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Abstract 

Hypoxia is a frequent characteristic of the solid tumor microenvironment, which occurs 

when cancer cells lack adequate access to oxygen. By selecting for cells that can adapt to and 

grow in low oxygen conditions, tumor hypoxia contributes to a more aggressive and invasive 

cancer phenotype that portends a poor clinical outcome. While many aspects of the cellular 

response to hypoxia have been explored, the roles of some factors have not been fully explained. 

Cell signaling factors, including signal transducer and activator of transcription 3 (STAT3), the 

mu opioid receptor (MOR), and the delta opioid receptor (DOR), as well as changes in the 

mitochondrial membrane potential may play a role in cancer cell adaptation to hypoxia. 

Importantly, the hypoxia-related actions of STAT3 and the human opioid receptors have not 

been thoroughly researched within the context of human neuronal cancer cells. To investigate the 

roles of these proteins in hypoxic adaptation, we developed and tested a model of chemically 

induced hypoxia using neuronal cells. We administered the hypoxia mimetic, cobalt chloride, to 

a human neuroblastoma cell line. The preliminary data of flow cytometry suggested that cobalt-

induced hypoxia increased the total amount of STAT3 in neuroblastoma cells, but decreased the 

amount of phosphorylated STAT3 in a time dependent pattern. The preliminary results using JC-

1 staining with confocal microscopy indicated that cobalt exposure did not change mitochondrial 

membrane potential in surviving cells. RT-PCR (reverse transcription) analysis showed a 

decrease in MOR expression and no change in DOR expression. This decrease in expression 

lends support to an inhibitory role of MOR in neuronal adaptation to hypoxia. These results also 

implicated that survival of neuronal cells under cobalt treatment likely are independent of 

STAT3 tyrosine phosphorylation. Taken together this study provides a baseline for future use of 

this model to investigate hypoxia. 
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Introduction 
  

Tumor hypoxia 

Hypoxia is a common feature of the solid tumor microenvironment, in which cancer cells 

and their local tissue do not have adequate access to oxygen. The causes and effects of tumor 

hypoxia are multifaceted. Tumor hypoxia can be the result of at least three factors: irregular 

tumor vasculature, increased proliferation of cancer cells, and/ or anemia (Vaupel & Harrison, 

2004). Due to a deregulation of endothelial regulatory signals, tumor-adjacent vascular tissue is 

often chaotically arranged and abnormally permeable (Baluk et al, 2005). These irregularities 

preclude normal perfusion of oxygen into the tissue, and hypoxia occurs. 

  Tumor cells exist in a hyper-proliferative state. This state increases their demand for both 

oxygen and nutrients, and when that demand outpaces the delivery capacity of existing blood 

vessels, hypoxia (low oxygenation) results. In addition, the rapid pace of cancer cell growth 

allows some tumor cells to grow beyond the distance that oxygen in tissue can diffuse to 

(<100µm). Furthermore, chemotherapies and/or cancer cell signaling can reduce the capacity of 

blood to transport oxygen (Ludwig, et al, 1995). Thus treatment- and tumor-induced anemias 

cause the surrounding tissue to develop hypoxia. Within the tumor microenvironment, the 

balance between normoxia (normal oxygenation) and hypoxia temporally shifts as a function of 

the integration of hypoxia-inducing factors and hypoxia-response factors. As a result of this, 

tumors develop a spatially heterogeneous map of hypoxic regions (Jiang et al, 2012). The core of 

solid tumors tends to be anoxic and necrotic due to a complete lack of oxygen access. Cells more 

towards the tumor periphery of the tumor have greater access to oxygen, and exhibit lower levels 

of hypoxia (Evans et al, 2001; Evans et al, 2007).    
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  From a clinical perspective, hypoxic conditions within the tumor microenvironment have 

been associated with resistance to cancer therapy, increased aggressiveness, invasiveness, and 

metastasis (Ruan et al, 2009). And it has been well documented that killing hypoxic tumor cells 

during cancer treatment requires an increased dosage of radiation as compared to normoxic 

tumor cells (Coleman, 1988). Any or all of these associations add evidence to the observed 

correlation between hypoxic tumors and poor clinical prognosis (Vaupel, 2008). 

