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ABSTRACT 

Sensor data is processed to assess performance and health of complex systems.  

Proper sensor selection, placement, and implementation are critical to build an effective 

health management system.  For complex systems in which the timely assessment of the 

health is desired to avoid expensive consequences of failure, sensor placement is vital.  

The ability to identify a critical failure early is completely dependent on sensor location 

within the fault propagation path.  A strategy for assessing a sensor suite with respect to 

timely critical failure detection is presented in this thesis.  To illustrate the strategy, Fault 

Propagation Timing Analysis (FPTA) will be performed on the Rocketdyne RS-68 rocket 

engine.   

The strategy consists of building directed graphs to represent the architecture and 

flows of the system.  These graphs identify potential fault propagation paths for any 

selected failure mode located at a node.  Fault propagation times are then generated for 

each arc and node within the propagation path.  Locations where the fault propagation 

terminates are identified as critical effect nodes within the system.  Candidate sensor 

suites may then be inserted into the graph.  Time to detect is then compared to the time to 

criticality in order to assess sensor suite effectiveness. 
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1. INTRODUCTION 

Effective design of health management systems for complex systems represents 

an important challenge in engineering.  Health management deals with the timely 

detection, diagnosis and correction of abnormal behavior caused by faults in a system.  

Early detection and diagnosis of faults while the system is still operating in a controllable 

environment may help avoid progression of faulty behavior to a critical point.  The Space 

Shuttle Columbia accident represents a strong case for the effective design of health 

management systems.  If the effects of the foam strike were detectable and diagnosable 

before the shuttle attempted reentry the catastrophe might have been avoided.    

The input data that Health Management Systems (HMS) require to make 

assessments of the status of a system originates from sensors.  Positions of sensors, along 

with implementation define the range of potentially critical failures that a HMS may 

isolate.  Isolation of critical failures is required for a HMS to potentially compose a 

corrective action.  The corrective action may take the form of switching to a redundant 

channel, activating a mitigation mechanism, or sending notification to an interested 

source.  In all cases, the corrective action must take place before a fault propagates to a 

critical situation.  Making a diagnosis of the system in a timely manner requires sensors 

to be located at or near the point of fault origination.  It is desired to have the ability to 

analyze candidate sensor suites with respect to the ability to sense critical failure modes 

in a timely manner. 

Complex systems, such as aerospace systems, are developed through a series of 

design reviews.  Within each design cycle different design considerations are studied.  

All components under consideration must demonstrate a clear added value to the system.  
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The costs and risks associated with the complex system drive the design cycles to 

eliminate any components that are not able to demonstrate their value to the design.  

When considering sensors to contribute to an effective HMS system the challenge is to be 

able to justify each measurement’s existence in terms of added value to the system.    

There are a myriad of tradeoffs when considering an optimal sensor suite for any 

given system.  Parameters such as weight, cost, time constants, etc., have to be compared 

against each other to assemble a candidate sensor suite with the goal of meeting the 

requirements imposed upon the system.  The sensor suite evaluation strategy described in 

this thesis primarily addresses a time to detect requirement.  The evaluation provides for 

time to criticality to be assessed as well, allowing a comparison between the two times to 

identify sensor suite effectiveness.  There exists a race condition between HMS being 

able to sense and react to a failure, and the time for off-nominal behavior caused by that 

failure to propagate to a critical condition.  A timeline that defines the events that lead up 

to criticality is shown in Figure 1.1. The goal, in this thesis, is to select a sensor suite that 

can minimize the time to detect. 
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Figure 1.1. Time to Criticality Timeline 

 

 

The Rocketdyne RS-68 rocket was selected to demonstrate the sensor suite 

evaluation strategy.  The RS-68 is the first new U.S. engine certified to fly since the 

Space Shuttle Main Engine over 20 years ago.  The RS-68 has also been selected to boost 

the first stage of the Ares V Cargo Launch Vehicle that is part of the next generation of 

launch vehicles in NASA’s exploration vision.  Fault Propagation Timing Analysis 
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(FPTA) is performed on the RS-68 to demonstrate how a hypothetical sensor suite 

performs with respect to the time to detect. 

Chapter 2 is a literature review of sensor selection strategies that have been 

developed.  Failure identification and analysis methods are also described.  Deficiencies 

of these concepts are identified and represent the opportunity for improvement that FPTA 

offers in being able to evaluate a sensor suite and its ability to detect faults in a timely 

manner.  Chapter 3 describes the FPTA method and how it is implemented to evaluate a 

sensor suite.  FPTA is then implemented on Rocketdyne’s RS-68 rocket engine in chapter 

4.  Lastly, the conclusions and future work are presented in the final section. 
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2. LITERATURE REVIEW   

Sensor selection strategies for complex systems are numerous and have a broad 

range of approaches to meet each individual system’s needs.  The intended purpose for 

each of the sensor suites implemented in these systems dictates the aspects that need to be 

addressed during the selection process.   Maul, et al. (2007) describe the sensor selection 

process in two parts: an evaluation module and an optimization module.  These modules 

will be used to demonstrate past sensor selection strategies.   

