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ABSTRACT 

 

For many years the dominant theory surrounding the cause of schizophrenia was 

focused on elevated dopamine levels found in critical areas of the brain. Recently a new 

theory has emerged pointing to elevated glutamate levels resulting from hypofunction 

of NMDA receptors and hypoactivity of GABAergic neurons which normally inhibit 

glutamatergic cells in a tonic manner. Therefore, while traditional antipsychotics directly 

block dopamine receptors, some of the newly generated compounds are designed to 

modulate glutamate to normal levels.  

 

 I am proposed testing the efficacy of the metabotropic glutamate 5 receptor 

modulator LSN2463359, previously shown to act as an indirect agonist of the NMDA 

receptor, in two different animal models of schizophrenia. Our study found that when 

LSN2463359 was administered to rats given SDZ 220-581 (an NMDA antagonist) levels of 

GABA, glutamate, dopamine and NAA (a marker for cell health) were modulated to 

normal levels. Furthermore, when the compound was administered to neuregulin-1 

knockout mice, behaviors related to anxiety and social activity were also modulated to 

normal levels. Developing novel therapies targeting a different pathway involved with 

psychosis may help reduce side effects and may be beneficial in relieving symptoms not 

currently well treated by traditional antipsychotics.  
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Introduction 

 
 

 
Schizophrenia is a debilitating, severe mental illness. It is characterized by 

positive and negative symptoms as well as cognitive deficits (Van Os, 2009). Positive 

symptoms include lack of insight, hallucinations, delusions and thought disorder. 

Negative symptoms include social withdrawal, self‐neglect, loss of motivation, 

emotional blunting and paucity of speech. Cognitive deficits are found in the areas of 

working memory, attention, verbal learning and executive function (Van Os, 2009). 

There are many risk factors for acquiring schizophrenia. Risk factors include: living in 

an urban environment, using cannabis, immigration and genetic inheritance. 

Schizophrenia affects 1‐2% of the population (Picchioni, 2007). Not only do 

individuals and families suffer from this illness, but society also suffers as the 

schizophrenic is unable to make a contribution and may require constant care from 

the mental health system. 

 

There are two biological hallmarks of the schizophrenic brain. One hallmark is 

smaller brain volume and larger lateral ventricles. Another hallmark is increased 

dopamine synthesis, release and resting state concentrations. It has been theorized 

that abundance of dopamine causes an experience of salience or deep personal 

meaning to mundane events. The schizophrenic may create delusions and paranoid 

thoughts to make sense of the experience of salience (Picchioni, 2007). 
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Amphetamines are known to increase dopamine levels in the brain. 

Amphetamine misuse can lead to schizophrenic symptoms in healthy people (Bell, 

1973). Antipsychotic medications which block dopamine receptors have proven very 

helpful to the schizophrenic community. Unfortunately dopaminergic anti‐psychotics 

work well in patients with mostly positive symptoms rather than negative symptoms. 

They also have little impact on cognitive deficits. Dopaminergic antipsychotics also 

have harmful side effects such as increased obesity, diabetes and ataxia. 

 

For many years the theory that increased dopamine in certain regions of the 

brain causes schizophrenic symptoms was the prevailing one (Howes, 2009). New 

theories have emerged. One theory purported that an increase in glutamate 

transmission in key areas of the brain, induce dopamine increases and cause over‐

excitation (Javitt, 2010; Moghaddam, 2012). It is well known that phencyclidine or PCP 

induces psychosis in humans and animals. PCP works as an N‐methyl‐D‐aspartate 

(NMDA) receptor antagonist. Hypofunction of NMDA receptors leads to increased 

glutamate neurotransmission. It is theorized that cells with NMDA receptors excite 

inhibitory GABAergic neurons and hypofunction of NMDA receptors leads to decreased 

GABA activity and overexcitement of pyramidal cells inhibited in a tonic manner by 

GABAergic neurons (Homayoun, 2007; Matosin, 2013; Cohen, 2015). It is also 

theorized that mutations in genes related to GABA receptor activity could also play a 

part in excess glutamate activity in the brain (Taylor, 2015). The emerging theories 
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were that imbalanced glutamate neurotransmission may play a role in the 

development of schizophrenia. Figure 1 shows the effect hypofunction of NMDA 

bearing cells has on GABAergic and pyramidal cell firing. Pyramidal cells are 

glutamatergic. 

