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ABSTRACT 

The Missouri Science and Technology Satellite (M-SAT) design team on the 

campus of the Missouri University of Science and Technology has developed a pair of 

satellites to perform an autonomous formation flight mission.  To enable the mission, a 

unique cold gas propulsion system was developed which utilizes the refrigerant R-134a 

as propellant.  This thesis details the design process and considerations which led to the 

propulsion system as integrated into the satellite for the Flight Competition Review of the 

NS4 competition.  The design process described flowed from the mission requirements 

and program restrictions down through component-level requirements and resulted in a 

system capable of performing the assigned duties.  The hazard analysis conducted for this 

thesis also expanded on previous analyses to address key issues and AFRL concerns.  

The analysis showed the system to be safe for personnel and equipment as designed.  

Finally, a propulsion test platform was developed to address the few remaining physical 

and theoretical performance questions remaining.   

While future propulsion systems developed at Missouri S&T may face vastly 

different design and mission requirements, the example set forth by the NS4 system and 

described herein can serve as a starting point for such endeavors. 



iv 

 

 

ACKNOWLEDGMENTS 

I would like to thank my advisor, Dr. Hank Pernicka, for his patience and 

guidance throughout my graduate and undergraduate studies.  His tutelage has provided 

experiences in and out of the classroom that have truly been once in a lifetime events and 

have made my years in Rolla both interesting and enjoyable.  I would also like to thank 

the other members of my committee, Dr. David Riggins and Dr. Kakkattukuzhy Isaac, for 

their work and time in my defense process, and also for their efforts in behalf of my 

education. 

I would like to acknowledge the Missouri Space Grant Consortium and the 

University’s Graduate Teaching Assistant program for their support during my Master’s 

studies.  Without this support, continuing my research would have become impossible.   

Much appreciation and many thanks must be given to the members, both past and 

present, of the M-SAT design team.  The success of the project could not have occurred 

without the hard work of those individuals who gave their time, efforts, and passion to a 

goal that often seemed out of reach.  Such people kept the team moving forward and 

provided the base upon which future projects will be built.   

I would be truly remiss if I failed to mention the support and guidance provided 

by my family.  Much of what I am today can be directly linked to the efforts of my 

parents and for that I am grateful.  I am also grateful for the support and thoughts of my 

two sisters; they have always been there for me.   

Finally, I would like to show my appreciation to my friends.  They kept me sane 

throughout times of trial and provided hours of entertainment over the years.  Two 

especially deserve thanks for their contribution to the great effort that was my thesis: 

Shawn Miller for his work on the propulsion system and for always being there and 

Alison Dahl for her encouragement at the end and for eagerly waiting to read the finished 

work. 



v 

 

 

TABLE OF CONTENTS 

Page 

ABSTRACT.................................................................................................................. iii 

ACKNOWLEDGMENTS ..............................................................................................iv 

LIST OF ILLUSTRATIONS...........................................................................................x 

LIST OF TABLES ........................................................................................................xii 

SECTION 

1. INTRODUCTION...........................................................................................1 

1.1. CLASSIFICATION OF SATELLITES.....................................................1 

1.2. UNIVERSITY NANOSAT PROGRAM...................................................2 

1.3. M SAT OVERVIEW AND TEAM HISTORY .........................................4 

1.3.1. Mission Overview...........................................................................5 

1.3.2. Current Status.................................................................................7 

1.4. PROPULSION REQUIREMENTS...........................................................8 

1.4.1. M SAT Mission Requirements........................................................8 

1.4.2. NS4 Propulsion Safety Requirements..............................................9 

1.5. PURPOSE ..............................................................................................11 

1.6. THESIS ORGANIZATION....................................................................11 

2. LITERATURE REVIEW ..............................................................................13 

2.1. HISTORY OF SMALL SATELLITES ...................................................13 

2.2. FUTURE OF SMALL SATELLITES.....................................................14 

2.3. PROPULSION CONSIDERATIONS .....................................................16 



vi 

 

 

2.4. PROPULSION OPTIONS ......................................................................17 

2.4.1. Cold Gas Systems.........................................................................17 

2.4.2. Chemical Systems.........................................................................18 

2.4.3. Electrical Systems.........................................................................18 

2.5. SURVEY OF SMALL SATELLITE PROPULSION..............................19 

2.6. ROLE OF UNIVERSITY PROJECTS....................................................21 

3. SYSTEM DESIGN OVERVIEW ..................................................................22 

3.1. INTRODUCTION ..................................................................................22 

3.2. INITIAL DESIGN CONSIDERATIONS................................................22 

3.2.1. Pertinent Mission Requirements....................................................22 

3.2.1.1 Provide means to maintain attitude and orbit control.........23 

3.2.1.2 Provide means to maintain 50 meter formation  
with MRS SAT.................................................................23 

 
3.2.1.3 Provide sufficient performance for one orbit of  

formation flight.................................................................24 

3.2.2. MR SAT Propulsion Options ........................................................25 

3.2.2.1 Chemical systems for MR SAT propulsion .......................25 

3.2.2.2 Electrical systems for MR SAT propulsion .......................25 

3.2.2.3 Cold gas thrusters for MR SAT propulsion .......................26 

3.2.2.4 Chosen system for MR SAT propulsion............................27 

3.2.3. Configuration Possibilities............................................................28 

3.2.3.1 Twelve thruster configuration ...........................................29 

3.2.3.2 Eight thruster angled configuration ...................................30 

3.2.3.3 Eight thruster straight configuration..................................32 



vii 

 

 

3.3. SYSTEM DESIGN.................................................................................33 

3.3.1. System Components .....................................................................34 

3.3.1.1 Propellant tank..................................................................34 

3.3.1.2 Isolation valves.................................................................36 

3.3.1.3 Pressure regulator .............................................................38 

3.3.1.4 Thrusters...........................................................................41 

3.3.1.5 Propellant lines and fittings...............................................47 

3.3.1.6 Tank and line heaters ........................................................50 

3.3.1.7 State sensors .....................................................................52 

3.3.2. Component Arrangement..............................................................54 

3.3.2.1 Propellant line division .....................................................54 

3.3.2.2 Component order ..............................................................55 

3.3.2.3 Naming convention...........................................................58 

3.3.2.4 System integration ............................................................60 

3.3.3. Expected Performance ..................................................................68 

3.4. CONCEPTUAL OPERATION...............................................................71 

3.4.1. Modes of Operation ......................................................................71 

3.4.2. Stand-by Operations .....................................................................72 

3.4.3. Mechanics of Thruster Firing........................................................72 

4. HAZARD ANALYSIS..................................................................................74 

4.1. PURPOSE ..............................................................................................74 

4.2. PROPULSION SAFETY ASSESSMENT WHITE PAPER ....................74 

4.2.1. Paper Specified Temperature Range .............................................75 



viii 

 

 

4.2.2. Focus of SAWP Hazard Analysis..................................................75 

4.2.3. SAWP Hazard Classification System............................................76 

4.2.4. SAWP Hazard Analysis................................................................77 

4.2.4.1 Catastrophic hazards.........................................................77 

4.2.4.2 Critical hazards.................................................................80 

4.2.4.3 Tolerable hazards..............................................................81 

4.2.4.4 Hazard classification matrix..............................................82 

4.2.4.5 SAWP hazard analysis conclusion ....................................86 

4.2.5. AFRL Approval for the SAWP.....................................................86 

4.3. SCOPE OF HAZARD ANALYSIS ........................................................87 

4.4. TYPES OF HAZARD ANALYSIS.........................................................88 

4.5. DEFINING A HAZARD CLASSIFICATION SYSTEM........................88 

4.6. HAZARD IDENTIFICATION ...............................................................91 

4.7. HAZARD ANALYSIS ...........................................................................91 

4.8. MITIGATION: DESIGN VS. PROCEDURE .........................................92 

4.9. HAZARD ANALYSIS CONCLUSIONS ...............................................92 

5. SYSTEM-LEVEL TESTING ........................................................................93 

5.1. INTRODUCTION ..................................................................................93 

5.2. SYSTEM-LEVEL TEST GOALS...........................................................93 

5.3. REDUCED GRAVITY STUDENT FLIGHT  
OPPORTUNITY PROGRAM ................................................................94 

5.4. TEST APPARATUS...............................................................................94 

5.4.1. Measuring Equipment...................................................................95 



ix 

 

 

5.4.2. Testing Platform Structural Design ...............................................95 

5.4.3. Experiment Electronics Design .....................................................96 

5.5. TEST DESCRIPTION............................................................................97 

5.6. TEST RESULTS ....................................................................................99 

5.7. FUTURE TEST REQUIREMENTS .....................................................100 

6. CONCLUSION ...........................................................................................102 

6.1. SUMMARY .........................................................................................102 

6.2. FUTURE WORK..................................................................................103 

APPENDIX.................................................................................................................105 

BIBLIOGRAPHY .......................................................................................................201 

VITA...........................................................................................................................204 

 

 

 

 

 



x 

 

 

 
LIST OF ILLUSTRATIONS 

               Page 

Figure 1.1: MR and MRS SAT in Docked Configuration.................................................6 

Figure 1.2: MR and MRS SAT Post-Separation...............................................................7 

Figure 3.1: Maneuver Pairings - Twelve Thruster Configuration....................................30 

Figure 3.2: Maneuver Pairings - Eight Thrusters at 45 Degrees......................................31 

Figure 3.3: Maneuver Pairings - Eight Thrusters Straight Configuration ........................33 

Figure 3.4: Lee Valve Company INKX0512050A Micro-Solenoid Valve......................38 

Figure 3.5:  "L" Shape Configuration for MR SAT Thruster ..........................................43 

Figure 3.6: Thruster Schematic......................................................................................44 

Figure 3.7: Nozzle Schematic ........................................................................................46 

Figure 3.8:  Schematic of an AN flare Type Fitting........................................................48 

Figure 3.9:  Swagelok Double Ferrule [23] ....................................................................49 

Figure 3.10:  Line Division Using Swagelok Fittings.....................................................56 

Figure 3.11: Basic Order of Components for MR SAT Propulsion.................................58 

Figure 3.12: Example of Line Naming Convention........................................................59 

Figure 3.13: M-SAT Propulsion System Component Names..........................................61 

Figure 3.14: Early Propulsion Configuration..................................................................63 

Figure 3.15: Tank and Support Structure .......................................................................64 

Figure 3.16: MR SAT Core Hardware ...........................................................................66 

Figure 3.17: Original Propellant Lines Routing..............................................................67 

Figure 3.18: Original Panel 1 Propellant Line Routing...................................................68 



xi 

 

 

Figure 3.19: MR SAT Propulsion System Final Design .................................................69 

Figure 5.1: Testing Apparatus........................................................................................98 

 



xii 

 

 

LIST OF TABLES 

               Page 

Table 1.1: Satellite Classification System [1]...................................................................2 

Table 1.2 Sealed Container Classification Limits [2] .....................................................10 

Table 2.1: Expected Isp Ranges for Propulsion Systems [6]............................................17 

Table 3.1: Propellant Tank Requirements [21]...............................................................35 

Table 3.2: Flight Tank Specifications [21] .....................................................................36 

Table 3.3: Isolation Valve Requirements .......................................................................37 

Table 3.4:  MR SAT Valve Specifications [22]..............................................................39 

Table 3.5: Pressure Regulator Requirements..................................................................40 

Table 3.6: MR SAT Pressure Regulator Specifications [22]...........................................41 

Table 3.7: Configuration Requirements for Thruster Assembly......................................42 

Table 3.8: Nozzle Design Requirements ........................................................................45 

Table 3.9: Propellant Line and Fitting Requirements .....................................................47 

Table 3.10: Propellant Tank and Line Heater Requirements...........................................51 

Table 3.11: Heater Specifications [21]...........................................................................51 

Table 3.12: Pressure Transducer Requirements..............................................................53 

Table 3.13: Pressure Transducer Specifications [22]......................................................53 

Table 3.14: Predicted Thrust Performance .....................................................................71 

Table 3.15: Predicted ΔV Performance for Three Pressure Regimes ..............................71 

Table 4.1: SAWP Hazard Classification Matrix .............................................................82 

Table 4.2.  Hazard Severity Classifications [25].............................................................89 



xiii 

 

 

Table 4.3: Probability Estimate Classification [25] ........................................................90 

Table 4.4:  Risk Assessment Matrix...............................................................................90 

Table 5.1: Experiment Loading Requirements ...............................................................95 

 

 



 

 

1. INTRODUCTION 

The role satellites play in society today cannot be exaggerated as they directly 

impact every aspect of life, from the morning commute to evening entertainment.  Such 

an all pervasive technology must continually adapt and improve to meet the ever 

expanding needs of the parent society while expending fewer resources.  To meet the 

changing demands of the space industry, a paradigm shift in satellite design and operation 

is necessary.  Under current design practices, satellites are large, complex systems which 

take a great deal of resources to launch and operate while lacking crucial flexibility in 

mission objectives.  Small satellites offer an alternative approach to satellite operations 

with increased mission flexibility and smaller resource expenditure being the main 

attraction.   

The vision that many people hold for the future sees constellations of small 

satellites, large and small, working together to accomplish the same goals of their much 

larger predecessors.  Within the constellation, common tasks would be distributed among 

the individual satellites thus allowing the platform to have redundancy and simplicity.  

Also, such a design allows the entire constellation to be retasked merely by exchanging a 

few of the satellites rather than having to develop and launch and entirely new satellite.  

However, to fully realize the advantages offered by small satellites, enabling technologies 

such as micro-propulsion systems considered in this study must first be developed.    

1.1.  CLASSIFICATION OF SATELLITES 

There are many objective standards by which to classify satellites: mission, cost, 

orbit type, size, etc.  Of these, the classification based on size, i.e. wet mass of the 
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satellite system upon launch, is perhaps the most useful since it has a direct correlation to 

launch costs associated with the project.  In general, the moniker of “small satellite” is 

given to payloads having mass less than 500 kilograms.  The commonly adopted 

classification system, including small satellite subsets, can be found in Table 1.1 below. 

 
 
 

Table 1.1: Satellite Classification System [1] 
Category Mass range (kg) 

Large Satellite >1,000 
Medium-Sized Satellite 500-1,000 
Small Satellite <500 
Minisatellite 100-500 
Microsatellite 10-100  
Nanosatellite 1-10 
Picosatellite 0.1-1 
Femtosatellite <0.1 

 
 
 
 

Small satellite programs are also often characterized by smaller operational 

budgets and quicker development times.  This fact makes small satellite development 

feasible for university level programs as well as for technology demonstration platforms.   

1.2.  UNIVERSITY NANOSAT PROGRAM 

The University Nanosat Program (UNP) is a joint endeavor between the Air Force 

Research Laboratories Space Vehicle Directorate (AFRL/RV), the Air Force Office of 

Scientific Research (AFOSR), and the American Institute of Aeronautics and 

Astronautics (AIAA) with the stated purpose of encouraging and training the next 

generation of aerospace engineers.  Participating universities design, develop, and build a 
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proto-flight satellite with a mission that is of interest to the Department of Defense 

(DOD).  The program is set up in a competition format between participating universities 

vying for a free launch through the Space Experiment Review Board (SERB) process.   

The competition is a two year cycle consisting of multiple design reviews by 

AFRL and Industry professionals.  The course of the competition is as follows [2]: 

Proposal Phase – The cycle begins with the proposal phase, in which interested 

universities submit documents detailing the university’s objectives and capabilities.  

These documents are reviewed by AFRL personnel and a small number (~10) of 

universities are accepted into the program. 

System Concept Review (SCR) – SCR comes early within the two year program 

and is meant as a chance for each university to convey to UNP officials the mission 

objectives, design concepts, program feasibility, and expected schedule of their project. 

Preliminary Design Review (PDR) – PDR is a review of the university’s initial 

design with special attention paid to the implementation of all safety guidelines.  Also at 

this time, AFRL representatives ensure teams have implemented proper program 

management and system engineering practices. 

Critical Design Review (CDR) – CDR occurs at the end of the first year when 

university designs should be between 90% and 95% complete.  This review is the last 

chance for AFRL representatives to assess the design for maturity, inherent risk, and 

compliance with program requirements before universities move in earnest into the build 

phase of the competition. 

Proto-Qualification Review (PQR) – PQR occurs during the second year of the 

competition, and focuses on the universities implementation of their design.   
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Flight Competition Review (FCR) – FCR is the final review during the 

competition process.  Universities must deliver a proto-flight satellite to the competition 

along with supporting documentation.   

In addition to these design reviews, the UNP also provides guidance and training 

through a series of documents and workshops.  Each team is given access to the UNP 

User’s Guide which gives a detailed overview of the program milestones and design 

requirements that must be implemented in each university’s spacecraft.  Following the 

guidelines within the user’s guide ensures each university spacecraft meets strict range 

safety criteria and will be able to survive launch.  Three workshops are held during the 

competition; SHOT I, SHOT II, and a Satellite Fabrication Course.  During both Shot I 

and Shot II, students from each university build a small device which is flown onboard a 

high-altitude weather balloon.  The satellite fabrication class offered students an 

opportunity to observe AFRL satellite fabrication techniques as well as receive valuable 

information on proper procedure implementation.   

1.3.  M SAT OVERVIEW AND TEAM HISTORY 

The M SAT program is a student design organization on the Missouri University 

of Science and Technology (S&T) campus.  It began in 2004 with stated purpose of 

designing and building a satellite capable of performing technology demonstrations and 

furthering space systems knowledge within the community of S&T students.  The 

conceptual satellite was to test and compare methods for maintaining Distributed Space 

Systems (DSS).   
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In January of 2005, the M SAT program (then MR SAT) was accepted into the 

UNP Nanosat 4 competition (NS4).  Though the course of the NS4 competition, the focus 

changed from comparing two methods of maintaining formation flight to a technology 

demonstration of autonomous formation flight.  The M SAT team placed third out of 

eleven entries in the NS4 competition, a notable achievement for a team new to the 

program.  The team was also named the Most Improved School. 

1.3.1.  Mission Overview.  The main objective of the M-SAT program is the 

technological demonstration of close range autonomous formation flight utilizing two 

microsatellites; MR SAT (Missouri-Rolla Satellite) and MRS SAT (Missouri-Rolla 

Second Satellite).  The formation is to be a follower/leader configuration with MR SAT 

maintaining a distance of 50 meters ± 5 meters behind MRS SAT.   

Achieving this objective requires the implementation of unique solutions to 

common satellite challenges.  Inter-satellite communication, Attitude and Orbit 

Determination and Control, and indeed Satellite Propulsion all required new approaches 

if mission objectives were to be met.  Technology demonstrations in these areas will 

provide future small satellite projects with more options to meet difficult mission objects 

through low-cost solutions.   

The mission is organized into different mission modes based on the task required 

during that particular phase of the mission.  The main divisions within the modes of 

operation are Launch, Initialization, Power-Up, Detumble, Pre-Deploy, Separation, 

Formation Flight, Range Test, and Extended Mission [3].  Each main mode is further 

divided into specific tasks that must be accomplished by the subsystems for the 

successful completion of that specific operation.  The first five modes of operation occur 
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while the satellites are in a docked configuration, as shown in Figure 1.1, while all other 

modes occur post-separation (Figure 1.2). 

 
 
 

 

Figure 1.1: MR and MRS SAT in Docked Configuration 
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Figure 1.2: MR and MRS SAT Post-Separation 
 
 
 
1.3.2.  Current Status.  After the conclusion of the NS4 competition, the team 

decided to continue with the construction and testing of the NS4 satellite design.  The 

project is now entering the “Flat Sat” phase of development in which systems are to be 

integrated electronically to determine functionality and compatibility.  The primary focus 

of this phase involves the C&DH and Power subsystems.  As various electronic interfaces 

are developed, more of the satellite can be integrated into the Flat Sat until such a time as 

all systems are proven to work effectively together.   
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Independent of the Flat Sat, subsystems continue testing their components for 

functionality and performance.  The structural strength of the satellite is currently being 

modeled using Finite Element Analysis. 

1.4.  PROPULSION REQUIREMENTS 

Two sources of requirements are placed on the propulsion subsystem: NS4 design 

requirements and safety guidelines and M SAT mission requirements.  Obviously both 

sets of requirements are imperative to the successful implementation of the satellite 

project; however, satisfying both sets of requirements is a difficult undertaking for a 

single propulsion system. 

1.4.1.  M SAT Mission Requirements.  As stated previously, the main objective 

of the M SAT project is the demonstration of close proximity autonomous free formation 

flight.  Any formation keeping mission requires a means to overcome the orbit 

perturbations inherent in space flight, hence some sort of propulsion system is necessary.  

Stemming from this main mission objective produces three system-level requirements: 

• Provide all torques and forces required to maintain attitude and orbit 

control. 

• Provide all torques and forces to maintain 50 meter formation flight with 

MRS SAT. 

• Provide sufficient performance specifications and propellant mass to 

perform one orbit of formation flight. 

Implicit within the mission requirements attached to the propulsion subsystem are 

other conditions and considerations which must be addressed by any successful design.  
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Obviously a system which does not fit within the design envelope of the satellite or is 

excessively massive as to render the satellite unresponsive would fail to successfully 

accomplish the mission.  Indeed, much of the system design, from the number and 

placement of thrusters to the necessary tank pressure, stems directly from these three 

simple statements.  However, while adhering to these requirements ensures mission 

success, it by no means ensures the design of a safe, launchable system. For that, other 

requirements and regulations are placed upon the system. 

1.4.2.  NS4 Propulsion Safety Requirements.  Given that the overall objective 

of the UNP is to develop flight-worthy spacecraft and guide such spacecraft though the 

launch process, safety is a foremost concern.  Strict design criteria, while possibly 

inhibiting creative design approaches, ensure that any delivered spacecraft will be able to 

successfully navigate the flight approval process with a minimum of design changes.  

Different launch ranges and vehicles have unique regulations which must be met before 

launch clearance will be granted.  In light of this, the only prudent course of action is to 

adhere to the most stringent of these standards: i.e. Space Shuttle Secondary Payload 

requirements.   

For convenience and ease of use, the UNP has summarized the various 

requirements into a single limited release document: the NS4 User’s Guide.  As part of 

the NS4 competition, each team was expected to comply with guidelines and design 

requirements set forth in the User’s Guide to ensure the safety and utility of the final 

satellite.  In regard to a traditional propulsion system, the major requirement concerns the 

operation and implantation of a pressurized system.  Any pressurized system must meet 

the definition of a sealed container as originally stated in NASA-STD-5003 Fracture 
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Control Requirements for Payloads Using the Space Shuttle.  To meet the standard, the 

pressurized system must comply with the pertinent values highlighted in Table 1.2. 

 
 

 
Table 1.2 Sealed Container Classification Limits [2] 

Propellant Property Limit 

P – Pressure (Absolute) < 689.48 kPa (100 psi) 

U – Internal Energy < 19,319 kJ (14,240 ft-lbs) 

 
 
 
 
On top of the sealed container requirement, the UNP provides a list of practices 

and design choices deemed either “discouraged” or “prohibited.”  Such practices that 

affect a propulsion system are listed below: 

• The use of pyrotechnic devices and/or mechanisms is prohibited 

• The use of toxic and/or volatile fluids or gases is prohibited 

• The use of any material likely to undergo a phase change during launch or 

on orbit is discouraged 

• Cast metallic or welded joints are prohibited 

• It is prohibited for universities to manufacture assemblies for which safety 

is highly dependent upon the build or assembly process. (Composite 

Materials and certain deployment devices for example)  If such assemblies 

are necessary, these processes must be completed or witnessed by 

aerospace professionals. 
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While following such guidelines will ensure the safety of the final design, it does 

not guarantee that the final design will be capable of meeting mission parameters.  

Universities are encouraged to follow User’s Guide requirements wherever possible, and 

certain guidelines are non-negotiable; however, if need can be demonstrated a waiver 

process can be initiated.   

1.5.  PURPOSE 

This thesis expands upon the knowledge previously acquired by the M SAT 

design team in the area of small satellite propulsion.  Prior works have focused on the 

design and theoretical performance of the system and have laid the foundation for further 

development.  With this work, the author attempts to discuss the design process and how 

the mission requirements and restrictions determine system-level requirements which in 

turn directly affect component-level requirements.  By highlighting the process which led 

to the NS4 propulsion system design, in essence documenting the thoughts and motives 

of the design team, this thesis can serve as a guide for future system developments.  The 

work is further expanded to include a hazard analysis and a system level testing plan to 

advance the analysis of the current system and again serve as a guide for future systems. 

1.6.  THESIS ORGANIZATION 

This work is organized into six major sections to facilitate the understanding of 

the reader.  A brief description of the content within each section is given below: 

Literature Review – Following the introductory section, a short literature review 

is provided to present the proper context for this work.  Within this section, an overview 

of small satellite history and development is first discussed with an examination of 
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various propulsion methods to follow.  Finally, the expected future development of small 

satellites and the necessary technological advances are explored in detail. 

System Overview – The propulsion system designed for integration into MR 

SAT is described in detail with an emphasis on component functionality.  The integrated 

system and necessary design compromised and choices are explained.  

Hazard Analysis – This section describes the possible hazards inherent within 

the system and the methods of mitigation implemented in the design of the propulsion 

system.  It attempts to prove that the system is reasonably safe. 

Testing – The testing methods and current results for the system are detailed 

within this section.  The design and purpose of each system level test is discussed, and 

results are presented where applicable. 

Conclusions – The final section summarizes the details previously described and 

lays the groundwork for future works and tests. 
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2. LITERATURE REVIEW 

2.1.  HISTORY OF SMALL SATELLITES 

Over the centuries, space has captured the imagination of layman and expert 

alike: its vast expanse a promise of knowledge waiting to be discovered.  As 

understanding of the physical realm advanced, so too did the methods and technologies 

utilized in scientific exploration.  With the launch of Sputnik in October 1957, mankind’s 

reach was finally extended beyond the atmosphere into the realm of space.  While a 

significant achievement, Sputnik did little to further mankind’s understanding of space 

containing only radio transmitters and no scientific payload. [4]  Explorer I, launched 

only four months later by the United States, was a slightly more technically advanced 

platform incorporating basic scientific instruments to study the background radiation 

environment. [5]  This first generation of artificial satellites were all small satellites out 

of necessity; however, as rocket performance increased small satellites began to give way 

to large, multifunctional platforms. 

Throughout the next couple decades, while not entirely disbanded, small satellites 

were deemphasized within the space industry.  Instead, satellites took advantage of the 

greater lifting capacity of modern rockets and ballooned in both size and mass.  The 

mission tasks assigned to these satellites were thought too complex for their smaller 

counterparts and industry officials and scientists did not want to waste precious launches 

on inferior payloads.  Satellite programs became massive undertakings with long 

development times and billion dollar expenditures.  Failure of these projects was 
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devastating to development programs and as a consequence conservative design practices 

were implemented.   