 

2.1. SENSOR SELECTION EVALUATION 

 

 The effectiveness of a particular sensor suite is evaluated by identifying the 

requirements that need to be addressed within a system, and the ability of the selected 

sensors to meet those requirements.  The degrees to which a sensor selection meets those 

requirements can be defined as the Figures of Merit (FOMs) of the system.  A set of 

FOMs reflects the objectives of the sensor suite selection process.  Sensor selection 

strategies described in this section will be presented with regard to how they address the 

following figures of merit identified by Maul, et al. (2007). 

• Observability: This category considers how well the sensor suite will provide 

information about the given system process, which parameters that are directly 

observed, and which parameters can be inferred. 

• Sensor Reliability/Sensor Fault Robustness: This category addresses sensor 

reliabilities and how sensor availability impacts the overall sensor suite 

performance. 
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• Fault Detectability / Fault Discriminability: This category specifically addresses 

whether the sensor suite can detect and discriminate system failures. 

• Cost: This category can include development, purchase, and maintenance costs 

for the sensors as well as resource and communication costs. 

 

2.2. OPTIMIZATION PROCESS 

 

 Sensor selection problems addressing the before mentioned FOMs require fast 

approximate search solutions to produce results in a timely manner.  There are several 

methods that have been developed which refine searches through identification of 

possible candidates to find the optimal solution.  The following is an introduction to some 

of these general optimization strategies. 

• Debouk, et al. (1999), apply constraints on an objective function to streamline the 

optimization process.   

• Worden (2001) applies advanced artificial analysis techniques such as genetic 

algorithms and simulated annealing algorithms. 

• Eberhart (1995) proposed particle swarm optimization that is a population based 

stochastic technique. 

• Osorio (2004) describes a cutting and surrogate constraint analysis that uses 

constraint pairing and an initial integer solution to combine the dual surrogate 

constraint with the objective function to generate new constraints. 

 This list is a representation of the variety of algorithms available to produce an 

optimized solution.  Optimizations techniques are not reviewed in detail here, but the 

methods have been well documented by Fletcher (1987).  A set of sensor selection 
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optimization techniques and the associated references are listed in Table 2.1 that was 

generated by Maul, et al. (2007). 

 

 

Table 2.1. Sensor Selection Optimization Techniques and References 

Optimization technique Researcher 

Constrain-Based Search Narasimhan, et al. (1998), Mushini (2005) 

Exhaustive/Brute Force Search Debouk, et al. (1999), Mushini (2005), 

Narasimhan, et al. (1998), Madron (1992), 

Worden (2001) 

Genetic Algorithms Musulin, et al. (2005), Mushini (2005), 

Spanache, et al. (2004), Sen, et al. (1998), 

Santi, et al. (2005), Worden (2001) 

Particle Swarm Optimization Zhang (2005) 

Graph Theory: Spanning Trees and Cutsets Ali (1993 and 1995), Bagajewicz (1997 

and 1999) 

Cutting and Surrogate Constraint Analysis Azam, et al. (2004) 

Mixed Linear Integer Programming Bagajewicz (2000, 2002, and 2004), 

Chemielewski, et al. (2002) 

Simulated Annealing Algorithm Worden (2001) 
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2.3. REVIEW OF SENSOR SELECTION PROCESSES 

 

The first three Figures of Merit (FOMs) that Maul, et al. (2007) describe are used 

to guide the review of sensor selection processes that have been developed.  The fourth 

FOM, cost, is a straightforward penalty driven group and may be included in the concepts 

that address each of the three FOMs discussed.  The FOMs that are covered are 

observability, sensor reliability/sensor fault robustness and fault detectability/fault 

discrimination. 

2.3.1.Observability.  A system’s ability to provide information about its state 

with respect to performance monitoring, health assessment, and control of the system is 

of paramount importance.   Some strategies define the degree of observability by 

analyzing a state space model that represents the process of interest.  Van den Berg, et al. 

(2000) define the criteria for degrees of observability by determining the amount of 

signal received by a sensor for a system configuration of a tubular chemical reactor.  

Optimal sensor locations for the reactor are found by specifying scalar measures on the 

observability Gramian integral from the linear least-squares state estimation problem.  

Muller (1972), similarly, develops scalar metrics from the observability matrix to define 

the degree of observability for linear dynamical systems.  Dochain, et al. (1997) identify 

a criterion that is the condition number of the observability matrix of the linearized 

tangent model of the discretized model of fixed bed bioreactors. 

Other approaches to display degrees of observability use graph-based approaches 

that capture the architectural information of a given system.  Two graph-oriented 

algorithms for observability and redundancy classification were proposed by Kretsovalis 

(1987).  Luong, et al. (1994) establish an incidence matrix using graph-based analysis.  
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The incidence matrix related process relationships to the state variables qualitatively. 

Identification of unmeasured variables and determination of whether a measured variable 

was redundant is accomplished by the decomposition of the incidence matrix.  

Bagajewitcz (1999) describes the degree of estimability that incorporates degrees of 

observability and redundancy to assess system variables that may be estimated by 

measurements.  A variable that is not measured is observable if it can be identified in at 

least one way from the measurements.  Similarly, a measurement is redundant if it can be 

found in at least one way from the remaining measurements. 

