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PUBLICATION THESIS OPTION

This thesis has been prepared in the form of two papers for publication. The first

paper is contained within pages 2-37. The second paper is within pages 38-76. Both of

these are to be submitted for publication in Numerical Heat Transfer and they are formatted

in the appropriate style. A brief introduction to the content of these publications has been

presented on page 1. Details that are omitted from the publications are included in the

appendix starting on page 77.
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ABSTRACT

This thesis considers a unique application of a thermosyphon to a conventional

thermal storage device. In such an application, the dynamics of the thermosyphon are

coupled with the condition of the storage volume. This thesis specifically focuses on the

transient energy addition or charge process, where heat accumulated within the storage

volume continuously decreases the driving buoyant force and volumetric flow rate. A

numerical investigation is first carried out for a thermosyphon storage device with constant

heat addition and it is determined that the decaying flow rate causes a less than uniform

charge profile. The results indicate that the profile can be improved by targeting the frictional

losses to the transitional regime and by decreasing the relative height of the heating portion of

the thermosyphon loop. A second numerical investigation is carried out for a thermosyphon

storage device with constant temperature heat addition. For this configuration, the storage

temperature is, of course, limited by the temperature of the heat source; however, the

decaying flow rate causes reduced power delivery to the storage volume. The results of the

second investigation indicate that power delivery can be sustained by targeting the frictional

loss to the transitional flow regime.
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INTRODUCTION

Natural convection flow loops known as thermosyphons circulate fluid by utilizing

the buoyant force generated by a temperature gradient. Because they eliminate the need for

a mechanical pump, thermosyphons are particularly well suited for applications where low

cost, energy efficiency, and reliability are important. The applications of thermosyphons

are diverse and subsequently there is a broad body of relevant literature, yet the majority of

these publications focus on the steady and small time scale behavior of the thermosyphon.

This thesis is motivated by the novel idea of integrating a thermosyphon within

a conventional thermal storage device. Experiments have shown that utilization of the

thermosyphon improves thermal performance by eliminating large scale thermal mixing.

The focus of this thesis is on the heat addition or charge process of the thermosyphon storage

device. During charging, the thermosyphon dynamics are inherently transient because they

are coupledwith the changing state of the storage volume. The thermosyphon storage device

is modeled by numerically solving the relevant momentum and energy balance laws, which

are coupled and unsteady. The numerical method is programmed using FORTRAN and

included in the appendix.

There are two distinct investigations presented in this thesis. The first investigation

pertains to a system with constant heat addition, such as an electric resistance heating

element. The second investigation pertains to a system with constant temperature heat

addition. The constant temperature condition simulates an energy storage device with a

condensing heat exchanger as the heat source. The fundamental objective in both of these

studies is to identify the relevant design parameters and determine their influence on the

system performance. Particular emphasis is given to understanding the role of the frictional

losses. In both studies, the dominant loss mechanism is used to tailor optimal system

performance.



2

1. Dynamics of a Closed Loop Thermosyphon Incorporating
Thermal Storage∗

K. S. Benne and K. O. Homan†
Department of Mechanical & Aerospace Engineering

University of Missouri-Rolla, Rolla, Missouri 65409–0050
Tel: 573–341–6622, Fax: 573–341–4115

Email: khoman@umr.edu

Abbreviated Title: Storage Thermosyphon Dynamics.

∗Submitted to Numerical Heat Transfer, Part A Applications, (Version 38).
†Author to whom correspondence should be addressed



3

Abstract

The coupling between a natural convection thermosyphon loop and a thermal

storage device is analyzed numerically for a charging process in which energy

is added to the system at a fixed rate. Since energy accumulates in the storage

component, the driving buoyant force is continually altered and the behavior is

inherently transient. The undesirable consequence is a less than uniform charge

of the storage volume. Relevant dimensionless parameters are identified which

enable improvement in the shape of the charge profile. The results indicate that

a more uniform charge profile is obtained by targeting the frictional losses to

the transitional regime and by decreasing the relative vertical height where heat

input occurs.

1. INTRODUCTION

Natural convection flow loops known as thermosyphons eliminate the need for a

conventional pump by using the buoyancy resulting from a temperature gradient to circulate

fluid. Thermosyphons have been applied to a range of applications and are often found in

situations where energy efficiency is a concern, or where low cost and low maintenance is

desired [1]. Because of their wide range of applications, there is a large literature pertaining

to them. Thermosyphon configurations are traditionally classified into closed loop and open

loop geometries [2].

The open loop thermosyphon consists of one or more heating or cooling ducts,

which draw fluid from one thermal reservoir and deliver to a second reservoir. In some

configurations these volumes are combined and the fluid is drawn from the same vessel that

it is returned to. In both situations, the sizes of the reservoirs are considered large enough

to be unaffected by the heat addition or removal in the connecting duct. Because of this

assumption, there exists a steady state solution to the system dynamics. Beginning from
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such a solution, the initial transient and stability behavior of the open loop thermosyphon

has been well studied, particularly in regard to geothermal applications [3, 4, 5].

The closed loop geometry continuously circulates fluid through a closed path with

periodic heating or cooling sections. The majority of the literature pertaining to the closed

loop thermosyphon implements the heating and cooling sections in a waywhich ensures that

the net heat addition is balanced by the heat removal. This is accomplished by specifying

balanced heat flux around the flow loop, or by incorporating at least one convective boundary

within the system. The existence of a balanced heating load also makes it possible for a

steady state solution to exist. Similar to that of the open loop thermosyphon, the initial

transient and stability behavior have been investigated for this type of thermosyphon. Under

certain conditions, theory and experiment show that some closed loop thermosyphons are

unstable, resulting in repeated oscillations of the flow direction. A toroidal loop that is

symmetrically heated from below and cooled from above has been found to be unstable at

some heating rates [6, 7], although the stability was found to improve when the toroid was

rotated such that the heating was not symmetric [8]. Similar conclusions have been reached

using a Fourier expansion to reduce the governing conservation equations to a system of

ordinary differential equations [9]. A Fourier expansion has been more recently used to

design a control system that improves the stability of a toroidal thermosyphon [10], and a

symmetric rectangular thermosyphon [11].

The focus of the present investigation is a thermosyphon with unbalanced heat ad-

dition in communication with a finite thermal reservoir which accounts for the majority of

the system’s volume. These features distinguish this investigation from those cited. The

present configuration is distinct from the traditional open loop thermosyphon, because the

thermal reservoir is finite; therefore, the condition of the reservoir is coupled with the dy-

namics of the thermosyphon. It is also distinct from the closed loop studies that have been

mentioned, because there is net heat addition causing the energy inventory of the thermal

reservoir to steadily increase. Because of these two characteristics, the steady state solution
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that has been used as the basis of the preceding investigations is not applicable to the present

configuration. The system is therefore inherently time dependent, and as a result, this study

focuses on the unsteady dynamics of the energy addition process.

A common application of the general type of thermosyphon systembeing considered

is in solar domestic hot water (SDHW) heating. This application contains the two features

that are distinct to the thermosyphon system of present interest. The SDHW system in-

corporates a finite thermal storage tank, and during daytime heating there is an unbalanced

energy addition as a result of the heat added by the solar collector. One configuration for

this type of domestic hot water system is known as an indirect system because the storage

volume is isolated from the thermosyphon loop by a heat exchanger. Numerous studies per-

taining to variations of this type of device are reported in the literature [12, 13, 14, 15, 16].

Alternatively, a direct configuration has thermal storage integrated within the thermosyphon

flow path. Studies pertaining to this type of system have also been carried out [17, 18].

Another application for the type of thermosyphon system being considered is a

novel configuration of an electric resistance water heater (ERWH). This device consists of

a thermal reservoir with a smaller duct intended to draw fluid from the lower portion of the

storage vessel and deliver heated fluid to the upper portion. The duct, or riser section, is

either internal or external to the main storage volume and contains a heating mechanism

in its lower portion. This configuration avoids large-scale thermal mixing and maintains

stratification within the storage volume by isolating the rising plume of heated fluid from

the main storage volume. Previous work [19] has shown that in a system composed of a

storage volume and an electric resistance heating element, elimination of the large-scale

thermal mixing in the storage vessel leads to significant improvements in performance, both

for charging processes and discharging processes. In addition, recent experimental work

[20] demonstrated that conventional ERWH systems operate with a high degree of internal

thermal mixing. A thermosyphon-based configuration avoids much of this internal thermal

mixing and enables significant improvements in performance [21].
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The present investigation focuses specifically on the tailoring of the systemdynamics

so as to approach a process in which the storage volume is heated to a specific uniform

temperature. To accomplish this goal, the thermosyphon must deliver steady flow through

the system so that a consistent temperature rise is achieved across the heating portion of

the loop, given a constant heat input rate. This is an elusive goal, because the changing

temperature profile of the thermal storage component affects the buoyant force circulating

the fluid [22]. In this study, the controlling design parameters are identified and their effects

on the temperature profile of the storage are determined. Our results show that most of the

primary system parameters, when grouped into a single dimensionless term, have almost no

impact on the shape of the riser outlet temperature profile. However, the shape of the riser

outlet temperature profile can be favorably modified by the vertical length of the heating

section and the flow regime in the dominant flow restriction.

2. PROBLEM FORMULATION

2.1 Problem Description

A thermosyphon composed of three distinct sections is used as the basis of the

analysis in this study. The components are a storage section, a heating section composed

of an electric resistance device, and a flow restriction. A conceptual schematic identifying

these pieces is given by Figure 1. The heating and resistance sections form the riser of the

thermosyphon and the storage volume is the sole component of the downcomer. Gravity

is everywhere pointing downward. Fluid is drawn into the riser from the bottom of the

storage vessel, heated, and returned to the top of the storage. The entire system is adiabatic

except for the heat input section. This configuration simulates a thermal charge process

where the energy inventory of the storage volume is continuously increasing. The flow

restriction section is the single throttling mechanism of the loop. The other components

are presumed to have comparatively larger cross sectional areas, therefore the magnitude of

the flow resistance is much smaller and is neglected. While neglecting the frictional loss in
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all but one part of the loop is an approximation, it is consistent with the intent of having a

dominant flow restriction and allows the effects of a specific flow regime to be studied. The

geometry of the restriction section is used to control the flow rate of the thermosyphon loop,

and as a result affects the temperature rise across the heating section. We will later show

that specific flow regimes will deliver improved transient performance. Once an optimal

flow regime is identified, a physical design can be implemented that is dominated by this

flow regime.

A quasi one-dimensional model, illustrated by Figure 2, is used to simulate the

thermosyphon system just described. In this model there is a single spatial coordinate

representing the position around the loop. The cross sectional area of the flow path is a

function of this coordinate. The spatial coordinate, s, begins at the entrance to the heating

section and extends to the outlet of the storage volume where the loop is then closed. The

overall height of the system, Ĥ , is equivalent to the height of the storage tank. The heat

input and restriction sections are vertically confined within the storage volume, however

they may be physically positioned inside or outside of this component. In the present model

only the vertical components are recognized, and as a result the horizontal position of the

components is irrelevant. The lengths of the heating and the restriction sections are l̂h and l̂r

respectively. The length of the riser is equal to the overall system height, but as indicated by

Figure 2 this is not necessarily the sum of l̂h and l̂r . The heating section begins at the base

of the riser and the restriction section ends at the outlet of the riser. The length separating

these two components floats to allow the riser to extend the full height of the system. The

total length of the flow loop is 2Ĥ .

2.2 Equation Development

The governing momentum balance is developed beginning from a differential ele-

ment of the system and then integrating around the loop. The pressure and flux terms are

continuous functions of the spatial coordinate and they are eliminated by integrating around
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the closed path. In dimensional form, the momentum equation simplifies to

(

∫ 2Ĥ

0

dŝ
Â

)

d ˆ̇V
dt̂

= −

∫ 2Ĥ

0

4τ̂w

ρo D̂h
dŝ + gβ

∫ 2Ĥ

0

(

T̂ − T̂o
)

G(ŝ)dŝ, (1)

where G(ŝ) indicates the orientation of a particular section of the flow loop with respect

to gravity. It is taken to be positive one in the riser portion of the loop (0 ≤ ŝ < Ĥ) and

negative one in the downcomer (Ĥ ≤ ŝ < 2Ĥ). The dimensional volumetric flow rate is

denoted by ˆ̇V , the dimensional cross-sectional area by Â, and the dimensional temperature

by T̂ . Within the frictional loss term, Dh represents the conventional hydraulic diameter.

The initial temperature is denoted by T̂o. The cross-sectional area varies significantly with

position, Â = Â(ŝ), while the volumetric flow rate varies only in time, ˆ̇V = ˆ̇V (t̂), as

dictated by conservation of mass. The temperature varies with space and time, T̂ = T̂ (t̂, ŝ).

The wall shear stress in the throttling section is defined as

τ̂w =
1
2
ρov̂

2λ, (2)

where v̂ is the local velocity and λ is the Fanning friction factor, a function of Reynolds

number, λ = λ(Re). The functional dependence of the friction coefficient on the Reynolds

number is based on the fluid flow regime and is represented by the general form,

λ =
a
Reb

+ c. (3)

The temperature profile within the flow loop is described by a one dimensional

energy balance that includes the effects of diffusion due to conduction in the axial direction.
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Energy is added to the system only within the heating portion of the thermosyphon loop.

The resulting differential energy equation is

ρcp
∂

∂ t̂
( ÂT̂ ) + ρcp

∂

∂ ŝ
( Âv̂ T̂ ) = ˆ̇W

′

e(s) +
∂

∂ ŝ

(

k Â
∂ T̂
∂ ŝ

)

. (4)

2.3 Non-dimensionalization

Thedimensional forms of the governing equations can be specialized for the intended

applicationby choosing appropriate dimensional scales. The intent of thepresent application

is to heat a liquid, such as water, from aminimumstarting temperature to a specified set point

temperature. Symbolically this temperature difference is represented as &T̂sp = T̂sp − T̂o.