During this time, small satellites programs were still active both building and 

launching spacecraft without much acknowledgement from the wider community.  [6]  

Several amateur radio satellites were launched including OSCAR (Orbiting Satellite 

Carrying Amateur Radio) type satellites which were extremely successful.  The first of 

these, OSCAR 1, was launched in 1961 and had a mass of a mere five kilograms.  [6]  By 

1983, OSCAR 10 was launched with a wet mass of 90 kilograms. OSCAR 10 employed 

the first amateur built satellite propulsion system and many advanced systems including 

digital “store and forward” communication. [7]  Using this technology, a single, small 

satellite in LEO could provide global communication coverage which is beyond the 

capabilities of the far larger commercial communication satellites in Geosynchronous 

orbit. [6]   

With the development of smaller electronics the trend began to reverse and once 

again small satellites began to be commonplace.  With the advent of the Distributed 

Space Systems (DSS) concept, small satellites are now performing missions previously 

the domain of large, complex satellites. 

2.2.  FUTURE OF SMALL SATELLITES 

Small satellites hold the promise of a new space concept; however, the 

implementation and full advantage of such new methods have not yet been realized.  

Currently the moniker small satellite project implies not merely a satellite of significantly 

smaller mass, but also smaller projects in terms of budget and complexity.  Future small 
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satellite projects will strive to keep the associated cost benefits while increasing the 

complexity of mission options. 

The applications for small satellites appear boundless.  As individual satellites the 

missions will remain relatively simple yet allow for important scientific knowledge to be 

collected.  Such was the case with the Chemical Release Observation (CRO) Canister 

mission where simple small satellites were used to observe thrusters firings.  Each of the 

CRO canisters was aerodynamically stabilized along its velocity vector and contained 25 

kilograms of hydrazinic chemicals designed to be released under observation from both 

the ground and the space shuttle. [6]     

The advantages of small satellites become apparent when the distributed space 

system concept is employed. One proposed mission calls for a cluster of a 400 identical 

small satellites for global communication.  All the satellites within the cluster could 

remain unguided after insertion into low Earth orbit (LEO) and still maintain 95% global 

coverage.  Without the need for attitude or orbit control, the base design of the satellite 

remains straightforward; thus reducing cost and allowing for mass production.  In 

addition to the manufacturing savings, such a cluster has the advantage of redundancy in 

that the loss of one or several of the satellites would not significantly reduce the 

capabilities of the system [6]. 

Adding guidance and control to the satellites takes the distributed space system 

concept one step farther and allows for even more complex missions to be accomplished.  

For instance a constellation of satellites flying in formation could be used to create a 

virtual aperture, in effect a very large lens, to use in imagining missions.  This virtual 

aperture could be more effective than traditional optical systems since it would simulate 



16 

 

 

optics of much greater size than could ever be employed.  However, for such a system to 

work each satellite within the formation must maintain strict relative position tolerances.   

2.3.  PROPULSION CONSIDERATIONS 

Propulsion systems for satellites are chosen by a multitude of factors.  The 

primary purpose of the system, be it attitude control or orbit adjustment, must first be 

considered as each mission goal places different requirements upon the system.  Ideally, 

multiple propulsion tasks would be performed using a single propulsion system so as to 

reduce satellite complexity, system dry mass, and mission cost. [8]  Additional factors 

must also be considered such as the necessary response time for maneuvers, the necessary 

precision of the system, and the expected mission lifetime.   

Maneuver response time is an important consideration.  Often times during a 

mission slew maneuvers, where the orientation of the satellite is drastically changed, 

must be performed within a narrow time window. [8]   A propulsion system designed 

merely for attitude control may not possess the brute force capability required to enact 

such rapid changes.  However, a system capable of rapid maneuvers often times lacks the 

small impulse-bit necessary for precise attitude control.  In missions that require both, 

either a compromise must be made to arrive at the optimal solution or separate systems 

must be employed. 

Finally, mission time line and life expectancy of the spacecraft must be 

considered before any propulsion system is implemented.  Missions requiring vast 

amounts of propulsion or long mission life times will require equivalently more 

propellant to be stored within the spacecraft. As storing more propellant requires extra 
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tank volume and adds mass to the satellite it is important to match system performance 

requirements with system efficiency.  The specific impulse, ISP, is often used as a means 

to objectively gauge the propulsion efficiency of various systems.   Below; Table 2.1 

gives the expected Isp values for many types of propulsion systems. 

 
 
 

Table 2.1: Expected Isp Ranges for Propulsion Systems [6] 
Propulsion System Expected Isp (s) 

Cold Gas 30 – 70 
Liquid (bipropellant) 305 – 460 

Liquid (monopropellant) 140 – 240 
Solid 260 – 300 

Hybrid 250 – 350 
Electric 300 – 10,000 
Nuclear 800 – 6,000 

 
 

 

2.4.  PROPULSION OPTIONS 

Overall, there are three major subsets of propulsion systems: cold gas, electrical, 

and chemical; although other types and hybrid systems do exist.   

2.4.1.  Cold Gas Systems.  Cold gas systems are the simplest of the propulsion 

options available to satellite designers.  Conceptually such a system is little more than a 

pressurized tank, a control valve, and a nozzle.  Cold gas thrusters work by accelerating 

an inert, high-pressure gas, typically Nitrogen or Xenon, through a nozzle to produce 

thrust.   

While the systems are valued for their relative simplicity and are often employed 

for attitude control, cold gas systems do have limitations.  The high-pressure propellant 

storage often leads to system leaks causing up to 10% of the stored propellant mass to be 
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lost. [8]  In addition to propellant loss, the systems are not nearly as efficient as other 

propulsion options and cannot generate the high forces necessary for certain orbital 

maneuvers. 

2.4.2. Chemical Systems.  Chemical systems have a long history of providing 

both access to space and propulsion for satellites.  Their greatest advantage over other 

propulsion systems is the high thrust they are capable of producing.  Working in similar 

fashion to Cold Gas Thrusters, Chemical systems rely on a combustion process to impart 

energy into the flow before it is accelerated out the nozzle.   

Many differing configurations of chemical propulsion systems are available to 

satellite designers including liquid propellant, solid propellant, and hybrid systems.  Each 

configuration has both advantages and disadvantages depending on the intended use of 

the system.  For satellite propulsion, liquid propellant systems—both monopropellant and 

bipropellant—are used due to their ability to be throttled.   

2.4.3. Electrical Systems.  Over the years electrical propulsion systems have 

become much more prevalent in spacecraft design.  Such systems utilize electromagnetic 

(EM) forces to impart energy into a flow and accelerate propellant; thus generating thrust.  

EM systems are highly valued for their Isp and the efficiency it implies.  Electric systems 

come in many configurations from electro-thermal resistojets to plasma expelling HALL 

thrusters.  Each thruster type has different power requirements and performance 

characteristics; thus, the type of thruster employed for a particular satellite mission is 

determined by mission requirements and system resources. 
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2.5. SURVEY OF SMALL SATELLITE PROPULSION  

Many of the first small satellites did not utilize any propulsive methods; instead 

relying on proper orbit insertion and spin stabilization to complete their missions.  As 

small satellites began to require the ability to alter their orbit during the mission, 

propulsion systems became incorporated into the design.   

For example, the 90 kg amateur radio satellite, OSCAR 10, was launched on June 

16, 1983 as the first amateur built satellite to incorporate a propulsive system. [7]  The 

propulsion system was a liquid bipropellant chemical system featuring an S400 engine 

designed to insert the satellite into the desired orbit and maintain the orbit once reached. 

[9]  However, a collision with the launch vehicle coupled with a longer than expected 

firing time of the thruster saw the satellite fail to achieve the desired orbit.  A second 

attempt to fire the thruster failed due to a loss of pressurization within the helium 

blowdown system and the subsequent loss of propellant and oxidizer pressure.  [10] 

Traditional cold gas thruster systems also came to be incorporated into small 

satellites.  For instance, in 1991 the DARPA Microsat mission consisted of a 

constellation of small satellites each fitted with a cold gas propulsion system utilizing 

nitrogen as propellant.  While each 22.7 kg satellite was designed with four years worth 

of propellant initially stored at 6000 psi, a lower than intended orbit caused the formation 

to deorbit after only a year of operation.  [11] The European Space Agency (ESA) also 

employed a traditional cold gas thruster system for its original Cryosat mission launched 

in 2005.  The propulsion system designed for both attitude and orbit control stored 36.2 

kg of nitrogen in a single propellant tank at 4040 psi. [12]  The mission was to last for 
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three years; however, the launch vehicle failed during liftoff and the satellite was lost.  

[13] 

Electric thrusters have also been implemented into small satellites.  The 300 kg 

Surrey Satellite Technology Ltd. (SSTL) UoSAT-12 launched in 1999 and employed 

both a cold gas thruster system and an electro-thermal propulsion system.  The 0.125 N 

resistojet utilized nitrous-oxide propellant heated by a 100 W resistive heating element.  

The thruster was designed for orbit maintenance and could raise the 650 km orbit a full 3 

km in one hour’s time.  The 2.5 kg of propellant allowed for 14 hours of thruster 

operation.  [14] [15] 

Finally, non-traditional cold gas thruster systems utilizing liquefied gas as 

propellant have been successfully flown.  The University of Toronto Institute for 

Aerospace Studies’ (UTIAS) CanX-2 nanosatellite was launched in April 2008. [16]  The 

mission was a technology demonstration of among other systems a micropropulsion 

system utilizing sulfur hexafluoride (SF6) as a propellant.  As designed, the 10 mL 

propellant tank stored sufficient SF6 at a MEOP of 500 psi to provide 2 m/s of ΔV.  The 

system will also provide 50 mN of thrust and have an Isp of approximately 45 s.  [17]  

The SSTL SNAP-1 satellite launched in June 2000 also employed a cold gas propulsion 

system utilizing liquefied gas as propellant.   The uniquely designed system used butane 

as propellant in a rendezvous mission between small satellites.  A total of 32.6 grams of 

butane was stored as a liquid within a 1.1 m coiled tube with an internal volume of 65 

cm3.  The propellant was vaporized by a 15 ohm (4.3 W at 8 Vdc) resistive heater prior to 

expulsion to provide a theoretical ΔV of 3.47 m/s.  Orbital data showed the initial 

propulsive maneuvers of the SNAP-1 satellite were both at higher thruster levels than 
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predicted and erratic in thrust produced.  This suggests that liquid propellant droplets 

were expelled along with the gas; thus creating higher thrust at reduced propulsive 

efficiency.  [18] 

2.6.  ROLE OF UNIVERSITY PROJECTS 

Universities hold a special place within the space industry.  While university 

projects traditionally lack the resources, in terms of both experience and money, of 

industry projects, they more than make up for this in terms of design freedom.  Whereas 

industry must adhere to conservative principles and above all the bottom line, university 

projects have the freedom to explore new methods and technologies.   

Given this freedom offered by university projects, it seems only prudent for 

companies to form a partnership with universities to develop programs focus on areas of 

interest to the space community.  In this way, university projects can directly benefit 

industry interests while at the same time developing and training a new generation for the 

workforce.   
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3. SYSTEM DESIGN OVERVIEW 

3.1. INTRODUCTION 

The propulsion system for the MR SAT formation flight mission was designed to 

meet the needs of the satellite while fitting within the guidelines and time constraints of 

the NS4 program.  As such, certain design aspects of the system are products of necessity 

and not necessarily directly related to the mission requirements.  This section describes 

the system as designed and details the choices, compromises, and iterations of the design 

process. 

3.2. INITIAL DESIGN CONSIDERATIONS 

The beginning of any design process is an important period with far reaching 

repercussions on the final design, particularly for projects with short durations and time 

tables.  The MR SAT project, as part of the University Nanosat Program, had a two year 

concept-to-product time table with much of that time allocated to building the system.  

As a consequence, the initial design choices for the MR SAT propulsion system were 

made in the context of information available to the designers early on in the project with 

such choices being re-examined as new information became available. 

3.2.1. Pertinent Mission Requirements.  As discussed in Section 1, the 

propulsion system for MR SAT has three mission requirements.  Stated briefly, the 

Propulsion subsystem is charged with providing the means for both responsive attitude 

control and orbital control for formation flight.  Each mission statement is examined 

below as to its rationale and the consequences for propulsion design. 
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3.2.1.1 Provide means to maintain attitude and orbit control.  Attitude and 

orbit control are vitally important to the successful completion of the M SAT mission.  

Attitude control is particularly essential in that without tight bounds on the orientation of 

the satellite while in orbit, communication with the ground would be impossible.  Also, 

proper orientation is important for the solar panels to maintain the appropriate level of 

solar exposure and sustain the power levels for the satellite.  The goal of the Attitude 

subsystem is to maintain attitude control within ±7 degrees of nominal satellite 

orientation. [19]  While means other than propulsion do exist for attitude control, these 

devices are not as responsive and require significantly more time to slowly change the 

attitude of the satellite.  During the formation flight mode of the mission, and particularly 

immediately after the deployment of MRS SAT, quick response to changing rotation 

rates is necessary.   

To satisfy the attitude control requirements for the mission, the MR SAT 

propulsion system must be capable of providing full three-axis rotational control.  This in 

turn means that a system with multiple thrusters is required.  Also, as discussed in 

Section 2, a balance must be struck between the response time of the system and the 

precision of the attitude maneuvers to avoid overcompensating and propellant waste.   

3.2.1.2 Provide means to maintain 50 meter formation with MRS SAT.  The 

mission for the MR SAT project involves two satellites autonomously maintaining a 

follow/lead formation.  Upon launch, the two satellites are coupled in a stack 

arrangement connected by a separation device.  After separation, the formation must 

quickly be formed and any relative velocities overcome.  Worst-case scenarios indicate 
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that the two satellites will reach the desired 50 meter separation distance in two minutes.  

Therefore, any propulsion system designed to implement formation flight for this mission 

must have the capacity, i.e. available thrust, to quickly mitigate relative velocities and 

establish the proper formation.  Once the formation is formed, it must be maintained 

within the specified bounds by the use of the propulsion system.  To achieve this as 

efficiently as possible, it is necessary to be able to thrust in as many translational axes as 

possible, thus eliminating unnecessary rotational maneuvers. 

3.2.1.3 Provide sufficient performance for one orbit of formation flight.  The 

lifetime of the mission is a major consideration and is, at least for the purposes of 

formation flight, defined by available propellant mass.  To demonstrate that the methods 

utilized by the MR SAT program to conduct autonomous formation flight are valid and 

effective, a minimum mission duration is required to insure that adequate data are 

collected.  Obviously longer time spans are desirable and would provide more data; 

however, one orbit of formation flight was chosen as the minimum mission lifetime since 

it was deemed effective for demonstration purposes and feasible given program 

requirements. 

Ensuring adequate performance to achieve one orbit of formation flight is made 

far more difficult by the volumetric and mass constraints placed upon the system.  

Storage of large masses of propellant at safe pressures, as defined by the NS4 User’s 

Guide, necessitates the use of large volume storage vessels.  However, since the exact 

amount of propellant necessary for the mission was unknown and unknowable early in 

the design process, a design providing as much Δ V as possible was preferred. 
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3.2.2. MR SAT Propulsion Options.  Defining the mission objectives and 

understanding the program guidelines and requirement allowed the initial design of the 

MR SAT propulsion system to be determined.  Due to volumetric, mass, and time 

considerations, the Propulsion subsystem endeavored to design a single propulsion 

system to encompass both attitude and orbital control during formation flight as opposed 

to a separate system for each need.  In the sections below, the pros and cons of the three 

main system options are discussed. 

3.2.2.1 Chemical systems for MR SAT propulsion.  Chemical systems were not 

considered a viable option for the MR SAT mission despite performance characteristics 

within the bands necessary for successful completion of the mission.  The issue with such 

systems was not complexity; indeed systems are available commercially specifically 

designed for small satellites, but rather the chemical reaction process inherent to their 

use.  NS4 guidelines on propulsion systems prohibit chemical reactions and combustion 

as unsafe practices; however, should a satellite be constructed outside the UNP, chemical 

systems could be explored as a possible propulsion option.  This is especially true 

considering that at minimum chemical systems have nearly double the ISP of cold gas 

systems. 

3.2.2.2 Electrical systems for MR SAT propulsion.  Electrical systems merited 

some consideration.  With the total required ΔV of the mission as yet undefined the 

relatively high ISP values of electric propulsion made such systems attractive.  Relatively 

simple electrical systems such as resistojets, arcjets, and micro pulsed plasma thrusters 

(µPPT) were all briefly considered for the primary propulsive means of MR SAT.   
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Resistojets are one step more advanced than cold gas thrusters in that they utilize 

small resistive heaters just prior to the nozzle to add energy to the flow.  The added 

energy increases the efficiency of the thrust generation and thus preserves propellant 

mass.  Arcjets work in much the same manner only utilizing an electric arc instead of 

resistive heaters to accomplish the heat addition.  While both these devices would help 

extend formation flight time by increasing system efficiency; it comes at the cost of extra 

system mass for power conditioning units and added power draw on the satellite.  The 

need for multiple thrusters, lack of experience with electrical propulsion, and the limited 

power available on the satellite made both resistojets and arcjets infeasible for 

implementation in MR SAT. 

As an alternative, µPPTs are traditionally used for attitude control work since they 

are capable of very small impulse maneuvers and work in a pulsed fashion instead of the 

continuous flow achieved by other systems.  As such they do not truly meet the needs of 

the M SAT mission; however, should two systems be employed to perform attitude and 

orbit control separately, µPPTs would be a possibility for the attitude control 

requirement.  For this reason, a prototype µPPT was to be included on MR SAT, 

assuming space, mass, and power for the device were available, as a technology 

demonstration for future missions.  

3.2.2.3 Cold gas thrusters for MR SAT propulsion.   Cold gas thrusters were 

perhaps the best option for MR SAT propulsion given their simple design and 

implementation requirements.  The concept and laws governing the fluid flow were 
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familiar to the Propulsion subsystem and thus could be implemented by the student 

designers quickly.   

The limiting factor with cold gas thrusters is the third mission requirement of 

producing a system capable of providing a full orbit of formation flight.  While the 

required total ΔV for the mission was not yet known, the theoretical performance of the 

system using traditional propellants and tanks of reasonable volumes was not 

encouraging.  For example, a 2.5 liter tank of nitrogen when stored under the safe 

conditions set by the UNP and ignoring the likely loss of 10% of the propellant mass is 

only capable of producing 0.47 m/s of ΔV. [20]   

While cold gas thrusters offered the greatest chance of success for the Propulsion 

subsystem in terms of completing the system, clearly the issue of propellant choice and 

storage had to be carefully considered and became an integral design aspect.   

3.2.2.4 Chosen system for MR SAT propulsion.  To achieve the mission 

objectives utilizing the cold gas thruster concept, a method of low-pressure, high-density 

propellant storage was imperative.  This is not possible with traditional gaseous 

propellants as density and pressure are directly related for a container at a given 

temperature.  Employing a liquid propellant realizes the necessary storage conditions; 

however, the expulsion of liquid propellant greatly reduces the efficiency of the 

propulsive device.  Therefore, a compromise system, where propellant is stored as a 

liquid and yet expelled through the nozzle as a gas, was sought by the Propulsion 

subsystem.  
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A saturated-liquid propellant is a good choice to attain just such a compromise.  

Saturated-liquids are substances that over a given temperature range can exist in both the 

liquid and gaseous states.   Using such propellants, extra propellant mass can be stored in 

the tank as a higher density a liquid while the vapors are extracted and expelled to 

produce thrust.  Identifying the specific saturated-liquid that met all the safety and 

performance guidelines was challenging and necessitated consultation with the Missouri 

S&T Chemistry Department.   

In the end the selected propellant was the refrigerant R-134a due to its non-

reactive, non-toxic, and performance properties.  The refrigerant was to be used with the 

cold gas concept as the basis for MR SAT propulsion. 

3.2.3. Configuration Possibilities.  The placement and orientation of the 

thrusters within the confines of the satellite is critical to the final performance of the 

propulsion system; affecting both the rotation rates produced by the system and overall 

efficiency of maneuvers.  Thruster placement also is important with regard to integrating 

the propulsion system into the satellite in a manner that avoids conflict with other satellite 

systems.  

The main objective when configuring the thruster locations was to ensure the 

system could perform the attitude and orbit maneuvers required by the mission 

statements; i.e. the system had full three-axis rotational control and multiple axis 

translational control.  However, additional considerations required placing further 

restrictions on thruster placement to ease system integration. The first of these 

requirements entailed avoiding the top and bottom panels of MR SAT since these panels 

are contact points for MRS SAT and the launch vehicle, respectively.  Also, the 
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placement of thrusters in the middle of panels was discouraged due to possible 

interference with other satellite systems.  Finally, system complexity and overall cost was 

to be reduced by minimizing the number of thrusters needed to accomplish the mission 

goals. 

The configuration of thrusters for MR SAT was the product of the aforementioned 

reasons and time constraints; however, to exemplify the thought process necessary for 

designing a functional thruster pattern, the configuration used for MR SAT plus two other 

possible designs are analyzed below. 

3.2.3.1 Twelve thruster configuration.  The twelve thruster configuration is the 

most straightforward of the possible thruster arrangements for MR SAT.  Four thrusters 

are placed in each translational plane of motion and arranged in such a way so the thrust 

vector from half the thruster group directly opposes that of the other half.  To perform 

both translational and rotational maneuvers pairs of thrusters would fire in tandem; the 

specific pair of thrusters selected determining the maneuver performed.  Figure 3.1 shows 

what this thruster configuration would look like when implemented into MR SAT as well 

as which thruster pairs perform which maneuvers. 

This design has the benefit of providing direct maneuvering capability in all three 

translational and rotational axes; however, this comes at the cost of increased system 

complexity and cost due to the number of thrusters required.  Additionally, the design 

requires thrusters to either be placed on the top and bottom panels of MR SAT and risk 
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Figure 3.1: Maneuver Pairings - Twelve Thruster Configuration 
 

 

interference with satellite connection points or be placed along solar panels and risk 

possible solar cell contamination.   

3.2.3.2 Eight thruster angled configuration.  The angled nature of this 

configuration allows fewer thrusters to perform the same set of maneuvers as the twelve 

thruster configuration.  In this configuration, two sets of four thrusters are arranged on 
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opposing panels.  The thrusters are arranged in a square pattern with each thruster placed 

at a corner and angled 45° as seen in Figure 3.2.  Four thrusters are fired simultaneously 

to achieve the desired thrust vector(s) for both rotational and translation maneuvers (see 

Figure 3.2 for maneuver groupings).   

 
 

 
Figure 3.2: Maneuver Pairings - Eight Thrusters at 45 Degrees 
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While such an arrangement does indeed provide a system capable of three axis 

rotational and translational maneuvers, it does so at the cost of overall system efficiency.  

The angled nature of the thrusters means that a portion of the force produced by each 

thruster is canceled out by the actions of the other active thrusters.  In fact, only a little 

over half (0.577) of the available thrust is converted into the resultant force vector.  

Additionally, achieving the precision in thruster placement and alignment necessary in 

order to ensure proper thrust vectors for such a design would drastically complicate the 

integration process.  In the end, the inefficiency of this design and the difficulties with 

integration were not compatible with the needs and requirements of MR SAT.    

3.2.3.3 Eight thruster straight configuration.  The thruster configuration chosen 

for MR SAT employs eight thrusters but does away with the angle of the previous 

configuration.  Instead of an equal number of thrusters in opposition, this method uses a 

single thruster directed through the CG of the satellite to offset the translational force of a 

thruster on the opposing panel in order to produce torque.  Figure 3.3 shows the thruster 

configuration and the thruster pairs utilized for various maneuvers.   

The design does an adequate job in meeting the requirements of MR SAT in that 

all rotational axes are controlled and the number of valves within the system is reduced; 

however, the translational axis through the top and bottom of MR SAT is left 

uncontrolled.   
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Figure 3.3: Maneuver Pairings - Eight Thrusters Straight Configuration 
 

 
 
 

3.3. SYSTEM DESIGN 

With the preliminary design decisions for the MR SAT propulsion system 

complete, the next phase of design began.  Within this phase, specific component 

requirements were developed to ensure successful integration into a unified propulsion 

system.  Components were then sourced to meet the necessary criteria; moving the design 

from a general concept to a physical model utilizing real world components integrated 

into a cohesive system.  
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3.3.1. System Components.  The components that make up a system determine 

the function and efficiency of that system; each component performing a particular task 

and adhering to specific requirements.  While a cold gas propulsion system is 

conceptually simple, incorporating physical components in the design presented 

challenges and required strict selection criteria.   

3.3.1.1 Propellant tank.  The propellant tank was a key component for the MR 

SAT propulsion system given the type of propellant selected.  During the development of 

tank requirements it was necessary to consider the unique challenges presented by 

propellants stored in a saturated liquid state.  Specifically, the tank must be equipped with 

a passive means to combat and prevent propellant slosh within the tank while on orbit.   

Propellant slosh occurs when the liquid propellant within the tank moves 

separately from the satellite structure; potentially disrupting the prescribed motion of the 

satellite.  The problem arises due to the way liquids behave in a zero g environment.  

Under the influence of gravity, liquids conform to the bottom of the containment vessel; 

however, without gravity liquids tend to form large globules moving freely within the 

tank.  Propellant Management Devices (PMDs) are established inside storage tanks to 

control slosh effects by breaking up large globules and restricting the free motion of 

liquids.  Another function often assigned to PMDs is ensuring that the propellant 

extracted from the tank is in the correct state, either liquid or gas.   

Therefore, the use of R-134a as a propellant set the major requirement for the 

propellant tank.  Any tank considered for use on MR SAT would require an internal PMD 
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capable of working with R-134a and designed to extract the gaseous state from the tank.  

This and additional requirements are listed in Table 3.1 below. 

 

 
Table 3.1: Propellant Tank Requirements [21] 

Requirement Reason 

Integrated PMD Necessary to control propellant slosh and ensure that the 
proper phase is extracted from the tank. 

All Metal Construction 
Safety requirement imposed by UNP officials.  Composite 
materials are deemed too great a risk without additional 
metal wrapping. 

Fit Within the 
Available Volume of 

MR SAT 

Exceeding the bounds of the satellite would violate UNP 
regulations.  In addition, available volume is limited by not 
only overall satellite dimensions, but also the volume 
necessary for other satellite components. 