From a cellular perspective, hypoxia exerts selective pressure on a tumor cell population. The 

fate of any tumor cell encountering this hypoxic pressure is determined not only by the severity 

of hypoxia, but also by the cellular adaptability, which dictate whether the cell survives or 

induces apoptosis. The majority of tumor cells that are subjected to hypoxia die, but some cells 

are able to resist apoptosis and continue to proliferate. These surviving cells escape the constraint 

of hypoxia, gain a competitive advantage over hypoxia-sensitive cells, and are able to clonally 

expand; establishing colonies of tumor cells that persist under hypoxic conditions (Graeber et al, 

1996). 

  Thus, hypoxia initiates an adverse cycle of tumor progression in which the 

microenvironment selects for cells that are capable of surviving hypoxia and may further 

promote proliferation and metastasis. Given the negative clinical implications of tumor hypoxia, 

understanding how cancer cells adapt to it is paramount in understanding the pathogenesis of 

cancer. 

  

The cellular response to hypoxia 

The cellular sensation of and response to hypoxia is mainly mediated through hypoxia 

inducible factor (HIF), which is upregulated in response to low oxygen, and thus in many 

cancers. HIF promotes the transcription of more than 100 downstream genes whose functions 
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include cell survival, proliferation, altered metabolism, and angiogenesis; processes that must be 

initiated in order for a cell to survive hypoxic conditions (Masoud & Li, 2015). Cancer cells in 

low oxygen regions of tumors can coopt this global hypoxia response system to ensure their 

survival and proliferation. 

  Independently or in cooperation with HIF, signal transducer and activator of transcription 

3 (STAT3) may also play a role in the tumor cell adaptation to hypoxia. STAT3 is a latent 

cytoplasmic transcription factor that translocates to the nucleus to regulate gene expression, 

including the expression of many oncogenic proteins (Yu et al, 2009). The role of STAT3 in 

regulating the transcription of key oncogenes and its connection to various serine and tyrosine 

kinases suggest that STAT3 is a shared signaling node between several pathways, which all 

contribute to tumorigenesis (Yu & Jove, 2004). It is, therefore, unsurprising that STAT3 activity 

is increased in a broad spectrum of human cancers and cancer cell lines (Buettner et al, 2002). 

Additionally, in lung, breast, ovarian, pancreatic, and prostate cancer cell lines, hypoxia induced 

STAT3 activation (Noman et al, 2009; Pawlus et al, 2014; Selvendiran et al, 2009; Gray et al, 

2005). These lines of evidence suggest that STAT3 allows for cellular adaptation to hypoxia by 

promoting the expression of proteins needed for survival in a low oxygen microenvironment. 

  

Hypoxia and human opioid receptors 

In addition to the role that STAT3 plays in promoting cellular adaptation to hypoxic 

conditions, the human mu and delta opioid receptors (hMOR and hDOR) have also been 

implicated in cancer progression (Singleton et al, 2015; Debruyne et al, 2010). Opioid receptor 

agonists, such as morphine, are widely used analgesics that are frequently a part of cancer-related 

pain management (Caraceni et al, 2012). Therefore, understanding the contribution that these 

receptors make to cancer progression is very clinically relevant.  However, this research effort 
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has yielded somewhat contradictory results, possibly due to dosage differences, differences in 

route of administration, or differences between model system being used (Gach et al, 2011). For 

example, in cultured human neuroblastoma cells, hMOR activity promoted cancer cell survival 

by inhibiting apoptosis (Iglesias et al, 2003), while in cultured human glioma cells, inhibition of 

hDOR lead to an increase in apoptosis and a decrease in cell proliferation (Zhou et al, 2013).  

  Conversely, several anti-tumor effects have also been attributed to hMOR activity. In 

Lewis lung carcinoma cells xenografted into nude mice, hMOR activity suppressed 

angiogenesis, leading to an increase in tumor cell apoptosis (Koodie et al, 2010). Hatsukari et al 

also showed that morphine induced apoptosis in leukemia and adenocarcinoma cell lines, while 

contributing to increased necrosis in a breast cancer cell line (2007). These effects were 

diminished following naloxone (an opioid receptor antagonist) administration, suggesting that 

one or more opioid receptor was responsible for the increased apoptotic activity.  Therefore, 

establishing a model of chemically inducible hypoxia within a neuronal cancer cell line that 

naturally expresses stable opioid receptor levels has the potential to reveal how these receptors 

participate in tumor cell adaptation to hypoxia.  