The dimensionless temperature, T , is defined according to T̂ = &T̂spT + T̂o, therefore the

setpoint temperature is achieved at T = 1. The time scale is chosen as the time required to

uniformly charge the storage volume to the setpoint temperature using all of the available

heating power. Symbolically the dimensionless time is defined as,

t =
t̂

ρcpV̂s&T̂sp/ ˆ̇We
, (5)

where V̂s is the dimensional storage volume and ˆ̇We is the electric energy transfer rate to the

resistance element. The nominal volumetric flow rate would be a circulation of one storage

volume through the heating section of the loop during the time of one charge cycle. This

volumetric flow rate is referred to as the characteristic flow rate and is defined by

ˆ̇Vo =
V̂s

ρcpV̂s&T̂sp/ ˆ̇We
. (6)

The characteristic flow rate is a natural scaling choice for the dimensionless volumetric flow

rate, V̇ = ˆ̇V/ ˆ̇Vo. The length scale is selected as the overall height of the system, Ĥ , which
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reflects both the height of the storage vessel and the height of the riser. The cross sectional

area is scaled by the diameter of the storage vessel.

Applying the preceding dimensional scales to the governing momentum equation

and identifying significant parameter groups results in a momentum balance in the form

R2s Re2o
Gr

[

∫ 2

0

(

Dr
D

)2
ds

]

dV̇
dt

=

− 2
R3s Re2o
Gr

[∫ 2

0

D2r
D5

F(s)ds
]

λV̇ 2 +

∫ 2

0
G(s)Tds,

(7)

where s ≡ ŝ/Ĥ , D(s) ≡ D̂(s)/D̂s , and D̂s is the diameter of the storage vessel. The

Reynolds number, Reo, is a nominal value based on the characteristic flow rate passing

through the restriction section. Symbolically this is

Reo =
4 ˆ̇Vo

π D̂rν
, (8)

where D̂r is the dimensional diameter of the flow restriction section. The true Reynolds

number at any instant in time during the simulation is given by Re = V̇ Reo. The Grashoff

number, Gr , is defined as

Gr =
gβ&T̂sp Ĥ3

ν2
. (9)

The remaining symbol, Rs denotes the aspect ratio of the storage vessel and it is defined

as Rs ≡ Ĥ/D̂s . The term F(s) is used as a switch to turn the frictional flow resistance on

and off along the flow path. Presently, only the losses in the designated restriction section

are recognized, therefore this term takes on the value of one within the flow restriction and

zero elsewhere. Using this assumption the dimensionless momentum equation reduces to

R2s Re2o
Gr

[

∫ 2

0

(

Dr
D

)2
ds

]

dV̇
dt

=

−

(

2
R3s Re2olr
Gr D3r

)

λV̇ 2 +

∫ 2

0
G(s)Tds,

(10)



11

where lr ≡ l̂r/Ĥ is the dimensionless length of the flow resistance section. In order to make

the previous equation more compact, a parameter ) is defined according to,

) = 2
R3s Re2olr
Gr D3r

. (11)

Physically this term represents a ratio between frictional flow resistance and driving buoyant

force. Upon substitution, the momentum equation becomes

R2s Re2o
Gr

[

∫ 2

0

(

Dr
D

)2
ds

]

dV̇
dt

= −)λV̇ 2 +

∫ 2

0
G(s)Tds. (12)

Applying the same dimensional scales and again grouping significant parameters,

the dimensionless form of the energy equation is

∂T
∂ t

+
V̇
D2

∂T
∂s

=
J (s)
lhD2

+
1

PeD2
∂

∂s

(

D2
∂T
∂s

)

, (13)

where lh ≡ l̂h/Ĥ is the dimensionless length of the heating section. In a manner similar to

F(s), a binary heat input function, J (s), is used to specify the location of heat input in the

flow loop. This term takes on the value of one within the heating section and zero elsewhere.

The Peclet number, Pe, is defined as

Pe =
4 ˆ̇VoĤ
π D̂2sα

. (14)

Defined in thisway, the Peclet number reflects the ratio of diffusion time relative to advection

time through the storage vessel at the nominal flow rate.

2.4 Solution Method

The governing conservation equations are a coupled set composed of an ordinary

differential equation and a partial differential equation. An analytical solution to this system

of equations is not readily available. Previous work on similar problems has either reduced
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the equations to a system of ordinary differential equations, or applied a numerical approach.

The present study adopts a numerical technique.

The energy equation is solved with an implicit method using a central difference

to approximate the diffusion term. The advection term of the energy equation is treated

using a flux based approach, known as the monotonic piecewise linear (MPL) method [23].

This method provides second order accuracy for the advection term while avoiding the

dispersion introduced by a central difference. The momentum equation is solved using the

second order Adams Bashforth method with the buoyancy term lagged in time. In terms

of numerical stability, the implicit method used to solve the energy equation avoids the

timestep limitation otherwise imposed by the diffusion term, however the CFL condition

still applies to the MPL and Adams Bashforth methods. This criteria significantly limits

the size of the timestep, because of the small diameter and high velocity in the restriction

section. In spite of this fact, the numerical computation is relatively inexpensive and a more

advanced method is not required.

3. RESULTS AND DISCUSSION

3.1 Parameter Choices and Initial Design

Theprinciplemechanisms governing theflow in the thermosyphon loop are a balance

between the driving buoyant force and the frictional flow resistance. The parameters of

the system must be chosen carefully so that the balance between these two forces will

obtain the appropriate volumetric flow rate. In the present application this is particularly

important, because with constant energy addition, it is the flow rate that prescribes the

temperature rise across the heating section. As previously mentioned, the challenge posed

by a thermosyphon loop that accumulates energy in the attached reservoir is that the driving

buoyant force is continuously changing as the temperature increases in the system. In the

present configuration, the primary energy storage is in the downcomer of the loop, therefore

the consequence of heat addition is a steady decrease in the driving buoyant force. There
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are two approaches to minimizing the effect of the energy accumulation. One method is

to carefully choose geometry that decouples the condition of the storage volume from the

strength of the buoyant force. Another method is to accept the variance in driving pressure,

but implement frictional loss behavior that minimizes its effect on the volumetric flow rate.

Before attempting to optimize the transient performance of the thermosyphon, the

system must be designed to meet the desired flow rate and temperature rise at the beginning

of the charge cycle. With this objective in mind, two alternative temperature profiles that are

appropriate at the beginning of the charge process are considered. The simplest approach

assumes that the storage volume is entirely uncharged (T = 0) and that the riser is uniformly

heated to the setpoint temperature (T = 1). A more realistic temperature profile assumes

an uncharged storage volume, but with a more realistic temperature profile in the riser. The

more realistic riser temperature profile is the initial temperature at the inlet to the heating

section with a linear variation to the setpoint temperature at the heater outlet, with the

remaining portion of the riser assumed to be at the setpoint. Both of these methods are

developed and compared to each other in the following paragraphs. Recognizing that these

methods only serve to approach the desired temperature rise at the beginning of the charge

cycle, an attempt to predict or improve the transient performance as energy accumulates in

the storage volume must follow.

Considering first the simpler case, a uniform riser temperature, an energy balance

applied to the heating section gives simply

ˆ̇We = ρcp ˆ̇V (T̂ − T̂o), (15)

where T̂ − T̂o is taken to be the temperature rise across the heating section. Dividing both

sides by ρcp ˆ̇Vo&T̂sp reduces the result to the dimensionless expression,

T =
1
V̇

. (16)
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Substituting this result into the quasi-steady form of the dimensionlessmomentum equation

leads to the result

)λ(Re)V̇ 2 =

∫ 1

0

1
V̇
ds. (17)

The desired operating point is that which yields the characteristic velocity (V̇ = 1), which

in turn produces the specified temperature rise (T = 1). The obvious result is to select the

flow restriction such that

)λ(Reo) = 1. (18)

Figure 3 shows the result of a simulation with parameters chosen using the guid-

ance of Equation (18). The simulation spans the time required to circulate one storage

volume through the flow loop. The volumetric flow rate begins near unity, representing

the characteristic flow rate, however it is observed to decay as the simulation progresses

through time and energy accumulates in the system. The dimensionless time required to

circulate one storage volume is greater than unity as a result of the actual volumetric flow

rate decaying below the characteristic flow rate. Figure 3 also shows the predicted temper-

ature as a function of the dimensionless time at the riser outlet and at five evenly spaced

vertical locations within the storage volume. The temperature of the fluid leaving the riser

is shown to increase in response to the decaying flow rate. The traces of the storage volume

temperature indicate a stratified storage volume, although the temperatures increase with

time due to the rising temperature of the fluid displacing the stored volume.

The simplistic temperature profile used to develop Equation (18) is an approximation

that will obviously improve as the relative heating length decreases. A better representation

of the temperature within the heating section is easily attainable. Beginning from a steady

state energy balance on a differential element of the heating section and then integrating

from the inlet to position s within the heating section yields the expression,

ˆ̇W
′

e · ŝ = ρ ˆ̇Vc
(

T̂ (ŝ) − T̂o
)

(19)
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Dividing by the equality ˆ̇W ′

el̂h = ρ ˆ̇Vc&T̂sp yields the dimensionless expression,

T (s) =
s
lh
1
V̇

, (20)

applicable for 0 ≤ s ≤ lh . Using this expression for temperature in the heating section and

assuming that the temperature of the remainder of the riser is the same as the heater outlet,

the steady momentum equation becomes

)λ(Re)V̇ 2 =

∫ lh

0

sds
lh V̇

+

∫ 1

lh

ds
V̇

. (21)

Again, the desired design point is that which produces the characteristic flow rate, V̇ ≡ 1.

The result is therefore a flow restriction satisfying

)λ(Reo) = 1−
lh
2

. (22)

Although this result is very similar to Equation (18), there are benefits to incorporating

the added complexity. In addition to more accurately representing the physical situation,

this approach explicitly introduces the heating length parameter, lh . Incorporating lh into

Equation (22) provides one indication of the affect changing the heating length has on the

system and is in line with physical expectation. The strength of the buoyant force decreases

as the length of the heating section increases. As anticipated, the slightly more involved

expression collapses to the simpler version as the heating length approaches zero.

The affect of variations in the parameter ) is shown in Figure 4, where the outlet

temperature of the heating section is plotted against time. The multiple curves on this figure

represent thermosyphon designs with different values of the product )λ(Reo). Included

among these designs are the two guided by the preceding design points )λ(Reo) = 1 and

)λ(Reo) = 1 − lh/2. As expected, the riser outlet temperature just after startup is closest
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to the setpoint temperature when )λ(Reo) is chosen to be 1− lh/2, however choosing the

product )λ(Reo) to be unity is likely an acceptable approximation.

In the present investigation, desirable performance refers to the system’s ability to

evenly heat the storage component to the setpoint temperature. Figure 4 shows the riser outlet

temperature as a function of time and therefore provides an indication of the thermosyphon

performance. A more direct illustration of the system capability is given by the riser outlet

temperature plotted versus the fraction of the storage volume that has been circulated through

the thermosyphon loop. The difference between these two perspectives can be emphasized

by considering the relationship between dimensionless time and the fraction of the storage

volume circulated. In dimensional terms the volume of fluid circulated through the loop is

the time integral of the volumetric flow rate, V̂ =
∫ ˆ̇Vdt . The fraction of the storage volume

circulated is clearly more relevant than the dimensional volume, therefore the dimensionless

volume fraction is introduced as V f = V̂ /V̂s and is computed from V f =
∫

V̇ (t)dt . From

this viewpoint, the relationship between dimensionless time and volume fraction is linear

when the volumetric flow rate is constant. In such a situation the shape of the outlet

temperature profile would appear the same whether plotted versus the dimensionless time

or the volume fraction. The volumetric flow rate is not constant in the thermosyphon system

however, and as a result, the relationship between the dimensionless time and the volume

fraction is nonlinear. A plot of the riser outlet temperature versus the volume fraction is

given in Figure 5.

The most significant result of the results shown in Figure 5 is not the temperature

of the fluid exiting the heater at the beginning of the charge cycle, but instead the shape of

the transient temperature profile. The simulations indicate that the parameter ) has only

a very small impact on the shape of the outlet temperature profile when plotted versus the

volume fraction. In essence, the parameters embedded in ) cause only a bias shift in the

temperature profile. This outcome is most unforeseen when considering the extent to which

the thermosyphon design is embedded within this single parameter. Among the parameters



17

included in ) are the overall size and proportions of the system, the rate of heat input, as

well as the dimensions of the restriction section. In part this is a positive outcome, because it

reveals that a system can be easily scaled to larger or smaller physical sizes and the setpoint

adjusted without affecting the overall performance of the storage device. However, this

result offers no suggestions pertaining to possible improvements in the uniformity of the

charge profile and therefore performance.

3.2 Flow Regime Analysis

Two general approaches for improving the transient performance of the present ther-

mosyphon based system have already been suggested. One strategy is to choose geometry

that minimizes the variation in pumping power over the course of the charge cycle. Another

method is to utilize frictional loss behavior that minimizes the affect this variation has on the

volumetric flow rate. We have already shown that many of the parameters pertinent to the

thermosyphon design have no effect on either of these two aspects. The numerous parame-

ters embedded in the term ) only offset the temperature profile, achieving no improvement

in the shape of the riser outlet temperature profile.

The functional relationship between the frictional loss coefficient and the Reynolds

number in the restriction is one characteristic of the thermosyphon that can influence the

transient performance. The nature of this relationship is determined by the type of flow

regime that is present in the restriction. The functional dependance can vary from being

inversely proportional to the Reynolds number in one regime, to being directly proportional

in another. The impact of the transient pumping power on the volumetric flow rate can

therefore potentially be reduced by carefully designing the system tooperatewithin a specific

flow regime. The most favorable performance is expected from a flow regime where the

frictional loss increases most strongly with flow rate. In such a situation, a smaller change

in the volumetric flow rate is necessary to balance the unavoidable change in the driving

pressure during the charge cycle.
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The suggestion that performance can be affected by the choice of flow regime seems

to be a contradiction to the earlier conclusion that the parameters grouped within ) do not

have an influence on the transient performance. The discrepancy is that it is the target

Reynolds number, Reo, which is embedded within ). The previous discussion confined

the functional dependence of λ to a single flow regime. Assuming that the flow regime

is not affected by the observed change in the Reynolds number, the previous statements

are accurate. The affect of alterations in the flow regime is the topic of the forthcoming

discussion.