 There is a large body of work that focuses on identifying observability in 

structural type problems.  Papadopoulos (1998) proposes a scheme that selects the most 

linearly independent impulse responses at all candidate sensor locations from a Gram-

Schmidt orthogonalization procedure.  Also proposed is a scheme based on a principal 

component analysis and iteratively removes sensors that do not contribute significant 

information to the Fisher information matrix.  Hac (1993) uses quantitative measures of 

observability based on gramians to determine sensor locations in motion control of 

flexible structures.  By determining eigenvalues, obtained in closed form from 

corresponding gramians in each optimization step, an optimality criterion is established. 

 Some strategies for assessing system observability include utilizing prediction of 

error of a given sensor suite with respect to various parameters of interest.  Chmielewski, 

et al. (2002) propose a Nonlinear Program (NLP) that is independent of all decision 

variables.  The NLP can then be converted into a convex program through the use of 

linear matrix inequalities.  Using the results, sensor placement is established by standard 

interior-point and branch-and-bound search algorithms.  Musulin, et al. (2005) identify 
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sensor suite observability by maximizing Kalman filtering performance.  The 

measurement noise and observation matrices are manipulated to produce the parameters.  

Similarly, Mushini (2005), proposed maximizing a Kalman filter performance by 

utilizing a metric defined as a function of the steady state error-covariance and the cost of 

the selected sensors.  The optimal measurement sets for an aircraft gas turbine engine are 

then estimated.  Madron (1992) uses multiple Gauss-Jordan elimination of the system of 

linear mathematical model equations to generate classifications of observability for 

sensor suites. 

2.3.2.Sensor Reliability/Sensor Fault Robustness.  Observability and 

detectability become useless if measurements are not available to make the detections.  

Being able to identify how reliably a system can make detections for fault diagnosis is of 

considerable importance.  Therefore it is important to be acquainted with strategies for 

assessing the reliability and fault robustness of sensors. 

 Considerable consideration has been made for assessing the performance of a 

sensor network in the presence of sensor faults.  Bagajewicz (1997) defines qualifying 

constraints that relate to certain requirements of data reconciliation with the goal of 

minimizing cost.  Error detectability is defined as the ability of the sensor network to 

detect sensor faults.  Availability is defined as the precision after a failed sensor is 

removed.  Resilience is defined as precision in the presence of a sensor fault.  These 

constraints define the ability of a sensor network to perform in the presence of a sensor 

fault.  Bagajewicz (2002) then extends this research to include explicit Mixed Integer 

Nonlinear Program (MINLP) formulation.  Hardware redundancy is then taken into 

account as an extension of the theory represented in this work.   
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 Some researchers define the reliability of an instrumentation system as the 

probability that information required for control are available through measurements or 

deduction during a given time period.  Using this definition, Loung, et al. (1994) compute 

the number of sensor failures conserving the observability of the variables required for 

control.  This is done by classification of various parameters needed for control.  

Competing networks are compared by integration of the time profile for each sensor 

network. 

 Yet other researchers identify the concept of sensor reliability as the reliability of 

the availability of measurements to provide system state estimations.  Ali (1993) focuses 

on identifying how robustly a sensor network can handle failures and still estimate a 

variable.  Using a graph-theoretic algorithm, globally optimum solutions are generated 

for realistic processes.  Later, Ali (1995) adds to the algorithm to identify the optimal 

design for a redundant sensor network for linear processes.  This algorithm accounts for 

specifications of measurable variables.  Sen, et al. (1998) use genetic algorithms to allow 

for multiple performance metrics to be evaluated along with the optimization of objective 

functions with a single criterion.  Similarly, Bagajewicz (2000), used MINLP to provide 

for multiple metrics, such as cost to be optimized along with reliability. 
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2.3.3.Fault Detectability/Fault Discriminability.  While observabiliy provides 

information about state parameters required for making a system health diagnosis, fault 

detection and discriminability define the sensor network’s ability to distinguish off 

nominal from nominal operation and the ability to distinguish these faults from each 

other, respectively.  Observability, detectability and discriminability are all necessary to 

be able to process sensor data and to make a system health diagnosis.   

 Some research focuses on using system behavioral models and reliability data to 

assess sensor placement.  Azam, et al. (2004) propose using such a model along with 

fault probabilities and effects of faults on observable system parameters to evaluate a 

sensor suite.  Fault effect information is translated into cause-effect dependencies and 

detection probabilities are then computed.  Multiple Fault Diagnosis (MFD) algorithms 

search for the most likely candidate fault subset that best explains the set of observed 

discrepancies from the bipartite graph model.  Optimal sensor allocation is then 

performed after a set of performance measures are calculated using the candidate fault 

subset.  The optimization was performed using surrogate cutting and constraint pairing-

based method. 

 Santi, et al. (2005) propose a detection strategy for rocket propulsion systems in 

which thresholds are used to determine off–nominal behavior.  Measurements from 

multiple sensor sources must exceed a prescribed threshold limit for reliable fault 

detection.  A minimum measurement deviation level for that fault detection within a 

defined false alarm limit is designated as the detection threshold limit.  Figure 2.1 shows 

the detectable fault zone that is the measurement space area where the outputs from two 
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sensors exceed a detection threshold limit.  A fault becomes detectable when its 

measurement level reaches the trajectory location that intersects the detection threshold. 

