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ABSTRACT 

Transient response of a natural convection system is investigated by numerical 

simulation using FLUENT code.  An Integrator Circuit analogy was recently proposed 

for natural convection system.  The proposed analogy was further confirmed by these 

recent simulations.  New simulation results also suggest that a natural convection system 

acts as a “Low Pass” filter for transients. Transient transmission/ attenuation factor was 

found to be a function of both fluid properties and the flow characteristics.  

Transmission/attenuation factor was also found to be a strong function of fluctuation 

frequency.  These results may prove a significant design tool for Gen IV natural 

convection system particularly for LFR. 

Explicit formulas for the elements of the inverse of tridiagonal matrices are 

developed. The formulas are recursive and applicable to symmetric, non-symmetric, 

equal and non-equal coefficient matrices. For the case of a general tridiagonal matrix four 

recursive formulas are developed to obtain the elements of the matrix inverse. All 

formulas are deduced based on the fact that a matrix multiplied by its inverse result in a 

unit matrix.  Also three special cases are discussed. First is the inverse of a symmetric 

tridiagonal matrix. Second is the inverse of a tridiagonal Toeplitz symmetric matrix. 

Third is the inverse for a general constant diagonal matrix (Toeplitz).  These results are 

very helpful in economical simulation of reactor physics, heat and mass transport, 

electrical circuit solution, fluid flow and many other engineering problems. 
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PAPER I 

NATURAL CONVECTION’S TRANSIENT BEHAVIOR 

S. USMAN,1 B. S. MOHAMMAD,1 AND S. ABDALLAH2 

1University of Missouri-Rolla, Rolla, MO 65409-0170 
2University of Cincinnati, Cincinnati, Ohio, 45219-0070 

 
 

 
                                                  

Transient response of a natural convection system is investigated by numerical 

simulation using FLUENT code.  An Integrator Circuit analogy was recently proposed 

for natural convection system.  The proposed analogy was further confirmed by these 

recent simulations.  New simulation results also suggest that a natural convection system 

acts as a “Low Pass” filter for transients.  Transmission characteristics of natural 

convection system were investigated using sinusoidal temperature at the source side 

boundary.  Transient transmission factor was found to be a function of both fluid 

properties and the flow characteristics.  Transmission factor was also found to be a strong 

function of fluctuation frequency.  These results may prove a significant design tool for 

Gen IV natural convection system particularly for LFR or Molten Salt Reactors or 

Molten Salt Reactor. 

                                                                           

KEYWORDS: Natural Convection, Heat Transfer, Gen IV Nuclear Reactors, Circuit 

Analogy. 

I. INTRODUCTION 

Natural convection is a very important phenomenon for a number of engineering 

systems including nuclear reactors.  For this reason the phenomenon has been an area of 

significant studies.  For present day nuclear system, natural convection is relied upon for 

cool down and decay heat removal1.  Likewise, new CANDU-X would also incorporate 

enhanced passive natural circulation for heat removals to ensure safety2.  This renewed 

interest has resulted in a number of recent studies3,4,5,6. 
________________________________________ 

1 E-mail: usmans@umr.edu, Phone: 573-341-4745, Fax: 573-341-6309.
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For the next generation of nuclear reactors, use of natural convection is even more 

significant.  For example, natural convection is the primary mode of heat transfer for 

Lead-Cooled Fast Reactor systems (LFR)7.  There are several other aspects of natural 

convection that may potentially impact the performance of LFR.  For example, a recent 

study reported an enhancement of oxygen transfer in liquid lead and lead bismuth 

eutectic by natural convection8.  Oxygen concentration control is found to be a critical 

factor for corrosion control in LFR’s internals.  

For certain systems transition between natural and forced convection is very 

important.  Skreba and co-workers studied this transition at a research reactor9.  All these 

studies indicate that the phenomenon of natural convection is extremely critical for safety 

and normal operation of present and future generation of nuclear reactor.  This paper 

presents a simple electric circuit analogy based model for natural convection which may 

be helpful in analysis of transient behavior of a natural convection system.  The proposed 

analysis may provide a quick tool for modeling of various new reactor concepts. 

A very useful analogy between steady state conductive heat transfer and simple 

resistor circuits was developed10. Temperature gradient across a layer of pure conductive 

material, according to this analogy acts as the voltage difference across a resistor.  

Thermal resistance/insulation of the material is analogous to the electrical resistance of a 

resistor.  In this manner, a steady state heat transfer problem can be transformed into an 

equivalent electrical circuit and solved using standard techniques for solving electrical 

circuits.  Fig.  1 shows an equivalent conduction circuit.  Where Δx is the layer thickness, 

A is the cross-sectional area and k is the thermal conductivity of the material. 

However, this simple circuit analogy is not capable of modeling the transient response 

of a thermal system.  This limitation is due to the fact that there is no means to 

incorporate the thermal inertia of various layers of the materials being used as 

insulators/resistors.  In order to incorporate this thermal inertia, modification to the 

resistor circuit has been proposed which lead to the development of a “Lumped Model11”.  

Lumped models represent the heat capacity of the material in terms of an equivalent 

capacitor in the analogous circuit.  This allows for a transient analysis of the system.  In 

order to closely represent the physical configuration three combinations of resistor and 
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capacitors are generally used.  These combinations are; T-Lumping, L-Lumping and Π 

Lumping.   Fig.  2 shows these lumping arrangements. 

Since no transient analysis was possible with a simple resistor circuit, lumped system 

analogy is a major step forward in facilitating transient analysis of complex system 

involving pure conduction.  Lumped analogy has gained considerable popularity.  

Characteristic time constant for an equivalent circuit for a lumped system is known to be 

inversely proportional to thermal diffusivity (αMol)11.   

