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Abstract 
	
	
Polycyclic aromatic hydrocarbons (PAHs), constituents of crude oil, are implicated as a potent 

source of adverse toxicological effects on living organisms.  To model the effects of PAHs in 

response to environmental oil spill disasters a species of killifish (Fundulus heteroclitus) was 

captured and exposed to crude oil in a laboratory-controlled setting.  Over a period of 7 days, 

fish were dosed with crude oil by gavage, culled, and organs were harvested for analysis.  

Excitation-emission matrix spectroscopy (EEMS) of gall bladder tissue homogenates was used to 

verify exposure.  Effects of PAHs on the p53 gene were evaluated as an indicator of 

genotoxicity.  P53 is a tumor suppressor protein that when mutated is implicated in a variety of 

cancers and genomic instability.  Specifically, the p53 DNA binding domain of the gene was 

amplified from liver tissue using PCR and analyzed using single-stranded conformational 

polymorphism (SSCP).  SSCP showed that across control and treated killifish, 8 unique genetic 

profiles could be identified, indicating a combination of native polymorphisms with two unique 

profiles only seen in Day 7 exposed fish.  EEMS analysis on samples from Days 3 and 7 

confirmed PAH exposure.  Several experimental profiles found in both control and treated fish 

were cloned and re-subjected to SSCP.  Results showed masked polymorphisms in experimental 

and control fish.  Subsequent DNA sequencing of clones showed multiple point nucleotide 

changes associated with different SSCP profiles.  These polymorphisms were found primarily in 

introns but also exons, where 4 of 6 changes in exposed fish were substitutions of the amino acid 

asparagine (Asn) for aspartate (Asp). These findings suggest the possible occurrence of crude 

oil-related mutagenesis in critical gene targets and provide a process for identifying them.
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Introduction 
 

 

British Petroleum’s April 2010 Deepwater Horizon (DWH) oil spill is one of the most 

devastating ecological events in recent years during which the Gulf of Mexico and its coastal 

regions were exposed to approximately 171 million gallons of crude oil (Adams, 2015).  The 

ecological ramifications of this and other oil spills extend from the acute toxicity on the biome to 

the long term bioaccumulation of the components of crude oil in sediment, sea water, coastal 

regions, and wildlife where effects are more uncertain.  One group of environmentally significant 

compounds found in crude oil are the polycyclic aromatic hydrocarbons (PAHs) composed of 

nonpolar, highly lipophilic and petrogenically sourced, multi-ringed substances.  PAHs from 

crude oil spills are monitored using fluorescence analysis of gall bladder bile (Jewett et. al., 

2002, Jung et. al., 2011).  The different numbers and positions of the fused benzene ring 

structures generate unique spectra allowing their detection and quantification (Beyer et. al., 

2010, Ferretto et. al., 2014).  Fundulus heteroclitus, commonly called killifish or mummichogs, 

are small, teleost fish endemic to the estuarine American Atlantic coast, and they have 

historically shown the ability to adapt and survive in response to environmental contaminants 

(Duvernell, 2008).  Studies following the DWH oil spill show toxicological effects in Gulf 

killifish (F. grandis), including immune system deficiencies (Ali et. al., 2014) and genotoxicity 

(Whitehead et. al., 2011).  In this study, F. heteroclitus served as a model organism for 

investigating mutagenic effects of DWH crude oil, or Macondo 252 (MC252) oil, in a laboratory 
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setting using fluorescence analysis to detect the presence of PAH-like compounds and 

polymerase chain reaction followed by single stranded conformational polymorphism analysis to 

detect possible genotoxicity. 

 

While there are hundreds of known PAHs, sixteen are noted by the United States Environmental 

Protection Agency (EPA) as linked to adverse effects on humans and the environment 

(Pampanin and Sydnes, 2013).  While not categorized as one of the twelve initial persistent 

organic pollutants (POPs), crude oil is known to persist in the environment for periods of over 

ten years (Short et. al., 2003).  The lingering of crude oil in the environment, particularly the 

toxic PAHs, has been established in multiple studies.  A 2001 study showed that moderately 

oiled beaches that resulted from the 1989 Exxon Valdez spill in the Gulf of Alaska and along 

Prince William sound still show PAH deposits in the intertidal zone (Short et. al., 2003), (Irvine 

et. al., 2006). 

 

Killifish, specifically F. heteroclitus, are ideal as biosensors for environmental pollutants 

because they show clinal variation where populations can vary based upon geographic location, 

and groups have high site fidelity and a narrow home range allowing for genetically homogenous 

populations (Teo et. al., 2003).  They are often the last surviving fish species in highly polluted 

waters such as the Newark Bay, where the fish display a variety of effects on exposure endpoints 

such as reproductive disturbances, chemical desensitization, and endocrine disruption (Bugel et. 

al., 2010).  Their common use as a sentinel species has led to a breadth of literature on their 

reaction to exposure and the subsequent adverse effects, including studies on the effects of the 
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DWH oil spill on related species F. grandis which is the one of the most commonly occurring 

vertebrate species found in the Gulf of Mexico estuarine marshes (Whitehead et. al., 2011).   

 

Genotoxicity is investigated in this student to determine if there is a link between this adverse 

effect and exposure to crude oil.  As an organism ingests contaminated substances, the kidneys 

or liver metabolize these fused benzene rings.  Metabolism of polycyclic aromatic hydrocarbons 

occurs primarily via oxidation by the cytochrome P450 family of enzymes.  PAH metabolites 

formed by cytochrome P450 (CYP450) peroxidase yield radical ions or dihydrodiol epoxides, 

which can cause direct DNA damage through the formation of DNA adducts or oxidative 

damage by the formation of radical cations, either of which can lead to carcinogenesis (Muñoz 

and Albores, 2011).  However, a second metabolic pathway that involves the formation of PAH-

o-quinones by dihydrodiol dehydrogenase is of particular concern because PAH-diol epoxides 

(PAHDEs) are planar molecules that can be reactive and are able to covalently bind to adenine 

nucleotides yielding high tumorigenicity (Geacintov et. al., 1997).  PAHDEs are also able to 

amplify reactive oxygen species and the damage they cause to DNA nucleotide bases, 

particularly via the formation of a structure called 8-Oxo-2'-deoxyguanosine (8-oxo-dG) (Quinn 

et. al., 2008) (Varansi et. al., 1989).  This lesion yields DNA that is not only damaged, but also 

carcinogenic. 

 

Genotoxicity of crude oil in fish is evidenced by DNA adduct formation in both laboratory 

evaluations of Atlantic cod (Aas et. al., 2000) and field studies such as after the 1996 oil spill by 

the Sea Empress in Wales (Harvey et. al., 1999).  Crude oil genotoxicity has also been linked to 

the presence of tumors in wild caught and laboratory exposed fish (Arcand-Hoy and Metcalfe, 

1999, Bailey et. al., 1996).  One study linked the prevalence of liver tumors in an Ohio species of 
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bottom-feeding brown bullhead fish (Ameirurus nebulosus) to levels of sedimentary PAHs in the 

Black River (Baumann and Harshbarger, 1998).  This study was then continued to determine the 

relationship between PAHs and PAH-like metabolites and their role in tumorigenesis by 

investigating the formation of adduct structures in liver and skin cells in the brown bullhead fish 

from several locations in Maryland and Washington D.C. (Pinkney et. al., 2004).  Hepatic 

cytochrome P450 was the primary marker studied and a 50%-68% increase in liver and skin 

tumors was documented in larger, older fish as sediment PAH levels rose to 15 parts per million 

(ppm).  In Nordic coastal sites, DNA adduct levels were found to be elevated in the gill tissue of 

mussels in six of a total of eighteen study locations correlated to PAH exposure with a r2 value of 

0.73 (Skarphédinsdóttir et. al., 2007) .  Phenanthrene and pyrene exposure, two of the sixteen 

PAHs noted as most toxic by the EPA, were specifically noted as able to induce the highest 

levels of DNA adducts seen in gill tissue.  Evaluating the effects of PAHs on organism survival, 

organ function, and genotoxicity is important due to the ubiquitous environmental exposure from 

pyrogenic and petrogenic sources and key in establishing a complete adverse outcome pathway 

(AOP) where a linear link between toxicant exposure and a population wide outcome can be 

used to evaluate risk due to exposure.  

 

In this study, the p53 gene of F. heteroclitus was investigated.  The gene p53 is a critical tumor 

suppressor gene composed of four domains that function to regulate the cell cycle and halt its 

progression in the presence of DNA damage.  It is responsible for arresting cell proliferation 

before G1 phase or before mitosis at G2 phase to allow for DNA repair of DNA lesions if the 

cell is critically damaged (Joerger 2010).  It is the hub of many cell-signaling pathways, and is 

responsible for directing a cell toward apoptosis in the event of a cell having more damage than 
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the endogenous processes are capable of repairing.  One function of wild type p53 is to activate 

the small subunit of an enzyme called ribonucleotide reductase (RRM2b), which allows for the 

regulation of the rate of DNA synthesis via the control of the conversion of deoxyribonucleotides 

from ribonucleotides (Haupt et. al., 2016).  Mutant p53 is able to up regulate the biosynthesis of 

nucleotides which aides in the uncontrolled proliferation of cancerous cells.  Additionally, 

activation of p53 in response to DNA damage is able to trigger transcription of multiple gene 

targets such as cyclin-dependant kinase inhibitor p21, which is able to disrupt the proper 

progression of the cell cycle in the G1 phase (Mukherjee et. al., 2004).  Overriding the proper G-

S checkpoints has the ability to cause genomic instability and increased response to other DNA 

damaging agents.  Disruption to the cell cycle is escalated in response to the PAH benzo-[a]-

pyrene, a metabolite of pyrene commonly produced in the liver of organisms.  Cogenotoxicity 

can also be seen in combination exposure to PAHs and heavy metals such as cadmium, 

sometimes making it difficult to parse apart the specific mechanisms of toxicity.  Since multiple 

environmental pollutants are frequently present, laboratory based studies can help elucidate 

specific mechanisms of genotoxicity. 