The group of terms in the governing momentum equation that relate to the relative

frictional loss serve as a starting point for investigation into the effect of flow regime on the

transient performance. From equation (7) this group of terms is)λ(Re)V̇ 2. Substituting for

the loss coefficient using the general form λ = a/Reb + c and substituting for the Reynolds

number using Re = V̇ Reo, this part of the momentum equation expands into

)V̇ 2λ = )V̇ 2
[

a

(V̇ Reo)
b + c

]

. (23)

The frictional losses are proportional to V̇ 2−b if the contribution of the term c is negligible.

According to the argument already given it is desirable for the flow resistance to have a high

dependance on the volumetric flow rate. For this reason, the most desirable flow regime is

one where the loss coefficient λ is well represented by the form λ = a/Reb and where the

coefficient b is small, preferably less than one.

In an effort to identify the flow regime that will physically achieve the most favor-

able results, a range of Reynolds numbers is considered which spans the four distinct flow

regimes. Appropriate functions representing the loss coefficient for each regime are identi-

fied. For lowReynolds numbers extending up to 2300 the flow is considered laminar and the

familiar Fanning friction factor result applies, λ = 16/Re. The transition regime extends

from Reynolds numbers beginning at approximately 2300 and ending at approximately
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4000. The loss coefficient for this type of flow is

λ =
2.3× 10−8

Re−3/2
+ 0.0054, (24)

as given by Bhatti and Shah [24]. If the flow passage is considered hydraulically smooth

and the Reynolds number is greater than 4000 the flow is considered turbulent and the loss

coefficient is given by the Blasius relation [25]

λ =
0.0791
Re1/4

. (25)

Finally, if the Reynolds number is greater than 4000 and the flow passage is sufficiently

rough the flow is considered highly turbulent and the loss coefficient is taken to be a constant,

λ = c. It is noteworthy that although the development has implied that the frictional losses

are due to major losses, minor losses are also readily accommodated. Flow resistance due

to geometry such as contractions and entrances has the same functional behavior as highly

turbulent flow where the loss coefficient is a constant.

Among the flow regimes that have been identified, transitional flow is expected to

produce the most desirable performance. The magnitude of the loss coefficient for this type

of flow increaseswith theReynolds number (b = −3/2), whereas it is decreasing or constant

for the other regimes. Figure 6 illustrates the influence that the frictional loss behavior has

on the transient performance. This figure shows the results of simulations corresponding

to all four flow regimes. For each simulation the transient temperature exiting the heating

section is given over the time of one charge cycle. The results confirm the expectation that

performance improves as the coefficient b decreases.

3.3 Analysis of Buoyant Force

The variation in the driving buoyant force as a result of energy accumulation is

the fundamental difficulty in achieving desired performance with the thermosyphon system
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being considered. Tailoring the loss behavior has shown some improvement in performance,

however the most direct approach is to simply eliminate the change in pumping power.

Mathematically the driving force is represented in the momentum balance as the integral of

temperature around the loop. In the steady momentum equation this force is balanced by

the frictional losses, therefore

)λV̇ 2 =

∫ 2

0
T (s)G(s)ds. (26)

The integral of temperature can be divided into two parts. One part pertains to the riser

section, where an increase in temperature contributes to higher driving pressure (G(s) = 1).

The other part of the temperature integral relates to the downcomer, where an increase in

temperature reduces the driving pressure (G(s) = −1). Dividing the integral to reflect these

two components, the momentum balance becomes

)λV̇ 2 =

∫ 1

0
T (s)ds −

∫ 2

1
T (s)ds. (27)

The fundamental difficulty is embodied in the second integral term, which represents the

contribution of the downcomer. For the geometry considered, the thermal storage vessel

constitutes the entire downcomer and as a result, the value of the corresponding integral

term continuously increases as energy accumulates. The driving potential for flow around

the loop therefore decays, since the riser temperature distribution changes less significantly.

Several possibilities exist which could mitigate this behavior. These include changing the

heater length, modulating the power input, and changing downcomer configuration.

Decreasing heater length would increase the first integral thereby lessening the im-

pact of changes in the downcomer. More specifically, an increase in riser temperature has the

greatest impact when the relatively high heater outlet temperature is achieved over as much

of the riser as possible. This is achieved by minimizing the heating length and increasing

the power density. The expectation that performance is improved as the heating length is
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decreased is supported by the results shown in Figure 7. The graphs of dimensionless riser

outlet temperature show that a more uniform temperature profile is obtained as the heat-

ing length decreases. A second possibility for improving the temperature profile would be

modulating the power input. While a relatively simple controller would likely be adequate,

the consequence would be a reduction in the energy transfer to the system and diminished

performance. A final possibility would be changing the configuration of the downcomer to

reduce the affect of energy accumulation on driving pressure. This could be achieved by

relaxing the requirement that the storage vessel must extend the entire downcomer. Such a

solution, while effective, would not allow the thermosyphon system to fit within the confines

of the thermal storage vessel.

3.4 Startup Transient

Our attention to this point has focused on the time scale of one complete charge

cycle. The preceding traces of riser outlet temperature condense the small time behavior of

the startup transient to a narrow and unrecognizable portion of the figures. The dynamics

of the startup transient have been further de-emphasized by neglecting the inertia in the

proposed design for the restriction geometry. The method used to choose the geometry

of the restriction implies that the design point is instantaneously achieved at startup, even

though this is physically unrealistic. The startup transient is relevant however, particularly

in regards to overshoot of the setpoint and the time response of the system.

The nature of the small time scale behavior is dominated by the system’s inertia.

This is quantified by the coefficient of the unsteady term in the momentum balance. In

dimensionless form this coefficient has been symbolized as

R2s Re2o
Gr

∫ 2

0

(

Dr
D

)2
ds. (28)

The integral in this group of terms embodies the variation in dimensionless diameter, D =

D(s) and is referred to as the geometry ratio. However, since the flow restriction section has
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the smallest diameter its value is approximately one. With this assumption, the coefficient

simplifies to R2s Re2o/Gr . Since the preferred flow behavior is in the transition regime,

the nominal Reynolds number is fixed at the highest end of this regime, Reo ∼ 4000.

Since the Grashoff number is indirectly specified by the aspect ratio, the aspect ratio is the

single unconstrained parameter that affects the system inertia. Reasonable values for the

aspect ratio range from one to five, where a typical value for a domestic hot water heater is

approximately 3.25. Simulations indicate that there is very little change in the small time

scale behavior due to variations of the aspect ratio within this range. A plot showing the

riser outlet temperature and the volumetric flow rate during the initial transient is given by

Figure 8 with an aspect ratio of 3.25. The variation is representative however, of the relevant

range of aspect ratios.

The volumetric flow rate of the simulation illustrated by Figure 8 indicates that the

system is operating below the characteristic flow rate during the startup transient. This is

the anticipated affect of the system’s inertia. Further, it is apparent that there is a time delay

from the moment when heat addition begins to occur (t = 0) to the time when the signal is

detected at the riser outlet. This is a result of the time required for the “packet” of fluid to

be heated in the lower portion of the riser and to travel to the riser outlet. The illustration

indicates that the delay is approximately 0.004 units dimensionless time or approximately

24 seconds for a 40.0 gallon vessel of water with a desired temperature increase of 42.8◦C

using 4.5 kW of power. By comparison, the transit time along the length of the riser tube

predicted by flow at the nominal volumetric rate is approximately 17 seconds for the same

system.

4. SUMMARY AND CONCLUSIONS

A closed loop thermosyphon which is allowed to accumulate significant thermal

energy exhibits behavior markedly distinct from that of a system with a balanced heat

load. In the unbalanced situation, the system is inherently transient and a steady state
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solution does not exist. The driving pressure which circulates the working fluid through

the heating portion of the loop decreases as the system accumulates energy in the storage

component. Confined to a fixed heat input, the temperature of the fluid leaving the heat input

section and delivered to the storage component continuously increases in response to the

decaying driving pressure. The result is that the vertical variation of the storage temperature,

referred to as the charge profile, is less than uniform. Using appropriate dimensional scales

the governing conservation equations have been made dimensionless and the parameters

affecting the uniformity of the charge profile have been identified in an effort to improve

the performance.

Interestingly, many of the parameters describing the system have no influence on

the shape of the charge profile. The parameters embedded in the term we have identified

as ) only shift the charge profile causing a change in the absolute temperatures, while the

shape of the profile is virtually unaffected. Among the quantities embedded in ) are the

aspect ratio of the tank, the rate of heat input, as well as the relative length and diameter of

the portion of the loop dominating the frictional loss.

The flow regime in the flow restrictionwas found to influence the shape of the charge

profile. The most favorable results were obtained when the frictional loss increased with

the volumetric flow rate. This is achieved when the primary flow restriction operates in

the transitional regime. While the frictional loss was confined to one section of the loop in

the present analysis in order to isolate this factor, a more realistic approach could include

frictional loss from all portions of the loop. The real system could nevertheless be designed

to allow the losses in one portion of the loop to be dominant and operating in the transitional

regime.

The length of the heating portion of the loop is the other aspect of the thermosyphon

that was found to influence the shape of the charge profile. It was shown that the most

favorable performance is achieved by increasing the power density and reducing the relative

length of the loop where heat addition occurs.
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While the dimensionless analysis provides insight into the thermosyphon design

that is not specific to a particular scale, application of the design to a physical system is

straightforward. One approach is to begin by specifying the desired dimensional temperature

rise and available rate of heat input. The scale of the volumetric flow rate then follows.

Having quantified the nominal flow rate, and with selection of a target flow regime and

Reynolds number, the hydraulic diameter of the portions of the loop where frictional losses

are dominant can be chosen. The results have shown that the steady form of the momentum

equation can be solvedwith an approximate temperature distribution appropriate to just after

startup. Based on this approximation, the required length of the dominant loss components

can be determined, thereby throttling the flow to achieve the desired setpoint. Selection of

the storage volume size and aspect ratio allows the remaining dimensional quantities to be

readily computed.

Nomenclature

Dimensional quantities are denoted by a hat, eg t̂ .

Roman

A cross sectional area

cp specific heat

Dh hydraulic diameter

F binary frictional loss function

G flow path orientation

g acceleration due to gravity

Gr Grashoff number, see equation (9)
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H overall system height

J binary heat input function

k thermal conductivity

l length

Pe Peclet number, see equation (14)

Rs aspect ratio

Re Reynolds number

s position

T temperature

t time

V volume

v flow velocity

V̇ volumetric flow rate

Ẇe energy transfer rate

Ẇ ′

e rate of electric heat input per unit length

Greek

α thermal diffusivity

β coefficient of thermal expansion

) ratio between buoyant and frictional forces, see equation (11)
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λ frictional loss coefficient

ν kinematic viscosity

ρ density

τw wall shear stress

Subscripts and Superscripts

f fraction

h heating

o design point or nominal condition

r restriction

s storage

sp set point
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Figure 1 Conceptual schematic of the thermosyphon configuration with “S” designating
the storage volume, “H” the heat input component, and “R” the flow restriction.
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Figure 2 Schematic of the quasi one-dimensional thermosyphon model.
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Figure 3 Traces of volumetric flow rate and temperature in the storage volume as a function
of time. Temperature is given for the riser outlet and at five evenly spaced vertical locations
within the storage volume. y = 0.0 represents the location at the bottom of the storage.
y = 1.0 is the riser outlet temperature and also the temperature in the upper most portion
of the storage. For this simulation )λ(Reo) = 1.
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Figure 4 Variation of riser section outlet temperature, T (t, s = 1), as a function of time
for a range of the dimensionless loss parameter, )λ(Reo).
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Abstract

A unique thermal storage device incorporating an integrated thermosyphon

is analyzed numerically. Energy is added from a constant temperature heat

source situated within one portion of the thermosyphon loop. A comparison is

made between the stratified thermosyphon device and a fullymixed storage vol-

ume with constant temperature heat addition and it is determined that a higher

rate of energy transfer is possible for the thermosyphon device. The fundamen-

tal challenge is that as energy accumulates within the thermosyphon storage

volume, the driving buoyant force and volumetric flow rate decay, causing less

than optimal power delivery. The results of this study indicate that the unde-

sirable consequence of energy accumulation can be minimized by targeting the

dominant frictional losses to the transitional regime.

1. INTRODUCTION

A thermosyphon is a flow loop that circulates fluid using the buoyancy generated by

a temperature gradient instead of a conventional pump. Thermosyphons have been applied

to a variety of applications, however they are particularly well suited for applications where

energy efficiency, cost, and reliability are important [1]. A few of these applications are

solar domestic hot water (SDHW) systems, geothermal energy systems, and the cooling

system of a nuclear reactor.

The present study pertains to a thermosyphon loop that is integrated within a con-

ventional thermal storage device, such as a domestic hot water (DHW) system. During heat

addition, this unique configuration maintains stratification by isolating the rising plume of

heated fluid from the main storage volume [2]. Driven by natural convection, cold fluid

is drawn from the lower portion of the storage volume, heated, and returned to the top of

the storage volume, thereby eliminating large scale thermal mixing. Because the quality of

the added energy is preserved, fluid exiting the thermosyphon riser can be readily utilized
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[3]. In the event of a draw, the thermosyphon storage device can make use of fluid energy

accumulated in the storage vessel in addition to fluid energy exiting the thermosyphon riser.

Conceptually, the two energy streams act in parallel creating a hybrid system where the

benefits of a conventional storage device and an instantaneous heater are obtained simul-

taneously. The present study specifically focuses on the energy addition or charge process

of the storage volume. Heat is added by a constant temperature source simulating the

condensing heat exchanger of a vapor compression heat pump.

There is a large body of literature pertaining to thermosyphon flow loops. Typically

this work is divided between open and closed loop thermosyphons [4]. In the open con-

figuration fluid is transported between large reservoirs of fluid by means of one or more

connecting ducts where heat is added or removed. Investigations on this type of system have

been carried out on the basis that the reservoirs are effectively of infinite size with a state

independent of the thermosyphon loop [5, 6, 7]. A variety of studies have also been carried

out pertaining to the closed loop thermosyphon. In this configuration, fluid is continuously

circulated around a closed path with alternating heating and cooling sections. The dynamics

of the startup transient and the stability characteristics have been thoroughly investigated

for the closed loop [8, 9, 10, 11, 12, 13].

