thesis, the design, synthesis and biological evaluation of peptidic ligands derived 

from the GRP78 and B7H6 binding and immunostimulatory domains are reported. More 

specifically, a semi-synthetic strategy was developed for the incorporation of the GRP78 binding 

ligand Pep42 with the NKp30 binding and activating tumor associated antigen, B7H6. The 

synthesis, characterization and biological activity of the FITC-labeled Pep42-B7H6 conjugate is 

reported in this thesis. Moreover, a new class cancer-targeting immunostimulatory peptides based 

on Pep42 and other known GRP78-targeting sequences have been incorporated with the TVPLN 

peptide for binding and activating NKp30 derived NK cells. (Figure 1).  
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Figure 1: The structure-function properties of a semi-synthetic peptide-protein bioconjugate (a) 

and their corresponding (b) tripeptides. 

Results & Discussion  

Fmoc Solid-Phase Peptide Synthesis of Pep42-derived sequences  

The Fmoc-SPPS of Pep425, 11b CTVALPGGYVRVC-CONH2, has been examined by 

conventional Rink amide-linker Merrifield resin, consisting of polystyrene-divinylbenzene (PS-

DVB) cross-linked core17 and on a Rink amide-linker amphiphilic polystyrene-graft-poly(ethylene 
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glycol) (TentaGel)18 and hydrophilic poly(ethylene glycol) (NovaPEG)19 based solid supports.11a 

The synthesis efficiency on the more hydrophobic Merrifield resin produced peptide crude purities 

of only 28% according RP-HPLC, whereas to 67% crude purities were obtained on a Tentagel S 

RAM resin and 92% on the poly(ethylene glycol) Rink Amide NovaPEG resin. Therefore, the 

Rink amide PEG-based resin was selected for making a small library of Pep42 sequences which 

resulted in good crude purities (34-75%). Following purification by RP-HPLC, the Pep42 

sequences were isolated in good yields (10-45%) and excellent purities (>95%) according to RP-

HPLC and the sequence identities were confirmed by molecular weight analyses using ESI-

LCMS.11a Based on these initial results, the Rink amide PEG-based resin was selected as the 

optimal choice for making the Pep42 derived sequences in Table 1.  

In this study, Pep42 was functionalized with either the N-terminal FITC or acetyl group 

onto the Ahx linker and with a PEG or Gly linker at the C-terminus (Figure 2). At the C-terminus, 

the orthogonally protected Lys(ivDde) group was removed with nucleophilic (4% 

NH2NH2
.H2O:DMF) conditions to liberate the reactive -amino group.20 Complete deprotection 

was monitored by RP-HPLC/MS following successive (3 x 5 min) NH2NH2 treatment. N-

succinimidyl carbamate (NSC) chemistry was adopted to functionalize the reactive -amino group 

with disuccinimidyl carbonate (DSC).21 This activation reaction was also monitored by RP-

HPLC/MS which confirmed complete activation following 1 h. The NSC activated peptides (1-4) 

were isolated in good yields (28-40%) and >90% purities following LC/MS analyses and 

purification.  
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Figure 2. Representative solid phase peptide synthesis and LCMS characterization for peptides 1 

and 2. (A) Fmoc-solid-phase peptide synthesis and FITC labeling for peptides 1 and 2, 

respectively. (B) RP HPLC analyses for FITC-Ahx-CTVALPGGYVRVC-PEG3-K-CONH2, 2 and 

(C) ESI-MS analyses for FITC-Ahx-CTVALPGGYVRVC-PEG3-K-CONH2, 2. 