 

 

 

Figure 2.1. Fault Trajectory Space for Two Sensors Described by Santi, et al. (2005) 

 

 

 

 There is much research that focuses on assessing detectability by qualitatively 

analyzing the fault propagation process.  Several researchers including Raghuraj, et al 

(1999), Bushan (2000), and Bagajewicz, et al. (2004) use directed graphs, or digraphs, to 
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represent faults in a system.  Faults are related to sensors through dependencies modeled 

by the digraphs.  This graph provides an indication of which sensors should respond to 

which faults.  Spanache, et al. (2004) capture the behavior of a system through a series of 

constraints that represent the limitations imposed on the evolution of the variables.  The 

constraints and fault signatures that are assigned to failed components are then used to 

establish a component oriented fault signature matrix.  Similarly, Narasimhan, et al. 

(1998) identify qualitative fault signatures by establishing temporal causal graphs derived 

from a bond graph model.  The temporal causal graph is a directed graph, where vertices 

are the system variables and the edges represent the causal relationship between these 

variables qualified by the temporal characteristics of the relation.   

Yan (2004) uses the CAD environment to implement a diagnosability analysis for 

sensor placement.  In this work the fault signature matrix is found by projections of 

different operation modes on observable variables.  While these qualitative methods 

represent a straightforward strategy for relating system faults to effects, there are several 

researchers that chose to incorporate more fault information in hopes of augmenting these 

useful techniques.  Zhang (2005) proposes a Quantified Directed Graph (QDG) in hopes 

of capturing quantitative information to model the behavior of a system.  In a QDG, each 

node represents a sensor location with a signal to noise ratio.  A sensor detectability 

measure was then calculated for each sensor and then evaluated against an assigned lower 

bound.  The qualitative methods presented here are ideal for identification of fault 

signatures to analyze sensor placement during the early design stages of complex 

systems.  These methods are also preferable because they are less expensive than 

hardware and software simulation techniques. 
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2.4. FAILURE ANALYSIS METHODS 

 

Failure Analysis is an integral part of identifying a sensor suite’s ability to detect 

fault in a system.  Being able to identify the ways in which a failure mode manifests itself 

as a fault within a system yields information about what measurements need to be taken 

to isolate the failure.  There are a couple of failure analysis techniques that are regarded 

as the standard in failure assessment in the aerospace industry.  Tumer (2003) points out 

that Failure Modes and Effects Analysis (FMEA) is the standard failure analysis method 

used in design.  FMEA is a risk assessment technique for systematically identifying 

potential failures in a system or process.  System experts identify failure modes for each 

component within a system.  Effects are also recorded for each of these failure modes.  

One of the shortfalls of the FMEA approach is that there is little attempt at assessing 

failure propagation times for each of the failure modes.  When fault propagation time 

numbers are identified they are usually too coarse to make design decisions with. FMEA 

may indicate time to criticality as instant, seconds, minutes, hours, or even longer periods 

of time. This provides an idea of how fast a fault propagates to a critical condition, but 

does not give any exact numbers. 

 Another failure analysis approach commonly implemented for complex systems 

during the design stages is Fault Tree Analysis (FTA).  Bahr (1997) indicates that fault 

trees are widely used not only in reliability analysis, but also in safety analysis because of 

their ability to account for failure beyond single part malfunctions.  FTA is a failure 

analysis in which a critical state of a system is indicated as the top node in the tree.  

Using Boolean logic the top node event trees out to lower level events that are causes of 
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the higher level events.  While FTA represents an invaluable tool for evaluating the 

events that lead up to a failure, they fall short in that they do not address how fast these 

events ultimately manifest themselves as the undesired situation.   

On the other end of the spectrum of strategies for identifying propagation times is 

physics based simulation.  These simulations yield precise numbers that may be used to 

accurately assess a system’s ability to handle candidate failure scenarios.  Simulations 

that have the fidelity to produce these numbers are usually very expensive and time 

consuming to produce.  Another shortfall in the implementation of these simulations is 

that there has to be a great deal of design information available for production of a model 

that can yield the type of timing information that is desired to evaluate a sensor suite’s 

ability to detect a fault. 

 

2.5. PROPOSED APPROACH 

 

All of the failure analysis techniques mentioned are not necessarily implemented 

during the early stages of design.  A sufficient level of design maturity is needed to be 

able to generate both FMEA, FTA and physics based simulation. FMEA usually requires 

more information about the components to be able to accurately identify the ways in 

which specific components may fail.  Physics based simulation needs more information 

to be able to generate equations to accurately represent the system.   

The proposed approach, Fault Propagation Timing Analysis (FPTA), may be 

implemented during the early design stages of a system to make evaluations of sensor 

suites.  During conceptual development when there is an idea of the type of components 
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that a system might have, these configurations may be represented in directed graphs and 

an FPTA analysis can be completed to evaluate sensor placement.  

FPTA is an augmentation of some of the directed graph approaches mentioned in 

section 2.1.1.3. of this thesis and contributes directly to the detectability evaluation of a 

sensor suite.  Previous digraph approaches did a good job of relating faults to sensors 

through modeled dependencies, but failed in providing a sense for how much time it took 

for that fault to reach a sensor.  This research outlines an approach for assigning 

propagation times to the dependencies of the digraph in order to evaluate how long it 

takes for a fault to become detectable by a sensor.  A natural addition to this concept is 

that a propagation time can be identified for a fault to reach a critical condition.  

