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ABSTRACT 

This thesis is to characterize the thin membrane adhesion-delamination 

phenomena which occur in biological cells and micro-electro-mechanical systems 

(MEMS) operation. The delamination of a thin film adhered to a rigid substrate is 

subjected to the coupling effects of tensile residual stress and interfacial adhesion energy. 

The adhesion-delamination mechanics is derived using the classical linear elasticity and 

thermodynamics energy balance. The membrane deformation is here dominated by a 

mixed plate-bending and membrane-stretching, while the concomitant stress is neglected. 

An 1-dimensional model is first investigated where a pre-stressed rectangular film 

clamped at both ends delaminates from a rigid punch of the same dimension as the film 

width. Upon a tensile external load applied to the rigid punch, “Pinch-off”, or stable 

shrinking of the contact area to a line prior to complete detachment, is predicted. The 1-

dimensional model is further extended to a 2-dimensional axisymmetric geometry. A thin 

circular film clamped at the periphery detaches from the planar surface of a rigid 

cylindrical punch upon external load. “Pull-off”, or spontaneous detachment from the 

substrate, occurs when the contact circle shrinks to between 0.1758 and 0.3651 times the 

film radius depending on the magnitude of the residual membrane stress. The finite “pull-

off” radius differs from the 1-dimensional counterpart. The models are useful in 

understanding the behavior of various adhesion-delamination phenomena, such as 

capacitive MEMS-RF switches, micro pumps, microstructure network, and 

nanostructures. 
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1. INTRODUCTION 

1.1. THIN FILM ADHESION-DELAMINATION IN BIOLOGICAL STUDY 

In biology, individual cells adhere and move from one location to another via 

non-specific (e.g. electrostatic) and specific (e.g. ligand-receptor interactions) adhesion to 

form multi-cell aggregates (Figures 1.1 [1] and 1.2[2]), 2-D and 3-D tissues [2]. Because 

most cells are thin-walled capsules with an ultra-thin lipid bilayer membrane down to 100 

Å in thickness, interactions between cells are achieved by thin film adhesion. Situations 

exist when biochemical processes, such as osmosis [3, 4] and shear due to fluid flow [5, 

6], generate mechanical stresses in the cell membranes that are capable of detaching a 

cell from an adhering substrate. Interfacial adhesion-delamination also provides the key 

to cell locomotion [2].  

 
 
 
 

 
 

Figure 1.1. Multi-Cell Aggregates 
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Figure 1.2. Cell Locomotion Along a Flat Substrate  
 
 
 
 
1.2. THIN FILM ADHESION-DELAMINATION IN ELECTRONIC DEVICES 

Physics between surfaces and components down to the microscopic scale is 

different from what usually transpires in the macroscopic scale. Electrostatics due to stray 

charges, meniscus formation due to water condensation, van der Waals interactions, and 

DLVO (Derjaguin, Landau, Verwey and Overbeek) [7] double layers play significant 

roles in microscopic scale electronics and interface of movable components. Many 

concepts of conventional macroscopic engineering structures and machines fail badly in 

the microscopic regime, for instances, electromechanical systems (MEMS) involving 

moveable parts [8] and stiction in microbeams and microstructures [9-11], as well as 

nanomachines in the molecular dimension [8, 10]. When an electrostatic potential in a 

typical MEMS-RF switch (Figure 1.3) is applied to the pad directly underneath the 
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mechanically suspended bridge, the moveable film attaches to the substrate, giving rise to 

an electrical signal [12, 13]. Upon removal of the potential, an ideal bridge resumes its 

undeformed planar geometry. In reality, however, the presence of adhesion at the film-

substrate interface hinders the elastic recovery and can cause the device to fail [8]. 

Further complications arise if the bridge is pre-stressed as a result of thermal mismatch 

between the bridge, clamps, and silicon substrate during fabrication or during device 

operation. A better understanding of the adhesion-delamination mechanism will therefore 

enhance better design, optimize performance, and reliability. Another application is the 

stability of micro-beam networks. The presence of significant surface forces due to high 

relative humidity, van der Waals interactions, and stray electrostatic charges could lead to 

collapse of the microstructure.  

Residual membrane stress can change the apparent stiffness and behavior of thin 

film delamination. Residual stresses that are induced in the films as a result of fabrication 

processes, mismatch of thermal expansion coefficients of film and substrate, and heat 

dissipation during device operation further complicate the already involved stiction 

problems. To improve the design criteria and to assess component reliability, it is vital to 

gain a better understanding of the device behavior due to the coupled interfacial stiction 

and residual stress. 

 
 
 
 

 
 

 

Figure 1.3. Typical MEMS-RF-Switch Design 
 
 
 
 

“ON” Stage “OFF” Stage 
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1.3. OTHER DELAMINATION MODELS 

Adhesion between solid bodies has been extensively investigated since the 

development of the successful Johnson-Kendall-Roberts (JKR) and Derjaguin-Muller-

Toporov (DMT) models [14, 15]. However, these earlier models do not apply to thin 

films because the plate-bending and membrane-stretching deformation modes are vastly 

different from Hertz’s contact problem, where stress at the contact interface is 

compressive, instead of tensile. In Wan’s “punch” test, a circular membrane clamped at 

its perimeter is adhered to a rigid cylindrical punch [16-18] (Figure 1.4). When the punch 

is pulled away by an external tensile load, the contact circle contracted and vanished at a 

critical load and punch displacement. A theoretical model is derived and verified 

experimentally for the interfacial delamination process with a film undergoing mixed 

bending and stretching deformation and zero residual stress. Wan and Kogut [19] further 

derived an elastic model for a flexible stretching membrane with zero flexural rigidity 

and, therefore, zero bending moment. A range of residual membrane stresses is 

considered.  

 
 
 
 

2 a
2 c

r

w0

F

2 a
2 c

r
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Figure 1.4. Axisymmetric Film and Cylindrical Punch 
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1.4. MOTIVATION AND OBJECTIVE OF THIS RESEARCH 

Film-substrate delamination for residual stress-free 1-D linear and 2-D 

axisymmetric models has been discussed with different assumptions in Wan’s work [16, 

17, 19-22]. In this chapter, the same 1-D and 2-D configurations are considered, and 

films in both models are treated as a stiff plate where bending deformation is the only 

dominant mode of deformation. The incremental membrane stress, or concomitant stress, 

induced by the deformed film profile is ignored here, but a constant tensile residual 

membrane stress is introduced. Effects of the coupled interfacial adhesion and residual 

stress are investigated. The models are relevant to a number of MEMS devices and cell 

membranes.   