The thermosyphon storage device of the present study is markedly distinct, however,

from the work cited, because the dynamics of the thermosyphon and the condition of the

thermal reservoir are coupled. Unlike the open thermosyphon, the thermal reservoir is finite

and coupled with the thermosyphon loop. The present device also differs from the closed

loop thermosyphon, because heat is accumulated in the system instead of being alternately

added and removed. Very simply, the base steady state solution used in the preceding

studies does not apply to the configuration being considered. The body of work pertaining

to thermosyphon SDHW is more relevant. These studies can be categorized as direct and

indirect systems. The indirect configuration isolates the thermosyphon loop from the main

storage volume using a heat exchanger. Numerous studies pertaining to the indirect system
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are reported in the literature [14, 15, 16]. More similar to the present configuration, the

direct SDHW system has the thermal storage integrated within the flow path. Literature

pertaining to the direct SDHW system is also available [17, 18]. Both configurations are

relevant to the present investigation, because the thermosyphon is in communication with

a finite thermal reservoir, and during daytime charging, the thermosyphon SDHW system

accumulates energy within a storage component. Key differences however are that the solar

irradiation varies in time, the heat input is a time varying temperature boundary instead of a

constant temperature boundary, and the heat transfer area (solar collector) is external to the

storage volume and can be positioned in a vertical position below the storage volume.

Additional research applicable to the present configuration has been carried out by

[19]. Here a thermal storage volume with an electric resistance side arm heating loop is

investigated. This study is especially similar to the present work, because the thermosyphon

is vertically confined within the storage height. One observation made by this work is that

the volumetric flow rate significantly decays as the storage volume accumulates energy.

Because the flow rate through the heating section is variable, the heated storage temperature

is not uniform.

The motivation behind the present study has two components. In part this study is

driven by the recognition that heat transfer can be improved for a stratified system, because

a larger temperature differential can be sustained between the heat source and the working

fluid [20, 21]. Secondly, this study is based on the recognition that energy accumulation in

the storage volume causes an unwanted decrease in the strength of the driving buoyant force

and consequentially a decrease in the volumetric flow rate. In a related paper we showed

that for a similar thermosyphon configuration with constant heat addition, the decay in

flow rate results in rising temperature exiting the heating portion of the thermosyphon and

ultimately a less than uniform charge profile [22]. It was found that the charge profile can

be improved by targeting the frictional loss behavior to the transitional flow regime and

by reducing the relative height of the heating portion of the thermosyphon loop. For the
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present configuration with a constant temperature heat source, obtaining a uniform charge

profile is less problematic, however the inherent decay in volumetric flow rate now causes a

decrease in the power delivered to the storage volume. Despite this difficulty, we will show

that the thermosyphon storage device can maintain higher power delivery over the course of

the charge cycle compared to a heat exchanger immersed in a fully mixed storage volume.

We will also show that power delivery can be improved by the choice of flow regime.

2. PROBLEM FORMULATION

2.1 Problem Description

A thermosyphon loopwith three distinct sections is the basis of the conceptualmodel

used in this study. They are a heat addition section, a restriction section, and a storage

volume. Figure 1 identifies the arrangement of these sections. The heat addition and

restriction sections form the riser of the thermosyphon, while the downcomer is composed

entirely of the storage volume. Gravity is everywhere acting downward as indicated by the

illustration. Fluid is drawn from the bottomof the storage vessel into the heating section. The

heated fluid then travels up, due its buoyancy, through the restriction section and delivered

to the top of the storage volume. The system is adiabatic except for the designated heating

section. This arrangement represents the thermal charge process where energy accumulates

in the storage vessel. The storage vessel has a significantly larger cross sectional area

compared to the other portions of the thermosyphon loop and this section accounts for most

of the volume and stored energy in the system. Because the storage volume is stratified,

a thermocline dividing the heated and unheated fluid travels down the storage volume as

energy is accumulated. The flow restriction has the smallest cross sectional area of the

flow loop and this section plays a critical role by throttling the volumetric flow rate through

the thermosyphon loop. Frictional losses outside of the designated restriction section are

neglected in an attempt to isolate the characteristics of a specific flow regime. After the
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characteristics of a particular flow regime are understood using the simplified loop,a physical

system can be designed to target the most desirable flow behavior.

A quasi one-dimensionalmodel illustrated by Figure 2 is used to simulate the system

just described. In this model there is a single spatial coordinate, s, representing the position

around the loop. The coordinate begins at the entrance to the heating section and extends to

the outlet of the storage volumewhere the loop is then closed. The cross sectional area of the

flow path is a function of s. The overall height of the system, Ĥ , is equivalent to the height

of the storage tank. The heat input and restriction sections are vertically confined within

the storage volume, however they may be physically positioned inside or outside of this

component. In the present model only the vertical components are recognized, therefore

the horizontal position of the components is irrelevant. The dimensional lengths of the

heating and the restriction sections are l̂h and l̂r respectively. The length of the riser is equal

to the overall system height, Ĥ , but as indicated by Figure 2, may be less than the sum of l̂h

and l̂r . The heating section begins at the base of the riser and the restriction section ends at

the outlet of the riser. The length separating these two components floats to allow the riser

to extend the full height of the system. The total length of the flow loop is 2Ĥ .

2.2 Equation Development

The governing momentum balance is developed beginning from a differential ele-

ment of the system and then integrating around the loop. The pressure and flux terms are

continuous functions of the spatial coordinate and are eliminated by integrating around the

closed path. In dimensional form, the momentum equation simplifies to

(∫

dŝ
Â

)

d ˆ̇V
dt̂

= −

∫ 4τ̂w

ρo D̂h
dŝ + gβ

∫

(

T̂ − T̂o
)

G(ŝ)dŝ, (1)

where G(ŝ) indicates the orientation of a particular section of the flow loop with respect

to gravity. The value of G(s) is taken to be positive one in the riser portion of the loop

(0 ≤ ŝ < Ĥ) and negative one in the downcomer (Ĥ ≤ ŝ < 2Ĥ). The dimensional
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volumetric flow rate is denoted by ˆ̇V , the dimensional temperature by T̂ , and the initial

temperature by T̂o. The dimensional cross-sectional area is symbolized by Â, however for

the loss term the conventional hydraulic diameter, D̂h , is used. The cross-sectional area

varies significantly with position, Â = Â(ŝ), while the volumetric flow rate varies only in

time, ˆ̇V = ˆ̇V (t̂), as dictated by conservation of mass. The temperature varies with space

and time, T̂ = T̂ (t̂, ŝ). The wall shear stress in the throttling section is defined as

τ̂w =
1
2
ρov̂

2λ, (2)

where v̂ is the local velocity and λ is the Fanning friction factor, a function of Reynolds

number, λ = λ(Re). The functional dependence of the friction coefficient on the Reynolds

number is based on the fluid flow regime and is represented by the general form,

λ =
a
Reb

+ c. (3)

The temperature profile within the flow loop is described by a one dimensional

energy balance that includes the effects of diffusion due to conduction in the axial direction.

Energy is added to the system only within the heating portion of the thermosyphon loop.

The resulting differential energy equation is

ρcp
∂

∂ t̂
( ÂT̂ ) + ρcp

∂

∂ ŝ
( Âv̂ T̂ ) =

(U Âh)
l̂h

(T̂h − T̂ ) · J (s) +
∂

∂ ŝ

(

k Â
∂ T̂
∂ ŝ

)

,

(4)

where J (s), similar to G(s), is a binary function reflecting the portion of the loop over

which heat is added. Within the heating section its value is one, elsewhere it is zero. The

product U Âh represents the overall conductance of the condensing heat exchanger and T̂h

is the condensing temperature, presumed constant.
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2.3 Non-dimensionalization

The dimensional form of the governing equations can be made more useful for the

present application by choosing appropriate dimensional scales. The objective is to heat a

fluid such as water from a starting temperature, T̂o, to a setpoint temperature, T̂sp. In pursuit

of this goal the dimensionless temperature is defined according to T̂ = &T̂spT + T̂o, where

&T̂sp = T̂sp − T̂o. According to this selection the dimensionless temperature is initially

zero and becomes unity at the setpoint. The time scale is chosen based on the time required

to heat the storage volume from the initial temperature to the setpoint temperature at the

desired heating rate. Symbolically, the dimensionless time is defined as,

t =
t̂

ρcpV̂s&T̂sp/ ˆ̇Qo
, (5)

where ˆ̇Qo represents the nominal rate of heat transfer and V̂s is the storage volume. The

dimensional scale of the volumetric flow rate is chosen to be the flow rate required to

circulate the entire storage volume during the time of one charge cycle. Using this scaling

choice, the dimensionless volumetric flow rate is expressed as V̇ ≡ ˆ̇V/ ˆ̇Vo taking ˆ̇Vo to be

the nominal flow rate symbolized as

ˆ̇Vo =
V̂s

ρcpV̂s&T̂sp/ ˆ̇Qo
. (6)

Lengths are scaled by Ĥ , which is the height of the storage volume and also the riser. The

overall dimensionless length of the flow loop is two because of the chosen scale. The cross

sectional area of the loop is scaled by the cross sectional area of the storage component.
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Using the preceding choices to scale the variables in the governing momentum

balance and identifying relevant parameter groups gives

R2s Re2o
Gr

[

∫ 2

0

(

Dr
D

)2
ds

]

dV̇
dt

=

− 2
R3s Re2o
Gr

[∫ 2

0

D2r
D5

F(s)ds
]

λV̇ 2 +

∫ 2

0
G(s)Tds,

(7)

where s ≡ ŝ/Ĥ . The diameter of the cross section is denoted by D, where D(s) ≡

D̂(s)/D̂s , and D̂s is the diameter of the storage vessel. The nominal Reynolds number,

Reo, corresponds to the nominal flow rate moving through the restriction. Symbolically

this is

Reo =
4 ˆ̇Vo

π D̂rν
, (8)

where D̂r is the dimensional diameter of the flow restriction section. The true Reynolds

number at any instant in time is then given by Re = V̇ Reo. The Grashoff number, Gr , is

defined as

Gr =
gβ&T̂sp Ĥ3

ν2
. (9)

The symbol Rs appearing in the momentum equation denotes the aspect ratio of the storage

vessel and is defined as Rs ≡ Ĥ/D̂s . The remaining symbol, F(s), takes on a binary value

of one in the flow restriction and zero elsewhere, effectively isolating the flow resistance to

the restriction section. Assuming the frictional losses are confined to the restriction section,

the momentum equation reduces to

R2s Re2o
Gr

[

∫ 2

0

(

Dr
D

)2
ds

]

dV̇
dt

=

−

(

2
R3s Re2olr
Gr D3r

)

λV̇ 2 +

∫ 2

0
G(s)Tds, (10)

where lr ≡ l̂r/Ĥ , the dimensionless length of the flow resistance section. In an effort to

condense the number of terms appearing in the final expression, the parameter ) is defined
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as,

) = 2
R3s Re2olr
Gr D3r

. (11)

Physically this parameter is the ratio between frictional flow resistance and driving buoyant

force. Substituting, the final form of the momentum equation becomes

R2s Re2o
Gr

[

∫ 2

0

(

Dr
D

)2
ds

]

dV̇
dt

= −)λV̇ 2 +

∫

G(s)Tds. (12)

The dimensions of the energy balance are scaled using the same scaling choices as

the momentum equation. The dimensionless form of the energy equation is then

∂T
∂ t

+
V̇
D2

∂T
∂s

= −
(Uo Âh)

ρcp ˆ̇Vo

U
Uo

1
lhD2

(Th − T )J (s)

+
1

PeD2
∂

∂s

(

D2
∂T
∂s

)

,

(13)

where the nominal heating rate is taken to be ˆ̇Qo = ρcp ˆ̇Vo&T̂sp. The term Uo is the

nominal overall heat transfer coefficient of the heat exchanger and the fractionU/Uo is the

ratio between the actual heat transfer coefficient and the nominal value. Although, the ratio

U/Uo will be taken to be unity, the formulation retains the possibility of a variable heat

transfer coefficient. The Peclet number, Pe, is defined as

Pe =
4 ˆ̇VoĤ
π D̂2sα

. (14)

Defined in this way, the Peclet number reflects the ratio of diffusion time relative to ad-

vection time through the storage vessel at the nominal flow rate. The parameter group

(Uo Âh)/ρcp ˆ̇Vo is recognized as the required NTU and for the present study symbolized as
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NTUo. Upon substitution, the energy equation becomes

∂T
∂ t

+
V̇
D2

∂T
∂s

= −
NTUo
lh D2

(

U
Uo

)

(Th − T )J (s)

+
1

PeD2
∂

∂s

(

D2
∂T
∂s

)

.

(15)

It is readily shown that, with present non-dimensionalization, the NTUo is only a function

of Th , specifically

NTUo = ln
(

Th
Th − 1

)

. (16)

A plot of this function is given in Figure 3. Based on dimensional temperatures appropriate

for a heat pump DHW system, a typical dimensionless high temperature is approximately

1.1 and the corresponding NTUo is approximately 2.4.

2.4 Solution Method

The governing conservation equations are a coupled set composed of an ordinary

differential equation and a partial differential equation. An analytical solution to this system

of equations is not readily available. Previous work on similar problems has elected to either

reduce the equations to a systemof ordinary differential equations,or apply afinite difference

approach. The present study adopts the latter technique.

The energy equation is solved with an implicit method using a central difference

to approximate the diffusion term. The advection term of the energy equation is treated

using a flux based approach, known as the monotonic piecewise linear (MPL) method [23].

This method provides second order accuracy for the advection term while avoiding the

dispersion introduced by a central difference. The momentum equation is solved using the

second order Adams Bashforth method with the buoyancy term lagged in time. In terms

of numerical stability, the implicit method used to solve the energy equation avoids the

timestep limitation otherwise imposed by the diffusion term, however the CFL condition

still applies to the MPL and Adams Bashforth methods. This criteria significantly limits
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the size of the timestep, because of the small diameter and high velocity in the restriction

section. In spite of this fact, the numerical computation is relatively inexpensive and a more

advanced method is not required.

3. RESULTS AND DISCUSSION

3.1 Fully Mixed System

A heat exchanger immersed in a fully mixed storage volume serves as an important

point of comparison for the the thermosyphon system. A dimensional energy balance on

the fully mixed system is,

ρcpV̂s
dT̂
dt̂

= (U Âh)m · (T̂h − T̂ ), (17)

where (U Âh)m distinguishes the UA product of the fullymixed system from the UA product

of the thermosyphon system. In dimensionless terms, the energy balance for the fully mixed

system becomes,
dT
dt

=
(U A)m&T̂sp

ˆ̇Qo
(Th − To), (18)

where T is the dimensionless storage temperature.