Recently Integrator Circuit (RC-circuit) was proposed as an analogy for natural 

convection which is a logical extension of Lumped Model12,13.  Conductive heat transfer 

system is represented in terms of equivalent resistor(s) and heat capacity is represented 

by equivalent capacitor(s).  An analogous circuit is shown in Fig.  3.  It is well known 

that, in the case of convective heat transfer, thermal resistance is significantly reduced as 

compared to pure conduction.  Moreover, we noted that the thermal capacity (capacitance 

of the equivalent circuit) of the system to store energy is also augmented by kinetic 

energy of the fluid.  Therefore, the energy supplied to the system is stored in form of the 

thermal energy of the fluid as well as the kinetic energy of the fluid which is set in 

motion due to the phenomenon of natural convection.  This aspect of convection, i.e. 

change in capacitance due to fluid motion, has not been studied thus far. 

II. CIRCUIT ANALOGY FOR HEAT TRANSFER 

Our initial experimental results and numerical simulations12 suggested that a natural 

convection system can be modeled by an integrator circuit as shown in Fig.  3.  This 

analogy is a logical extension of the circuit analogy for conduction.  In the case of pure 

conduction the resistance, R would be equal to the thermal resistance of the fluid layer.  

And, the capacitance, C would mean the thermal capacity of the fluid.  Therefore, the 

characteristic time of the system can be written as; 

R .C=τ .                             (1) 

Both thermal resistance and capacitance of a fluid are intrinsic properties of the 

material.  Therefore the time response of a pure conduction system is known to depend 

only on the physical properties of the fluid and the geometry of the heat transfer system. 
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Unlike conduction, behavior of a convection system depends both on the fluid and the 

flow characteristics.  Therefore, the equivalent conductivity of a convection system is the 

net sum of the conductivity offered by the conduction and the conductivity due to 

convection.  Likewise, the net capacitance of the system would be the aggregate of the 

thermal capacitance of the material (fluid) plus the K.E. capacitance of the system; i.e., 

the system ability to store energy in form of kinetic energy of the fluid set in motion due 

to natural convection.  Based on the present study we propose that a natural convection 

can also be represented by an equivalent RC circuit (lumped model) as shown in Fig.  3.  

However, the equivalent resistance and capacitance of a natural convection system would 

be significantly different from the resistance and capacitance of a pure conduction 

system. 

II.A. Characteristics of an Integrator Circuit 

Basic characteristics of an integrator (RC) circuit are well known.  First of all, it is 

well known that if a step voltage is applied to the circuit, as shown in Fig.  3, the output 

voltage will build up exponentially14 as given by Equation (2); 

t /
out InV V ( e )−= − τ1                    (2) 

Secondly, if the input voltage varies in the form of a periodic function, the circuit will 

act as a low pass filter9, that means high frequency fluctuations will be filtered out while 

low frequency fluctuations will pass through the system.  This property of an integrator 

circuit is routinely utilized in the field of signal processing to design frequency domain 

filters. 

Thirdly, when the input voltage follows a sinusoidal function, the output voltage will 

also follow the sinusoidal function with same frequency of oscillations as the input 

voltage.  However, the amplitude of oscillations at the output will be reduced.  The 

decrease in the amplitude depends on; the resistance, and the capacitance of the circuit 

and the frequency of oscillations.  As the frequency of oscillations increase, the amplitude 

of the oscillations at the output side decreases.  

Lastly, the characteristic time constant of an integrator circuit doesn’t depend on the 

value of the input voltage. The time constant only depends on the values of electrical 

capacitance and resistance. The analogy between integrator circuit and the phenomenon 
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of natural convection and how various characteristics of an RC circuit manifest for a 

convection system is the topic of this paper. 

II.B. Equivalent Convection Circuit 

Our previous work12,13 demonstrated that the transient response of both conductive 

and convective heat transfer is analogous to that of an integrator circuit.  Both 

experimental data and numerical simulation for conductive as well as convective heat 

transfer produced an exponential temperature rise at the sink side in response to a step 

temperature increase at the source side.  The characteristic time constant for convection 

was however found to be significantly smaller than the conduction heat transfer time 

constant. 

In the present study we investigated the second analogy between an integrator/RC 

circuit and transient heat transfer (conduction and convection modes), from the point of 

view of filtering characteristics.   It is shown that high frequency temperature fluctuations 

at the source side do not transmit through the heat transfer system, while low frequency 

oscillations pass through.  

The third analogy between an RC circuit and transient heat transfer (conduction and 

convection modes) is the attenuation of amplitude at sink side temperature in response to 

a fluctuating temperature at the source side.  This attenuation was observed and 

extensively investigated.  Moreover, we observed that the frequency of temperature 

oscillation at the sink side is identical to the frequency of temperature fluctuation at the 

source side.  The values of resistance and capacitance in convective and conductive 

systems are different.  This lead to different time constants as discussed in our previous 

work12.  In response to an oscillating source side temperature, the temperature amplitude 

attenuation observed at the sink side should therefore be different for convective and 

conductive systems even for identical fluid, geometry and source side fluctuation 

frequency.  This observation is analogous to an integrator circuit response.   When 

subjected to same input voltage frequency, the output amplitude of an integrator circuit is 

dependent only on the values of R and C.  Our current work confirms this aspect of the 

circuit analogy and shows that attenuation for convective system is significantly different 



 

 

6

from the attenuation for conductive system even for same oscillation frequency at the 

source side. 

