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ABSTRACT 

 

 

 

The study of entangled polymer rheology both in the field of medicine and polymer 

processing has their major importance. Mechanical properties of biomolecules are studied 

in order to better understand cellular behavior. Similarly, industrial processing of polymers 

needs thorough understanding of rheology so as to improve process techniques. Work in 

this dissertation has been organized into three major sections. Firstly, numerical/analytical 

models are reviewed for describing rheological properties and mechanical behaviors of 

cytoskeleton. The cytoskeleton models are classified into categories according to the length 

scales of the phenomena of interest. The main principles and characteristics of each model 

are summarized and discussed by comparison with each other, thus providing a systematic 

understanding of biopolymer network modeling. Secondly, a new constitutive “toy” Mead-

Banerjee-Park (MBP) model is developed for monodisperse entangled polymer systems, 

by introducing the idea of a configuration dependent friction coefficient (CDFC) and 

entanglement dynamics (ED) into the MLD “toy” model. The model is tested against 

experimental data in steady and transient extensional and shear flows. The model 

simultaneously captures the monotonic thinning of the extensional flow curve of 

polystyrene (PS) melts and the extension hardening found in PS solutions. Thirdly, the 

monodisperse MBP model is accordingly modified into polydisperse MBP “toy” 

constitutive model to predict the nonlinear viscoelastic material properties of model 

polydisperse systems. The polydisperse MBP toy model accurately predicts the material 

properties in the forward direction for transient uniaxial extension and transient shear flow. 
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1. INTRODUCTION 

 

 

 

1.1 OVERVIEW 

Studies of entangled polymer systems have been underway for a long time both in 

the field of biological sciences and commercial polymer industries. The macromolecules, 

like proteins, and more complex structures, like cytoskeletons and external cellular matrix, 

have been under exploration in order to understand cellular behavior and diseases more 

thoroughly. Similarly, the rheological behavior of commercial polymer macromolecules, 

both linear and linear branched chains, is important to understand, as they are exposed to 

high shear and extension deformation conditions during industrial processing. Better 

understanding of the mechanical properties of these polymers allows better process design 

and material handling. The discussion in subsequent sections, is categorized in three major 

parts. Paper I consists of the classification of the cytoskeleton models according to multiple 

scales. The discussion in Papers II and III are dedicated to the development of constitutive 

“toy” models for both monodisperse and polydisperse entangled polymer systems 

respectively.  

The discussion in the section below has been organized as follows. In Section 1.2, 

the motivation and objectives behind the research topic “modeling and simulation of 

biopolymer network classification of the cytoskeleton models according to multiple scales” 

are discussed. A very brief glance at how the classification of models has been organized 

is also included. Section 2 is dedicated to discussing the constitutive models for 

monodisperse and polydisperse entangled polymer systems. The Section 2 is further 

categorized into sub sections as follows. In Sections 2.1 and 2.2, the motivation and the 
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objectives behind the research respectively are discussed. The constitutive models for the 

monodisperse and polydisperse systems are a modification of the Doi-Edwards’ “tube 

model.” Thus, a brief introduction to the tube theory and basic polymer relaxation 

mechanism is imperative before moving forward with the model development, which is 

taken up in Section 2.3. In Sections 3 and 4 the history of the mathematical models that 

have been developed over time to describe the rheology of entangled monodisperse and 

polydisperse polymer systems are respectively discussed. 

 

 

1.2. MODELING AND SIMULATION OF BIOPOLYMER NETWORKS: 

CLASSIFYING THE CYTOSKELETON MODELS ACCORDING TO 

MULTIPLE SCALES 

 

Cytoskeleton mechanics and the field of biomechanics have been topics of research 

for last couple of decades, as they are pathways to explain various cellular behaviors and 

also answer certain pertinent questions regarding recent diseases like cancer, tumour 

growth, neural degeneration, etc. The cytoskeleton, which is the structure providing 

component of the cell, changes its behavior under different mechanical conditions, 

changing the cellular activity accordingly. The questions here are what happens to the 

cytoskeleton structure under a certain mechanical perturbation and what are the reasons 

behind the observed deformations. The understanding of the above questions can be 

extended to answering what happens to the cellular activity under the deformation of the 

cytoskeleton (Banerjee & Park, 2015). 

1.2.1. Research Motivation. The questions regarding the cytoskeleton 

mechanical behavior and properties and their answers have been one of the major 
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motivations behind studying this particular topic. From the onset of the research, it was 

clear that numerous mathematical models to describe the behavior of the cytoskeleton 

structure exist. The range of the models was extremely varied from that of viscoelastic to 

glassy material to that of a Brownian dynamic simulation of a discrete polymer network 

system. Many attempts have been made to provide a clear demarcation between the various 

models and their results (Banerjee & Park, 2015), but there is a lack of review articles that 

bring in all the various models together and put forward a clear picture of how and why the 

models are different. This was the second major motivation to bring together a review 

article that could bring all the present mathematical models together, explain their 

differences and provide a literature structure for future research in this field (Banerjee & 

Park, 2015). 

 

 

 

 

 
Figure 1.1. Classification of the cytoskeleton mechanics models and their underlying 

principles. The models are classified based on the length scales of study, varying from cell 

size (~10mm) to that of molecular level (~1nm). 
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Figure 1.2. Classification of the cytoskeleton mechanics model based on both length and 

time scales. It can be clearly seen that the chosen time and length scales cause drastic 

difference in the model consideration for cytoskeleton rheological study. 

 

 

 

1.2.2. Research Objectives. The objectives behind the research are as follows 

(Banerjee & Park, 2015): 

1. This research was intended to provide a systematic understanding of 

cytoskeleton models in terms of length scales, which, in turn, affects the mechanical 

stress behavior of the cytoskeleton. Figures 1.1. and 1.2. provide a brief description 

of the classification of the models based on the length and time scales. It can be 

seen that depending on the chosen length scale or the time scale of the cytoskeleton 

mechanics model, the rheological behavior being described changes. 

2. The final objective was to provide a framework for the future development 

of the cytoskeleton mechanical models. 
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3. This research was designed to assimilate all major recently published 

mathematical models and provide a summary of their underlying principles, main 

applications, and advantages and disadvantages. 

The detailed discussion regarding the classifications, the underlying mechanism, 

and their pros and cons appears in Paper I, in the later part of the dissertation. 
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2. CONSTITUTIVE MODELS FOR MONODISPERSE AND POLYDISPERSE 

ENTANGLED POLYMER SYSTEMS 

Nonlinear rheological behavioral studies of both entangled polymer melts and 

solutions (both monodisperse and polydisperse) under high deformation conditions have 

been underway for more than half a century. The tube theory developed by Doi and 

Edwards in 1986 provided a platform that has been modified and re-modified numerous 

times to date, generating different models, but has been unable to provide a single unified 

approach to describe the system as a whole (Doi & Edwards, 1986). Simultaneously there 

have been molecular dynamics simulation, stochastic Brownian dynamics approaches to 

study the same system of polymer under low and high deformation conditions (Park et al., 

2012; Xu et al., 2006). 

 

2.1. RESEARCH MOTIVATION  

One of the major motivations behind this particular research has been to provide a 

generalized “toy” constitutive model that correctly and consistently describes all the 

physics behind the rheological behavior of the entangled polymer in a fast flow nonlinear 

regime. The system in this study was restricted to only that of polystyrene (PS) melts and 

solutions. The conclusions drawn from the same study can easily be transcribed to any 

other polymer systems (Mead et al., 2015). 

 Secondly, a strong physical basis was sought in order to describe the nonlinear 

rheological behavior for both the monodisperse polymer melt and solution systems. 

Experimental observations demonstrated that under high extension rates, monodisperse 

polymer melts exhibit an extension thinning behavior. Figure 2.1., which describes the 
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steady state extension curve for 200K PS melt w.r.t extension rates (Mead et al., 2015)). 

The physics behind it is not yet understood. There have been quite a few developments in 

the field to aid in understanding the reason behind it, but the results have been inconclusive. 

The approach used in the study was to find the underlying physics to describe this behavior. 

  Thirdly, monodisperse entangled polymer melt and polymer solution behave 

differently under similar extension conditions (see Figure 2.1., which provides a 

comparison between the steady state extensional viscosity behavior of 200K PS melt and 

20wt% 1.95M PS solution w.r.t extension rate (Mead et al., 2015)).  The entangled polymer 

melt shows extension thinning behavior, and the polymer solution shows extension 

thickening, under similar high extension conditions. There was also a desire to determine 

whether the constitutive “toy” model could both capture and explain the reasons behind 

this observed difference.  

 Polydisperse systems, on the other hand, are much more complicated than the 

monodisperse systems as there are multiple molecular weight components involved. As 

with monodisperse entangled polymers, there have been numerous attempts to describe the 

physics behind the observed rheological behavior under high deformation conditions, but 

there is a definite lack of a single unified approach. The aim of this study has been to extend 

the understanding of monodisperse systems to that of polydisperse systems and to verify 

the accuracy of the constitutive “toy” model in predicting the polydisperse rheological 

behavior. 
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Figure 2.1. The steady state extensional viscosity vs extension rate for 200K PS melt and 

20w% 1.95M PS solution respectively (Mead et al., 2015). 

 

 

2.2. RESEARCH OBJECTIVES 

The objectives of this research are as follows (Mead et al., 2015): 

1. Develop a constitutive “toy” mathematical model incorporating the concept 

of a configuration dependent friction coefficient (CDFC) and entanglement 

dynamics (ED) that can correctly predict the behavior of the melts and solutions 

under low and high extension and shear flow conditions. 

2. Understand why monodisperse entangled melt behaves differently from that 

of solution under a high extension condition.  
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3. Understand the effects of each of the underlying physics (CDFC, ED and 

convective constraint release (CCR)) on the overall behavior of the system under 

different deformation conditions. 

4. Extend the understanding of monodisperse entangled polymer system to 

that of entangled polydisperse systems. To observe if any different physics is 

playing a role in describing the polydisperse system and understand the 

polydispersity in depth.  

The details regarding the development of the constitutive “toy” model for both the 

monodisperse and polydisperse systems, the observed results, and the discussion appear in 

Papers II and III, respectively, in the later part of the dissertation. 

 

2.3. INTRODUCTION TO DOI AND EDWARDS’ TUBE THEORY 

In the following sections we are going to discuss the development of Doi and Edwards 

tube model over the de Gennes’ reptation model and the polymer relaxation mechanisms 

in detail. 