Metabotropic glutamate 2/3 receptors (mGlu 2/3 receptors) are involved in 

glutamate transmission. These receptors inhibit glutamate release from the 

presynaptic knob. mGlu 2/3 receptors are high in density in the forebrain. Many 

studies have been performed which discuss the effects of mGlu 2/3 receptor agonists 

on schizophrenic symptoms in mice and humans. In some studies mGlu 2/3 receptor 

agonists have reduced psychotic symptoms in mice and humans (Patil, 2007).  
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Figure 1. Schematic of the effects that hypofunction of NMDA cells exert on GABAergic 

(G) and Pyramidal cells (P). a. This figure shows the relationship between NMDA bearing 

cells and Pyramidal cells. b. This figure elucidates how GABAergic cells are also affected 

by NMDA bearing cells and how they exert an effect on Pyramidal cells. c. This figure 

shows what effect hypofunction of NMDA bearing cells have on GABAergic and 

Pyramidal cells. The graphs depict GABAergic cells’ firing rate and Pyramidal cells’ firing 

rate after NMDA bearing cells stop activity at time = 0. Hypofunction of NMDA bearing 

cells leads to hyperactivity of Pyramidal cells via disinhibition of GABAergic cells. 

(Moghaddam, 2012) 

 

Metabotropic glutamate 2/3 receptor agonists in a phase II trial were found not 
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to be as effective as traditional antipsychotics (Kinon, 2011). A new way of altering 

glutamate transmission is therefore needed.  Currently metabotropic glutamate 5 

receptor’s positive allosteric modulators (mGluR5 PAMs) are under study. Allosteric 

modulators are substances that indirectly influence the effects of an agonist at a target 

protein. Allosteric modulators bind to a site distinct from the agonist binding site and 

produce a conformational change in the protein. Allosteric modulators can be positive 

or negative. Metabotropic glutamate 5 receptors (mGluR5s) are found post-

synaptically in high density in the cerebral cortex, the hippocampus, nucleus 

accumbens, hypothalamus and some portions of the amygdala. mGluR5s are 

associated with NMDA receptors in these key areas of the brain which are associated 

with malfunction in schizophrenia (Matosin, 2013). Not only do these receptors alter 

glutamate transmission, they also regulate NMDA receptors as well. mGluR5 activity 

leads to a cascade of intracellular signaling that potentiates or strengthens NMDA 

receptor activity as well as increases intracellular calcium levels leading to increased 

excitation from NMDA bearing cells (Matosin, 2013). mGluR5s potentiate NMDA 

receptors by stimulating protein kinase C which activates cell adhesion kinase β and 

proline rich tyrosine kinase. These phosphorylate the Src protein, which in turn directly 

potentiates the NMDA receptor (Matosin, 2013). Direct agonists of mGluR5s have lead 

to seizures and cell death, yet allosteric modulators have had a less severe effect. 

Research has been underway on the effect these modulators have on psychosis. 

The chemical compound LSN2463359 (LSN) is an mGluR5 positive allosteric 
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modulator. It increases mGluR5 activity and potentiates NMDA activity indirectly 

(Matosin, 2013). It is well tolerated orally. We tested LSN to see its effects on a 

cellular and behavioral level. Finding a compound which acts differently from 

traditional antipsychotics is helpful to further understand and treat schizophrenic 

disorders. 

In assessing the viability of brain cells as an indicator of a compounds efficacy 

there are numerous proteins/neurotransmitters one can study. For the purpose of 

this study, I concentrated on N‐acetyl aspartate (NAA) as a marker of healthy activity 

in the brain. High NAA levels indicate healthy brain cells (Paslakis, 2014; Arun, 2008). 

Low NAA levels are linked with brain damage either by disease (such as Alzhiemer’s) 

or by traumatic brain injury.  

 

  NAA is the second most concentrated molecule in the brain after glutamate. It is 

detected in the nervous system only. It has many functions, some unknown. It is 

believed to be involved in fluid balance as an osmolyte. It is also believed to be a source 

of acetate for lipid and myelin synthesis. Low levels of NAA indicate loss or damage to 

neuronal tissue (Tanaka, 2006; van Os, 2009; Paslakis, 2014). NAA levels in 

schizophrenics are markedly reduced in the frontal lobes as well as in the thalamus, 

basal ganglia and hippocampus (He, 2012) 

One way to assess NAA levels in vivo or ex vivo is to use nuclear magnetic 

resonance spectroscopy (NMRS) (Jacobus, 2006). The spectroscope acts as an MRI 

except it records relative concentrations of brain metabolites instead of 2 
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dimensional images. Common biochemicals measured by the NMRS include: choline, 

creatine, glutamate, GABA, inositol, glucose, NAA, alanine and lactate. NAA levels can 

be detected by NMRS in vivo in humans and ex vivo in rats that are sacrificed and 

receive biopsies (Bustillo, 2012). 