Finally, we observed that the characteristic time constant of a heat transfer system is 

independent of the temperature difference between the source and the sink sides.  The 

time constant of a heat transfer system was found to be dependent on the fluid properties 

and in the case of convection it also depends on the flow characteristics.  All aspects of 

this circuit analogy for a heat transfer system are extensively investigated using 

numerical simulation and the results are presented here.   These results provide in-sight 

into the phenomenon of natural convection which is critical for a number of engineering 

applications including nuclear reactor safety. 

Our simulation results are very helpful in developing a simple analytical tool for 

modeling transient response of a natural convection system.  This effort is quite timely, 

since many advanced nuclear systems are relying on natural convection5,6.  For example, 

heat rejection from gas cooled reactor’s pressure vessel to the passive cooling system, 

heat transfer between Lead-cooled Fast Reactors (LFR) core and the super critical carbon 

dioxide heat exchangers, molten salt cooled reactors and Sodium-cooled Fast Reactor’s 

(SFR) all rely on natural convection  for passive decay heat removal. 

The strong frequency dependence of transient response is significant for analysis of 

several GEN IV reactor systems.   For example, one very desirable feature of Lead-

cooled Fast Reactors (LFR) is autonomous load following.  However, it is reported that 

LFR is unable to follow fast transients15. Simulation results presented here provide a 

plausible explanation for LFR slow response.  Analysis of complex natural convection 

systems requires very expensive CFD modeling codes.  One goal of our present study is 

to develop a modeling tool to study these transients quickly without expensive CFD 

scheme.  We also present our initial simulation results for a Pb-Bi.  These results show 

that the response of Pb-Bi coolant is similar to that of water which has been extensively 

investigated in this study. 

III. CONVECTION AND CONDUCTION SIMULATIONS 

In our previous work12, cylindrical geometry was investigated.  Behavior of fluid 

enclosed between two parallel discs (perfectly circular) was experimentally investigated.  
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These experimental results were subsequently validated by numerical simulations12,13.  

The proposed analogy between RC circuit and natural convection can be tested for large 

discs of any shape.  The phenomenon is expected to be unaltered as long as the 1D 

approximation is valid.  However, values for R and C will include geometrical parameters 

of the system.  In the presented study we simulated the phenomenon of natural 

convection for an elliptical layer of fluid and we confirmed that the analogy is valid 

independent of the shape of the fluid layer. 

In the current work, an elliptical layer of fluid with minor axis of 38.1 cm and major 

axis of 76.2 cm was used. Thickness of the layer was 2 mm.  Most of our simulations 

were for liquid water.  We have started simulation for Pb-Bi eutectic alloy and our initial 

result is reported here.  Fig.  4 shows a plot of the simulated elliptical fluid volume. 

III.A. Simulation Setup 

A very fine grid was generated using Gambit16.  Rayleigh-Bénard convection 

apparatus was modeled by dividing the fluid volume into 20 axial layer and 400 

circumferential divisions.  A part of the grid is shown in Fig.  5. This mesh was imported 

into FLUENT.  FLUENT code was used to simulate 3D flow for unsteady conditions 

using first order implicit scheme.  Small time steps of only 0.05 second were taken in the 

unsteady state simulation.  Typically each simulation took 58 -72 Hrs. of computer time 

on a Pentium 4 (3.4 GHz) processor with a RAM of 1 GB.  Results of these simulations 

are reported in the following section. 

III.B. Boundary Conditions 

Circumferential wall of the fluid layer was always perfectly insulated.  During the first 

phase of this study, the sink side wall was also perfectly insulated while a sinusoidal 

temperature variation (given by equation 3) was applied at the source side; 

source oT A sin( t )= + ω348                           (3) 

It was observed that as the temperature of the sink side approaches the temperature of the 

source side, convection currents die out and conduction prevailed as the sole mode of 

heat transfer.  At this point, and beyond sink side temperature will remain same for both 

pure conduction and a system which started with convective mode of heat transfer, but 
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later convection died and the system transformed into conduction system.  For this reason 

attenuation of temperature at the sink side was observed to be the same for both 

conduction and convection systems. 

To observe the difference in attenuation between convective and conductive systems 

we needed to maintain convection currents as the temperature of the sink side approaches 

the temperature of the source side.  Convective boundary conditions were used to ensure 

that convection current never dies out through out the simulation.  For this reason, sink 

side wall was subjected to the same convection conditions for the case of conduction and 

convection systems.  Convective boundary condition helped to maintain a minimum 

temperature difference between the source and sink sides and therefore maintain the 

convection currents as modeling time passes.  

For integrator circuit time constant only depends on the resistance and capacitance of 

the circuit and is independent of the applied step voltage at the input.  To simulate the 

analogous heat transfer system a non convective boundary conditions with step rise in 

temperature at the source was used. 

IV. SIMULATION RESULTS 

IV. A. Non Convective Boundary Conditions Results 

 (Sinusoidal Temperature Variations at Source)  

Temperature response of the sink side for pure conduction (top plate heating) when 

the source side temperature oscillates at different frequencies are shown in Fig. 6.  It is 

clear that as the time progresses the sink side (lower plate) temperature starts to fluctuate 

at the same frequency as the source side (top plate) oscillation.  But the amplitude of sink 

side temperature oscillation is smaller than the source side.  For these runs, amplitude of 

source side fluctuations was chosen to be ± 5 °K.  It is clear that as the frequency of 

fluctuations increase at the source side, the amplitude of temperature oscillation at the 

sink side is reduced.  At a high enough frequency, no temperature fluctuations are 

observed at the sink side. 

Frequency dependence of a convective system was investigated by repeating the 

simulation for bottom plate heating.  Results of these simulations are displayed in Fig. 7.  
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A comparison of both cases is given in Fig. 8.  For the first forty seconds, response of 

convective system is noticeably different from that of pure conduction.  However, as the 

time progresses, since the sink side wall is insulated the average sink temperature 

approaches the average source side temperature.  Therefore, convection dies out and 

amplitude of temperature fluctuations at the sink side is observed to be identical to that 

for pure conduction. 