 

P53 is the most mutated gene associated with neoplasm formation and subsequent tumorgenesis, 

and mutations affecting this gene are seen in more than half of all human malignancies (Freed-

Pastor and Prives 2012).  P53 mutations are specifically associated with 96% of ovarian serous 

carcinomas, 86% of small cell lung cancers, 75% of pancreatic cancers and 54% of invasive 

breast carcinomas where of these, 86% of mutations to the p53 gene occur between codons 125 – 

300 (Glazko et. al., 2004).  This region of the gene codes for a protein, which serves as a 

multifunctional transcription factor and is implicated in processes such as DNA replication, 
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transcription, repair, and cell cycle regulation.  Loss of transcriptional regulatory function and 

often associated activation of the oncogene mouse double minute 2 homolog (MDM2), can lead 

to the elimination of a major negative feedback loop that can allow for an increase in amount of 

mutant P53 protein (Kamp et. al., 2016).  The core domain called the DNA binding domain 

occurs from codon 94 – 325 and is considered a highly mutative region, with one study finding it 

to be the location of 95% of missense mutations in 6 key residues in humans (Bullock and Fersht 

2001).  This region of the gene was selected for further study due to the overlap in multiple 

studies finding this domain to be the region containing the majority of hotspots and its 

importance in the function of the P53 protein (Pavletich et. al., 1993). 

 

This study aimed to expose wild New Jersey killifish to MC252 crude oil in a laboratory setting 

and analyze DNA polymorphisms in the DNA binding region of the p53 gene.  DNA 

polymorphisms could be a biomarker for crude oil exposure seen after acute or chronic exposure 

(Pérez-Cadahía et. al., 2008), or could be indicative of adaptation to persistent environmental 

contaminants.  Another study found mutations in the proto-oncogene K-ras in pink salmon 

(Oncorhynchus gorbuscha) embryos following dosing with Exxon Valdez crude oil using 

polymerase chain reaction (PCR) with mismatched 3’ primers followed by DNA sequencing 

(Roy et. al., 1999).  In the present study, single-stranded conformational polymorphism of PCR 

products (PCR-SSCP) was used to detect nucleotide changes in p53 of liver tissue of adult fish.  

This study then took a further step by cloning and sequencing various SSCP profiles and found 

multiple sub-profiles, some containing mutations associated with PAH damage.  The presence of 

PAH exposure was determined using Excitation-Emission Matrix spectroscopy (EEMs).  Due to 

the limited number of samples, this study represents a proof of principle for the PCR-SSCP 
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approach, which has been studied infrequently, but could provide a similar approach to 

polymorphic analysis that is quicker than microarrays or restriction fragment length 

polymorphism analysis.  To date, however, no research has been found that shows multiple 

polymorphic sub-profiles that show unique sequence variations following cloning.  This suggests 

that the approach studied here could show a novel attempt to identify DNA sequence variation in 

response to toxicant exposure. 
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Materials and Methods 
 

 

Specimen Collection and Crude Oil Treatment  

Atlantic killifish (Fundulus heteroclitus) were collected from Little Sheepshead Creek in 

Tuckerton, NJ on July 12th, 2013.  Fish were captured with permission from The New Jersey 

Department of Environmental Protection: Division of Fish and Wildlife under Permit #1125, and 

all vertebrate work done in this study was approved under Protocol #08-025 of The Rutgers 

University’s Institutional Animal Care and Use Committee (IACUC) (Zadlock 2017).  Live male 

and female F. heteroclitus individuals were caught using baited minnow traps and isolated from 

other organisms caught by visual examination of species morphology.  Immediately, the fish 

were transported back to Rutgers University in aerated containers containing collection site water 

to reduce animal distress.  The fish were acclimated to laboratory conditions for two weeks 

before crude oil exposure.   

 

Individuals in the control and experimental groups were maintained in two different tanks for the 

duration of the treatment, and fish were dosed by gavage.  Control fish were exposed to 25 µl of 

100% fish oil obtained directly from DayBrook Fisheries (http://www.daybrook.com/).  Fish in 

the experimental group were exposed to 25 µl of a 50% fish oil and 50% crude oil mixture.  The 

crude oil was Macando 252 (MC252) source oil collected prior to the 2010 Deepwater Horizon 

accident, as well as from other rigs tapped into the same crude oil source. The 100% fish oil was 
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produced commercially from Gulf menhaden collected in 2009 and used as a vehicle control as 

well as a means to reduce gastrointestinal distress from crude oil alone.  The 50/50 dosage of the 

experimental group was selected as a maximal tolerated dose without observation of acute 

toxicity.  Control and experimental groups were dosed for three days consecutively, Day 0 

through Day 2, and individuals were culled on Day 0, 1, 3, and 7 as seen in Table 1.  Sacrifice 

was accomplished using MS-222 (tricaine methanesulphonate) overdose with subsequent 

cervical spine dislocation (Zadlock 2017). 

Table 1: Experimental timeline of fish oil or crude oil exposure and sample sacrifice for 
control and experimental groups 
	
Schedule Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Start Time 9:00 AM 9:00 AM 9:00 AM 9:00 AM       9:00 AM 

Treatment Dose Dose Dose      

Sacrifices Day 0 Day 1   Day 3       Day 7 

 
Table 1 shows the dosing schedule for the control and treated killifish.  Fish oil control or 50/50 
MC252/fish oil treatments were administered in 25 µl aliquots via gavage.  Fish were dosed on Day 0, 
1, and 2 at 9:00 AM and individuals were sacrificed on Day 0, 1, 3, and 7.  Control and experimental 
samples were obtained only on Day 0, 3, and 7 for the P53 polymorphism study.  (Table adapted from 
Zadlock 2017). 
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PAH Extraction and Fluorescence Analysis 

Control and experimental fish were dissected and the organs were removed and stored at -80°C.  

Intact gall bladders were individually homogenized in 500 µl of 70% ethanol and an additional 

500 µl of 70% ethanol was added to extract any PAHs from the tissue.  Samples were vortexed 

for one minute and centrifuged for 20 min at 13,000 rpm at 4°C to pellet the tissue.  The 

supernatant was removed for fluorescence analysis.  All ethanol used in this study was KOPTEC 

200 proof (VWR International, King of Prussia, PA, USA).  Dilutions made with deionized 

water were performed with 18 Ohm water from Milli-Q Integral 5 (EMD Millipore Inc., 

Billerica, MA, USA) (Zadlock 2017). 

 
Sample supernatants were analyzed on a Fluorolog 3 (Horiba Jobin Yvon, Inc., 

Edison, NJ, USA) in 1mL quartz cuvettes with 1cm excitation path lengths.  The wavelengths 

were established using Sigma-Aldrich® PAH standards 1-hydroxypyrene, lot number 

MKBD7640V, 9-phenanthrol, lot number BGBB3193V and others (Sigma-Aldrich®, St. Louis, 

MO, USA) (Pena, 2014).  Excitation was from 260-400 nm and emission was from 320-480 nm.  

Fluorescence intensities were represented in 3D contour maps generated through excitation scans 

for multiple emission wavelengths.  Contour maps were depicted as heat maps and showed 

photon values labeled counts per second per microamps (CPS/µA), where red indicates high 

intensity fluorescence and blue indicates low intensity fluorescence.  2D scans were generated 

using EEMS data by fixing emission at 385 nm and running excitation from 260-380 nm.  To 

normalize fluorescence data for each fish, the fluorescence reading in CPS/ µA was divided by 

fish mass (g) (Zadlock 2017). 
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DNA Collection and PCR Analysis 

Fish liver genomic DNA isolation was performed using a modified Sigma-Aldrich® TRI 

Reagent ® protocol (Chomczynski 1993).  DNA from fish liver tissue or 70% ethanol 

homogenates (n=47) were utilized: 26 controls having received fish oil exposure and 21 samples 

having been exposed to the crude oil mixture and culled on Day 3 or 7.  Control fish from Day 0, 

3, and 7 and treated fish from Day 3 and 7 were utilized. 

 

Each liver sample or homogenate remaining from previous PAH extraction was homogenized in 

1 mL of TRI Reagent ® using either a glass homogenizer or a Tissue Tearor ™ Model 985370 

(Vernon Hills, IL, USA). The samples were incubated at room temperature for 5 minutes, 0.2 mL 

of Sigma-Aldrich® chloroform, anhydrous 99+%, was added, samples were vortexed and 

incubated at room temperature for 15 minutes.  The aqueous layers were removed and 0.3 mL of 

100% ethanol was added to precipitate the DNA.  The DNA samples were pelleted at 2,000 × g 

for 5 minutes at 2-8°C and washed with 1 mL 0.1M Sigma-Aldrich® trisodium citrate, 10% 

ethanol solution three times with 30 minute room temperature incubations between each wash.  