The scale of the heating power for the fully mixed energy balance must be carefully

considered to ensure that a meaningful comparison is made between the fully mixed system

and the thermosyphon system. In particular, due attention must be given to expression

of the nominal heating rate, ˆ̇Qo. For the thermosyphon system, ˆ̇Qo = ρcp ˆ̇Vo&T̂sp, the

heat transfer rate giving the desired temperature rise, is certainly appropriate. However,

scaling the fully mixed energy equation using this expression leads to the group of terms

(Uo Âh)m/ρcp ˆ̇Vo. If the initial UA product for the fully mixed system, (Uo Âh)m , is equal to

that of the thermosyphon system, (Uo Âh), the conclusion is that (Uo Âh)m/ρcp ˆ̇Vo = NTUo,

which is the ratio of the initial energy transfer rates. Thus, considering a value of NTUo

appropriate for the thermosyphon system, this scaling choice would allow the fully mixed
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system at least twice as much heating power as the thermosyphon system. This is not

satisfactory. In practice, the available heating power is limited by the size of the vapor

compression system. In short, the choice of equal UA for each system does not provide a

meaningful comparison.

Amoremeaningful comparison between the thermosyphon and fullymixed systems

is one that provides the maximum heating power for both of the systems,

ˆ̇Qo = ρcp ˆ̇Vo(&T̂sp) = (Uo Âh)m(T̂h − T̂o). (19)

Taking this heating power scale, the dimensionless form of the energy balance for

the fully mixed system is
dT
dt

=

(

U
Uo

)

m

(Th − T )

Th
. (20)

As for the thermosyphon system, the fraction (U/Uo)m is the ratio between the actual heat

transfer coefficient and the nominal value. For simplicity, the ratio (U/Uo)m is taken as

unity. Solving the differential equation for T (t) leads to

T (t) = Th
(

1− e−
(

U
Uo

)

m
t
Th

)

, (21)

where T (t) represents the temperature of the fully mixed storage volume at any instant

during the charge cycle. An equally important quality of the fully mixed system is the

power delivered to the storage fluid through the immersed heat exchanger. For the fully

mixed system, the initial power delivery is a maximum at the beginning of the charge

process by virtue of the high temperature differential, T̂h − T̂o. The temperature differential

driving heat transfer decays as energy accumulates in the storage vessel. Quantitatively, the

dimensionless power delivery at any instant during the charge process is

Q̇m(t) =

(

U
Uo

)

m
·
(Th − T (t)

Th
=

(

U
Uo

)

m
e−

(

U
Uo

)

m
t
Th . (22)
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The dimensionless, cumulative energy added is simply

Qm(t) =

∫ t

0
Q̇m(τ )dτ = T (t), (23)

where T (t) is given by Equation (21). Illustrations of the temperature and transient power

of the fully mixed system are reserved for later discussion where they are compared to that

of the thermosyphon system.

3.2 Charge Profile

Conventional heated thermal storage devices typically deliver fluid at the appropriate

temperature by incorporating a high degree of internal thermal mixing and implementing a

thermostat that is responsible for turning off the heat source when the desired temperature is

met. The thermosyphon-based energy storage systemwhich is the focus of the present study

is essentially an instantaneous heater within a stratified storage device. One challenge for

the thermosyphon system is that the riser outlet temperature, which becomes the stored fluid

temperature, must be controlled either by modulating the heating power or by adjusting the

volumetric flow rate. Modulating the power has an undesired thermal penalty, leaving the

volumetric flow rate as the only suitable control. The flow restriction is the mechanism used

to throttle the flow rate, therefore the desired temperature rise must be achieved by designing

the restriction appropriately. Because the driving pressure is continuously decreasing as

energy accumulates in the storage volume, the flow restriction necessary to achieve the

nominal flow rate is variable during the charge cycle. Ideal behavior might be possible

using an active throttling valve, however from a practical standpoint a passive solution is

considerably more desirable.

The concerns related to achieving a uniform flow rate have already been thoroughly

investigated for the case of constant heat addition [22]. In that work, the variation of

the restriction design, embodied by )λ(Reo), was shown to effectively cause a bias shift

in the volumetric flow rate and the riser outlet temperature profile when confined to a
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specific flow regime. For the case of constant heat addition, the flow regime and the relative

height of the heating section influence the shape of the temperature profile. For the present

configuration, the riser outlet temperature is naturally limited by the temperature of the

heat source. Although the flow rate diminishes, the temperature profile is bounded by the

heating temperature. The parameter group )λ(Reo) should still be selected to produce the

nominal volumetric flow rate and desired temperature rise (T=1) at the beginning of the

charge cycle, however the outlet temperature profile will naturally be quite uniform, at least

for low heating temperatures.

The product, )λ(Reo), is selected based on the quasi-steady form of the momentum

equation along with suitable approximations for the temperature within the thermosyphon

loop at the beginning of the charge cycle. The steady momentum equation is

)λ(Re)V̇ 2 =

∫ 2

0
G(s)Tds. (24)

A rather coarse approximation is that at the beginning of the charge cycle the riser is

evenly heated to the setpoint, T = 1, and the storage is completely uncharged, T = 0.

Based on this assumption, the restriction geometry is chosen such that )λ(Reo) = 1. A

better approximation is to assume that the temperature linearly increases from zero to one

within the heat addition section. This assumption leads to )λ(Reo) = 1 − lh/2. Either

of these methods likely produce an initial temperature rise and volumetric flowrate that

are sufficiently close to unity. The present investigation will use the more accurate version

except for the occasion where the intent is to show the influence of )λ(Reo).

Figure 4 illustrates the behavior of the thermosyphon system with a heating temper-

ature typical of heat pump water heating systems (HPWH), Th = 1.1. The data is shown

for the time necessary to circulate one storage volume at the actual volumetric flow rate.

Traces of the storage volume temperature at several vertical locations show a stratified stor-

age volume and a charge profile which is relatively uniform, remaining between 1 and 1.1,
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except for very small time. The volumetric flow rate of the thermosyphon loop is also

plotted to emphasize the fact that although the temperature profile is relatively uniform, the

volumetric flow rate decays significantly. For comparison, the storage volume temperature

of the fully mixed system during charging is overlaid on the thermosyphon data. It is clear

from this comparison that the stratified thermosyphon system produces a portion of usable

energy even from the beginning of the charge cycle, however usable energy is not available

from the fully mixed system until the charge cycle is virtually complete.

For most HPWH systems, Th of approximately 1.1 is appropriate. In broader con-

text, it is also worthwhile to consider higher heating temperatures. As the temperature of

the heat source is increased the temperature profile of the fluid exiting the thermosyphon

riser becomes less favorable, viewed in terms of temperature uniformity. The parameters

influencing the riser temperature profile also become emphasized as the temperature of the

heat source is increased. Particularly, relative heating length, flow regime, and restriction

design, )λ(Reo), become more significant. In this study, the influence of each of these pa-

rameters is considered individually and at multiple heating temperatures. In general, as the

heating temperature is increased, the temperature profile becomes less uniform, although the

volumetric flow rate becomes more uniform. Again, the point is emphasized that uniform

volumetric flow rate is not required to achieve flat riser outlet temperature profiles.

Figure 5 shows the riser outlet temperature and volumetric flow rate for heating

temperatures up to 3.0 with variations of )λ(Reo) at each temperature. The data is plotted

versus the volume fraction, which is the portion of the storage volume circulated through the

flow loop at any point in time, V f (t) =
∫ t
0 V̇ (τ )dτ . It is clear that as the heating temperature

is raised, the impact of the thermosyphon restriction essentially becomes a bias shift of the

riser outlet temperature. The temperature profiles for high heating temperature are very

similar to those for constant energy addition. Later discussion will verify that the power

delivery is indeed more constant at higher heating temperature.
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The effect of the flow regime also becomes more apparent at higher heating tem-

perature. Figure 6 shows the impact of flow regime, at select values of Th . Four distinct

flow regimes are considered. At low Reynolds numbers extending up to 2300 the flow is

considered laminar and the familiar Fanning friction factor result applies, λ = 16/Re. The

transition regime extends from Reynolds numbers beginning at approximately 2300 and

ending at approximately 4000. The loss coefficient for this type of flow is

λ =
2.3× 10−8

Re−3/2
+ 0.0054, (25)

as given by Bhatti and Shah [24]. If the flow passage is considered hydraulically smooth

and the Reynolds number is greater than 4000 the flow is considered turbulent and the loss

coefficient is given by the Blasius relation [25].

λ =
0.0791
Re1/4

. (26)

Finally, if the Reynolds number is greater than 4000 and the flow passage is sufficiently

rough the flow is considered highly turbulent and the loss coefficient is taken to be a constant,

λ = c. The impact of variable driving pressure on flow rate is reduced when the frictional

losses are strongly proportional to flow rate. Based on this observation, the most favorable

flow regimes are, descending in order, transitional, rough turbulent, smooth turbulent, and

finally laminar flow. The results shown in Figure 6 support this conclusion, as there is

a smaller decrease in volumetric flow rate for the flow regimes where frictional loss is

more strongly proportional to flow rate. Particularly at high heating temperature, the more

uniform flow rate results in an improved charge temperature profile.

In a manner similar to the previous two illustrations, Figure 7 displays results for the

variation of the heating length at multiple high temperatures. As was the case for the flow

regime and restriction geometry, the effect of the relative heating length is more apparent as

the temperature of the heat source is increased. The uniformity of the riser outlet temperature



55

is improved for decreased heating length, although interestingly the heating length has only

a very small effect on the profiles of volumetric flow rate.

The focus to this point has been on the time scale of one complete charge cycle.

Emphasis on the overall charge cycle condenses the small time behavior to a small portion

of the preceding illustrations. The nature of the small time scale behavior is nevertheless

relevant, particularly in regards to overshoot of the setpoint and the time response of the

system. The behavior of the thermosyphon system on the small time scale is dominated by

inertia, quantified by the unsteady term of the momentum equation

R2s Re
Gr

∫ 2

0

(

Dr
D

)

ds. (27)

Figure 8 shows a plot of the initial transient of the riser outlet temperature for multiple

heating temperatures. The results are representative of the relevant range of parameters in

the inertia term. Predictably, the overshoot is reduced for lower heating temperature.

3.3 Energy Delivery

From the preceding discussion and the results of the riser outlet temperature just

presented, it appears that achieving constant volumetric flow rate is not important for low

heating temperature. The riser outlet temperature profiles have shown that a uniform storage

temperature can be obtained without constant flow rate. It should not come as a surprise,

however, that the decay in volumetric flow rate has unfavorable consequence. This section

will discuss the impact of the decaying flow rate on the rate of heat transfer to the ther-

mosyphon fluid. The power delivery of the thermosyphon system will also be compared to

the fully mixed system. In dimensionless form, the instantaneous power delivered by the

thermosyphon system is computed from the expression

Q̇(t) =
ρ ˆ̇Vcp

ρ ˆ̇Vocp&T̂sp

[

T̂ (t, lh) − T̂ (t, 0)
]

= V̇ (T (t, lh) − T t, 0). (28)
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The cumulative energy is determined by integrating the previous dimensional rate in time

and scaling each of the dimensional quantities. The result is

Q =

∫ 2Ĥ
Ĥ ρcp Âs(T̂ (s) − T̂o)dŝ

ρcp Âs Ĥ&T̂sp
=

∫ 2

1
T (s)ds. (29)

It was previously noted that the riser outlet temperature profiles more closely re-

semble constant heat addition only as the heating temperature increases. This observation

is confirmed by the results shown in Figure 9 for the instantaneous heating power and

cumulative energy. The power delivery is significantly more uniform at higher heating

temperature and from this result it appears that higher heating temperature is unquestion-

ably preferred. With more careful consideration, one recognizes that the higher sustained

power is somewhat misleading, because much of the additional energy serves to heat the

storage volume above the desired setpoint. Nevertheless, each simulation spans the time

to circulate one storage volume and simulations with higher heating temperature complete

this task more quickly. For comparison, the power delivery and cumulative stored energy

for the fully mixed system is also shown in Figure 9. Interestingly, the power delivered

by the fully mixed system and the laminar thermosyphon system at low heating tempera-

ture is nearly identical. Based on this result there is no significant benefit to the stratified

thermosyphon system with laminar flow and low heating temperature, in terms of power

delivery. Nonetheless, even though there is no advantage in terms of power delivery, the

stratified storage volume of the thermosyphon system is certainly preferred over the fully

mixed storage volume, since the energy is available at the desired temperature.

The similarity between the analytical result of the fullymixed system and the numer-

ical result of the thermosyphon system suggests that the latter can be obtained analytically.

In pursuit of this, the quasi-steady momentum equation is considered with the temperature
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integral divided into three sections

)λV̇ 2 =

∫ 1

0
Tds −

∫ 1+V f

1
Tds −

∫ 2

1+V f

T ds. (30)

For heating temperature near unity, a riser temperature equal to unity is a good approxima-

tion, therefore the first integral term evaluates to one. The second integral represents the

portion of the storage volume that has been heated. Here again the temperature is assumed

to be unity and as a result, the integral simplifies to the volume fraction, V f . The remaining

portion of the storage is assumed to be unheated, thereby reducing the third integral to zero.

Based on these assumptions, the quasi-steady momentum equation becomes

)λ(Re)V̇ 2 = 1− V f . (31)

Assuming the flow is laminar and the system has been designed to )λ(Reo) = 1, the

momentum equation becomes simply

V̇ = 1−

∫ t

0
V̇ dt, (32)

since the volume fraction is given by V f =
∫ t
0 V̇ dt . Clearly, this equation admits the

solution, V̇ = e−t . For T (t, lh) ≈ Th , the instantaneous heat transfer rate is Q̇ = V̇ Th . This

result is identical to the time dependent function for power delivery developed analytically

for the fully mixed system. An important note however, is that this result is only applicable

for Th near unity.