 

Pep42-B7H6 Bioconjugation 

 The NSC-activated peptide sequences (1-4) were then subjected to bioconjugation with a 

recombinant human B7H6 Fc chimera protein (R&D Biosystems) (Figure 3). Several reaction 

conditions were examined in an effort to optimize conjugation yields. The reaction was initially 

conducted in solution with changes in reaction times (1 h – 24 h) in order to examine their influence 

on reaction conversions and yields. LCMS analysis proved difficult under these reaction conditions 

resulting in multiple product peaks and masses which weakly correlated to the expected mass per 

charge. In an attempt to facilitate the conjugation reaction, support-bound Pep42 sequences (3-4) 

with all side chain protecting groups intact and the Lys -amino selectively deprotected using the 
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above mentioned nucleophilic (4% NH2NH2
.H2O:DMF) conditions were subjected to a solid-

phase bioconjugation reaction with B7H6. This reaction was conducted in a buffer (PBS, 10mM 

pH 8.0) to enhance B7H6 solubility and efficient swelling of the Pep42-bound resin. The reaction 

proceeded overnight at room temperature. The reaction mixture was filtered to remove any 

unbound impurities and the resin was treated with 95:2.5:2.5 TFA:TES:H2O for cleavage and 

deprotection which isolated the crude reaction product as a solid white pellet. This crude sample 

was analyzed by RP-HPLC and MS in order to track reaction conversions (Figure 3). In this case, 

Pep42 labeling of B7H6 was not detected by MS and the crude RP-HPLC analyses made it difficult 

to isolate pure Pep42-B7H6 bioconjugate potentially due to the large mass and heavy glycosylation 

patterns of B7H6. Regardless, this crude sample was tested for biological activity.   

  

Figure 3. Bioconjugation and corresponding crude HPLC analysis of Pep42 and rB7H6 using 

NSC chemistry.  
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Synthesis and Characterization of GRP78 and NKp30-targeting tripeptides 

Due to the difficulties associated with the bioconjugation of the GRP78-targeting Pep42 

sequence with the NKp30-targeting B7H6 recombinant protein an alternative synthesis strategy 

was developed. In this synthetic approach, a series of tripeptides (Table 1, sequences 5-13) 

incorporating NKp30 binding and NK cell-activating peptides16 as linear dimers were extended 

into branching peptides to incorporate the GRP78-targeting peptides22 from the -amino group of 

an internal Lys residue (Figure 4). Fmoc-SPPS was used to synthesize the bifunctional tripeptides 

on resin, which were isolated following cleavage and deprotection and then analyzed by LCMS to 

confirm peptide purities and identities. In this case, the GRP78 and NKp30-targeting tripeptides 

(Table 1, 5-13) were isolated in good yields (61-85%) and purities >95% according to RP-HPLC. 

Moreover, ESI-MS analyses confirmed sample identities according to mass per charge ratios 

(Supporting Information, Figure S5-S29). With pure tripeptides in hand, peptide biology was next 

examined in collaboration with Drs. Robert Korngold and Dante Descalzi at Hackensack UMC 

working alongside Rachel Montel, a graduate student in the labs of Drs. Sabatino and Bitsaktsis at 

SHU.  
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Figure 4. Representative solid phase peptide synthesis and LCMS characterization for tripeptides 

5 and 6. (A) Fmoc-solid-phase peptide synthesis and FITC labeling for peptides 5 and 6, 

respectively. (B) RP HPLC and MS for Peptide 5 and (C) peptide 6. 
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Table 1: Characterization Data of Synthetic Peptides  

  

 

a Crude purity was determined from RP HPLC at 220nm using 2-80% ACN/H2O with 0.1% FA over 25 

minutes. Peptides with crude purities<95% were subjected to an additional purification step using the 

aforementioned RP HPLC conditions. In these cases, purified peptides were isolated with purities>95%. b 

Based on resin loading. c Isolated yield based on resin loading. d Observed mass is based on the mass/charge 

using [M + H+]/Z detected using MS direct injection in positive mode. e Expected mass as determined using 

ChemDraw. f The peptide charge states using positive mode in MS direct injection. g Based on RP HPLC at 

220nm using 2-80% ACN/H2O with 0.1% FA over 25 minutes. 