The transmission factor (λ), defined as the ratio of sink side amplitude to source side 

amplitude given by equation (4); 

      sin k

source

A * (%)
A

=λ 100                                  (4) 

is plotted vs. frequency for both conductive and convective systems in Fig. 9.  It is 

clear that as the frequency increases transmission reduces or the attenuation increase.  As 

can be seen, at a sufficiently high frequency transmission drops to zero and fluctuations 

at the source side are completely filtered out. 

IV. B. Convective Boundary Conditions Results 

(Sinusoidal Temperature Variations at Source) 

Low frequency temperature fluctuations at the source side are followed by oscillating 

temperature at the sink side with the same frequency.  This behavior is common for both 

conductive and convective systems.  The amplitude of oscillations at the sink side is 

smaller than the source side and as shown in the previous section, the transmission factor 

(λ) is a strong function of frequency of oscillation.    Moreover, it is well known that 

convection enhances heat transfer in fluids6. Consequently, for a given fluid and 

frequency of source side oscillation, a convection system is expected to have higher value 

of transmission factor (λ), than the corresponding conduction system.  To ensure that 

convection remains the mode of heat transfer throughout the simulation a convective 

boundary condition was used at the sink side.  The average temperature at the sink side 

was maintained low enough such that there was always sufficient temperature difference 

between sink and source and hence natural convection continued to exist.  Fig. 10 shows 

a typical example of temperature variations at both the sink and source side for the case 

of convective system (bottom plate heating).  
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Similar to pure conductive system, for the convective boundary conditions (and hence 

persistent convection in the enclosure) when the frequency of the fluctuations increases at 

the source side the amplitude of fluctuations is reduced at the sink side.  The transmission 

factor (λ) is plotted in Fig. 11 for both conductive and convective systems.  It is clear that 

λ in the case of convection is higher than that in the case of conduction.  Convective 

system permits the passage of high frequency oscillations while the conductive system 

fails to pass those high frequency oscillations.  At even higher frequencies the convective 

system will completely filter the fluctuations. 

IV. C. Non Convective Boundary Conditions Results 

(Step Temperature Rise at Source) 

To demonstrate that the characteristic time constant is independent of the temperature 

gradient, different temperature gradients were applied and for each case time constant 

was obtained using equation (5); 

( ) 0 01 0 632at t e .
τ
τθ τ θ θ

−⎛ ⎞
⎜ ⎟= = − =
⎜ ⎟
⎝ ⎠

                 (5) 

As seen in Fig.  12, for a very wide range of ΔT (i.e., temperature gradient applied 

between the source and sink walls) characteristic time constant is independent of the 

temperature difference.  Slight variation in the time constant is due to statistical 

uncertainty and approximations introduced during data processing.   

IV. D. Lead Bismuth Simulation Results 

Use of natural convection for Gen IV (LFR) is very attractive in that, it provides a 

coupling between the load side of the system and the reactor core (i.e., negative thermal 

reactivity which controls the rate of fission and power production).  This coupling 

enables autonomous load following.  Simulation studies on LFR suggest that the reactor 

is not very responsive to fast transients14.   The cooling cycles doesn’t respond quickly 

enough to introduce reactivity changes in the core to follow a fast transient at the 

generator side.  In our current and previous work we studied the mechanism of filtration 

and time response of convective and conductive systems.   
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Properties of Lead-bismuth eutectic17 alloy were imported into the FLUENT code and 

initial simulations were performed with convective boundary conditions.   For the actual 

reactor system, convective boundary conditions represent the heat removal from the 

reactor via supercritical carbon dioxide heat exchangers.  However, for these initial 

simulations we used the small scale geometry described in the previous section.  Fig.  13 

shows the temperature variations at both the sink and source sides for Lead-Bismuth 

alloy layer heated from below.  A sinusoidal temperature variation, given by equation (6), 

was applied to source side of the convective system.  It is easy to observe (Fig.  13) that 

Lead-bismuth also follows the characteristics of convective system discussed previously. 

673 10 0 1sourceT sin( . t )= +                                     (6) 
 

 
Fig. 1.  Equivalent circuit for conduction. 

 
Fig.  2. Lump systems configurations. 
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Fig.  3.  Integrator circuit. 

 
Fig. 4. Plot of the elliptical fluid volume investigated. 

 

Fig. 5.  The computational grid for the elliptical fluid volume. 
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V. CONCLUSIONS 

The proposed analogy12 between RC electrical circuit and conduction and convection 

heat transfer systems is tested using FLUENT numerical simulations.  Various 

characteristics of an RC electrical circuit are compared to the characteristics of 

conductive and convective heat transfer systems. 

Conduction system (heated from top) was proved to exhibit the filtering 

characteristics very much like an RC integrator circuit.  High frequency fluctuations at 

the source side are completely filtered and do not appear at the sink side, where as low 

frequency fluctuations are permitted through the conductive system.  Our new simulation 

demonstrated that a convective system (heated from bottom) also exhibit similar filtering 

characteristics. 

Transmission of the amplitude of fluctuations at the source side was also investigated.  

It was observed that analogous to RC circuits both conductive and convective systems 

cause amplitude attenuation.  Transmission coefficient at the sink side for convective 

system was greater than that for conductive system based on the fact that convection 

enhances heat transfer.  From the RC electrical circuit point of view this is because of the 

different material properties and flow characteristics of the two systems which results in 

different characteristic time constants for both systems. 

During this study we also demonstrated that the characteristic time constant of a heat 

transfer system does not depend on the temperature difference between the two plates.  