DNA pellets were dissolved in 70% ethanol for 20 minutes, repelleted, and left to air dry.  Pellets 

were then dissolved in 0.3 mL 8mM Sigma-Aldrich® NaOH, centrifuged at 12,000 × g for 10 

minutes, and buffered with 86 µL 0.1M sterile pH 7.5 HEPES solution (AMRESCO, Solon, OH, 

USA).  Absorbance values were taken for each DNA sample at 260nm and 280nm to check for 

DNA purity and concentration yields using a DU® 730 Life Science UV/Vis Spectrophotometer 

(Beckman Coulter Inc., Jersey City, NJ, USA).  Table 4 shows the liver sample IDs, their 

spectrophotometry data and their calculated DNA purities. 
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To validate the efficacy of DNA isolation, two of the DNA samples, Day 7 Control fish #3 (7C3) 

and Day 7 Exposed fish #3 (7E3) were amplified using PCR and Fundulus heteroclitus beta-actin 

housekeeping gene primers.  All PCR reactions in this study were composed of 12.5 µL of 

GeneAmp® Fast PCR 2X Master Mix (Applied Biosystems, Warrington, MA, UK), 8.5 µL 

Molecular Biology Grade Water (Mediatech, Inc., Manassas, VA, USA), 2 µL of relevant DNA, 

1 µL of relevant forward primer and 1 µL of relevant reverse primer.  Two reactions of each 

sample were amplified using 10 µM and 1 µM F. heteroclitus specific beta-actin primers 

developed by Frank J. Zadlock IV to ensure the DNA isolated was viable.  PCR reactions were 

run using a MultiGene™ Thermal Cycler Model TC020A with parameters of 1 minute at 95°C 

and 45 cycles of 1 minute at 95°C, 1 minute at 60°C, and 1 minute at 72°C, ending in a 72°C 

hold for 7 minutes (Labnet Inc., Edison, NJ, USA).  Samples were then held in the machine at 

4°C or stored at -20°C. 

 
These four samples were loaded on a 2% agarose gel made with UltraPure ™ agarose, 0.5X tris-

borate EDTA (TBE) buffer diluted from UltraPure ™ 10X TBE stock (Life Technologies™, 

Grand Island, NY, USA) and 10mg/mL Ethidium Bromide (Invitrogen™, Carlsbad, CA, USA).  

All subsequent agarose gels were made using the same setup and materials, and 6 µL of each 

sample was loaded combined with 2 µL of 3X Invitrogen™ TrackIt™ Cyan/Yellow Loading 

Buffer.  Samples were run alongside Invitrogen™ 100 bp DNA ladder with 2 µL of 0.5 µg/ µL 

ladder combined with 2 µL of loading buffer. 

 

Primer Design and Verification 

Primers for the p53 DNA binding domain were designed from National Center for 

Biotechnology Information (NCBI) Genbank’s Fundulus heteroclitus tumor protein p53 (tp53), 
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transcript variant X3, mRNA  (Accession XM_012874738.1) using primer3plus (Benson 2005), 

(Untergasser 2012).  The p53 DNA binding domain location oriented at 845-972 base pairs of 

the P53 protein was verified using European Molecular Biology Laboratory-The European 

Bioinformatics Institute (EMBL-EBI) pfam service to align NCBI FASTA nucleotide sequence 

to the amino acid sequence of the functional domain of the protein showing 141-332 amino acid 

sequence alignment match (Finn 2016).   

 
The forward primer selected started at base pair 811 and the reverse primer started at base pair 

1015 allowing for a 205 base pair amplicon.  The oligonucleotide sequences were then run 

through Integrated DNA Technologies (IDT) OligoAnalyzer® 3.1 Tool to check for minimal 

self-dimerization, hairpin, and heterodimerization activity (http://www.idtdna.com/Scitools.).  A 

second set of primers for a similar sequence were designed, but not used.  Table 2 below shows 

the primer design and intended amplicon.  A second set of primers was designed but not used. 

Table 2: Fundulus heteroclitus p53 DNA binding domain primer design and amplicon 
	

Primer 
Direction 

 

Melting 
Temperature 

(Tm) 

Start 
Location 

Oligonucleotide Size 
(bp) 

Sequence 

Forward 59.9oC 811 20 5’-CGGAGATGACCACCATTCTT-3’ 

Reverse 60.1oC 1016 20 5’-TTGCTGTCGCTTTTCTCCTT-3’ 

Sequence 
 
 
205bp 

751   AAGACCCGTA  CACCAAAAGG  CAGAGTGTCA  CCGTGCCGTA  TGAGCGGCCA 
801   CAGCTGGGCT  CGGAGATGAC  CACCATTCTT  CTCAGCTTCA  TGTGCAACAG 
851   CTCCTGCATG  GGGGGCATGA  ATCGTAGGCC  TATCCTCACC  ATCCTGACCC 

TGGAGACACC  AGAGGGGTTG  GTTTTGGGCC  GCAGATGCTT  CGAGGTCCGT 
GTCTGTGCCT  GTCCAGGCAG  GGACCGGAAG  ACCGAGGAAG  ACAACAAGGA 
GAAAAGCGAC  AGCAAGCAAA  AAAAAAAGCG  AAAGAGCGCT  CCTACTCCAG 

901   
951   

1001   
 
Table 2 shows the forward and reverse F. heteroclitus p53 DNA binding domain specific oligo sequences 
and their associated size, starting base pair number, and ideal melting temperature.  The p53 DNA 
binding domain sequence accessed from NCBI A Fundulus heteroclitus tumor protein p53 (tp53), 
transcript variant X3, mRNA Accession XM_012874738.1 is also displayed with the full gene region 
highlighted in green.  The oligo binding location is shown bracketed on either side of the intended 
amplicon with the forward primer highlighted in red and the reverse primer highlighted in blue. 
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PCR reactions were set up as described previously using the p53 DNA binding domain primer 

set with run parameters of 2 minutes at 95°C and 35 cycles of 1 minute at 95°C, 1 minute at 

60°C, and 1 minute at 72°C, ending in a 72°C hold for 7 minutes.  All subsequent PCR reactions 

were run with these parameters, and successful amplification was confirmed using the gel 

electrophoresis protocol described above. 

 
To evaluate successful amplification of the desired sequence, fresh PCR samples of Day 0 

control fish #8 (0C8) and Day 7 exposed fish #3 (7E3) underwent plasmid preparation using 

TOPO® TA Cloning Kit for Sequencing using the Invitrogen™ protocol (Abdel-Banat 2002).  

The cloning reaction was composed of 2.5 µL PCR sample, 1 µL of 1.2 mM NaCl, 10 mM 

MgCl2, 1.5 µL water, and 1 µL TOPO® vector, and was incubated on ice for 15 minutes.  A 2 

µL aliquot of the plasmid vector reaction was added to the One Shot ® TOP10 F’ Chemically 

Competent Escherichia coli cells, and the mixture was heat shocked at 42°C.  A 250 µL aliquot 

of room temperature super optimal broth with catabolite repression (SOC) media was added to 

the cells, and the cells were incubated while shaking at 37°C for 1 hour.  Competent cells were 

spread onto pre-warmed 100 µg/mL LB/ampicillin plates that had been treated with 80 µL of 20 

mg/mL Thermo Scientific X-Gal and 40 µL of 20 µg/mL Thermo Scientific IPTG (isopropyl β-

D-1-thiogalactopyranoside).  All subsequent cloning in this study followed this same procedure 

(Thermo Fisher Scientific, Waltham, MA USA).  Cloning reaction plates were incubated 

overnight at 37°C. 

 
Three white, successfully transformed colonies were selected from each cloning plate using blue-

white selection, and suspended in 50 µL Molecular Biology Grade Water (Thermo Fisher 
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Scientific, Waltham, MA USA).  PCR was used to re-isolate the gene of interest using the gene 

specific p53 forward primer and the plasmid specific M13 kit reverse primer.  The samples were 

run on a gel to ensure successful PCR, and one of each sample (0C8 and 7E3) was sent for 

sequencing to GenScript DNA Sequencing Service to validate the amplification of the p53 

binding domain (GenScripts Biotech Corporation, Piscataway, NJ ).  

 

Polymorphism Analysis using SSCP 

Once the primers were validated, PCR gene amplification of the p53 DNA binding domain was 

performed on all 47 DNA samples.  All PCR samples were run on agarose gels to ensure 

successful amplification with expected band lengths consistent with 205 base pairs. 

 

Individual 6 µL samples of each PCR reaction were then denatured at 95oC for 10 minutes in 12 

µL of formamide loading dye buffer (Invitrogen, Vilinius, LI), and then flash frozen on dry ice.  

The samples were loaded into 15 well upright BIO-RAD Mini-PROTEAN® TBE Precast Gels 

that had been rinsed and pre run in 0.5X TBE for 45 minutes at 200 volts.  Aliquots (8 µL) of 

samples were then run at 72 volts for 3 hours with the gel apparatus submerged in ice.  Once the 

tracking dye had run to the bottom of the plastic casing, the gel was cracked open, removed, and 

soaked in 100 mL of deionized water until the dye had dissipated from the gel or for 20 minutes, 

and the water was decanted.  SYBR® Gold Nucleic Acid Gel stain was diluted from 10,000x to 

1x with 1 µL of stain into 50 mL deionized water, and poured over the gel.  The gel was covered 

with aluminum foil and rocked for 30 minutes.  The gel was visualized on a UV transilluminator 

and SSCP variants were recorded (Orita 1989).   
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Cloning, Sequencing, and Alignment of Polymorphic Profiles 

One PCR sample (7E2) was cloned into One Shot ® TOP10 F’ Chemically Competent 

Escherichia coli to evaluate amplicon sequence consensus among multiple clones of the same 

SSCP variant.  Fifteen successfully cloned colonies were selected and amplified using PCR and 

the gene specific primer set.  The 15 clones were denatured in formamide buffer and run again 

on a 15 well upright BIO-RAD Mini-PROTEAN® TBE Precast Gel using the setup as before.  

The gel was visualized on a UV transilluminator and SSCP variations from the original parent 

profile were recorded.  From the 15 clones, three were selected to sequence, one clone with an 

SSCP profile similar to the original PCR SSCP profile and two clones with unique or differing 

profiles.   