Possess a Minimum 
Internal Volume of 2 L 

This volume was deemed necessary to provide sufficient 
propellant mass for satellite operations.  

Theoretical Burst 
Pressure 5X Greater 

than MEOP 

Factor of Safety required by UNP.  Ensures that pressure 
fluctuations will not cause a catastrophic breach of the 
tank. 

Reasonably Priced The M-SAT team was working with a limited budget. 
 

 

Two of the restrictions limited the options for commercially available tanks more 

than any other.  With a small satellite, the tank must be correspondingly small in 

dimension.  Many of the tanks sourced by the Propulsion Subsystem were simply too 

large to fit within the available volume of MR SAT.  Also, most commercially available 

tanks were designed either without integrated PMDs or with PMDs manufactured for 

liquid phase extraction.   

While many tanks were considered, only the Marotta BS25-001 tank fit all the 

design criteria set forth by the Propulsion subsystem.  The 2.5 L tank had an incorporated 
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PMD originally designed to prevent liquid butane from being injected into propellant 

lines; however, it would work equally well for R-134a.  An additional benefit of Marotta 

tank was its proven flight history and hence its space qualified nature.    Further 

information on the selected tank can be found in Table 3.2 below. 

 
 
 

Table 3.2: Flight Tank Specifications [21] 
Operational Temperature -40 °C to 65 °C -40 °F to 150 °F 
Maximum Expected Operating Pressure 
(MEOP) 1.600 MPa 232 psi 

Minimum Burst Pressure (MBP) 9.7975 MPa 1421 psi 
Volume Capacity 2500 cm3 153 in3 

Mass 1.476 kg 3.25 lb 
Maximum Body Length 32.6 cm 12.83 in 
Outside Diameter 110.314 mm 4.24 in 
Factor of Safety (MEOP : MBP) 6 : 1 

 

 

3.3.1.2 Isolation valves.  Safety is the foremost concern of UNP officials.  

Pressurized systems are inherently more prone to failure and, as such, merit additional 

safety requirements and stipulations.  As a safety measure the UNP mandates that each 

pressurized system must have three mechanical inhibits; one of which must be failsafe. 

For the purposes of the MR SAT propulsion system, it was determined that two 

isolation valves would serve as the initial two inhibits with the thruster control valve 

serving as the final inhibit on each propellant line.  For simplicity sake, the two isolation 

valves were to be of the same design.  Therefore, the most important aspect of isolation 

valve selection was the failsafe nature of the chosen design.  In terms of valve design, 

failsafe means that the valves’ default position is closed and, therefore, any interruption 
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in signal will shut off the flow and secure the propellant.  The overall requirements for 

the isolation valves can be found in Table 3.3. 

 

 
Table 3.3: Isolation Valve Requirements 

Requirement Reason 

Failsafe Design Safety feature prevents the release of propellant in the 
event of a failure.  Mandated by UNP. 

Sealant is low 
outgassing 

Low outgassing materials lose less matter when exposed 
to a vacuum.  Loss of material can lead to valve leakage 
and material deposits on other sensitive equipment.  
Additionally, low outgassing is mandated by UNP. 

Compatible with R-
134a 

R-134a is considered chemically inert, but can dissolve 
certain plastics and rubber materials.  Ensuring 
compatibility prevents seal failure. 

4 x FOS over MEOP Isolation valves will see the full pressure of the system 
and must be able to withstand the force.   

 
 
 
 
After an extensive search and consultation with experienced industry 

representatives, a micro-dispense solenoid valve from Lee Valve Company was selected.  

The original selected valve was the INKX0512050A, however, this valve was only proof 

tested to 199 MPa (289 psia) which does not meet the required FOS of 4.0.  Discussions 

with Lee yielded a derivative of the INKX0512050A valve that was slightly larger and 

proof tested to 5.17 MPa (750 psi).  Figure 3.4 shows the MR SAT isolation valve from 

Lee Valve Company.   
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Figure 3.4: Lee Valve Company INKX0512050A Micro-Solenoid Valve 
 
 
 
 
Also discussed with Lee was the possibility of changing the internal sealant used 

within the valve to a material compatible with R-134a.  These discussions are still 

ongoing as a suitable material that is also low outgassing and moldable (per Lee 

manufacturing requirement) has yet to be found.  In the mean time, the valves were 

ordered with EPDM seals which are compatible with R-134a but have unknown 

outgassing properties.  Other pertinent valve characteristics are detailed in Table 3.4. 

3.3.1.3 Pressure regulator.  For peak performance, each thruster needs to be 

provided with constant and predictable flow characteristics.  Without regulated pressure, 

the flow delivered to the nozzle would change as tank pressure falls due to propellant use.  

Thus, the system requires a pressure regulator downstream of the tank for optimum 

system performance.   
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Table 3.4:  MR SAT Valve Specifications [22] 
Mass 7 grams 
Proof Pressure (Lee Co. rating) 5.17 MPa (750 psi) 
Burst Pressure (Lee Co. rating) 7.76 MPa (1125 psi) 
Rated Thermal Environment -18 °C to 70 °C 
Open Response Time – 689.48 kPa (100 pisg) 0.25 ms 
Close Response Time – 689.48 kPa (100 pisg) < 3.0 ms 
Actuation Voltage  24 V spike 
Actuation Power (Maximum Average) 0.75 W 

 
 
 
 
Pressure regulators are in essence spring loaded check valves.  When the pressure 

downstream of the regulator exceeds a preset value, flow from upstream of the regulator 

is restricted; however, when the downstream pressure is below the set point, the regulator 

allows propellant to flow unimpeded.   

Any potential pressure regulator for the MR SAT propulsion system needed to 

meet two key parameters for consideration: a factory set regulated pressure (i.e. non-

adjustable) and be functional in vacuum.  While adjustable regulators would have 

allowed the downstream pressure to be optimized for most efficient thrust maneuvers, a 

concern was that during launch the excessive vibrations could cause the set point to vary 

and thus negate any possible advantage.  The need for vacuum functionality seems self-

explanatory; however, many regulators utilize vent holes to take atmospheric pressure 

into account and thus it was an important issue when sourcing viable pressure regulators.  

Table 3.5 presents the requirements necessary of a pressure regulator for MR SAT. 
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Table 3.5: Pressure Regulator Requirements 
Requirement Reason 

Non-adjustable Setting 
Adjustability increases component complexity.  
Set point could vary due to launch vibration.  
Requirement highly suggested by AFRL. 

Vacuum functionality Avoid vent holes which may lead to propellant 
leakage.   

Wetted surfaces compatible 
with R-134a 

Many regulators have internal components of 
plastic or rubber which must be compatible with 
the propellant 

Low pressure setting 

A lower regulated pressure reduces the impulse of 
each thruster firing, and thus allows for more 
precise maneuvers.  Also increases the time that 
tank pressure is above regulated pressure (i.e. 
regulators functional time). 

Reasonably priced 
The M SAT team was working on a budget and 
space rated components often were out of the 
team’s price range.  

 
 
 
 
Four companies were initially considered as vendors for the MR SAT pressure 

regulator; Moog, Beswick, Tescom, and Swagelok.  However, only the Swagelok 

regulator met all the requirements.  The Moog 50E741 pressure regulator had the benefit 

of being space rated, but was also excessively massive for a small satellite and cost 

upwards of $50,000.  The Beswick and Tescom regulators also failed to meet the 

subsystem’s guidelines by having a reference vent hole and an adjustment device, 

respectively.   

The Swagelok model chosen for use on MR SAT was the HFS3B compact 

pressure regulator designed for use with high flow gases.  The device was calibrated to a 

preset outlet pressure of 68.95 kPa (10 psig, 24.7 psia) and certified to work after 

upstream pressure falls below the preset value.  The Swagelok regulator had the 
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additional benefit of easy integration since it was an inline model and could be equipped 

with standard Swagelok fittings.  Regulator specifications can be found in Table 3.6. 

 
 
 

Table 3.6: MR SAT Pressure Regulator Specifications [22] 
Preset outlet pressure 68.95 kPa  (10 psig, 24.7 psia) 
Mass (measured)  176 grams 
Temperature range -40 °C to 70 °C 
Inlet pressure range Vacuum to 6.89 MPa (1000 psig) 
Operating temperature range  -23 °C to 65 °C 
Orifice size 3 mm (0.12 in) 
Flow capacity 100 std. L/min 
Leak rate (He) 1 x 10-9 std. cm3/sec 

 

 

3.3.1.4 Thrusters. The thrusters for the MR SAT propulsion system were to 

consist of three main components; a Swagelok fitting, an actuation valve, and a nozzle.  

Manufacturing the nozzle to the necessary tolerances and scale was determined to be 

beyond the fabrication abilities of M SAT design team, and as such, the thruster 

assemblies were to be internally designed and externally sourced.  Therefore, Micro 

Aerospace Solutions (MAS) a company in Melbourne, Florida with experience in micro 

propulsion systems was contacted by then Propulsion Lead, Carl Seubert to assist in the 

design and fabrication of the MR SAT thrusters.  

The valve component of the thruster assembly was chosen at the same time and in 

the same manner as the system isolation valves; thus the inhibit requirement was satisfied 

by the same valve model in all three cases.  The remaining design considerations for the 

thrusters were focused on overall thruster shape and nozzle design.  The shape of the 
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thrusters, or how the three main components are configured within the assembly, was 

important for integration considerations.  Each thruster must be securely fixed to the 

satellite structure in the correct orientation which requires a method of attachment based 

upon the final configuration of the thruster.  The requirements pertaining to thruster 

assembly configuration can be found in Table 3.7 below. 

 
 
 

Table 3.7: Configuration Requirements for Thruster Assembly 
Requirement Reason 

Provide means to secure thruster 
to structure 

Fixed orientation is necessary to ensure the 
system is capable of performing the required 
maneuvers correctly. 

Nozzle extends beyond 
honeycomb panels 

If the nozzle is obstructed by the honeycomb 
panels it will not be able to produce thrust.  
Also, the nozzle being merely even with the 
surface of the honeycomb panels could lead to 
solar cells being contaminated by R-134a. 

Allow for straightforward 
propellant line attachment 

The propellant lines must be connected to the 
thruster in a manner that provides support for 
the lines. 

 
 
 
 
An “L” shape with the bend placed between the Swagelok fitting and the valve, as 

seen in Figure 3.5, was chosen as the basic shape for the thruster assembly.  This allowed 

the thruster to be attached securely to the structure at the fitting, thus preventing 

unnecessary stress upon the thin and relatively delicate valve tubing.  With this 

configuration, the Swagelok fitting rests upon the inside surface of the isogrid panel 

while the valve and nozzle protrude through the panel and past the honeycomb solar 

panel. 
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Figure 3.5:  "L" Shape Configuration for MR SAT Thruster 
 
 
 
 
Figure 3.6 shows the necessary dimensions for the thruster configuration to ensure 

the nozzle extends sufficiently past the solar panels.  Finally, this configuration allowed 

propellant lines to run along the inside surface of the isogrid panels, which provided a 

means to secure them as well.  While other configuration possibilities for the thruster 

assemblies do exist and could have worked equally well, they were not explored given 

sufficiency of this design.  

The nozzle portion of the thruster design was more complex as it was necessary to 

balance opposing performance requirements while designing a machinable part.  Analysis 

performed by Carl Seubert demonstrated improved ΔV performance for the system given 

a higher nozzle Aspect Ratio (AR), the ratio between nozzle exit area (Ae) and throat area 

(AT).   
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Figure 3.6: Thruster Schematic 
 
 
 
 
However, this improvement comes at the expense of lower overall thrust 

produced per thruster firing which adversely affects the response times for attitude 

maneuvers [22].  Therefore, a compromise AR which extends mission life time, ΔV, 

while providing sufficient thrust for attitude control was a primary requirement for the 

nozzle design. 

Machining issues became prominent due to the small size and the necessary 

tolerances of the part to be machined.  The machining process greatly affected the final 

AR chosen for the nozzle since machining tolerances limit the minimum diameter 

possible for the throat.  MAS is capable of machining parts accurately within 0.001 
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inches (0.0254 mm) meaning that a part may vary plus or minus a thousandth of an inch 

off specified dimensions.  This is especially important for AT since as the throat area 

approaches the accuracy limit the variation in machining has a correspondingly greater 

influence on the performance of the nozzle.  The small part size also affects the 

complexity of the shape that can be attempted.  In larger parts, complex shapes involving 

relatively smooth curves are possible; however, when applied to smaller parts, the 

accuracy limit of the machining process could cause relatively large variations in the 

designed curvature.  Thus, simple nozzle shapes were necessary to prevent undue system 

losses.  The requirements associated with the nozzle design can be found in Table 3.8. 

 
 
 

Table 3.8: Nozzle Design Requirements 
Requirement Reason 

An AR that sufficiently meets 
all design requirements 

High AR gives higher ΔV but lower thrust.  A 
compromise which meets the needs and 
requirements of the mission is necessary. 

Machinable AT 
The AT must be much greater than the machining 
tolerances of MAS to reduce the influence of 
machining variability on system performance. 

Simple interior shape 

Complex interior surfaces are difficult to 
accurately manufacture due to the small part size.  
This in turn could lead to additional system losses 
due to friction and boundary layer affects. 

Stainless steel construction 

The thruster is likely to experience thermal 
gradients.  Using the same material in each 
component of the thruster assembly ensures 
thermal expansion rates should be similar and 
thus reduces the possibility of leaks and stress 
induced by thermal expansion. 
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In consultation with MAS, the nozzle design was finalized and met all 

requirements placed upon it by the Propulsion subsystem.  The design called for a 

stainless steel converging/diverging nozzle utilizing straight cones in both the converging 

and diverging sections.  The straight cone shape is not as efficient as the bell-shaped 

section often seen in larger rocket nozzles, but is far easier to manufacture accurately.  

The diameter of the throat was set at 0.5 mm with the exit diameter set at 5 mm to ensure 

the structural strength of the outer edge.  Thus, the aspect ratio is 100, which is a fine 

compromise between ΔV and thrust as seen in Section 3.3.3 “Expected Performance.”  A 

diagram of the nozzle design can be found in Figure 3.7. 

 
 
 

 

Figure 3.7: Nozzle Schematic 
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3.3.1.5  Propellant lines and fittings.  Any pressurized system is only as robust 

as the lines, connections, and fittings used in its assembly.  They provide the means for 

propellant to flow from the source tank to thruster assemblies and eventually out the 

nozzle to produce thrust.  When developing the requirements for the propellant line 

system restrictions and recommendations from the UNP and AFRL officials played a 

significant role.  Many of the recommendations focused on practices known to reduce the 

possibility of propellant leakage within the system, a common problem with cold gas 

thrusters.   The requirements stemming from these recommendations and restrictions are 

listed in Table 3.9. 

 
 
 

Table 3.9: Propellant Line and Fitting Requirements 
Requirement Reason 

Lines and fittings must be 
constructed of metal 

Polymer or rubber propellant lines are more likely 
to fail especially under the vacuum conditions of 
space.  It is also an outgassing risk. 

Avoid use of flexible tubing 

This was more a suggestion as past use of flexible 
tubing, even of metal construction, has been shown 
to cause problems with connections and thus 
increased leak rates. 

Lines and fittings made of the 
same material 

Connections of different metals with different 
thermal expansion rates could lead to excess stress 
placed on the system or increased leak rates. 

Non-welded connections Welding performed by the team is against the 
policies of the UNP. 

Fittings and connections with 
low leak rates 

With the restriction on welded connections, 
compression fittings were the only choice left to the 
subsystem; however, choosing a compression fitting 
with a low leak rate is still prudent. 

Fittings must be able to fit on 
the isogrid panels 

Many of the panels are crowded with other system 
components and thus space is limited. 

Maintain a FOS of at least 
four over MEOP 

The propellant lines will experience the full 
pressure of the system and therefore must be able to 
safely contain such pressure. 
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There were many different types of fittings available for use in sealed systems 

such as the MR SAT propulsion system.  The majority of the connections within the 

system were to be tubing connections rather than threaded, and therefore compression 

fittings figured prominently in the product search.  At first Army/Navy (AN) standard 

37° flare fittings were considered for use with MR SAT propulsion.  These fittings 

require the end of the tubing to be flared out into a trumpet shape which is then fitted 

over a similarly shaped cone on the fitting.  A compression nut forces the cone into the 

flare and seals the connection.  A diagram of this arrangement can be seen in Figure 3.8.  

After consultation with AFRL personnel, the use of AN fittings was abandoned as 

previous satellite teams had had difficulty attaining a proper seal with their use.  Instead, 

AFRL officials suggested the use of Swagelok fittings which utilize a double ferrule 

design to both lock the tubing in place and seal the connection.  A schematic of this can 

be found in Figure 3.9. 

 
 
 

 

Figure 3.8:  Schematic of an AN flare Type Fitting 
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Figure 3.9:  Swagelok Double Ferrule [23] 
 
 
 
 
Aluminum tubing and 0.25 inch aluminum Swagelok fittings were sought for use 

with the propulsion system; however, two problems with this intent quickly became 

apparent.  First, after modeling the system with 0.25 inch fittings and tubing in NX3 it 

was clear that the fittings and tubing simply would not work within the satellite.  The 

fittings were too large to comfortably fit upon panels containing other subsystem 

components and the tubing required a minimum bend radius that also interfered with 

other components.  Secondly, many of the required fittings simply did not come with an 

option of aluminum construction.   

The final design utilized 0.125 inch OD (outside diameter) stainless steel tubing 

and the corresponding stainless steel Swagelok fittings.  The tubing was designed with a 
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wall thickness of 0.02 inches making the tubing capable of handling up to 23,985.3 psia; 

well above the required FOS of 4.0. 

3.3.1.6 Tank and line heaters.  Two-phase storage of the propellant allows a 

greater propellant mass to be stored in an equivalent volume at a comparable pressure; 

however, before the liquid propellant can be effectively converted into thrust it must be 

transformed to the gaseous state.  Also, as propellant is expelled from the tank, both tank 

temperature and pressure decrease causing a loss of thruster efficiency and possibly 

leading to an interruption in propellant flow.  For these reasons, a method of adding 

energy into the system had to be devised in order to sustain the necessary phase change 

and maintain the thermodynamic conditions of the tank.  Additionally, the possibility of 

propellant condensation within the propellant lines had to be addressed and mitigated to 

ensure the maximum possible efficiency of the system.    

A minimum of two heaters were required by the system; one on the propellant 

tank to provide energy for the liquid to gas phase change, and the other situated upon the 

propellant line to help prevent re-condensation.  More heaters would more effectively 

prevent propellant condensation; however, such resistive heating consumes excessive 

amounts of electrical power.  At the time of heater selection, the power budget for MR 

SAT was uncertain with the exact available power unknown.  As a result, it was 

imperative to select heaters which utilized a minimum of electrical power while still 

maintaining the thermal control necessary for the M SAT mission.  The requirement for 

heater selection can be found in Table 3.10. 
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Table 3.10: Propellant Tank and Line Heater Requirements 
Requirement Reason 

Low power consumption The power of any satellite is limited and each 
component must minimize the power consumed. 

Made of low-outgassing 
material 

Low-outgassing materials are mandated by the 
UNP guidelines. 

Flexible material 

The heaters must be fixed to round components 
such as the propellant tank and propellant lines.  As 
such, they must be flexible to ensure efficient 
contact. 

Adhesive mounting The heater must be securely fixed to the propellant 
tank and lines.  

 

 
 

The heaters chosen for use with the MR SAT propulsion system were developed 

by Minco.  The heaters are made of the polyimide film, Kapton, over a metallic heating 

element chosen to obtain the required resistance.  Kapton is widely used in the space 

industry for its low-outgassing properties.  Each heater also has an aluminum backing to 

ensure that the heaters conform to the curved surface of the tanks and lines.  Finally, the 

heaters are attached using an acrylic pressure-sensitive adhesive which also meets 

outgassing requirements and secured using shrink bands.  Heater specifications can be 

found in Table 3.11. 

 
 
 

Table 3.11: Heater Specifications [21] 

Heater 
Location 

Dimensions 
cm (in) 

Resistance 
(Ohms) 

Output 
Wattage 

(W) 
Voltage (V) Lead Gauge 

Tank 12.70 x 30.734 
(5.00 x 12.10) 13.1 3.63 6.9 AWG 24 

Propellant 
Line 

0.864 x 8.814 
(0.34 x 3.47) 33.9 1.06 6 AWG 30 
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3.3.1.7 State sensors.  Throughout the mission, it would be useful to have an 

indication of how effectively the system is functioning.  This ensures that the propulsion 

system can adapt to changing situations and always operate at peak performance.  Both 

pressure and temperature sensors were to be incorporated within the propulsion system to 

constantly monitor state properties.  The temperature sensors fall under control of the 

Thermal subsystem, and as such, the input from the Propulsion subsystem was limited to 

number and location.  Two sensors will be placed on either end of the propellant tank to 

monitor the temperature shift as the system is utilized with another sensor located on the 

main propellant line.   

For the purposes of safety and thruster performance, pressure monitoring was 

imperative to the operation of the system.  Two pressure monitoring devices were needed 

for complete system coverage since two distinct pressure regimes are present: tank 

pressure and regulated pressure.  The most important aspect of pressure transducer design 

for the MR SAT propulsion system was the pressure range over which the transducer can 

accurately function.  The pressure range needed to be sufficiently wide to cover the entire 

spectrum of expected pressures while still being fine enough to ensure that there was 

adequate precision in the measurements.  At the time pressure transducer selection, the 

maximum expected operating pressure of the system was set at 100 psi and as a result the 

required maximum pressure was set at a mere 200 psi.  This and further requirements are 

outlined in Table 3.12. 
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Table 3.12: Pressure Transducer Requirements 
Requirement Reason 

Pressure range of 0-200 psia 

The smaller the pressure range the more precision 
the measuring instrument has.  Thus the requirement 
calls for a pressure range that easily contains the 
MEOP yet is small enough to remain precise. 

Lightweight The mass of the satellite is limited, and as such all 
components must be as light as possible. 

Stainless steel connections 
As explained previously, the use of similar materials 
at connection points will help alleviate the 
damaging effects of thermal expansion. 

 
 
 
 
The AS17A model pressure transducer manufactured by Honeywell/Sensotec was 

selected for use with the MR SAT propulsion system.  While not space qualified, the 

AS17A model was developed specifically for aerospace applications and thus is 

relatively compact and light.  The standard model is capable of reading pressures up to 

10,000 psia but can be factory set to read a portion of this range thus increasing the 

precision of the measurement.  The two pressure transducers for MR SAT were set to an 

absolute range of 0 – 200 psia in accordance with the requirements in place at the time.  

Specifications for the MR SAT pressure transducers are found in Table 3.13. 

 
 
 

Table 3.13:   Pressure Transducer Specifications [22] 
Pressure range 0 – 200 psia (0 – 1378.96 kPa) 
Mass 140 g 
Operating temperature range -54 °C – 121 °C 
Casing material Stainless Steel 
Connection type 7/16-20 UNF 
Electrical connection PRIH-10-6P 
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3.3.2. Component Arrangement.  Component arrangement encompassed two 

aspects of system design: the actual order of components within the propulsion system, 

i.e. along the propellant lines, and the layout or location of components within the 

satellite necessary for integration purposes.  The placement of each component, both 

within the propulsion system and within the satellite, could not be arbitrary, but rather 

had to satisfy a variety of requirements from NS4 guidelines to propulsion system 

requirements to even structural requirements for the satellite. 

3.3.2.1 Propellant line division.  The function of entire propulsion system is to 

efficiently transport propellant from the tank to the thruster assemblies in order to 

produce thrust.  With eight thrusters stemming from a single source tank, the main 

propellant line must split into eight branches.  The manner in which this split is 

accomplished greatly affects the final layout of the system.  Two methods were proposed: 

the utilization of a manifold design where the main line is split into eight individual lines 

through the use of one fitting and a fitting design which utilized a series of cross and tee 

fittings to split the lines to the requisite number.   

The manifold design offered many advantages with regard to integration and 

performance.  The main benefit realized would be the direct routing of propellant lines to 

each thruster and the corresponding reduction in connections.  Direct routing would 

allow, with careful design, the propellant lines to be relatively equal in length and thus 

equalize the performance losses associated with wall friction.  Uneven line lengths result 

in certain lines experiencing greater frictional losses and thus thrusters that could 
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experience vastly different performance.  Additionally, the propellant losses associated 

with connection leak rates would be reduced along with the number of connection points.     

Using a series of fittings to divide the branch lines offered a commercial off the 

shelf (COTS) option which would meet the requirements and needs of the propulsion 

system.  Under this plan, the main line would first be divided into three secondary lines 

by means of a cross fitting.  Five tee fittings are then used to further divide the lines into 

tertiary and quaternary lines.  The major benefit of this plan is the COTS nature of the 

components; however, this comes at the cost of ten extra connection points within the 

system and propellant lines of unequal length and complexity. 

Time and budgetary constraints lead to the manifold option being downgraded to 

a long-term research project.  During the NS4 competition research into manifold design 

determined that no COTS manifold with eight outlet ports could be sourced.  Such a 

manifold would have to be custom designed and manufactured to meet the specifications 

of the MR SAT propulsion system.  While this would be possible, the added time and 

inherent expense made this option unsuitable for implementation during the NS4 

competition.   Therefore, the series of Swagelok fittings was employed as seen in Figure 

3.10. 

3.3.2.2 Component order.  Each component for the propulsion system was 

carefully chosen to meet the requirements set forth by the Propulsion subsystem; 

component placement within the propulsion system was just as important to the overall 

functionality of the system.  With the basic propellant line structure established, the other 

components had to be incorporated into the system.  Just as the individual specifications 
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of each component had to satisfy the requirements of the overall system and the UNP, the 

placement of each component had to contribute to the realization of system requirements.  

Many of these components required integration before the main line split so that they 

were effective for the entire propulsion system.  Additionally, the position of components 

relative to each other was instrumental to the functionality of certain components.  

 
 
 

 

Figure 3.10:  Line Division Using Swagelok Fittings 
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The isolation valves are prime examples of components that seemingly could be 

placed anywhere within the system as long as program requirements are met; and yet, 

must be incorporated prior to the main line division point for efficient design.  NS4 

guidelines only stipulate that each path of a pressurized system must have three 

independent inhibits; however, the placement of isolation valves greatly determines the 

number of valves needed to attain the three inhibit status.  For example, if only a single 

isolation valve is placed along the main line, a total of sixteen valves would have to be 

integrated into the branch lines to maintain the three inhibits.  Thus by incorporating both 

isolation valves on the main line the total number of valves required for the propulsion 

system is reduced by seven. 