  

Chemically induced models of hypoxia 

  Cellular hypoxia can be modeled using hypoxia mimetic compounds such as 

desferoxamine (DFO), cobalt chloride (CoCl2), and nickel chloride (NiCl2). Through somewhat 

different mechanisms, these compounds stabilize intracellular HIF by interfering with its 

proteasomal degradation (Ren et al, 2000; Yuan et al, 2003; Davidson et al, 2006). This allows 

HIF to accumulate within the cell and promote a hypoxic cellular phenotype. These hypoxia 

mimetic systems are experimentally advantageous as compared to culturing cells under “true” 
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hypoxic conditions (e.g. hypoxia chamber) because they are quicker to employ and are not 

susceptible to reoxygenation during the course of the experiment (Wu & Yotnda, 2011). 

  Cobalt has been used in numerous studies as a way of simulating a hypoxic cellular 

environment (Lee et al, 2001; Naves et al, 2013). Additionally, cobalt treatment induces reactive 

oxygen species (ROS) generation and has been shown to induce cell death in neuroblastoma and 

other cancer cell lines (Leonard et al, 2004; Stenger et al, 2011; Ardyanto et al, 2006). These 

effects of cobalt are well established, however its effects in cells that survive treatment and the 

cellular responses involved in enabling their survival are less clearly defined. And, while tumor 

hypoxia has been the focus of thorough study, and some of the key cellular response elements 

have been determined, many of the mechanisms underlying hypoxia-induced neuronal cellular 

changes have yet to be elucidated (Span & Bussink, 2015). In order to answer some of these 

questions, we used cobalt to model hypoxia in a human neuroblastoma cell line in order to study 

the adaptive responses that occurred in cells that survived this chemically induced hypoxia.  
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Materials and Methods 

Cell culture 

Human neuroblastoma (NMB) cells were grown in 75cm2 tissue culture flasks (VWR, 

Radnor, PA), and provided with RPMI-1640 (Sigma-Aldrich, St. Louis, MO) supplemented with 

10% heat-inactivated fetal bovine serum (Atlanta Biologicals, Flowery Branch, GA) in a 5% 

CO2-95% air, humidified incubator at 37°C. Cells were maintained with 0.05mg of Gentamicin 

Reagent/mL of medium (Life Technologies, Grand Island, NY) and 100 units of Penicillin 

Streptomycin/mL (Life Technologies) of medium.  

 

Cobalt chloride treatment  

 Cells were treated with 300µM cobalt chloride for 24 or 48hrs. For dose response assays, 

cobalt chloride was administered to cells at final concentrations of 100, 300, and 500µM for 

24hrs.  

 

Flow cytometry  

Control and cobalt-treated cells were washed to remove dead cells with serum-free 

RPMI, gently harvested with 0.25% trypsin-EDTA (1X) (Life Technologies), centrifuged, and 

resuspended in cold DPBS. NMB cells were fixed using BD Cytofix-Fixation Buffer, and then 

resuspended in FACS buffer (2% FBS, 20% Versene in DPBS). Cell membranes were 

permeabilized with BD Phosflow-Perm Buffer III. Permeabilized cells were stained in the dark at 

4°C using BD flow antibodies against pY705-STAT3 (Lot#4330520) tagged with Alexa Fluor 

647 and total STAT3 (Lot#4106912) tagged with allophycocyanin (APC). Following incubation 

with stain, cells were centrifuged, excess stain was aspirated, and cells were resuspended in 
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FACS buffer. Fluorescent emission measurements were made in triplicate using a MACSQuant 

Analyzer (Miltenyi Biotech, Bergisch Gladbach, Germany) with lasers set to excite APC and 

Alexa Fluor 647 fluorophores. Analysis of flow cytometry data was performed using FlowJo 

(Ashland, OR).  

 

Trypan Blue Exclusion Assay 

Aliquots of live NMB cell suspensions that were harvested for flow cytometry protocol 

were used to determine relative cell viability. Briefly, control and cobalt-treated cells were 

stained (1:1 ratio) with Trypan Blue (Sigma-Aldrich) and the number of cells in each condition 

that excluded the dye was counted. Cell viability was expressed as percent of control.     