 

Binding Studies of the Bioconjugate and Tripeptides 

The ability for a selected tripeptide (13) and the FITC labeled Pep42-B7H6 bioconjugate 

to bind to HepG2 cells’ GRP78 was initially evaluated by flow cytometry (Figure 5). The FITC-

labeled tripeptide (13) displayed good binding (~91%, 0.039 µg/µL) on the HepG2 cells, which 

was found to be diminished in the presence of a GRP78 peptide blocker (~76%, 0.25 µg/µL) and 

the anti-GRP78 primary antibody (~68%, 0.25 µg/µL). These results suggests that tripeptide 13 

Peptide Sequence
Crude Purity 

(%)
a

Crude 

Yield (%)
b

Observed Mass 

(g/mol)
d

Expected Mass 

(g/mol)
e Zf

Retention 

Time (min)
g

1 74.65 40.5 1216.7 1216.5 2

811.7 811.3 3

2 FITC-AHX-CTVALPGGYVRVC-(PEG3)4-K-CONH2 52.43 28.1 1390.5 1391.2 2 14.477

839.0 838.5 2

559.7 559.4 3

4 1012.6 1013.2 2

675.5 675.8 3

5 Ac-TVPLNGK(Ac-AHX-CTVALPGGYVRVC-)GTVPLN-CONH2 77.23 95 1411.9 1412.7 2 8.589

6 Ac-TVPLNGK(FITC-AHX-CTVALPGGYVRVC-)GTVPLN-CONH2 84.25 43.6 1586.7 1587.4 2 9.821

1479.8 1480.3 2

986.8 987.2 3

1653.8 1654.9 2

1102.7 1103.6 3

827.2 827.9 4

1496.8 1497.3 2

998.6 998.5 3

1114.1 1114.9 3

835.8 836.5 4

1521.8 1522.3 2

1015.0 1015.2 3

1695.7 1696.9 2

1130.7 1131.6 3

848 848.9 4

1470 1470 2

980 980.3 3

735 735.5 4

9.798FITC-AHX-CTVALPGGYVRVC-G-K-CONH2 59.02 N/A

8.561

60.3

25

3 Ac-AHX-CTVALPGGYVRVC-G-K-CONH2 33.66 N/A

9.421

83.07

74.1

68.04

68.56

69.05

60.67

9.023

8.005

8.142

9.089

8.545

66.6

31.8

48.05

71.2

7

8

9

10

11

13 85 37 18.4

7.474Ac-AHX-CTVALPGGYVRVC-(PEG3)4-K-CONH2

Ac-TVPLNGK(FITC-AHX-WIFPWIQL-)GTVPLN-CONH2

12

Ac-TVPLNGK(FITC-AHX-RLLDTNRPLLPY-)GTVPLN-CONH2

Ac-TVPLNGK(Ac-AHX-RLLDTNRPLLPY-)GTVPLN-CONH2

Ac-TVPLNGK(Ac-AHX-RLLDTNRPFLPY-)GTVPLN-CONH2

Ac-TVPLNGK(FITC-AHX-RLLDTNRPFLPY-)GTVPLN-CONH2

Ac-TVPLNGK(Ac-AHX-RLLDTNRPFLFY-)GTVPLN-CONH2

Ac-TVPLNGK(FITC-AHX-RLLDTNRPFLFY-)GTVPLN-CONH2
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exhibited GRP78-dependent binding on the HepG2 cells. Alternatively, the FITC-labeled Pep42-

B7H6 bioconjugate displayed little binding to the HepG2 cells (~6%, 0.5 µg/µL) which was not 

disrupted when the HepG2 cells were pretreated with either the GRP78 blocking peptide or the 

anti-GRP78 primary antibody. Thus, the Pep42-B7H6 bioconjugate demonstrated little HepG2 cell 

binding in a non-GRP78 dependent manner.  