With all the functional components needing to be placed along the main line, the 

relative location of each had to be determined.  The function of each part was the 

determining factor for its location.  For instance, the first isolation valve is intended to 

isolate the propellant tank from the rest of the system prior to the initiation of formation 

flight and as such needs to be close to the tank on the main line.  However, the pressure 

maintained within the propellant tank needs to be constantly monitored which means one 

of the pressure transducers must be placed before the first isolation valve.  In the same 

way, the final pressure transducer must be located just after the pressure regulator device 

or else it would be incapable of determining the regulated pressure.  Finally, the line 

heater must be placed where the greatest possibility of propellant condensation occurs.  

The main concern with regard to propellant condensation was due to long term propellant 

storage within the lines.  This is unlikely to occur post-regulator, so the line heater was 
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integrated just preceding the regulator.  Thus combining the layout of the main line with 

the line division plan yields the basic order of components given in Figure 3.11.  

 

 

 

Figure 3.11: Basic Order of Components for MR SAT Propulsion 
 
 
 
 

3.3.2.3 Naming convention.  Each part and connection must be individually 

identifiable and trackable so that torque logs and part logs can be filled out.  Such logs 

are mandated by UNP and are a method to catalog and document pertinent information 

concerning the safety and usability of components throughout their lifetime.   Therefore, 

a naming convention had to be implemented to distinguish otherwise indistinguishable 

parts and connections.   

The easiest way to implement a naming convention in a rational and systematic 

manner was to base each part name on component type and location along the propellant 

line.  The first step, then, was to systematically name each branch line.  To begin the 

process, the line stemming directly from the propellant tank was classified as the Main 
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Line.  Each secondary line was then numbered starting with the left most line stemming 

from the diverging point when seen from above (see Figure 3.12) and continuing 

clockwise.  Tertiary lines were given a letter beginning with “a” attached to the moniker 

of their source line and quaternary lines continued in the same manner utilizing numbers.   

 
 
 

 
Figure 3.12: Example of Line Naming Convention 

 
 
 
 

Parts and tubing were then named based upon the location of said part along each 

of the various branch lines.  The final name consisted of three parts; one or two letters 

identifying component type, line name, and number of that particular component type 

along that line.  For example, the tee fitting connecting the downstream pressure 

transducer to the main line was cataloged as TML02 where “T” denotes type of fitting, 



60 

 

 

“ML” signifies that the fitting is on the main line, and “02" indicates that it is the second 

tee fitting on the line.   Figure 3.13 depicts each component and its corresponding name 

within the propulsion system. 

3.3.2.4 System integration.  Transforming the two-dimensional basic component 

order into a three dimensional system integration plan required consultation with both the 

structures and integration subsystems to ensure that the system fit within the confines of 

MR SAT and met all requisite structural guidelines.  Discussions focused on two key 

areas: the integration of the core hardware, i.e. the propellant tank and main line 

hardware, and the integration of the thruster assemblies and propellant lines onto the 

isogrid panels.   

The core hardware represented the majority of the mass and volume of the MR 

SAT propulsions system.  Its placement was also the initial task for the integration of the 

propulsion system into MR SAT beginning with tank placement.  Due to the variable 

nature of propellant tank mass (i.e. the mass changes as propellant is expelled), the 

placement of the tank can affect the motion of the satellite CG during the mission.  

Ideally, the CG of the tank would be placed at the CG of the satellite to limit the change 

of CG throughout the mission; however, due to the dimensions of the propellant tank and 

the placement of other satellite components this was neither practical nor structurally 

feasible.  Therefore, the tank was placed along the bottom panel of MR SAT with the 

inlet and outlet oriented towards opposing corners within the hexagon frame of the  
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Figure 3.13: M-SAT Propulsion System Component Names 
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satellite.  The orientation was particularly important in terms of integration since the 

cross corner span of the satellite represents the greatest linear distance along the bottom 

panel. Thus, even with specialized fittings attached to the outlet of the propellant tank the 

propellant lines still remain within the interior of the satellite.   

Stemming from the propellant tank is the main line of the propulsion system.  As 

originally designed, a specially designed Swagelok elbow fitting immediately directed 

the main line from the propellant tank down to the base plate of MR SAT.  From there 

the line angled in along the side of the tank to a tee fitting connected to the first pressure 

transducer.  After the first isolation valve, the line bent 90 degrees upward where the 

pressure regulator and second pressure transducer were integrated into a tower.  Finally, 

the line bent another 90 degrees to run along the top panel where the second isolation 

valve was incorporated.  A CAD model of this set-up is shown in Figure 3.14. 

The problem with this arrangement was structural in nature.  The tower of 

components had no support structure in place to balance the mass of the components and 

prevent launch vibrations from tearing the components apart.  Various solutions and 

adaptations were proposed that maintained the same basic tower structure yet attempted 

to provide the components added support by incorporating support rods or even tying 

components into special support structures added to the nearby component boxes within 

MR SAT.  However, these options were not optimal solutions and the subsystem began 

considering entirely new configurations that would be structurally sound. 
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Figure 3.14: Early Propulsion Configuration 
 
 
 
 
The challenge of developing a core hardware configuration where all components 

have sufficient structural support was one of limited space and attachment points within 

the satellite.  With the propellant tank occupying most of the bottom panel and 

component boxes limiting the available space along the side panels, the only accessible 

space for the main line components is the area directly above the propellant tank.  There 

were no natural attachment points within this region but a support structure could be 

incorporated into the propellant tank mounts that would allow the main line components 

to wrap around the tank. 

This support structure consisted of two specially designed tank mounts and a 

mounting bridge that spans the gap between the two mounts.  The tank mounts each had a 

contoured opening designed to fit over the hemispheric ends of propellant tank and were 
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bolted to the bottom plate of MR SAT.  The mounting bracket on the outlet side of the 

tank was equipped with two lipped shelves slanted at a downward 45 degree angle.  

These shelves were designed to serve as mounting brackets which completely support the 

mass of the two pressure transducers.  Each tank mount was also fitted with a raised 

platform serving as the integration point for the mounting bridge.  The mounting bridge 

was a thin piece of aluminum with two sets of pronged attachment points stemming from 

either side of the bridge.  Figure 3.15 represents the developed support structure with the 

tank incorporated. 

 
 
 

 

Figure 3.15: Tank and Support Structure 
 
 
 

With this support arrangement, the main line is directed upward upon leaving the 

tank and angled over into the run end of a tee fitting.  Fitted to the branch end of the tee is 

the first pressure transducer angled down along the tank mount so that the mass of the 
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transducer is supported.  From there, the line continues to the first isolation valve which 

is supported by two prongs of the mount bridge.  The line then wraps around to the other 

side of the tank where the pressure regulator is also supported by the mounting bridge.  

Next, the line is attached to the branch end of a tee fitting which is angled so that the runs 

lay along the sloped supports of the tank mount.  The final pressure transducer connects 

to the downward angled run of the tee fitting leaving the main line to continue at an 

upward angle to the top panel of MR SAT where the final isolation valve is connected 

running parallel to the tank.  Figure 3.16 represents the core hardware configuration used 

for MR SAT with an adaptation of the propellant line between the first isolation valve 

and the regulator to provide the four inches of straight tubing required for line heater 

integration. 

The integration of thruster assemblies and propellant lines into the satellite posed 

the same challenges of design encountered during the core hardware configuration.  As 

discussed earlier in this section, eight thruster assemblies had to be incorporated into the 

satellite at specific locations to attain the performance goals of the propulsion system.  

Simply integrating the thrusters themselves onto the various isogrid panels would have 

been challenging enough given the limited available space; however, the thrusters are not 

self contained units and must be connected to propellant lines and fittings which both 

require extra space and efficient placement.   

Mindful of the integration of other satellite components, the original propellant 

line design avoided the center of isogrid panels and limited connections on the top panel 

of MR SAT.   
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Figure 3.16: MR SAT Core Hardware 
 
 
 
 

In Figure 3.17 the main line continues from the core hardware into a Swagelok cross 

fitting on the top panel of MR SAT.  From there the three secondary lines diverge along 

the edges of the top panel to the second group of diverging points in the form of tee 

fittings located along the edges of the isogrid panels.  Figure 3.18 shows a close up of 

Panel 1 with its four thrusters integrated. 

The major difficulty with this routing of propellant lines was the unanticipated 

interference the lines and fittings cause in the assembly of the MR SAT structure.  In 

attempting to avoid component boxes in the center of the panels, the routing plan 

inadvertently covered panel attachment points and interfered with bolt patterns.  Also, 

particularly on Panel 1, the minimum bend radius for the tubing did not allow the 
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propellant lines to avoid interference with component boxes.  Thus a rerouting of 

propellant lines was required. 

 
 
 

 

Figure 3.17: Original Propellant Lines Routing 
 
 
 
 
To avoid component and assembly interference, the propellant lines were rerouted 

with more of the fittings attached to the top panel.  Propellant lines were pulled away 

from the isogrid panels in some instances to avoid connection points and account for the 

minimum bend radius of the tubing.  This was especially true on Panel 1 where the 

diverging point was moved off the panel to the top panel of MR SAT and the line 

division for the thrusters was changed.   
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Figure 3.18: Original Panel 1 Propellant Line Routing 
 
 
 
 
Finally, the corner thrusters were moved from the middle of the corner to one side 

so they could be attached to a single panel instead of strung between panels.  Figure 3.19 

shows the final MR SAT propulsion system. 

3.3.3. Expected Performance.  Performance is the driving objective of the design 

process, and as such a method of objectively determining the performance of the system 

as designed was required.  Modeling a two-phase system proved to be a difficult task 

since the added variables and possibility of condensation quickly complicated the 

mathematical equations.  Therefore, assumptions were used to simplify the modeling 

equations yet still take into account worst-case conditions.  A more detailed description 

of the modeling process can be found in Section 4.4 of Carl Seubert’s thesis entitled 
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“Refrigerant Based Propulsion System for Small Spacecraft;” however, the basic 

assumptions and results are listed below. 

 

 

 

Figure 3.19: MR SAT Propulsion System Final Design 
 
 
 
 

To employ the rocket flow equations, basic assumptions had to be made.  These 

include: 

• Isentropic nozzle flow 

• Isothermal fluid in tank and propellant lines 

• Propellant is a gas and obeys the perfect gas law 
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• Nozzle flow is free of discontinuities and/or shockwaves 

• Flow is axially uniform with negligible boundary layer 

• Steady flow with no transient effects due to valve opening/closing 

While many of these assumptions are valid given the right operating conditions, 

others such as the negligible boundary layer are less valid and must be taken into account 

in the form of correction factors applied to the equations.  For the final flow conditions, a 

pressure loss of 10 psi from regulated pressure (i.e. the nozzle is exposed to a pressure of 

14.7 psi) was implemented to account for flow losses due to friction and any leaks 

present in the system.  Additionally, it was assumed only 90% of the gas pressure could 

be effectively converted into thrust with the last 10% being lost to leaks and/or 

insufficient pressure to be expelled from the tank.  Finally, the propellant temperature 

was set to 15 °C which gives a more conservative estimate of thruster performance and 

takes into account the possibility that the system heaters may not be able to maintain the 

propellant at the target temperature of 20 °C.   

Given these conditions, the system performance was computed for three possible 

tank pressures.  The three pressures chosen account for the sealed container requirement 

of NS4 and the advantages that could be realized if higher pressures could be 

implemented.  The thrust performance is recorded in Table 3.14 and the system 

performance in terms of ΔV is logged in Table 3.15. 
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Table 3.14:  Predicted Thrust Performance 
ISP 43.71 sec 

Thrust 37.37 mN 
Mass flow rate 0.0889 g/s 

 
 
 
 

Table 3.15:  Predicted ΔV Performance for Three Pressure Regimes 
Max Tank Pressure 

at 100 °C (psi) 
ΔV 

(m/s) 
Total Thrust Exhaust 

Duration (min) 
100 0.935 11.34 
200 2.024 24.52 
300 3.345 40.46 

 
 
 

3.4. CONCEPTUAL OPERATION 

The overall performance of the propulsion system and the satellite as a whole can 

depend greatly on how and when various mission tasks are initiated and performed.  

Conceptual operations allow for mission planning to take into account multiple mission 

conditions and develop contingency plans to deal with suboptimal conditions.  While all 

operating conditions have not been explored, a basic operation plan for the M SAT 

mission has been developed.  The use of the propulsion system within this plan is 

discussed in the following sections. 

3.4.1. Modes of Operation.  The Modes of Operation were developed by the M-

SAT leadership as a mission timeline to aid in planning.  The Modes are a sequence of 

major phases within the mission that are further subdivided into general tasks to be 

performed by the satellite in order to accomplish the goals of that phase.  The entire 

mission is divided into 11 major phases with additional safe modes established should 

unexpected situations arise.  The propulsion system is featured in four of the post-launch 
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operation modes including Initialization, Detumble, Separation, and Formation Flight.  

However, under nominal conditions, the system will only fire during the Formation Flight 

phase of the mission.  During both the Initialization and Separation modes, the propulsion 

system tasks are limited to monitoring pressure and temperature and ensuring that the 

system is prepared to function during the following phase.  The propulsion system will 

remain on standby during the Detumble mode as a backup system in case the coils cannot 

adequately control the satellite; however, should the propulsion system have to be used at 

this early junction, the formation flight portion of the mission will be adversely affected 

due to the expended propellant. 

3.4.2. Stand-by Operations.  The major task for the propulsion subsystem when 

not engaged in propulsive maneuvers is to maintain the ability of the system to perform 

when required.  This involves continually monitoring the system for pressure and 

temperature variations and applying active controls in the form of heaters when 

applicable.  Maintaining the set temperature is particularly important to system function 

as the expulsion of propellant from the tank can quickly reduce the temperature of the 

propellant to the point where phase change cannot occur and propellant flow would be 

interrupted.   

3.4.3. Mechanics of Thruster Firing.  There are two ways in which the 

propulsion system can be configured to operate during a firing sequence.  The first 

method has the last two inhibit levels within the propulsion system initially closed.  

When a thruster tasking is implemented, both valves are opened, starting with the 

isolation valve, in a pulsed fashion allowing propellant to flow down from the regulator 

and out the nozzle.  The major advantage of this method is that the isolation of the second 
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half of the propulsion system is maintained.  Thus should a small leak be experienced 

downstream of the second isolation valve (where the majority of the connections are), the 

propulsion system is not continually feeding propellant to the leaky fitting during long 

pauses between firings.  However, this method invalidates the assumption of steady flow 

since transient conditions would exist in the line due to opening of the valve. 

The second has both isolation valves maintained in the open position during 

formation flight.  To execute a maneuver, therefore, would only require the opening of 

the specific thruster or thrusters necessary to produce the required force or torque and 

powering up the tank heater to ensure phase transition.  Under this method, the propellant 

lines downstream of the regulator are kept at a constant pressure in between propulsive 

maneuvers and thus the steady flow assumption utilized in the model is more justifiable 

as long as sufficient time elapses between thruster firings.  Currently, this is the method 

set to be used during the MR SAT mission; however, system level testing will determine 

the optimal arrangement. 
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4. HAZARD ANALYSIS 

4.1. PURPOSE 

Safety is of the utmost concern when developing and constructing a satellite.  

Hazards present serious risks to personnel and equipment, and yet are possible in all 

engineered systems.  Identification of all such hazards within a system is the only 

possible way to ensure that proper mitigation efforts are in place.  In a two-phase 

propulsion system such hazards may be caused by natural thermodynamic events (i.e. 

temperature changes due to ambient conditions) or component failures.  The hazard 

analysis undertaken by the M-SAT Propulsion Subsystem sought to identify the hazards 

associated with the system during all phases of construction and operation in order to 

ensure the mitigation efforts, including component redesign and procedure 

implementation, were sufficient to guarantee the safety of all personnel and equipment.   

4.2. PROPULSION SAFETY ASSESSMENT WHITE PAPER 

The hazard assessment for the MR SAT propulsion system began during the NS4 

competition in the form of the Safety Assessment White Paper (SAWP) written jointly by 

the three universities pursuing refrigerant based propulsion systems.  The Missouri S & 

T-led consortium included members of the University of Texas at Austin and the 

Washington University in Saint Louis NS4 design teams.  The stated purpose of the 

SAWP was to lay forth the foundations for a new type of cold gas propulsion based upon 

refrigerant propellants stored in a saturated-liquid state.  The foundational aspect of the 

paper was meant to address concerns of AFRL officials by evaluating the need, design 

regime, and safe implementation methods of such a propulsion system.   
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4.2.1. Paper Specified Temperature Range.  The most extreme temperature and 

pressure conditions the propulsion system must be designed to meet will occur on-orbit. 

After consultation with the UNP program managers, -50 °C to 100 °C was deemed a 

conservative and appropriate range of expected temperatures for nanosatellites in low 

Earth orbit. 

The conservative nature of the specified range was confirmed in the SAWP 

through the analysis of telemetry data collected during various heritage satellite missions.  

For example, the AMSAT-OSCAR 7, a 28.6 kg satellite launched into high LEO orbit in 

1974, experienced on-orbit temperatures ranging from 8.5 °C to 35.1 °C.  Additionally, 

the range selected for use in the white paper was found to be more conservative than the 

thermal test range (-35 to 75 °C) currently employed by NASA for unmanned spacecraft 

[24].   

The selection of such a conservative thermal range, particularly the high upper 

limit, has a direct impact on the hazard analysis of the system.  Given the variable nature 

of propellant state within the specified temperature range, worst case scenarios, i.e. 

scenarios utilizing the extremes of the range, dominate the analyzed hazards.   

4.2.2. Focus of SAWP Hazard Analysis.  A typical hazard analysis focuses on 

specific physical systems; however, such was not the case with the hazard analysis 

associated with the NS4 Propulsion White Paper.  Each member university of the 

consortium had designed and was in the process of implementing a unique refrigerant-

based propulsion system within their specific satellite.  Therefore, it was impossible to 

analyze a single propulsion system that would encompass the hazards present in each 
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system.  Instead, a general system was analyzed for hazards associated solely with the 

unique propellant.   

Under this guideline, hazards are not associated with a specific component failure, 

instead, how a change in the propellant affects the rest of the system is evaluated; e.g., an 

increase in propellant pressure could cause the tank to rupture.  Due to the somewhat 

unspecific nature of the hazards, mitigation efforts described within the SAWP were 

presented in the form of design guidelines and suggested practices rather than specific 

component remedies.  

4.2.3. SAWP Hazard Classification System.  To begin the safety assessment, a 

hazard classification system was developed based on suggestions from AFRL mentors as 

follows: 

 
• Catastrophic - A Catastrophic Hazard is defined as any single or multiple 

system failure which has the potential to cause damage/harm not only to 

the spacecraft, but to surrounding equipment/personnel as well.  

• Critical - A Critical Hazard is defined as any system failure which results 

in damage/harm to the spacecraft and/or has the potential to negatively 

impact mission objectives to the point of failure.  

• Tolerable - A Tolerable Hazard is defined as any system failure which 

results in minimal damage to the spacecraft/mission.  

 
Based on these definitions, hazards are classified not by the likelihood of their 

occurrence but rather by the ramifications of said occurrence.  In this way, identified 
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hazards can be ranked on a relative scale, and the impact of each identified; thus enabling 

proper design choices to be made.   

However, in discounting the probability of hazard occurrence and the possibility 

of mitigation efforts, the classification system makes nearly impossible to design and fly 

a system free of catastrophic hazards.  Thus, the additional classification of Acceptable 

Risk for Flight, as designated below, was necessary as justification for the inclusion of 

catastrophic hazards within flight-ready designs. 

• Acceptable Risk for Flight - Acceptable Risk for Flight is defined as 

operating the system with known hazards classified as Tolerable or with 

hazards which can be mitigated to tolerable levels by use of the 

appropriate safety devices and measures. 

4.2.4. SAWP Hazard Analysis.  The general design of any propulsion system 

contains many possible hazards within each classification.  In most cases, propellant is 

initially stored in a small, pressurized vessel and from there distributed to the thrusters by 

means of tubing.  By taking into account mission objectives, a prototype design can be 

developed; however, before the design can be further refined, the safety assessment must 

be completed to ensure selected components meet the mitigation criteria.  

4.2.4.1  Catastrophic hazards.  The greatest risk inherent to the system comes 

from uncontrolled and unexpected changes in the state of the propellant.  The 

catastrophic hazard is directly caused by an increase in system temperature, but may have 

many indirect causes.  As a result of this increase, the pressure of the propellant could 

rise to levels above the maximum design pressure mandated for the system components, 
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which in turn could lead to increased leak rates and/or system rupture.  The use of storage 

tanks defined as pressure vessels greatly amplifies the effects of burst since they contain 

enough internal energy to seriously impact the surrounding area.  Both passive and active 

methods of mitigation are available to combat the adverse effects of pressure increase.  

The first passive measure is simply designing the storage vessel with a sufficiently large 

factor of safety to withstand any fluctuations within the system.  Also, the system should 

be designed to be leak-before-burst; thus alleviating dangerous over-pressurization 

through low energy fluid discharge rather than an explosive release of energy.  The active 

method uses sensors to monitor system conditions and discharges the system once 

dangerous levels have been reached.   

Another consequence of a rise in temperature is encountered within the system 

materials.  Many materials, metallic in particular, expand and contract with changes in 

temperature causing increased stress at connection points.  If these stresses are not 

accounted for in the design of the system, increased leak rates and/or rupture could occur.  

Additionally, if materials with dissimilar thermal expansion rates are used at connection 

points, the possibility of mission damaging leaks increases many fold.  Two possible 

sources of differing thermal properties are the use of multiple materials (e.g. aluminum 

connected to steel) and the existence of thermal gradients between connected 

components. To guard against the possible consequences of thermal expansion, proper 

material selection must be performed with particular attention to obtaining sufficient 

yield and fracture stress properties, and if possible, avoiding the use of dissimilar 

materials.   
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Finally, under drastic conditions and extreme temperatures, the selected 

refrigerants have the added hazard of decomposition and even the possibility of auto-

ignition.  Decomposition of R-134a and R-123 occurs at temperatures above 250°C and 

auto ignition at or above 743°C and 770°C, respectively.  All values are well above the 

expected temperature range; however, the seriousness of the consequences produced by 

this hazard merits mention.  Both refrigerants decompose into highly volatile and caustic 

chemicals, such as hydrofluoric acid, which can cause serious burns and compromise 

equipment.  Care should be taken during construction and storage of the satellite so 

propellant does not come into contact with excessive heat such as open flames. 

When dealing with pressure vessels, structural strength of the selected material is 

of the utmost importance.  However, merely designing to worst-case scenarios is no 

guarantee of successfully avoiding structural failure since thermal cycling has, in addition 

to those risks associated with the corresponding maximum and minimum temperatures, 

the potential to cause structural failures due to thermal fatigue.  Temperature fluctuations 

for a two-phase propellant system can occur due to both system and environmental 

influences.  During propulsive maneuvers the endothermic phase change lowers the 

overall system temperature. Environmental factors, such as leaving and entering eclipse, 

can also cycle system temperatures.  To avoid thermal fatigue, it is first necessary to 

thermally insulate the system through use of MLI which will greatly reduce the effects of 

the spacecraft’s environment.  To reduce the effect of system processes, system 

monitoring and some method of energy addition to the system (i.e. heaters) are required.  

The heaters should be turned on during propulsive maneuvers to account for endothermic 
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phase change and minimize thermal gradients.  Finally, system materials should be 

chosen in such a way as to limit the effects of thermal cycling where possible.  

4.2.4.2  Critical hazards. Catastrophic hazards may pose the greater threat to 

surrounding equipment and personnel; however, critical hazards are no less destructive to 

mission success.  As with hazards classified as catastrophic, critical hazards are often 

products of the propellant state whereas mitigation methods normally center on proper 

component selection and procedures. 

The effects of a temperature decrease within the system represent a critical hazard 

rather than catastrophic as the internal energy contained within the system is far less than 

that for the case of temperature increase.  As such, the overall magnitude of possible 

consequence for any resulting failure is less.  This does not mean, however, that thermal 

decrease can be ignored. Any substantial decrease in the temperature of the fluid will 

result in a phase change.  If the temperature falls to the freezing point of the propellant, 

the fluid will solidify. The effectiveness of the propulsion system’s internal mechanisms 

will be reduced with a potential of damage to internal mechanics of the tank if any of the 

solid propellant shifted.  However, the system need not reach the propellant freezing 

point in order for a hazard to be present since there exists the potential for system 

materials to experience reduced structural integrity (brittleness) due to the low 

temperatures generated by the fluid.  Also, as with thermal expansion, thermal 

contraction can lead to propellant leakage and eventual mission failure if different 

contraction rates exist between components.  Mitigation efforts should include system 

heaters and insulation to lessen the probability of significant temperature decrease.  Also, 
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system materials should be selected to avoid mismatched thermal contraction rates and 

materials which can become brittle within the expected temperature range.  

Temperature and pressure are not the only propellant properties to consider during 

a hazard analysis; the material compatibility and potential for chemical reactivity are also 

a concern.  While refrigerants are generally chemically inert, as previously mentioned 

there are certain substances with which a negative reaction can occur.  Any system 

material should be thoroughly researched for its compatibility with the chosen propellant.  

System materials which have direct contact with the propellant must have a zero to very 

low reactivity rating to ensure continued system functionality.  When determining an 

acceptable degradation rate, mission length should be accounted for with appropriate 

margins.  For shorter missions, a somewhat faster reaction rate might be acceptable so 

long as mission goals are not negatively impacted; however, longer missions require 

much lower reactivity.  Materials with no or limited exposure to the fluid under normal 

operating conditions must also be considered since any leaks could bring said material in 

contact with the propellant. To prevent harm to equipment and personnel, any material 

reactions determined to be explosive or combustible require the selection of a different 

material. Where material reselection is not possible, such as on board the launch vehicle, 

it is important to make sure the system has minimum leakage to lessen the chance of 

reaction with an unknown material.  

4.2.4.3  Tolerable hazards.  Throughout ground operations, there is the 

possibility of exposure to the propellant which is a tolerable hazard that can be avoided. 

Direct skin contact can have two results: skin irritation and/or frostbite.  Skin irritation is 
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a symptom of chemical exposure to the refrigerants, while frostbite results from the low 

temperature nature of the refrigerant. Asphyxiation is possible if proper venting is not 

present during the discharge of any propellant. Personnel should be required to wear 

suitable protective clothing and eyewear. In addition approved ventilation and warnings 

should be instituted in the work environments where potential exposure to the propellant 

can occur. 

4.2.4.4 Hazard classification matrix.  The hazard analysis for the SAWP was 

put into a classification matrix in order for the identified hazards to easily be classified 

and associated with the required mitigation methods.  The resulting catalog of hazards is 

shown in Table 4.1. 