 

RNA extraction and RT-PCR 

Total RNA was extracted from NMB cells using TriReagent (Molecular Research Center, 

Cincinnati, OH). Extracted RNA was precipitated using chloroform and washed with cold 75% 

ethanol. RNA concentrations were measured at 260nm using a Beckman-Coulter UV/Vis 

Spectrophotometer. First strand cDNA synthesis was performed using random hexamer primers 

(Promega, Madison, WI) and a GeneAmp PCR System (Applied Biosystems), using the 

parameters: 37°C for 50 min, 70°C for 15 min.  cDNA was stored at -80°C . 

 

PCR and DNA gel electrophoresis 

Equivalent quantities of total cDNA were added to each PCR reaction mixture. PCR 

amplifications of hMOR and hDOR were achieved by using human-specific primers: hMOR 5’- 

CTG GAA GGG CAG GGT ACT GGT GG-3’ and 5’-CTG CCC CCA CGA ACG CCA GCA 

AT-3’; hDOR 5’- GTT CAC CAG CAT CTT CAC GCT C and 5′-CGG TCC TTC TCC TTG 
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GAG CCC-3′. Parameters for PCR amplification of hMOR and hDOR were 95°C for 1 min, 

68°C for 30 sec (32 cycles for MOR; 25 cycles for DOR), 72°C for 30 sec. Human-specific β-

actin primers (5′-CCT TCC TGG GCA TGG AGT CCT G-3′ and 5′-TAC AGC GAG GCC 

AGG ATG G-3′) were added as a loading control for 18 cycles. PCR products were run on 2% 

agarose/TAE gels containing ethidium bromide. Following electrophoresis, DNA gels images 

were taken under UV light with AlphaImager. The fluorescent intensities of target and hβ-actin 

bands were quantified using ImageQuant 5.2. Relative expression levels were normalized to 

mean hβ-actin signal and expressed as percent of control.    

 

Confocal microscopy 

NMB cells grown on coverslips were stained for mitochondrial membrane potential 

(ΔΨM) by incubating JC-1 dye (Cayman Chemical, Ann Arbor, MI) (1:100) at 37°C in the dark 

for 30min. After incubation, the coverslips were washed twice with RPMI. Cells were imaged at 

60X using a laser scanning confocal microscope (Fluoview 1000, Olympus, Tokyo, Japan) with 

488 and 543nm lasers to detect FITC and Rhodamine Red X signals. As a positive control, cells 

were treated with 10µM carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a protonophore.    

 

Confocal image analysis 

A Rhodamine Red X filter was used to detect concentrated regions of J-aggregates and 

hyperpolarized ΔΨM on the red channel. Simultaneously, a FITC filter was used to detect regions 

of diffuse, non-aggregated JC-1 staining and depolarized ΔΨM on the green channel. Fluorescent 

intensities from both channels were measured using the line ROI tool in FV10-ASW software 

(Olympus). The ratio of average red channel (CHS2) signal/ average green channel (CHS1) 

signal for each ROI was calculated and compared.    
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Statistical analysis 

Statistical analysis was carried out using GraphPad Prism 5 with unpaired Student’s t-

test. Results were considered significant if p<0.05. 
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Results 

This study sought to establish a model of chemically induced hypoxia within a neuronal 

cell line. Specifically, cobalt chloride was used to generate a hypoxic phenotype within a 

neuroblastoma (NMB) cell line. Following 24 or 48hr cobalt treatment the surviving NMB cells 

and their hypoxia-related changes were analyzed. The results provide a foundation for use of this 

hypoxia model system in additional experiments aimed at unraveling the effect of hypoxia in 

neuronal cancers.     

 

Cobalt treatment decreased NMB cell viability 

In order to establish a model system of cobalt-induced hypoxia within the NMB cell line, 

we first determined how cobalt administration affected overall cell viability. We used Trypan 

Blue to stain cell populations treated with increasing concentrations of cobalt for 24 or 48hrs to 

assess the viability of cells. Unviable cells retained Trypan Blue, while viable, living cells 

resisted the dye. By counting the number of unstained cells with a hemocytometer we 

determined the cell viability in each treatment condition. These measurements were then 

converted into percent of control (untreated cells). 