This result is also consistent with the analogy between an integrator circuits where the 

circuit characteristic time constant is independent of the step voltage applied. 

Finally our initial simulations with Lead-bismuth eutectic alloy show that convective 

system with metallic coolant also behaves very similar to RC electric circuit.   
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Fig. 6. Sink side temperature response for a pure conductive system when a sinusoidal 

variation in temperature is applied at the source side.  The effect of source side frequency 
is obvious from these results. 
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Fig. 7. Sink side temperature response for convective system when a sinusoidal variation 

in temperature is applied at the source side.  The effect of source side frequency is 
obvious from these results. 
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Fig. 8. Comparison between conductive and convective system response to a sinusoidal 

temperature variation at the source side and non convective boundary conditions at 
the sink side. 
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Fig. 9. Transmission factor vs. frequency (circular) of temperature oscillation for 

conductive system with non-convective boundary conditions.  Convective system with 
non-convective boundary conditions produced identical results. 
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Fig. 10.  Temperature variations at sink and source sides for the case of bottom plate 

heating.   Frequency of oscillations is 0.8 rad/s. 
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Fig. 11. Transmission factor vs. frequency (circular) of temperature oscillation for both 

conductive and convective systems with convective boundary conditions. 
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Fig. 12. Applied temperature gradient vs. observed characteristic time constant. 

 

Fig. 13. Source and sink temperature variations for a convective system with Lead-

bismuth as working fluid.  Sinusoidal temperature variations are applied to the source 

side. 
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NOMENCLATURE 

Symbol Description Units 

A Layer cross sectional area  m2 

Ao Amplitude of oscillations °K 

Asink Amplitude of oscillations at sink °K 

Asource Amplitude of oscillations at source °K 

C Electrical Capacitance F 

k Thermal Conductivity W.m-1.oK-1 

q Heat Flux W m2 

R Electrical Resistance Ω 

t Time S 

Tsource Temperature at source side oK 

Tsink Temperature at sink side oK 

VIn Input Voltage V 

VOut Output Voltage V 

Δx Material Thickness M 

GREEK   

α Thermal Diffusivity M2.s-1 

θ  
Difference between sink temperature at any time t and initial sink 

oK 

θ0 Difference between source temperature and initial sink temperature oK 

ν Kinematic viscosity M2.s-1 

ρ Density Kg.m-3 

τ Characteristic Time Constant S 

ω Circular frequency rad/s 

λ Transmission factor   
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Abstract 

Explicit formulas for the elements of the inverse of tridiagonal matrices are 

developed. The formulas are recursive and applicable to symmetric, non-symmetric, 

equal and non-equal coefficient matrices. For the case of a general tridiagonal matrix four 

recursive formulas are developed to obtain the elements of the matrix inverse. All 

formulas are deduced based on the fact that a matrix multiplied by its inverse result in a 

unit matrix.  Also three special cases are discussed. First, for a symmetric tridiagonal 

matrix the elements of the matrix inverse are obtained from two recurrence formulas 

instead of four.  Second, for a tridiagonal Toeplitz symmetric matrix two simple 

recurrence formulas are deduced to obtain the elements of the matrix inverse. Third, for a 

general constant diagonal matrix (Toeplitz) four recurrence formulas are derived to 

obtain the elements of the matrix inverse. Finally, the results are applied to matrices 

arising from discretization of two-point boundary value problems. These results are very 

helpful in economical simulation of reactor physics, heat and mass transport, electrical 

circuit solution, fluid flow and many other engineering problems. 

Keywords:  Tridiagonal matrix inverse; Symmetric tridiagonal matrix inverse; 

Tridiagonal Toepletz matrix inverse 
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1. Introduction 

Tridiagonal matrices and block tridiagonal (scalar Penta-diagonal) matrices arise in 

many applied sciences and engineering applications  1- 3. Tridiagonal linear system 

appears in the solution of parabolic partial differential equations, finite difference 

solution of boundary value problems and construction of cubic splines.  Different 

methods are available to obtain the inversion of tridiagonal matrices. Direct expressions 

for the inversion of tridiagonal matrices arising from boundary value problems are well 

established  3- 5. Also, Indirect formulas for the inversion of tridiagonal matrices were 

developed  1,  6- 8.  Explicit formula for the inverse of tridiagonal Toeplitz matrix was 

developed  9. Recently an explicit method was developed for the elements of the inverse 

of a general tridiagonal matrix [10]. 

In the present study we derive explicit recursive formulas for inversion of nonsingular 

tridiagonal matrices.  The recursive formulas were derived based on the rule that a matrix 

multiplied by its inverse will yield an identity matrix.  To obtain simple recurrence 

formulas for the inverse of general tridiagonal matrices, the tridiagonal matrix is first 

decomposed to two matrices whose multiplication product is the tridiagonal matrix.  The 

first matrix is a diagonal matrix and the second matrix is a tridiagonal matrix with the 

subdiagonal elements equal to one.  For the tridiagonal matrix with subdiagonal elements 

equal to one, a recursive formula was deduced to obtain the elements of the first column 

of the matrix inverse.  Consequently, a second recursive formula was deduced to obtain 

the elements of the lower part of the matrix inverse (i ≥ j).  A third recursive formula was 

also deduced to obtain the elements of the last column of the matrix inverse.  Finally, a 

recursive formula is deduced to obtain the rest of the elements of the upper part of the 

inverse matrix (i < j).  In the case of a symmetric tridiagonal matrix the recursive 

formulas becomes simpler and only two formulas are deduced to obtain the elements of 

the matrix inverse.  One is used for the elements of the first column and another formula 

is used for the rest of the elements of the lower part of the matrix.  The upper part of the 

inverse matrix is then obtained simply based on the fact that a symmetric tridiagonal 

matrix inverse is also symmetric.  In the case of symmetric tridiagonal Toeplitz matrix 

the recursive formulas become simpler and two formulas are deduced to obtain the 

elements of the matrix inverse.   
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2. Analysis 