 
 
 

Table 4.1: SAWP Hazard Classification Matrix 

Hazard Classification Associated Risk Methods of 
Mitigation 

Reclassification 
After 

Mitigation 
Thermal 
Cycling 

Catastrophic Structural failure 
of components 
(Fatigue and 

brittle fracture) 

Temperature 
monitoring 

 
Insulation 

 
Suitable 

selection of 
system materials 

 
Apply active 

thermal controls 
(i.e. heaters) 

during 
propellant 

storage 

Critical 
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Table 4.1 SAWP Hazard Classification Matrix (Cont.) 

Hazard Classification Associated Risk Methods of 
Mitigation 

Reclassification 
After 

Mitigation 
Propellant 
Leakage 

Critical Risks of 
exposure to 
propellant: 

Ground 
operations and 
flight materials 

Methods for 
exposure to 
propellant: 

ground 
operations and 
flight materials. 

 
Selection of 

connections with 
minimized leak 

rates. 
 

Selection of 
system materials 
with appropriate 
factor of safety 
to ensure a high 

leak-before-
burst point. 

Tolerable 

Exposure to 
Propellant: 

Ground 
Operations 

Tolerable Skin irritation 
and/or frostbite 

 
Asphyxiation 

Post warnings of 
exposure hazard 

 
Wear suitable 
skin protection 

and eyewear and 
implement 
approved 

ventilation 

Tolerable 

Material 
Elongation 

Critical Added stress at 
connections 

 
Possible leaks 
and/or burst 

Properly 
selecting fittings 

Tolerable 

Different 
Material 
Thermal 

Expansions 
Rates and/or 

Thermal 
Gradients 

Critical Possible leaks Properly select 
materials 

Tolerable 
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Table 4.1 SAWP Hazard Classification Matrix (Cont.) 

Hazard Classification Associated Risk Methods of 
Mitigation 

Reclassification 
After 

Mitigation 
System 

Charge and 
Discharge 

Critical Mechanical 
fatigue which 

leads to possible 
rupture 

Proper selection 
of tank materials 

and 
minimization of 
the number of 

charge and 
discharge cycles 

Tolerable 

Unexpected 
and 

Significant 
System 
Pressure 
Increase 

Catastrophic Increased leak 
rates and/or 

system rupture 

Passive 
Methods: 

System designed 
with large factor 

of safety to 
withstand any 

pressure 
fluctuations. 

 
System designed 
to be leak before 

burst 
 

Active 
Measures:  

System 
monitoring 

through pressure 
transducers. 

 
Release of 

propellant to 
reduce pressure 

Catastrophic 

Substantial 
Temperatur
e Decrease 

Critical System materials 
may become 

brittle 

Proper selection 
of materials 

Tolerable 

Decomp of 
Propellant 

Catastrophic Production of 
toxic/caustic 

chemicals which 
can cause 
structural 

failures and 
chemical burns 

Avoid 
temperatures 
above 250 C 

Catastrophic 
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Table 4.1 SAWP Hazard Classification Matrix (Cont.) 

Hazard Classification Associated Risk Methods of 
Mitigation 

Reclassification 
After 

Mitigation 
Thermal 
Increase 

Catastrophic Risks of system 
pressure increase 

 
Risks of material 

elongation 
 

Risks of 
different thermal 
expansion rates 
and/or thermal 

gradient 
 

Risks of 
decomposition 

 
Risks of fire 
and/or auto-

ignition 

Methods for 
pressure 
increase 

 
Methods for 

material 
elongation 

 
Methods for 

different 
material thermal 
expansion rates 
and/or thermal 

gradient 
 

Methods for 
decomposition 

 
Methods for fire 

and/or auto-
ignition 

Catastrophic 

Propellant 
Freezing 

Critical Potential damage 
to internal 

mechanics of 
system 

components 
 

Reduced 
effectiveness of 

internal 
mechanics of 

system 
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4.2.4.5 SAWP hazard analysis conclusion.  Ideally speaking, only systems 

containing no hazards classified greater than tolerable would be considered for flight; 

however, given the nature of spacecraft design, this is not always possible.  Since the 

classification of a hazard is based not on the likelihood of its occurrence but on the 

potential harm the hazard could produce, even after mitigation some hazards cannot be 

reclassified.  Mitigation efforts can, however, reduce the possibility of such an adverse 

event and even lessen the potential harm to both equipment and personnel.  To represent 

an acceptable risk for flight, all hazards within a system must be acknowledged and 

addressed by implementing the proper mitigation methods.  Those hazards which cannot 

be reclassified do not preclude a system from flight if ground and launch personnel are 

aware of the potential danger and can execute the necessary procedures to prevent the 

occurrence. 

4.2.5.  AFRL Approval for the SAWP.   After completion, the SAWP was 

presented to AFRL officials for final approval of the document and thus their tacit 

approval of the foundations and guidelines within the paper.  Two separate levels of 

approval were sought by the consortium; approval of concept and approval of design 

constraints.  Approval of concept covers the idea that refrigerant based cold gas 

propulsion systems are not inherently unsafe and can be implemented under the UNP.  

AFRL approval of the design constraints developed in the SAWP would imply that 

systems designed within the specifications of the SAWP would meet safety guidelines 

and be permitted to fly. 

Top level analysis of the SAWP by AFRL officials found the paper to be well 

written and reasoned.  Thus, AFRL acknowledged the necessity of using two-phase cold 
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gas thrusters and that such thruster systems were not innately in violation of UNP 

policies.  However, final approval for the document was not granted due to lack of 

specifics within the design and hazard analysis portions.  AFRL safety officials were 

looking for assurances within the paper that each propulsion system had been designed 

and implemented in a safe manner.  Due to the general nature of the paper such 

assurances were impossible.  Additionally, safety officials took exception to the 

“Acceptable Risk for Flight” definition; stating that catastrophic hazards are generally not 

acceptable flight risks and that mitigation efforts or design changes are necessary to 

remove said hazards from the system.   

4.3. SCOPE OF HAZARD ANALYSIS   

Addressing the concerns of AFRL officials in terms of the M SAT propulsion 

system required a shift in focus away from the previous consortium of universities and 

toward a system tailored hazard analysis.  The analysis must strive to discover, classify, 

and correct all potential hazards to personnel and equipment.  As such, the analysis 

cannot merely be based upon hazards present in the final product, but also must take into 

account hazards present during all phases of construction and operation.    

Therefore, the second hazard analysis undertaken by the M SAT Propulsion 

subsystem sought to identify and mitigate hazardous situations during all phases of 

design, construction, and operation with particular attention to possible situations which 

could lead to catastrophic hazards later on in the mission timeline.   
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4.4. TYPES OF HAZARD ANALYSIS 

Multiple hazard analysis methodologies were explored for possible adaptation to 

the needs of the M SAT Propulsion hazard analysis.  The methods researched basically 

fell into one of two categories: a “What if?” method where the analysis is performed by 

determining the consequence of the realization of component failure modes and a more 

quantitative analysis based upon the given rate of component failure and the effect of said 

failure upon system operation.   

The quantitative analysis has the benefit of being a far more thorough analysis 

method that utilizes manufacturer’s component failure rates to determine the probability 

of hazard occurrence.  Additionally, the consequences of the hazard on the system are 

quantitatively described through simulation; thus, allowing for the quantitative 

assignment of severity levels.  The major drawback of such an analysis is its time and 

labor intensive nature.  While not as thorough as the more quantitative analysis, the 

“What if” type of analysis has the major benefit of low personnel cost.  As both time and 

personnel are legitimate concerns for the M SAT team, a “What if” style hazard analysis 

was deemed adequate for the purposes of the M SAT Propulsion subsystem. 

4.5. DEFINING A HAZARD CLASSIFICATION SYSTEM 

The shortfall of the previous classification system was that it failed to take into 

account the probability of hazard occurrence and thus limited the manners in which 

catastrophic hazards could be addressed.  Therefore, a new system of classification that 

still accounted for hazard severity yet also incorporated hazard probability was required.  

At the suggestion from SAWP reviewers, inspiration for the new classification system 
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was drawn from NASA and DOD documents concerning hazard analysis 

implementation. 

Under the new system, the measure of severity definitions remain relatively 

unchanged.  Four severity classifications are defined in Table 4.2. 

 
 
 

Table 4.2.  Hazard Severity Classifications [25] 
Description Category Environmental, Safety, and Health Result Criteria 

Catastrophic I 
Could result in death, permanent total disability, loss 
exceeding $1M, or irreversible severe environmental 
damage that violates law or regulation. 

Critical II 

Could result in permanent partial disability, injuries or 
occupational illness that may result in hospitalization of at 
least three personnel, loss exceeding $200K but less than 
$1M, or reversible environmental damage causing a 
violation of law or regulation. 

Marginal III 

Could result in injury or occupational illness resulting in 
one or more lost work days(s), loss exceeding $10K but 
less than $200K, or mitigatible environmental damage 
without violation of law or regulation where restoration 
activities can be accomplished. 

Negligible IV 
Could result in injury or illness not resulting in a lost work 
day, loss exceeding $2K but less than $10K, or minimal 
environmental damage not violating law or regulation. 

 
 
 
 

 Probability of occurrence was taken into account by implementing a secondary set 

of classifications indicating the frequency the hazardous situation is likely to occur.  

These definitions are given in Table 4.3. 

The two classifications are then combined within a Risk Assessment Matrix 

(RAM) to yield the Risk Assessment Code (RAC) associated with each hazard.  The 

RAM used for the MR SAT Propulsion hazard analysis is detailed in Table 4.4. 



90 

 

 

Table 4.3: Probability Estimate Classification [25] 
Description Category Applicable Criteria 

Frequent A 
Likely to occur often during the operational lifetime 
of the system, with a probability of occurrence 
greater than 10-1 in that life. 

Probable B 

Will occur several times during the operational 
lifetime of the system, with a probability of 
occurrence less than 10-1 but greater than 10-2 in that 
life. 

Occasional C 

Likely to occur sometime during the operational 
lifetime of the system, with a probability of 
occurrence less than 10-2 but greater than 10-3 in that 
life. 

Remote D 
Unlikely but possible to occur in the life of an item, 
with a probability of occurrence less than 10-3 but 
greater than 10-6 in that life.  

 
 

 
Table 4.4:  Risk Assessment Matrix 

 Frequent Probable Occasional Remote 
Catastrophic 1 1 2 3 
Critical 1 2 3 3 
Marginal 2 3 4 4 
Negligible 3 3 4 4 

 
 
 
 

The different RACs attached to each identified hazard speak to the flight 

acceptability of said hazard.  The definitions for RACs 1-4 are as follows: 

• RAC 1 – The hazard presents an imminent danger and unacceptable risk 

for flight.  Mitigation efforts must be implemented (preferably in the form 

of a redesign) to reduce hazard severity and probability. 
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• RAC 2 – The hazard presents a serious danger to surrounding equipment 

and personnel.  The hazard is an unacceptable risk for flight and 

mitigation efforts must be implemented. 

• RAC 3 – The hazard is an acceptable flight risk yet should be addressed 

with applicable mitigation procedures if possible. 

• RAC 4 – The hazard is an acceptable flight risk with current controls. 

4.6. HAZARD IDENTIFICATION 

Hazard identification is an important step in the analysis process.  To begin the 

process of hazard identification, the failure modes of each component within the system 

were delineated.  Any event, defect, or deviation from nominal component performance 

which has the potential to adversely affect mission goals or cause dangerous situations is 

deemed a failure mode of said component.  For example, the elbow fitting attached to the 

propellant tank has two identified failure modes: component leak and component burst.  

However, to account for hazards not associated merely with component failure, the 

identification process was extended to the different phases of the propulsion project 

beginning with the construction phase.  Within the various phases of the project, the 

hazards present are mainly procedural in nature rather than component related.  To 

identify these hazards, the procedures were analyzed for hazardous situations and 

potential errors in implementation which could result in future hazards. 

4.7. HAZARD ANALYSIS 

With hazards present within the system identified, the analysis portion of the 

process begins.  Each identified failure mode was examined as to the circumstances 
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which could lead to the occurrence of said failure mode.  The probability of hazard 

occurrence was then assessed by analyzing the pertinent data such as Factors of Safety 

and available data on component failure rates.  Finally, the consequences of occurrence 

were evaluated and described in order to judge the severity classification necessary for 

the failure mode.   

The next step in the analysis process was the assignment of the initial Risk 

Assessment Code for each identified hazard based on the method described in Section 

4.5.  Finally, controls and mitigation efforts were considered and the RAC adjusted to 

correspond with the new severity and probability classifications.  The resulting hazard 

analysis can be found in the appendix. 

4.8. MITIGATION: DESIGN VS. PROCEDURE 

When confronting a possible hazard, the primary goal of the system designer 

should be to eliminate the hazard through a redesign process or implement automatic 

controls within the system that remove the probability of hazard occurrence.  This 

provides the safest means for continued operation of the system; however, under certain 

circumstances the hazard cannot be wholly removed from the system and in such 

instances procedures must be implemented to mitigate the risk.   

4.9. HAZARD ANALYSIS CONCLUSIONS 

The completed hazard analysis for the M SAT propulsion system demonstrates 

the inherent safety of the system.  As designed, or with the implementation of proper 

handling procedures, all identified possible hazards within the system merit risk 

assessment codes deemed acceptable for flight.   
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5. SYSTEM-LEVEL TESTING 

5.1. INTRODUCTION 

Complex systems must undergo a multitude of tests in order to be certified ready 

for flight.  Testing begins at the component level; with each component undergoing 

extensive evaluations to ensure that the expected performance characteristics are 

achieved.  At the same time, small conceptual tests are performed at the subsystem level 

to explore the pertinent theory utilized by the system.  However, the system cannot be 

certified as ready without full system-level testing that confirms the expected 

performance.  Such testing must be conducted in a manner as close as possible to the 

conditions in which the system will normally operate so as to identify performance 

deviations and to verify system function. 

5.2.  SYSTEM-LEVEL TEST GOALS 

The MR SAT propulsion system embodies an innovative approach to small 

satellite propulsion, and as such the theoretical work performed for the design process 

must be confirmed.  The key performance parameters still in need of physical 

demonstration for the refrigerant based system include the performance of the integrated 

PMD, the ability of the system to maintain the necessary tank temperature, and the 

overall thruster performance of the system.  These three physical traits of the system are 

interconnected in such a manner that they must be explored in unison for useful 

information to be determined.  The goal then, for system-level testing, is to develop a 

testing platform capable of monitoring and testing each of these functions.   
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5.3.  REDUCED GRAVITY STUDENT FLIGHT OPPORTUNITY PROGRAM 

Under normal laboratory conditions it is difficult and perhaps impossible to 

accurately determine the successful operation of the integrated PMD since slosh effects 

occur only in micro gravity conditions.  Therefore, it was necessary to secure laboratory 

facilities that could mimic the micro gravity environment in which the propulsion system 

would normally operate.  

The Reduced Gravity Student Flight Opportunity Program (RGSFOP) is a NASA 

program in which university-presented research projects can secure flight time on NASA 

aircraft used to simulate micro gravity conditions.  The program begins in late September 

or early October with the submission of a research proposal by university group or design 

team seeking a flight berth.  In December, approximately 40 university teams are selected 

for flights during the first half of the following year. 

The C-9 aircraft used for the program flies a series of parabolas between 20,000 

and 35,000 feet.  As the aircraft flies over the crest of the flight pattern, approximately 30 

seconds of micro gravity occur during which experiments can be run.  As the aircraft 

pulls out of the dive, a period of twice normal gravity is experienced.  Each experiment 

receives two flights per flight week with approximately 30 parabolas of micro gravity 

encountered per flight. 

5.4. TEST APPARATUS 

With regard to the design of the testing apparatus, the intent was to develop a 

platform capable of supporting and conducting the proposed RGSFOP experiment and 

also supporting any future expanded testing plans.  With this in mind, the platform was 



95 

 

 

designed as a freestanding workstation incorporating the safety and measuring equipment 

necessary to perform the testing operations within the various experiment environments.   

5.4.1. Measuring Equipment.  The propulsion system developed for the satellite 

inherently incorporates two pressure transducers in order to monitor the tank pressure and 

regulated pressure of the system during spaceflight.  In order to augment the information 

gathering capabilities, two thermal-couples were added to the propulsion system: one 

placed directly at the tank outlet and one within the propellant lines just prior to the 

thruster.  Rounding out the measuring equipment is a single force transducer capable of 

measuring forces from 0 to 50 millinewtons positioned on the air bearing slide to directly 

measure thruster performance. 

5.4.2. Testing Platform Structural Design.  As the experiment was to be flown 

on board NASA’s “Weightless Wonder” aircraft, the experiment structure had to be 

constructed to the specifications outlined by the RGSFO program.  The experiment must 

be able to withstand the g-loading requirements found in Table 5.1. 

 
 

 

Table 5.1: Experiment Loading Requirements 
Direction Loading Requirement 
Forward 9 g 
Aft 3 g 
Upward 2 g 
Downward 6 g 
Lateral 2 g 
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The structural design of the experiment was kept very simple.  A base cart was 

constructed out of 2 inch by 1/8th inch thick aluminum angle welded into a rectangular 

frame.  Aluminum plate 1/8th inch thick was then welded to the frame to form the top and 

bottom shelf and work area.  While in Houston, significant concerns were discovered 

with the quality of the structural welds.  Therefore, to add greater strength to the 

structure, triangular gussets were bolted to the corners of the base cart.   

To contain the expelled propellant and prevent any leaks into the aircraft cabin, a 

containment box was developed.  The upper frame of the box was constructed from 1 

inch aluminum angle with 1 inch square tubing used as cross bracing.  The bottom rim of 

the containment box was fabricated from 2 inch aluminum angle and fitted with 12 bolts 

to allow for the attachment of the containment box to the base cart.  The sides and top of 

the containment box were enclosed using 3/8 inch thick Lexan bolted to the upper frame 

and sealed with silicone.  With this configuration, the propulsion system is bolted directly 

to the base cart with the containment box fitting over the top of it.  Testing Apparatus 

shows a diagram of the experimental set-up. 

5.4.3. Experiment Electronics Design.  Controlling the experiment and 

monitoring the various sensing devices required the development of a computer interface 

for the experiment.  The interface between the control/monitoring equipment and the 

computer was handled by means of a Data Acquisition (DAQ) board.  The DAQ board 

allowed the computer, using a custom designed LabVIEW program, to operate the two 

solenoid valves as well as the two resistive heaters within the system.  Utilizing the same 

program and DAQ system, the computer is also able to monitor and record the data from 

both temperature and pressure sensors as well as the force transducer.   
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The power for the system is isolated from the aircraft by means of a Universal 

Power Supply (UPS).  The isolation is necessary to prevent aircraft power fluctuations 

from interfering with the experiment or computer operations.  The UPS battery will 

charge off aircraft power and in turn power the computer and experiment.  Small power 

supplies housed in the same box as the DAQ board provide the various voltages 

necessary for experiment operation.  A diagram of the testing platform can be found in 

Figure 5.1. 

5.5. TEST DESCRIPTION 

Accomplishing the testing goals set forth in Section 5.2 required a testing 

platform and experiment design capable of monitoring all aspects of system performance.  

Toward that end, a two-phase testing plan was developed that utilized a slightly modified 

propulsion system in both ground and microgravity environments. 

The modifications to the propulsion system were implemented both to expand the 

information gathering capabilities of the experiment and simplify the overall testing 

procedures.  In addition to the two thermal couples discussed above, other modifications 

include the removal of one isolation valve and the use of a single thruster as opposed to 

the full complement of eight.  Also, a length of flexible tubing was inserted into system to 

prevent the stiffness of the metallic tubing from distorting the force data collection.  
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Figure 5.1: Testing Apparatus 
 

 

The basic goal of the ground-based testing is to assess the thermodynamic 

properties of the system as well as provide a base-reading of system performance to 

compare to later testing data.  For this test, a single thruster is fitted into an aluminum 

slide on the air bearing and in contact with the sensing lever of a force transducer.  The 
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system is pressurized with R-134a propellant to the level equivalent which would used on 

orbit for the satellite.  The thruster will be fired in a variety of patterns to simulate 

situations which could occur on orbit.  This testing will determine the validity of the 

theoretical analysis performed on the system as well as allow for the optimal running 

conditions and equipment settings for the system to be determined.  Of particular interest 

is the recovery time necessary for the heater to overcome the temperature drop associated 

with the release of propellant.  The target temperature for the heating system and the 

pattern of heater use can be varied to determine the best settings for use. 

The flight testing is an extension of ground testing merely changing the apparent 

gravity on the system.  The flight will be used to verify the functionality of the PMD 

device within the tank and thus complete the final goal of system level testing.  The 

testing procedure utilized during flight will be exactly the same as on the ground to 

provide an equivalent comparison for performance.  Flight data will be compared to 

ground data to determine whether or not a detrimental effect on system performance is 

present during the microgravity testing.  Such a detrimental effect would indicate the 

failure of the internal PMD. 

5.6. TEST RESULTS  

Unfortunately, the test conducted in June of 2008 failed to produce results due to 

equipment failure.  Prior to the microgravity flights, a design flaw within the DAQ box 

caused a continuous 24 volts of electricity to be delivered to both the isolation valve and 

the thruster valve.  Consequently, both solenoids failed within the isolation valve and 

were damaged beyond repair.  At the time, the specific flaw within the electronic system 
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could not be ascertained; therefore, all electronics within the system were suspect and 

could not be used within the experiment.   

Given the situation, the experiment was quickly reworked to test the functionality 

of the experiment platform itself; specifically the air bearing system.   Testing on the 

aircraft confirmed that the air bearing system did not noticeably reduce friction along the 

slide.  Therefore, it is unlikely that useful force data would have been obtained even 

without the electrical failure.  Possible suggested causes for the inadequate performance 

of the air bearing include material galling and insufficient manufacturing methods.  

Galling is a form of surface damage that can occur when two like metals contact in a 

sliding manner.  Such surface damage increases friction and can prevent smooth sliding.  

While both the slide and guide tubing were made of aluminum 6061, and thus susceptible 

to galling, the nitrogen expelled by the air bearing should have prevented material contact 

and thus surface damage.   The more likely cause stems from the design and manufacture 

of the air bearing itself.  For an air bearing to be effective, the gas flow along the length 

of the track must be constant and even over the entire length.  Such was not the case with 

the MIS air bearing due to an uneven distribution of the holes and their diameter.  The 

uneven gas flow prevented the slide from moving freely along the guide tubing and thus 

prevent accurate force data from being collected.   

5.7. FUTURE TEST REQUIREMENTS 

The testing platform developed for the RGSFOP experiment is the foundation on 

which future system level testing can be conducted.  However, minor modifications must 
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first be made to the design in order to improve functionality.  Specifically, the problems 

with the air bearing system need to be addressed.   

Air bearings are precision devices; dependant on a multitude of design details 

such as hole pattern, slide weight, gas pressure, hole size, etc. to garner the expected 

performance. While an in-house design is certainly still an option, given the complex 

nature of such a design and the difficulties inherent in manufacturing to the necessary 

tolerances, a better use of time and team resources might be to procure a commercial air 

bearing system. Alternatively, research into other methods of friction reduction, such as a 

magnetic track system, or methods of force measuring which do not rely on the thruster 

moving could be conducted in order to address the issue and implement a functional 

device. 

With the minor modifications discussed above, the initial experiment can be run 

on future RGSFOP flights.  Afterword, the experiment can be modified and the testing 

platform updated to control and monitor multiple thrusters in order to determine the 

change in system performance as multiple thrusters are fired.  The effect of different 

propellant line configurations on thruster performance and different firing patterns can 

also be tested. 
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6. CONCLUSION 

6.1.  SUMMARY 

As the M-SAT team transitions from the NS4 competition into NS6 and beyond, 

it is more important than ever to document not only the intricacies of design associated 

with the current system, but also the design and thought processes that directly and 

indirectly led to the final propulsion system.  The research described in this thesis 

expands upon prior works while focusing on the design process used to develop the M-

SAT propulsion system.  The design process described flowed from the mission 

requirements and program restrictions down through component-level requirements and 

resulted in a system capable of performing the assigned duties.  While future systems 

may face vastly different design and mission requirements, the example set forth by the 

NS4 system and the design process used can serve as a starting point for such endeavors. 

The hazard analysis conducted for this paper also expanded on previous analyses 

to address key issues and AFRL concerns.  The analysis showed the system to be safe for 

personnel and equipment as designed.  Since the design may change and future systems 

will be developed, the methodology behind the analysis was also included to serve as a 

reference for future hazard analyses.   

Finally, a propulsion test platform was developed to address the few remaining 

physical and theoretical performance questions remaining.  While the platform has yet to 

produce the necessary results, minor modifications are being implemented to ensure that 

the testing platform is operational and producing results in the near future.  The research 

conducted with this platform will focus on confirming the theoretical model for thruster 
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performance.  Additional testing will focus on the thermodynamic aspect of the system to 

determine how thruster firing affects the system properties and at what frequency the 

thrusters can be cycled while maintaining heater effectiveness.  Testing can then be 

expanded to include multiple thrusters in order to determine the effect such situations 

have on overall system performance.   

6.2. FUTURE WORK 

While the propulsion design for the NS4 Satellite met the mission requirements, it 

was a first-generation design with much room for further improvement.  Design 

compromises due to time and other constraints plus overall inexperience with satellite 

propulsion design has left several areas within the design where modifications could 

potentially improve performance.   

The first major design change which could significantly improve mission 

performance involves attaining control along the final translational axis.  As discussed 

previously, a design constraint on thruster placement within the satellite was the desire to 

minimize the complexity and cost of the design by minimizing the number of thrusters 

used.  However, the additional control axis would allow the satellite to avoid the 

necessity of the ninety degree attitude rotation at the onset of formation flight and thus 

preserve propellant and extend the formation flight duration.  Therefore, a new thruster 

configuration that offers control of all translational and rotational axes should be 

researched and implemented.  A traditional 12 thruster pattern could be implemented 

assuming the configuration avoids interference with both the Lightband on bottom of MR 
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SAT and the docking interface of MRS SAT on top and limits propellant contamination 

along the solar panels.   

Another area of possible modification, particularly considering the likely changes 

in MR SAT structure and configuration due to NS6 requirements, is the running and 

division of propellant lines within the satellite.  Currently, the main line is divided into 

the various sub-lines by means of standard fittings; however, it has been suggested that a 

manifold design could simplify the running of propellant lines and reduce the number of 

connection points within the system.  This last point is particularly important given that 

leaks are a common cause of losses within cold gas propulsion systems.  Integration 

could also be simplified as fittings would no longer need to be attached to the side panels 

for support and propellant lines could be routed directly to the thruster.  A trade study 

should be conducted utilizing both theoretical and experimental loss data as well as 

integration considerations to determine the possible benefits associated with such a 

design change. 