Comparison of the time to criticality and the time to detect allows for a quantitative 

evaluation of a candidate sensor suite’s ability to detect a failure mode. 
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3. RESEARCH METHOD   

To support sensor suite assessment with respect to a system’s ability to identify 

off-nominal behavior before a critical state is reached I propose Fault Propagation Timing 

Analysis (FPTA).  The analysis is presented as a series of steps to follow for sensor suite 

evaluation implementation on a system. 

 

3.1. STEP 1: BUILD DIRECTED GRAPH 

 

To complete an FPTA, a directed graph must be built for the system to be 

instrumented.  Inputs that are needed to build the graph include, but are not limited to, 

system schematics, drawings, illustrations, concept of operations, and expert solicitation.  

The nodes of the graph represent the components of the system that have the potential for 

failure.  The arcs represent fault propagation paths of the system.  Components are 

arranged and connected to model the interactions that represent the functional 

dependencies of the system.  For instance, an electric motor generates mechanical energy 

to be transferred through a gearbox to a wheel.  The directed graph for this system is 

illustrated in Figure 3.1. 

 

 

Figure 3.1. Directed Graph Example 
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Fault propagation paths can be a superset of two types of flows within a system.  

There are nominal system flows and flows that may occur as a result of off-nominal 

behavior.  The nominal system flows are usually easy to identify.  These nominal flows 

might be the energy, signal, or mass flows that are functionally intended to flow between 

components to provide for overall system functionality.  The nominal flows usually 

represent the majority of paths that a fault may propagate within a system.  For example, 

if an electrical wire breaks, electricity will fail to transfer to the appropriate components 

within the system.  The effects of the failed wire would propagate through the system 

following nominal paths, that is, there will be a lack of power to downstream 

components.  The off-nominal system flows that occur as a result of a failure are usually 

more difficult to identify.  These flows must be represented by arcs to directly address the 

effect of that failure.  For example, if a battery overheats and explodes, an off-nominal 

system flow might be modeled as an arc from the battery to any components that may be 

affected by the explosion.  If the system was working the way it was intended to perform, 

there would be no arcs from the battery to these components.  The objective is to capture 

all potential fault propagation paths that may occur within a system. 

 

3.2. STEP 2: IDENTIFY POTENTIAL FAILURE MODES 

 

FPTA analysis relies on understanding the ways a system may fail.  The extent to 

which failure modes are identified within a system is dependent on the desired capability 

of the candidate sensor suites.  When completing FPTA analysis on complex systems that 

have potentially expensive consequences of failure, it is desired to comprehensively 
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identify failure modes with the goal of assessing sensor suite detection capabilities for 

any given failure scenario. Failure modes are identified for each of the components that 

are modeled.  Any off-nominal condition that the component has the possibility of 

encountering may be considered a failure mode.  The condition is identified as a failure 

mode when the failure effects cause off-nominal behavior to be seen at components that 

are located downstream from the failed component in the digraph.   

Failure Modes and Effects Analysis (FMEA) is an excellent source of this type of 

failure information that is generally available for complex systems.  FMEA is a risk 

assessment technique for systematically identifying potential failures in a system or 

process.  Failure modes are identified for each component within a system.  Effects are 

also recorded for each of these failure modes.  These effects aid in the identification of 

fault propagation paths.   

While FMEA offers a valuable bottom-up approach to potential system failure 

identification, Fault Tree Analysis (FTA) is a top-down method.  FTA identifies a critical 

event that is defined as the “top event” and then trees out to reveal potential causes of that 

event.  Paths of the tree pass through Boolean logic gates that define which lower level 

events may lead to the “top event”.  The lower levels of the fault tree that identify 

potential failure sources that lead to the critical event are then related to component 

failures that may be represented in the FPTA digraph.  

Once failure modes are identified, using whichever approach deemed appropriate, 

fault propagation paths may be developed.  The failure modes represent the initiation of a 

given fault propagation path.  The faults that result from these failure modes also define 

which dependencies represented in the digraph are valid propagations.  The determination 
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of these paths is made from understanding the effects of each of the failure modes and is 

discussed in section 2.4 of this thesis. 

 

3.3. STEP 3: INSERT SENSORS 

 

After a directed graph is completed that models all of the components and 

dependency paths of a system, candidate sensor suites may be inserted.  A sensor is seen 

as another component in a directed graph of a system.  The arcs, or fault propagation 

paths, that are inputs to the sensors follow the same conventions as described earlier.  

Any signal, energy, or mass flow that a given sensor is intended to measure is drawn as 

an arc from a component in the system to that sensor.  The component that the arc is 

drawn from may be the component where that sensor is physically located, or it may be a 

component that the sensor is intended to directly measure.   Sensors will sometimes not 

have outputs because faults caused by failure modes in the system will usually propagate 

along nominal flow paths.  Sensor nodes may have output ports if there are failure modes 

that need to be taken into account for the system due to the existence of the sensor.  For 

instance, a pressure sensor located on a combustion chamber represents a potential gas 

leakage point if failure occurs.  A significant consideration has to made for the sensor 

failing to make a detection as well.  This failure may manifest itself in several ways such 

as a detection failing off-scale or sensor drift.  These types of failures can be common 

and should therefore be accounted for.   