 

Figure 5. GRP78 Binding on the HepG2 cells.  A) Incubation with tripeptide 13, B) incubation 

with GRP78 blocking peptide followed by treatment with tripeptide 13, C) incubation with 

unlabeled sc-1050 GRP78 primary antibody followed by treatment with tripeptide 13, D) 

incubation with FITC-Pep42-B7H6 bioconjugate, E) incubation with GRP78 blocking peptide 

followed by treatment with FITC-Pep42-B7H6 bioconjugate, F) incubation with unlabeled sc-

1050 GRP78 primary antibody followed by treatment with FITC-Pep42-B7H6. n=1  

 

The binding capabilities of the FITC-labeled synthetic tripeptide, 13, and the FITC-Pep42-

B7H6 bioconjugate to the cell surface of the human NK cell line, NK92-MI, was compared to that 

of the APC-labeled anti-NKp30 mAb (Figure 6). Flow cytometry revealed NK cell binding 

occupancy (~57 and 94%, 0.25 µg/µL) with the anti-NKp30 mAb, and the FITC-labeled tripeptide, 
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13, whereas the Pep42-B7H6 bioconjugate displayed little (~0.5%, 0.5 µg/µL) binding to the NK 

cells. A competitive binding assay was also conducted in between the FITC-labeled tripeptide, 13, 

the FITC-Pep42-B7H6 bioconjugate and the APC-labeled anti-NKp30 mAb to evaluate NKp30 

binding specificities (Figure 6). In this assay, the NK92-MI cells were initially incubated with 

either the FITC-labeled tripeptide, 13, or the Pep42-B7H6 bioconjugate followed by treatment 

with the APC-labeled anti-NKp30 mAb. Flow cytometry revealed complete displacement of the 

tripeptide 13, resulting in little (~1.5%) bound peptide and replacement with bound anti-NKp30 

mAb (~94%, 0.25 µg/µL). Comparatively, FITC-Pep42-B7H6 bioconjugate displayed negligible 

displacement upon APC-labeled anti-NKp30 mAb treatment, presumably due to the little binding 

occupancy observed (0.14-0.52%) for the bioconjugate which was found to be completely replaced 

by the anti-Nkp30 mAb (~92%, 0.25 µg/µL) (Figure 6). 

 

Figure 6. NKp30 binding and displacement studies on the NK92-MI cells. A) NK92-MI cells 

incubated with tripeptide 13, NK92-MI cells incubated with tripeptide 13 followed by APC-
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labeled anti-NKp30 antibody treatment, B) FITC and C) APC detection, D) NK92-MI cells 

incubated with FITC-Pep42-B7H6, NK92-MI cells incubated with FITC-Pep42-B7H6 followed 

by APC-labeled anti-NKp30 antibody treatment, E) FITC and F) APC detection. n=1 

Conclusions 

 In this thesis, the design, synthesis, and biological evaluation of a new class of bifunctional 

semi-synthetic peptide-protein bioconjugates and synthetic tripeptides have been described. These 

bifunctional ligands were designed to contain GRP78 binding capabilities on the surface of a 

selected liver cancer cell line (i.e. HepG2 cells) as well as NKp30 binding and effector functions 

of NK cells (i.e. NK92-MI cells). These biomolecular ligands were synthesized by a combination 

of Fmoc-based SPPS and NSC biorthogonal chemistry. Following characterization by LCMS, a 

selected tripeptide (13) displayed GRP78 specific binding on the HepG2 cells and concomitant 

NKp30-dependent binding on NK cells. The latter may prove to be an important lead in follow-up 

immunostimulatory studies aimed towards developing synthetic antibody mimics that may 

potentiate targeted tumor immunotherapy responses in cells and in vivo.    