These modifications should improve propulsion system performance and allow 

the current system to be adapted into any NS6 satellite design. 
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APPENDIX 
Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Catastrophic
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Catastrophic
Probability 

Classification Remote RAC 3

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Maintaining the factors of safety within the propellant tank requires that the specified propellant 

mass be added to the tank.  Filling procedures have been developed that incorporate mass 

measuring equipment to ensure the correct propellant mass is added.  These procedures will be 

implemented each time the propellant tank is charged with propellant.  Each step of the filling 

procedure will be signed off by the performing technician and a quality assurance technician to 

ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

Propellant Tank Rupture Tk01

3

Pre-mitigation Classification

Prop-001

Hazard Analysis

Propellant tank rupture is caused by the structural failure of the tank.  The most likely reason for 

such an occurrence is the propellant pressure exceeding the yield point of the tank material.  

The rupture of the propellant tank would be an extremely dangerous situation.  It involves the 

spontaneous and sudden release all propellant stored within the propellant tank.  The force of such 

a release could severely damage nearby equipment (including satellite and launch vehicle 

equipment) and cause injury or death to personnel.

The probability of propellant tank rupture within the MR SAT propulsion system is considered 

remote.  This is mainly due to the limited propellant mass which is to be stored within the tank.  At 

the 100 psi equivalent point, a FOS greater than 14 is achieved with regard to the theoretical Burst 

Pressure (1421 psi) for the Marrotta tank and a FOS greater than 2 exists with regard to proof 

pressure (235 psi).  At the maximum operational pressure being considered (307 psi) a FOS of 

greater than 4 is still achieved.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Prop-002 3

Propellant Tank Leak Tk01

Maintaining the factors of safety within the propellant tank requires that the specified propellant 

mass be added to the tank.  Filling procedures have been developed that incorporate mass 

measuring equipment to ensure the correct propellant mass is added.  These procedures will be 

implemented each time the propellant tank is charged with propellant.  Each step of the filling 

procedure will be signed off by the performing technician and a quality assurance technician to 

ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

Pre-mitigation Classification

Hazard Analysis

A leak from the propellant tank could be caused by two possible failures.  The first failure involves 

the yielding of the tank material in a manner that allows propellant to slowly be expelled from the 

pressurized tank.  The second failure involves the inadequate tightening of the fittings on the inlet 

and outlet end of the tank.

A leak of the propellant from the tank during flight would immediately put the successful 

completion of mission objectives in jeopardy due to lack of sufficient propellant to complete 

maneuvers.  Additionally, leaked propellant could interact with nearby materials to the detriment of 

said materials.  Finally, should the leak occur during testing or loading, nearby personnel could be 

exposed to R-134a which can cause skin irritation, frost-bite, or asphyxiation in enclosed areas.

The first failure mode is considered unlikely due to the factory testing performed by Marrotta UK  

(leak test performed using He and proof tested to 16 bar) and due to the high factors of safety 

within the system.  The second failure mode is considered more likely to occur if sufficient assembly 

procedures and quality assurance policies are not implemented.  

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

 



107 

 

 

Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

Hazard Analysis

For the material of the special elbow fitting to experience yield, the pressure seen by the fitting 

would have to greatly exceed the specified ranges for this mission.

Should the material of the special elbow fitting yield, at minimum the resulting propellant loss 

would put the successful completion of mission objectives in doubt.  Additionally, damage could 

occur to surrounding equipment and personnel should the release of propellant result in shrapnel or 

flying parts.

The Swagelok fittings are rated to even higher pressures than the propellant tank.  (~4000 psig) 

Therefore, the chance for material yield leading to leaks and propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

prop-003 3

Special Elbow Fitting Material Yield ESML01

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

prop-004 4

Special Elbow Fitting Leak ESML01

Pre-mitigation Classification

Hazard Analysis

The most obvious cause for a loss of propellant stemming from the special elbow is the improper 

tightening at the connection points of the fitting.  

Leaks both small and large at this point of the system will have detrimental effects on the 

performance of system objectives.  Leaks stemming from such a cause would not have the explosive 

nature of a rupture and as such are less likely to cause damage.  However, leaking propellant could 

increase risk of asphyxiation and propellant reactions with nearby materials.  

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

Physical mitigation is not possible for this hazard.

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

Hazard Analysis

The most probable cause for a loss of propellant stemming from the first Swagelok Tee fitting is the 

improper tightening at the connection points of the fitting.  Additionally, the manufacturing of 

tubing connection also can have an effect on the connection point since for a proper seal to develop 

the tubing needs to have a smooth, flat end.

A leak at this point in the system, even a small one, could alter the reading of the attached pressure 

transducer and thus hamper the monitoring of propellant tank pressure.  Also, any loss of propellant 

reduces the chances of mission success.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.  

Ensuring the tubing connected to the Tee fitting is correctly manufactured with flat and smooth 

ends.

Prop-005 4

TML01 leak TML01

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Prop-006 3

TML01 Rupture TML01

Pre-mitigation Classification

Hazard Analysis

The material yields due to excessive stress caused by over-pressurization

A leak at this point in the system, even a small one, could alter the reading of the attached pressure 

transducer and thus hamper the monitoring of propellant tank pressure.  Additionally, a rupture 

could damage surrounding equipment such as the pressure transducer and lead to further hazards.  

Finally, the loss of propellant would end the mission.

The Swagelok fittings are rated to even higher pressures than the propellant tank.  (~4000 psig) 

Therefore, the chance for material yield leading to leaks and propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal 
Probability 

Classification Occasional RAC 4

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

Hazard Analysis

As with all fittings the most likely cause of a leak is an improper connection.

Leaks both small and large at this point of the system will have detrimental effects on the 

performance of system objectives.  Additionally, leaking propellant could increase risk of 

asphyxiation and propellant reactions with nearby materials.  

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.

Prop-007 4

CpML01 Leak CpML01

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Prop-008 3

CpML01 Rupture CpML01

Pre-mitigation Classification

Hazard Analysis

The material yields due to excessive stress caused by over-pressurization

A leak at this point in the system, even a small one, could alter the reading of the attached pressure 

transducer and thus hamper the monitoring of propellant tank pressure.  Additionally, a rupture 

could damage surrounding equipment such as the pressure transducer and lead to further hazards.  

Finally, the loss of propellant would end the mission.

The Swagelok fittings are rated to even higher pressures than the propellant tank.  (~4000 psig) 

Therefore, the chance for material yield leading to leaks and propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Frequent RAC 2

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

The assembly procedures for this connection are designed to minimize the force placed upon the 

tubing by isolating the tubing during the tightening process with the aid of a vice.  Each step of the 

procedure will be signed off by the performing technician and a quality assurance technician to 

ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  

Hazard Analysis

The two sections of the coupling are connected by a very narrow (1/16" OD) tubing which can easily 

be bent if excessive stress is placed upon it during assembly (tightening of fittings)

A bending of the tubing could cause the tubing to crimp which would cut off the attached pressure 

transducer from the system.  Without the pressure transducer reading tank conditions could not be 

monitored which could increase the subsequent risk of hazards.  

The delicate nature of the connecting tubing means that it is very susceptible to being bent.  If too 

much stress is applied to the tubing during the assembly process the tubing will bend and possibly 

crimp.  

Should a bend occur during the assembly process a new part will be substituted for the damaged 

part.

Prop-009 4

CpML01 Bending/Crimping CpML01

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Prop-010 4

PtML01 electrical failure PtML01

Pre-mitigation Classification

Hazard Analysis

The pressure transducers require specific voltages and power levels to maintain proper function.  

The electrical conditioning could be altered by flaws in the circuitry or problems with the connecting 

wires.

Should the electronics of the first pressure transducer fail, the tank pressure would remain 

unmonitored for the duration of the mission.  This could allow a potentially hazardous situation to 

go unnoticed and have detrimental effects on the mission.

The possibility of an electrical failure cannot be entirely discounted; however, such defects can be 

detected during testing in a safe manner.  Therefore, the probability of electrical failure causing a 

dangerous situation is considered remote.

The boards will be designed in such a way that the pressure transducers receive the power levels 

they need to accurately record the tank pressure.

In order to prevent a possible hazard, the electronics connected to the pressure transducers will be 

thoroughly tested prior to charging the tank.  Any and all defects or discrepancies will be recorded 

and reported to the proper authorities.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification ? ? RAC ? ?

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification

Remote 

(100 psi) RAC
4                  

(100 psi)

Currently, the system is only safe at the 100 psi level.  Therefore, proper filling procedures must be 

adhered to in order to ensure the safety of surrounding personnel and equipment.  Such filling 

procedures have been developed and will be implemented in a step by step manner.  Each step of 

the procedures will be signed off by the performing technician and a quality assurance observer.  

Any deviations will be reported to the appropriate authorities.

Hazard Analysis

For the pressure transducer to burst, the material (stainless steel) of the outer casing would have to 

yield.  Over pressurization could trigger material yield.

A rupture of the first pressure transducer would release most of the stored propellant and therefore 

ruin any chance of mission success.  Also, such a release of energy could cause damage to nearby 

equipment and injuries to nearby personnel.  

The pressure transducers (both first and second) used for the MR SAT propulsion system are of a 

type rated to pressures up to 10000 psig.  However, due to the restrictions on tank pressure both 

transducers were calibrated for a maximum pressure of 200 psi to give better precision to the 

instrument.  It is unknown at this time if pressures greater than 200 psi would destroy the 

transducers and present a hazardous situation.  Therefore, the current probability rating is unknown 

for pressures greater than 200 psi.  For the 100 psi operating pressure the FOS of 2 makes the 

possibility of burst remote.

If tank pressure greater than 100 psi are to be used for the MR SAT propulsion system, a new 

pressure transducer may need to be procured to monitor tank pressure. 

Prop-011 4 (for 100 psi)

PtML01 Burst PtML01

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Prop-012 4

VML01 stuck closed VML01

Pre-mitigation Classification

Hazard Analysis

The most likely cause for an isolation valve being locked in the closed position is an electrical 

problem preventing the opening of the valve.  This could be the electrical board never sending the 

24 volt pulse required for opening, or physical damage to the internal solenoid of the valve.

With the first isolation valve stuck in the closed position, formation flight is unachievable.  However, 

there is not a potential risk of injury or further equipment damage associated with this failure mode.  

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Change out non working valves.

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all valves will be conducted.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  All valves failing to achieve nominal operation will 

be replace.

Hazard Analysis

The Lee Valve designed is a 'fail safe' design in that the valve is designed to close if power is not 

continually supplied to the solenoid.  Therefore, most likely cause of a valve stuck in the open 

position is a defective part.

With the valve stuck in the open position, the tank's isolation from the rest of the system is lost 

along with one of the three system inhibits.  This is not directly detrimental to mission objectives as 

the first isolation valve is to remain open throughout the period of formation flight anyway; 

however, the lack of isolation of the tank prior to the start of formation flight increases the 

probability of propellant loss due to connection leakage (as the propellant is exposed to more 

connections).

Due to the fail safe nature of the design, it is considered a remote possibility that the isolation valve 

will be stuck in the open position.

All defective valves discovered in the testing process will be replaced.

Prop-013 4

VML01 Locked Open VML01

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Frequent RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Prop-014 4

VML01 Clogged VML01

Pre-mitigation Classification

Hazard Analysis

The inner mechanisms of the isolation valves are extremely narrow and easily clogged with foreign 

material present within the propellant lines.  (Left over material from the construction process such 

as metallic shavings)

Foreign material lodged within the valve can interfere with the workings of the internal poppet and 

lock the valve in either the open or closed position.

Since all parts of the propulsion system are machined, the possibility of foreign debris lodged within 

the propellant lines can not be discounted.  Without mitigation a clog of the valve is likely to be a 

frequent occurrence.

Fine mesh filters added before each valve within the system will capture any debris before it can 

interfere with the internal workings of the valve.

Each part will be cleaned with isopropyl alcohol prior to incorporation within the system.  This 

should limit the remaining debris.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

Hazard Analysis

For the isolation valve to burst, it would have to experience a propellant pressure greater than its 

yield pressure.  Additionally, over heating of the valve could cause the outer casing of the valve to 

rupture.

A rupture of the first isolation valve would release most of the stored propellant and therefore ruin 

any chance of mission success.  Also, such a release of energy could cause damage to nearby 

equipment and injuries to nearby personnel.  

Valve rupture due to over pressurization is a remote possibility due to the high factors of safety 

associated with the valve.  The valve is rated to 1125 psi; therefore, at the 100 psi setting, the FOS is 

greater than 11.  For the 307 psi setting, the FOS is still a respectable 3.66.  Valve rupture due to 

over heating is also considered a remote possibility based upon the expected temperature range for 

the mission.  The valve is rated to 70 C and has been observed during functional  testing by MAS to 

function properly at temperatures greater than 100 C.                       

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Prop-015 3

VML01 Burst VML01

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Prop-016 4

VML01 leak VML01

Pre-mitigation Classification

Hazard Analysis

The most likely cause of a noticeable leak stemming from the first isolation valve is improper 

tightening of the Swagelok connections.

A leak from the first isolation valve would cause a serious loss of propellant and could be 

detrimental to mission goals.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

Hazard Analysis

The voltage step-down is accomplished by the propulsion electronics board.  The most obvious 

cause of the failure of voltage step-down for the isolation valve would be the failure of the 

electronics board either due to component malfunction or improper design.

The Lee valves used for the MR SAT propulsion system rely on a 24 V pulse to open.  The voltage is 

then stepped down to 5 volts to maintain the open state.  If the step-down process does not occur 

within the time specified, the excess voltage could destroy the solenoid and cause the valve to over 

heat and possibly rupture.  

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

A properly designed electronics board controlling the system could reduce the probability to 

remote.

Prop-017 4

Voltage step-down malfunction VML01

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Prop-018 3

RML01 burst RML01

Pre-mitigation Classification

Hazard Analysis

The rupture of the pressure regulator would be caused by an over pressurization of the system 

which results in material yield.

Should the material of the pressure regulator yield, at minimum the resulting propellant loss would 

put the successful completion of mission objectives in doubt.  Additionally, damage could occur to 

surrounding equipment and personnel should the release of propellant result in shrapnel or flying 

parts.

The inlet portion of the pressure regulator is rated to 1000 psi.  Therefore at the 100 psi equivalent 

mark a FOS of 10 exists.  At the maximum pressure being considered for the system (307 psi) a FOS 

of 3.25 is maintained.  Therefore, material yield is considered a remote possibility.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

Hazard Analysis

The most likely cause of a noticeable leak stemming from the pressure regulator is improper 

tightening of the Swagelok connections.

Assuming the first isolation valve remains closed (and holds seal) until the beginning of formation 

flight, a small leak at this point of the system would not prevent the implementation of formation 

flight, but could drastically reduce the duration which formation flight can be held.  A major leak 

would prevent formation flight being maintained for any meaningful duration.  

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.

Prop-019 4

RML01 leak RML01

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Prop-020 4

RML01 Failure to Regulate Pressure RML01

Pre-mitigation Classification

Hazard Analysis

The pressure regulator is preset at the factory to a specific outlet pressure.  For the regulator to fail 

to reduce outlet pressure, the internal mechanism of the regulator would have to fail.

With out the benefit of pressure regulation, the remainder of the system would be exposed to the 

pressure remaining in the tank.  The exposure would not likely result in problems as all system 

components are rated to withstand the full system pressure.  However, the loss of regulation could 

have a detrimental effect on system performance as the thrust produced by the nozzles would 

continually be changing as the tank pressure is reduced.  

The possibility of a factory defect is considered remote.  

No physical mitigation is possible in this case.

Thorough testing of the pressure regulator will be conducted.  Any deviations from nominal 

operation will be recorded and reported to the proper authorities.  
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

Hazard Analysis

The most probable cause for a loss of propellant stemming from the second Swagelok Tee fitting is 

the improper tightening at the connection points of the fitting.  Additionally, the manufacturing of 

tubing connection also can have an effect on the connection point since for a proper seal to develop 

the tubing needs to have a smooth, flat end.

With the tee placed after the first isolation valve, a leak stemming from it will not cause major 

propellant loss before the beginning of formation flight (assuming the valve seal is maintained).  

However, any loss of propellant reduces the possible duration of the formation flight phase, and the 

pressure loss associated with the leak would disrupt the readings of the second pressure transducer 

and affect the monitoring of the regulated pressure.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.  

No physical mitigation is possible for this hazard.

Prop-021 4

TML02 leak TML02

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Prop-022 3

TML02 Rupture TML02

Pre-mitigation Classification

Hazard Analysis

The material yields due to excessive stress caused by over-pressurization

A rupture could damage surrounding equipment such as the pressure transducer and lead to further 

hazards.  Additionally, the loss of propellant would end the mission.

The fitting in question is after the pressure regulation device within the system.  Therefore, it should 

experience at most 24.7 psi of pressure which is well within the capabilities of the fitting.  Even if 

the regulator should fail, the Swagelok fittings are rated to even higher pressures than the 

propellant tank.  (~4000 psig) Therefore, the chance for material yield leading to leaks and 

propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal 
Probability 

Classification Remote RAC 4

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

Hazard Analysis

The most likely cause of a leak regarding a Swagelok fitting is an improper connection point.  This 

could be cause by either improper tightening or improper tubing construction.

Given that the fitting in question is after the first isolation valve, propellant loss stemming from a 

leak at this point of the system would not occur until formation flight had been engaged.  However, 

a leak would limit the ability of the second pressure transducer to monitor regulated pressure and 

would reduce the time available for formation flight.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.

Prop-023 4

CpML02 Leak CpML02

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Prop-024 3

CpML02 Rupture CpML02

Pre-mitigation Classification

Hazard Analysis

The material yields due to excessive stress caused by over-pressurization

A rupture could damage surrounding equipment such as the pressure transducer and lead to further 

hazards.  Additionally, the loss of propellant would end the mission.

The fitting in question is after the pressure regulation device within the system.  Therefore, it should 

experience at most 24.7 psi of pressure which is well within the capabilities of the fitting.  Even if 

the regulator should fail, the Swagelok fittings are rated to even higher pressures than the 

propellant tank.  (~4000 psig) Therefore, the chance for material yield leading to leaks and 

propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Frequent RAC 2

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

The assembly procedures for this connection are designed to minimize the force placed upon the 

tubing by isolating the tubing during the tightening process with the aid of a vice.  Each step of the 

procedure will be signed off by the performing technician and a quality assurance technician to 

ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  

Hazard Analysis

The two sections of the coupling are connected by a very narrow (1/16" OD) tubing which can easily 

be bent if excessive stress is placed upon it during assembly (tightening of fittings)

A bending of the tubing could cause the tubing to crimp which would cut off the attached pressure 

transducer from the system.  Without the pressure transducer reading tank conditions could not be 

monitored which could increase the subsequent risk of hazards.  

The delicate nature of the connecting tubing means that it is very susceptible to being bent.  If too 

much stress is applied to the tubing during the assembly process the tubing will bend and possibly 

crimp.  

Should a bend occur during the assembly process a new part will be substituted for the damaged 

part.

Prop-025 4

CpML02 Bending/Crimping CpML02

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Prop-026 4

PtML02 electrical failure PtML02

Pre-mitigation Classification

Hazard Analysis

The pressure transducers require specific voltages and power levels to maintain proper function.  

The electrical conditioning could be altered by flaws in the circuitry or problems with the connecting 

wires.

Should the electronics of the second pressure transducer fail, the regulated pressure would remain 

unmonitored for the duration of the mission.  This could allow a potentially hazardous situation to 

go unnoticed and have detrimental effects on the mission.

The possibility of an electrical failure cannot be entirely discounted; however, such defects can be 

detected during testing in a safe manner.  Therefore, the probability of electrical failure causing a 

dangerous situation is considered remote.

The boards will be designed in such a way that the pressure transducers receive the power levels 

they need to accurately record the tank pressure.

In order to prevent a possible hazard, the electronics connected to the pressure transducers will be 

thoroughly tested prior to charging the tank.  Any and all defects or discrepancies will be recorded 

and reported to the proper authorities.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

The safety of this device depends on the operation of the pressure regulation device.  Therefore, 

system testing is imperative.  Any and all deviations with system components will be reported to the 

proper authorities.  

Hazard Analysis

For the pressure transducer to burst, the material (stainless steel) of the outer casing would have to 

yield.  Over pressurization could trigger material yield.

A rupture of the first pressure transducer would release most of the stored propellant and therefore 

ruin any chance of mission success.  Also, such a release of energy could cause damage to nearby 

equipment and injuries to nearby personnel.  

The pressure transducers (both first and second) used for the MR SAT propulsion system are of a 

type rated to pressures up to 10000 psig.  However, due to the restrictions on tank pressure both 

transducers were calibrated for a maximum pressure of 200 psi to give better precision to the 

instrument.  As this pressure transducer is after the regulator, it should experience only relatively 

low pressures; therefore, the possibility of rupture is considered remote.

To entirely prevent this hazard from occurring, a new pressure transducer rated to a pressure 

greater than the tank pressure is required.  However, as currently designed the probability of hazard 

occurrence is such than no physical mitigation is necessary.

Prop-027 3

PtML02 Burst PtML02

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Change out non working valves.

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

Prop-028 4

VML02 stuck closed VML02

Pre-mitigation Classification

Hazard Analysis

The most likely cause for an isolation valve being locked in the closed position is an electrical 

problem preventing the opening of the valve.  This could be the electrical board never sending the 

24 volt pulse required for opening, or physical damage to the internal solenoid of the valve.

With the second isolation valve stuck in the closed position, formation flight is unachievable.  

However, there is not a potential risk of injury or further equipment damage associated with this 

failure mode.  

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

 



133 

 

 

Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all valves will be conducted.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  All valves failing to achieve nominal operation will 

be replace.

Hazard Analysis

The Lee Valve designed is a 'fail safe' design in that the valve is designed to close if power is not 

continually supplied to the solenoid.  Therefore, most likely cause of a valve stuck in the open 

position is a defective part.

With the valve stuck in the open position, the second of the three system inhibits is lost.  This is not 

directly detrimental to mission objectives as the first isolation valve maintains tank isolation, and the 

second isolation valve is to remain open throughout the period of formation flight anyway.

Due to the fail safe nature of the design, it is considered a remote possibility that the isolation valve 

will be stuck in the open position.

All defective valves discovered in the testing process will be replaced.

Prop-029 4

VML02 Locked Open VML02

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Frequent RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Prop-030 4

VML02 Clogged VML02

Pre-mitigation Classification

Hazard Analysis

The inner mechanisms of the isolation valves are extremely narrow and easily clogged with foreign 

material present within the propellant lines.  (Left over material from the construction process such 

as metallic shavings)

Foreign material lodged within the valve can interfere with the workings of the internal poppet and 

lock the valve in either the open or closed position.

Since all parts of the propulsion system are machined, the possibility of foreign debris lodged within 

the propellant lines can not be discounted.  Without mitigation a clog of the valve is likely to be a 

frequent occurrence.

Fine mesh filters added before each valve within the system will capture any debris before it can 

interfere with the internal workings of the valve.

Each part will be cleaned with isopropyl alcohol prior to incorporation within the system.  This 

should limit the remaining debris.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

Hazard Analysis

For the isolation valve to burst, it would have to experience a propellant pressure greater than its 

yield pressure.  Additionally, over heating of the valve could cause the outer casing of the valve to 

rupture.

A rupture of the second isolation valve would prevent propellant from reaching the thruster 

assemblies, and thus end the formation flight portion of the mission.  Also, such a release of energy 

could cause damage to nearby equipment and injuries to nearby personnel.  

Valve rupture due to over pressurization is a remote possibility due to the high factors of safety 

associated with the valve.  The valve is rated to 1125 psi; therefore even discounting the presence of 

the pressure regulator, at the 100 psi setting, the FOS is greater than 11.  For the 307 psi setting, the 

FOS is still a respectable 3.66.  Valve rupture due to over heating is also considered a remote 

possibility based upon the expected temperature range for the mission.  The valve is rated to 70 C 

and has been observed during functional  testing by MAS to function properly at temperatures 

greater than 100 C.                       

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Prop-031 3

VML02 Burst VML02

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Prop-032 4

VML02 leak VML02

Pre-mitigation Classification

Hazard Analysis

The most likely cause of a noticeable leak stemming from the second isolation valve is improper 

tightening of the Swagelok connections.

A leak in the second isolation valve would not immediately cause a loss of propellant (assuming the 

first isolation valve is functioning properly).  However, once formation flight operations begin, the 

leaking propellant would limit the duration of the formation flight mission phase.    

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

Hazard Analysis

The voltage step-down is accomplished by the propulsion electronics board.  The most obvious 

cause of the failure of voltage step-down for the isolation valve would be the failure of the 

electronics board either due to component malfunction or improper design.

The Lee valves used for the MR SAT propulsion system rely on a 24 V pulse to open.  The voltage is 

then stepped down to 5 volts to maintain the open state.  If the step-down process does not occur 

within the time specified, the excess voltage could destroy the solenoid and cause the valve to over 

heat and possibly rupture.  

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

A properly designed electronics board controlling the system could reduce the probability to 

remote.

Prop-033 4

Voltage step-down malfunction VML02

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Prop-034 4

Swagelok Cross (CML01) Leak CML01

Pre-mitigation Classification

Hazard Analysis

The most likely cause of a leak regarding a Swagelok fitting is an improper connection point.  This 

could be cause by either improper tightening or improper tubing construction.

A leak stemming from the Swagelok cross would cause a loss of propellant during the formation 

flight phase of the mission.  Thus that phase of the mission would be reduced in time and mission 

goals may not be met.  There is little to no danger to personnel as the two isolation valves should 

prevent propellant from reaching the cross fitting except during controlled testing of the system.  

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

A rupture at this point within the system would immediately end the formation flight portion of the 

mission and seriously jeopardize extended mission operations.  A rupture could also cause damage 

to other near by satellite equipment; thus, further reducing the chances of mission success.

The fitting in question is after the pressure regulation device within the system.  Therefore, it should 

experience at most 24.7 psi of pressure which is well within the capabilities of the fitting.  Even if 

the regulator should fail, the Swagelok fittings are rated to even higher pressures than the 

propellant tank.  (~4000 psig) Therefore, the chance for material yield leading to leaks and 

propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

Prop-035 3

Swagelok Cross (CML01) Rupture CML01

Pre-mitigation Classification

Hazard Analysis

The material yields due to excessive stress caused by over-pressurization
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Prop-036 4

TL101 leak TL101

Pre-mitigation Classification

Hazard Analysis

The most likely cause of a leak regarding a Swagelok fitting is an improper connection point.  This 

could be cause by either improper tightening or improper tubing construction.