 

1.5. FRACTURE MECHANICS - ENERGY CONSIDERATION  

To understand why a specific contact area withstanding an external load up to 

certain point before a delamination being triggered at the contact front, it is important to 

study the energy of the system. System energy in the forms of external loading exists as 

potential energy, deformation of the film as elastic energy, and surface energy when new 

surface is created due to delamination. This concept is useful in understanding both 

experimental and theoretical model. When an external force is applied to the work piece, 

a displacement is produced and work is done, UP, on the work piece. Under a fixed load 

condition, the energy of the system is given by [23] 

 
- work done by the external force + increase in strain energy of the body (1.1) 

- F δw0 + ½F δw0 (1.2) 

 
In this thesis, stain energy of the body is represented as UE. If there is a crack 

extension or delamination between layers within the work piece, energy is released as a 

result of the relaxation process, energy, Us, is required to produce the crack growth at 

each tip. US is considered as a constant for each increment of the crack or delamination 

length. Us takes a opposite sign than UP because US is a result of UP. By summing all the 

separate energies, the curve representing the total energy of the system is obtained as 

illustrated in Figure 3.2. There is evident that decrease in contact area in the region 0 ≤ c 
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≤ cequalibrium requires an energy input to the system. However, for c > cequalibrium energy is 

released as a result of decrease in contact area. 

 

1.6. PLATE AND SHELL BENDING THEORY [24] 

1.6.1. Cylindrical Bending of Uniformly Loaded Rectangular Plate with 

Clamped Edges. The author’s 1-D adhesion-delamination model was derived based on 

the Timoshenko’s “Cylindrical Bending of Uniformly Loaded Rectangular Plate with 

Clamped Edges” model (see Figure 1.5), with different boundaries conditions. The 

governing equation of this model is given  

 
2

0 
2 2
ql qxM x h w M= − − σ +  (1.3) 

 
where M is bending moment at any cross section of the film; q is the uniform pressure 

loading over the surface of the film, and σ h is the tensile force. Substitute 

 
2

2 d w M
dx

= −κ  (1.4) 

 
into Equation (1.3) and 

 
2 2

02  
2 2

d w qlx qxh w M
dx

− = − + −κ σ  (1.5) 

 
would be obtained. Differentiate Equation (1.5) in term of x twice and the governing 

equation 

 
4 2

4 2

d w d wh q
dx dx

− =κ σ  (1.6) 

 
is derived and used as the governing equation as (2.1). In the author’s model, external 

load is not applied as a uniform pressure. Instead, it is a shear force at the film/punch 

contact edge. Therefore, q in Equation (1.6) is replaced by Fδ(x) and result in the 

governing equation given in (2.1). 
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Figure 1.5. Cylindrical Bending of Rectangular Plate with Fixed Ends 
 
 
 
 

1.6.2. Symmetrical Bending of the Circular Plate. Timoshenko’s symmetrical 

bending model (Figure 1.6) of the circular plate considered both tangential and radial 

bending moment, Mt and Mr, respectively. The relation of tangential and radial bending 

moment per unit length to the plate profile at any point of the plate is given as 

 
2

2r
d w v dwM

r drdr
⎛ ⎞

= −κ +⎜ ⎟
⎝ ⎠

 (1.7) 

2

2

1
t

d w dwM v
r drdr

⎛ ⎞
= −κ +⎜ ⎟

⎝ ⎠
 (1.8) 

 

Q is a shear force per unit length at the cylindrical section of radius r, which is replaced 

by F/2πr in author’s model, as the shear force is concentrated at the contact edge (r=c). 

The sum of all moments and shear force for an element in the circular plate “abcd,” as in 

Figure (1.6) with proper signs is given to be 

 

 ( )                              
Radial Bending Tangential Bending

Radial Bending at 'a b' at 'c d' at 'a d' and 'b c'

r
r r t

dM
M dr r dr d M r d M dr d

dr
⎛ ⎞+ + − −⎜ ⎟
⎝ ⎠

θ θ θ
1442443 144424443

1444442444443

  

                                        0
Shear forceTensile at the elementStress

dwh r d dr Qr d dr
dr

− + =σ θ θ
1442443

144424443

 (1.9) 

q l    . 

2 
q l    . 

2 

Mo 

w

Mo 

σh 

l 

x
σh 
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Figure 1.6. Timoshenko’s Symmetrical Bending Model. (Above) An Element of 

Symmetrical Bending of the Circular Plate, ‘abcd.’ (Below) Cross-Section of the Element 
 
 
 
 

By neglecting the small quantity of higher order and substituting the expression from , 

(1.7) and (1.8), (1.9) becomes (1.10) 

  
3 2

3 2 2

1 1   σ  d w d w dw dwκ h Q
r dr drdr dr r

⎛ ⎞ ⎛ ⎞+ − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠  (1.10) 

 
where Q is the share force at the contact edge and can be expressed as F/ 2πr. 

O r 

Q 

r
r

dM
M dr

dr
+

dQQ dr
dr

+

σh 

 dr  r 

 h  
Mr

a

b

c

d

R O d θ
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2. FILM-SUBSTRATE DELAMINATION OF 1-D RECTANGULAR PLATE 

2.1. MODEL AND ASSUMPTIONS 

Film-substrate delamination is a delamination process of a film from a punch 

substrate. The 1-D model, as illustrated in Figure 2.1, is a rectangular model such that the 

coordinate of the system can be considered to be a straight line in one direction x. The 

rectangular film with thickness h, elastic modulus E, Poisson’s ratio ν, bending rigidity 

κ = Eh3 / 12(1−ν2), and tensile residual stress σ0, is clamped at both ends and in contact 

with a punch substrate where the contact surface energy is Γ. Under this situation, the 

clamped section of the film is assumed to be fixed and no side sliding will occur at any 

time.  

 
 
 
 

 
Figure 2.1. 1-D Rectangular Film/Substrate Delamination Model 

 
 
 
 

When an external force is applied to the punch substrate to the film surface in the 

normal direction, the punch will move away from the film and will cause the film-punch 

delamination and deformation of the film at the over-hanging section. Assuming the film 

is a stiff plate (large E) such that the film is undergoing bending deformation, tensile 

x
2l
2c

0w

F
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stress of the film will be dominated by residual stress, so that σºσ0 with film profile, 

w(x). Once F reaches a critical load, a delamination is driven into the film-substrate 

interface with an adhesion energy, γ, and the contact length shrinks to c (< l). Without 

delamination (constant c), the film deformation is governed as shown in (2.1) 

 
4 2

0                          ( )   
Plate-bending Central external loadMembrane-stretching

due to residual stress

w h w F xκ ∇ − σ ∇ = δ14243 142431442443
 (2.1) 

 

where  ∇
2  ≡ ∂2 / ∂x2 is the Laplacian operator in the 1-D Cartesian coordinate system, and 

δ(x) is the Dirac delta function denoting the applied force loading acting at the contact 

edge. In fact, the actual mechanical force on the membrane is concentrated at the contact 

edge or F δ(c), but it is mathematically equivalent to write F δ(x). 