Following 24hr treatment of NMB cells with an increase of cobalt concentrations, a 

significant dose-dependent effect on cell viability (Fig. 1) was observed. Treatment with 100µM 

cobalt decreased cell viability by ~34% (mean ~66% viability), 300µM decreased cell viability 

by ~52% (mean ~48% viability), and 500µM decreased cell viability by ~60% (mean ~40% 

viability). Since, 300µM cobalt treatment was sufficient to induce 50% cell death, we used this 

concentration to induce hypoxia in all other experiments. 
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NMB cells treated with 300µM cobalt also resulted in a significant decrease of cell 

viability in a time-dependent manner (Fig. 2). Twenty-four hour treatment resulted in ~30% 

decrease (~69% mean viability), while 48hr treatment decreased the mean cell viability to ~39% 

(~60% decrease) as compared to control. Regardless of treatment duration or concentration, there 

were still surviving neurons (Fig. 3), which were then used to study the adaptive responses. 
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Figure 1: NMB cells treated with cobalt for 24hrs significantly decreased cell viability in a dose-dependent manner 
as compared to control. Values represent the mean cell counts +/- SEM and are expressed as percent of control. 
Significance was determined using unpaired Student’s t-test;  ***p<0.0001.  
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Figure 2: Cobalt treatment caused a time-dependent significant decrease in NB cell viability as compared to control. 
Values represent mean (+/- SEM) hemocytometer counts and are expressed as percent of control. Significance 
determined by unpaired Student’s t-test;  *p<0.05, ***p<0.001.  
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Cobalt treatment changed NMB cell morphology 
Hypoxia has been associated with morphological changes in murine neocortical neurons 

and human mesenchymal stem cells (Park et al, 1996; Zeng et al, 2011). Therefore, we examined 

NMB morphology under cobalt -induced hypoxia.  

Along with the visual increase in the proportion of dead cells present in the treatment 

conditions, there was also a clear visual change in the morphology of the treated cells. Cells 

became more pronounced with 48hr cobalt treatment (Fig. 3), as compared to control cells, 

which were smaller and more rounded. A proportion of treated cells displayed elongated 

neuronal processes.  
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Figure 3: Treatment of NB cells with cobalt increased the length of neuronal processes (marked with red arrows), 
and the proportion of cells that displayed these processes. Also in these images is the increased number of dead cells 
in the 24 and 48hr treatment conditions. 
 

  



23 

Cobalt treatment did not affect ΔΨM of surviving NMB cells 

Previous research has implicated that cobalt treatment can result in mitochondrial 

membrane potential (ΔΨM) collapse in human glioblastomas (Zeno et al, 2009). To determine if 

cobalt treatment can cause the depolarization of mitochondrial membrane potential, we therefore 

used laser scanning confocal microscopy to gauge differences in ΔΨM in NMB mitochondria 

labeled with a dichromatic ratiometric dye, JC-1. JC-1 dye has been used for this application in 

numerous studies and cell lines (Diaz et al, 1999; Perry et al, 2011). Briefly, JC-1 dye can exist 

within living cells in two forms, green monomeric form and red aggregate form. The red JC-1 

aggregates accumulate in hyperpolarized (negatively charged) mitochondria, while green 

monomeric JC-1 highlights depolarized (more positively charged) mitochondria. In order to 

make qualitative and semi-quantitative measurements of ΔΨM, JC-1-dyed control and treated 

cells were stimulated using both 488 and 543 nm lasers and signals were detected with FITC 

(channel 1, CHS1) and Rhodamine Red X (channel 2, CHS2) filters. The ratio CHS2/CHS1 of 

each acquired image was calculated as a semi-quantitative measurement of ΔΨM. 