2.3.1. Doi and Edwards’ Tube Theory. Dense polymer systems, both under melt 

and solution conditions, are highly entangled. As a result, the motion of a single polymer 

strand under such conditions is highly constrained as the nearby entanglements pose certain 

restrictions to its movement, causing lateral motion of the chain to be highly improbable in 

certain positions. This idea forms the basis of “Tube Theory.” Tube theory was initially 

coined by Doi and Edwards (1978a, 1978b, 1979, 1986), based on Pierre-Gilles de Gennes’ 
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reptation theory (de Gennes, 1971), which became one of the most fundamental approaches 

used to study the entangled polymer rheological behavior under low and high deformation 

conditions. The foundation of the theory lies on the work of major pioneers, like Kuhn, 

who first questioned the length of the macromolecules for linear and branched, and Zimm, 

and Rouse, who examined the motion of these macromolecules (Kuhn, 1934; Zimm,1956; 

Rouse, 1953; McLeish, 2002). Doi and Edwards’ tube theory garnered popularity, despite 

its obvious shortcomings, due to the fact that the concept is simple with clear assumptions, 

and a virtual tube is easier to conceptualize than the other then existing approaches like 

“mode-coupling” (McLeish, 2002). 

 The rheological behavior of the polymer system was studied by selecting one 

single polymer strand from the entire ensemble of entangled polymer strands and studying 

its movement and process of relaxation. The chain under study is referred to as the “test 

chain” or “primary/primitive chain” (Rubinstein & Colby, 2003; Larson, 1999).  

 It is assumed that any deformation observed in the test chain is affine (i.e., the 

amount of deformation given to the system is proportional to the amount of deformation 

felt by the test chain) (Rubinstein & Colby, 2003). It is also assumed that the behavior of 

the test chain is equivalent to that of the entire ensemble. Thus, the understanding gained 

from studying that one single chain can be extrapolated to the entire ensemble without any 

loss of information. A test chain can have many points of entanglements with other chains 

around it, but it is assumed that with a single chain, it is entangled at a single point (Mead 

et al., 2015). Thus, if there are four entanglements present in a chain, then they are all from 

four different chains around it (see Figure 2.2., which depicts an entangled polymer system 

with the primary chain and its entanglements). When a system of entangled polymers is 
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under deformation, by virtue of thermodynamics, it tries to arrive at an equilibrium 

condition or a steady state condition. This process of reaching equilibrium is called the 

relaxation process (Rubinstein & Colby, 2003; Larson, 1999). There are various ways one 

can quantify the relaxation mechanism in terms of mathematical models, like Doi and 

Edwards’ tube model and its modifications, stochastic modeling, Brownian dynamic 

simulation, etc. (Doi & Edwards 1978a, 1978b, 1979, 1986; Mead et al., 1998, 2015; Park 

et al., 2012; Xu et al., 2006). The constitutive “toy” model hereby developed and simulated 

is a modification of the Doi and Edwards’ tube model, and thus, the discussion is restricted 

to the same (Mead et al., 2015). 

As discussed above, the entanglements present in and around the test chain pose a 

constraint to its lateral movement, and allowing only certain specific conformations and 

movements. Qualitatively, one may imagine a “virtual tube” along the contour of the chain 

defined by the sum of all the topological constraints active around the chain. 

The tube allows some degree of free movement of the test chain along its contour 

in the transverse direction (see Figure 2.3.) (McLeish, 2002). The tube has a radius of a, 

which is in the order of the end-to-end length of the chain of entanglement is molecular 

weight Me, consisting of Ne monomers. This allows only chains with molecular weights 

greater than Me to be strongly affected by the topological constraints around them 

(McLeish, 2002). As will be discussed later, the number of entanglements on the chain or 

the entanglement molecular weight of the system is derived from the plateau modulus of 

the component at a given processing temperature. 
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Figure 2.2. An entangled polymer system with the primary chain (bold black) with its 

entanglements (green) and constraints by other chains around it. The points of 

entanglements are shown by red circles. 

 

 

Inside this tube, the test chain will have free transverse motion but will feel the 

same amount of constraint in the lateral movement at a distance a, as those of without the 

tube (Barkema et al., 2011; Rubinstein, 1987; Rubinstein & Colby, 2003).  The tube 

diameter a is given by,  

a=bNe

1
2⁄
 (1) 

where b is the Kuhn length (Rubinstein and Colby, 2003). 

The primary (or primitive) chain, follows a primitive path along the tube center, 

defined by the constraining potential (Rubinstein and Colby, 2003).  
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If the primary chain is assumed to be consist of N Gaussian random walk sub-chains 

of effective step length (Kuhn length) b, then the defining tube will also have a Gaussian 

random walk of “curvilinear tube length,” “average contour length,” or “the average 

primitive path length”  𝐿𝑒𝑞 =  [𝑁
𝑁𝑒

⁄ ] 𝑎 =  𝑁𝑏2

𝑎⁄   (McLeish, 2002; Rubinstein & Colby, 

2003).  The tube can thus, be considered to consist of  𝑍 = [𝑁
𝑁𝑒

⁄ ] segments, each of length 

a (Rubinstein & Colby, 2003). The term 𝑍 also gives the number of entanglements on the 

chain.  

The average primitive path length is the shortest possible length of the chain 

(shorter than the actual contour length of the chain ‘bN’ by a factor of  𝑎
𝑏⁄ =  √𝑁𝑒 ) at 

which the chain can still feel the topological constraints (McLeish, 2002; Rubinstein & 

Colby, 2003).   

 

 

 

 
Figure 2.3. A virtual tube (green color) of radius a, created along the contour length of the 

primitive chain is the sum of the constraints around it. The purple colored lines depict the 

surrounding strands posing as constraints to the primary chain (black). 
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It is an important concept as it defines the time scale and nature of the entanglement 

constraint dynamics (McLeish, 2002). For long chain entangled polymers with N>> Ne, 

an almost constant modulus, called the plateau modulus (GN
o) is observed in a stress 

relaxation experiment. The plateau modulus provides the information regarding the 

entanglement molecular weight Me, which, in turn, scales the tube segment being created 

around the primitive chain. 

For entangled polymer melts the plateau modulus is given as follows (Rubinstein 

& Colby, 2003): 

GN
o

 = 
ρRT

Me

 (2) 

Here, R is the universal gas constant, T is the temperature, and ρ is the density 

(Rubinstein & Colby, 2003). 

The tube, which is qualitatively a statistical manifestation, can change by two 

distinct ways: a) when the chain transversely moves out of the existing tube in order to 

move a larger distance and b) when the tube fluctuates with the chain length fluctuations 

(Rubinstein,1987; Rubinstein & Colby, 2003). Figure 2.4 shows that as a chain moves out 

of the tube, a new tube starts to form, and at the same time, a part of the old tube gets 

destroyed. This type movement of the chain is called “reptation motion”. The term 

reptation was first used by de Gennes (1971) due to the snake-like Brownian motion of the 

chains (McLeish, 2002). The reptative motion of the will decide the longest characteristic 

time of the chain movement, called “reptation time / disengagement time / orientation time” 

(𝜏𝑑) (Rubinstein, 1987). The reptation time can be defined as “the time the chain takes to 
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diffuse out of the tube of average length Leq” (Rubinstein & Colby, 2003). The reptation 

time (𝜏𝑑) is given by (Rubinstein & Colby, 2003): 

τd ≈ 
Leq

2

De
≈ 

ζb2N3

kTNe
 (3) 

Here, De= kT
ζN⁄  is the curvilinear diffusion coefficient for the chains describing 

the motion inside the tube, with ζN as the Rouse friction coefficient, and k as the Boltzmann 

constant (Rubinstein & Colby, 2003). 

The chain ends have random Brownian motion, which allows them to take any 

random path to diffuse in the surrounding melt. Once the chain reptates out of a tube 

segment, it is allowed to take a random walk, and a new tube segment gets formed along 

the chosen random path. Similarly, as the chain has a choice of random walk, it can even 

retract back in the tube, shortening the primitive path (McLeish, 2002). At very small time 

(𝑡 ≪ 𝜏𝑒), the random motion of the chain is not hindered by the topological constraints as 

the presence of the tube is not yet felt by the chain. At time 𝑡 =  𝜏𝑒, the chain starts feeling 

the presence of the tube (i.e., constraints around it) for the first time. This time 𝜏𝑒 is called 

the “Rouse time of entanglement strand of length Neb”. This is the smallest possible 

characteristic time for a chain confined in a tube. At any time 𝑡 > 𝜏𝑒, the orientation of the 

chain is always restricted by the tube confinement until it completely moves out of the tube 

(McLeish, 2002; Rubinstein & Colby, 2003). The Rouse time for the entanglement strand 

is given by (Rubinstein & Colby, 2003): 
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τe= 
ζb2Ne

2

kT
 (4) 

Thus, the relation between the reptation time and Rouse time of the entanglement strand is 

given by (Rubinstein & Colby, 2003): 

τd

τe

= [
N

Ne

]
3

= Z3 (5) 

Vivoy et al. (1991) provides another similar relationship between the reptation and 

entanglement segment Rouse time, (which is considered as the basis for entanglement 

calculations in the upcoming sections), as,  

τd=3τeZ3 (6) 

The Rouse time 𝜏𝑅 of the chain (for Rouse motion), which is the longest relaxation time of 

the Rouse model, is given by (Rubinstein & Colby, 2003):   

τR= τe [
N

Ne

]
2

= τeZ2 (7) 

Here, the Rouse time of a chain is the time taken by a chain to diffuse a distance of the 

order of its size. The Rouse time in the later sections is also considered as the stretch 

relaxation time. For a chain trapped inside a tube, the ratio of the reptation time to that of 

the Rouse time is given as follows (Doi & Edwards, 1986): 

τd

τR

= 3Z (8) 
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Figure 2.4. Reptative motion of the chain out of a tube causes simultaneous tube creation 

and destruction along the chain contour length. 

 

 

 

 

In practice, the reptation time 𝜏𝑑 is measured experimentally as the reciprocal of 

the frequency at which G’ = G’’. The Rouse time of the chain 𝜏𝑅 is calculated from 𝜏𝑑 

using equation 8 (Rubinstein & Colby, 2003; Larson, 1999).  