 
The above cloning, colony selection, and SSCP evaluation was repeated for two other 

experimental PCR samples (7E5 and 7E14) and for three control PCR samples (0C2, 3C7, and 

7C4) to evaluate two other unique SSCP profiles and comparative clone SSCP profiles. Three 

clones were selected from each of the two additional experimental sets, and six clones were 

selected from the three control clone sets to send out for sequencing.  

 

The selected clones were submitted to a sequencing company (GenScripts Biotech Corporation, 

Piscataway, NJ). Clone sequences were aligned using NCBI Nucleotide BLAST® (Altschul 

1990) in order to determine the presence or absence of sequence variants. 

 
This process was repeated for PCR samples 7E5 and 7E14 to evaluate two other unique SSCP 

profiles from p53 DNA exposed to crude oil treatment.  PCR samples 0C2, 3C7, and 7C4 also 

were cloned with 15 colonies from each amplification to compare control sample sequences to 
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the sequences of treated samples.  Three clones from each of the experimental clone sets were 

sent out for sequencing, then aligned and evaluated for sequence variants between like clones.  

One replicate from each of the control clone sets (three total) were sent out for sequencing to 

allow for comparative alignment between the control sequence and the experimental sequences 

above. 

 
Consensus sequences were aligned for clones from the same fish and matched with sequence 

similar to control clones.  Consensus sequences were then translated to the expected amino acid 

sequence and amino acid variation was determined. 
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Results 
 

 

Exposure to PAH-like compounds was determined in gall bladders using EEMS. Figure 1 shows 

four representative fish spectra obtained from 3D EEMS of gallbladder homogenates.  Control 

fish from both Day 3 and Day 7 show spectra signatures consistent with the protein albumin, 

with no strong signal from PAH-like compounds (Zadlock 2017).  Day 3 experimental fish #9 

(3E9) showed maximal fluorescence at Ex340/Em380-400, which was consistent with the 

presence of 1-hydroxypyrene.  Day 7 experimental fish #2 (7E2) showed maximal fluorescence 

at Ex260/Em370-380, which was consistent with the presence of 9-phenanthrol, and indicated 

preferential metabolism of 1-hydroxypyrene-like PAHs.  PAH standards for 1-hydroxypyrene 

and 9-phenanthrol are provided to display predominant PAHs likely present in homogenate 

tissue, as indicated by similar spectra.  Figure 2 shows the response of all Day 7 fish in 2D 

spectra.  The emission was held at 385 nm, and excitation varied from 260 to 380 nm.  Control 

fish showed 100x less fluorescence than experimental fish.  Fluorescence intensity was 

normalized using fish weight.  Spectra confirmed exposure to PAH-like compounds in crude oil 

of gavaged fish.  Table 3 provides average length and mass measurements for control and 

experimental fish from all days.  Day 1 fish were not processed in this study, but a T-test noted 

significant size difference in control versus experimental fish was observed. 
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Figure 1: Representative EEMS of gall bladders of crude oil exposed or 
control killifish collected on Day 3 or Day 7.  Top images indicate spectra for Day 
3 control fish #7 (3C7, left) and Day 7 control fish #4 (7C4, right). Middle images 
indicate spectra for Day 3 experimental fish #9 (3E9, left) and Day 7 experimental fish 
#2 (7E2, right).  Bottom images are PAH standards for 1-hydroxypyrene (0.02 µg/ml, 
left) and 9-phenanthrol (0.3 µg/ml, right) included for comparison. The fluorescence 
spectra seen in controls are similar to that of albumin. 
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Figure 2: Levels of fluorescence (CPS/µA/g) in gall bladders after 
Day 7 exposure to crude oil or control. This is a graphic representation 
of fluorescence from 2D EEMS where emission was held at 385 nm and 
excitation ranged from 260 to 380 nm. Day 7 control (bottom) and 
experimental (top) fish are compared with each line denoting an individual. 
Note that the scale for control is 1000x less than for exposure.  The gall 
bladder for Day 7 experimental fish #14 was lost during processing. 
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Table 3: Average monomorphic measurements of length and mass for male and female control 
and experimental group fish 
	
 Day 0 Day 1 Day 3 Day 7 
Group Length 

(mm) 
Mass 
(g) 

Length 
(mm) 

Mass 
(g) 

Length 
(mm) 

Mass 
(g) 

Length 
(mm) 

Mass 
(g) 

Control 68 
(9.0 )  

5.00 
(2.1 ) 

67.3 
(4.4) 

3.94 
(0.9) 

69.1 
(2.8) 

4.74 
(0.8) 

64.9 
(3.9) 

3.48 
(0.7) 

Exposed     75.6 
(4.4)* 

5.75 
(1.0)* 

74.9 
(7.9)* 

5.6 
(1.9) 

72.2 
(10.1)* 

5.05 
(2.6)* 

Table 3 indicates the length and mass measurements averaged for all the fish in the study where there was 
a T-Test significant difference between CON vs EXP group,  p ≤ 0.05; SD (95%) is in parentheses and 
designated with an asterisks. 
 



 22 

 

Polymorphisms in the DNA binding domain of p53 were investigated using PCR followed by 

SSCP. Primers displayed in Table 2 amplified a single band of 260 bp from genomic DNA of 47 

fish,  26 control and 21 experimental.  Fish were dosed with crude oil on Day 0, 1, and 2 and 

control and exposed specimens were culled on Day 0, 3, and 7 to evaluate polymorphisms 

following acute exposure.  Since the liver is a major site of PAH metabolism into active 

metabolites that show genotoxicity, liver tissue was analyzed.  Liver tissue DNA, homogenized 

and isolated using TRI Reagent ® showed some inconsistency in purity across the 47 sample, as 

seen in Table 4 below.  Some samples (all controls) required DNA isolated from a previously 

homogenized pellet that had been frozen, while all experimental livers were homogenized the 

day of DNA isolation.  Initial PCR reactions were all set up using the DNA concentration yields 

that allowed for calculation of optimal template DNA concentration.  Each fish evaluated was 

given an identifier where the day, group, and fish number were represented as day, experimental 

group (Control/Experimental), and fish #. For example, fish number 1 from the Day 0 control 

group was labeled 0C1.  Fish are abbreviated this way in text as well as in all figures, tables, and 

sequences.
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Table 4: Killifish liver sample IDs, tissue sample, and spectrophotometry data 

Sample ID Day C/E A260 n.m. A280 n.m. Purity Concentration (µg/mL) 
0C1 0 Control 0.362 0.221 1.64 181 
0C2 0 Control 0.694 0.416 1.67 347 
0C3 0 Control 0.291 0.183 1.59 146 
0C4 0 Control 1.741 1.022 1.70 871 
0C5 0 Control 0.878 0.518 1.69 439 
0C7 0 Control 0.774 0.475 1.63 387 
0C8 0 Control 0.192 0.140 1.37 960 
0C9 0 Control 0.143 0.088 1.63 72 
0C10 0 Control 0.153 0.094 1.63 77 
3C1 3 Control 0.786 0.527 1.49 393 
3C2 3 Control 0.989 0.658 1.50 495 
3C5 3 Control 0.740 0.489 1.51 370 
3C6 3 Control 0.861 0.547 1.57 431 
3C7 3 Control 2.695 1.886 1.43 1348 
3C8 3 Control 1.414 0.870 1.63 707 
3C9 3 Control 0.420 0.268 1.57 210 
3C10 3 Control 0.541 0.340 1.59 271 
3E1 3 Experimental 0.078 0.051 1.53 390 
3E2 3 Experimental 0.046 0.031 1.48 230 
3E3 3 Experimental 0.255 0.161 1.58 1275 
3E4 3 Experimental 0.173 0.110 1.57 865 
3E5 3 Experimental 0.106 0.060 1.77 53 
3E6 3 Experimental 0.019 0.007 2.71 95 
3E7 3 Experimental 0.220 0.131 1.68 1100 
7C3 7 Control 0.178 0.072 2.47 89 
7C4 7 Control 0.044 0.024 1.83 22 
7C5 7 Control 0.152 0.095 1.60 76 
7C6 7 Control 1.152 0.693 1.66 576 
7C7 7 Control 0.087 0.055 1.58 44 
7C8 7 Control 0.053 0.034 1.56 27 
7C9 7 Control 0.037 0.024 1.54 19 
7C10 7 Control 0.022 0.016 1.38 11 
7C11 7 Control 0.068 0.044 1.55 34 
7E1 7 Experimental 0.091 0.047 1.94 46 
7E2 7 Experimental 0.269 0.175 1.54 135 
7E3 7 Experimental 1.764 1.015 1.74 882 
7E4 7 Experimental 0.026 0.015 1.73 13 
7E5 7 Experimental 0.030 0.019 1.58 15 
7E6 7 Experimental 0.073 0.036 2.03 37 
7E7 7 Experimental 0.166 0.107 1.55 83 
7E8 7 Experimental 0.228 0.116 1.97 114 
7E9 7 Experimental 0.237 0.153 1.55 119 
7E10 7 Experimental 0.116 0.069 1.68 58 
7E11 7 Experimental 0.193 0.123 1.57 97 
7E12 7 Experimental 0.113 0.073 1.55 57 
7E13 7 Experimental 0.117 0.075 1.56 59 
7E14 7 Experimental 0.042 0.027 1.56 21 
Table 4 shows the full list of 47 liver DNA samples, their sample ID, and their spectrophotometry data.  A DU® 730 
Life Science UV/Vis Spectrophotometer was used to evaluate the A260 and A280 values, and purity was calculated 
using the standard equation of purity = (A260/A280) where pure, uncontaminated double stranded DNA will have a 
purity of 1.8 (Glasel 1995).  Concentration was derived from the equation dsDNA = (50 µg/mL x O.D.260 x dilution 
factor) (Barbas 2001). 
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The success of the DNA isolations was verified by amplifying two Day 7 samples (7C3 and 7E3) 

using primers specific to the Fundulus heteroclitus housekeeping gene beta-actin at two different 

concentrations.  Figure 3 shows strong bands present for beta-actin in both samples at 

approximately 150 base pairs, which is consistent with the expected size of this amplicon 

(Zadlock 2017).  Figure 4 shows the same two samples amplified with the designed p53 primers 

with the beta-actin gene as a comparison.  Primer set #1 was selected for continued study.  Two 

DNA samples were amplified using primer set #1 and sent out to GenScripts for sequence 

verification.  Sample 0C8 showed 100% hit identity with the GenBank sequence used to design 

the primers and sample 7E3 showed 96% identity, confirming the intended amplicon for the 

primers. 
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Figure 3: Verification of killifish liver DNA integrity 
using two concentrations of Fundulus heteroclitus 
beta-actin primers.  Bands at approximately 150 bp were 
indicative of successful amplification of this gene.  10µM and 
1µM concentrations were used to determine ideal primer 
concentration in further PCR reactions. 