Let A be an nxn real non-singular tridiagonal matrix 

1 1

2 2 2

1 1 1

0 0 0 0

0 0 0

0 0 0

0 0 0 0

* *

* * *

* * *
n n n

* *
n n

A

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

α β

γ α β

γ α β

γ α

                       (1)                                      

       

We define: 

1 1
*=α α                 (2a) 

1 1
*=β β                                                                                             (2b) 

* *
i i i/=α α γ , i=2, 3,….., n                                                                      (2c) 

* *
i i i/β = β γ   , i=2, 3,….., n                                                            (2d) 

Where: 

0*
iγ ≠                                                                                       (2e) 

To obtain a simple recurrence formula for the inversion of matrix A, we rewrite the 

matrix A as multiplication of a diagonal matrix D and a matrix C with coefficients of the 

lower diagonal equal to unity as follows:  

 

* *

* * *

* *
n n

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

α β

γ α β

γ α

1 1

2 2 2

0 0

0
0 0

0 0
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*

n n
*
n n

A DC

− −

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

α β

γ α β

α β
γ α

1 1

2 2 2

1 1

0 01 0 0 0

0 0 0 1 0
0 0 0 1 0

0 1
0 0 0 0 0 1

      

The inverse of matrix A is 

   1 1 1A C D− − −=                                                                                    (3a) 

     or 

1
1 1

2 2 2
1

1 1

0 0 1 0 0 0

1 0 0 1 0 0
0 1 0 0 0

0 1
0 0 0 10 0 1

*

n n
*
nn

/
A

/

−

−

− −

⎡ ⎤α β ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥α β γ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥α β⎢ ⎥ ⎢ ⎥⎢ ⎥ γ⎢ ⎥⎣ ⎦α⎣ ⎦

         (4) 

 

 Denote  

1 1
i , jC C

d
− =                                                                             (5) 

Where i , jC  are the elements of the matrix inverse (i and j represent the row and column 

respectively) multiplied by a constant d (we will drive a formula for d later). 

Assuming that C is a 4x4 tridiagonal matrix and 1−C  is its inverse, we write equation (6).  

 
1

1 1 1 2 1 3 1 4
1 1

2 1 2 2 2 3 2 42 2

3 3 3 1 3 2 3 3 3 4
4

4 1 4 2 4 3 4 4

0 0 1 0 0 0
1 0 0 1 0 01
0 1 0 0 1 0
0 0 1 0 0 0 1

, , , ,

, , , ,

, , , ,

, , , ,

C x C I

C C C C

C C C C

d C C C C

C C C C

− =

⎡ ⎤⎡ ⎤
⎢ ⎥α β ⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥α β ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥α β
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥α ⎣ ⎦⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

       (6)      

We determine the elements of the first column in 1C −  by setting the last element of 

the column to be one 
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1 4 1 1n , ,C C= =  ,                                                           (7) 

then by multiplying the nth row (4th row in this case) in matrix C by the first column of 

the inverse matrix, one determines the n-1 element (3rd element) as follows: 

3 1 4 4 1

3 1 4 4 1 4

0, ,

, ,

C C

C C

+ α =

= −α = −α
                                                  (8) 

then we multiply the 3rd row in matrix C by the first column of the inverse matrix to 

determine the 2nd element of the inverse matrix as follows: 

 2 1 3 3 1 3 4 1

2 1 3 3 1 3 4 1

0, , ,

, , ,

C C C

C C C

+ α + β =

= −α −β
                (9) 

The process is repeated by multiplying the n-1 row (3rd row) in matrix C by the first 

column of the inverse matrix to determine the n-2 element (2nd element). This process has 

the following recurrence formula:   

1 1 2 1 1 1 1i , i i , i i ,C C C+ + + += −β − α                         (10) 

For      i=n-1,…….., 1 

     Where: 

 0nβ =  

After generating the elements of the first column, we determine the rest of the inverse 

matrix elements, i , jC , from the first column elements 1i ,C  as follows: 

For i ≥ j or the lower part of the inverse matrix: 

To get the element 4 2,C  we multiply the last row of the inverse matrix by the first 

column of the matrix C as follows: 

1 4 1 4 2

4 2 1 4 1

0, ,

, ,

C C

C C

α + =

= −α
                (11) 

To get the element 4 3,C  we multiply the last row of the inverse matrix by the second 

column of the matrix C as follows: 

 1 4 1 2 4 2 4 3

4 3 2 4 2 1 4 1

0, , ,

, , ,

C C C

C C C

β + α + =

= −α − β
              (12) 

To obtain the rest of the elements of the lower part of the inverse matrix we continue 

this process which has the following recurrence relation: 
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1 1 2 2i , j j i , j j i , jC C C− − − −= −α −β                        (13) 

For:  j = m, i = n, n-1, n-2, ….., m  

                     m =  2, 3, 4, …., n 

Where: 

0 0β =                                                                                                                  

The lower part of the matrix becomes: 

 

( ) ( )( )
( )( ) ( )

( ) ( )

1 1

3 4 3 3 4 3 11

4 4 1 1 2 1 4

1 1 2 1 4 4

1

1

,

,

C

Lp C
d

C

−

• • •⎡ ⎤
⎢ ⎥

α α − β α α −β −α • •⎢ ⎥= ⎢ ⎥−α α α −α α + β α •
⎢ ⎥

−α α α − β⎢ ⎥⎣ ⎦

   (14) 

Where: 

 ( )1 1 2 3 4 3 2 4,C = α −α α + β + β α   (From equation 10) 

 ( ) ( )4 4 3 1 2 1 2 1,C = −α α α −β − β −α   (From equation 13) 

Now we complete the elements of the upper part of the inverse matrix.  First, we try 

to get a formula for the first element in the last column.  This will make the analysis 

simpler as we will see. 