The reptation time 𝜏𝑑 and the Rouse time 𝜏𝑅, are the two major characteristic times 

considered for the constitutive “toy” models developed in the later sections.  It is also 

important to note that for a monodisperse system with a single molecular weight 

component under study, there is one Rouse time and one reptation time that are widely 

separated numerically (i.e., 𝜏𝑑 ≫  𝜏𝑅), as can be seen from Figure 2.5a. However, in the 

case of a polydisperse system, where there is more than one molecular weight component, 

there is more than one reptation and Rouse time, and they may overlap. The wider the 

molecular weight distribution, the greater the overlap, as can be seen from Figure 2.5b 
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(Mishler & Mead, 2013a). This concept is a crucial factor in modeling a constitutive 

equation for polydisperse entangled polymer systems and is discussed in detail later in 

Paper III. 

 

 

 

        

Figure 2.5. Characteristic relaxation times. a) Monodisperse entangled polymer system 

where the largest Rouse time and the reptation time are widely separated. b) Polydisperse 

entangled polymer system where the Rouse times (stretch relaxation time) and the reptation 

times (orientation relaxation time) overlap (redrawn from Mishler and Mead (2013a)). 

 

 

 

 

2.3.2. Polymer Relaxation Mechanism. As discussed earlier, the fundamental 

objective of the constitutive model is to quantify the steady state or even the transient 

rheological behavior of the entangled polymer system. The process of reaching a steady 

condition, or equilibrium condition, after a deformation is called relaxation.  

An entangled polymer system reaches its relaxation by a combination of a number 

of different mechanisms. The few major mechanisms that are included in the original Doi-

Edwards’ tube model are as follows (Doi & Edwards, 1986): 
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1. Reptation of the primary chain within the matrix of constrains. 

2. Fluctuations of the primary chain length along the primitive path within the 

matrix of constrains. 

3. Constraint release due to the motion of the surrounding chains. This causes two 

different relaxation scenarios (Mead et al., 1998): 

i. Relaxation by tube shortening  

ii. Relaxation by tube reorientation 

Reptation of the primary chain was discussed in the previous section. The 

movement of an entire chain from an old tube to a new tube (both at the same energy state) 

completes one single process of relaxation. For high molecular weight monodisperse, linear 

polymer chains, reptation is the governing relaxation mechanism under low deformation 

conditions. Initially it was assumed that reptation was the only mechanism to describe the 

relaxation process. But gradually, due to discrepancies observed between predicted and 

experimental values, it was realized that other non-reptative processes need to be accounted 

for (Larson, 1999).  

In polydisperse systems (a blend of two or more molecular weight components), 

there exist combinations of shorter and longer chains. Under any flow conditions, some of 

the topological constraints get removed due to shorter chains moving faster than longer 

chains, causing an added relaxation for the longer chain components by a mechanism called 

“double reptation” (des Cloizeaux, 1988; Tsenoglou, 1991). The idea behind this concept 

is that an entanglement or a constraint is lost if either the test chain or the matrix chain 

reptates past the entanglement point (Larson, 1999). Details regarding the double reptation 

are discussed in Section 4. 
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Primitive path fluctuation can be most conveniently expressed for branched 

polymer chains, where one end of the chain is tethered to a polymer branch point. In such 

cases, the chain cannot move back and forth and thus cannot reptate (Larson, 1999). Such 

chains relax by a primitive path fluctuation mechanism, also called breathing mode (de 

Gennes, 1975).  

The fluctuations bring the chain ends inside the tube. As a chain end moves inside, 

the tube segment is vacated, and the stress on the chain relaxes (see Figure 2.6.). The free 

end of the chain must diffuse to the tether point for a complete relaxation, but such a 

condition is not entropically favorable (Larson, 1999). Thus, as the chain ends keep on 

moving towards the tether point, the fluctuations increases, and the time required for 

relaxation increases exponentially (Doi & Kuzuu, 1980). Hence, a chain that relaxes solely 

by primitive path fluctuations will have a spectrum of characteristic times.  

 

 

 

 

 
Figure 2.6. Primitive path fluctuation mechanism (redrawn from Rubinstein & Colby, 

2003). 
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The chain segment near the end of the tube will relax fastest with the time required 

increasing as we move towards the interior of the chain. For the chains that can reptate 

(both chain ends free), the interior part of the chain will relax by reptation, which will be 

much faster than by primitive path fluctuations because reptation controls the longest 

relaxation time scale for the chain (Larson, 1999). However, the chain ends will relax faster 

by fluctuations than by the process of reptation. For very high molecular weight polymers, 

these fluctuations are generally very small and confined to a limited portion of the chain, 

so they can be neglected (Larson, 1999). 

Constraint release is a situation in which some of the topological constraints on the 

test chain get removed automatically due to the flow or deformation. This allows the chain 

to relax much faster compared to just reptation, as a portion of the chain gets free to relax 

(Pearson, 1987; Mead et al., 1998; Larson, 1999). When these constraints get removed by 

the convective flow, it is called convective constraint release (Marrucci, 1996; Marrucci & 

Ianniruberto, 1996, 1997; Mead et al., 1998), which is discussed in detail in Section 3.  

Now, consider a situation where the relaxation is occurring only by constraint 

release and there is no reptation or Rouse motion of the chain. Here, a very small time scale 

is considered, 𝑡 <  𝜏𝑅, such that only localized Rouse motion and small segment re-

orientation of the test chain are allowed. In such a situation, constraint release can manifest 

itself in two forms, and relaxation will either occur as the tube reorients itself, maintaining 

the chain length, or as the chain retracts back (tube shortening), keeping the same 

orientation as before, or it may even be some combination of the two (see Figure 2.7.) 

(Mead et al., 1998).  
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It is also important to understand that both these mechanisms relax the same amount 

of stress when constraint release is the only relaxation mechanism. If reptation, chain end 

fluctuations, and chain retraction occur along with constraint release, then the above 

equivalence will not hold (Mead et al., 1998). In a situation where relaxation is occurring 

by reptation, constraint release, and chain retraction, the orientation of the tube will be a 

function of both reptation and constraint release. Similarly, stretch in the tube will be 

defined by chain retraction, chain end fluctuations, and tube shortening. In such cases, the 

stress relaxed by tube shortening or changes in tube length and tube orientation will be 

different, and thus the equivalency is lost (Mead et al., 1998).  

Constraint release can be completely neglected only in the cases where either the 

isolated test chain is surrounded by a matrix chain of much higher molecular weight 

compared to the test chain or if the matrix surrounding the test chain is cross-linked 

(Larson, 1999). 

Many experimental observations (Lodge et al., 1990; Ylitalo et al., 1990; Kremer 

& Grest, 1990) have validated the presence of reptation in an entangled polymer system by 

the virtue of the fact that the interior of the chain relaxes much slower than the chain ends. 

The same experiments also verify that the entire chain relaxation mechanism cannot be 

explained by reptation alone. There are other relaxation processes occurring along with 

reptation, like constraint release and primitive path fluctuations (Larson, 1999). Further 

studies have elucidated that the above mentioned mechanisms are just the most basic of the 

processes occurring when an entangled polymer system is deforming.  
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Figure 2.7. Constraint release mechanism. When constraints get removed, the chain can 

relax by tube shortening, by tube orientation, or by a combination of the two [redrawn from 

Mead et al., 1998]. 

 

 

There are various other physics like tube stretch or incomplete chain retraction, 

reduction in friction in the system due to the chain/tube orientation (configuration 

dependent friction coefficient), fall in number of equilibrium entanglements with 

deformation (entanglement dynamics), and others which need to be considered while 

developing the constitutive equations so as to provide accurate qualitative and quantitative 

descriptions of the rheological behavior (Marrucci & Grizzuti, 1988; Marrucci, 1996; Mead 

et al., 1998, 2015; Park et al., 2012). These topics are subsequently discussed in the later 

sections and Papers II and III.  
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3. HISTORY OF MONODISPERSE SYSTEM CONSTITUTIVE “TOY” MODEL 

DEVELOPMENT 

The constitutive models used to study the rheological behavior of linear entangled 

monodisperse polymers under low and high flow conditions have evolved over time. As 

discussed in the previous section, de Gennes proposed the concept of reptation, which was 

further developed by Doi and Edwards to introduce tube theory. This theory provides the 

ground work for the subsequent models that have been developed in the last five of decades. 

Though most of the models are in excellent agreement with the linear rheological behavior 

of the linear entangled melts and solution, they start to differ in their nonlinear behavior 

predictions under high flow conditions. Nonlinear flow conditions are still not well 

understood and have been under investigation since last forty years. 

Doi-Edwards (DE) tube model works well for all low flow deformation conditions 

where the behavior is predominantly linear. It is based on two major relaxation mechanisms 

of reptation and complete chain retraction within the constrain matrix, under affine 

deformation (Doi & Edwards, 1978a, 1978b, 1979, 1986). The model is also based on the 

assumption of a constant number of equilibrium entanglements on the chain under any 

flow. It also assumes that the constraints are fixed. Though the model very accurately 

predicts the nonlinear deformation of the linear entangled monodisperse polymer melts 

under step-shear strains, it fails to both qualitatively and quantitatively predict the nonlinear 

behavior under other forms of deformations like steady shear and extension (Mead et al., 

1998). One major drawback of the theory is the mechanism of “complete chain retraction.”  

Under fast flow conditions, the chain starts stretching, which means that the length 

occupied by the tube increases above that of the equilibrium length (Doi & Edwards, 
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1978a, 1978b, 1979, 1986). Simultaneously, the chain is also allowed to retract back in the 

tube (i.e. the chain moves back along the contour of the tube).  According to Doi-Edwards 

proposition, the chain retraction time (Rouse relaxation time 𝜏𝑅) is faster than the strain 

rates or the reptation time 𝜏𝑑. Consequently, the chain completely retracts back in the tube 

after getting stretched and thus maintains a constant equilibrium tube length in any flow 

(Doi & Edwards, 1978a, 1978b, 1979, 1986; Mead et al., 1998; Larson, 1999). This 

resulted in the over-prediction of the steady shear thinning behavior for the linear polymer 

melts and a failure to quantitatively predict the overshoots observed in the transient first 

normal stress difference curve.  

The next improvement in the model, called the Doi-Edward-Marrucci-Grizzuti 

(DEMG) model, was brought about by Marrucci and Grizzuti in 1988. They modified the 

chain retraction concept (keeping the assumptions of a constant number of equilibrium 

entanglements and fixed constraints), and initiated that the retraction process is gradual and 

incomplete. This implies that there is a finite amount of chain stretching observed above 

the equilibrium chain length (Marrucci & Grizzuti, 1988; Mead et al., 1998). This concept 

should have improved the results compared to the DE model, as chain stretching should 

have increased the predicted shear viscosity. But the entire physics of the model was such 

that under high shear flow, the tubes got highly oriented in the direction of the flow, causing 

a loss in the drag. This caused a collapse in the tube stretch effect, lowering the viscosity 

and reducing the results to same as that of the DE model prediction (see Figure 3.1.) 