 

2.2. SOLVING GOVERNING EQUATION  

Because the 1-D linear model is symmetric about the center of the film where the 

origin of the coordinate system lies, only one side of the model is considered for 

calculation. Within the contact (x < c), the film is planar, which implies w = w0 and 

dw/dx = 0. The integration of Equation (2.1) is  

 
3

03           
2

w w Fh 
xx

∂ ∂
κ − σ =

∂∂
 (2.2) 

 

where F is the force applied to the punch per unit width. The first term corresponds to the 

bending deformation of the overhanging film, where c < x < l, and the second term 

corresponds to the stretching deformation at the same region due to residual stress. A set 

of normalized variables, ω /w h= , ξ /x l= , 2 1/2 1/2
0β (  / κ) σl h= , and 3( / 2 ) l h Fϕ = κ , will 

be adopted for simplicity. The equation is then 

 
3

2
3           ∂ ω ∂ω

− β = ϕ
∂ξ∂ξ

 (2.3) 
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The boundary conditions are given by (∂ω/∂ξ) = 0 at the contact edge (ξ = λ) and at the 

clamps (ξ = 1), and ω = 0 at ξ = 1. The solution of (2.3) is 

 

  
ω =  

ϕ
β3   

1
eβλ + eβ

⎛
⎝⎜

⎞
⎠⎟

eβξ  −  
eβ(λ+1)

eβλ + eβ

⎛

⎝⎜
⎞

⎠⎟
e−βξ  +  β (1− ξ) +  

eβλ − eβ

eβλ + eβ
 

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (2.4) 

 

with vertical displacement at ξ = λ,  

 

 
ω0 = ω |ξ=λ =  ϕ  −

2
β3 tanh

β
2

(1− λ)
⎡

⎣
⎢

⎤

⎦
⎥  +  

1
β2 (1− λ) 

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (2.5) 

 

The first two exponential terms in Equation (2.4), eβξ and e–βξ, and the hyperbolic tangent 

term in (2.5) are the result of the bending moments at the clamps and the contact edges 

(c.f. first term in (2.2) and (2.3)). For a fixed contact area (λ = constant), the constitutive 

relation in Equation (2.5) is linear with ϕ ∂ ω0, and the proportionality constant (the curly 

bracket in (2.5)) depends on β and λ only. 

 

2.3. ENERGY BALANCE OF THE DELAMINATION SYSTEM 

2.3.1. Delamination Event and Energy Balance. The delamination process is 

investigated by an energy balance. Once the external force loading reaches a certain 

threshold, delamination is driven into the contact surface from both ends of the film 

toward the center. The total energy, UT, of the film-punch system consists of three 

elements 

 

UT = UP + UE + US (2.6a) 

 

where potential energy, UP, elastic energy, UE, and surface energy, US are 
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0 PU F w=  

0 1
20 00

   
w

EU F dw F w= − = −∫  

2  SU c= γ  (2.6b) 

 

Due to the linear relation of ϕ ∂ ω0, the integration of UE can be reduced to -½ F wo. 

(2.6a) and (2.6b) can be normalized using the relationship ΣT = (l2/2κh2) UT. Thus, the 

total energy of the system and its elements would be, 

 

ΣT = ΣP + ΣE + ΣS (2.7a) 

0 PΣ = ϕ ω  

0 1
20 00

   
w

E dΣ = − ϕ ω = − ϕ ω∫  

 SΣ = Γ λ  (2.7b) 

 

2.3.2. Delamination Trajectory in Terms of Energy. Delamination occurs when 

∂UT /∂c ¥ 0. At equilibrium, when the equals sign holds, 

 

0
constant

1   
2 F

F w
c =

∂ ⎛ ⎞γ = − ⎜ ⎟∂ ⎝ ⎠
 (2.8) 

 

In order to normalize the variables for simplicity, ω /w h=  and 3( / 2 ) l h Fϕ = κ  to 

Equation (2.8), so that Γ = (l4/ kh2) and  

 

0
0

constant

2

3

1       
2 2

     =    2 tanh (1 )    (1 ) 
22 

ϕ=

∂ω∂ ϕ ⎛ ⎞⎛ ⎞Γ = − ϕ ω = −⎜ ⎟ ⎜ ⎟∂λ ∂λ⎝ ⎠ ⎝ ⎠

ϕ ∂ ⎧ β ⎫⎡ ⎤− λ − β − λ⎨ ⎬⎢ ⎥∂λβ ⎣ ⎦⎩ ⎭

 

2 2
2

1 (1 ) tanh  
22

⎧ ⎫β − λ⎡ ⎤= ϕ⎨ ⎬⎢ ⎥β ⎣ ⎦⎩ ⎭
 (2.9) 
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As delamination proceeds, the contact area shrinks from both ends toward centers of the 

punch until condition in the (2.9) is satisfied. In summary, Table 2.1 lists the conversions 

between all the variables and their corresponding normalized variable. 

 
 
 
 

Table 2.1. Normalized Variables used in the 1-D Film-Substrate Delamination Model 

 Physical Parameters Normalized Parameters 

Geometrical 

Parameters 

w = deformation profile 

h = film thickness 

l = film length 

c = length of contact area 

ω /w h=  

ξ /x l=  

/c lλ =  

Material 

Parameters 

E = elastic modulus 

ν = Poisson’s ratio 

κ = flexural rigidity = E h3 / 12 (1−ν2)  

γ = interfacial adhesion energy (J.m-2) 

σ0 = tensile residual stress (N.m-2) 

4

2

l
h

⎛ ⎞
Γ = γ⎜ ⎟κ⎝ ⎠

 

1/22
1/2

0β σ
κ

l h⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

Mechanical 

Loading 

F = applied external force  

w0 = vertical displacement of punch 

TU = total energy of film-punch system 

3

2
l F

h
ϕ =

κ
 

h
w0

0ω =  

3

22T T
l U
h

Σ =
κ

 

 
 
 
 

Rewriting (2.9) as ϕ(λ) 

 

2 (1 )  2  coth   
2

β − λ⎡ ⎤ϕ = β Γ ⎢ ⎥⎣ ⎦
 (2.10) 
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It is logical to consider ϕ as a function of λ because the external force will never be a 

factor of the size of the contact area, but the size of the contact area affects the 

equilibrium external force. 