There are many NMDA antagonists that can be used to create a psychotic 

model in rats. PCP and MK-801 are most commonly used. They are non-competitive 

ion channel blockers. For the purposes of this study, I used the compound SDZ 220-

581 (SDZ). Its chemical name is (S)-α-amino-2-chloro-5(phosphonomethyl)[1,1-

biphenyl]-3-propanoic acid. It binds the NMDA receptor competitively at a site 

distinct from the ligand binding region. SDZ’s antagonism has been shown to be more 

effectively altered by increased mGluR5 activity than non-competitive NMDA 

antagonists (Gastambide, 2013). Since SDZ has a different pharmacological profile 

from PCP or MK-801, it may be a better substrate to use in conjunction with LSN. 

Another biological factor involved in schizophrenia is genetic inheritance. 

There are numerous genes linked to the development of schizophrenia. The eight 

most commonly linked to schizophrenia are: Neuregulin‐1, Dystrobrevin‐binding 

protein 1, D‐amino acid oxidase activator, Catechol‐O‐methyltransferase, Disrupted in 

schizophrenia‐1, 32 KDa dopamine and cAMP regulated phoshphoprotein, Regulator 

of G‐protein signaling 4, and Metabotropic glutamate receptor‐3. (Luo, 2014; Riley, 

2009; Tan, 2014; Pelka-Wysiecka, 2013; Takahashi, 2015; Hu, 2007; Levitt, 2006 and 

Shibata, 2009) Depending on which gene is mutated determines how severe the 
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illness is and what symptomology appears. Neuregulin‐1 codes for a growth factor 

that stimulates neuron development and differentiation. Dystrobrevin‐binding 

protein 1 is involved in biogenesis of lysosome‐related organelles. D‐amino acid 

oxidase activator reduces NMDA receptor functioning. Catechol‐O‐methyltransferase 

degrades dopamine among other activities. Disrupted in schizophrenia 1 influences 

neuronal development and adult brain function. 32KDa dopamine and cAMP 

regulated phoshphoprotein inhibits protein phosphatase 1 and protein kinase A. 

Regulator of G‐protein signaling 4 is involved in neuronal differentiation. 

Metabotropic glutamate receptor 3 modulates serotonin and dopamine transmission. 

 

There is no one gene mutation ubiquitous to all schizophrenic patients. For the 

purposes of this study, I focused on neuregulin‐1. Neuregulin-1 knockout mice exhibit 

a behavioral profile similar to that of psychotic mice (Law, 2014; Duffy, 2010; 

O’Tuathaigh, 2010). Neuregulins are intercellular signaling protein members of the 

epidermal growth factor class of neurotrophins. Neuregulin‐1 plays a role in 

glutamatergic signaling by regulating the NMDA receptor. It also is thought to be 

involved in regulating synaptic plasticity (how the brain adapts to the environment 

and how cells adapt in strength of synaptic activity). Preventing Neuregulin-1 receptor 

signaling has lead to loss of NMDA activity and decreased dendritic spine numbers (Li, 

2007). Since glutamatergic pathways are changed in mice with a neuregulin‐1 

knockout, it would be useful to see how an mGluR5 modulator would influence mice 

with a neuregulin‐1 knockout. Mice with a neuregulin-1 knockout also exhibited a 
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higher sensitivity to NMDA antagonists (O’Tuathaigh, 2010). Testing the efficacy of 

LSN in knockout mice shows how well the mGluR5 PAM works in a system genetically 

predisposed to NMDA hypofunction. 

 

 

Proposal 
 

I propose to test whether LSN2463359, a metabotropic glutamate 5 receptor 

positive allosteric modulator, would be beneficial in increasing nerve cell viability, 

normalizing GABA, glutamate and dopamine levels, as well as in ameliorating 

psychotic behavioral readouts in schizophrenia models. Besides providing efficacy 

data on LSN that may help develop new treatment for schizophrenia, our study may 

also shed light into the validity of the new glutamatergic theory of psychosis. I 

propose to conduct the following studies on the SDZ-treated rat as well as on the 

Neuregulin 1 knockout mouse, both well-established schizophrenia models: 

 

1.   Study the effect of LSN on levels of NAA, GABA, glutamate and dopamine 

in the medial frontal cortex of rats after SDZ administration. This would be 

accomplished by nuclear magnetic resonance spectroscopy and high 

performance liquid chromatography. I would expect some normalization 

of the NAA, GABA, glutamate and dopamine levels in a dose dependent 

manner. 

2.   Study the effect of LSN on the behavior of wild type and neuregulin-1 
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knockout mice. Two behavioral tests commonly found altered in animal 

models of schizophrenia will be analyzed, including fear conditioning and 

social anogenital sniffing behavior. I would expect psychotic behavior to 

improve in a dose dependent manner. 