(Larson, 1999; Mead et al., 1998, 2015).  

Nevertheless, the tube stretching did improve the overshoot predictions for the first 

normal stress difference and shear stress. The model also failed to predict the monotonic 
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extension thinning behavior observed for melts (see Figure 3.2.) (Mead et al., 2015). Both 

DEMG and DE also predicted that with increase in molecular weight, the melt shear 

viscosity decreases with increase in high shear rate, under shear thinning regime; which is 

contrary to the fact that at high shear rates, the shear viscosity is a very weak function of 

molecular weight (Mead et al., 1998). Thus, even though the physics behind the theory was 

improved, the DEMG model still could not improve the predictions for steady shear and 

steady extensional viscosities over that of the DE model. The simplest constitutive 

equations for the above concept were presented by Pearson et al. (1991). 

In 1996 Marrucci, Ianniruberto and Marrucci (1996), introduced another concept 

called convective constraint release (CCR). Under slow flow, constraint release may not 

be of much consequence, but under fast flow conditions (at strain rates greater than 1
𝜏𝑑

⁄ ) 

by the virtue of the flow itself, some of the topological constraints around the primary chain 

get removed automatically. In this case, the assumption of fixed tube no longer holds true. 

This allows the chain to relax much faster compared to relaxing just by reptation. The 

simplified models developed by Ianniruberto and Marrucci (1996), using the concept of 

CCR, are based on an assumption that all parts of the molecule experience the same 

orientation and degree of stretch.  One important fact that needs to be elucidated is that not 

all types of convections can release constraints. If the system is affinely deformed in such 

a way that all the chains have the same deformation, then both the primary chain and the 

surrounding matrix chains will deform together. Hence, there will be no constrain release 

(Ianniruberto & Marrucci, 1996; Marrucci & Ianniruberto, 1997). Thus, the convective 

constraint release occurs only when the matrix chains around the primary chain are 

undergoing retraction. As the length of matrix chains reduces, the constraints on the 
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primary chain get removed. New constraints replace the old ones, but during the process 

of replacement, the primary chain relaxes (Ianniruberto & Marrucci, 1996; Larson et al., 

1998; Mead et al., 1998). To account for the relaxation by constraint release, Ianniruberto 

and Marrucci (1996) considered time-dependent tube diameter. The reduction in bond 

orientation order caused by constraint release is accounted for by increasing the tube 

diameter and thus reducing the length of the primitive path of the tube (Ianniruberto & 

Marrucci, 1996; Marrucci & Ianniruberto, 1997). 

Mead, Larson, and Doi (1998) developed the MLD “toy” model, which is an 

improvement of the DEMG model, and incorporated the mechanism of CCR into it. The 

MLD model also allows relaxation of chain ends to occur by fluctuations and improved on 

the concept that both the chain orientation and degree of stretch are functions of tube 

coordinates (based on contour variable theory), thus removing the assumptions made by 

Ianniruberto and Marrucci (1996) in the previous CCR models. The MLD “toy” model like 

its predecessors, is based the concept of a constant number of equilibrium entanglements, 

as any entanglement dissolved is immediately replaced by a new one (Mead et al., 1998).  

Depending on the tube stretch conditions, the CCR effect will manifest itself in either tube 

orientation or tube shortening.  

If the chain is stretched beyond the equilibrium condition (λ > 1), then it is unable 

to explore the entire volume of the tube, and constraint release will cause tube shortening. 

On the other hand, for chains not under tension (λ = 1), the chain will be slack enough to 

explore the tube volume and thus allow it to escape the tube, leading to tube reorientation 

(Mead et al., 1998).  
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Figure 3.1. Steady shear viscosity vs shear rate curve showing DEMG, MLD, and 

experimental results for 200KPS monodisperse melt. DEMG over-predicts the shear 

thinning behavior, where the MLD model has an improved prediction due to the effect of 

CCR incorporated in it (Mead et al., 2015). 

 

 

 

The MLD “toy” model definitely improved the predictions for the steady shear 

viscosity for linear monodisperse entangled melt, as can be seen from Figure 3.1., 

confirming that CCR is an important physics to describe the shear system at high 

deformation condition. The effect of CCR is prominent before the tube starts stretching. 

Contrariwise, as can be seen from Figure 3.2., the MLD “toy” model, similar to DEMG 

model, could not predict the extension thinning behavior of the monodisperse melt (Mead 

et al., 2015). From this one may conclude that CCR effect may not be the physics to define 

the extension thinning observed at high deformation rates. 
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Figure 3.2. Steady extensional viscosity vs extension rate curve showing DEMG, MLD, 

and experimental results for 200KPS monodisperse melt. Both DEMG and MLD predict 

an extension thickening behavior under high extension conditions, where experiments 

show an extension thinning behavior (Mead et al., 2015). 

 

 

 

 

Though the steady shear behavior has been explained using the MLD model by 

incorporating CCR, the steady extension melt thinning related issues have not yet been 

dealt with. In 2012, two independent research groups working on two completely different 

approaches to tackle the extensional entanglement polymer rheology issues (Park and 

group using stochastic simulation and Yaoita et al. using the tube theory way (Park et al., 

2012; Yaoita et al., 2012)), proposed similar concept called the configuration dependent 

friction coefficient (CDFC).  
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The idea of CDFC was initially developed by Ianniruberto et al. when it was 

proposed that when the stretch and orientation of the chain occurs, there will be a loss of 

monomeric friction ζ (Ianniruberto et al., 2012). MD simulations and recent experimental 

studies have also validated the presence of reduction in the friction factor when the polymer 

system is highly stretched and oriented (Andreev et al., 2013; Wingstrand et al., 2015). 

Yaoita et al. then validated that the friction coefficient as a function of stretch/orientation 

factor 𝜁(𝐹𝑆𝑂) remains at equilibrium when (𝐹𝑆𝑂) is increased to a certain threshold value 

(≈ 0.15), after which it starts steeply decreasing with a further increase in the 

stretch/orientation factor. Here (𝐹𝑆𝑂) =  𝜆2̅̅̅𝑆̅ , where 𝜆̅ =  
𝜆

𝜆𝑚𝑎𝑥
 and 𝑆̅ are the averaged 

anisotropic orientation of all components (Yaoita et al., 2012, 2014).  

When incorporated in the constitutive MLD equation, they showed that a reduction 

in the friction coefficient can very much be the reason for the observed steady extension 

thinning behavior in linear polymer melts when the system is highly stretched and 

orientated (Yaoita et al., 2014). In their stochastic simulation, Park et al. also verified that 

CDFC is definitely the key to the extension thinning behavior of the linear polymer melts 

at high extension rates (Park et al., 2012). Further discussion on CDFC and how the concept 

is incorporated in describing the constitutive equations is taken up in Paper II. 

The new constitutive “toy” model called the Mead-Banerjee-Park (MBP) 

monodisperse model and developed by the authors, is a modification of the MLD “toy” 

with the incorporation of two major concepts: a) CDFC and b) entanglement dynamics 

(ED). Until now, all the major modified tube models that have been developed were based 

on the assumption of a constant number of entanglements, irrespective of the flow.  
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The models assumed that with CCR when the entanglements get destroyed new 

entanglements take its place and thus the total number of equilibrium entanglements remain 

fixed. But under fast deformation when the strands are unraveling, orienting and getting 

stretched, the number of entanglements on the chain cannot remain fixed. The same 

phenomenon was also observed by Baig et al. (2009) in their Brownian dynamic simulation 

of entangled linear polymers. Thus the above assumption was modified in the new model 

to define an idea of entanglement dynamics where the number of equilibrium 

entanglements on the chain alters with deformation (Mead et al., 2015). Details regarding 

the model development, simulations, and results are presented in Paper II. 
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4. HISTORY OF POLYDISPERSE SYSTEM CONSTITUTIVE “TOY” MODEL 

DEVELOPMENT 

Similar to the model development discussed for the monodisperse systems the 

polydisperse constitutive “toy” model development also starts with Doi and Edwards’ tube 

model as the base. The DE model failed to describe the polydisperse conditions because of 

its assumption that the constraint matrix around the test chain is fixed (single reptation of 

only the test chain). This implies that the movement either by reptation or chain retraction 

occurs only in the primary chain (Doi & Edwards, 1986). As pointed out earlier, in a 

polydisperse system, more than one molecular weight component is blended together; 

consequently, there will be complex entanglements of shorter and longer chains. Each of 

these chains will have its own reptation and Rouse time of motion, and thus, the 

entanglements will also have different lifetimes. The entanglements of long-short chains 

will dissolve much faster than long-long entanglements as the short chain moves faster than 

the long chains. Thus, this will allow the long chains to relax faster by constraint release 

(Larson, 1999; Auhl et al., 2009; Mishler & Mead, 2013a, 2013b). In such a scenario it is 

erroneous to assume that the matrix chain that creates the constraint around the test chain 

is constant. 

A semi-empirical concept of “double reptation” was proposed and implemented by 

multiple researchers to overcome the incongruity of Doi and Edwards’ model (Rubinstein 

& Colby, 1988; Tsenoglou, 1987, 1991; des Cloizeaux, 1988, 1990). Applications of 

monodisperse models to polydisperse systems have always proven to be difficult, due to 

their inherent complexities, and the double reptation model has proven to be one of the 

most successful models to describe polydispersity in recent times. 
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The idea in a simplistic approach can be thought of as a combination of reptation 

and constraint release. According to this proposed theory, the test chain and the 

surrounding chains are allowed to reptate together. The proposed theory provides accurate 

predictions of G’ and G’’ for a specified molecular weight distribution, for both bidisperse 

and polydisperse systems (Wasserman & Graessley, 1992). Another positive feature of this 

model is that it has no added parameters over the original DE model (single reptation). The 

inversion of the double reptation mixing rule could also be used to generate the molecular 

weight distribution of the system, analytically and numerically, from its rheological 

behavior as described by Mead (1994). 

The MLD “toy” model for monodisperse systems was modified based on binary 

interaction theory and generalized double reptation with a slip-link entanglement survival 

probability equation to account for polydispersity (Mead et al., 1998; Mead, 2007). 