 

 
 
Figure 4: Evaluation of designed p53 primer sets 1 
and 2 compared with housekeeping gene primers.  
Primer set #1 was selected for use as it shared an annealing 
temperature of 60oC with the beta-actin primers.  Primer set 
#2 required an annealing temperature of 63oC and was not 
utilized.  1µM concentrations of all primers were used in 
these PCR reactions. 
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Primer set #1 showed successful amplification of the intended gene, so all DNA samples 

underwent PCR, gel analysis, and then SSCP.  Figure 3 shows the PCR amplification bands 

from all 47 fish with the SSCP profiles below.  The intended amplicon was 205 bp as the primers 

were designed from an RNA transcript; however, the actual amplicon was 260 bp indicating 

additional bases from an intron, which was later confirmed by sequencing.  
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Figure 5: DNA gel electrophoresis and single stranded conformational polymorphism 
profiles for control samples and exposed samples. Singular white bands on a black background in 
each lane showed successful amplification of the gene. SSCP polymorphic profiles are shown as multiple 
bandings of black on white. Summary assignments (P1-P8) of each SSCP profile are provided in Table 5. 
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Comparison of gels identified eight individual SSCP profiles that were named in order to 

determine abundance of each variation specific to this study.  Table 5 shows the unique profiles 

and their abundance where profiles are named P1-P8.  Some of the profiles had similar 

characteristics, such as P1, P3, P5, and P7, which all showed two bands.  The variations between 

them arose in band intensity and relative size of the bands as well as distance of the bands from 

each other.  Slight differences in SSCP profiles have been established to show nucleotide 

changes that could be significant when sequenced.  The profiles in both the control and the 

experimental fish were varied; however, there was a greater abundance of P1, P2, and P3 across 

all groups, and these were considered dominant profiles for this population of killifish.  Since the 

fish were all collected from the same site at the same time, and were likely to be from the same 

school, the variation of profiles in the control were striking.  The exposed fish did show the 

dominant profiles as well as two profiles (P5 and P6) with lower abundance than control 

examples.  Two profiles (P7 and P8) were unique to Day 7 experimental fish and were therefore 

targeted for DNA sequencing.   
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Table 5: Summary of SSCP variant profiles 
	

 
 
Table 5 shows variation of observed SSCP profiles and provides the number of each profile seen 
categorized by day and test group.  Profile number was assigned arbitrarily and the abundance was not 
analyzed statistically or considered significant past raw observation. 
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Eight total profiles were established from the 47 specimens collected, and 6 specimens were 

investigated further to determine if SSCP profile variations could be connected to 

polymorphisms within the amplified region of the p53 gene.  The rationale for fish selection was 

as follows.  Experimental fish, 7E2, and control fish, 0C2, shared a similar profile, P1.  

Comparing them allowed assessment of clone variability from fish with the same original SSCP 

profile.  Experimental fish 7E5 (P7) and 7E14 (P8), and control fish 3C7 (P6) and 7C4 (2), had 

unique profiles from one another but common profiles in terms of representing their treatment 

group.  Comparing them allowed assessment of nucleotide differences between control and 

experimental fish.   

 

PCR-SSCP profiles of clones for the six selected fish are shown in Figure 6.  Profiles of selected 

controls showed uniformity across 15 randomly selected clones of each fish. Across all 45 clones 

from the three control fish, only 4 were unique: 0C2(3), 3C7(2), 7C4(2) and 7C4(8).  However, 

clones of experimental fish showed more variability.  Clones of 7E2 and 7E5 had three profiles 

each- 7E2(2), 7E2(7) and 7E2(10) and 7E5(5), 7E5(8) and 7E5(11), respectively.  Clone profiles 

7E2(2) and 7E5(5) had the dominant profile for their respective fish, and it was most similar to 

the original PCR-SSCP profile.  Clones of 7E14 also showed three profiles, 7E14(4), 7E14(5) 

and 7E14(12).  None of these profiles completely resembled the original PCR-SSCP profile.  
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Figure 6: SSCP comparisons between original parent sequence and fifteen clones.  PCR 
amplicons from 6 fish were selected for cloning based on their SSCP profiles.  Then 15 randomly selected 
clones per fish were subjected to SSCP.  The figure provides the fish designation, original SSCP profile, 
and the profile of each of its clones.  Boxed profiles were selected for DNA sequencing. 
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Boxed profiles from Figure 6 were sequenced and aligned to F. heteroclitus tumor protein p53 

(tp53), transcript variant X3, mRNA (Accession XM_012874738.1) using NCBI BLAST®.  

Clones of 7E2 were aligned to each other and 0C2(3), which was the control with the highest % 

identity to 7E2(2), 99% (Figure 7).  The sequences were 354-355 bp, including an intron of 148 

bp.  Alignments showed no nucleotide differences within exons.  Nucleotide changes occurred at 

4 positions within introns. 
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7E2(6)  1   CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E2(7)  1   CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E2(10) 1   CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
0C2(3)  1   CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
AA seq          E  M  T  T  I  L  L  S  F  M  C  N  S  S  C  M  G  G  M 
 
7E2(6) 61   ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGTCCTCTTTGTTT  120 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E2(7) 61   ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGTCCTCTTTGTTT  120 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E2(10)61   ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGTCCTCTTTGTTT  120 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
0C2(3) 61   ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGTCCTCTTTGTTT  120 
AA seq       N  R  R  P  I  L  T  I  L  T  L  E  T  P  E 
 
7E2(6) 121  GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACATTTTGAAGGATGAGGCCCTA  180 
            |||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||| 
7E2(7) 121  GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
            |||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||| 
7E2(10)121  GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACATTTTGAAGGATGAGGCCCTA  180 
            ||||||||||||||||||||||| |||||||||||||||| ||||||||||||||||||| 
0C2(3) 121  GCTGGAACCAGGATGTAGCTGTTAGGTTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
 
7E2(6) 181  CAGGCTTGTTTCTCTTGGAAAATATTAAATTAGATGTAATTAAACTCYTCTTTTTGCTCT  240 
            |||||||||||||||||||| |||||||||||||||||||||||||| |||||||||||| 
7E2(7) 181  CAGGCTTGTTTCTCTTGGAAGATATTAAATTAGATGTAATTAAACTCTTCTTTTTGCTCT  240 
            |||||||||||||||||||| |||||||||||||||||||||||||| |||||||||||| 
7E2(10)181  CAGGCTTGTTTCTCTTGGAA-ATATTAAATTAGATGTAATTAAACTCCTCTTTTTGCTCT  239 
            ||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||| 
0C2(3) 181  CAGGCTTGTTTCTCTTGGAAAATATTAAATTAGATGTAATTAAACTCTTCTTTTTGCTCT  240 
 
7E2(6) 241  TGTGCCTCATCAGGGGGTTGGTTTTGGGCCGCAGATGCTTCGAGGTCCGTGTCTGTGCCT  300 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E2(7) 241  TGTGCCTCATCAGGGGGTTGGTTTTGGGCCGCAGATGCTTCGAGGTCCGTGTCTGTGCCT  300 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E2(10)240  TGTGCCTCATCAGGGGGTTGGTTTTGGGCCGCAGATGCTTCGAGGTCCGTGTCTGTGCCT  299 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
0C2(3) 241  TGTGCCTCATCAGGGGGTTGGTTTTGGGCCGCAGATGCTTCGAGGTCCGTGTCTGTGCCT  300 
AA seq                      G  L  V  L  G  R  R  C  F  E  V  R  V  C  A  
 
7E2(6) 301  GTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAGCGACAGCAA  355 
            ||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E2(7) 301  GTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAGCGACAGCAA  355 
            ||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E2(10)300  GTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAGCGACAGCAA  354 
            ||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
0C2(3) 301  GTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAGCGACAGCAA  355 
AA seq       C  P  G  R  D  R  K  T  E  E  D  N  K  E  K  S  D  S   
Figure 7: DNA sequences of clones from experimental fish 7E2 and control fish 0C2.  
Sequences are labeled as day of collection – 7 or 0, treatment – E (experimental) or C (Control), 
fish number – 2 or 2, and clone (number).  Variations in nucleotide sequences are boldfaced and 
the exons are underlined.  The amino acid sequence (AA seq) is based on consensus codons. 
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Clones of 7E5 were aligned to each other and 7C4(2), which was the control with the highest % 

identity to 7E5(5), 97% (Figure 8).  The sequences were 369-374 bp, including an intron of 169 

bp.  This showed differences in intron length between 7E2 and 7E5.  Nucleotides differences in 

these alignments occurred within introns and exons.  Within introns, most nucleotide differences 

(7) as well as a 5 bp gap occurred in the control.  There was only one difference within the 

introns of experimental clones. Within exons, there were 6 positions with nucleotide changes.  