Future Work 

 Our future work is geared towards: 1) screening the library of bifunctional tripeptides 

reported in Table 1 in order to assess their GRP78 specific binding on HepG2 (and related) 

cancer cells as well as NKp30 binding and activation of NK cells, 2) detection of secreted 

inflammatory cytokines (e.g. TNF-α, IFN-γ) and GRP78-dependent tumor cytolytic activity in 

cell co-cultures and 3) within tumor bearing mice xenografts. The latter research objectives will 

validate the cancer immunotherapy potential of our constructs with the goal of translating this 

pre-clinical study into clinical applications.   
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Experimental Section 

Materials and Methods 

Amino acids for the synthesis of all peptides, Fmoc-Lys(Boc), Fmoc-Lys(ivDde), Fmoc-

Lys(Dde), Fmoc-Leu, Fmoc-Pro, Fmoc-Thr(tBu), Fmoc-Val, Fmoc-Gly, Fmoc-Phe, Fmoc-Met, 

Fmoc-Ser(tBu), Fmoc-Tyr(tBu), Fmoc-Cys(Trt), Fmoc-Ala, Fmoc-Arg(Pbf), Fmoc-Asp(otBu), 

Fmoc-Asn(Trt), Fmoc-His(Trt), Fmoc-Trp(Boc), and Fmoc-Ahx, were purchased from 

Novabiochem (San Diego, CA, USA) and Advanced ChemTech (Louisville, KY, USA). Peptide 

syntheses were conducted on a Rink Amide ChemMatrix (0.54mmol/g) (Biotage Inc., Charlotte 

NC, USA). HCTU was purchased from Advanced ChemTech (Louisville, KY, USA). 

Recombinant human B7H6 Fc chimera protein was purchased from R&D Systems (Minneapolis, 

MN, USA) and reconstituted in 10mM phosphate saline buffer (PBS) at pH 8.0 prior to use. 

Fluorescein isothiocyanate, FITC, was purchased from Thermo Scientific (Rockford, IL, USA) as 

an isomeric mixture and used in the dark to fluorescently label all peptides. Trifluoroacetic acid 

(TFA), Bio-grade, was purchased from VWR (Radnor, PA, USA); N-N-dimethylformamide, 

DMF, acetonitrile (ACN), methanol (MeOH), and dichloromethane (DCM) were all purchased 

from MACRON in ACS grade (Center Valley, PA, USA). Piperidine was purchased from EMD 

Millipore (Billerica, MA, USA); formic acid (97%) (FA), triethylsilane (>98%) (TES), and 

pyridine (ACS, 99%) were purchased from Alfa Aesar (Ward Hill, MA, USA). N-

methylmorpholine (99%) (NMM), was purchased from Acros Organics (Pittsburg, PA, USA). 

Diethyl ether (99%, ACS) (Et2O), used to precipitate peptides, was purchased from Sigma Aldrich 

(St. Louis, MO, USA). All chemicals were used directly as received. 
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Peptide Synthesis 

All peptides were synthesized by stepwise manual or semi-automated solid phase peptide 

synthesis on a PSI 200C Peptide Synthesizer (Glen Oaks, NY, USA) using Fmoc-SPPS 

chemistry.23 Fmoc-amino acids (3 equivalents (eq), 0.1 mmol) were coupled on a Rink amide 

linker poly (ethylene glycol) solid support (0.54 mmol/g, 0.1 mmol) for 30 minutes using HCTU 

(3 eq., 0.1 mmol), NMM (6 eq., 0.1 mmol) in DMF (4 mL). A 20% piperidine in DMF solution (4 

mL) was used for Fmoc deprotection, reaction time 20 min. Amino acid couplings and Fmoc 

deprotections were repeated until the desired sequences were completed. For tripeptide sequences, 

5 – 13, Fmoc-SPPS was initially accomplished as previously described to generate the linear 

NKp30-targeting peptides followed by acetylation (Ac2O:pyr:DMF, 50mmol%:50mmol%:4mL) 

of the N-terminus. Branching from an internal Lys(ivDde) residue was accomplished by ivDde 

deprotection using 4% NH2NH2:DMF (3 x 5 min) followed by DMF washing and Fmoc-SPPS 

from the liberated ε-amino to generate the GRP78-targeting peptide sequences. The N-terminus 

was then coupled with an amino hexanoic acid (Ahx) linker followed by acetylation or FITC-

coupling.  