Although the model could successfully predict some of the polydisperse rheology behavior, 

the physics behind the system was not sound. It was mostly based on the idea that the basic 

underlying physics in monodisperse and polydisperse systems are same and thus can be 

easily generalized without adding any new mechanism. The complexities behind the 

entanglements present and their probable effects on the entire system were not considered 

important (Mishler & Mead, 2013a).  

In 2009, Auhl et al. made an effort to explain the behavior of bidisperse 

polyisoprene (PI) systems under uniaxial extension using a concept of nested tube (Auhl 

et al., 2009). The major motivation behind the theory is the fact that in polydisperse system, 

multiple constrain release rates exist and that the elongation hardening that is observed 

(deviation from linear viscoelastic behavior) is related to the long chain component’s 
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stretch relaxation. Consider a bi-blend (same material) system of widely separated 

molecular weights mixed together such that there are two types of chains in the blend: long 

chains and short chains. This implies that there are four major types of entanglements 

present in the system: a) long-long, b) long-short, c) short-long and d) short-short. Thus, 

for the long chains, the two types of entanglements will have two different constraint 

release rates, and the long-short will dissolve faster than long-long.  

Thus, one can imagine (see Figure 4.1.), two tubes around the long chains with the 

thin tube defined by all the entanglements and the thick tube given by only the long-long 

entanglements. The presence of the short chain component is considered to create a dilution 

effect, and thus their entanglement effects are not considered. The long chain component 

and the effect of short chain dilution on the stretch relaxation are analyzed and are believed 

to be responsible for the stress generated in the system. The presence of short chains and 

the stress related to them are neglected as they are considered to provide the dilution effect 

only (Auhl et al., 2009). 

 

 

 
Figure 4.1. Nested tube model proposed by Auhl et al. (2009). The primary tube is defined 

by all the entanglements whereas the diluted tube is given by only the long entanglements 
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Similar to nested tube model of Auhl et al., the “diluted stretch tube model” was 

defined by Mishler and Mead to describe polydispersity (Mishler & Mead, 2013a). The 

difference between the two models is how the tubes are defined and the generated stress 

calculation method. According to the diluted stretch tube model, the primary tube (or the 

thin tube) is given by all the entanglements that exist in the system. If we consider the same 

system as Auhl et al. (2009), which has long and short chain components with long-long, 

long-short, short-long, and short-short entanglements, then the primary/thin tube is defined 

by all four types of entanglements (see Figure 4.2.). On the other hand, to define the diluted 

tube, there is a criterion. All those entanglements, that have a reptation time that is much 

larger than the Rouse time of the primary chain are considered viable 
𝜏𝑠𝑖

𝑒𝑓𝑓

𝜏𝑑𝑗

≪ 1, (𝜏𝑠𝑖

𝑒𝑓𝑓 =

𝜏𝑠𝑖
1(𝑡)

𝛹𝑖
  ). The diluted tube is defined only by the viable entanglements. 

 

 

 

 

 

Figure 4.2. Diluted stretch tube model proposed by Mishler & Mead 2013a. [Redrawn from 

Mishler and Mead, 2013a]. The primary tube is defined by all the entanglements whereas 

the diluted tube is given by viable entanglements given by the criterion. The unviable 

entanglements behave like solution. 
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Those entanglements that have an average lifetime less than the effective Rouse 

time of the test chain 
𝜏𝑠𝑖

𝑒𝑓𝑓

𝜏𝑑𝑗

 > 1, (𝜏𝑠𝑖

𝑒𝑓𝑓 =
𝜏𝑠𝑖

1(𝑡)

𝛹𝑖
  ) act as a solvent with respect to the 

stretch relaxation process. The major factor behind the criteria is that the chains have 

different lifetimes, and there are constraints that move away much faster than the primary 

chain Rouse motion, thus not effecting the stretch dynamics of the primary chain. The 

stretch generated in the diluted tube is coupled with that of the primary tube, and the stress 

is given by all the entanglements that are present in the system, and not only by the ones 

that define the diluted tube (Mishler & Mead, 2013a, 2013b). 

The MBP polydisperse model is based on the concept of “diluted stretch tube” 

theory incorporated in the MBP monodisperse model. Thus the MBP “toy” model for the 

polydisperse system will have the same physics of CCR, ED and CDFC as that of the 

monodisperse condition along with stretch tube dilution. The details regarding the 

constitutive model development, simulation, and results are discussed in Paper III. 
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PAPER 

I. Modeling and simulation of biopolymer networks: Classification of the 

cytoskeleton models according to multiple scales 

 

 

 

Abstract 

We reviewed numerical/analytical models for describing rheological properties and 

mechanical behaviors of biopolymer networks with a focus on the cytoskeleton, a major 

component of a living cell. The cytoskeleton models are classified into three categories: 

the cell-scale continuum-based model, the structure-based model, and the polymer-based 

model, according to the length scales of the phenomena of interest. The criteria for 

classification of the models are modified and extended from those used by Mofrad [M. R. 

K. Mofrad, Annual Rev. Fluid Mech. 41, 433 (2009)]. The main principles and 

characteristics of each model are summarized and discussed by comparison with each 

other. Since the stress-deformation relation of cytoskeleton is dependent on the length scale 

of stress elements determines, our model classification helps systematic understanding of 

biopolymer network modeling.   
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  INTRODUCTION 

Recent studies in the field of medicine have elucidated the need to understand how 

the structures of biopolymers and the various physical forces acting on them contribute to 

the synthesis, growth, transportation, information processing and functioning of living cells 

and tissues. Many of these forces and their effects have been identified and studied, such 

as hemodynamic shear stress on vascular tissues, inspiratory pressure on lung functions, 

tension on skin ageing etc. [1]. In addition, numerous diseases, including tumours, lung 

cancer, emphysema, neuro-degeneration, pulmonary fibrosis, etc. [2-4], have been 

associated with the change of these physical forces and, subsequently, the biopolymer 

structures. These physical forces have also been found to be vital for cellular and genetic 

regulation in the living body [5]. 

Living cells dynamically respond to any mechanical perturbations in their 

environment solely by altering the cytoskeleton configuration and functioning [6, 7]. The 

cytoskeleton is a network of protein tubules present inside a cell, and is responsible for 

cellular structure, shape, movement and growth. Cells are adhered to a scaffold called the 

extra-cellular matrix. During the process of cell growth and movement, the cellular forces 

in the scaffold and inside the cell are balanced by the cytoskeleton [8-11]. Even the 

interactions between two adjacent cells are affected by the mechanical behavior of the 

cytoskeleton [12]. Thus it is imperative to identify the various mechanical forces and 

analyze their effects on the structure and behaviors of the cytoskeleton in order to 

understand cell functioning and abnormalities. This knowledge will lead to a better 

understanding of the causes of disease and corresponding cures. 
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There have been numerous efforts to model the relationships between the structure 

of the cytoskeleton and its rheological properties and mechanical behaviors. However, due 

to the cytoskeleton’s complex structure and heterogeneous components, no single approach 

has been able to accurately encompass all of its various behaviors. As shown in Figure 1, 

the cytoskeleton network is composed of three main highly entangled protein structures: 

actin filaments, microtubules and intermediate filaments. These components together are 

responsible for the properties and mechanics of the cells [13].  

The actin filament (or F-actin), a filamentous form of monomeric G-actin protein, 

is the major component of the cytoskeleton, comprising up to 10% of the total cellular 

protein mass [14]. It has a persistent length about 15 – 17 µm [15]. The F-actin further 

cross-links to create a bundle or an orthogonal cytoskeleton network structure by the cross-

linking of actin binding proteins [15-21]. The F-actin filaments are also continuously 

undergoing polymerization and depolymerization, leading to an active network structure 

[15, 22-24].  These cross-linkers and the degree of crosslinking also lead to strain stiffening 

behavior exhibited by the F-actin [13, 25].  

Microtubules, the second major component of the cytoskeleton network, exhibit 

hollow cylindrical shapes composed of monomers α and β – tubulin with persistent lengths 

of 6 mm [13,15]. They have higher bending stiffness, are more active in nature than actin 

filaments, and continuously undergo polymerization and depolymerisation [25, 26]. The 

microtubules are known to be the compressive load-bearing component of the network as 

balanced against the tensed actin and intermediate filaments [27].  
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The intermediate filaments (persistence length ~ 1 m) are the least well studied of 

the three components of cytoskeleton [13,15]. They, along with F-actin, act as the tension-

bearing components under deformation and have a rope-like structure consisting of 

different proteins [12-13, 25]. They are more stable compared to F-actin and microtubules 

and can withstand higher stresses and strains before rupture [25]. 

The dynamics and properties of the cytoskeleton result from the collective actions 

of the aforementioned components at various time and length scales.  Therefore, successful 

modeling of the cytoskeleton requires proper approximation of the behaviors and properties 

of those structural elements for the time and length scales of the phenomena of interest. 

The length scale is important for thermal and mechanical effects. However, biological 

effects or structural reorganization (including polymerization/depolymerization) must 

consider both length and time scales. For example, the stress-deformation behaviors within 

a time scale range where there is no structural reorganization or 

polymerization/depolymerization are referred as “passive dynamics,” whereas “active 

dynamics” are related to biological responses at longer time scales [13].  

This review paper classifies numerous analytical and numerical models used to 

analyze cytoskeleton behaviors and properties into three groups according to length scales: 

cell-scale continuum-based models, structure-based models, and polymer-based models, 

as shown in Figure 1. We focus on models used to analyze the passive dynamics of the 

cytoskeleton. Length scales of individual cell mechanical properties range from atomistic 

to the macroscopic cell level. It is also noteworthy that we exclude models that work at the 

scale of collective cell motions (> 10 m).  
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Our classification is adapted from that used by Mofrad’s review in 2009 [13]. 

Models, which describe the dynamic behaviors of a single cell as an elastic continuum 

medium, are classified as “cell-scale continuum-based models”. Mofrad named similar 

models “continuum-based models”, but we add “cell-scale” (typically around 10 m [28]) 

to distinguish them from continuum approaches at smaller scales [28].  “Structure-based 

models” elucidate cytoskeleton properties with discrete representative volume elements 

(RVE) which approximate the stress-deformation relationship among structural 

components (typically between 1 and 10 m [28]). As this model name was used in Chen’s 

review in 2014 [29], these models encompass the groups of “tensegrity models” as 

classified in Mofrad [13], the models reviewed by Chen and co-workers in 2012 [30], and 

the continuum polymer network models summarized in a review by Unterberger and 

Holzapfel in 2014 [28]. The “polymer-based model” explains the cytoskeleton properties 

in terms of polymer network structures (typically around 1 m [28]) or a single polymer 

molecule (less than 10 nm [28]), as in Mofrad [13].  