 

2.4. CONSTITUTIVE RELATION 

At every equilibrium stage of delamination, the punch displacement is related to 

the contact length by eliminating ϕ from Equation (2.5) and (2.10)  

 

 
ω0 =  2 β2  Γ   

1− λ
β2 coth

β
2

(1− λ)
⎡

⎣
⎢

⎤

⎦
⎥ −

2
β3  

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪  (2.11) 

 

The general delamination trajectory for any Γ and β can be found by eliminating λ from 

Equation (2.5) and (2.10) and becomes 

 
ϕ =  2 β2 Γ  coth  

1
ϕ

 
β3ω0

2
+ 2 β2 Γ

⎛

⎝
⎜

⎞

⎠
⎟  

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (2.12) 

 

which is a transcendental function involving ϕ on both sides of the equation. The 

asymptotic behavior will be discussed later. As for now, to circumvent the 

mathematically formidable task, ϕ(ω0) can be found as a log-log parametric plot with a 

fixed Γ and β and a varying λ. If the constitutive relation is cast in the form of ϕ ∂ (ω0)n 

as in Wan’s earlier work [16, 21],then the gradient of ϕ(ω0) in a log-log graph is given by 

 

  
n =  

∂(logϕ)
∂(logω0 )

=
ω0

ϕ
∂ϕ / ∂λ

∂ω0 / ∂λ

⎛

⎝⎜
⎞

⎠⎟
  =  

2 tanh β(1− λ) / 2⎡⎣ ⎤⎦ − β(1− λ)

sinh β(1− λ)⎡⎣ ⎤⎦ − β(1− λ)
 (2.13) 

 

Here n(β,λ) is independent of Γ and is confined by –½ § n § 0. The independence of Γ is 

because Γ is a coefficient of ϕ(β, λ) and ω0(β, λ) (see Equations (2.10) and (2.11)) and is 

canceled out in Equation (2.13). Thus, delamination behavior will not be affected by 

residual stress. The lower limit corresponds to the dominant bending moments (β → 0 
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and ϕ ∂ ω0
–1/2), while the upper limit denotes the dominant residual stress (β → ∞ and 

ϕ = constant). 

Two limiting cases for β = 0 and β → ∞ are derived. For a film free of residual 

stress (β = 0), (2.10) and (2.11) reduce to 

 

 
ϕ |β=0 =

8
1− λ

 Γ1/ 2  (2.14) 

 
ω0 β=0

=
(1− λ)2

18
 Γ1/ 2 , (2.15) 

 

respectively. The external load diminishes with the contact area (i.e., decreasing λ) and 

reaches its minimum at (8 Γ)1/2 when λ = 0. However, one ambiguity exists with 

Equation (2.14). If the punch substrate has the same length as the film, then the applied 

load at the delamination initiation stage (λ → 1), ϕ|β=0 approaches infinity, which is non-

physical. For the same situation in real life, the film is under pure shear loading at the 

contact edge, which is not considered in the model. The discrepancy is the result of the 

assumption that the film has a uniform bending moment along its thickness. For a very 

short delamination length compared with the film thickness, (l – c) >> h, the stress field 

is confined to the vicinity of the delamination front, reminiscent of a small crack in a 

continuum solid. Equation 2.1, therefore, breaks down, and the subsequent calculation 

becomes invalid. Because a practical punch in an experiment must be shorter than the 

film span, the mathematical singularity is ignored in the following discussion. 

Eliminating λ from (2.14) and (2.15), the mechanical response reduces to 

 

 

ϕ |β=0 =  
32
9

⎛
⎝⎜

⎞
⎠⎟

1/ 4

Γ3/ 4
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
ω0

1/ 2  (2.16) 

 

which is consistent with (2.13) and implies ϕ ∂ ω0
–1/2. Experiments can only be 

conducted in the fixed-grips (i.e., displacement-controlled) configuration to maintain 
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stable equilibrium at all λ. It can easily be shown that ∂2ΣT /∂λ2 < 0 using 2.10, which 

warrants stability for fixed ω0. In the limit of β → ∞, Equations 2.10 and 2.11 reduce to  

 

 
ϕ |β→∞ = 2 β2  Γ   (2.17) 

 
ω0 β→∞

=  
2 Γ  
β

(1− λ) , (2.18) 

 
respectively. Equation (2.15) requires the delamination load to be constant and 

independent of the simultaneous contact length as long as Γ and β are fixed. Practically, 

when the punch is pulled from the film in a fixed-grip configuration, the applied load 

stays constant until the contact area gradually and stability shrinks and ultimately reduces 

to a line (λ = 0). Then the film separates completely from the punch. The delamination 

process is technically a neutral equilibrium [25], i.e., ∂2ΣT /∂λ2 = 0. If a fixed-load is 

chosen, then once the load reaches the critical threshold, delamination will initiate and 

continue spontaneously until the entire contact area vanishes.  

Figure 2.2 shows the delamination trajectory ABCD for Γ = 1 and β2 = 100. 

When the punch displacement is small along path AB, ϕ(ω0) approximates Equations 

(2.12) and (1.13), and n ≈ –½. Further movement of the punch leads to path CD with  

ω0 > 0.01 where the external load stays constant following (2.15) and n ≈ 0. At D, the 

terminal point along the delamination curve, the contact reduces to a line with λ* = 0, and 

the film pinches off the substrate at ϕ* and ω0
* with the asterisk denoting “pinch-off” 

hereafter. At D  

 

 
ω0

* =  2 β2  Γ   
1

β2 coth
β
2

⎛
⎝⎜

⎞
⎠⎟

−
2
β3  

⎡

⎣
⎢

⎤

⎦
⎥  (2.19) 

 
by putting λ = 0 in (2.11). The bending-stretching transition occurs along path BC and 

can be approximated by the intersection of (2.16) and (2.17)  

 
1/ 2 1/ 2

#
0 2

8 = 
9

Γ⎛ ⎞ω ⎜ ⎟ β⎝ ⎠
 (2.20) 
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Figure 2.2. 1-D Constitutive Relation Delamination Trajectory 

 
 
 
 

Film-punch substrate delamination depends on the amount of residual stress. 

Films with small residual stress possess large ω0 (>ω0*), and “pinch-off” takes place 

under bending deformation prior to any membrane stretching. Figure 2.3 shows ϕ(ω0) for 

a fixed Γ and a range of β. All curves in Figure 2.3 terminate at “pinch-off” (ω0 = ω0
* and 

λ = 0). For β = 0, ϕ(ω0) strictly follows Equation (2.16) with n = –½. For a larger β and 
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ω0 < ω0
*, the deviation of ϕ(ω0) from Equation (2.17) and (2.18) exacerbates and ϕ* 

increases at a diminishing ω0
* as shown by the dashed curves. 
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Figure 2.3. The 1-D Constitutive Relation Delamination Trajectories under Ranges of 
Residual Stress and Interfacial Adhesion Energy 

 
 
 
 

In the limit of β → ∞, ϕ(ω0) approaches the asymptote in Equation(2.19). 