The solid support bound peptide was separated (200 mg, 0.05 mmol) for FITC-labeling or 

acetylation at the N-terminus. For FITC-labeling procedures, the resin was swollen in DMF for 1 

h. A mixture of FITC (1.1 equiv., 0.05 mmol) in pyridine/DMF/DCM (12:7:5 v/v) was prepared 

and added to the reaction vessel for overnight (at least 18 h) reaction on an overhead shaker. For 

N-terminal acetylation, the peptide bound resin (200 mg, 0.05 mmol) was treated with a solution 

of Ac2O (472 µL, 0.1 mmol), pyridine (403 µL, 0.1 mmol) in DMF (3 mL) and reacted for 30 min. 

After FITC-labeling or acetylation was completed, the resin was washed with DMF (3 x 3 mL), 

MeOH (3 x 3 mL), and DCM (3 x 3 mL). Peptide cleavage and deprotection from the solid support 
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was accomplished using a mixture of TFA:TES:H2O, (95:2.5:2.5 v/v/v) for 4 h. Peptide samples 

were concentrated under either air or nitrogen (air if disulfide bridges were expected) to a viscous 

oil, precipitated with cold Et2O, and centrifuged to a white pellet. The supernatant was decanted, 

and the peptide pellets were dissolved in ACN/H2O for RP-HPLC and MS analyses.  

 

Pep42-B7H6 Bioconjugation 

The Pep42 sequences, 1-2, were activated at the C-terminal ε-amino group of Lys with 

DSC (16.6 mg, 65 μmol), triethylamine (0.45 μL, 3.2 μmol) dissolved in dry DMF (85 μL) at rt 

under N2. The mixture was shaken at rt for 1 h. The crude mixture was diluted with 20 mL of 1% 

TFA:H2O and purified by RP-HPLC. Fractions were collected and lyophilized to produce the 

activated NSC peptides that were analyzed by LC/MS to confirm purity and identity. The Pep42 

sequences, 3-4, remained on solid support prior to NSC chemistry. After activation of C-terminal 

ε-amine group of lysine with the same conditions as above, a small aliquot of the peptide bound 

resin was transferred to minimize excessive stoichiometric amounts peptide relative to B7H6. 

 Recombinant human B7H6 Fc chimera protein (R&D Systems, cat. 7144-B7-050, 50 μg, 

9.38 x 10-4 μM) was reconstituted in PBS buffer (500 μL) and added to the NSC peptides 3-4 (4.3 

μmol) on solid support (Rink amide PEG based resin). The mixture was shaken at rt for 24 h. 

Following the reaction, the mixture was diluted in H2O:MeOH (1:1 v/v, 1 mL) and analyzed by 

RP-HPLC and MS. 

LCMS Analyses and Purification 

Sample analyses were performed on an Agilent 1100 series ESI-MS with single quadrupole 

mass analyzer in positive mode. Analytical RP-HPLC was performed using a Waters 2695 

Symmetry® C18 column (3.9 x 150 mm, 5 µm particle size) using a linear binary gradient, 2-80% 
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ACN/H2O, 0.1% FA, over 25 min at 25°C, with a 1 mL/min flow rate and detection at 220 nm. 

Samples collected after purification were lyophilized to a white solid and re-dissolved in 50:50 v/v 

H2O:ACN to confirm purity by LC and identity by molecular weight using MS analyses. 

UV-Vis Spectroscopy 

    The concentrations of the peptide solutions were determined by UV/Vis spectrophotometry 

at 214 nm (ε value of peptides was calculated as described by Kuipers et. al. ε214 = 

(εpeptidebond)(npeptidebonds) + Σ (εaminoacid(i))(naminoacid(i)).
24 The analyses were conducted on an 8452A 

Diode Array Spectrophotometer from Hewlett Packard, and concentrations were standardized 

accordingly for each peptide. 