Many reviews have summarized various models for cellular and cytoskeleton 

dynamics using different approaches. As mentioned, Mofrad provided a unified insight into 

the overall cytoskeleton rheology and experimental techniques [13]. However, additional 

structure-based and polymer-based models have subsequently been added to other reviews. 

Chen and co-workers summarized models by focusing particularly on the structure-based 

models [30]. Chen’s review classified models into continuum-based and structure-based 

models. However, the author specifically arranged continuum-based models related to 

indentation experiments into another separate group: nanoindentation models. [29]. Nava 

and co-workers [31] and Moeendarbary and Harris [32] have unified various models 
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ranging from cell mechanics (>10 m) to cytoskeleton behaviors (~1 m). The former, 

which is mostly related to mechanics of adherent cells, proposed a model classification that 

included only continuum-based models and structure-based models (they used terms of 

continuum model and microstructural model). The latter models depict various cell 

phenomena at different time scales and length scales (but do not provide much detail on 

cytoskeletons). There were other reviews [28, 33, 34] which mainly emphasized polymer-

based models (from molecular level to network scale), but did not provide much discussion 

of cell-scale and structure-based models. 

Our aim is to provide a systematic understanding of cytoskeleton models in terms 

of length scales, which determine the stress-deformation relation of the cytoskeleton. This 

paper summarizes the underlying principle, main application, and advantages and 

disadvantages of cytoskeleton models in each classified length scale group.  
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CELL-SCALE CONTINUUM-BASED MODELS (~10 M) 

The cell-scale continuum-based models describe the mechanical/rheological 

behaviors and properties of a cell at cellular length scales (typically ~10 m), which is 

larger than the typical distance between different cell components [28]), by assuming that 

cell cytoplasm is a homogeneous and continuous medium. These models are usually used 

for the simulation of cell motions (migration, spreading, etc.) or experiments for cell 

property measurements [35]. Based on the level of simplification and the behaviors of 

interest, these models can be further classified into elastic/viscoelastic models, multi-

phasic models and soft glassy models.  

1. Elastic/Viscoelastic Models 

Elastic/viscoelastic continuum-based models utilize Cauchy’s momentum equation 

as well as constitutive equations that represent the stress-strain behavior of the cytoskeleton 

as a homogeneous elastic or viscoelastic medium [13]. A cell cytoplasm is discretized into 

small computational units (mesh) to solve those model equations by the finite element 

method with necessary boundary conditions. The major application of this approach is for 

analysing and evaluating the cells’ experimentally measured in vivo and in vitro force 

levels and their effects on cell behaviors [36]. It gives adequate results when measuring the 

cell deformation macroscopically [37, 38].  

These models are classified into elastic models or viscoelastic models depending 

on the dynamic time scale of the cellular behavior of interest [13]. An elastic model is 

sufficient to describe small deformations following Hook’s law, whereas a nonlinear elastic 
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model, such as the Gaussian model, is required for larger deformations [29]. However, the 

elastic models are only suitable for modeling cell material properties and cell dynamic 

behaviors at limited time scales (near equilibrium) due to their oversimplification [29, 31].  

The time-dependent stress-strain behaviors can be described by the viscoelastic 

models that utilize typical viscoelastic constitutive equations, such as typical or modified 

Maxwell model [31, 32].  Viscoelastic models have been able to predict the cellular 

mechanics for blood cells, which are under continuous shear and high mechanical 

perturbations, as well as for adherent cells such as epithelial and endothelial cells [39]. 

Recently, a 2D viscoelastic model was used to simulate cell migration in a microchannel 

[39]. A recent 3D constitutive model was extended to simulate lipid bilayer-cytoskeleton 

coupling in an erythrocyte membrane [40]. 

2. Multiphasic Model 

The multiphasic continuum model was first proposed by Guilak and co-workers, 

based on the idea that the viscoelastic behaviors of cells can be attributed to the intrinsic 

viscoelastic property of the cytoskeleton (solid phase in cytoplasm), the fluid viscosity of 

the interstitial fluid (cytosol: water with ions), and the solid-fluid interaction within a cell 

[41]. The basic approach of the biphasic cell model [42] can be extended to a more realistic 

physical representation of a cell by adding more phases. Therefore, the biphasic approach 

requires constitutive stress-strain equations in each phase as well as additional momentum 

and mass conservation equations over those phases. For example, the triphasic model 

considers a viscous liquid phase, an elastic solid phase, and an ionic phase, where two 
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stress-deformation equations are required for the liquid and solid phases and an additional 

equation exists for the osmotic pressure in the ionic phase [43, 44].  

Time or deformation rate-dependent response to stress can be described by the 

poro-elastic or poro-viscoelastic concept, which views the cytoplasm as a wetted porous 

solid [45-47]. Under this context, the cell viscoelasticity is a measure of the time scale 

(function of the poro-diffusivity, which is proportional to a combined variable of elastic 

modulus of the solid phase, porous size, and the fluid phase viscosity) needed for 

redistribution of the intracellular fluids and cell response under mechanical perturbations. 

As the poro-diffusivity increases, the relaxation of the cell gets faster [32].  

Combination of the above models with the structure-based models can be used to 

study the phase interactions and cell mechanics. The multiphasic approach can more 

accurately predict the cell rheological behaviors, such as creep response of the cell [48] 

and the chondrocyte mechanics [49]. However, one of the major disadvantages of these 

models is the increased number of estimated parameters and the increase in complexity of 

the model [32,41]. 

3. Soft Glassy Models 

The soft glassy rheology model [50, 51] (also referred as power-law rheology [29]) 

was initially proposed by Sollich and co-workers [52, 53], describing soft glassy materials 

with weak dependence of storage (G’) and loss (G”) moduli on frequency, ω. Soft glassy 

materials generally have a disordered structure of aggregated discrete components (e.g. 

foams, pastes, and colloids, etc.) that interact weakly. They usually have low moduli in the 
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range of Pa to kPa, and are not thermodynamically stable. Based on the above observations 

of the resemblance of the cytoskeleton to soft glassy materials, the soft glassy rheology 

was proposed as another interpretation of the continuum-based cytoskeleton model to 

elucidate how the macroscopic cellular response is related to the localized structural 

rearrangements caused by meta-stability and disordered structure [32, 50, 51]. This model 

can adequately predict the frequency dependency of elastic and loss moduli for all animal 

tissue types, including the smooth muscles in human airway, endothelial and epithelial 

cells, for a wide time range of ~0.001 – 100 sec using a universal parameter called a noise 

temperature. However, microscopic interpretation of this parameter has not been 

performed [50]. 

4. Discussion of the Cell-scale Continuum-based Models 

The aforementioned cell-scale continuum-based models have been widely used for 

simulation of whole cell behaviors as well as for cell material property experiments. 

According to the conditions of the behaviors of interest, different models can be chosen. 

For example, even for simulation of the same micropipette aspiration experiments, 

different models have been chosen according to the ranges of deformation and time 

[48,54,55]. 

There are some major disadvantages with all of the above continuum-based models. 

Firstly, these models emphasize macroscopic cellular behaviors and dynamics. 

Microstructure and individual cytoskeleton component behaviors are not considered by 

approximation at the continuum level. For example, the effects of actin cross-linkers, 

thermal fluctuations, and polymerization/depolymerization are neglected. Therefore, the 
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interpretation of the molecular level interactions is not allowed. Additionally, the 

macroscopic models cannot predict and understand the pre-stressed phenomenon observed 

in the cytoskeleton network [56]. The structure-based models and the polymer-based 

models, which will be discussed in the subsequent sections, portray a better understanding 

of cytoskeleton properties and behaviors from a microstructural point of view.  
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STRUCTURE-BASED MODEL (1~10 M) 

Structure-based models utilize discrete structural elements, which represent the 

individual stress-strain relationships among the microstructural components of the 

cytoskeleton, to describe the rheological properties and mechanical behaviors of the 

cytoskeleton [29, 32]. Since the heterogeneity of the cytoskeleton is considered through 

the microstructural stress elements, these models can describe some cell behaviors that 

cannot be simulated by the cell-scale continuum-based models, such as stability of the cell 

shape and cell stiffness [56]. The structure-based models can be further categorized into 

two groups: the pre-stress (pre-existing tensile stress) models and the semi-flexibility 

models. Pre-stress models, which include the cortical membrane model, the tensed cable 

nets model, and the tensegrity (cable and strut) models, consider pre-stress in the 

intercellular force balance to predict cell shape [56]. Note here that some reviews, such as 

by Mofrad [13], named all pre-stress models as tensegrity models. Semi-flexibility models 

include open cell foam models, the semi-flexible network element model (‘element’ is 

added to be distinguished from other polymer-based network models), and continuum 

polymer network models, which utilize RVE to the represent coarse-grained semi-flexible 

actin network [30]. The pre-stress model is important because it is known that the pre-stress 

is related to the cell shape stability and the cell stiffness [56]. The semi-flexibility model 

relates the bending ability of actin filaments with cell behaviors, such as strain hardening 

[30, 31]. Since the stress elements of these models consider the cytoskeleton components, 

the element length scales are considered to be smaller than cell scale (<10 m) [28]. 

However, since the stress element is still an imaginary representation of the actual polymer 

network, the element length scale is considered to be larger than the polymer network scale 
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(>1 m) [31, 56]. These models consider affine approximation (local deformation is the 

same as the macroscopic deformation) of the discrete elements, allowing continuum 

interpretations of the deformations, resulting in less numerical and computational 

complexity than the polymer-based models [56]. 

1. Cortical Membrane Model 

This model assumes that the stress bearing elements of the cytoskeleton are 

restricted within a thin or several thin distinctive cortical layers with the stress balanced 

either completely by the pressurized cytoplasm itself, or by the cytoplasm and extracellular 

matrix together [57]. This model can also predict the linear stress and cell stiffness 

relationship and give a good approximation for suspended cell (e.g. blood cells) and non- 

adherent cell behavior [58, 59]. The major disadvantage of this model is that its primary 

assumption, that the resistance to cell shape alteration is provided by a thin cortical layer, 

cannot be applied to adherent cells [60]. Thus, the limitation of this model inspired the 

shell-like 3D pre-stress models in the next section [30, 56]. 