A leak stemming from the Swagelok tee TL101 would cause a loss of propellant during the formation 

flight phase of the mission.  Thus that phase of the mission would be reduced in time and mission 

goals may not be met.  There is little to no danger to personnel as the two isolation valves should 

prevent propellant from reaching the fitting except during controlled testing of the system.  

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Hazard Analysis

The material yields due to excessive stress caused by over-pressurization

A rupture at this point within the system would immediately end the formation flight portion of the 

mission and seriously jeopardize extended mission operations.  A rupture could also cause damage 

to other near by satellite equipment; thus, further reducing the chances of mission success.

The fitting in question is after the pressure regulation device within the system.  Therefore, it should 

experience at most 24.7 psi of pressure which is well within the capabilities of the fitting.  Even if 

the regulator should fail, the Swagelok fittings are rated to even higher pressures than the 

propellant tank.  (~4000 psig) Therefore, the chance for material yield leading to leaks and 

propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

Prop-037 3

TL101 Rupture TL101

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Prop-038 4

TL201 leak TL201

Pre-mitigation Classification

Hazard Analysis

The most likely cause of a leak regarding a Swagelok fitting is an improper connection point.  This 

could be cause by either improper tightening or improper tubing construction.

A leak stemming from the Swagelok tee TL201 would cause a loss of propellant during the formation 

flight phase of the mission.  Thus that phase of the mission would be reduced in time and mission 

goals may not be met.  There is little to no danger to personnel as the two isolation valves should 

prevent propellant from reaching the fitting except during controlled testing of the system.  

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

TL201

Pre-mitigation Classification

Hazard Analysis

The material yields due to excessive stress caused by over-pressurization

A rupture at this point within the system would immediately end the formation flight portion of the 

mission and seriously jeopardize extended mission operations.  A rupture could also cause damage 

to other near by satellite equipment; thus, further reducing the chances of mission success.

The fitting in question is after the pressure regulation device within the system.  Therefore, it should 

experience at most 24.7 psi of pressure which is well within the capabilities of the fitting.  Even if 

the regulator should fail, the Swagelok fittings are rated to even higher pressures than the 

propellant tank.  (~4000 psig) Therefore, the chance for material yield leading to leaks and 

propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

Prop-039 3

TL201 Rupture

 



144 

 

 

Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Prop-040 4

Pre-mitigation Classification

A leak stemming from the Swagelok tee TL301 would cause a loss of propellant during the formation 

flight phase of the mission.  Thus that phase of the mission would be reduced in time and mission 

goals may not be met.  There is little to no danger to personnel as the two isolation valves should 

prevent propellant from reaching the fitting except during controlled testing of the system.  

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

TL301 leak TL301

Hazard Analysis

The most likely cause of a leak regarding a Swagelok fitting is an improper connection point.  This 

could be cause by either improper tightening or improper tubing construction.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Prop-041 3

Pre-mitigation Classification

A rupture at this point within the system would immediately end the formation flight portion of the 

mission and seriously jeopardize extended mission operations.  A rupture could also cause damage 

to other near by satellite equipment; thus, further reducing the chances of mission success.

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

TL301 Rupture TL301

Hazard Analysis

The material yields due to excessive stress caused by over-pressurization

The fitting in question is after the pressure regulation device within the system.  Therefore, it should 

experience at most 24.7 psi of pressure which is well within the capabilities of the fitting.  Even if 

the regulator should fail, the Swagelok fittings are rated to even higher pressures than the 

propellant tank.  (~4000 psig) Therefore, the chance for material yield leading to leaks and 

propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Prop-042 4

Pre-mitigation Classification

A leak stemming from the Swagelok tee TL2a01 would cause a loss of propellant during the 

formation flight phase of the mission.  Thus that phase of the mission would be reduced in time and 

mission goals may not be met.  There is little to no danger to personnel as the two isolation valves 

should prevent propellant from reaching the fitting except during controlled testing of the system.  

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

TL2a01 leak TL2a01

Hazard Analysis

The most likely cause of a leak regarding a Swagelok fitting is an improper connection point.  This 

could be cause by either improper tightening or improper tubing construction.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Prop-043

Pre-mitigation Classification

A rupture at this point within the system would immediately end the formation flight portion of the 

mission and seriously jeopardize extended mission operations.  A rupture could also cause damage 

to other near by satellite equipment; thus, further reducing the chances of mission success.

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

3

TL2a01 Rupture TL2a01

Hazard Analysis

The material yields due to excessive stress caused by over-pressurization

The fitting in question is after the pressure regulation device within the system.  Therefore, it should 

experience at most 24.7 psi of pressure which is well within the capabilities of the fitting.  Even if 

the regulator should fail, the Swagelok fittings are rated to even higher pressures than the 

propellant tank.  (~4000 psig) Therefore, the chance for material yield leading to leaks and 

propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Prop-044 4

TL2b01 leak TL2b01

Pre-mitigation Classification

Hazard Analysis

The most likely cause of a leak regarding a Swagelok fitting is an improper connection point.  This 

could be cause by either improper tightening or improper tubing construction.

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

A leak stemming from the Swagelok tee TL2b01 would cause a loss of propellant during the 

formation flight phase of the mission.  Thus that phase of the mission would be reduced in time and 

mission goals may not be met.  There is little to no danger to personnel as the two isolation valves 

should prevent propellant from reaching the fitting except during controlled testing of the system.  

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Prop-045 3

TL2b01 Rupture TL2b01

Pre-mitigation Classification

Hazard Analysis

The material yields due to excessive stress caused by over-pressurization

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.

A rupture at this point within the system would immediately end the formation flight portion of the 

mission and seriously jeopardize extended mission operations.  A rupture could also cause damage 

to other near by satellite equipment; thus, further reducing the chances of mission success.

The fitting in question is after the pressure regulation device within the system.  Therefore, it should 

experience at most 24.7 psi of pressure which is well within the capabilities of the fitting.  Even if 

the regulator should fail, the Swagelok fittings are rated to even higher pressures than the 

propellant tank.  (~4000 psig) Therefore, the chance for material yield leading to leaks and 

propellant loss is remote.

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Change out non working valves.

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

Prop-046 4

Tr05 stuck closed Tr05 (TrL1a01)

Pre-mitigation Classification

Hazard Analysis

The most likely cause for a thruster valve being locked in the closed position is an electrical problem 

preventing the opening of the valve.  This could be the electrical board never sending the 24 volt 

pulse required for opening, or physical damage to the internal solenoid of the valve.

Thruster Tr05 is responsible for providing counterclockwise rotation around the x axis of the satellite 

(assuming positive x axis runs through panel 4).  With this thruster stuck in the closed position, 

rotation maneuvers around the x axis would be limited to the clockwise direction which could 

negatively impact formation flight goals.   Also, translational maneuvers in the positive y direction 

would be impaired.  This hazard presents no danger to equipment or testing personnel.

The design of the electrical boards which control the thrusters are not under the control of the 

propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Prop-047 4

Tr05 Locked Open Tr05 (TrL1a01)

Pre-mitigation Classification

Hazard Analysis

The Lee Valve designed is a 'fail safe' design in that the valve is designed to close if power is not 

continually supplied to the solenoid.  Therefore, most likely cause of a valve stuck in the open 

position is a defective part.

The consequences of such a failure would be felt immediately upon opening the two isolation 

valves.   The thruster would be activated and a continuous stream of propellant would be released 

from the nozzle; thus causing the satellite to careen out of control.   During testing, this failure 

mode would release propellant into the testing area in amounts possibly greater than expected.

Due to the fail safe nature of the design, it is considered a remote possibility that the isolation valve 

will be stuck in the open position.

All defective valves discovered in the testing process will be replaced.

Thorough testing of all valves will be conducted.  All testing will occur in well ventilated areas (such 

as the fume hood present in the SSE lab) to mitigate the risk of propellant exposure.  Any deviations 

from nominal operation will be recorded and reported to the proper authorities.  All valves failing to 

achieve nominal operation will be replace.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Frequent RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Each part will be cleaned with isopropyl alcohol prior to incorporation within the system.  This 

should limit the remaining debris.

Hazard Analysis

The inner mechanisms of the valves as well as the throat of the nozzle are extremely narrow and 

easily clogged with foreign material present within the propellant lines.  (Left over material from the 

construction process such as metallic shavings)

Foreign material lodged within the valve can interfere with the workings of the internal poppet and 

lock the valve in either the open or closed position.  Foreign material lodged within the nozzle 

would prevent propellant flow and end the usefulness of the thruster.

Since all parts of the propulsion system are machined, the possibility of foreign debris lodged within 

the propellant lines can not be discounted.  Without mitigation a clog of the valve and/or nozzle is 

likely to be a frequent occurrence.

Fine mesh filters added before each valve within the system will capture any debris before it can 

interfere with the internal workings of the valve.

Prop-048 4

Tr05 Clogged Tr05 (TrL1a01)

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  Additionally, all system testing will be conducted in a well ventilated area 

such as the fume hood in the SSE lab.

Hazard Analysis

For the thruster to burst, it would have to experience a propellant pressure greater than its yield 

pressure.  Additionally, over heating of the valve could cause the outer casing of the valve to 

rupture.

If Thruster Tr05 was to burst, the resulting propellant loss would send the satellite off course and 

trigger a safe mode within the satellite.  Thus, the formation flight portion of the mission would be 

ended prematurely and extended mission operations would be in jeopardy.  Should the burst 

happen during testing, the resulting propellant loss could release unexpected amounts of propellant 

and increase the risk of exposure.  

Valve rupture due to over pressurization is a remote possibility due to the high factors of safety 

associated with the valve.  The valve is rated to 1125 psi; therefore even discounting the presence of 

the pressure regulator, at the 100 psi setting, the FOS is greater than 11.  For the 307 psi setting, the 

FOS is still a respectable 3.66.  Valve rupture due to over heating is also considered a remote 

possibility based upon the expected temperature range for the mission.  The valve is rated to 70 C 

and has been observed during functional testing by MAS to function properly at temperatures 

greater than 100 C.                       

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Prop-049 3

Tr05 Burst Tr05 (TrL1a01)

Pre-mitigation Classification
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.

Tr05 leak Tr05 (TrL1a01)

Prop-050 4

Pre-mitigation Classification

Hazard Analysis

The most likely cause of a noticeable leak stemming from the thruster Tr05 is improper tightening of 

the Swagelok connection.

A leak at this point in the system would not pose a problem until the propulsion system was 

activated and formation flight implemented.  At that point the leak would cause propellant loss 

which would lessen the amount of time available for formation flight.  Additionally, the loss of 

pressure just before the nozzle would reduce the thrust produced by this thruster and thus hinder 

propulsive maneuvers.

 



155 

 

 

Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

A properly designed electronics board controlling the system could reduce the probability to 

remote.

Voltage step-down malfunction Tr05 (TrL1a01)

Prop-051 4

Pre-mitigation Classification

Hazard Analysis

The voltage step-down is accomplished by the propulsion electronics board.  The most obvious 

cause of the failure of voltage step-down for the isolation valve would be the failure of the 

electronics board either due to component malfunction or improper design.

The Lee valves used for the MR SAT propulsion system rely on a 24 V pulse to open.  The voltage is 

then stepped down to 5 volts to maintain the open state.  If the step-down process does not occur 

within the time specified, the excess voltage could destroy the solenoid and cause the valve to over 

heat and possibly rupture.  
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The design of the electrical boards which control the thrusters are not under the control of the 

propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Change out non working valves.

Tr06 stuck closed Tr06 (TrL1b01)

Prop-052 4

Pre-mitigation Classification

Hazard Analysis

The most likely cause for a thruster valve being locked in the closed position is an electrical problem 

preventing the opening of the valve.  This could be the electrical board never sending the 24 volt 

pulse required for opening, or physical damage to the internal solenoid of the valve.

Thruster Tr06 is responsible for providing clockwise rotation around the x axis of the satellite 

(assuming positive x axis runs through panel 4).  With this thruster stuck in the closed position, 

rotation maneuvers around the x axis would be limited to the counterclockwise direction which 

could negatively impact formation flight goals.  Also, translational maneuvers in the positive y 

direction would be impaired.  This hazard presents no danger to equipment or testing personnel.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all valves will be conducted.  All testing will occur in well ventilated areas (such 

as the fume hood present in the SSE lab) to mitigate the risk of propellant exposure.  Any deviations 

from nominal operation will be recorded and reported to the proper authorities.  All valves failing to 

achieve nominal operation will be replace.

The consequences of such a failure would be felt immediately upon opening the two isolation 

valves.   The thruster would be activated and a continuous stream of propellant would be released 

from the nozzle; thus causing the satellite to careen out of control.   During testing, this failure 

mode would release propellant into the testing area in amounts possibly greater than expected.

Due to the fail safe nature of the design, it is considered a remote possibility that the isolation valve 

will be stuck in the open position.

All defective valves discovered in the testing process will be replaced.

4

Tr06 Locked Open Tr06 (TrL1b01)

Prop-053

Pre-mitigation Classification

Hazard Analysis

The Lee Valve designed is a 'fail safe' design in that the valve is designed to close if power is not 

continually supplied to the solenoid.  Therefore, most likely cause of a valve stuck in the open 

position is a defective part.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Frequent RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Fine mesh filters added before each valve within the system will capture any debris before it can 

interfere with the internal workings of the valve.

Foreign material lodged within the valve can interfere with the workings of the internal poppet and 

lock the valve in either the open or closed position.  Foreign material lodged within the nozzle 

would prevent propellant flow and end the usefulness of the thruster.

Hazard Analysis

Tr06 Clogged Tr06 (TrL1b01)

Prop-054 4

Pre-mitigation Classification

The inner mechanisms of the valves as well as the throat of the nozzle are extremely narrow and 

easily clogged with foreign material present within the propellant lines.  (Left over material from the 

construction process such as metallic shavings)

Since all parts of the propulsion system are machined, the possibility of foreign debris lodged within 

the propellant lines can not be discounted.  Without mitigation a clog of the valve and/or nozzle is 

likely to be a frequent occurrence.

Each part will be cleaned with isopropyl alcohol prior to incorporation within the system.  This 

should limit the remaining debris.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

If Thruster Tr06 was to burst, the resulting propellant loss would send the satellite off course and 

trigger a safe mode within the satellite.  Thus, the formation flight portion of the mission would be 

ended prematurely and extended mission operations would be in jeopardy.  Should the burst 

happen during testing, the resulting propellant loss could release unexpected amounts of propellant 

and increase the risk of exposure.  

Hazard Analysis

Tr06 Burst Tr06 (TrL1b01)

Prop-055 3

Pre-mitigation Classification

For the thruster to burst, it would have to experience a propellant pressure greater than its yield 

pressure.  Additionally, over heating of the valve could cause the outer casing of the valve to 

rupture.

Valve rupture due to over pressurization is a remote possibility due to the high factors of safety 

associated with the valve.  The valve is rated to 1125 psi; therefore even discounting the presence of 

the pressure regulator, at the 100 psi setting, the FOS is greater than 11.  For the 307 psi setting, the 

FOS is still a respectable 3.66.  Valve rupture due to over heating is also considered a remote 

possibility based upon the expected temperature range for the mission.  The valve is rated to 70 C 

and has been observed during functional testing by MAS to function properly at temperatures 

greater than 100 C.                       

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  Additionally, all system testing will be conducted in a well ventilated area 

such as the fume hood in the SSE lab.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

No physical mitigation is possible for this hazard.

A leak at this point in the system would not pose a problem until the propulsion system was 

activated and formation flight implemented.  At that point the leak would cause propellant loss 

which would lessen the amount of time available for formation flight.  Additionally, the loss of 

pressure just before the nozzle would reduce the thrust produced by this thruster and thus hinder 

propulsive maneuvers.

Hazard Analysis

Tr06 leak Tr06 (TrL1b01)

4Prop-056

Pre-mitigation Classification

The most likely cause of a noticeable leak stemming from the thruster Tr06 is improper tightening of 

the Swagelok connection.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

 



161 

 

 

Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Pre-mitigation Classification

A properly designed electronics board controlling the system could reduce the probability to 

remote.

The voltage step-down is accomplished by the propulsion electronics board.  The most obvious 

cause of the failure of voltage step-down for the isolation valve would be the failure of the 

electronics board either due to component malfunction or improper design.

The Lee valves used for the MR SAT propulsion system rely on a 24 V pulse to open.  The voltage is 

then stepped down to 5 volts to maintain the open state.  If the step-down process does not occur 

within the time specified, the excess voltage could destroy the solenoid and cause the valve to over 

heat and possibly rupture.  

Hazard Analysis

Voltage step-down malfunction Tr06 (TrL1b01)

Prop-057 4
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The design of the electrical boards which control the thrusters are not under the control of the 

propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Pre-mitigation Classification

Change out non working valves.

The most likely cause for a thruster valve being locked in the closed position is an electrical problem 

preventing the opening of the valve.  This could be the electrical board never sending the 24 volt 

pulse required for opening, or physical damage to the internal solenoid of the valve.

Thruster Tr01 is responsible for providing clockwise rotation around the y axis of the satellite 

(assuming positive x axis runs through panel 4).  With this thruster stuck in the closed position, 

rotation maneuvers around the y axis would be limited to the counterclockwise direction which 

could negatively impact formation flight goals.  Also, translational maneuvers in the positive x 

direction would be impaired.  This hazard presents no danger to equipment or testing personnel.

Hazard Analysis

Tr01 stuck closed Tr01 (TrL2a101)

Prop-058 4
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all valves will be conducted.  All testing will occur in well ventilated areas (such 

as the fume hood present in the SSE lab) to mitigate the risk of propellant exposure.  Any deviations 

from nominal operation will be recorded and reported to the proper authorities.  All valves failing to 

achieve nominal operation will be replace.

Due to the fail safe nature of the design, it is considered a remote possibility that the isolation valve 

will be stuck in the open position.

Pre-mitigation Classification

4

All defective valves discovered in the testing process will be replaced.

The Lee Valve designed is a 'fail safe' design in that the valve is designed to close if power is not 

continually supplied to the solenoid.  Therefore, most likely cause of a valve stuck in the open 

position is a defective part.

The consequences of such a failure would be felt immediately upon opening the two isolation 

valves.   The thruster would be activated and a continuous stream of propellant would be released 

from the nozzle; thus causing the satellite to careen out of control.   During testing, this failure 

mode would release propellant into the testing area in amounts possibly greater than expected.

Hazard Analysis

Tr01 Locked Open Tr01 (TrL2a101)

Prop-059
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Frequent RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Each part will be cleaned with isopropyl alcohol prior to incorporation within the system.  This 

should limit the remaining debris.

Since all parts of the propulsion system are machined, the possibility of foreign debris lodged within 

the propellant lines can not be discounted.  Without mitigation a clog of the valve and/or nozzle is 

likely to be a frequent occurrence.

Pre-mitigation Classification

Prop-060

Fine mesh filters added before each valve within the system will capture any debris before it can 

interfere with the internal workings of the valve.

The inner mechanisms of the valves as well as the throat of the nozzle are extremely narrow and 

easily clogged with foreign material present within the propellant lines.  (Left over material from the 

construction process such as metallic shavings)

Foreign material lodged within the valve can interfere with the workings of the internal poppet and 

lock the valve in either the open or closed position.  Foreign material lodged within the nozzle 

would prevent propellant flow and end the usefulness of the thruster.

Hazard Analysis

Tr01 Clogged Tr01 (TrL2a101)

4
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  Additionally, all system testing will be conducted in a well ventilated area 

such as the fume hood in the SSE lab.

Valve rupture due to over pressurization is a remote possibility due to the high factors of safety 

associated with the valve.  The valve is rated to 1125 psi; therefore even discounting the presence of 

the pressure regulator, at the 100 psi setting, the FOS is greater than 11.  For the 307 psi setting, the 

FOS is still a respectable 3.66.  Valve rupture due to over heating is also considered a remote 

possibility based upon the expected temperature range for the mission.  The valve is rated to 70 C 

and has been observed during functional testing by MAS to function properly at temperatures 

greater than 100 C.                       

Pre-mitigation Classification

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

For the thruster to burst, it would have to experience a propellant pressure greater than its yield 

pressure.  Additionally, over heating of the valve could cause the outer casing of the valve to 

rupture.

If Thruster Tr01 was to burst, the resulting propellant loss would send the satellite off course and 

trigger a safe mode within the satellite.  Thus, the formation flight portion of the mission would be 

ended prematurely and extended mission operations would be in jeopardy.  Should the burst 

happen during testing, the resulting propellant loss could release unexpected amounts of propellant 

and increase the risk of exposure.  

Hazard Analysis

Prop-061 3

Tr01 Burst Tr01 (TrL2a101)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

No physical mitigation is possible for this hazard.

A leak at this point in the system would not pose a problem until the propulsion system was 

activated and formation flight implemented.  At that point the leak would cause propellant loss 

which would lessen the amount of time available for formation flight.  Additionally, the loss of 

pressure just before the nozzle would reduce the thrust produced by this thruster and thus hinder 

propulsive maneuvers.

Hazard Analysis

Tr01 leak Tr01 (TrL2a101)

Prop-062 4

Pre-mitigation Classification

The most likely cause of a noticeable leak stemming from the thruster Tr01 is improper tightening of 

the Swagelok connection.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

A properly designed electronics board controlling the system could reduce the probability to 

remote.

The Lee valves used for the MR SAT propulsion system rely on a 24 V pulse to open.  The voltage is 

then stepped down to 5 volts to maintain the open state.  If the step-down process does not occur 

within the time specified, the excess voltage could destroy the solenoid and cause the valve to over 

heat and possibly rupture.  

Hazard Analysis

Voltage step-down malfunction Tr01 (TrL2a1-01)

Prop-063 4

Pre-mitigation Classification

The voltage step-down is accomplished by the propulsion electronics board.  The most obvious 

cause of the failure of voltage step-down for the isolation valve would be the failure of the 

electronics board either due to component malfunction or improper design.

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The design of the electrical boards which control the thrusters are not under the control of the 

propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Pre-mitigation Classification

Change out non working valves.

The most likely cause for a thruster valve being locked in the closed position is an electrical problem 

preventing the opening of the valve.  This could be the electrical board never sending the 24 volt 

pulse required for opening, or physical damage to the internal solenoid of the valve.

Thruster Tr02 is responsible for providing counterclockwise rotation around the z axis of the satellite 

(assuming positive x axis runs through panel 4).  With this thruster stuck in the closed position, 

rotation maneuvers around the z axis would be limited to the clockwise direction which could 

negatively impact formation flight goals.  Also, translational maneuvers in the positive x direction 

would be impaired.  This hazard presents no danger to equipment or testing personnel.

Hazard Analysis

Tr02 stuck closed Tr02 (TrL2a2-01)

Prop-064 4
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all valves will be conducted.  All testing will occur in well ventilated areas (such 

as the fume hood present in the SSE lab) to mitigate the risk of propellant exposure.  Any deviations 

from nominal operation will be recorded and reported to the proper authorities.  All valves failing to 

achieve nominal operation will be replace.

Due to the fail safe nature of the design, it is considered a remote possibility that the isolation valve 

will be stuck in the open position.

Pre-mitigation Classification

All defective valves discovered in the testing process will be replaced.

The Lee Valve designed is a 'fail safe' design in that the valve is designed to close if power is not 

continually supplied to the solenoid.  Therefore, most likely cause of a valve stuck in the open 

position is a defective part.

The consequences of such a failure would be felt immediately upon opening the two isolation 

valves.   The thruster would be activated and a continuous stream of propellant would be released 

from the nozzle; thus causing the satellite to careen out of control.   During testing, this failure 

mode would release propellant into the testing area in amounts possibly greater than expected.

Hazard Analysis

Tr02 Locked Open Tr02 (TrL2a2-01)

Prop-065 4
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Frequent RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Each part will be cleaned with isopropyl alcohol prior to incorporation within the system.  This 

should limit the remaining debris.

Since all parts of the propulsion system are machined, the possibility of foreign debris lodged within 

the propellant lines can not be discounted.  Without mitigation a clog of the valve and/or nozzle is 

likely to be a frequent occurrence.

Pre-mitigation Classification

4

Fine mesh filters added before each valve within the system will capture any debris before it can 

interfere with the internal workings of the valve.

The inner mechanisms of the valves as well as the throat of the nozzle are extremely narrow and 

easily clogged with foreign material present within the propellant lines.  (Left over material from the 

construction process such as metallic shavings)

Foreign material lodged within the valve can interfere with the workings of the internal poppet and 

lock the valve in either the open or closed position.  Foreign material lodged within the nozzle 

would prevent propellant flow and end the usefulness of the thruster.

Hazard Analysis

Tr02 Clogged Tr02 (TrL2a2-01)

Prop-066
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  Additionally, all system testing will be conducted in a well ventilated area 

such as the fume hood in the SSE lab.

Valve rupture due to over pressurization is a remote possibility due to the high factors of safety 

associated with the valve.  The valve is rated to 1125 psi; therefore even discounting the presence of 

the pressure regulator, at the 100 psi setting, the FOS is greater than 11.  For the 307 psi setting, the 

FOS is still a respectable 3.66.  Valve rupture due to over heating is also considered a remote 

possibility based upon the expected temperature range for the mission.  The valve is rated to 70 C 

and has been observed during functional testing by MAS to function properly at temperatures 

greater than 100 C.                       

Pre-mitigation Classification

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

For the thruster to burst, it would have to experience a propellant pressure greater than its yield 

pressure.  Additionally, over heating of the valve could cause the outer casing of the valve to 

rupture.

If Thruster Tr02 was to burst, the resulting propellant loss would send the satellite off course and 

trigger a safe mode within the satellite.  Thus, the formation flight portion of the mission would be 

ended prematurely and extended mission operations would be in jeopardy.  Should the burst 

happen during testing, the resulting propellant loss could release unexpected amounts of propellant 

and increase the risk of exposure.  

Hazard Analysis

Tr02 Burst Tr02 (TrL2a2-01)

Prop-067 3
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

Pre-mitigation Classification

No physical mitigation is possible for this hazard.

The most likely cause of a noticeable leak stemming from the thruster Tr02 is improper tightening of 

the Swagelok connection.