Flow Cytometry  

For detection of cell surface expression levels of GRP78 or NKp30, the HepG2 cells or 

NK92-MI cells, respectively, were washed with FACS buffer (1X PBS, 1% BSA), suspended in 

APC-labeled human NKp30 or GRP78 mAb (0.5 µg/µL in FACS, SC1050 from R&D Systems), 

and incubated at room temperature for 15 minutes in the dark. Cells were then washed and 

analyzed by flow cytometry on a MACSQuant® analyzer (MiltenyilBiotec). 

To determine direct binding of the bioconjugate and the synthetic tripeptide, 13, HepG2 or 

NK92-MI cells were washed with FACS buffer and suspended with either bioconjugate or 

tripeptide (0.5 and 0.039 µg/µL in 1X PBS respectively) for 15 min (R.T., dark), washed and 

analyzed by flow cytometry.  

For competitive blocking studies, HepG2 cells were initially treated with the unlabeled 

human anti-GRP78 mAb (0.5 µg/µL in FACS) for 15 min (R.T., dark). HepG2 cells were washed 

with FACS buffer, centrifuged and suspended with either the FITC-labeled tripeptide, 13, or 
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bioconjugate (0.5 µg/µL in 1X PBS) for an additional 15 min (R.T., dark). Cells were finally 

washed with FACS buffer and analyzed by flow cytometry. 

For competitive displacement studies, NK92-MI cells were initially suspended with either 

the FITC-labeled tripeptide, 13, or bioconjugate (0.5 µg/µL in PBS) for 15 min (R.T., dark). NK 

cells were washed with FACS buffer, centrifuged and suspended with the APC-labeled human 

NKp30 mAb (0.25 µg/µL in FACS) for another 15 minutes (R.T., dark). Cells were then washed 

with FACS buffer and analyzed by flow cytometry. 

. 
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Supporting Information 

 

Figure S1. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of crude 

peptide 1 in positive mode. The arrows indicate confirmed m/z of the observed mass. The structure 

depicted (center) was created using ChemDraw software. (B) RP-HPLC chromatograph of peptide 

1 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow indicates the peak that was 

confirmed for the peptide 
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Figure S2. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of crude 

peptide 2 in positive mode. The arrows indicate confirmed m/z of the observed mass. The structure 

depicted (top right) was created using ChemDraw software. (B) RP-HPLC chromatograph of 

peptide 2 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow indicates the peak 

that was confirmed for the peptide 



24 
 

 

Figure S3. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of crude 

peptide 3 in positive mode. The arrows indicate confirmed m/z of the observed mass. The structure 

depicted (top right) was created using ChemDraw software. (B) RP-HPLC chromatograph of 

peptide 3 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow indicates the peak 

that was confirmed for the peptide 
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Figure S4. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of crude 

peptide 4 in positive mode. The arrows indicate confirmed m/z of the observed mass. The structure 

depicted (top right) was created using ChemDraw software. (B) RP-HPLC chromatograph of 

peptide 4 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow indicates the peak 

that was confirmed for the peptide 
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Figure S5. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of crude 

peptide 5 in positive mode. The arrows indicate confirmed m/z of the observed mass. The structure 

depicted (top right) was created using ChemDraw software. (B) RP-HPLC chromatograph of 

peptide 5 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow indicates the peak 

that was confirmed for the peptide 
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Figure S6. Purified peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

pure peptide 5 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 5 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S7. Quantitation of tripeptide using UV-vis spectroscopy. Purified peptide 5 was 

lyophilized into a powder and solubilized in 60:40 ACN:H2O for analysis. A wavelength scan from 