2. Tensed Cable Nets Models 

This concept models a network completely constituted of tensile cable elements 

(linear-elastic springs) without the balanced compression in the microtubules. The pre-

stress is maintained and supported by the external extracellular matrix. The model predicts 

a linear relationship between stiffness and stress when the cable tension is constant; 

otherwise, the trend is non-linear [56]. As in the cortical membrane model, the pre-stress 

in the cortical membrane can be simulated with 2D tensed cable nets [59, 61, 62]. One 
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example of a typical 2D cable net (reinforced squared net) is shown in Figure 2. In the case 

of the behavior of suspended cells, such as blood cells, this model provides very good 

agreement with the experimental observations; however, the behaviors of adherent cells, 

such as cell spreading and cell migration, require more complicated 3D models for better 

simulation [30, 56].  

The 3D tensed cable nets models construct 3D cable networks with uncrossed free-

sliding joints as well as pin joints [63, 64]. The pre-stress is equal to the sum of all the 

tensile forces in the cables across a cross-sectional area [63, 65].  This model is also able 

to predict some of the mechanical properties, such as Young’s modulus, of the cytoskeleton 

and has good accordance with micropipette aspiration experiments. It also provides better 

interpretations of cell mechanics compared to the open cell foam models, which will be 

introduced later.  [30]. Major disadvantages with the model are that they do not include 

anything about compressed microtubules and still have limited ability to predict the 

behavior for adherent cells [27, 31, 56].  

3. Tensegrity (Cable-strut) Models 

The tensional integrity, or tensegrity, model employs a discrete network of self-

stabilizing pre-stressed tension bearing components (actin and intermediate tubules) which 

are balanced by locally compressed units (microtubules), each subjected to mechanical 

equilibrium and geometric deformation [10, 27, 66]. In vivo probing has elucidated that the 

actin filaments are the stiffest of all cytoskeleton components with a linear shape, whereas 

the microtubules appear curved. Thus, the principal assumption of this model is that actin 

and intermediate tubules are the stress bearing components but the microtubules resist 
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compression, which is in accordance with the above observations [10, 67, 68]. The stress 

element of this model is based on variations of R. Buckminster Fuller’s tensional integrity 

structure, proposed in 1961 [69]. This model describes a network system stabilized by 

continuous tension rather than continuous compression units [27]. Thus, the mechanical 

stability of the network depends on the arrangements and re-arrangements of these 

components. One of the most typical tensegrity elements, the octahedral structure, is shown 

in Figure 3. This basic structure consists of six rigid struts (compression-resisting elements) 

and 24 elastic cables (tensile-bearing elements). Depending on the experimental conditions, 

more complicated structures [70], viscoelastic cables [71], additional tensegrity elements 

and cables for nucleus and intermediate filaments [10, 72], and multimodal or additional 

tensegrity elements [10, 73, 74] can be added.   

The model correctly predicts the linear increase in stiffness of the network with that 

of the applied stress in accordance with experimental results [27, 56]. This model can also 

predict both static and dynamic behavior of various cell types (e.g., human airway smooth 

muscle cells and the adherent cells) and has confirmed that the cells maintain their shape 

by redistributing and balancing the stress between the cytoskeleton and the extracellular 

matrix [31, 32, 56]. The pre-stress and subsequent increase in cell stiffness as predicted by 

this model can probably also explains the high elasticity and non-linear viscoelastic 

behaviors observed in cells [32]. In contrast, this model still has the disadvantage in the 

prediction of the elastic modulus greater than experimentally measured values and the 

limitation in the description of cell viscoelastic behaviors, which requires consideration of 

polymer structure at smaller scales [28, 30]. 
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4. Open Cell Foam Model 

  In this model, the actin network is a rigid cross-linking of beam-like structures, of 

which shape is either cuboid, dodecahedron, tetrakaidecahedron, or icosahedron, with 

bending and twisting of the struts as the major stress-generating component. One of the 

typical stress units is a cuboid as shown in Figure 4a. [30, 75]. This model has a major 

application when studying endothelial cells. It can also predict the strain hardening under 

compression for the adherent cells exposed to local mechanical perturbations [31]. The 

open cell foam model does not include pre-stress and thus does not elucidate the effect of 

stress on cell stiffness.  The rigidity of the cross-link is a major disadvantage of the model, 

as in reality the actin cross-links are not rigid [12].  Overall, this model may not be able to 

provide as much information regarding cytoskeleton mechanics compared to the other 

models [30, 31]. 

5. Semi-flexible Network Element Model 

We named this model as “semi-flexible network element model” because this 

model describes the cytoskeleton rheological properties using an RVE-based approach to 

represent the structure of a semi-flexible polymer network [76]. As shown in Figure 4b., 

the RVE of this model consists of four equal-length strings and elastic springs, which 

simplifies the complex network structure. This model can predict Young’s modulus as well 

as the shear modulus in terms of the relative ratio between the bending stiffness and the 

axial stiffness as well as the cross-link density.  Although this model relates the 

microstructure of the cytoskeleton network to cell mechanical properties, it is not suitable 
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for the simulation of cell dynamics due to the lack of structural information at larger scales 

(3D structure and microtubules) [30].  

6. Continuum Polymer Network Model 

The concept of this model is based on rubber elasticity in continuum mechanics; 

however, it also considers the force-extension relation of polymer chains, which is not 

directly included in the cell-scale continuum-based models. The RVE of this model is a 

continuous medium with principal stretch axes, as shown in Figure 4c. Different shaped 

RVEs have been used for describing polymer networks [77-80]. The eight-chain model or 

all-direction model was used for actin-filament networks [20, 81].  

This type of model has recently been improved to overcome the limitation of affine 

approximation and to include the prediction of negative normal stress behaviors. Van 

Oosterwyck and co-workers considered inextensibility of chain and sliding cross-links for 

non-affine deformation [82]. Recently, two nonlinear springs connected in series were used 

to show the effect of the linker stiffness on the rheological properties [83]. Unterberger and 

co-workers’ nonaffine homogenization method can show the negative normal stress 

behavior [84, 85]. A different approach, where a rigid rod connected to the surrounding 

elastic medium by cross-linkers, was reported to show the effect of the flexibility of the 

cross-link on the rheological properties [86].  

Using a proper application of this model to the finite element method, the cell 

behavior, such as that observed in a microindentation experiment, can be simulated. 
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However, only qualitative agreement was achieved, which is conjectured to be due to the 

lack of larger scale information as in the semi-flexible network element model [84, 85]. 

7. Discussion on the Structure-based Models 

The structure-based models provide a better understanding of the cytoskeleton 

behaviors and properties related to microstructural information, such as pre-stress and 

semi-flexibility, which are neglected in the cell-scale continuum-based models. But it is 

still an affine continuum approach and thus does not provide information about thermal 

fluctuations, network morphology, actin polymerization and cross-linking effects. The 

polymer-based model has been used to overcome those limitations, which will be discussed 

in the next section. 

Although the structure-based models are more suitable for describing the 

cytoskeleton properties rather the cell behaviors because the RVE approach is usually used 

when averaging over the cell and cannot be used for local fluctuations of deformations in 

a cell. However, proper choice of finite element method and multiscale simulation can 

allow structure-based models to simulate cell behaviors. For example, Chen used the 

tensegrity models to simulate cell spreading [87], and Unterberger used the continuum 

polymer network model to simulate micropipette aspiration [84, 85]. However, the 

computational time is generally longer than that for continuum-based models due to the 

more complex calculations for each RVE.   

Among the pre-stress models, the tensegrity model seems to be the best because it 

considers the actin networks as well as the microtubules, whereas other models do not 
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consider the microtubules. Compared to the semi-flexibility models, the pre-stress models 

are generally better at describing larger cell scale behaviors due to the inclusion of the pre-

stress. However, the semi-flexibility models are better in the sense that more 

microstructural information (semi-flexibility) can be incorporated in simulating the 

cytoskeleton properties.    
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POLYMER-BASED MODELS (<1 M) 

We classify models, which consider the structure of polymer molecules (actin 

filaments) or the morphology of polymer networks to predict cytoskeleton material 

properties as polymer-based models. The models in this type are further categorized into 

the discrete polymer network model (a.k.a. Mikado model) and the single polymer chain 

model. The original classification of the polymer-based model can be found in a review by 

Mackintosh (2006) [88] as well as in a review by Mofrad (2009) [13]. Recently, 

Unterberger and Holzapfel published a thorough review on polymer-based models in 2014 

[28]. However, they also included the continuum polymer network model in their review. 

Here, we classify the continuum polymer network model as a structure-based model 

because actin network structure is simplified into a RVE with chains in principal axes in a 

continuous medium.  

The structure-based models utilize many imaginary microstructural units, which 

have been proposed to model the complex physical properties of cells. However, these 

models still lack actual information on the detailed structure and behaviors of the 

cytoskeleton at polymer molecular-level scales, such as cytoskeleton network morphology, 

cross-linker properties, and thermal fluctuation. Since the cytoskeleton is a complex 

structure of biopolymers, such as actin filaments, modeling the cytoskeleton structure at 

smaller polymer scales (~1 m for polymer networks and <10 nm for single chains [28]) 

is essential to understand the origin of the unusual physical behaviors of cells. The 

polymer-based models have been used to elucidate the nonlinear mechanical response of 

the cytoskeleton to external forces in terms of collective behaviors (the effects of 
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connectivity for networks and entanglements for solutions) as well as single chain 

properties (semi-flexibility and finite extensibility) of actin filaments. 

The single polymer chain models provide the force-extension relationship of an 

actin filament, which is a fundamental aspect of all the models at larger scales. The discrete 

polymer network models are used to elucidate the interplay between the polymer network 

structure and the semi-flexibility of individual actin filaments. One of the distinguishing 

unusual behaviors of the cytoskeleton is the negative normal stress effect [89], which is 

explained only by polymer-based models that consider semi-flexibility.    

1. Discrete Network Models 

In this model, the RVE is a simulation box filled with cross-linked polymer chains. 

Each simulation method is different in how it simulates semi-flexible polymer chains, the 

properties of cross-linkers, and how to construct the network structure.  