Multiplying the 3rd row in the matrix 1C − by the 4th column of the matrix C we get 

equation 15.  Multiplying the 3rd row in matrix C by the 4th column in 1C −  we get 

equation 16.  Multiplying the 2nd row in C by the 4th column in 1C −  we get equation 17.   

3
3 4 3 3

4
, ,C Cβ

= −
α

                      (15) 

2 4 3 4 4 3 3 4, , ,C C C= −β − α                             (16) 

1 4 2 3 4 2 2 4, , ,C C C= −β − α                             (17) 

Solving equation 15, 16 and 17 together we get equation 18 which is a formula for the 

first element in the last column of the inverse matrix.  In an nxn matrix this formula will 

take the form shown in equation 19. 

1 4 1 2 3,C = β β β                 (18) 
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1
1 1 2 1 1

n
,n n iiC ......... −

− == β β β = β∏                                                                (19)
 

and the rest of the elements of the last column are generated the same way we generated 

the elements of the first column and we write the following recurrence formula: 

 2 1 1

1

i ,n i i ,n
i ,n

i

C C
C − − −

−

− − α
=

β
                                                             (20) 

For: i=2, 3, …., n-1 

Where: 0,nC 0=  

Following exactly the previous procedures we get the recurrence formula for the 

upper half of the inverse matrix 1C −  (i < j): 

      1
1 2

1j
i , j i , j i , j

j j
C C C+

+ +
⎛ ⎞ ⎛ ⎞α

= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟β β⎝ ⎠ ⎝ ⎠
            (21) 

For: j=m and i=m-1, m-2,…., 1 

        m=n-1, n-2, ….., 2 

Where:  1 0i ,nC + =  

The upper half of the inverse matrix Up 1C −  is 

 

( ) ( ) ( )
( ) ( )

( )

3 3 4 1 4 1 2 1 2 3

1 1 4 2 1 2 3

1 1 2 3

1Up C
d

−

⎡ ⎤• −β + α α β −α β β β β β
⎢ ⎥• • α α β −α β β⎢ ⎥=
⎢ ⎥• • • −β + α α β
⎢ ⎥
• • • •⎣ ⎦

        (22) 

To get the constant, d, we multiply the first row in the matrix C by the first column of 

the inverse matrix C-1 (which is equals to 1) and we obtain the following formula for d: 

1 1 1 1 2 1, ,d C C= α + β                (23) 

that is 1 2 3 4 1 4 2 1 2 3 3 4 1 1 3d = −α α α α + α α β + α α β + α α β −β β      

Finally, the inverse of matrix A is obtained from equation (4). 
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Special Case (1): Inverse for symmetric tridiagonal matrix 

The recursive formulas to obtain the elements of the inverse of the tridiagonal matrix 

becomes very simple and reduces only to two simple recursive formulas (one for the first 

column elements and the other for the rest of the elements of the inverse matrix) in the 

case of a symmetric tridiagonal matrix (as the one shown in equation (16)).  We do not 

need to decompose the matrix to two matrices as we did previously. 

 

1 1

1 2 2

2 3 3

2 1 1

1

0 0 0
0 0

0 0

0
0 0 0

n n n

n n

C

− − −

−

α β⎡ ⎤
⎢ ⎥β α β⎢ ⎥
⎢ ⎥β α β

= ⎢ ⎥
⎢ ⎥
⎢ ⎥β α β
⎢ ⎥

β α⎢ ⎥⎣ ⎦

                          (24)  

Following the same steps discussed previously and based on the fact that a matrix 

multiplied by its inverse is equal to a unit matrix the elements of the inverse matrix could 

be found as follows: 

Elements of the first column are obtained as follows: 

1 1n ,C =                        (25) 

1 1 1 2 1
1

i i ,i i i ,
i ,

i

C C
C + + + +−α −β

=
β

                    (26) 

For: i=n-1, n-2,………., 1 

Where: 0nβ =  

Comparing equation (26) with equation (10) we found that both are the same but in 

case of equation (10) the matrix had iβ =1. 

The rest of the elements of the inverse matrix are obtained using the following 

recurrence formula: 

For i ≥ j: 

2 2 1 1

1

j i , j j i , j
i , j

j

C C
C − − − −

−

−β − α
=

β
             (27) 

For: j=m and i=n, n-1, n-2, …., m 
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       m=2, 3, ……., n  

Where: i 0C 0, =  and 0 0β =     

Comparing equation (13) and equation (27) we find out that both are the same, but in 

equation (13) 1 1j −β = . 

Based on the fact that the tridiagonal matrix was symmetric this will cause its inverse 

to be also symmetric and the rest of the elements are obtained from: 

For i < j: 

i , j j ,iC C=                        (28) 

Finally, all the elements of the inverse matrix ( i , jC ) should be multiplied by the 

constant 1/d which is obtained from equation (23). 

Special Case (2): Inverse for tridiagonal symmetric constant diagonal (Toeplitz) 

matrix  

If the tridiagonal matrix takes the form of a symmetric Toeplitz matrix (equation 

(29)) the recursive formula to obtain the elements of the inverse matrix becomes even 

simpler. 

 

 

0 0
0

0
0 0

C

α β⎡ ⎤
⎢ ⎥β α β⎢ ⎥
⎢ ⎥=
⎢ ⎥β α β⎢ ⎥
⎢ ⎥β α⎣ ⎦

                            (29) 

Assume that the elements of the inverses matrix are i , jC  where i and j are the row 

and column of the inverse matrix respectively. 