Clone 7E5(8) had 4 of 6 positions changed in its coding region.   
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7E5(5)  1   CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
            ||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||| 
7E5(8)  1   CGGAGATGACCACCATTCTTCTCAGCTTCCTGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
            ||||||||||||||||||||||||||||| ||||| |||||||||||||||||||||||| 
7E5(11) 1   CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCGACAGCTCCTGCATGGGGGGCATGA  60 
            ||||||||||||||||||||||||||||||||||| |||||||||||||||||||||||| 
7C4(2)  1   CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
AA seq          E  M  T  T  I  L  L  S  F  M  C  N  S  S  C  M  G  G  M 
 
7e5(5  61   ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGTCCTCTTTGTTT  120 
            |||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||| 
7E5(8) 61   ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGGGTGAGTCCTCTTTGTTT  120 
            |||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||| 
7E5(11)61   ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGTCCTCTTTGTTT  120 
            ||||||||||||||||||||||||||||||||||||||||||||||||||||| |||||| 
7C4(2) 61   ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGTCCTCCTTGTTT  120 
AA seq       N  R  R  P  I  L  T  I  L  T  L  E  T  P  E 
 
7E5(5) 121  GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E5(8) 121  GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E5(11)121  GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7C4(2) 121  GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
 
7E5(5) 181  CAGGCTTGTTTTTCTTGGAACAGATGAACTCTTAAACTCTGGAAATGTTGGAGTGTAATT  240 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E5(8) 181  CAGGCTTGTTTTTCTTGGAACAGATGAACTCTTAAACTCTGGAAATGTTGGAGTGTAATT  240 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E5(11)181  CAGGCTTGTTTTTCTTGGAACAGATGAACTCTTAAACTCTGGAAATGTTGGAGTGTAATT  240 
            |||||||||||||||||||| |||||||||||  || | |     ||||||||||||||| 
7C4(2) 181  CAGGCTTGTTTTTCTTGGAAAAGATGAACTCTGGAAATGT-----TGTTGGAGTGTAATT  235 
 
7E5(5) 241  AAACTCCTCTTTTTGCTCTTGTGCCCCATCAGGGGGTTGGTTTTGGGCCGCAGATGCTTC  300 
            ||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||| 
7E5(8) 241  AAACTCCTCTTTTTGCTCTTGTGCCTCATCAGGGGGTTGGTTTTGGGCCGCAGATGCTTC  300 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E5(11)241  AAACTCCTCTTTTTGCTCTTGTGCCTCATCAGGGGGTTGGTTTTGGGCCGCAGATGCTTC  300 
            ||||||||||||||||||||||||| |||||||||||||||| ||||||||||||||||| 
7C4(2) 236  AAACTCCTCTTTTTGCTCTTGTGCCACATCAGGGGGTTGGTTCTGGGCCGCAGATGCTTC  295 
AA seq                                         G  L  V  L  G  R  R  C  F  
 
7E5(5) 301  GAGGTCCGTGTCTGTGCCTGTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAG  360 
             |||||||||||||||||||||| ||||||||||||||||||||||||||| |||||||| 
7E5(8) 301  CAGGTCCGTGTCTGTGCCTGTCCCGGCAGGGACCGGAAGACCGAGGAAGACGACAAGGAG  360 
            ||||||||||||||||||||||| ||||||||||||||||||||||||||| |||||||| 
7E5(11)301  GAGGTCCGTGTCTGTGCCTGTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAG  360 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7C4(2) 296  GAGGTCCGTGTCTGTGCCTGTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAG  355 
AA seq        E  V  R  V  C  A  C  P  G  R  D  R  K  T  E  E  D  N  K  E 
 
7E5(5) 361  AAAAGCGACAGCAA  374 
            |||||||||||||| 
7E5(8) 361  AAAAGCGACAGCAA  374 
            |||||||||||||| 
7E5(11)361  AAAAGCGACAGCAA  374 
            |||||||||||||| 
7C4(2) 356  AAAAGCGACAGCAA  369  
 

Figure 8: DNA sequences of clones from experimental fish 7E5 and control fish 
7C4.  Sequences are represented as day of collection – 7 or 7, treatment – E (experimental) 
or C (Control), fish number – 5 or 4, and clone (number).  Variations in nucleotide 
sequences are boldfaced and the exons are underlined. The amino acid sequence (AA seq) 
is based on consensus codons. 
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Clones of 7E14 were aligned to each other and to 3C7(2), which was the control with the highest 

% identity to 7E14(4), 98% (Figure 9).  The sequences were 353-355 bp, including an intron of 

148 bp.  Alignments showed that clones 7E14(4) and 7E14(12) had identical sequences despite 

the apparent differences in their profiles.  Nucleotide differences occurred in introns (9) and 

exons (3).  Most changes occurred in the intron of 7E14(5).  Taken together, differences in PCR-

SSCP profiles were associated with nucleotide level changes between clones.  Most nucleotide 

changes occurred within introns, but some were found within exons, which could result in altered 

codons.  Clones from 7C4 were also aligned to each other just to show the intron was present in 

all controls sequenced, and show consensus sequence variations indicated by boldface text 

(Figure 10).  All three 7C4 clones show 98% identity with each other. 
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7E14(4)  1  CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAACTCCTGCATGGGGGGCATGG  60 
            ||||||||||||||||||||||||||||||||||||||| |||||||||||||||||||  
7E14(5)  1  CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACARCTCCTGCATGGGGGGCATGA  60 
            ||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||| 
7E14(12) 1  CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAACTCCTGCATGGGGGGCATGG  60 
            ||||||||||||||||||||||||||||||||||||||| |||||||||||||||||||  
3C7(2)   1  CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
AA seq          E  M  T  T  I  L  L  S  F  M  C  N  S  S  C  M  G  G  M 
 
7E14(4)  61 ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGACCTCTTTGTTT  120 
            |||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||| 
7E14(5)  61 ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGTCCTCTTTGTTT  120 
            |||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||| 
7E14(12) 61 ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGACCTCTTTGTTT  120 
            ||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||| 
3C7(2)   61 ATCGGAGGCCTATCCTCACCATCTTGACCCTGGAGACACCAGAGTGAGACCTCTTTGTTT  120 
AA seq       N  R  R  P  I  L  T  I  L  T  L  E  T  P  E 
 
7E14(4) 121 GCCGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTAAAGGATGAGGCCCTA  180 
            || ||||||||||||||||||||||||||||||||||||||||| ||||||||||||||| 
7E14(5) 121 GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
            || ||||||||||||||||||||||||||||||||||||||||| ||||||||||||||| 
7E14(12)121 GCCGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTAAAGGATGAGGCCCTA  180 
            || ||||||||||||||||||||||||||||||||||||||||| ||||||||||||||| 
3C7(2)  121 GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
 
7E14(4) 181 CAGGCTTGTTTCTCTTGGAAAATATTAAATTAGATGTAATTAAACTCTTCTTTTTGCTCT  240 
            ||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||| 
7E14(5) 181 CAGGCTTGTTTCTCTTGGAAAATATTAAATTAGATGTAATTAAACTCCTCTTTTTGCTCT  240 
            ||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||| 
7E14(12)181 CAGGCTTGTTTCTCTTGGAAAATATTAAATTAGATGTAATTAAACTCTTCTTTTTGCTCT  240 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
3C7(2)  181 CAGGCTTGTTTCTCTTGGAAAATATTAAATTAGATGTAATTAAACTCTTCTTTTTGCTCT  240 
 
7E14(4) 241 --TGCCACCTTAGGGGGTTGGTTTTGGGCCGCAGATGCTTCGAGGTGCGTGTCTGTGCCT  298 
              |||| | | ||||||||||||||||||||||||||||||||||||||||||||||||| 
7E14(5) 241 TGTGCCTCATCAGGGGGTTGGTTTTGGGCCGCAGATGCTTCGAGGTGCGTGTCTGTGCCT  300 
              |||| | | ||||||||||||||||||||||||||||||||||||||||||||||||| 
7E14(12)241 --TGCCACCTTAGGGGGTTGGTTTTGGGCCGCAGATGCTTCGAGGTGCGTGTCTGTGCCT  298 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
3C7(2)  241 T-TGCCACCTTAGGGGGTTGGTTTTGGGCCGCAGATGCTTCGAGGTGCGTGTCTGTGCCT  299 
AA seq                      G  L  V  L  G  R  R  C  F  E  V  R  V  C  A   
 
7E14(4) 299 GTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAGCGACAGCAA  353 
            ||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E14(5) 301 GTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAGCGACAGCAA  355 
            ||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7E14(12)299 GTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAGCGACAGCAA  353 
            ||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
3C7(2)  300 GTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAGCGACAGCAA  354 
AA seq       C  P  G  R  D  R  K  T  E  E  D  N  K  E  K  S  D  S  
 
Figure 9: DNA sequences of clones from experimental fish 7E14 and control fish 
3C7. Sequences are represented as day of collection – 7 or 3, treatment – E (experimental) or C 
(Control), fish number – 14 or 7, and clone (number).  Variations in nucleotide sequences are 
boldfaced and the exons are underlined. The amino acid sequence (AA seq) is based on 
consensus codons. 
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7C4(2)  1   CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7C4(8)  1   CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7C4(9)  1   CGGAGATGACCACCATTCTTCTCAGCTTCATGTGCAACAGCTCCTGCATGGGGGGCATGA  60 
AA seq          E  M  T  T  I  L  L  S  F  M  C  N  S  S  C  M  G  G  M 
 