The decay of power delivered to the fluid by the thermosyphon system is directly

attributable to the decline in the volumetric flow rate. The mechanisms influencing the

uniformity of the flow rate have already been discussed. They are the flow regime in the

loss component and to lesser extent, the relative height of the heating section. The influence

of these two characteristics on power is given by Figures 10 and 11. The power delivery
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of the fully mixed system is again included for comparison. For low heating temperature,

Th , Figure 10 indicates that the relative height of the heating section has only a small effect

on power delivery. This outcome is consistent with the conclusion that heating length has

a small influence on flow rate. Notably, the heat exchanger design will be significantly less

challenging without the need to limit its relative height. The results of Figure 11 show that

the flow regime has a significant impact on power delivery. The thermosyphon system with

flow through the restriction in the transition regime is a significant improvement compared

to the fully mixed system.

To allow comparison between the fully mixed and stratified thermosyphon device,

the plots of power delivery have been shown as a function of dimensionless time in Figures

10 and 11. The results are somewhatmore enlighteningwhen also plotted versus the volume

fraction. For this reason the results of Figure 11 are replotted in Figure 12 as a function of

volume fraction. This perspective of the data emphasizes the importance of flow regime

and reinforces the observed benefit of targeting the transitional flow regime in the flow

restriction element.

4. SUMMARY AND CONCLUSIONS

A unique thermosyphon storage device has been described and its performance has

been simulated numerically. A thermosyphon is applied in such away that heat is introduced

into a storage systemwithout large scale thermal mixing. The quality of energy is preserved

and therefore it is more useful. Using appropriate dimensional scales the governing con-

servation equations have been made dimensionless and the pertinent parameter groups have

been identified. The heat addition or charge process of the storage volume is the focus of this

investigation. The primary challenges related to the charge process are achieving uniform

storage temperature and delivering all available power for the entire charge cycle.

It was found that the relative temperature of the heat source impacts the uniformity

of the charge profile as well as the steadiness of power delivery. Higher heating temperature
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sustains high power delivery into the charge cycle, although at the expense of uniform

charge temperature. The improved power delivery is also somewhat overstated because a

portion of the energy is unnecessarily used to heat the storage volume above the setpoint.

For the application of heat pump domestic hot water systems, the heating temperature is

limited by the condensing temperature of the vapor compression system and this value is

typically only marginally higher than the set point temperature. In such a scenario the most

effective method of improving power delivery and charge profile is targeting the dominant

flow behavior to the transitional regime. Although the relative height of the heating section

is relevant for constant heat addition, it is not significant for constant temperature heat

addition. Because the heating length has a small effect, the heat exchanger is free to occupy

the entire system height allowing some flexibility in the practical implementation.

The dimensionless analysis that has been given is general and the conclusions are

applicable to a design of any scale. Transitioning from a dimensionless design to a physical

system is straightforward. One approach is to begin by selecting the desired dimensional

temperature rise and available rate of heat input. The scale of the volumetric flow rate

then follows. Having quantified the nominal flow rate, and with selection of a target flow

regime and Reynolds number, the hydraulic diameter of the portions of the loop where

frictional losses are dominant can be chosen. The steady form of the momentum equation

can then be solved with a temperature distribution appropriate at the beginning of the charge

cycle. Based on this approximation, the required length of the dominant loss components

can be determined, thereby throttling the flow to achieve the desired setpoint. Selection of

the storage volume size and aspect ratio allows the remaining dimensional quantities to be

readily computed. These steps are identical to the process that would be used for constant

heat addition. Constant temperature heat addition requires specification of a heat exchanger.

This is done by first selecting the condensing temperature of the heat exchanger. Selection

of the heating temperature can be guided by the observations made in this study. Upon
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completion of this step, the required NTU can be computed. The design is completed by

choosing a heat exchanger that can supply the required NTU.

Nomenclature

Dimensional quantities are denoted by a hat, eg t̂ .

Roman

A cross sectional area

cp specific heat

Dh hydraulic diameter

F binary frictional loss function

G flow path orientation

g acceleration due to gravity

Gr Grashoff number, see equation (9)

H overall system height

J binary heat input function

k thermal conductivity

l length

NTU number of transfer units

Pe Peclet number , see equation (14)

Q cumulative heat addition

Q̇ heating power
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Rs aspect ratio

Re Reynolds number

s position

T temperature

t time

U overall heat transfer coefficient

V volume

v flow velocity

V̇ volumetric flow rate

Greek

α thermal diffusivity

β coefficient of thermal expansion

ε heat exchanger effectiveness

) ratio between buoyant and frictional forces , see equation (11)

λ frictional loss coefficient

ν kinematic viscosity

ρ density

τw wall shear stress

Subscripts and Superscripts
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h heating

m fully mixed

o design point or nominal condition

r restriction

s storage

sp set point
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Figure 1 A conceptual schematic of the thermosyphon configuration.
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Figure 2 A linear schematic of the quasi one-dimensional thermosyphon model.
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Figure 3 Required heat exchanger NTU of the thermosyphon storage system versus Th ,
the dimensionless heating temperature.
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Figure 4 Traces of volumetric flowrate and temperature for the stratified thermosyphon
system. Temperature is given at the riser outlet and at five evenly spaced vertical locations
within the storage volume. The coordinate, y = 0.0, represents a location at the bottom
of the storage, whereas the coordinate y = 1.0 represents the riser outlet temperature,
and effectively the temperature in the upper most portion of the storage. The transient
temperature of the fully mixed system, Tm , is included for comparison.
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Figure 5 Thermosyphon riser outlet temperature and volumetric flow rate at multiple
heating temperatures, Th = 1.1, 1.5, 3. For each heating temperature, four simulations are
shown with variation of the parameter group )λ(Reo). The values of )λ(Reo) are 1.11,
1.00, 1−lh/2, and 0.78. Larger values correspond tomore restricted flow, resulting in lower
volumetric flow rate and higher temperatures.
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Figure 6 Thermosyphon riser outlet temperature and volumetric flow rate at multiple heat-
ing temperatures, Th = 1.1, 1.5, 3. For each heating temperature, the laminar, transitional,
smooth turbulent, and rough turbulent regimes are shown. The most uniform profiles are
obtained by the transitional flow regime.
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Figure 7 Thermosyphon riser outlet temperature and volumetric flow rate at multiple
heating temperatures, Th = 1.1, 1.5, 3. For each heating temperature, five simulations are
shown with variation of the dimensionless heating length. The heating length values are
0.15, 0.35, 0.45, 0.55, and 0.65. At high heating temperature shorter length produces more
uniform temperature profiles. The volumetric flow rate is affected a only small amount by
heating length.
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Figure 8 Riser outlet temperature at high temperatures, Th = 1.1, 1.5, 3.
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Figure 9 Heating power and cumulative energy delivered by the thermosyphon system in
the laminar regime. For comparison, the power and cumulative energy is also shown for the
fully mixed system with heating temperature, Th = 1.1. The thermosyphon is simulated at
Th = 1.1, 1.5, 3. The power curves are the decreasing functions and the cumulative energy
are the increasing functions. Each simulation spans one complete charge cycle.
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Figure 10 Heating power and cumulative energy delivered by the thermosyphon system in
the transitional regime. The heating lengths are 0.15 and 0.65. For comparison, the power
and cumulative energy is also shown for the fully mixed system. The heating temperature
is 1.1 for all simulations. Each simulation spans one complete charge cycle.
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Figure 11 Heating power and cumulative energy delivered by the thermosyphon system for
four distinct flow regimes. For comparison power and cumulative energy is also shown for
the fully mixed system. The heating temperature is 1.1 for all simulations. Each simulation
spans one complete charge cycle.
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Figure 12 Heating power and cumulative energy delivered by the thermosyphon system
for four distinct flow regimes. The data is identical to Figure 11 only the abscissa is volume
fraction to emphasize the effect of flow regime.
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Chapter 1

Preface

This Appendix is composed of two FORTRAN programs developed for the investigations of this thesis.
The the main programs and each subprogram are contained within code “chunks” preceded by any relevant
documentation. In practice a software tool, noweb, is used to strip the relevant code chunks out of the
documentation and then assemble the necessary pieces into a completed source program. A flow diagram of
the main program is illustrated by Figure 1.1.



80



































Figure 1.1: Flow diagram of the main FORTRAN program used in this study.
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Chapter 2

Common Makefiles

2.1 Generic Makefile using gfortran

The compile procedure used to build the source code is scripted using GNU Make. The makefile uses the
freely available gfortran compiler.

81 〈makefile using gfortran 81〉≡
# ... GNU Make for the Bourne Shell ...

SHELL = /bin/sh

# ... variable declarations ...

SOURCE = prog.f90 mod.f90

EXBL = prog.exe

F95 = gfortran

# ... compile rules ...

all : prog.exe

-rm -f *.out

./$(EXBL)

touch all

prog.exe : prog.o

$(F95) -fdefault-real-8 -o prog.exe prog.o mod.o

prog.o : prog.f90 mod.o

$(F95) -fdefault-real-8 -c prog.f90

mod.o : mod.f90

$(F95) -fdefault-real-8 -c mod.f90

help :

@echo "make -> compile executable"

@echo "make all -> compile and execute"



82

Chapter 3

Program thermosyphon01

3.1 Introduction

Program thermosyphon01 is used in the first investigation of this thesis where constant heat addition is
supplied to the thermosyphon storage device. This program numerically solves the appropriate momentum
and energy equations. The energy equation is solved using a second order accurate implicit technique using
the mpl method to approximate the advection term. This program time lags the momentum equation, which
is solved explicitly using the Adams Bashforth method.

3.2 Program Input

Program input is provided by a chunk of FORTRAN code that declares the parameters of each numerical
simulation.

3.3 Program Output

Program output is given in the form of text files that provide temperature and volumetric flow rate during the
transient simulation.

3.4 Makefiles
82 〈makefile to build program thermosyphon01 using gfortran 82〉≡

〈makefile using gfortran 81〉

3.5 Data Production Sets

Each “data production set” is composed of a chunk of input code, the program source code, a makefile, and
FORTRAN module that declares a new data structure that facilitates moving the parameters throughout the
program.
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3.5.1 num110

Data production set num110 serves as an example.

83a 〈num110params 83a〉≡
real :: Re_o=2300

real :: WHatdot_e=4500

real :: DeltaTHat_sp=42.8

real :: R_a=3.25

real :: VHat=0.1514

real :: c=0.

real :: lossFactor=1.

real, dimension(4) :: D=(/0.075,0.075,-1.,1./)

real, dimension(4) :: l=(/0.23,-1.,-2.,1./)

integer :: spec_regime=1

integer :: numI=1000

integer :: order=2

83b 〈num110prog 83b〉≡
〈program thermosyphon01 83e〉

83c 〈num110make 83c〉≡
〈makefile to build program thermosyphon01 using gfortran 82〉

83d 〈num110mod 83d〉≡
〈module for program thermosyphon01 83f〉

3.6 Program thermosyphon01 Code
83e 〈program thermosyphon01 83e〉≡

〈program statements for program thermosyphon01 84〉

83f 〈module for program thermosyphon01 83f〉≡
module mod

type parameters !parameter types

real :: Gr,R_a,Re_o,c,Pe,dx,dt

real, dimension(4) :: D,l

integer :: numI,regime,order

end type parameters

contains

〈subroutine fillMomentumFuncArray for program thermosyphon01 86〉
〈function getG for program thermosyphon01 88b〉
〈subroutine shiftArray for program thermosyphon01 85〉
〈function adamsBashFunc for program thermosyphon01 88a〉
〈subroutine triSolve for program thermosyphon01 91〉
〈subroutine getVectors for program thermosyphon01 92〉
〈function getJ for program thermosyphon01 90〉
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〈subroutine mpl for program thermosyphon 93〉
〈subroutine getParams for program thermosyphon 94〉
〈function getD for program thermosyphon01 89b〉
〈function integrate for program thermosyphon01 89a〉
end module mod

3.6.1 Program Statements
84 〈program statements for program thermosyphon01 84〉≡

program thermosyphon01

use mod

implicit none

integer :: n,i

real :: Vdot,adamsBashFunc,writeTime,V

real, dimension(:), allocatable :: T,momentumFuncArray

real, dimension(:), allocatable :: e,f,g,r

type(parameters) :: params

call getParams(params)

! allocate variables that depend on the number of nodes

! or the order of the solution method

allocate(momentumFuncArray(params%order))

allocate(T(0:params%numI+1))

allocate(e(params%numI),f(params%numI),g(params%numI),r(params%numI))

! set the initial conditions

T=0

Vdot=0

V=0

n=0

! open files for writing

writeTime=0

open(unit=11, file=’regime.out’, status=’new’)

open(unit=12, file=’temps.out’, status=’new’)

open(unit=13, file=’finalTankTemp.out’, status=’new’)

! loop through time

do

! count the number of iterations

n=n+1

! if the volume fraction is greater than 1, stop

if (V>1.0) exit
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! get the e,f,g,r vectors corresponding to the energy equation

call getVectors(e,f,g,r,T,Vdot,params)

! solve the energy equation implicitly to get latest T

call triSolve(e,f,g,r,T)

! compute the momentum function

call fillMomentumFuncArray(momentumFuncArray,T,Vdot,params)

! solve the momentum equation with the adams bashforth routine

Vdot=adamsBashFunc(n,Vdot,momentumFuncArray,params%dt,params%order)

! shift the elements in the momentum function array

call shiftArray(momentumFuncArray,params%order)

! record volume fraction

V=V+Vdot*params%dt

! write data for current time

! notice writing 1000 points per 1 unit of scaled time

if (writeTime-n*params%dt<0.1*params%dt) then

write(11,*) n*params%dt,V,Vdot*params%Re_o,params%regime,Vdot

write(12,*) n*params%dt,V,T(nint(params%numI*.1)),&

&T(nint(params%numI*.2)),&

&T(nint(params%numI*.3)),T(nint(params%numI*.4)),&

&T(nint(params%numI*.5)),T(nint(params%numI*.6)),&

&T(nint(params%numI*.7)),T(nint(params%numI*.8)),&

&T(nint(params%numI*.9)),T(params%numI)

writeTime=writeTime+1.0/10000.