While sensors have the possibility of failing, the ability of a system to overcome a 

sensor failure in order to make a failure determination is out of the scope of this work. 

There have been several strategies developed for allocating sensors and for processing 
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data from those sensors to accurately diagnose a system’s health in the presence of sensor 

faults.  The goal of this work is to be able to assess how well a given sensor suite can 

detect a critical fault in a timely manner.  The strategy described in this thesis takes into 

account the time for a fault to propagate to a sensor, and the time it takes for any given 

sensor to realize that the fault has occurred.  The time for a sensor to identify the fault in 

the system incorporates all sensor latencies associated with time constants, red lines, etc.  

It is not intended to be able to assess the time it takes to process the data to make a health 

status determination.   

 

3.4. STEP 4: IDENTIFY CRITICAL FAILURE POINTS 

 

It is desired to assess sensor placement to identify failures before the fault leads to 

an expensive consequence. If time to criticality is known, it may be compared to the time 

to detect to make a determination of sensor suite effectiveness. FPTA analysis allows for 

a time to criticality assessment.  It is necessary to understand the way the system can fail 

and what the effects of these failures will be to identify points of criticality.  Points of 

criticality represent locations within a system that off-nominal behavior will manifest 

itself as an expensive consequence.  For instance, when a valve fails to open, the 

immediate effects associated with that valve failing may not be critical.  But when a 

combustion chamber downstream of that valve fails to receive fuel, this represents a point 

of criticality.  The scenario becomes critical when the combustion chamber behavior 

becomes off nominal because those consequences are more significant than upstream 

effects of the failure.   
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The points of criticality may be modeled as nodes in the directed graph.  The 

input is any flow that may demonstrate the symptoms of off-nominal behavior from a 

component.  There will usually be no outputs of the points of criticality because these 

nodes represent where a propagation path will terminate.  There are scenarios though 

where there may be two critical failures that can lead to a more crucial consequence.  In 

such a case one could model fault propagation paths from each of the critical failures to 

another point of criticality that represents the more crucial consequence.   

 

3.5. STEP 5: IDENTIFY FAULT PROPAGATION PATHS 

 

To identify which sensors have the opportunity of detecting off-nominal behavior 

of a system due to a failure, it is necessary to know the path in which a given fault may 

propagate.  Propagation paths are generated by tracking dependency paths that are 

modeled in the directed graph of a system.  Any failure that occurs in a component, or 

node, of the graph will propagate along the arcs that point to downstream components 

that are affected by the propagation of the fault.  For any fault of interest, a path may be 

traced from the component along the arcs and nodes until a critical point is reached.   

 

3.6. STEP 6: IMPLEMENT TIMING ANALYSIS 

 

The timing analysis identifies the time it takes from initiation of the failure mode 

to the manifestation of the critical fault.  The analysis also identifies the time it takes for 

the off-nominal flows of the system to be detected by a given sensor suite.  The failure 

propagation path is populated with times that represent how fast the fault propagates 
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through the system.  Times are identified for each arc and node in the graph.  Times that 

are identified for the arcs represent the time it takes for a fault to propagate from the 

output of one component to the input of the next component.  Times that are identified 

for a module represent the time it takes for a fault to propagate from the input of a 

component to the output of that component.   

Depending on the goals of the timing analysis, there are several strategies for 

producing these propagation times.  During the early design process the numbers may be 

generated by expert solicitation.  The digraph represents an early conceptual formulation 

of a system and a subject matter expert may be asked how long it would take a fault to 

propagate from one point to another.  The times would be inserted into the digraph and 

the timing analysis would identify potential issues that may be resolved during 

subsequent design cycles. 

In order to accurately assess a sensor suite with respect to its ability to detect 

faults in a timely manner it is desired to use a high fidelity approach to producing the 

propagation times for insertion to the digraph.  Such an approach would include physics 

based simulation of a system.  A fault condition may be simulated and the propagation 

time can be identified by analyzing the simulation parameters that are located 

downstream of the component that failed.  Accurate propagation times may also be 

produced from calculations that take system characteristics into account.  For instance, a 

propagation time can be identified for a system where liquids flow through conduit by 

dividing the speed at which the liquid is moving by the length of conduit.  

There is a notion of characteristic propagation times as well.  If the underlying 

physical mechanisms by which the faults propagate are known there may be a 
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characteristic time of propagation that accurately captures the way the system behaves.  

For example, electrical faults typically propagate at speeds determined by the 

transportation of electrons through wire.  Some characteristic times for various functional 

flows are shown in table 3.1. 

 

 

Table 3.1. Characteristic Propagation Times 

Functional Flow Characteristic Time 

Electrical Energy 1-10 milliseconds 

Data computation 10-100 milliseconds 

Fluid flow 5-30 milliseconds 

Radiative Heat Transfer Minutes to hours 

Gas flow 10 milliseconds – seconds 

 

 

 

Regardless of what fidelity is needed for the propagation times that are inserted 

into the graph, an evaluation of a sensor suite may be performed to identify its ability to 

identify faults before they become critical.  Times identified for each of the arcs and 

nodes are summed as the propagation path is followed.  Conclusions may then be drawn 

as to which sensors have the ability to detect a fault before it leads to a critical event. 
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4. RS-68 

The Rocketdyne RS-68 rocket engine is presented here to demonstrate Fault 

Propagation Timing Analysis (FPTA).  According to Wood [2002] the RS-68 is the first 

new U.S. engine certified to fly since the Space Shuttle Main Engine over 20 years ago.  