 11 
 

Materials and Methods 

 

Animals 

 

 All experiments were approved by the Institutional Animal Care and Use 

committee of the University Health Sciences Center and were performed 

according to the guidelines of the NIH. 

 Male Sprague-Dawley rats weighing about 300 g each were purchased 

from Harlan (Indianapolis, IN). They were housed in pairs and allowed to 

acclimatize for 2 weeks prior to the start of the study. They were kept under a 

12:12 light: dark cycle and received food and water ad libitum (Bustillo, 2012) 

 Heterozygous Neuregulin 1 ‘knockout’ mice were generated at the Victor 

Chang Cardiac Institute, University of New South Wales Australia. Heterozygous 

mutants and wildtype mice were generated from heterozygous breeding pairs and 

the offspring were genotyped using polymerase chain reaction. Mice were housed 

in groups of three to five per cage and maintained on a standard 12:12 hour light: 

dark cycle with ad libitum access to food and water (O’Tuathaigh 2010). 

 

Drugs 

 

 SDZ was formulated in 5% (w/v) glucose solution and administered via the 

subcutaneous route at a dose of 1mg/kg. pH was adjusted towards neutral 

(Gastambide, 2013).  

 LSN2463359 was formulated as a suspension in a 1% (w/v) 
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carboxymethycellulose, 0.25% Tween 80, 0.05% antifoam vehicle and 

administered orally at a volume of varying doses (Gastambide, 2013). 

 All solutions were prepared freshly each day. 

 

Rat brain biopsy and HR-MAS 1H-MRS 

 

 The study includes the treatment of 40 rats with 1 mg/kg of SDZ 220-581 

(an NMDA antagonist) suspension subcutaneously and 10 rats with vehicle for 

seven days. The LSN compound being tested was administered orally as a 

suspension once a day for two days following the SDZ treatment (1 mg/kg, 10 

mg/kg and 30 mg/kg), (10 rats/group) and 10 rats will receive 5 mL of the vehicle. 

(Gilmour, 2012) 

 

 One day after the last injection of LSN or vehicle, rats were exposed briefly 

to isoflurane then sacrificed by decapitation and the medial frontal cortex was 

dissected for quantification of NAA, GABA and glutamate by magnetic resonance 

spectroscopy. Brains were rapidly removed, placed into rat brain matrix (Kent 

Scientific Corporation) and a 2mm coronal slices was obtained on an ice-chilled 

stage. One slice was selected which corresponded to the following sections of a 

standard rat brain atlas (+ or – refers to anterior or posterior from the Bregma): 

slice 1, +3.7 to +1.7mm. This slice contains the medial frontal cortex. Two mm 

circular punches were obtained from the appropriate region and immediately 

placed in pre-cooled plastic centrifuge tubes, frozen on solid CO2, and then stored 
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at -80° C until HR-MAS 1H-MRS analysis. 

 Frozen intact tissues samples were placed directly into a Bruker zirconium 

rotor containing 5 µL buffer. The rotor was placed into a Bruker magic angle 

spinning probe maintained at 4°C in a vertical wide-bore Bruker 11.7 T magnet 

with an AVANCETM DRX-500 spectrometer. Rotors were spun at 4.2 ± 0.002 kHz at 

54.7° relative to the static magnetic field B0. 

 Spectra were analyzed by an operator blind to drug treatment using a 

custom LCModel utilizing a linear combination of 27 individual neurochemical 

model spectra as well as non-specific lipid signals to fit the tissue spectrum and 

calculate absolute concentration values for neurochemicals with signals between 

1.0-4.2 ppm (Bustillo, 2012).  

Microdialysis experiments 

 The effects of SDZ treatment on dopamine levels in the medial prefrontal 

cortex were measured by in vivo microdialysis. After 7 days of treatment with SDZ 

or vehicle (30 rats were given SDZ 10 were given the vehicle) one concentric 

dialysis probe equipped with a Cuprophan membrane (2-mm long) was implanted 

in the medial prefrontal cortex at coordinates (in mm): AP +2.2; L-0.2: DV-3.4 of 

anaesthetized mice. Microdialysis experiments were performed 20-24 hours after 

surgery. The aCSF (artificial cerebrospinal fluid) containing 10 µL/min (WPI model 

sp220i) and dialysates were collected every 20 minutes. Brain dialysates were 
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collected in micro vials containing 5 µL of 10 mM perchloric acid and dopamine 

concentration in dialyzed samples were analyzed by HPLC with amperometric 

detection (Hewlett Packard 1049) at +0.6 V. Baseline samples were collected 

before LSN treatment. LSN was administered in doses of 1 mg/kg, 10 mg/kg and 

30 mg/kg to three groups of 10 rats for 2 days. After LSN treatment successive 

dialysate samples were collected. Baseline dopamine levels were calculated as the 

average of the ten predrug samples. At the end of sample collection, brains were 

removed and sectioned to ensure proper probe placement (Zuo, 2012). 