end if

end do

! write out final tank temperatures

do i=nint(1.0/params%dx),nint(2.0/params%dx)

write(13,*) i*params%dx,T(i)

end do

! housekeeping

deallocate(momentumFuncArray)

deallocate(T)

deallocate(e,f,g,r)

close(11)

close(12)

close(13)

end program

3.6.2 subroutine shiftArray
85 〈subroutine shiftArray for program thermosyphon01 85〉≡

subroutine shiftArray(momentumFuncArray,order)

implicit none
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real, dimension(:) :: momentumFuncArray

integer :: n,order

! shift values for momentum function

do n=1,order-1

momentumFuncArray(n)=momentumFuncArray(n+1)

end do

end subroutine

3.6.3 Subroutine fillMomentumFuncArray
86 〈subroutine fillMomentumFuncArray for program thermosyphon01 86〉≡

subroutine fillMomentumFuncArray(momentumFuncArray,T,Vdot,params)

implicit none

real, dimension(:) :: momentumFuncArray

real, dimension(0 :) :: T

real, dimension(:), allocatable :: func

real :: Vdot,lambda,lGeoRatio,loss,getG,integrate,dHead

real :: iGeoRatio,inertia,Re

real, dimension(4) :: F_s,G_s

integer :: sec,i,regime

type(parameters) :: params

F_s=(/0,0,1,0/)

G_s=(/1,1,1,-1/)

allocate(func(params%numI))

Re=Vdot*params%Re_o

! if params%regime < 0, choose regime based on Re

! note that params%regime is the specified regime

if (params%regime < 0) then

if (Re > 4000.) then

regime=3

else if (Re > 2300.) then

regime=2

else if (Re >= 0.) then

regime=1

end if

else

regime=params%regime

end if

! define lambda



87

if (Re < 100) then

lambda = 0.

else if (regime == 1) then

lambda=(16./Re+params%c)

else if (regime == 2) then

lambda=2.3E-8/Re**(-3.0/2.0)+0.0054+params%c

else if (regime == 3) then

lambda=0.0791/Re**0.25+params%c

else if (regime == 4) then

lambda=params%c

end if

! compute the geometry ratio in loss term

lGeoRatio=0

do sec=1,4

lGeoRatio=lGeoRatio+params%D(3)**2.0/&

&params%D(sec)**5.0*F_s(sec)*params%l(sec)

end do

! compute the loss term

loss=-2.0*params%R_a**3.0*params%Re_o**2.0/&

&params%Gr*lGeoRatio*lambda*Vdot**2.0

! compute the driving head

do i=1,params%numI

func(i)=T(i)*getG(i,G_s,params%l,params%dx)

end do

dHead=integrate(func,params%dx,params%numI)

! compute the geometry ratio of the inertia term

iGeoRatio=0

do sec=1,4

iGeoRatio=iGeoRatio+params%D(3)**2.0/params%D(sec)**2.0*params%l(sec)

end do

! compute the inertia coefficient

inertia=params%R_a**2.0*params%Re_o**2.0/params%Gr*iGeoRatio

! output new momentum function

momentumFuncArray(params%order)=(loss+dHead)/inertia

! clean up

deallocate(func)

end subroutine
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3.6.4 Subroutine adamsBashFunc
88a 〈function adamsBashFunc for program thermosyphon01 88a〉≡

function adamsBashFunc(n,y,yFuncArray,dt,order)

implicit none

real :: adamsBashFunc,dt

real, intent(in) :: y

integer, intent(in) :: n,order

real, intent(in), dimension(:) :: yFuncArray

integer :: m,r

real, dimension(6,0:5) :: betaArray

real :: sum

! dfine beta coefficients for Adams Bashforth method

betaArray(1,:)=(/ 1.0,0.,0.,0.,0.,0. /)

betaArray(2,:)=(/ 3./2.,-1./2.,0.,0.,0.,0. /)

betaArray(3,:)=(/ 23./12.,-16./12.,5./12.,0.,0.,0. /)

betaArray(4,:)=(/ 55./24.,-59./24.,37./24.,-9./24.,0.,0. /)

betaArray(5,:)=(/ 1901./720.,-2774./720.,2616./720.,&

&-1274./720.,251./720.,0. /)

betaArray(6,:)=(/ 4277./1440.,-7923./1440.,9982./1440.,&

&-7298./1440.,2877./1440.,-475./1440. /)

sum=0.

r=order

! if order requested is higher then the number of the iteration

! reduce the order

if (n-order<0) then

r=n

end if

! compute sum in Adams Bashforth formula

do m=0,r-1

sum=sum+betaArray(r,m)*yFuncArray(order-m)

end do

! return updated value of dependent variable

adamsBashFunc=y+dt*sum

end function

3.6.5 Function getG
88b 〈function getG for program thermosyphon01 88b〉≡

function getG(i,G_s,l,dx)

implicit none



89

real :: getG,sum,dx

real, dimension(4) :: G_s,l

integer :: i,n

sum=0

do n=1,8

sum=sum+l(n)

if (i*dx<sum+dx/5.) then

getG=G_s(n)

return

end if

end do

end function

3.6.6 Function integrate
89a 〈function integrate for program thermosyphon01 89a〉≡

function integrate(f,dx,numI)

implicit none

real :: integrate,oddSum,evenSum,dx

real, dimension(:) :: f

integer :: numI,i

oddSum=0.

evenSum=0.

do i=1,numI-1,2

oddSum=oddSum+f(i)

end do

do i=2,numI-2,2

evenSum=evenSum+f(i)

end do

integrate=dx*(2*f(numI)+4*oddSum+2*evenSum)/3.

end function

3.6.7 Function getD
89b 〈function getD for program thermosyphon01 89b〉≡

function getD(i,numI,D,l,dx)

implicit none

real :: getD

real, dimension(4) :: D,l

integer, intent(in) :: i,numI
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real :: sum,xSect,dx

integer :: n,section,numSec

numSec=4

! check to see if we are not looking for the ends

if (i==0) then

getD=D(numSec)

return

else if (i==numI+1) then

getD=D(1)

return

end if

! check to see what section i is in

xSect=0.

section=1

do n=1,numSec

! xSect holds the distance from x=0 to end of section

xSect=xSect+l(n)

if ((i*dx) .LE. (xSect+dx/2.)) then

section=n

exit

end if

end do

! output D for that section

getD=D(section)

end function

3.6.8 Function getJ
90 〈function getJ for program thermosyphon01 90〉≡

function getJ(i,J_s,l,dx)

implicit none

real :: getJ

integer, intent(in) :: i

real, dimension(4) :: l,J_s

real :: sum,xSect,dx

integer :: n,section,numSec

numSec=4

! check to see what section i is in

xSect=0.

do n=1,numSec
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! xSect holds the distance from x=0 to end of section

xSect=xSect+l(n)

if ((i*dx) .LE. (xSect+dx/2.)) then

section=n

exit

end if

end do

! output D for that section

getJ=J_s(section)

end function

3.6.9 Subroutine triSolve
91 〈subroutine triSolve for program thermosyphon01 91〉≡

subroutine triSolve(e,f,gg,r,T)

implicit none

real, dimension(:) :: e,f,gg,r

real, dimension(0 :) :: T

real, dimension(:), allocatable :: rightVect

real :: fact,LL

integer :: i,numI

numI=size(e)

allocate(rightVect(numI))

LL=gg(numI)

rightVect=0.

rightVect(1)=e(1)

rightVect(numI-1)=gg(numI-1)

rightVect(numI)=f(numI)

! elliminate the diagonal e’s

do i=2,numI-1

fact=e(i)/f(i-1)

f(i)=f(i)-fact*gg(i-1)

rightVect(i)=rightVect(i)-fact*rightVect(i-1)

r(i)=r(i)-fact*r(i-1)

end do

fact=e(numI)/f(numI-1)

rightVect(numI)=rightVect(numI)-fact*rightVect(numI-1)

r(numI)=r(numI)-fact*r(numI-1)

! elliminate the lower left term LL

do i=1,numI-2
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fact=LL/f(i)

LL=-1*fact*gg(i)

rightVect(numI)=rightVect(numI)-fact*rightVect(i)

r(numI)=r(numI)-fact*r(i)

end do

fact=LL/f(numI-1)

rightVect(numI)=rightVect(numI)-fact*rightVect(numI-1)

r(numI)=r(numI)-fact*r(numI-1)

! work from bottom up to solve system

T(numI)=r(numI)/rightVect(numI)

T(numI-1)=(r(numI-1)-&

&rightVect(numI-1)*T(numI))/f(numI-1)

do i=numI-2,1,-1

T(i)=(r(i)-rightVect(i)*T(numI)-&

&gg(i)*T(i+1))/f(i)

end do

deallocate(rightVect)

end subroutine

3.6.10 Subroutine getVectors
92 〈subroutine getVectors for program thermosyphon01 92〉≡

subroutine getVectors(e,f,g,r,T,Vdot,params)

implicit none

real :: D_plushalf,D_minushalf,D,Dplus,Dminus

real, dimension(:) :: e,f,g,r

real, dimension(0 :) :: T

real, dimension(:), allocatable :: av,netflux

real :: Vdot,getD,gamma,getJ

real, dimension(4) :: J_s

integer :: i

type(parameters) :: params

J_s=(/1.,0.,0.,0./)

allocate(av(params%numI))

allocate(netflux(params%numI))

! we are going to define some ghost cells

T(0)=T(params%numI)

T(params%numI+1)=T(1)

! compute the net flux for each node using the mpl method



93

do i=1,params%numI

av(i)=Vdot/getD(i,params%numI,params%D,params%l,params%dx)**2.0

end do

call mpl(params%dx,params%dt,T,av,netflux,params%numI,params%D,params%l)

! compute the parameters of a tri diagonal matrix

do i=1,params%numI

! a few lines to get the half step areas

D=getD(i,params%numI,params%D,params%l,params%dx)

Dplus=getD(i+1,params%numI,params%D,params%l,params%dx)

Dminus=getD(i-1,params%numI,params%D,params%l,params%dx)

D_plushalf=min(D,Dplus)

D_minushalf=min(D,Dminus)

! gamma, a common term

gamma=(0.5*params%dt)/(params%Pe*D**2.*params%dx**2.)

! the vectors

e(i)=-gamma*D_minushalf**2.

f(i)=1.0+gamma*(D_plushalf**2.+D_minushalf**2.)

g(i)=-gamma*D_plushalf**2.

r(i)=gamma*D_minushalf**2.*T(i-1)+&

&(1.-gamma*(D_plushalf**2.+D_minushalf**2.))*T(i)+&

&gamma*D_plushalf**2.*T(i+1)+&

&(getJ(i,J_s,params%l,params%dx)*params%dt)/&

&(params%l(1)*D**2.)-netflux(i)*params%dt/params%dx

end do

end subroutine

3.6.11 Subroutine mpl
93 〈subroutine mpl for program thermosyphon 93〉≡

subroutine mpl(dx,kk,qq,av,netflux,numI,D,l)

implicit none

integer i,numI

real :: dx,kk,aa,getD

real, dimension(0 :) :: qq

real, dimension(:) :: av,netflux

real, dimension(:), allocatable :: gradq,flux

real, dimension(4) :: D,l

allocate(gradq(0:numI+1))

allocate(flux(0:numI))

qq(0)=qq(numI)

qq(numI+1)=qq(1)
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! calculate average gradient with monotonicity constraint

do i=1,numI

if ((qq(i)-qq(i-1))*(qq(i+1)-qq(i)) .ge. 0) then

gradq(i)=sign(min(2.*abs(qq(i)-qq(i-1)),&

&2.*abs(qq(i+1)-qq(i)),&

&0.5*abs(qq(i+1)-qq(i-1))),&

&(qq(i+1)-qq(i-1)))

else

gradq(i)=0.

end if

end do

gradq(0)=gradq(numI)

gradq(numI+1)=gradq(1)

! calculate fluxes at cell faces

do i=1,numI

aa=abs(av(i))

if (av(i) .ge. 0.) then

flux(i)=aa*getD(i,numI,D,l,dx)**2*(qq(i)+0.5*(1.-aa*kk/dx)*gradq(i))

else

flux(i)=aa*getD(i+1,numI,D,l,dx)**2*&

&(-qq(i+1)+0.5*(1.-aa*kk/dx)*gradq(i+1))

end if

end do

flux(0)=flux(numI)

! calculate net convective flux

do i=1,numI

netflux(i)=1./getD(i,numI,D,l,dx)**2*(flux(i)-flux(i-1))

end do

! housekeeping

deallocate(flux)

deallocate(gradq)

end subroutine

3.6.12 Subroutine getParams
94 〈subroutine getParams for program thermosyphon 94〉≡

subroutine getParams(params)

implicit none

real :: VHatDot_o,DHat_r,DHat_t,HHat,D_r,c_p,lambda,gamma

real :: g,rho,pi,beta,nu,alpha,Gr,Pe

real :: dx,dt
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integer :: regime

type(parameters) :: params

include ’params.inc’

! constants

g=9.81

rho=997.

pi=2.*asin(1.)

beta=2.6E-4

nu=0.87E-6

alpha=0.147E-6

c_p=4180.

! dx determined by the number of nodes specified

dx=2.0/numI

! the characteristic volumetric flowrate

VHatDot_o = WHatdot_e/(rho*c_p*DeltaTHat_sp)

! the diameter of the restriction

DHat_r=(4.0*VHatDot_o)/(pi*nu*Re_o)

! the diameter of the tank

DHat_t=((VHat*4.0)/(pi*R_a))**(1./3.)

! the height of the system

HHat=R_a*DHat_t

! the dimensionless diameter of the restriction

D_r=DHat_r/DHat_t

! the grashoff number

Gr=(g*beta*DeltaTHat_sp*HHat**3.)/nu**2.0

! the peclet number

Pe=(4.0*VHatDot_o*HHat)/(pi*DHat_t**2.0*alpha)

! if D(3) < 0

! set to computed value of D_r

if (D(3) < 0.) then

D(3)=D_r

end if

! choose dt based on CFL of 0.8

dt=(0.8*dx*pi*D(3)**2)/4.