7C4(2) 61   ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGTCCTCCTTGTTT  120 
            ||||||||||||||||||| ||||||||||||||||||||||||||||||||| |||||| 
7C4(8) 61   ATCGGAGGCCTATCCTCACYATCCTGACCCTGGAGACACCAGAGTGAGTCCTCTTTGTTT  120 
            ||||||||||||||||||| |||||||||||||||||||||||||||||||||||||||| 
7C4(9) 61   ATCGGAGGCCTATCCTCACCATCCTGACCCTGGAGACACCAGAGTGAGTCCTCTTTGTTT  120 
AA seq       N  R  R  P  I  L  T  I  L  T  L  E  T  P  E 
 
7C4(2) 121  GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
            ||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||| 
7C4(8) 121  GCTGGAACCAGGATGTAGCTGTTGGATTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
            ||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||| 
7C4(9) 121  GCTGGAACCAGGATGTAGCTGTTGGGTTAGAAAGGGAACACTTTGAAGGATGAGGCCCTA  180 
 
7C4(2) 181  CAGGCTTGTTTTTCTTGGAAAAGATGAACTCTGGAAATGTTGTTGGAGTGTAATTAAACT  240 
            ||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||| 
7C4(8) 181  CAGGCTTGTTTCTCTTGGAAAAGATGAACTCTGGAAATGTTGTTGGAGTGTAATTAAACT  240 
            ||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||| 
7C4(9) 181  CAGGCTTGTTTTTCTTGGAAAAGATGAACTCTGGAAATGTTGTTGGAGTGTAATTAAACT  240 
 
7C4(2) 241  CCTCTTTTTGCTCTTGTGCCACATCAGGGGGTTGGTTCTGGGCCGCAGATGCTTCGAGGT  300 
            |||||||||||||||||||| |||||||||||||||| ||||| |||||||||||||||| 
7C4(8) 241  CCTCTTTTTGCTCTTGTGCCTCATCAGGGGGTTGGTTTTGGGCTGCAGATGCTTCGAGGT  300 
            |||||||||||||||||||| |||||||||||||||||||||| |||||||||||||||| 
7C4(9)241   CCTCTTTTTGCTCTTGTGCCACATCAGGGGGTTGGTTTTGGGCCGCAGATGCTTCGAGGT  300 
AA seq                                    G  L  V  L  G  R  R  C  F  E 
 
7C4(2) 301  CCGTGTCTGTGCCTGTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAG  360 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
7C4(8) 301  CCGTGTCTGTGCCTGTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAG  360 
            ||||| ||| |||||||||||||||||||||||||||||||||||||||||||||||||| 
7C4(9) 301  CCGTGCCTGAGCCTGTCCAGGCAGGGACCGGAAGACCGAGGAAGACAACAAGGAGAAAAG  360 
AA seq      V  R  V  C  A  C  P  G  R  D  R  K  T  E  E  D  N  K  E  K 
 
 
7C4(2) 361  CGACAGCAA  369 
            ||||||||| 
7C4(8) 361  CGACAGCAA  369 
            ||||||||| 
7C4(9) 361  CGACAGCAA  369 
AA seq      S  D  S 

 
Figure 10: DNA sequences of three clones from experimental fish 7C4. Sequences are 
represented as day of collection – 7, treatment – C (Control), and fish number – 4, and clone 
(number).  Variations in nucleotide sequences are boldfaced. The amino acid sequence based on 
the consensus codons is underlined. 
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All 14 nucleotide sequences were translated into amino acid sequences and aligned to F. 

heteroclitus TP53 X3 (Figure11).  Alignments of four control clones were 100% identical while 

a fifth one, 7C4(9), showed three codon changes.  One change resulted in a stop codon 

suggesting that this sequence variant would produce a truncated protein.  All 7E2 clones and one 

7E5 clone, 7E5(5), also showed no deviation from the original amino acid sequence.  However, 

all remaining experimental clones showed two or three amino acid substitutions.  For example, 

all three clones of 7E14 showed a serine (Ser) to asparagine (Asn) substitution, however this 

substitution was between two polar amino acids.  The most frequently amino acid change was 

from polar asparagine (Asn) to charged aspartate (Asp). This substitution was identified in 4 of 9 

experimental clones, but when evaluating the control clones this substitution was not found.  
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FhX1    EMTTILLSFMCNSSCMGGMNRRPILTILTLETPEGLVLGRRCFEVRVCACPGRDRKTEEDNKEKSDS 
0C2(3)  ------------------------------------------------------------------- 
3C7(2)  ------------------------------------------------------------------- 
7C4(2)  ------------------------------------------------------------------- 
7C4(8)  ------------------------------------------------------------------- 
7C4(9)  ---------------------------------------C------A*------------------- 
7E2(6)  ------------------------------------------------------------------- 
7E2(7)  ------------------------------------------------------------------- 
7E2(10) ------------------------------------------------------------------- 
7E5(5)  ------------------------------------------------------------------- 
7E5(8)  ---------L-----------------------G--------------------------D------ 
7E5(11) -----------D------------------------------------------------------- 
7E14(4) ------------N------D----------------------------------------------- 
7E14(5) ------------N------------------------------------------------------ 
7E14(12)------------N------D----------------------------------------------- 
 
*= stop 
 
7E5(8)  N:Asn (AAC) to D:Asp (GAC) 
7E5(11) N:Asn (AAC) to D:Asp (GAC) 
7E14(4) N:Asn (AAT) to D:Asp (GAT) 
7E14(12)N:Asn (AAT) to D:Asp (GAT)  

 
Figure 11. Amino acid sequences of clones from experimental and control fish.  
Sequences are compared to NCBI F. heteroclitus tumor protein p53 (tp53), transcript variant 
X3, mRNA Accession XM_012874738.1.  Dashed lines indicated no change in sequence.  
Codons associated with conversions of asparagine (Asn) to aspartate (Asp) are provided.  
Clones are represented as day of collection – 0, 3, or 7, treatment – E (Experimental) or C 
(Control), fish number, and clone (number).  Nucleotide sequences for clones are provided in 
Figures 7-10. 
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Discussion 
 

 

Oil spills introduce petrogenic chemicals into environments that would not ordinarily be exposed 

without human influence.  These spills have lasting ramifications on whole ecosystems, and 

while the effects of acute contamination contact are more familiar, the downstream effects of 

chronic exposure due to acute dosing are still being investigated.  This study aimed to use 

molecular techniques to evaluate whether the primary toxic components of crude oil, PAHs, are 

potent enough to cause genotoxicity in an acute exposure.  The use of PCR-SSCP aimed to 

evaluate genotoxicity in the killifish p53 gene and provide a useful methodology for evaluation 

of polymorphisms in a gene. 

 

Mutations within the genome, particularly those occurring in crucial cell regulatory genes such 

as proto-oncogenes or tumor suppressor genes, could have potent consequences on the life and 

health span of the organisms affected. but also could affect the reproductive capacity of that 

organism and genomes and fitness of the offspring.  Fundulus heteroclitus, or killifish, were 

selected as the model toxicological organism due to their tolerance for extreme toxicant exposure 

as well as their similar behavioral and morphological characteristics between populations in 

different geographical regions that may or may not have been exposed to toxicants (Whitehead 

et. al., 2017).  The expectation of this study was that wild caught killifish exposed to Macando 

252 (MC252) crude oil via gavage would show polymorphisms within the amplified DNA 
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binding domain of the tumor suppressor p53 gene due to previous literature supporting the role 

of PAHs in genotoxicity.  This serves as an exploratory methodology that could be applied to 

environmentally exposed fish or other organisms to evaluate if exposure leads to adverse effects 

on the genome.  A larger study would be required to make assertions of rate or abundance of 

polymorphism. 

 

The first step in evaluating the effects of PAHs is ensuring specimen exposure.  Excitation-

emission matrix spectroscopy (EEMS) is an established method of identifying environmental 

contamination isolates from sediment, groundwater, and seawater (Zhou et. al., 2013).  EEMS 

spectra are specific enough that pure PAHs can be compared to specimens to determine identity 

of the compound or unique spectra can be correlated to known metabolites of PAHs.  Since 

PAHs are lipophilic, examining the gallbladder of the fish is ideal as PAHs can accumulate in the 

bile or fish oil derived from ground tissue (Pena et. al., 2015).  All 47 fish in the study had bile 

and oil extracted from gallbladder homogenates to determine the presence of PAHs in the tissue, 

and Figure 1 shows examples of typical control and experimentally exposed fish spectra.  3D 

scans of control fish all showed characteristic spectra with no apparent PAH residues while the 

3D scans showed PAH profiles consistent with the presence of PAH parent compounds and 

metabolites.  The control spectra are consistent with albumin protein spectra seen in this method 

when specimens were collected from pure fish oil (Pena et. al., 2015) or from bile of fish with 

lower or no toxicant exposure composed primarily of albumin protein residues (Bentivegna 

et.al., 2016).  The first representative experimental spectra shows maximal fluorescence at 

Ex340/Em380-400 in the Day 3 experimental fish (3E9) which was consistent with the presence 

of 1-hydroxypyrene and aligned with the 1-hydroxypyrene standard.  The Day 7 experimental 
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fish (7E2) showed maximal fluorescence at Ex260/Em370-380 which was consistent with the 

presence of 9-phenanthrol.  When comparing the Day 3 and Day 7 experimental spectra, the shift 

in excitation and emission consistent with 1-hydroxypyrene to 9-phenanthrol indicates 

preferential metabolism of 1-hydroxypyrene-like PAHs over phenanthrol-like PAHs.  

Metabolites of PAHs can also be detected in tissue and bile samples and support this preferential 

metabolism of certain PAHs over others, as seen with benzo-[a]-pyrene and its metabolites in 

bile collected from English sole, Parophrys vetulus (Collier and Varanasi, 1991).  Figure 2 

shows that fluorescence in our study when normalized by the weight of the individual fish shows 

a 100x increase associated with PAHs in experimentally exposed fish.  This phenomena is 

supported by literature where phenanthrene levels can correlate with exposure due to the 

retention of this compound in fatty tissues and bile in juvenile salmonids fed specific PAHs and 

tested using high-performance liquid chromatography (HPLC) (Meador et. al., 2008).  