We found that 24 or 48hr cobalt treatment does not significantly affect CHS2/CHS1 ratio 

as compared to that of control cells (Fig. 4). The mean CHS2/CHS1 value (expressed as percent 

of control) for 24hr cobalt treatment was ~98% and for 48hr treatment the mean value was 

~97%. In order to demonstrate that JC-1 staining was sensitive to changes in ΔΨM, NMB 

mitochondria were purposefully depolarized using the protonophore, carbonyl cyanide 3-

chlorophenylhydrazone (CCCP). In control cells incubated with JC-1 dye and CCCP, ΔΨM was 

significantly depolarized, leading to a quantitative decrease in the CHS2/CHS1 ratio. Visually, 

CCCP treatment resulted in a lack of accumulation of red JC-1 aggregates in depolarized 



24 

mitochondria with only diffuse green staining. Additionally, the elongated neuronal processes of 

treated NMB cells that were highlighted in Fig. 3 were also evident under confocal microscopy. 
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Figure 4: Mitochondrial membrane potential (ΔΨM), as assessed by JC-1 ratiometric dye, is not affected by cobalt 
treatment. Mean values (+/- SEM) of the CHS2 (red channel)/CHS1 (green channel) ratios for control, 24hr Co, and 
48hr Co, and CCCP. Significance was determined using unpaired Student’s t-test; ***p<0.0001.  
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Analysis of STAT3 factor 

STAT3 is a transcription factor that requires phosphorylation of its tyrosine 705 (Y705) 

to translocate to the nucleus and regulate gene expression (Calo et al, 2003). Once activated, 

STAT3 promotes the expression of anti-apoptotic proteins such as Bcl-XL, survivin, and Mcl-1, 

cell cycle promoters including c-Myc and cyclin D1, and angiogenic proteins including VEGF 

(Ouédraogo et al, 2015). The role of STAT3 as a transcription factor for several proteins 

involved in the cellular response to hypoxia suggests that STAT3, especially phosphotyrosine 

STAT3 (pY705-STAT3), may be modulated by hypoxia. Furthermore, it has been demonstrated 

that phosphorylated STAT3 increases in response to cobalt stimulation in both adenocarcinoma 

and prostate carcinoma cell lines (Gray et al, 2005). In order to determine the role of STAT3 in 

cobalt treated neuronal cells, flow cytometry was used to analyze changes in total STAT3 levels 

and changes in the amount of phosphorylation at its Y705 residue in these surviving neurons.  

 

Cobalt treatment increased total STAT3 

Control and cobalt treated cells were stained for total STAT3 protein using anti-STAT3 

antibody tagged with allophycocyanin (APC) and analyzed using flow cytometry. All cell 

populations were gated on the parameters of forward scatter vs. side scatter (FSC vs. SSC) to 

exclude any remaining dead cells and/or cellular debris. The parameters of SSC vs. STAT3 

fluorescence signal were then used to plot histograms. 

Flow cytometry analysis of cobalt-treated cells revealed that these cells significantly 

increased their total level of STAT3 over 48hr treatment duration as compared to control cells 

(Fig. 5A). Twenty-four hour treatment resulted in a mean increase in total STAT3 of ~7% and 

48hr treatment resulted in a significant mean increase in total STAT3 of ~13%. The increase in 

total STAT3 levels in treated cells is shown in the panel of histograms in Fig. 5B, as duration 
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increases and the fluorescent signal becomes more intense. This shift in STAT3 fluorescence 

indicates that treated cells had an increased amount of total STAT3 as compared to that of 

control cells.   
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Figure 5: NMB cells significantly increased the amount of total STAT3 expressed over 48hr cobalt treatment. (A) 
Mean values (+/- SEM) of fluorescent intensities expressed as percent of control. Significance was determined using 
unpaired Student’s t-test; *p<0.05. (B) Histograms from a single set of representative measurements in which the 
mean fluorescent intensity increased as a result of cobalt treatment. Y-axis is normalized to area under the curve. X-
axis is fluorescent intensity (log5 scale).  
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Cobalt treatment decreased pY705-STAT3 