 

Fear conditioning test 

 

Varying doses of LSN (1 mg/kg, 10 mg/kg, 30 mg/kg) were administered to 

groups of ten neuregulin-1 knockout mice. The vehicle was administered to ten 

neuregulin-1 knockout mice. We also administered the vehicle and varying doses 

of LSN to 4 groups of 10 wild type mice. After the last administration of LSN we 

performed a fear conditioning test on the treated mice. 

 

 After a 2 minute habituation period a tone was presented to the mouse at 

a level of 80 dB for 15 seconds. A mild foot shock was administered during the last 

2 seconds of the tone and co-terminates with the tone. The foot shock was 0.6 

mA. After an inter-trial interval of 3 minutes a second identical trial was 

administered. After another interval a third trial was administered. 

 At the same time of day the next day of testing occurs. After a 3 minute 
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habituation period the same tone cue was presented for 3 minutes. A Kinder 

Scientific Motor Monitor was used to detect the percentage of time the mouse 

remains frozen (Duffy, 2010). 

 

Anogenital sniffing test 

 

We treated 40 neuregulin-1 knockout mice and 40 wild type mice with the 

same preparation protocol as that of the fear conditioning test mice and then 

observed anogenital sniffing in the treated mice. 

 

 Each test mouse was paired individually with an unfamiliar age-, weight- 

and sex-matched stranger mouse in a clear Perspex chamber. Clean bedding 

material was placed on the chamber floor prior to each test and the chamber floor 

and walls were cleaned with ethanol wipes between each test. The test mouse 

and the stranger were placed in the chamber simultaneously and this placement 

defined the start of the trial. For each animal, the trial duration was 10 minutes. 

Using a digital camcorder mounted above the chamber, anogenital sniffing 

behavior was coded using OBSERVER® video analysis software. The experimenter 

was blind to the genotype and treatment condition at the time of testing and 

coding of behavior (O’Tuathaigh, 2010). 

 

Data analysis 

 

 Comparisons of neurochemical measures were carried out using paired t-
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tests. LSN2463359 treated rats’ neurochemical makeup was compared to 

untreated rats given SDZ. 

 Comparisons of behaviors were carried out using paired t-tests. Mean 

values were compared between LSN2463359 treated mice and vehicle treated 

mice. 
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Expected Results 
 
Section I. Determine if LSN 2463359 normalizes GABA, glutamate, dopamine and NAA 
levels in the medial frontal cortex of rats given SDZ. 
 

The medial frontal cortex in rats is comparable to the prefrontal cortex in 

humans. This area of the brain is most heavily studied in determining the effects of 

psychosis or psychotic medication. Using magnetic resonance spectroscopy and high 

performance liquid chromatography, I determined the levels of GABA, glutamate and 

dopamine in the rats and assessed whether they are in accordance with the new 

glutamatergic theory. In addition, NAA measurements have provided useful 

information as to the neuroprotective actions of LSN. The chemical structure of NAA 

and LSN are shown below in Figure 2. 

A. B.  
 
Figure 2. A: The chemical structure of N-acetylaspartate. B: The chemical structure of 

LSN2463359. N-(1-methylethyl)-5[2-(4-pyridinyl)ethnyl]-2-pyridinecarboximide. 
 

The timeline for testing the neurochemical makeup via NMRS of the medial 

frontal cortex in rats given SDZ or the vehicle is illustrated in Figure 3.  

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCKjXlZit98gCFch7PgodW38OMQ&url=https://synkinase.com/products/function-modulators/syn5035.html&psig=AFQjCNF0KPHLPs4t2XrkiDYbv-hDZvQajw&ust=1446746593845946
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Figure 3. Experimental timeline of test for GABA, glutamate and NAA levels. 
 
 To assess LSN’s effect on cell health after SDZ administration, we measured NAA 

levels after SDZ/vehicle and LSN/vehicle administration. 

The effect of LSN on cell health is shown in Figure 4. NAA levels of rats given SDZ 

and LSN were compared to untreated mice and mice given SDZ alone. Here is evidence 

that LSN improved NAA levels (considered a sign of cell health) in rats given SDZ. The 

levels were not completely normalized but were near to normal. This beneficial effect 

was dose dependent. 
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Figure 4. NAA levels in the medial frontal cortex of rats given SDZ and SDZ followed by 
treatment with varying doses of LSN. Statistical analysis was carried out using student’s 
t test. Mean values of the LSN treated groups were compared to SDZ alone. (n=10) (* 
p<0.05) Error bars reflect the standard error. 
 