Increasing Γ translates the family of ϕ(ω0,β) curves to higher values of ϕ and ω0. Figure 

2.4 shows the gradient n as a function of λ for a range of β and any value of Γ, with –½ § 
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n § 0. As discussed in the previous section, n is independent to Γ. Delamination proceeds 

from right to left with a decreasing λ and is indicated by the arrow. At the delamination 

initiation stage (λ = 1 and ω0 = 0), n = –½. At “pinch-off” (λ = 0 and ω0 = ω0
*), n varies 

between 0 (for  ω0
 < ω0

#) and –½ (for ω0
 > ω0

#) depending on the value of β. The 

trajectory ABCD corresponds to ABCD in Figure 2.2. 

 
 
 
 

Contact length, λ = c / l
0.0 0.2 0.4 0.6 0.8 1.0

n 
= 

d(
lo

g 
ϕ 

)/d
(lo

gω
0)

 

-0.5

-0.4

-0.3

-0.2

-0.1

0.0
103

100

10

20

5

β2 = 1

Bending Dominant

Residual Stress Dominant

D
el

am
in

at
io

n 
in

iti
at

io
n 

(ω
0 =

 0
)Delamination

A

B

CD

Pi
nc

h-
of

f (
ω

0 =
 ω

0*
)

 
Figure 2.4. Gradient of Delamination Trajectory n versus Contact Length c with a Range 

of Residual Stress β2 
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3. FILM-SUBSTRATE DELAMINATION OF 2-D AXISYMMETRIC PLATE 

3.1. MODEL AND ASSUMPTION 

In this section, the film of the axisymmetric model is assumed to be a stiff plate. 

Therefore, deformation of the film would be mostly bending, and concomitant stretching 

would be negligible. This assumption is the same as the rectangular model in Section 2. 

Figure 3.1 shows a circular film with a radius, a, thickness, h, elastic modulus, E, 

Poisson’s ratio, ν, bending rigidity, κ = Eh3 / 12(1−ν2), and tensile residual stress, σ0, 

clamped at the perimeter. The film is brought into adhesive contact with the planar 

surface of a rigid cylindrical punch with a radius slightly smaller than a. The film-punch 

interface has an adhesion energy, γ, and the initial contact radius is a. An external tensile 

force, F, is applied to the cylindrical punch substrate. The film profile, w(r), is deformed 

by plate-bending (Figure 3.1).  

 
 
 
 

2 a
2 c

r

w0

F

2 a
2 c

r

w0

F
 

Figure 3.1. Axisymmetric Model with Plate-Bending Deformation 
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At a critical load and punch displacement, delamination is driven into the film-

substrate interface, and the contact radius contracts to c (< a). The force-displacement 

relation without delamination incorporates the delamination mechanics. The deformation 

profile of the freestanding annulus (c § r § a) around the contact circle, w(r), is governed 

by von Karman’s equation [16], 

 
4 2              σ             ( )   

Plate-bending Membrane-stretching Central external load
κ w h w F δ r∇ − ∇ =14243 1442443 14243

 (3.1) 

 

with )(12

r
r

rr ∂
∂

∂
∂

=∇ , the Laplacian operator in cylindrical coordinates for axisymmetric 

configuration; δ(r), the Dirac delta function denoting the applied load acting at the 

contact edge, and σ, the total membrane stress on the film. Because the film is under 

plate-bending deformation, it is assumed the σ º σ0 as the concomitant stress is 

essentially zero. 

 

3.2. SOLVING VON KARMAN’S EQUATION 

Within the contact (r < c), the film is planar, w = w0 and therefore dw/dr = 0, 

implying zero mechanical force acting on the film. After integration, Equation (3.1) can 

be reduced to  

 
3 2

3 2 2

1 1   σ   
2

d w d w dw dw Fκ h
dr r dr r dr dr r

⎛ ⎞ ⎛ ⎞+ − − =⎜ ⎟ ⎜ ⎟ π⎝ ⎠⎝ ⎠
 (3.2) 

 

The right-hand side is the line force at the contact edge with a length of 2πr. An 

alternative interpretation of (3.1) is that the central point load applied to the punch F δ(r) 

is distributed to a line load at the contact edge (r = c). A set of normalized variables 

including, ω = w/h, ξ = r/a , and θ = (a/h)(dw/dr), is substituted into Equation (3.2). Thus, 

 
2

2 (1 )2 2
2

∂ θ ∂θ
ξ + ξ − + β ξ θ = ξϕ

∂ξ∂ξ
 (3.3) 
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is derived. Because of the bending deformation at the contact edge and clamped 

perimeter, the boundary conditions of (3.3) are θ(1) = θ(ζ) = 0. Equation 3.3 is the 

modified Bessel equation [26], which gives 

 

1 1 2 1 2

1  (  (C I C K⎡ ⎤
θ = ϕ βξ) + βξ) −⎢ ⎥β ξ⎣ ⎦

 (3.4) 

 

where In and Kn are the nth modified Bessel functions of the first and second kind, and C1 

and C2 are constants to be fit to the boundary conditions: 

 

1 1
1 2

1 1 1 1

( )  ( )1
( ) ( ) ( ) ( )

K KC
I K I K

⎡ ⎤β − ζ βζ
= ⎢ ⎥β ζ β βζ − βζ β⎣ ⎦

 (3.5a) 

1 1
2 2

1 1 1 1

( )  ( )1
( ) ( ) ( ) ( )

I IC
I K I K

⎡ ⎤β − ζ βζ
= ⎢ ⎥β ζ β βζ − βζ β⎣ ⎦

 (3.5b) 

 

The profile is found by integrating θ with respect to ξ to give  

 

[ ]1 0 2 0 3
log 1 ( ) ( )C I C K C⎧ ⎫ϕ ξ

ω = − + βξ − βξ + −⎨ ⎬β β⎩ ⎭
 (3.6) 

 

C3 is a constant satisfying boundary condition at the perimeter, where ω(ξ) = 0,  

 

[ ][ ]0 1 1 0 1 1
3 2

1 1 1 1

( ) 1 ( )  ( ) ( )[ ( )  ( )]1
( ) ( ) ( ) ( )

I K K K I I
C

I K I K
⎡ ⎤β − β − ζ βζ + β β − ζ βζ

= ⎢ ⎥β ζ β βζ − βζ β⎣ ⎦
 (3.6b) 

 

The vertical displacement of the punch, or in other words, the central displacement of the 

diaphragm, ω0, is ω(ξ), and  

 

[ ]0 1 0 2 0 3
log    1 ( ) ( )C I C K C

ξ=ζ

⎡ ⎤ϕ ζ
ω = ω = − βζ − βζ + −⎢ ⎥β β⎣ ⎦

 (3.7) 
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Note that the relation, F(w0) or ϕ(ω0), is linear (i.e., ϕ ∝ ω0), because the square bracket 

in (3.7) is a constant depending only on the residual stress and the contact radius. This 

proportionality constant increases for a larger residual stress, leading to a stiffer film and 

a higher apparent elastic modulus. Similarly, a large punch gives rise to a narrower 

freestanding annulus and thus a less compliant system with a lower ω0.  