190 to 700 nm was performed, determining the concentration of the peptide based on the 

absorbance of the peptide bond at 214 nm. 
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Figure S8. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of crude 

peptide 6 in positive mode. The arrows indicate confirmed m/z of the observed mass. The structure 

depicted (top right) was created using ChemDraw software. (B) RP-HPLC chromatograph of 

peptide 6 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow indicates the peak 

that was confirmed for the peptide 
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Figure S9. Purified peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

pure peptide 6 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 6 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S10. Quantitation of tripeptide using UV-vis spectroscopy. Purified peptide 6 was 

lyophilized into a powder and solubilized in 60:40 ACN:H2O for analysis. A wavelength scan from 

190 to 700 nm was performed, determining the concentration of the peptide based on the 

absorbance of the peptide bond at 214 nm. 
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Figure S11. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

crude peptide 7 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 7 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S12. Purified peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

pure peptide 7 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 7 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S13. Quantitation of tripeptide using UV-vis spectroscopy. Purified peptide 7 was 

lyophilized into a powder and solubilized in 60:40 ACN:H2O for analysis. A wavelength scan 

from 190 to 700 nm was performed, determining the concentration of the peptide based on the 

absorbance of the peptide bond at 214 nm. 
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Figure S14. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

crude peptide 8 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 8 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 

 



36 
 

 

Figure S15. Purified peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

pure peptide 8 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 8 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S16. Quantitation of tripeptide using UV-vis Spectroscopy. Purified peptide 8 was 

lyophilized into a powder and solubilized in 60:40 ACN:H2O for analysis. A wavelength scan from 

190 to 700 nm was performed, determining the concentration of the peptide based on the 

absorbance of the peptide bond at 214 nm. 
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Figure S17. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

crude peptide 9 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 9 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S18. Purified peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

pure peptide 9 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 9 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S19. Quantitation of tripeptide using UV-vis spectroscopy. Purified peptide 9 was 

lyophilized into a powder and solubilized in 60:40 ACN:H2O for analysis. A wavelength scan 

from 190 to 700 nm was performed, determining the concentration of the peptide based on the 

absorbance of the peptide bond at 214 nm. 
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Figure S20. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

crude peptide 10 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 10 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S21. Purified peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

pure peptide 10 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 10 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S22. Quantitation of tripeptide using UV-vis spectroscopy. Purified peptide 10 was 

lyophilized into a powder and solubilized in 60:40 ACN:H2O for analysis. A wavelength scan from 

190 to 700 nm was performed, determining the concentration of the peptide based on the 

absorbance of the peptide bond at 214 nm. 
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Figure S23. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

crude peptide 11 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 11 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S24. Purified peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

pure peptide 11 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 11 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S25. Quantitation of tripeptide using UV-vis Spectroscopy. Purified peptide 11 was 

lyophilized into a powder and solubilized in 60:40 ACN:H2O for analysis. A wavelength scan from 

190 to 700 nm was performed, determining the concentration of the peptide based on the 

absorbance of the peptide bond at 214 nm. 
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Figure S28. Crude peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

crude peptide 12 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 12 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S27. Purified peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

pure peptide 12 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 12 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 
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Figure S28. Quantitation of tripeptide using UV-vis spectroscopy. Purified peptide 12 was 

lyophilized into a powder and solubilized in 60:40 ACN:H2O for analysis. A wavelength scan from 

190 to 700 nm was performed, determining the concentration of the peptide based on the 

absorbance of the peptide bond at 214 nm. 
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Figure S29. Purified peptide analysis by RP-HPLC and MS (A) Direct-injection mass spectra of 

pure peptide 13 in positive mode. The arrows indicate confirmed m/z of the observed mass. The 

structure depicted (top right) was created using ChemDraw software. (B) RP-HPLC 

chromatograph of peptide 13 using 2-80% ACN/H2O with 0.1% FA over 25 minutes. The arrow 

indicates the peak that was confirmed for the peptide 

 

 