Interestingly, the preliminary data showed that pY705-STAT3 levels were significantly 

decreased under various cobalt exposures (Fig. 6A). The same gating parameters (FSC vs. SSC) 

were used to include only intact cells. As compared to control, 24hr cobalt treatment 

significantly decreased the mean pY705-STAT3 signal to ~84% and 48hr treatment resulted in a 

decrease to a mean of ~74%. The histogram panel in Fig. 6B shows a time-dependent leftward 

shift in fluorescent intensity of pY705-STAT3. These preliminary data showed that total STAT3 

level increased as the treatment duration increased, whereas STAT3 activation via Y705 

decreased in response to cobalt challenge.  
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Figure 6: Cobalt treatment significantly decreased NMB pY705-STAT3 levels in a time dependent manner. (A) 
Mean values (+/- SEM) of fluorescent intensities expressed as percent of control. Significance was determined using 
unpaired Student’s t-test; **p<0.01, ***p<0.0001. (B) Histograms from a single set of representative measurements 
in which the mean phosphotyrosine signal decreased as a result of cobalt treatment. Y-axis is normalized to area 
under the curve. X-axis is fluorescent intensity (log5 scale). 
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Effect of cobalt treatment on hMOR and hDOR expression 

NMB cells express all three endogenous opioid receptors (Baumhaker et al, 1994). As 

such, NMB cells are an ideal cell line for observing the cobalt-induced hypoxic effect on hMOR 

and hDOR expression. The preliminary data from RT-PCR analysis showed that NMB cells 

decreased expression of hMOR (Fig. 7) under the treatment. As compared to control, 24hr cobalt 

treatment resulted in a 54% decrease of hMOR expression, and 48hr treatment caused an 80% 

decrease in mean hMOR expression. There was no detectable change in hDOR expression as 

compared to that of control (Fig. 8). 

  



32 

 

 

 
Figure 7: hMOR expression decreased in NMB cells that survived cobalt treatment. The hMOR PCR product was 
analyzed using gel electrophoresis. The band intensities were normalized to mean hβ-actin signal. The data is 
expressed as the percent of control.  
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Figure 8: NMB hDOR expression did not change in response to cobalt treatment. The hDOR PCR product was 
analyzed using gel electrophoresis. The band intensities were normalized to hβ-actin signal. The data is expressed as 
the percent of control.   
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Discussion 
 

Hypoxia is a common feature of many solid tumors and can contribute to tumor 

progression, tumoral resistance to therapy, metastasis, and a poor clinical outcome. The causes of 

tumor hypoxia are well understood, but little research has been done on understanding the effects 

of hypoxia within a neuronal cancer cell line. Specifically, some of the factors that contribute to 

cell survival under hypoxic conditions are not fully understood. In order to address these 

questions, we established the basis for a model of chemically induced hypoxia using NMB cells 

with the hypoxia mimetic cobalt chloride. Utilizing this model, this study demonstrated that 

hMOR expression was decreased while an increase in total STAT3 accompanied by decreased 

phosphorylation at Y705 was detected. 

By measuring significant decreases in overall NMB cell viability as a function of the 

duration and concentration of cobalt treatment, we established that this cell line is responsive to 

this hypoxia mimetic agent. These results agree with previous studies that show that cobalt 

chloride negatively affects cell viability. Cobalt has been reported to promote apoptosis in 

different cell lines, such as human acute myeloid leukemic cells, mouse embryonic fibroblasts, 

and human carcinoma cells (Huang et al, 2003; Vengellur & LaPres, 2004; Ardyanto et al, 

2006). However, whether cobalt treatment can promote apoptosis in this NMB cell model system 

will need to be further investigated. Additionally, we detected distinct morphological changes 

that were characterized by elongation of neuronal processes in cobalt-treated cells. Other studies 

have also observed similar changes in cell morphology in response to cobalt hypoxia mimetic 

using mesenchymal stem cells (Zeng et al, 2011) and colon cancer cells (Lopez-Sanchez et al, 

2014). Cobalt-induced morphological changes to neuronal cancer cells have not been previously 

reported. 
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In rat PC12 neuronal cells cobalt chloride induced apoptosis, which is accompanied by 

and likely initiated by a loss of mitochondrial membrane potential (ΔΨM) (Jung & Kim, 2004; 

Jung et al, 2007). Using a similar method of measuring ΔΨM, we did not observe a change in 

ΔΨM of the surviving neurons. This discrepancy is actually unsurprising, as these surviving cells 

developed the adaptive responses under cobalt-induced hypoxia. To determine if ΔΨM disruption 

also causes apoptosis in NMB cells additional experiments will need to be performed that 

include apoptotic cells.  