GABA is an important neurotransmitter to study the effects of SDZ and LSN in the 

medial frontal cortex. Figure 5 shows that the NMDA antagonist SDZ had an effect on 

GABA levels in the medial prefrontal cortex. LSN treatment increased GABA levels after 

SDZ administration in a dose dependent manner. Although neurotransmitter levels 

were not returned to normal levels as found in the vehicle-treated rats they were 

raised to almost normal levels. 
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Figure 5. GABA levels in the medial frontal cortex of rats given SDZ and SDZ followed by 
treatment with varying doses of LSN. Statistical analysis was carried out using student’s 
t test. Mean values of the LSN treated groups were compared to SDZ alone (n=10) 
(*p<0.05) Error bars reflect the standard error. 

 

 As glutamate levels may be changed after SDZ and LSN administration, we 

observed their effects in the following graph. As illustrated in Figure 6 and confirming 

previous data (Li, 2010) we found that SDZ administration causes marked increase in 

glutamate levels in the rat medial frontal cortex. This increase was dampened by LSN in 

a dose dependent manner. Although glutamate levels were not brought to normal 

levels, they were significantly reduced when compared to SDZ treatment alone. 
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Figure 6. Glutamate levels in the medial frontal cortex of rats given SDZ and SDZ 
followed by treatment with varying doses of LSN. Statistical analysis was carried out 
using student’s t test. Mean values of the LSN treated groups were compared to SDZ 
alone. (n=10)(*p<0.05) Error bars reflect the standard error 
 
  Using High Performance Liquid Chromatography (HPLC) we observed the 

change in dopamine levels in the medial prefrontal cortex of rats given SDZ and LSN or 

the vehicle. Due to dopamine’s extremely low levels of concentration in the brain, 

NMRS could not be performed. Below is a timeline for methodological events. 
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Figure 7. Timeline for testing dopaminergic activity via HPLC. 

 Dopamine levels in the medial frontal cortex have been shown to increase or 

decrease after NMDA antagonism depending on a number of variables (Zuo, 2012; 

Catane, 2015). We hypothesized that treatment with SDZ would cause an increase in 

dopamine levels. 

In accordance with previous studies (Zuo, 2012), dopamine levels increased 

significantly upon SDZ administration. LSN decreased dopamine levels in a dose 

dependent manner. This is a novel finding as this experiment has not been performed 

previously. 

Rats administered 
SDZ/vehicle for 7 

days.

Rats administered 
LSN/vehicle for 2 

days

HPLC data taken for 
analysis.
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Figure 8. Dopamine levels in the medial frontal cortex of rats given SDZ and SDZ 
followed by treatment with varying doses of LSN. Statistical analysis was carried out 
using student’s t test. Mean values of the LSN treated groups were compared to SDZ 
alone. (n=10) (*p<0.05) Error bars reflect the standard error. 
 
  

 Our findings in section 1 were consistent with previous studies in that GABA, 

glutamate and dopamine levels are altered by NMDA antagonism (Cohen, 2015; 

Bustillo, 2012) Our observations that LSN modulates to near normal levels GABA, 

glutamate and dopamine after SDZ administration are novel. Similarly, our finding of 

increased levels of NAA, indicating improved cell health, upon treatment with LSN, is 

novel. 

  
Section II. Determine if LSN2463359 would diminish psychosis-like symptoms in mice 

that have the neuregulin‐1 gene knocked out heterozygously. 
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Several well established murine models of schizophrenia are based on the 

observation that psychosis causes a decrease in social behaviors and increase in 

behaviors related to anxiety (O’Tuathaigh, 2010). A method commonly used to 

measure anxiety is to assess fear conditioning responses in mice. If a mouse is 

subjected to a conditioned stimulus (such as a bell) followed by a noxious stimulus 

(such as a foot shock) the mouse will learn to associate the conditioned response with 

the noxious stimulus. After the conditioning occurs, a test stimulus not followed by a 

noxious one is performed. A normal mouse will freeze during the test. An anxious 

mouse will freeze for less time.  

 Fear conditioning tests were carried out on 40 neuregulin-1 (NRG-1) knockout 

mice and 40 wild type mice. Tests were carried out with the goal to assess whether LSN 

would be beneficial in reducing anxiety in mice with the NRG-1 knockout. First we 

explored the difference in anxious behavior in wild type and NRG-1 knockout mice. 

Figure 9 shows that NRG-1 knockout mice had a more anxious profile than wild 

type mice. The NRG-1 knockout mice spent less time frozen in the test portion of the 

fear conditioning test. These results were consistent with findings by Duffy et al. (2010). 
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Figure 9. Fear conditioning response in wildtype and NRG-1 knockout mice. (n=10) 

(*p<0.05) Error bars reflect the standard error. 