 

3.3. ENERGY BALANCE OF THE DELAMINATION SYSTEM 

3.3.1. Delamination and Energy Balance. Once the applied tensile load exceeds 

a critical threshold, delamination drives into the film-substrate interface from the 

suspended annulus toward the center of the punch. The delamination mechanics are 

derived by a thermodynamic energy balance. The total energy of the punch-film system is 

given by  

 

UT = UP + UE + US (3.8) 

 

Similar to the 1-D model, the total energy of the film/punch system consists of three 

elements: potential energy, UP, elastic energy, UE, and surface energy, US: 

 

0 PU F w=  

0 1
20 00

   
w

EU F dw F w= − = −∫  

2   SU c= − π γ  (3.9) 

 

Due to the linear relation of ϕ ∂ ω0, the integration of UE can be reduced to -½ F wo. 

Equation (3.8) can be normalized using the relationship ΣT = (a2/2πκh2) UT. Then, total 

energy of the system and its elements would be 

 

ΣT = ΣP + ΣE + ΣS (3.10a) 
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0 PΣ = ϕ ω  

0 1
20 00

   
w

E dΣ = − ϕ ω = − ϕ ω∫  

 SΣ = −Γ λ  (3.10b) 

 

Substituting (3.10a) into (3.10b),  

 

ΣT = ½ ϕ ω0  − ζ2  Γ (3.11) 

 

Coupling of interfacial adhesion and residual stress is obvious when substituting (3.7) 

into (3.11). 

3.3.2. Delamination Trajectory in Terms of Energy. As mentioned in Section 

3.3.1, delamination occurs when an external load exceeds certain threshold. To 

demonstrate how (3.11) accounts for the thin film delamination, and the parameters are 

set to be Γ = 1.00 and β = 1.00. Figure 3.2 shows a family of ΣT(ζ) for a range of ω0. 

Assume the diameter of the punch is 0.5702 time of the film’s, the punch can be raised 

from ω0 = 0 to 0.05, where a stable equilibrium at without delamination. Further increase 

occurs in the punch displacement to B’, and the contact radius remain unchanged. The 

total energy of the system is at an unstable point and there is a tendency to push the 

system energy toward point B where contact radius ζB decrease from 0.5702 to 0.4464 as 

shown in Figure 3.2. 

From a mathematical standpoint, delamination occurs when (∂ΣT / ∂ζ) ≥ 0. Figure 

3.2, B’ is at a point where (∂ΣT / ∂ζ) ≥ 0 and B is at a point where (∂ΣT / ∂ζ) = 0. To 

derive the delamination trajectory, which is a series of equilibrium points, derive (∂ΣT / 

∂ζ) = 0 from (3.11) and get, 

 

0
2

 constant
  

2 ( )
d

d ϕ=

ω⎡ ⎤ϕ
Γ = ⎢ ⎥ζ⎣ ⎦

 (3.12) 
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Figure 3.2. System Energy Tends to Settle at a Stable Equilibrium Point. 

 
 
 
 

Figure 3.3 is the same plot as Figure 3.2 with a grey delamination trajectory. The 

grey trajectory connects all the minima (A-B-C) at different punch displacement levels 

and denotes the stable delamination trajectory. Ultimately when ω0 reaches 0.1108, the 

two extrema merge to an inflexion at C with (d2ΣT/dζ2) = 0, ω0
* = 0.1108, ζ* = 0.1796, 

and ϕ* = 1.6286, resulting in a neutral equilibrium. An incremental increase from ω0
* 

leads to a spontaneous “pull-off,” the contact radius drops to zero (ζ = 0), and the film 

snaps from the substrate. The dashed curve OC joining the maxima of ΣT(ζ) is physically 

inaccessible and will be ignored.  
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Contact Radius ζ = c/a
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Figure 3.3. Delamination Trajectory of the System Energy (Grey Line) 

 
 
 
 

Substituting (3.7) into (3.12), 

 

1/21 1 1 1

1 0 0 1

( ) ( ) ( ) ( )   2    
( ) ( )  ( ) ( ) 1/β

I K I K
I K I K

⎡ ⎤β βζ − βζ β
ϕ = βζ Γ⎢ ⎥β βζ + βζ β −⎣ ⎦

  (3.13) 

 

Equation (3.13) requires both ϕ and ω0 to be proportional to Γ1/2 (because ϕ ∂ ω0 in 

(3.7)), and Γ can be factored out from the right hand side of (3.11). Because “pull-off” 
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requires (∂ΣT/∂ζ) = 0, once β is fixed, ζ* is automatically determined and is therefore 

independent of Γ. When (∂ΣT / ∂ζ) < 0, however, the film will not be adhered back onto 

the punch surface as the mathematical prediction. It is because the film would tend to 

release elastic stretching from the already deformed overhanging section rather than 

restoring surface energy by creating new adhered surface. At this point, all the 

normalized variables for the 2-D axisymmetric model have been introduced, and are 

summarized in Table 3.1.  

 
 
 
 

Table 3.1. Normalized Variables Used in the 2-D Film-Substrate Delamination Model  

 
 
 
 

 Actual Parameters Normalized Parameters 

G
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m
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l w(r) = deformation profile 
h = film thickness 
a = film radius 
c = radius of the film-substrate contact 
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M
at

er
ia

l 

E = elastic modulus 
ν = Poisson’s ratio 
κ = flexural rigidity  

= E h3 / 12 (1−ν2)  
γ = interfacial adhesion energy  

(J.m-2) 
σ0 = tensile residual stress (N.m-2) 

4

2Adhesion Energy, 
2

a
h

⎛ ⎞
Γ = γ⎜ ⎟κ⎝ ⎠

, 
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F = applied external force  
w0 = vertical displacement of the punch 

TU = total energy of film-punch system 
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3.3.3. Coupling Effect of Adhesion Energy and Residual Stress. The situation 

with a constant β with a varying Γ will be considered, followed by a constant Γ with a 

varying β. Figure 3.4 shows the stable trajectory of ΣT(ζ) for β = 1 and a range of Γ. Each 

curve exercises a maximum corresponding to “pull-off” at ζ* = 0.1796 and the branch 

with ζ < ζ*  (the area on the left-side of Figure 3.4) is physically inaccessible. The Γ-

independency of ζ* will be mathematically verified in the next section. 
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Figure 3.4. System Energy at a Range of Adhesion Energy 
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Next, assume Γ = 1 with a varying β, Figure 3.5 shows the stable delamination 

paths and “pull-off” at the maxima. As the residual stress increases, membrane stretching 

dominates and bending becomes negligible. 