Using the same technique discussed previously the elements of the first column of the 

inverse matrix are obtained as follows: 

1 1n ,C =                        (30) 

1 1 2 1
1

i , i ,
i ,

C C
C + +−α − β

=
β

              (31) 
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For: i=n-1, n-2,………., 1 

Where:  

1 1 0n ,C + =  

The rest of the elements of the lower half of the inverse matrix are obtained using the 

following recurrence formula: 

For i ≥ j: 

1 1 1 1 2i , j i , j i , j i , jC C C C+ − − − −= + −             (32) 

For: j=m, i=n, n-1, n-2, …, m 

        m=2, 3, ….., n 

Where:   

            ( ) ( ) ( )0 0 1 0i , , j n , jC , C , C + = ,                                                                      

  

 For i < j: 

 i , j j ,iC C=                 (33) 

Finally, all the elements of the inverse matrix ( i , jC ) should be multiplied by a 

constant 1/d which is obtained from equation (23). 

Special Case (3): Inverse for tridiagonal matrix with constant diagonals (Toeplitz) 

Consider a case where the tridiagonal matrix has constant diagonals (Toeplitz).  The 

matrix takes the form shown in equation (34).   

0 0
0

0
0 0

C

α β⎡ ⎤
⎢ ⎥γ α β⎢ ⎥
⎢ ⎥=
⎢ ⎥γ α β⎢ ⎥
⎢ ⎥γ α⎣ ⎦

       (34) 

In this matrix the super diagonal, diagonal and sub diagonal are constant and equal 

toβ , α  and γ  respectively.  It is well known that a Toeplitz matrix is persymmetric and 

so, if it exists, is its inverse.  Again we will start the analysis without decomposing the 

matrix into two. 
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The elements of the first column are obtained exactly as we mentioned previously. 

 First column elements: 

 1 1n ,C =                (35) 

 1 1 1 2 1i , i , i ,C C C+ +
α β

= − −
γ γ

             (36) 

For: i=n-1, n-2, ….., 1 

Where 1 1 0n ,C + =  

Elements of lower part of the inverse matrix (i ≥j): 

We only need to determine the elements on and below (or above) the antidiagonal 

(Inverse matrix is persymmetric).  They are obtained as follows: 

1 2i , j i , j i , jC C C− −
α β

= − −
γ γ

             (37) 

For:  j=m and i=n-m+1, n-m, n-m-1,….., m 

Where: m=2, 3, 4, …., K 

  1
2 2

n nK if n is odd or K if n is even+
= =  

  0 0i ,C =    

The rest of elements of the lower matrix are obtained according to: 

1 1i , j n j ,n iC C − + − +=                (38) 

For i ≥ j 

Elements of the Last Column: 

In this matrix the sub diagonal elements are not equal to one.  Trying to deduce a 

formula for the first element in the last column will be complex.  Any element obtained 

in the last column will be sufficient to develop the recurrence formula and substitute in it.  

We will find the element n-1 in the last column as follows: 

Multiplying the n-1 row in the C matrix by the n column of the inverse matrix we get: 

1 1 1n ,n n ,nC C− − −
β

= −
γ

                     (39) 

The following recurrence formula is developed to obtain the rest of the elements of 

the last column of the inverse matrix: 
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 2 1i ,n i ,n
i ,n

C C
C + +−β − α

=
γ

             (40) 

For: i=n-2, n-3, ……, 1 

For the Upper part of the inverse matrix (i < j): 

1 2i , j i , j i , jC C C+ +
⎛ ⎞ ⎛ ⎞α γ

= − −⎜ ⎟ ⎜ ⎟β β⎝ ⎠ ⎝ ⎠
                    (41) 

For: j=m and i=n-m+1, n-m+2, ….., m-1 

Where: m= n-1, n-2,…., K+1 

1 0i ,nC + =  

The rest of the elements of the upper part of the inverse matrix are obtained from: 

1 1i , j n j ,n iC C − + − +=                (42) 

For: i < j 

Example: 

The 3x3 matrix defined in equation (43) was used by Mallik [10] as an example. 

1 1

2 2 2

3 3

0

0
I

α β⎡ ⎤
⎢ ⎥= γ α β⎢ ⎥
⎢ ⎥γ α⎣ ⎦

               (43) 

Decomposing into two matrices: 

 
1 1

2 2 2 2 2

3 3 3

1 0 0 0
0 0 1
0 0 0 1

I / /
/

α β⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= γ α γ β γ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥γ α γ⎣ ⎦ ⎣ ⎦

     (44) 

 

1
1 1

1
2 2 2 2 2

3 3 3

0 1 0 0
1 0 1 0
0 1 0 0 1

I / / /
/ /

−

−
α β⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= α γ β γ γ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥α γ γ⎣ ⎦ ⎣ ⎦

                 (45) 

The inverse matrix is then obtained by direct substitution in equations 7, 10, 13, 19, 

20, 21, 23 and 45 as shown in equation (46).  After a number of steps Mallik [10] arrived 

at the same inverse of the matrix.  The proposed method can be used to considerably 

reduce the effort to arrive at the inverse. 
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( )

2 3 2 3 3 1 1 2
1

3 2 1 3 1 2
1 2 3 3 1 2 1 2 3

2 3 1 3 1 2 1 2

1I −
α α −β γ −α β β β⎡ ⎤

⎢ ⎥= −α γ α α −α β⎢ ⎥α α α − α β γ − α β γ
⎢ ⎥γ γ −α γ α α −β γ⎣ ⎦

 (46) 
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