 

  

 In order to find if LSN provides relief for anxious behavior in NRG-1 knockout 

mice, we performed a fear conditioning test on wild- type and NRG-1 knockout mice 

with varying doses of LSN (1 mg/kg, 10 mg/kg, 30 mg/kg) administered for 2 days. 

As illustrated in Figure 10 our data shows that LSN modulated behaviors related 

to anxiety in NRG-1 knockout mice to near normal levels. LSN had little effect on the 

wild type mice. The psychotic mice responded to LSN in a dose dependent manner. 

These results are novel as fear conditioning has not been previously tested after LSN 

administration. 
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Figure 10. Fear conditioning response in wild type and neuregulin-1 knockout mice 
given varying doses of LSN. Statistical analysis was carried out using student’s t test. 
Mean values of the LSN treated groups were compared to that of the vehicle treated 
controls. (n=10) (*p<0.05) Error bars reflect the standard error. 

 

A method commonly used to measure social behavior is by placing a “stranger” 

mouse in the cage with the test mouse and measuring the time spent in anogenital 

sniffing. When the mouse is psychotic, usually anogenital sniffing is less intense than a 

nonpsychotic mouse. Our aim was to assess whether LSN would be beneficial in 

increasing social investigation in neuregulin-1 knockout mice. We first tested if 

neuregulin-1 knockout mice were more prone to social withdrawal by employing the 

anogenital sniffing behavioral test as previously reported by O’Tuathaigh et al. (2010). 

 Figure 11 confirms that NRG-1 knockout mice displayed less social investigation 

than wild type mice. When introduced to a stranger mouse, the NRG-1 knockout 
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mouse spent less time in anogenital sniffing. This finding is in accordance with 

previous studies (O’Tuathaigh, 2007 and 2010). We next tested whether LSN can 

modulate abnormal social behavior to near normal levels. 

 
 

Figure 11. Anogenital sniffing test results in wild type and NRG-1 knockout mice. 

(n=10) (*p<0.05) Error bars reflect the standard error. 

 

 Figure 12 shows that LSN modulated social investigation in NRG-1 knockout 

mice in a dose dependent manner. Similar to the fear conditioning test, LSN had little 

effect on wild type mice. This finding is novel in that social withdrawal has yet to be 

tested in conjunction with LSN.  
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Figure 12. Time spent in anogenital sniffing by wild type and neuregulin-1 knockout 

mice given varying doses of LSN. Statistical analysis was carried out using student’s t 

test. Mean values of the LSN treated groups were compared to that of the vehicle 

treated controls. (n=10) (*p<0.05) Error bars reflect the standard error. 

 

Overall, our behavioral studies showed that LSN lessened anxiety and 

improved social activity in NRG-1 knockout mice in a dose dependent manner 

suggesting that LSN may improve psychosis on a behavioral level. 
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Discussion 

 

 We found that the chemical compound LSN2463359 exerted significant 

beneficial effects at the cellular and behavioral level in two different models of 

psychosis. LSN2463359 has shown the ability to modulate to near normal levels 

GABA, glutamate, dopamine and NAA in the medial frontal cortex of rats given 

SDZ. At a behavioral level, LSN2463359 diminished psychotic behavior in 

neuregulin-1 knockout mice. 

 Consistent with previous data (Cohen, 2015; Bustillo, 2012; Zuo, 2012) we 

confirmed that rats administered SDZ alone showed decreased GABA and NAA 

levels and increased glutamate and dopamine levels in the medial frontal cortex. 

This finding is in agreement with the new theory that decreased tonic GABA 

activity and increased glutamate excitotoxicity contribute to schizophrenia in 

humans (Cohen 2015). Dopamine has been shown to increase or decrease upon 

NMDA antagonism (Zuo, 2012; Castane, 2015). To delve further into the 

discrepancy, our results showed that small increases in dopamine levels were 

found in SDZ treated rats. LSN’s ability to ameliorate dopamine levels in a dose 

dependent manner suggests it may be a viable tool in diminishing psychosis.  

 Studying LSN’s effects in neuregulin-1 knockout mice helps to see their 

effects in a different neurological environment for NMDA receptors that may be 

closer to the schizophrenic model. As neuregulin-1 regulates NMDA activity it 

would be reasonable to suspect its mutation may affect NMDA activity and lead to 
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psychotic behavior. Our data showed that treatment with LSN resulted in a 

reduction of psychotic behavior in neuregulin-1 knockout mice as assessed by the 

fear conditioning and anogenital sniffing behavioral tests. The mechanisms 

underlying LSN’s beneficial effects are possibly due to the potentiation of NMDA 

receptor activity elicited by LSN through the mGlu5 receptor. 