A leak at this point in the system would not pose a problem until the propulsion system was 

activated and formation flight implemented.  At that point the leak would cause propellant loss 

which would lessen the amount of time available for formation flight.  Additionally, the loss of 

pressure just before the nozzle would reduce the thrust produced by this thruster and thus hinder 

propulsive maneuvers.

Hazard Analysis

4

Tr02 leak Tr02 (TrL2a2-01)

Prop-068
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Pre-mitigation Classification

A properly designed electronics board controlling the system could reduce the probability to 

remote.

The voltage step-down is accomplished by the propulsion electronics board.  The most obvious 

cause of the failure of voltage step-down for the isolation valve would be the failure of the 

electronics board either due to component malfunction or improper design.

The Lee valves used for the MR SAT propulsion system rely on a 24 V pulse to open.  The voltage is 

then stepped down to 5 volts to maintain the open state.  If the step-down process does not occur 

within the time specified, the excess voltage could destroy the solenoid and cause the valve to over 

heat and possibly rupture.  

Hazard Analysis

Prop-069 4

Voltage step-down malfunction Tr02 (TrL2a2-01)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Change out non working valves.

Thruster Tr03 is responsible for providing clockwise rotation around the z axis of the satellite 

(assuming positive x axis runs through panel 4).  With this thruster stuck in the closed position, 

rotation maneuvers around the z axis would be limited to the counterclockwise direction which 

could negatively impact formation flight goals.  Also, translational maneuvers in the positive x 

direction would be impaired.  This hazard presents no danger to equipment or testing personnel.

Hazard Analysis

Tr03 stuck closed Tr03 (TrL2b1-01)

Prop-070 4

Pre-mitigation Classification

The most likely cause for a thruster valve being locked in the closed position is an electrical problem 

preventing the opening of the valve.  This could be the electrical board never sending the 24 volt 

pulse required for opening, or physical damage to the internal solenoid of the valve.

The design of the electrical boards which control the thrusters are not under the control of the 

propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

All defective valves discovered in the testing process will be replaced.

The consequences of such a failure would be felt immediately upon opening the two isolation 

valves.   The thruster would be activated and a continuous stream of propellant would be released 

from the nozzle; thus causing the satellite to careen out of control.   During testing, this failure 

mode would release propellant into the testing area in amounts possibly greater than expected.

Hazard Analysis

Tr03 Locked Open Tr03 (TrL2b1-01)

4Prop-071

Pre-mitigation Classification

The Lee Valve designed is a 'fail safe' design in that the valve is designed to close if power is not 

continually supplied to the solenoid.  Therefore, most likely cause of a valve stuck in the open 

position is a defective part.

Due to the fail safe nature of the design, it is considered a remote possibility that the isolation valve 

will be stuck in the open position.

Thorough testing of all valves will be conducted.  All testing will occur in well ventilated areas (such 

as the fume hood present in the SSE lab) to mitigate the risk of propellant exposure.  Any deviations 

from nominal operation will be recorded and reported to the proper authorities.  All valves failing to 

achieve nominal operation will be replace.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Frequent RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Each part will be cleaned with isopropyl alcohol prior to incorporation within the system.  This 

should limit the remaining debris.

Since all parts of the propulsion system are machined, the possibility of foreign debris lodged within 

the propellant lines can not be discounted.  Without mitigation a clog of the valve and/or nozzle is 

likely to be a frequent occurrence.

Pre-mitigation Classification

Fine mesh filters added before each valve within the system will capture any debris before it can 

interfere with the internal workings of the valve.

The inner mechanisms of the valves as well as the throat of the nozzle are extremely narrow and 

easily clogged with foreign material present within the propellant lines.  (Left over material from the 

construction process such as metallic shavings)

Foreign material lodged within the valve can interfere with the workings of the internal poppet and 

lock the valve in either the open or closed position.  Foreign material lodged within the nozzle 

would prevent propellant flow and end the usefulness of the thruster.

Hazard Analysis

Tr03 Clogged Tr03 (TrL2b1-01)

Prop-072 4
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  Additionally, all system testing will be conducted in a well ventilated area 

such as the fume hood in the SSE lab.

Valve rupture due to over pressurization is a remote possibility due to the high factors of safety 

associated with the valve.  The valve is rated to 1125 psi; therefore even discounting the presence of 

the pressure regulator, at the 100 psi setting, the FOS is greater than 11.  For the 307 psi setting, the 

FOS is still a respectable 3.66.  Valve rupture due to over heating is also considered a remote 

possibility based upon the expected temperature range for the mission.  The valve is rated to 70 C 

and has been observed during functional testing by MAS to function properly at temperatures 

greater than 100 C.                       

Pre-mitigation Classification

3

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

For the thruster to burst, it would have to experience a propellant pressure greater than its yield 

pressure.  Additionally, over heating of the valve could cause the outer casing of the valve to 

rupture.

If Thruster Tr03 was to burst, the resulting propellant loss would send the satellite off course and 

trigger a safe mode within the satellite.  Thus, the formation flight portion of the mission would be 

ended prematurely and extended mission operations would be in jeopardy.  Should the burst 

happen during testing, the resulting propellant loss could release unexpected amounts of propellant 

and increase the risk of exposure.  

Hazard Analysis

Tr03 Burst Tr03 (TrL2b1-01)

Prop-073
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

Pre-mitigation Classification

Prop-074 4

No physical mitigation is possible for this hazard.

The most likely cause of a noticeable leak stemming from the thruster Tr03 is improper tightening of 

the Swagelok connection.

A leak at this point in the system would not pose a problem until the propulsion system was 

activated and formation flight implemented.  At that point the leak would cause propellant loss 

which would lessen the amount of time available for formation flight.  Additionally, the loss of 

pressure just before the nozzle would reduce the thrust produced by this thruster and thus hinder 

propulsive maneuvers.

Hazard Analysis

Tr03 leak Tr03 (TrL2b1-01)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Pre-mitigation Classification

A properly designed electronics board controlling the system could reduce the probability to 

remote.

The voltage step-down is accomplished by the propulsion electronics board.  The most obvious 

cause of the failure of voltage step-down for the isolation valve would be the failure of the 

electronics board either due to component malfunction or improper design.

The Lee valves used for the MR SAT propulsion system rely on a 24 V pulse to open.  The voltage is 

then stepped down to 5 volts to maintain the open state.  If the step-down process does not occur 

within the time specified, the excess voltage could destroy the solenoid and cause the valve to over 

heat and possibly rupture.  

Hazard Analysis

Voltage step-down malfunction Tr03 (TrL2b1-01)

Prop-075 4
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The design of the electrical boards which control the thrusters are not under the control of the 

propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Pre-mitigation Classification

Change out non working valves.

The most likely cause for a thruster valve being locked in the closed position is an electrical problem 

preventing the opening of the valve.  This could be the electrical board never sending the 24 volt 

pulse required for opening, or physical damage to the internal solenoid of the valve.

Thruster Tr04 is responsible for providing counterclockwise rotation around the y axis of the satellite 

(assuming positive x axis runs through panel 4).  With this thruster stuck in the closed position, 

rotation maneuvers around the y axis would be limited to the clockwise direction which could 

negatively impact formation flight goals.  Also, translational maneuvers in the positive x direction 

would be impaired.  This hazard presents no danger to equipment or testing personnel.

Hazard Analysis

Prop-076 4

Tr04 stuck closed Tr04 (TrL2b2-01)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all valves will be conducted.  All testing will occur in well ventilated areas (such 

as the fume hood present in the SSE lab) to mitigate the risk of propellant exposure.  Any deviations 

from nominal operation will be recorded and reported to the proper authorities.  All valves failing to 

achieve nominal operation will be replace.

Due to the fail safe nature of the design, it is considered a remote possibility that the isolation valve 

will be stuck in the open position.

Pre-mitigation Classification

All defective valves discovered in the testing process will be replaced.

The Lee Valve designed is a 'fail safe' design in that the valve is designed to close if power is not 

continually supplied to the solenoid.  Therefore, most likely cause of a valve stuck in the open 

position is a defective part.

The consequences of such a failure would be felt immediately upon opening the two isolation 

valves.   The thruster would be activated and a continuous stream of propellant would be released 

from the nozzle; thus causing the satellite to careen out of control.   During testing, this failure 

mode would release propellant into the testing area in amounts possibly greater than expected.

Hazard Analysis

Prop-077 4

Tr04 Locked Open Tr04 (TrL2b2-01)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Frequent RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Fine mesh filters added before each valve within the system will capture any debris before it can 

interfere with the internal workings of the valve.

Foreign material lodged within the valve can interfere with the workings of the internal poppet and 

lock the valve in either the open or closed position.  Foreign material lodged within the nozzle 

would prevent propellant flow and end the usefulness of the thruster.

Hazard Analysis

Tr04 Clogged Tr04 (TrL2b2-01)

Prop-078 4

Pre-mitigation Classification

The inner mechanisms of the valves as well as the throat of the nozzle are extremely narrow and 

easily clogged with foreign material present within the propellant lines.  (Left over material from the 

construction process such as metallic shavings)

Since all parts of the propulsion system are machined, the possibility of foreign debris lodged within 

the propellant lines can not be discounted.  Without mitigation a clog of the valve and/or nozzle is 

likely to be a frequent occurrence.

Each part will be cleaned with isopropyl alcohol prior to incorporation within the system.  This 

should limit the remaining debris.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

If Thruster Tr04 was to burst, the resulting propellant loss would send the satellite off course and 

trigger a safe mode within the satellite.  Thus, the formation flight portion of the mission would be 

ended prematurely and extended mission operations would be in jeopardy.  Should the burst 

happen during testing, the resulting propellant loss could release unexpected amounts of propellant 

and increase the risk of exposure.  

Hazard Analysis

Tr04 Burst Tr04 (TrL2b2-01)

3Prop-079

Pre-mitigation Classification

For the thruster to burst, it would have to experience a propellant pressure greater than its yield 

pressure.  Additionally, over heating of the valve could cause the outer casing of the valve to 

rupture.

Valve rupture due to over pressurization is a remote possibility due to the high factors of safety 

associated with the valve.  The valve is rated to 1125 psi; therefore even discounting the presence of 

the pressure regulator, at the 100 psi setting, the FOS is greater than 11.  For the 307 psi setting, the 

FOS is still a respectable 3.66.  Valve rupture due to over heating is also considered a remote 

possibility based upon the expected temperature range for the mission.  The valve is rated to 70 C 

and has been observed during functional testing by MAS to function properly at temperatures 

greater than 100 C.                       

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  Additionally, all system testing will be conducted in a well ventilated area 

such as the fume hood in the SSE lab.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

Pre-mitigation Classification

No physical mitigation is possible for this hazard.

The most likely cause of a noticeable leak stemming from the thruster Tr04 is improper tightening of 

the Swagelok connection.

A leak at this point in the system would not pose a problem until the propulsion system was 

activated and formation flight implemented.  At that point the leak would cause propellant loss 

which would lessen the amount of time available for formation flight.  Additionally, the loss of 

pressure just before the nozzle would reduce the thrust produced by this thruster and thus hinder 

propulsive maneuvers.

Hazard Analysis

Tr04 leak Tr04 (TrL2b2-01)

Prop-080 4
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Pre-mitigation Classification

4

A properly designed electronics board controlling the system could reduce the probability to 

remote.

The voltage step-down is accomplished by the propulsion electronics board.  The most obvious 

cause of the failure of voltage step-down for the isolation valve would be the failure of the 

electronics board either due to component malfunction or improper design.

The Lee valves used for the MR SAT propulsion system rely on a 24 V pulse to open.  The voltage is 

then stepped down to 5 volts to maintain the open state.  If the step-down process does not occur 

within the time specified, the excess voltage could destroy the solenoid and cause the valve to over 

heat and possibly rupture.  

Hazard Analysis

Voltage step-down malfunction Tr04 (TrL2b2-01)

Prop-081
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The design of the electrical boards which control the thrusters are not under the control of the 

propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Pre-mitigation Classification

Prop-082 4

Change out non working valves.

The most likely cause for a thruster valve being locked in the closed position is an electrical problem 

preventing the opening of the valve.  This could be the electrical board never sending the 24 volt 

pulse required for opening, or physical damage to the internal solenoid of the valve.

Thruster Tr07 is responsible for providing the counter force necessary to prevent translational motion during 

rotation maneuvers around the x axis (positive x axis directed through panel 4) and translational 

maneuverability in the negative y direction.  With Tr07 stuck closed, the translational force would not be able 

to be canceled out and the satellite would deviate from the formation.  Additionally, translational maneuvers 

in the negative y direction would be impaired.  This hazard presents no danger to equipment or testing 

personnel.

Hazard Analysis

Tr07 stuck closed Tr07 (TrL3a-01)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all valves will be conducted.  All testing will occur in well ventilated areas (such 

as the fume hood present in the SSE lab) to mitigate the risk of propellant exposure.  Any deviations 

from nominal operation will be recorded and reported to the proper authorities.  All valves failing to 

achieve nominal operation will be replace.

Due to the fail safe nature of the design, it is considered a remote possibility that the isolation valve 

will be stuck in the open position.

Pre-mitigation Classification

Prop-083 4

All defective valves discovered in the testing process will be replaced.

The Lee Valve designed is a 'fail safe' design in that the valve is designed to close if power is not 

continually supplied to the solenoid.  Therefore, most likely cause of a valve stuck in the open 

position is a defective part.

The consequences of such a failure would be felt immediately upon opening the two isolation 

valves.   The thruster would be activated and a continuous stream of propellant would be released 

from the nozzle; thus causing the satellite to translate unexpectedly along the negative y axis.   

During testing, this failure mode would release propellant into the testing area in amounts possibly 

greater than expected.

Hazard Analysis

Tr07 Locked Open Tr07 (TrL3a-01)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Frequent RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Each part will be cleaned with isopropyl alcohol prior to incorporation within the system.  This 

should limit the remaining debris.

Since all parts of the propulsion system are machined, the possibility of foreign debris lodged within 

the propellant lines can not be discounted.  Without mitigation a clog of the valve and/or nozzle is 

likely to be a frequent occurrence.

Pre-mitigation Classification

Fine mesh filters added before each valve within the system will capture any debris before it can 

interfere with the internal workings of the valve.

The inner mechanisms of the valves as well as the throat of the nozzle are extremely narrow and 

easily clogged with foreign material present within the propellant lines.  (Left over material from the 

construction process such as metallic shavings)

Foreign material lodged within the valve can interfere with the workings of the internal poppet and 

lock the valve in either the open or closed position.  Foreign material lodged within the nozzle 

would prevent propellant flow and end the usefulness of the thruster.

Hazard Analysis

Prop-084 4

Tr07 Clogged Tr07 (TrL3a-01)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  Additionally, all system testing will be conducted in a well ventilated area 

such as the fume hood in the SSE lab.

Valve rupture due to over pressurization is a remote possibility due to the high factors of safety 

associated with the valve.  The valve is rated to 1125 psi; therefore even discounting the presence of 

the pressure regulator, at the 100 psi setting, the FOS is greater than 11.  For the 307 psi setting, the 

FOS is still a respectable 3.66.  Valve rupture due to over heating is also considered a remote 

possibility based upon the expected temperature range for the mission.  The valve is rated to 70 C 

and has been observed during functional testing by MAS to function properly at temperatures 

greater than 100 C.                       

Pre-mitigation Classification

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

For the thruster to burst, it would have to experience a propellant pressure greater than its yield 

pressure.  Additionally, over heating of the valve could cause the outer casing of the valve to 

rupture.

If Thruster Tr07 was to burst, the resulting propellant loss would send the satellite off course and 

trigger a safe mode within the satellite.  Thus, the formation flight portion of the mission would be 

ended prematurely and extended mission operations would be in jeopardy.  Should the burst 

happen during testing, the resulting propellant loss could release unexpected amounts of propellant 

and increase the risk of exposure.  

Hazard Analysis

Prop-085 3

Tr07 Burst Tr07 (TrL3a-01)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.

Hazard Analysis

The most likely cause of a noticeable leak stemming from the thruster Tr07 is improper tightening of 

the Swagelok connection.

Tr07 leak Tr07 (TrL3a-01)

Prop-086 4

Pre-mitigation Classification

A leak at this point in the system would not pose a problem until the propulsion system was 

activated and formation flight implemented.  At that point the leak would cause propellant loss 

which would lessen the amount of time available for formation flight.  Additionally, the loss of 

pressure just before the nozzle would reduce the thrust produced by this thruster and thus hinder 

propulsive maneuvers.

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

A properly designed electronics board controlling the system could reduce the probability to 

remote.

Hazard Analysis

The voltage step-down is accomplished by the propulsion electronics board.  The most obvious 

cause of the failure of voltage step-down for the isolation valve would be the failure of the 

electronics board either due to component malfunction or improper design.

4

Voltage step-down malfunction Tr07 (TrL3a-01)

Prop-087

Pre-mitigation Classification

The Lee valves used for the MR SAT propulsion system rely on a 24 V pulse to open.  The voltage is 

then stepped down to 5 volts to maintain the open state.  If the step-down process does not occur 

within the time specified, the excess voltage could destroy the solenoid and cause the valve to over 

heat and possibly rupture.  

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

Thruster Tr08 is responsible for providing the counter force necessary to prevent translational motion during 

rotation maneuvers around the y and z axes (positive x axis directed through panel 4) and translational 

maneuverability in the negative x direction.  With Tr08 stuck closed, the translational force would not be able 

to be canceled out and the satellite would deviate from the formation.  Additionally, translational maneuvers 

in the negative x direction would be impaired.  This hazard presents no danger to equipment or testing 

personnel.

The design of the electrical boards which control the thrusters are not under the control of the 

propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

Change out non working valves.

Pre-mitigation Classification

Hazard Analysis

The most likely cause for a thruster valve being locked in the closed position is an electrical problem 

preventing the opening of the valve.  This could be the electrical board never sending the 24 volt 

pulse required for opening, or physical damage to the internal solenoid of the valve.

Prop-088 4

Tr08 stuck closed Tr08 (TrL3b-01)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Thorough testing of all valves will be conducted.  All testing will occur in well ventilated areas (such 

as the fume hood present in the SSE lab) to mitigate the risk of propellant exposure.  Any deviations 

from nominal operation will be recorded and reported to the proper authorities.  All valves failing to 

achieve nominal operation will be replace.

The consequences of such a failure would be felt immediately upon opening the two isolation 

valves.   The thruster would be activated and a continuous stream of propellant would be released 

from the nozzle; thus causing the satellite to translate unexpectedly along the negative x axis.   

During testing, this failure mode would release propellant into the testing area in amounts possibly 

greater than expected.

Due to the fail safe nature of the design, it is considered a remote possibility that the isolation valve 

will be stuck in the open position.

All defective valves discovered in the testing process will be replaced.

Pre-mitigation Classification

Hazard Analysis

The Lee Valve designed is a 'fail safe' design in that the valve is designed to close if power is not 

continually supplied to the solenoid.  Therefore, most likely cause of a valve stuck in the open 

position is a defective part.

Prop-089 4

Tr08 Locked Open Tr08 (TrL3b-01)
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Negligible
Probability 

Classification Frequent RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Negligible
Probability 

Classification Remote RAC 4

Each part will be cleaned with isopropyl alcohol prior to incorporation within the system.  This 

should limit the remaining debris.

Since all parts of the propulsion system are machined, the possibility of foreign debris lodged within 

the propellant lines can not be discounted.  Without mitigation a clog of the valve and/or nozzle is 

likely to be a frequent occurrence.

Tr08 Clogged Tr08 (TrL3b-01)

Prop-090 4

Pre-mitigation Classification

Hazard Analysis

The inner mechanisms of the valves as well as the throat of the nozzle are extremely narrow and 

easily clogged with foreign material present within the propellant lines.  (Left over material from the 

construction process such as metallic shavings)

Foreign material lodged within the valve can interfere with the workings of the internal poppet and 

lock the valve in either the open or closed position.  Foreign material lodged within the nozzle 

would prevent propellant flow and end the usefulness of the thruster.

Fine mesh filters added before each valve within the system will capture any debris before it can 

interfere with the internal workings of the valve.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  Additionally, all system testing will be conducted in a well ventilated area 

such as the fume hood in the SSE lab.

Valve rupture due to over pressurization is a remote possibility due to the high factors of safety 

associated with the valve.  The valve is rated to 1125 psi; therefore even discounting the presence of 

the pressure regulator, at the 100 psi setting, the FOS is greater than 11.  For the 307 psi setting, the 

FOS is still a respectable 3.66.  Valve rupture due to over heating is also considered a remote 

possibility based upon the expected temperature range for the mission.  The valve is rated to 70 C 

and has been observed during functional testing by MAS to function properly at temperatures 

greater than 100 C.                       

Tr08 Burst Tr08 (TrL3b-01)

Prop-091 3

Pre-mitigation Classification

Hazard Analysis

For the thruster to burst, it would have to experience a propellant pressure greater than its yield 

pressure.  Additionally, over heating of the valve could cause the outer casing of the valve to 

rupture.

If Thruster Tr08 was to burst, the resulting propellant loss would send the satellite off course and 

trigger a safe mode within the satellite.  Thus, the formation flight portion of the mission would be 

ended prematurely and extended mission operations would be in jeopardy.  Should the burst 

happen during testing, the resulting propellant loss could release unexpected amounts of propellant 

and increase the risk of exposure.  

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Occasional RAC 4

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

The prevention of leaks stemming from improper connections requires that the manufacturer 

tightening procedures are followed.  Assembly procedures have been developed which describe in a 

step by step manner the proper method of tightening each connection point.  Each step of the 

assembly procedure will be signed off by the performing technician and a quality assurance 

technician to ensure the procedure is followed correctly.  All deviations and problems will be 

reported to the appropriate authorities.  Additionally, the final assembly will be pressure tested in a 

controlled manner to ensure any potential leak is addressed prior to launch.

Tr08 leak Tr08 (TrL3b-01)

Prop-092 4

Pre-mitigation Classification

Hazard Analysis

The most likely cause of a noticeable leak stemming from the thruster Tr07 is improper tightening of 

the Swagelok connection.

A leak at this point in the system would not pose a problem until the propulsion system was 

activated and formation flight implemented.  At that point the leak would cause propellant loss 

which would lessen the amount of time available for formation flight.  Additionally, the loss of 

pressure just before the nozzle would reduce the thrust produced by this thruster and thus hinder 

propulsive maneuvers.

When assembling a system, human error has to be taken into account.  If procedures are not 

followed exactly and steps are not taken to ensure their correct implementation, hazardous 

situations can occur.

No physical mitigation is possible for this hazard.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Marginal
Probability 

Classification Remote RAC 4

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

valves integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.

The Lee valves used for the MR SAT propulsion system rely on a 24 V pulse to open.  The voltage is 

then stepped down to 5 volts to maintain the open state.  If the step-down process does not occur 

within the time specified, the excess voltage could destroy the solenoid and cause the valve to over 

heat and possibly rupture.  

4

Voltage step-down malfunction Tr08 (TrL3b-01)

Prop-093

Pre-mitigation Classification

Hazard Analysis

The voltage step-down is accomplished by the propulsion electronics board.  The most obvious 

cause of the failure of voltage step-down for the isolation valve would be the failure of the 

electronics board either due to component malfunction or improper design.

The design of the electrical boards which control the isolation valves are not under the control of 

the propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

A properly designed electronics board controlling the system could reduce the probability to 

remote.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

Propellant line rupture due to over pressurization is a remote possibility due to the high factors of 

safety associated with the valve.  The stainless steel lines are rated to 10000 psi; therefore at the 

100 psi setting, the FOS is greater than 100.  For the 307 psi setting, the FOS is still a respectable 

32.57.  

Physical mitigation is not necessary in this case as the factors of safety are sufficient to reduce the 

risk down to acceptable levels for flight.

Hazard Analysis

For the MR SAT propellant lines to burst, the stainless steal material would have to be stressed past 

its yield point by the pressure within the lines.

SS Tubing Burst Variable Prop Lines

Prop-094 3

Pre-mitigation Classification

A rupture of the propellant lines would cause the release of propellant in an undirected manner.  As 

a consequence, the satellite mission likely would end in failure.  During testing, rupture could lead 

to flying debris and possible injury to testing personnel or harm to surrounding equipment.  

Procedural mitigation comes in the form of ensuring that the correct propellant mass is placed 

within the system and that all procedures (assembly, filling, etc.) are performed correctly.  Each step 

of the procedure will be signed off by the performing technician and a quality assurance technician 

to ensure the procedure is followed correctly.  All deviations and problems will be reported to the 

appropriate authorities.  Additionally, all system testing will be conducted in a well ventilated area 

such as the fume hood in the SSE lab.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Critical
Probability 

Classification Probable RAC 2

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification Critical
Probability 

Classification Remote RAC 3

The design of the electrical boards which control the heaters are not under the control of the 

propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

A properly designed electronics board controlling the system could reduce the probability to 

remote.

Hazard Analysis

The tank heater stuck in the on position could be caused by either an electrical malfunction or an 

error within the control code.  

Tank Heater (HTk01) Stuck On HTk01

Prop-095 3

Pre-mitigation Classification

The tank heater stuck in the on position could have several possible consequences.  The first is the 

over heating of the propellant which could lead to  over pressurization of the tank.  Second, the 

heater itself could be damaged, limiting the systems response to temperature loss and inhibiting the 

phase change of the propellant.  

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

heaters integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.
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Hazard Number Final RAC

Hazard Name Part Name

Severity 

Classification Marginal
Probability 

Classification Probable RAC 3

Causes

Consequences

Probability

Physical 

Mitigation

Procedural 

Mitigation

Prost-mitigation Classification

Severity 

Classification marginal
Probability 

Classification Remote RAC 4

The design of the electrical boards which control the heaters are not under the control of the 

propulsion subsystem.  However, a working design is necessary for the proper functioning of the 

system.  Due to the dependence on as yet untested electronics the probability of problems is 

currently rated as probable.

A properly designed electronics board controlling the system could reduce the probability to 

remote.

Hazard Analysis

The tank heater failing to turn on could be caused by either an electrical malfunction or an error 

within the control code.  

4

Tank Heater (HTk01) Non-Functioning HTk01

Prop-096

Pre-mitigation Classification

While propellant freezing is not a major concern given the temperature range expected for the 

mission, low propellant temperature within the storage tank would prevent the necessary phase 

change from occurring and thus severely limit system performance.  

Thorough testing of all electronics for proper operation is necessary.  Such testing will begin with 

functional testing of the board electronics and end with system level testing of the electronics and 

heaters integrated into a 'flat sat' configuration.  Any deviations from nominal operation will be 

recorded and reported to the proper authorities.  Electrical problems documented in the testing 

process will be addressed and then retested until nominal operation is achieved.
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