 
 
 
 

 
Figure 3.5. System Energy at a Range of Residual Stress with ζ*
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with ζ*
min = 0.1758 for β = 0 and ζ*

max = e−1 = 0.3679 for β → ∞. A large residual leads 

to a stiff film where stretching deformation dominates and bending becomes negligible. 

Figure 3.6 shows ζ*(β2), which is independent of Γ. The open circle on the curve denotes 

the “pull-off” event at point C in Figure 3.3 with Γ = 1.00 and β = 1.00.  
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Figure 3.6 Change in “Pull-Off” Radius as a Result of Increase in Tensile Residual Stress 
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3.4. CONSTITUTIVE RELATION 

To derive ϕ(ω0) for the delamination process, ζ can be eliminated from (3.7) and 

(3.12). To circumvent the formidable mathematical operation, the exact form of ϕ(ω0) 

can be found by a parametric method with a varying parameter ζ, because both ϕ and ω0 

are functions of ζ. Figure 3.7 shows ϕ(ω0) with Γ = 1.00 and β = 1.00 for a punch with 

radius ζA = 0.5702.  
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Figure 3.7 Delamination Trajectory of the 2-D Model Constitutive Relation  
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film. According to Equation (3.7), the loading process is linear because of the linear 

ϕ(ω0). As the punch moves beyond point A, delamination starts to propagate according to 
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circle along ABC. Point C denotes the last point on the energy balance curve. Here, the 

gradient of ϕ(ω0) tends to infinity, i.e. (dϕ/dω0) → ∞. Further increase in ω0 violates the 

energy balance. “Pull-off” occurs and the external load drops to zero at D. The critical 

values of ϕ*, ω0
*, and ζ* at “pull-off” can be experimentally measured, yielding both the 

adhesion energy and residual stress. The nonphysical branch CO is a direct result of only 

mathematical balance of the energy equation and is shown as the dashed curve in Figure 

3.3. If the cylinder has exactly the same diameter as the clamped film, then the 

overhanging annulus (a – c) vanishes and a theoretically infinite external load is required 

to initiate delamination. Such a force singularity is a direct consequence of the membrane 

deformation assumption. When the delaminated annulus has a width much smaller than 

the film thickness (i.e., (a – c) << h) in the crack initiation stage, the mechanical stress is 

confined to a small region around the delamination front, the characteristics of being a 

film subjected to bending-stretching is lost, and Equation (1) breaks down. In fact, the 

initiation load is finite in an ultra-thin membrane with zero flexural rigidity [18]. The 

exact solution for the delamination initiation stage is beyond the scope of this thesis. 

The coupling effects of adhesion and residual stress are illustrated in Figures 3.8 

and 3.9.  Figure 3.8 shows the delamination path with β = 1.00 with a varying Γ.  The 

curve labeled ABC is identical to that in Figure 3.3. The gray curve connects the “pull-

off” events, thus increasing adhesion energy shifts ϕ* and ω0
* to higher values as 

expected. Because both ϕ and ω0 are proportional to Γ1/2 and ζ* is a constant for fixed β 

(c.f. Equations 3.7 and 3.13), it can be easily deduced that ϕ* ∂ ω0*. Figure 3.9 shows 

the delamination path with Γ = 1.00 with a varying β. The gray curve connects all the 

“pull-off” events. The limiting case of β → ∞ leads to a remarkable result, namely 

 

*
2 *
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as derived from (3) and (6), and ζ* = ζ*
max = e−1. Increasing the residual stress stiffens the 

film and shifts the “pull-off” event to a higher ϕ* but a lower ω0
*. 
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Figure 3.8. Delamination Trajectory under the Effect of Increasing Adhesion Energy 
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Figure 3.9. Delamination Trajectory under the Effect of Increasing of Tensile Residual 
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4. DISCUSSION 

4.1. GENERAL DISCUSSION OF THE TWO MODELS 

A few general remarks regarding the assumptions and implications of the 1-D and 

2-D models are warranted. Foremost, the deformed film profile upon external load could 

lead to a non-zero concomitant membrane stress in addition to the intrinsic residual stress. 

There are, however, several shortcomings in ignoring σm. The error will be most 

significant at the bending-stretching transition when the total elastic energy UE comprises 

comparable bending and stretching components. This occurs when the punch 

displacement is roughly the film thickness (w0 ≈ h) : (i) When the residual stress falls 

roughly below βmin = 1, the film is governed by bending only and the effect of residual 

stress can be ignored; (ii) When the residual roughly exceeds βmax = 103, the bending 

component can be ignored; (iii) In the intermediate range (βmin < β < βmax), the 

concomitant stress should be considered, though its inclusion leads to a slight shift in the 

mechanical response only. In addition, it is interesting to compare the 1-D model 

presented here with the 2-D circular film counterpart. The 2-D model predicts a “pull-

off” event that leads to a non-zero contact circle prior to a spontaneous delamination. The 

critical “pull-off” radius was theoretically found and experimentally verified earlier to 

fall between 0.1757 (for β → 0) and 0.3679 (for β → ∞) of the film radius [17, 18, 20]. It 

is interesting to compare the 1-D model presented here with the 2-D circular film 

counterpart. The 2-D model predicts a “pull-off” event that leads to a non-zero contact 

circle prior to a spontaneous delamination. The critical “pull-off” radius was theoretically 

found and experimentally verified earlier to fall between 0.1757 (for β → 0) and 0.3679 

(for β → ∞) of the film radius [17, 18, 20]. The 1-D model, on the other hand, predicts a 

“pinch-off” with the contact area gradually and stably shrinking to zero under the fixed-

grips configuration. It is logical to deduce that for an elliptical film (intermediate 

geometry between a circle and a straight line), the critical “pull-off” contact area is 

expected to be finite and lies between the two extremes. The present work will serve as 

the asymptotes for an elliptical film-punch system. 

Although the main focus of this thesis is in thin film delamination, the 

complementary adhesion mechanics are virtually equivalent with some remarkable 
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differences. If a micro-probe is made of a clamped freestanding film to measure the 

surface forces of a certain sample, then the thermodynamic energy balance can be 

formulated in exactly the same manner as above, though the zero-range surface force 

assumed in the current model must be modified accordingly. When the probe moves to a 

distance w0
* from the sample surface, the film is energetically more favorable to jump 

into adhesive contact, or “pull-in”. In fact, “pull-off” and “pull-in” are equivalent in 

thermodynamic terms. However, a long-range interaction is required for “pull-in” to 

occur. If the surface force range is shorter than w0
*, then the film will stay largely 

undeformed because of an energy barrier across the gap. Conversely, a long-range force 

with range exceeding w0
* will trigger “pull-in.” 