 

Evidence of PAH ingestion and metabolism allowed for the continuation to DNA isolation and 

analysis of the p53 DNA binding domain using PCR-SSCP.  This technique is sensitive enough 

to detect small mutations where there is a minor enough base change representative of 

polymorphism within a gene (Glavač and Dean, 1993).  The particular region of the p53 gene 

selected, the DNA binding domain, is proposed as the most highly mutative region of the gene 

with implications of possible downstream protein conformational changes that affect the function 

(Pavletich et. al., 1993).  Six key residues within this sequences are noted as the most commonly 

mutated (Bullock and Ferst 2001), leading to our interest in its polymorphic profile since certain 

PAH compounds are noted as possibly genotoxic due to their ability to form adduct structures 

within genomic DNA.  Single point mutations where one base change occurs can be sufficient to 
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yield cells with malformed, nonfunctional p53 proteins and p53 protein mutations are noted in 

half of all human cancers (Bullock and Ferst 2001).  While typically evaluated in humans due to 

long life expectancy, exposure to a toxicant that is suspected to yield mutated p53 could be used 

to model the transition from genotoxicity to tumorigensis in a longer-lived fish species.   

 

Loss of the p53 dependent apoptotic pathway can lead to unregulated growth of mutated cells 

and be associated with neoplasm, cancer, and metastasis due to the normal protein’s role as a 

tumor suppressor (Freed-Pastor and Prives, 2012).  The metabolism of PAHs is significant in 

possible genotoxicity since the diol-epoxide enantiomers formed as can covalently bond to 

genomic DNA forming bulky adduct structures, which can lead to point mutations and overall 

genomic instability (Muñoz and Albores, 2011).  Figure 5 shows the PCR-SSCP banding 

patterns of all 47 fish and variation is seen across all samples, control and experimental. Table 5 

collates those various profiles into eight individual profiles and quantifies the number seen 

across all samples where it can be noted that while control samples have varied profiles, two 

unique profiles are seen in five Day 7 experimental fish, and Day 7 experimental fish had the 

highest incidence of varied profiles despite the small overall sample size.  This suggests that 

exposure could be correlated with the novel profiles seen in the Day 7 fish and led to our 

selection of specimens of interest to clone.  Figure 6 shows the selected PCR-SSCP specimens 

that were cloned and the PCR-SSCP profiles of 15 randomly selected clones from each.  An 

unexpected discovery of sub-profiles, or unique SSCP profiles that differed from the original 

sequence, suggested the possibility that the liver tissue of one fish could have a dominant SSCP 

profile where it could be hypothesized that small point mutations could be seen in certain clones 

and suggest that mutations could be seen further in some of the cells of the tissue or in other 
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rapidly overturning tissues that were not studied.  However, polymorphisms do not always beget 

loss of protein functionality and it would need to be evaluated further if these specific 

polymorphisms are associated with loss of function that a mutation would imply.  Fifteen clones 

from each liver DNA sample of the six specimens selected appeared to be sufficient to detect 

minor sequence changes in what could have been isolated groups of mutated cells that were not 

detected in the PCR-SSCP of the DNA from the whole liver because initially the dominant 

profile masked them.  Visual profile variation alone was not sufficient to say the sequence had 

changed despite previous data suggesting that differences in SSCP profile are caused by minor 

sequence mutations in small DNA fragments (Sheffield et. al., 1993), so boxed sequences in 

Figure 6 were sent out for sequencing and the resulting consensus sequences were aligned and 

evaluated for point mutations. 

 

The original amplicon for the gene of interest in this study was intended to be 205 base pairs as 

noted in Table 2, but as PCR-SSCP samples were run through gels, they consistently showed an 

amplicon of approximately 260-300 base pairs.  The primers were designed based off a RNA 

transcript variant and applied to genomic DNA, and the initial observation from sequencing was 

that when comparing consensus sequence to the original RNA transcript, the gene for the DNA 

binding domain in p53 is composed of two exons with an intron in between them.  The presences 

of an intron of approximately 150 base pairs was a novel find and ended up being the site of 

several of the point mutations responsible for possible polymorphic profiles as seen in Figures 5, 

6, and 7.  Intron mutations are typically spliced out, however have been shown in plants to effect 

the ability to recognize mRNA splice locations leading to incorrect or incomplete splicing 

(Simpson et. al., 1996).  Splicing efficacy due to intron mutations can be reduced or lead to 
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incorrect gene to protein expression.   Sequenced experimental clones were aligned with similar 

control clones to determine if similar polymorphic SSCP profiles indicated similar nucleotide 

sequences.  Specific point mutations observed in the clone sequences occurred most frequently in 

the intron regions of the gene, however there were identified point mutations within the exon 

coding sequence; clones of 7E5 showed five point mutations, 3 in the first exon two in the 

second, and 7E14 showed two point mutations both in the first exon.  Without further evaluation 

of protein function, it can not be determined if these coding sequence mutations have an effect 

on the protein structure, but in Figure 11 the coding sequence of the two exons are translated and 

spliced together with the point mutations seen in certain clones applied to alter the translated 

amino acid sequence.   

 

In the aligned amino acid sequences in Figure 11, one of the five unique control clones (7C4 

clone 9) showed introduction of two amino acid changes, the second of which was the addition 

of a stop codon that would lead to a truncated protein in a control fish, possibly due to 

inheritance or environmental exposure to some unknown genotoxic compound.  Five of the nine 

unique experimental clones showed point mutations leading to amino acid sequence changes.  

Three of the four unchanged clones originated from clones of 7E2 which had a P1 PCR-SSCP 

profile which was the most common profile seen across all specimens, control and experimental.  

This is theorized to be the native DNA sequence for the DNA binding domain of the p53 tumor 

suppressor gene as it has no exon deviations from the RNA transcript used to design the original 

primers and was most common or conserved in the sample population.  The last unchanged clone 

was 7E5 clone 5 which is identified as a P2 PCR-SSCP profile in Figure 4, which was the 

second most commonly identified variant profile, indicating likely variation on the commonly 
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seen P1 gene sequence.   

 

A paper on Japanese flounder, Paralichthys olivaceus, linked polymorphisms within the estrogen 

receptor β (ERβ) coding region to alterations in expression of estrogen in serum and gonadal 

tissue.  While the alternations in the coding sequences seen in the five experimental fish shown 

in Figure 11 cannot be directly attributed to downstream effects, there are four sites in five of the 

experimental fish where asparagine (Asn) residues are mutated to code for aspartic acid (Asp) 

residues.  In all four cases, this amino acid change is due to a transition mutation where an 

adenine has been replaced by a guanine, though two of the clones, 7E14 clone 4 and 7E14 clone 

12 show an identical mutation pattern.  This amino acid substitution could change the protein 

folding structure as the charge of these two amino acids differs and structural integrity of the 

DNA binding domain is essential to retained function of the p53 protein to scan DNA for 

damage (Bullock and Ferst, 2001).  This specific amino acid transition has been noted before 

using this same methodology as a mutation associated with bladder cancer in humans (Philips et. 

al., 2000), however the urinary bladders of these fish were not specifically evaluated for signs of 

neoplasm.  Another mechanism of detection of polymorphisms is PCR followed by restriction 

fragment length polymorphism (RFLP) analysis where specific restriction sites can be identified 

when point mutations interfere with enzyme binding.  The nucleic acid changes seen in this study 

were also adenine to guanine transitions seen in European flounder, Platichthys flesus, in 

response to benzo-[a]-pyrene exposure and examination via PCR-RFLP that were identified as 

they interfered with the Taq1 restriction site, TCGA (Sueiro et. al., 2000).  The identification of 

mutation and subsequent malignancy associated with mutation in this region suggests that the 

downstream effects of mutation in the DNA binding domain of p53 alters the function of the 
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protein and could lead to neoplasm, although identification of malignancy is typically unlikely in 

short-lived fish species and was not evaluated in this study. 

 

Genomic variation in wild populations provide resiliency to environmental stressors but may also 

serve as biomarkers of genotoxicity (Belfiore and Anderson, 2001).   In a wild caught population 

exposed to a toxicant in a laboratory environment, it can be difficult to parse apart whether 

variations in PCR-SSCP profiles are due to population dynamics and previous exposure or from 

dosing with crude oil.  In the study presented, a modification of the PCR-SSCP technique that 

involves cloning of PCR amplicons, re-amplification of the amplicon of interest, and re-

subjection to SSCP is suggested to evaluate presence of sub-profiles.  These sub-profiles are 

noted as clones presenting with nucleotide substitutions differing from the original profile’s 

sequence.  Analysis of DNA sequences from these clones showed greater conservation of exons 

than introns in the DNA binding region of the p53 gene of wild killifish, which is an expected 

finding based on current evolutionary genetics (Betts et. al., 2001).  However the presence of this 

intron is proposed as a novel find of this study.  This study also suggested that acute crude oil 

exposure was associated with transition from Asn to Asp codons in the small population 

evaluated.  Asparagine to aspartic acid mutations are associated with genetic disease in other 

organisms, such as humans, where this specific mutation was found in patients with stage four 

bladder cancer (Phillips et.al., 2000).  Occurrence of this transition in a functionally important 

region of the P53 protein might link acute crude oil exposure with the possibility of 

tumorigenesis in fish.  However, it remains to be determined if transition from the Asn to Asp 

codon seen in this study is due to the acute crude oil exposure or present intrinsically in the wild 

population.  Further study would be needed to determine if this is a significant change that 
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affects protein structure in this model organism, as well as if these polymorphisms are associated 

with neoplasm in longer-lived fish species or in a larger sample size. 
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