The RS-68 powers the Delta IV Evolved Expendable Launch Vehicle (EELV).  It is 

planned to use 5 RS-68 engines to power the Ares V Cargo Launch Vehicle (CaLV) of 

NASA’s Project Constellation.  The RS-68 is a complex system with expensive 

consequences of failure.  FPTA is performed to assess candidate sensor suites with 

respect to timely critical failure detection within the RS-68.  The analysis follows the 

steps outlined in the previous chapter. 

 

4.1. INTRODUCTION TO THE RS-68 

 

The RS-68 burns liquid hydrogen and liquid oxygen in a gas generator cycle.  The 

engine has the capability of transitioning between full power and a minimum power level 

as commanded from the vehicle.  The engine supplies gasses to pressurize the fuel and 

oxidizer propellant tanks.  The RS-68 also provides for thrust vector and roll control by 

gimballing the thrust chamber and the fuel turbine exhaust roll control nozzle.  Turbo-

pumps are directly powered through a single shaft by turbines.  A gas generator powers 

the turbines in parallel with high-pressure hot gas combusted from propellants tapped off 

after the pumps.  The engine has an ablative nozzle with a lining that is designed to burn 

away as the engine runs, dissipating heat.  The RS-68 engine operating characteristics 

and schematic are shown in Figure 4.1 and 4.2, respectively. 
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Figure 4.1. RS-68 Operating Characteristics 

 

Figure 4.2. RS-68 Operating Schematic 
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4.2. STEP 1: BUILD RS-68 DIGRAPH  

 

FPTA analysis is initiated on the RS-68 by building a directed graph, or digraph, 

to represent the architecture of the rocket engine.  Components that represent failure 

sources for the engine are the nodes of the graph.  Nominal flow paths between the 

components are modeled as the arcs of the digraph.  These flows represent the functional 

dependencies between the components of the engine.  The arcs are distinguished into 

three categories of flow types.  Flows representing energy dependencies between 

components such as electrical and mechanical energy flows are represented by thin solid 

arrows.  Thick solid arrows represent mass flows such as solid, gas, or liquid flows.  Thin 

dashed arrows represent data flows that signify control signals or sensor data.  A digraph 

that models the architecture of the RS-68 is shown in Figure 4.3. 
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Figure 4.3. RS-68 Digraph 

 

 

4.3. STEP 2: IDENTIFY FAILURE MODES OF RS-68 

 

To analyze fault propagation times of the RS-68, it is essential to identify the 

ways in which the system may fail.  Failure modes are identified for each of the 

components that are modeled.  A list of failure modes and effects associated with some of 

the components identified in the RS-68 digraph are presented in Table 1 of the Appendix.  

Immediate, downstream, and end effect are identified for each of the failure modes in this 

example FMEA.  The failure mode and effect information is used to guide the FPTA 

process as the propagation paths and effect nodes are analyzed.   
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4.4. STEP 3: INSERT CANDIDATE SENSOR SUITE 

 

Candidate sensor suites may now be inserted into the digraph.  An example sensor 

suite implemented on a rocket engine in order to initiate a shutdown in response to a 

critical failure is shown in table 4.1.  A snapshot of the RS-68 digraph with the fuel pump 

discharge pressure and Fuel Turbo-Pump (FTP) shaft speed sensor inserted is displayed 

in Figure 4.4.  The arcs that connect a component to the sensor represent the flow that is 

measured.  For instance, the FTP shaft speed sensor measures the mechanical energy of 

the turbine shaft.  Therefore a link that represents that mechanical energy is drawn from 

the turbo-pump to the sensor.  

 

Table 4.1. Example Candidate Red-line Sensor List for the RS-68 

Sensor Location 

Fuel Pump Discharge Pressure FTP discharge duct just after the pump 

Fuel Turbine Temperature Hot gas inlet duct to the fuel turbine 

Main Combustion Chamber Pressure At the top of the combustion chamber 

Fuel turbo-pump shaft speed FTP 

Oxidizer turbo-pump shaft speed OTP 
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Figure 4.4. RS-68 Digraph Snapshot With Sensors 

 

 

 

4.5. STEP 4: IDENTIFY CRITICAL FAILURE POINTS OF THE RS-68 

 

To identify fault propagation paths it is desired to identify the critical failure 

points that represent the costly consequences of a failure within a system.  The example 

RS-68 FMEA located in Appendix A is a source of information that may facilitate the 

identification of the critical points in the digraph.  For example, when the gas generator 

fuel valve exhibits the failure mode of being stuck closed, there is no fuel flow to the gas 

generator combustion chamber.  This condition potentially leads to an explosion at the 

chamber due to oxygen rich conditions because the oxidizer valve allows oxidizer to flow 

without the fuel needed for complete combustion.  This represents a critical consequence 

and may be indicated by another node in the digraph as shown in Figure 4.5. 
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Figure 4.5. RS-68 Digraph Snapshot With Critical Point 

 