 

4.2.  APPLICATION TO A 1-D MEMS-RF SWITCH 

The rectangular model can be applied to MEMS-RF switch and is taken as an 

example to illustrate the usage of the new model (Figure 2.1). The device has a gap of 

fixed separation, w0, between the bridge and the electrostatic pad underneath. Unlike the 

moveable punch in this new model, the pad is at rest and fixed in position. Adhesion 

occurs when an electrostatic attraction compels the bridge to make contact with the 

substrate. Upon grounding the pad, the bridge-pad dielectric space is free of long-range 

surface forces, but the adhesive interface is supported by short-range attractions such as 

van der Waals interaction and water meniscus due to relative humidity in the 

environment [27]. Thus, the total energy of the system thus becomes UT = UE + US, 

because UP = 0. For a linear mechanical response ϕ(ω0) (c.f. Equation (2.5)),  

UE = –(½)Fw0. The resulting UT, the energy balance, and the delamination mechanics are 

therefore identical to what was derived above, consistent with the principle of 

equivalence of fixed load and fixed grips in linear systems [25]. There are several 

significant implications in the switch design. Should the bridge-pad gap be designed such 

that ω0
 < ω0

*, removal of the electrostatic potential does not detach the bridge but leaves 

it in adhesive contact with the pad with a contact length given by (2.11). For 0 < ω0< ω0
*, 

a non-zero contact length is expected as shown in Figure 2.3 by A, B, and C. At D, the 

contact is reduced to a central line (λ = 0). The device is operational only when the gap 

exceeds a minimal value of ω0
* = (ω0)D given by (2.17). Stronger adhesion requires a 
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larger gap, and stiffer film with a larger residual stress requires a smaller gap. The critical 

value of ω0
* is also related to the materials properties of the bridge of specific span and 

width. Another outcome of the present model is the mechanical force acting on 

membrane by the substrate (or punch), which can be found by substituting Equation (2.17) 

into (2.12). If the resulting bending moments exceed the yielding limit of the bridge 

materials, plastic deformation occurs and the device fails [28]. The coupled effect of 

adhesion and residual stress must be considered in order to design the optimal geometry 

of a MEMS-RF switch.  

The present model is compared to an existing model in the literature. Yang [29] 

derived an elastic model similar to MEMS-RF switch for bending deformation only but 

predicted a fixed “jump-in” area with λ = ¼, contrasting the variable “pull-off” λ* 

derived here that depends on the coupled adhesion energy and residual stress. A possible 

discrepancy is Yang’s assumption of UT = UE + US = 0, which is based on a reversible 

energy balance and zero energy dissipation. The criterion virtually implies that all elastic 

energy is converted into surface energy when the adhesive contact is made. However, 

every incremental growth of the delamination front requires the overhanging non-contact 

part of the bridge to remain under elastic strain with dUE ≠ 0. To establish a proper 

energy balance, the elastic energy in the pre- and post-delamination states must be 

considered. In other words, UT ≠ 0 but only dUT = 0 at equilibrium. The constant “jump-

in” contact area so derived is therefore doubtful. In fact, the nomenclature “jump-in” 

seems to be inappropriate. Yang’s model is based on a zero-range surface force that 

causes adhesion. For a grounded electrostatic pad, there exists no long-range force to 

trigger “jump-in” occurs, though the energy state of an adhered bridge is lower than that 

of a free bridge. In the literature, “pull-in” is always referred to as the bridge being forced 

into contact with the pad by the applied electrostatic potential, regardless of interfacial 

adhesion. “Pull-in” occurs in an ideal MEMS-RF switch even when the adhesion energy 

is zero. In another paper for a circular membrane clamped at the perimeter [30], the 

author adopted a uniform pressure to represent the external load on the film, instead of a 

Dirac delta function as in (3.1). Such approximation is believed to lead to erroneous 

results because (i) mechanical load on the membrane within the contact circle must 

vanish to ensure a planar contact circle with dw/dx = 0, and (ii) the load without the 
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contact edge must also vanish because the overhanging annulus is obviously not subject 

to any external forces.  

 

4.3. APPLICATION TO THE BIOLOGICAL ADHESION-DELAMINATION 
PROBLEM 

Cell locomotion is a relevant example of the 2-D axisymmetric in biology. When 

a cell attempts to move in a certain direction, the actin filaments construct a makeshift 

pseudopodium that makes an adhesive contact or focal adhesion plaque with the substrate, 

similar to Figure 3.1. Retraction of the hind “leg” then pulls the anchoring membrane out 

of contact, allowing the cell to move a step forward. The construction and destruction of 

the adhesive contacts can be discussed using the 2-D model. If the intersurface forces are 

ligand-receptor interaction in origin, then the adhesion mechanism also involves receptor 

diffusion in and out of the interface, as discussed in detail by Freund and Lin [31] using a 

model similar to the present work. Freund [31] assumes plate-bending of the cell wall in 

formation of focal adhesion plaque and ignores all membrane stretching, which could be 

the main deformation mode in many ultra-thin biological membranes. Residual 

membrane stress generated a result of osmosis in the case of differential gradients of 

liquid concentration within and without the cell [3]. Also, viscoelasticity of the cell 

membrane and network of actin filaments and extra-cellular matrix further complicates 

the locomotion mechanics [32]. The simple model here is not meant to be comprehensive 

in explaining these complex biological phenomena, but to provide a rigorous solid-

mechanics basis for the underlying mechanical aspects. Correlation between mechanics 

and biochemistry is beyond the scope of this thesis.  
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5. CONCLUSION 

Rigorous theoretical models are constructed for the delamination mechanics of a 

pre-stressed rectangular film and circular film adhered to a rigid punch based on a 

thermodynamic energy balance. The models provide the engineering performance 

equation [33], which relate to the following factors: (i) the structural index of thin film 

delamination, as well as mixed plate-bending and tensile residual stress; (ii) the 

measurable quantities of applied load, punch displacement (and the equivalent bridge-pad 

gap) and contact area; (iii) the geometrical factor of film thickness and length span, and 

(iv) the materials parameters of the elastic modulus and Poisson’s ratio of the film, 

adhesion energy at the film-substrate interface, and residual membrane stress. For the 2-D 

axisymmetric model, “pull-off” reminiscent of the JKR model and the associated force-

displacement relation are derived and quantified in terms of the aforementioned 

quantities. The model is essential in investigating many adhesion-delamination 

phenomena involving thin films from micro- to macro-scale. The trends and graphs have 

significant impacts on the design and fabrication of some MEMS involving moveable 

thin film components, as well as cell adhesion and locomotion. 
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