!! if regime < 0 choose regime based on Re_o

if (spec_regime < 0) then
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! flow is turbulent

if (Re_o > 4000. ) then

regime=3

! flow is transitioning

else if (Re_o > 2300.) then

regime=2

! flow is laminar

else if (Re_o > 0.) then

regime=1

end if

else

regime=spec_regime

end if

! compute lambda at the target reynolds number

if (regime == 1) then

lambda=(16./Re_o+c)

else if (regime == 2) then

lambda=(2.3E-8/Re_o**(-3.0/2.0)+0.0054+c)

else if (regime == 3) then

lambda=(0.0791/Re_o**0.25+c)

else if (regime == 4) then

lambda=c

end if

! the length of the restriction is programmatically

! chosen to satisfy the setpoint at startup

! if set to -1 the riser is assumed to be

! at the set point temperature

if (l(3) < -0.9 .and. l(3) > -1.1) then

l(3)=1./(2.*R_a**3.*Re_o**2./(Gr*D(3)**3.)*lambda)

! if set to -2 the riser temperature is assumed to be

! linearly increasing within the heating section

! and at the setpoint for the rest of the riser section

else if (l(3) < -1.9 .and. l(3) > -2.1) then

l(3)=(1.-0.5*l(1))/(2.*R_a**3.*Re_o**2./(Gr*D(3)**3.)*lambda)

end if

! the length of the unheated riser section "floats"

l(2)=1.-l(1)-l(3)

! output the computed values from this subroutine in the form of a structure

params%Gr=Gr

params%Pe=Pe

params%R_a=R_a

params%Re_o=Re_o

params%l=l
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params%D=D

params%c=c

params%regime=spec_regime

params%dx=dx

params%dt=dt

params%numI=numI

params%order=order

end subroutine
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Chapter 4

Program thermosyphon02

4.1 Introduction

Program thermosyphon02 is used in the second investigation of this thesis where constant temperature
heat addition is supplied to the thermosyphon storage device. The program follows the same methodology as
thermosyphon01 except inputs are given that are appropriate for a constant temperature heat source and
a modified energy equation is solved. Many of the subprograms are shared with thermosyphon01.

4.2 Program Input

Program input is provided by a chunk of FORTRAN code that declares the parameters of each numerical
simulation.

4.3 Program Output

Program output is given in the form of text files that provide temperature and volumetric flow rate during the
transient simulation.

4.4 Makefiles
98a 〈makefile to build program thermosyphon02 using gfortran 98a〉≡

〈makefile using gfortran 81〉

4.5 Data Production Sets

An example data production set is given for program thermosyphon02.

4.5.1 num210
98b 〈num210params 98b〉≡

real :: Re_o=2300
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real :: QHatDot_o=4500

real :: DeltaTHat_sp=42.8

real :: R_a=3.25

real :: VHat=0.1514

real :: c=0.

real, dimension(4) :: D=(/0.075,0.075,-1.,1./)

real, dimension(4) :: l=(/0.25,-1.,-2.,1./)

integer :: spec_regime=1

integer :: numI=100

integer :: order=2

real :: U_o=75.

real :: T_h=1.1

99a 〈num210prog 99a〉≡
〈program thermosyphon02 99d〉

99b 〈num210make 99b〉≡
〈makefile to build program thermosyphon02 using gfortran 98a〉

99c 〈num210mod 99c〉≡
〈module for program thermosyphon02 99e〉

4.6 Program thermosyphon02 Code
99d 〈program thermosyphon02 99d〉≡

〈program statements for program thermosyphon02 100〉

99e 〈module for program thermosyphon02 99e〉≡
module mod

type parameters !parameter types

real :: Gr,R_a,Re_o,c,Pe,dx,dt,T_h

real :: U_o,NTU_o

real, dimension(4) :: D,l

integer :: numI,regime,order

end type parameters

contains

〈subroutine fillMomentumFuncArray for program thermosyphon02 102b〉
〈function getG for program thermosyphon02 102d〉
〈subroutine shiftArray for program thermosyphon02 102a〉
〈function adamsBashFunc for program thermosyphon02 102c〉
〈subroutine triSolve for program thermosyphon02 102h〉
〈subroutine getVectors for program thermosyphon02 103〉
〈function getJ for program thermosyphon02 102g〉
〈subroutine mpl for program thermosyphon 93〉
〈subroutine getParams for program thermosyphon 94〉
〈function getD for program thermosyphon02 102f〉
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〈function integrate for program thermosyphon02 102e〉
〈function U for program thermosyphon 104b〉
end module mod

4.6.1 Program Statements
100 〈program statements for program thermosyphon02 100〉≡

program thermosyphon02

use mod

implicit none

integer :: n,i,Iriser

real :: tank_int,riser_int

real :: Vdot,adamsBashFunc,writeTime,V,inst_power,tot_E

real, dimension(:), allocatable :: T,momentumFuncArray

real, dimension(:), allocatable :: e,f,g,r

type(parameters) :: params

call getParams(params)

! allocate variables that depend on the number of nodes

! or the order of the solution method

allocate(momentumFuncArray(params%order))

allocate(T(0:params%numI+1))

allocate(e(params%numI),f(params%numI),g(params%numI),r(params%numI))

! set the initial conditions

T=0

Vdot=0

V=0

n=0

! open files for writing

writeTime=0

open(unit=11, file=’regime.out’, status=’new’)

open(unit=12, file=’temps.out’, status=’new’)

open(unit=13, file=’finalTankTemp.out’, status=’new’)

open(unit=14, file=’integral.out’, status=’new’)

! loop through time

do

! count the number of iterations

n=n+1

! if the volume fraction is greater than 1, stop

if (V>1.0) exit
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! get the e,f,g,r vectors corresponding to the energy equation

call getVectors(e,f,g,r,T,Vdot,params)

! solve the energy equation implicitly to get latest T

call triSolve(e,f,g,r,T)

! compute the momentum function

call fillMomentumFuncArray(momentumFuncArray,T,Vdot,params)

! solve the momentum equation with the adams bashforth routine

Vdot=adamsBashFunc(n,Vdot,momentumFuncArray,params%dt,params%order)

! shift the elements in the momentum function array

call shiftArray(momentumFuncArray,params%order)

! record volume fraction

V=V+Vdot*params%dt

! write data for current time

! notice writing 1000 points per 1 unit of scaled time

if (writeTime-n*params%dt<0.1*params%dt) then

write(11,*) n*params%dt,V,Vdot*params%Re_o,params%regime,Vdot

write(12,*) n*params%dt,V,T(nint(params%numI*.1)),&

&T(nint(params%numI*.2)),&

&T(nint(params%numI*.3)),T(nint(params%numI*.4)),&

&T(nint(params%numI*.5)),T(nint(params%numI*.6)),&

&T(nint(params%numI*.7)),T(nint(params%numI*.8)),&

&T(nint(params%numI*.9)),T(params%numI)

writeTime=writeTime+1.0/10000.

inst_power=Vdot*(T(nint(params%numI/2*params%l(1)))-&

&T(0))

Iriser=nint(1.0/params%dx)

tank_int=integrate(T(Iriser+1:params%numI),&

&params%dx,params%numI-Iriser)

riser_int=integrate(T(1:Iriser),params%dx,Iriser)

write(14,*) n*params%dt,inst_power,tank_int,riser_int

end if

end do

! write out final tank temperatures

do i=nint(1.0/params%dx),nint(2.0/params%dx)

write(13,*) i*params%dx,T(i)

end do

! housekeeping

deallocate(momentumFuncArray)

deallocate(T)

deallocate(e,f,g,r)

close(11)

close(12)

close(13)
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end program

4.6.2 subroutine shiftArray
102a 〈subroutine shiftArray for program thermosyphon02 102a〉≡

〈subroutine shiftArray for program thermosyphon01 85〉

4.6.3 Subroutine fillMomentumFuncArray
102b 〈subroutine fillMomentumFuncArray for program thermosyphon02 102b〉≡

〈subroutine fillMomentumFuncArray for program thermosyphon01 86〉

4.6.4 Subroutine adamsBashFunc
102c 〈function adamsBashFunc for program thermosyphon02 102c〉≡

〈function adamsBashFunc for program thermosyphon01 88a〉

4.6.5 Function getG
102d 〈function getG for program thermosyphon02 102d〉≡

〈function getG for program thermosyphon01 88b〉

4.6.6 Function integrate
102e 〈function integrate for program thermosyphon02 102e〉≡

〈function integrate for program thermosyphon01 89a〉

4.6.7 Function getD
102f 〈function getD for program thermosyphon02 102f〉≡

〈function getD for program thermosyphon01 89b〉

4.6.8 Function getJ
102g 〈function getJ for program thermosyphon02 102g〉≡

〈function getJ for program thermosyphon01 90〉

4.6.9 Subroutine triSolve
102h 〈subroutine triSolve for program thermosyphon02 102h〉≡

〈subroutine triSolve for program thermosyphon01 91〉
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4.6.10 Subroutine getVectors
103 〈subroutine getVectors for program thermosyphon02 103〉≡

subroutine getVectors(e,f,g,r,T,Vdot,params)

implicit none

real :: D_plushalf,D_minushalf,D,Dplus,Dminus

real, dimension(:) :: e,f,g,r

real :: Re,U

real, dimension(0 :) :: T

real, dimension(:), allocatable :: av,netflux

real :: Vdot,getD,gamma,eta,getJ

real, dimension(4) :: J_s

integer :: i

type(parameters) :: params

J_s=(/1.,0.,0.,0./)

allocate(av(params%numI))

allocate(netflux(params%numI))

! we are going to define some ghost cells

T(0)=T(params%numI)

T(params%numI+1)=T(1)

! the true Reynolds number

Re=Vdot*params%Re_o

! compute the net flux for each node using the mpl method

do i=1,params%numI

av(i)=Vdot/getD(i,params%numI,params%D,params%l,params%dx)**2.0

end do

call mpl(params%dx,params%dt,T,av,netflux,params%numI,params%D,params%l)

! compute the parameters of a tri diagonal matrix

do i=1,params%numI

! a few lines to get the half step areas

D=getD(i,params%numI,params%D,params%l,params%dx)

Dplus=getD(i+1,params%numI,params%D,params%l,params%dx)

Dminus=getD(i-1,params%numI,params%D,params%l,params%dx)

D_plushalf=min(D,Dplus)

D_minushalf=min(D,Dminus)

! gamma and eta, common terms

gamma=(0.5*params%dt)/(D**2*params%Pe*params%dx**2.)

eta=(params%dt*params%NTU_o*U(Re)*getJ(i,J_s,params%l,params%dx))/&

&(params%l(1)*D**2.*params%U_o)
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! the vectors

e(i)=-gamma*D_minushalf**2.

f(i)=1.0+0.5*eta+gamma*(D_plushalf**2.+D_minushalf**2.)

g(i)=-gamma*D_plushalf**2.

r(i)=T(i)-netflux(i)*params%dt/params%dx+&

&eta*params%T_h-0.5*eta*T(i)+&

&gamma*(D_plushalf**2.*T(i+1)-&

&(D_plushalf**2.+D_minushalf**2.)*T(i)+&

&D_minushalf**2.*T(i-1))

end do

end subroutine

4.6.11 Subroutine mpl
104a 〈subroutine mpl for program thermosyphon 93〉+≡

〈subroutine mpl for program thermosyphon 93〉

4.6.12 Subroutine U
104b 〈function U for program thermosyphon 104b〉≡

function U(Re)

implicit none

real :: U

real , intent(in) :: Re

real :: a,b,c

a=75.

b=0.

c=0.

U=a/Re**b+c

end function U

4.6.13 Subroutine getParams
104c 〈subroutine getParams for program thermosyphon 94〉+≡

subroutine getParams(params)

implicit none

real :: VHatDot_o,DHat_r,DHat_t,HHat,D_r,c_p,lambda,gamma

real :: g,rho,pi,beta,nu,alpha,Gr,Pe,NTU_o,AHat_h

real :: dx,dt

integer :: regime
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type(parameters) :: params

include ’params.inc’

! constants

g=9.81

rho=997.

pi=2.*asin(1.)

beta=2.6E-4

nu=0.87E-6

alpha=0.147E-6

c_p=4180.

! dx determined by the number of nodes specified

dx=2.0/numI

! the characteristic volumetric flowrate

VHatDot_o = QHatDot_o/(rho*c_p*DeltaTHat_sp)

! the diameter of the restriction

DHat_r=(4.0*VHatDot_o)/(pi*nu*Re_o)

! the diameter of the tank

DHat_t=((VHat*4.0)/(pi*R_a))**(1./3.)

! the height of the system

HHat=R_a*DHat_t

! the dimensionless diameter of the restriction

D_r=DHat_r/DHat_t

! the grashoff number

Gr=(g*beta*DeltaTHat_sp*HHat**3.)/nu**2.0

! the peclet number

Pe=(4.0*VHatDot_o*HHat)/(pi*DHat_t**2.0*alpha)

! if D(3) < 0

! set to computed value of D_r

if (D(3) < 0.) then

D(3)=D_r

end if

! choose dt based on CFL of 0.8

dt=(0.8*dx*pi*D(3)**2)/4.

!! if spec_regime < 0 choose regime based on Re_o

if (spec_regime < 0) then

! flow is turbulent

if (Re_o > 4000. ) then
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regime=3

! flow is transitioning

else if (Re_o > 2300.) then

regime=2

! flow is laminar

else if (Re_o > 0.) then

regime=1

end if

else

regime=spec_regime

end if

! compute lambda at the target reynolds number

if (regime == 1) then

lambda=(16./Re_o+c)

else if (regime == 2) then

lambda=(2.3E-8/Re_o**(-3.0/2.0)+0.0054+c)

else if (regime == 3) then

lambda=(0.0791/Re_o**0.25+c)

else if (regime == 4) then

lambda=c

end if

! the length of the restriction is programmatically

! chosen to satisfy the setpoint at startup

! if set to -1 the riser is assumed to be

! at the set point temperature

if (l(3) < -0.9 .and. l(3) > -1.1) then

l(3)=1./(2.*R_a**3.*Re_o**2./(Gr*D(3)**3.)*lambda)

! if set to -2 the riser temperature is assumed to be

! linearly increasing within the heating section

! and at the setpoint for the rest of the riser section

else if (l(3) < -1.9 .and. l(3) > -2.1) then

l(3)=(1.-0.5*l(1))/(2.*R_a**3.*Re_o**2./(Gr*D(3)**3.)*lambda)

end if

! the length of the unheated riser section "floats"

l(2)=1.-l(1)-l(3)

! compute the rquired NTU_o

NTU_o=Log(T_h/(T_h-1.))

! output the computed values from this subroutine in the form of a structure

params%Gr=Gr

params%Pe=Pe

params%R_a=R_a

params%Re_o=Re_o
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params%l=l

params%D=D

params%c=c

params%regime=regime

params%dx=dx

params%dt=dt

params%numI=numI

params%order=order

params%T_h=T_h

params%U_o=U_o

params%NTU_o=NTU_o

end subroutine
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