 Similar to our study, Gastambide et al. (2013) found that LSN brought to 

normal levels reversal learning deficits and deficits in instrumental responding in 

mice given SDZ. Both are cognitive deficits. This effect was not seen in mice given 

PCP or MK-801 which are non-competitive NMDA antagonists. SDZ is a 

competitive antagonist as it will compete with the ligand for the receptor. This led 

us to questions about pharmacological models and how close they are to the 

actual disease presentation. In contrast to our results, Bustillo et al. (2012) found 

that GABA and glutamate levels decreased after PCP treatment. In their study rats 

were exposed to PCP for one month unlike our choice of one week. Li et al. (2010) 

found that glutamate levels increased in the medial prefrontal cortex of rats after 

PCP exposure. Their study administered PCP for only 4 hours. We chose to 

administer SDZ for one week as too much antagonist does not serve to mimic the 

schizophrenic model. We chose to administer LSN for 2 days as SDZ leaves the 

nervous system and no longer has an effect on the medial frontal cortex. It is 

important to understand that excess or below par administration of antagonists or 

PAMs can upset the delicate balance of neural pathways.  As witnessed by the 
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differences in LSN2463359’s effects depending on the NMDA antagonist used, the 

length of time it was used as well as differences in genes that increase the risk of 

schizophrenia, it can be understood that there is no one model which would serve 

to mimic the complexity of schizophrenia in humans (Law, 2014). 

 Brody et al. (2004) discovered that mice with an mGluR5 knockout are 

more prone to pre-pulse inhibition deficits. Pre-pulse inhibition is the reaction to a 

strong noxious stimulus when preceded by a weaker stimulus. Deficits in this area 

show deficits in sensorimotor gating or oversensitivity to sensory stimulation. 

Psychotic mice are more prone to deficits in this area. This study added to our 

hypothesis that modulating the mGluR5 may be beneficial to alleviating psychotic 

symptoms. 

 Deng et al. (2013 ) reported that impaired neuregulin 1 signaling causes a 

decrease in GABA activity and an increase in glutamate activity in the medial 

prefrontal cortex of rats. This finding shows that neuregulin-1 plays an important 

role in the theorized pathway leading to psychosis. This would help our 

understanding of why neuregulin-1 knockout mice exhibit psychotic behvior. 
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Figure 13. Schematic of the mGluR5 signaling pathway (Matosin 2013). 

 

In Figure 13 we observe the theorized effect mGluR5 activity has on the 

NMDA receptor and the cell as a whole. After a signaling cascade, the NMDA 

receptor is potentiated by Src protein. Another effect of the cascade is the 

production of brain-derived neurotrophic factor or BDNF. BDNF is a neurotrophic 

protein that has many effects including promoting nerve health and encouraging 

growth and differentiation of synapses. BDNF is also a potentiator of NMDA 

receptors through Fyn activation. BDNF mRNA levels are decreased in cortical 

layers IV and V of the dorsolateral prefrontal cortex in schizophrenic patients 
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showing its importance in linkage to schizophrenia (Ray, 2014). Figure 13 also 

shows that mGluR5s are attached via scaffolding proteins to NMDA receptors 

which keep the receptors in close proximity to increase regulatory action. Figure 

13 elucidates the close relationship between mGluR5s and NMDA receptors. 

 One limitation of our report is that we only administered the rats/mice 

LSN for two days. Many schizophrenia sufferers have chronic symptoms that need 

to be addressed over a long period of time. We do not know if the neuronal 

system would become sensitized to the compound.  

 Another limitation is that we only examined the neurochemical makeup of 

the medial frontal cortex. There are many other regions of the brain that are 

involved in psychosis. More detailed studies are needed to see how all the areas 

of the brain affected in schizophrenia are impacted by NMDA antagonism and 

mGluR5 PAMs. 

 Further studies are needed to test the validity of the new glutamatergic 

theory of schizophrenia pathology. I would suggest making measurements of 

LSN’s modulating effect on neurotransmitters in other areas of the brain. I would 

also suggest long term studies on the effect of LSN in NRG-1 knockout mice. 

Conclusions 

 

 Our findings indicate that LSN2463359 had a significant effect on the 

neurochemistry and behavioral characteristics of rats given SDZ and NRG-1 

knockout mice. Whether the compound could be used to help humans is yet to be 
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determined. More studies are needed to observe its efficacy over a long period of 

time and in different models of psychosis. This novel treatment may be potentially 

used as an alternative to current antipsychotic medication. If found to have lower 

efficacy, it may be included in the drugs prescribed as an addition to a traditional 

antipsychotic. 
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