Given that some cobalt-treated cells experience a loss of ΔΨM before succumbing to 

apoptosis, it is possible that a resistance to cellular events that otherwise would induce pro-

apoptotic ΔΨM changes, which we observed in surviving and attached cells, is part of the 

mechanism that allows some NMB cells to adapt to hypoxia. In fact, another group has recently 

demonstrated that apoptosis-resistant prostate and colon cancer cells preserved mitochondrial 

functionality as well as ΔΨM even after long-term hypoxia stimulation (Chiche et al, 2010). This 

report, as well as our results, suggest that a contributing factor of cancer cell adaptation to 

hypoxia may be the ability of some cell mitochondria to resist ΔΨM disruption, thereby 

forestalling apoptosis. More investigation will need to be performed to confirm this hypothesis, 

and to explore intracellular factors that may be responsible for mediating this mitochondrial 

activity.   

An additional factor that may mediate NMB adaptation to cobalt-induced hypoxia is 

STAT3. In preliminary results, we observed a time-dependent increase in total STAT3 in 

response to cobalt administration, suggesting its involvement in the adaptive processes. 

Classically, STAT3 activation occurs via Y705 phosphorylation, which induces STAT3 

homodimerization and directs it to the nucleus where it acts as a transcription factor for several 
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oncogenic cellular processes. Given that, membrane bound receptor tyrosine kinases, cytokine 

receptor-associated Janus Kinases (JAKs), and non-receptor tyrosine kinases have all been 

shown to phosphorylate Y705-STAT3 (Brantley & Benveniste, 2008), Y705-STAT3 is 

positioned as an intracellular node through which multiple signals are interpreted and passed. 

However, this study showed a decrease in the amount of phosphotyrosine STAT3 in a time-

dependent manner in response to cobalt administration, suggesting that STAT3 activation via 

Y705 may not be involved in NMB adaptation to hypoxia. While these results need to be 

repeated and corroborated with different methods, they point to a role for STAT3 in response to 

cobalt-induced hypoxia that is not mediated via its critical tyrosine residue in this NMB cell 

model system.      

Recently, several phosphotyrosine-independent roles for STAT3 have been proposed. 

These include maintaining ΔΨM, reducing ROS production, and mediating Ras-induced 

oncogenic transformation (Yan & Rincon, 2016). In order to promote these cellular processes 

mitochondrial localization of STAT3 and phosphorylation of its serine residue (S727) are 

required (Wegrzyn et al, 2009; Gough et al, 2009; Zhang et al, 2013). Disruption of ΔΨM and 

ROS generation are two well-documented effects of CoCl2 administration (Jung & Kim, 2004; 

Leonard et al, 2004). Therefore, S727 phosphorylation may also be involved in the development 

of adaptation. Taken together, this study along with various reports may implicate a bifurcated 

pathway of STAT3 activity: a classical pathway in which Y705 phosphorylation leads to STAT3 

nuclear translocation and transcription regulation and a non-classical/mitochondrial pathway, 

which has been reported in both pancreatic cancer cells and glioma cells (Kang et al, 2012; 

Mandal et al, 2014). 
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 Independent of the role of STAT3, this study also sought to clarify functions of hMOR 

and hDOR in response to cobalt-induced hypoxia. The endogenous expression of all three major 

opioid receptors in this NMB cell line made it ideal for measuring their expression changes 

under cobalt treatment. The preliminary RT-PCR data showed a time-dependent decrease in 

hMOR expression, while hDOR expression remained unchanged. These results point to a 

possible antagonistic function of hMOR in NMB survival, while also suggesting that hDOR may 

or may not be involved in the NMB response to hypoxia. Similar findings were also reported 

previously using the same NMB cell line with the hypoxia mimetic DFO (Cook et al, 2010; 

Candelora, 2014).  

Overall, this study reported that the development of adaptive responses, including 

elongation of neuronal processes, increased levels of STAT3 and of hMOR expression, and 

decreased phosphorylation of Y705-STAT3, in surviving NMB cells under cobalt-induced 

hypoxia. Additional data sets will be added to further validate these preliminary results. Given 

that mechanistic differences between chemically induced hypoxia and “true” hypoxia exist 

(Huang et al, 2014), it will be useful to examine these adaptive response under actual low oxygen 

conditions in the future.  
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