 

 

4.6. STEP 5: IDENTIFY FAULT PROPAGATION PATHS 

 

The RS-68 digraph now has the essential elements that are needed to identify fault 

propagation paths that may then be used to initialize the timing analysis.  A component 

along with a failure mode is chosen to implement the timing analysis.  A failure of 

interest might be the pump head loss of the oxidizer turbo-pump.  The effect of this 

failure eventually leads to a low thrust condition of the engine.  The propagation path 

begins with the fuel turbo-pump and follows the flow dependencies modeled in the 

system to the critical failure point of low thrust that would be seen as an output of the 

nozzle.  The propagation path may be seen in Figure 4.6.  The propagation path indicates 

that there are potentially three sensors that can pick up the fault at different points in the 

system.   
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Figure 4.6. RS-68 FTP Head Efficiency Loss Propagation Path 

 

 

4.7. STEP 6: IMPLEMENT RS-68 TIMING ANALYSIS 

 

To implement FPTA timing analysis the graph must be populated with fault 

propagation times for each arc and node.  These propagation times will allow for 

determination of the time it takes for a fault to reach each component, sensor, and effect 

node in the graph.  The fault propagation path for the RS-68 fuel turbo-pump head loss 

efficiency failure with propagation times identified is shown in Figure 4.7.  A 

propagation time of 28 ms is indicated for the hydrogen flow from the fuel turbo-pump to 

the main fuel valve.  The 28 ms represents the time from when the head loss first occurs 

to when the off-nominal pressure could be seen at the main fuel valve. 
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Figure 4.7. RS-68 Propagation Path With Times Included 

 

 

 

4.8. RS-68 FPTA CONCLUSIONS 

 

There are several conclusions that may be drawn from the FPTA analysis of the 

RS-68 fuel turbo-pump head loss.  First, there are several sensors in the propagation path 

that should have the ability of detecting the fault before it becomes critical.  The off-

nominal pressure may be sensed by the FTP fuel discharge pressure sensor within 4 ms of 

failure.  The fault is sensed by the MCC pressure sensor 83 ms after the failure.  This is 

not the end of the story for the sensors though.  There are time constants that must be 

taken into account.  In most cases the off-nominal flow will have to exceed a red-line 

before a fault will be recognized.  This represents another latency that must be accounted 

for to complete an accurate assessment of detectability.  These times may then be 

included in the digraph and the resulting sensor suite assessment will provide a time to 

detect measure.  The FPTA analysis indicates that it takes 2.083 seconds for there to be a 

critical loss of thrust due to the FTP failure.  The FPTA analysis allows for the time to 
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detect to be compared to the time to criticality for several sensor suites, therefore 

providing system designers with a strategy for assessing sensor suites with respect to 

their ability to detect faults in a timely manner. 
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5. CONCLUSIONS 

In this thesis, a strategy for evaluating a sensor suite’s effectiveness in detecting 

faults before they become critical has been presented.  Fault Propagation Timing 

Analysis (FPTA), is a flexible approach to evaluating sensor placement for a system 

during various stages of design.  Complex systems that have expensive consequences of 

failure, such as those in the aerospace industry, benefit from the concepts that are 

presented.  FPTA was performed on Rocketdyne’s RS-68 rocket engine to illustrate how 

the strategy may be implemented to compare the time to detect to the time to criticality. 

The work presented in this thesis describes FPTA as an augmentation to several 

detectability evaluation strategies that may be implemented through the use of directed 

graphs.  While previous approaches using digraphs were able to relate faults to sensors, 

FPTA goes further by attaching fault propagation times to the dependencies modeled in 

the graph.  The propagation times may then be analyzed to identify time to detect and 

time to criticality.  These metrics allow for an evaluation of a sensor suite’s ability to 

detect a fault before it becomes critical. 

 FPTA is being utilized to assess the detection capabilities of NASA’s Ares I 

launch vehicle.  The analysis has successfully produced results that are being accounted 

for in the vehicle’s design cycles.  Details of outputs derived from the analysis are 

proprietary and are therefore not available in this work.   

 There are several challenges that exist in the further development of FPTA.  

While the analysis described in this thesis can identify the time it takes for off-nominal 

behavior of a system due to a failure to be sensed by a given sensor suite, there is no 

assessment of a time to process and provide a response to the failure.  An extension to the 
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fault propagation timing work would be development of a strategy for identifying the 

time from failure detection to corrective action initiation as well as the time it takes for 

the corrective action to take place.  The identification of these propagation times would 

allow a designer to make a comprehensive assessment of a system’s ability to respond to 

any failure with the goal of avoiding critical consequences.   

 The successful implementation of FPTA is dependent on the failure data that is 

available for a system.  An area of work that can support the development of useful 

FPTAs would be the development of a systematic approach to identifying cross 

subsystem failure modes.  While modeling dependency paths in a digraph that represent 

nominal system behavior is usually straightforward, the identification of dependencies 

representing off-nominal failure propagation is a challenging proposition.  Cross 

subsystem failures are very commonly not accounted for because of the nature of current 

design practices.  If there were a strategy to account for these potential failures, an FPTA 

may be augmented to catch a comprehensive set of off-nominal conditions.   
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APPENDIX 

Table 1: RS-68 Example FMEA 
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