Simpler approaches include the 2D network models. Head and co-workers used 

random 2D networks of worm-like chains to derive the scaling of the bulk modulus and 

the affine/non-affine elastic deformation regime as a function of the concentration and 

contour length of an actin filament [90, 91].  An elastic beam was used as the network 

element to predict the scaling of shear modulus [92]. A network of Euler-Bernoulli beams 

was employed to identify the elastic deformation regime according to the magnitude of 

strains [93]. The same network model was also used to explain the negative normal stress 

phenomenon with an asymmetric force-extension relation of actin filaments [94]. This 

model was also combined with a kinetic Monte Carlo method to show the strain 
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dependence of the cross-link rupture and stiffness [95]. Alonso and co-workers proposed a 

model based on the flocking theory. Polymer chains are considered as point particles, while 

cross-linkers are represented as potential functions [96, 97]. This model can simulate strain 

hardening, viscoelastic creep, stress relaxation, network rupture, and network reformation. 

Fallquivt and co-workers also used a 2D network model to study the effect of the filament 

length dispersion and the cross-linker compliance on the network material properties. It is 

noteworthy that they also performed a simulation using the continuum polymer network 

model to connect the effect of the cross-linker properties to a larger scale model [98]. 

Although 2D network approaches have been used for many studies, their limitations, 

such as the inability to represent the effect of 3D morphologies of cross-linkers on the actin 

network structure, have inspired the development of 3D network models. Huisman and co-

workers have used the 3D network of Euler-Bernoulli beams [99] and an inextensible 

worm-like chain model [100, 101] to study the strain-stiffening and scaling of elastic 

moduli. Brownian dynamics (BD) simulation method was used to study similar 

cytoskeleton network properties. Polymerization/depolymerization was simulated using 

actin monomers represented as rod-like units, which results in a 3D network structure [16, 

102, 103]. It is noteworthy that both the model by Huisman and the BD model [102] 

discovered that stress is concentrated in a few chains at high strain. The BD model was 

also used for extensive study of actin network behaviors, such as identification of 

distinctive regimes and mechanisms of creep, as well as the origin and control of viscous 

flows in cortical cells [104]. The BD simulations and the dynamic cross-linking of the actin 

filaments can also be studied to understand behaviors of cancerous cells [105]. Whereas 

many models assume isotropic deformation, some models can predict the different 
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morphologies of cytoskeleton networks, such as bundled filaments. The aforementioned 

BD model demonstrated the different morphologies as a function of cross-linker properties. 

Cyron and co-workers used stochastic governing equations to demonstrate different 

morphologies [106]. A recent study, which proposed a form-finding model (a 2D model 

was used earlier [107]), found that cells create parallel rather than disordered bundles of 

actin filaments during cell motion and cell adhesion. The parallel bundles align in the 

stretched direction, increasing the stiffness of the cell [108].            

2. Single Polymer Chain Model 

The single polymer chain model describes the most fundamental physical behaviors 

and properties of the cytoskeleton in the polymer molecule scale (<10 nm). Modeling the 

nonlinear force-stretch relationship of a single polymer chain is one the main issues in this 

type of model.  

Molecular dynamics (MD) simulations are used for the smallest atomic scale. 

Matsushita and co-workers simulated a single F-action filament with a full atomic structure 

to estimate its extensional stiffness [109]. Coarse-grained MD (CGMD) simulations were 

also performed by Chu and Voth to estimate the persistence length [110]. CGMD was also 

used to identify the heterogeneous mechanical properties of F-actin according to G-actin 

subunit structural differences [111-113].  

The dynamics features of a single filament can be modelled at a larger scale 

(polymer chain level: ~10 nm) than atomistic scale (~1 nm) in MD simulations. These 

types of models are called wormlike chain models. Although the atomic scale information 
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can be scaled up [114] or modelled as an elastic rod that incorporates the helical structure 

of the filaments, the worm-like chain model [115, 116] has been widely used. Based on the 

previous analyses [88, 90, 91], although a short filament with a length scale that is much 

smaller than its persistence length, its longitudinal response is determined by transverse 

thermal fluctuation. The model equation for the relationship between the force and the 

extension was later developed by Holzapfel and Ogden [117], and the Monte Carlo 

simulation was developed by Blundell and Terentjev [118]. There is also an approach using 

the finite element method to solve the Langevin equation for wormlike chain dynamics, 

which is also extended to model 2D network behaviors [119]. 

3. Discussion on the Polymer-based Models 

Consideration of polymer structure in models made it possible to predict or 

elucidate cytoskeleton properties/behaviors, which was not possible using larger scale 

models. For example, the frequency dependence of shear moduli, can be predicted by 

considering the polymer network structure, whereas the soft glassy model predicted that 

behavior by adjusting a parameter [50]. The effects of cross-linkers are essential in 

determining the overall actin physical properties and the consequent cytoskeleton 

properties. The affinity of the actin binding proteins to the actin filament, the resulting 

network morphology (bundle or orthogonal), the degree of cross-linking, concentration, 

and the molecular weight affect the non-linear viscoelastic response of the cytoskeleton 

[120, 121]. 

However, the general disadvantages of considering microstructural information at 

smaller scales are heavy computational cost for larger scale simulation and the neglect of 
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structural information at larger scales. Due to computational limits, the frequency 

dependence of shear moduli cannot be investigated for longer time ranges, and some 

filaments that are larger than the simulation box cannot be modelled [102]. Simulation of 

active behaviors, including polymerization/depolymerization of actin filaments, requires 

longer time scales. Polymerization/depolymerization can be considered only in the 

generation of a 3D network structure but not in the simulation of active behaviors [102, 

122]. However, Alonso and co-workers simulated active behaviors such as network 

reconstruction using a 2D model, which is computationally less expensive [123].  

It is understood that the behavior of the cytoskeleton network is not a function of 

one single component but is interdependent on the behaviors of all of the three major 

components together [10, 68]. Considering that, a model based solely on actin cannot 

predict and analyze the true cytoskeleton behavior. Similarly, these models also do not 

consider the compression in microtubules and the importance of intermediate filaments in 

bearing stress. 
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DISCUSSION/SUMMARY 

We classified many mathematical and numerical models for mechanical behaviors 

and rheological properties of the cytoskeleton of a cell, which have been published up to 

2014. The categories used are adapted from those used in a review by Mofrad in 2006: the 

cell-scale continuum-based model (originally continuum-based model), the structure-based 

model (tensegrity models and other RVE-based models), and the polymer-based model. 

These categories may be further classified into five groups by dividing the structure-based 

models into the pre-stress model and the semi-flexibility model as well as by dividing the 

polymer-based models into the single polymer chain model and the discrete polymer 

network model. Table 2.5.1 briefly summarizes the models we classified and discussed in 

this paper. The length scale classification is expected to promote more systematic 

identification of principles and characters of models.   

The polymer-based models consider the stress elements, single polymer chain and 

polymer network at the smallest scales among the models in those categories. These models 

describe the relation between the cell properties and the molecular structure of the 

cytoskeleton. However, high computational load prevents use of those models to simulate 

cell behaviors. For example, the BD model [102] showed the limitations in the simulation 

of polymer chains longer than the simulation box, frequency range in the shear modulus 

prediction, and the simulation of structural rearrangement by 

polymerization/depolymerization. Additionally, the effects of the microtubules and the 

intermediate filaments, which are larger scale cellular components than actin filaments, are 

not included in the simulation box of actin networks. 
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The structure-based models describe the cytoskeleton properties and dynamic 

behaviors using RVE of imaginary stress elements, which coarse-grain the polymer chain 

and network behaviors. The semi-flexibility models connect the effects of semi-flexibility 

and the stiffness of polymer chains to cytoskeleton behaviors at larger scales. The pre-

stress models can explain the cell shape stability and the cell stiffness in terms of the pre-

stress of the cytoskeleton, which is not considered in the cell-scale continuum-based model. 

The structure-based model can generally be used to model cytoskeleton material properties 

with better computational efficiency than the polymer-based models. However, they can 

also be used for cell dynamics with proper multi-scale numerical schemes. We also 

conjecture that models or studies which connect the pre-stressed model and the semi-

flexibility model would make up for the disadvantages of both models.   

The cell-scale continuum-based model, which handles the largest length scales 

among those model categories, can be used for modeling cell dynamics or behaviors, which 

are associated with experiments on cell property measurements. The coarse-grained 

mathematical constitutive models cannot give information on cytoskeleton microstructure.  

As we have reviewed, the cytoskeleton modeling presents different challenges 

compared to usual entangled polymer system modeling, where smaller scale models based 

on microstructural information can describe polymer behaviors and properties with more 

detail [124, 125]. Due to the heterogeneity of the cytoskeleton network, models at smaller 

scales may lose larger scale structural information, such as the effects of pre-stress and 

microtubules. Therefore, proper choice of models, especially for the structure-based 

models, as well as for multi-scale modeling or studies connecting models in different scales 



64 

 

 

 

is important. Furthermore, development of a model using a new approach that employs 

coarse-graining to include more information from smaller scale studies to connect models 

should also be considered. For example, the mean-field approach used in stochastic models 

for simulating of complex entangled polymer systems is being explored as a new 

interpretation of the cross-linking and rearrangement of networks [125].      

In this review, we focused mainly on models based on the passive dynamics 

associated with pure mechanical/rheological responses. However, there are models based 

on different approaches, such as the gel-like model: it was proposed by Pollock that the 

cell movement and shape alteration can be described by the phase-transition mechanism of 

a gel-like structure [126]. There have been models that consider the active behaviors which 

are related with biological responses or structural rearrangement by 

polymerization/depolymerization. For example, the granular model considered 

microtubule rearrangement to describe cell crawling [127]. There have been models which 

described active behaviors of motor proteins [128] and growth and remodeling [129]. 

Although many reviews have pointed out the need to improve models for active dynamics 

[28, 30, 31], apparent barriers to that development are the inherent complexity of the 

models for passive dynamics and the need for broader interdisciplinary research including 

biomedical engineering, medical science, biophysics, biology, chemistry, materials science, 

and chemical engineering, etc.    
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CONCLUDING REMARKS 

The objective of this review is to provide a framework for approaching and 

understanding the plethora of biopolymer network models in terms of length scales, which 

are related to the stress components and the phenomena of interest. Identifying the length 

scale categories of a model can give a quick insight into the advantages and disadvantages 

of the model, and the types of behaviors and properties described. Conversely, models can 

be selected based on the length scale of the phenomena of interest. The correct prediction 

of biopolymer network mechanical/rheological properties is important in many biomedical 

applications associated with biopolymer networks [1, 130, 131].  Therefore, the framework 

provided by this review is expected to promote various studies on biopolymer networks.  
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Fig. 1. Schematic diagram which shows the structural components of the cytoskeleton 

in a typical eukaryotic cell and the length scales for each group of models. 

 

 

 

 

 

Fig. 2. A typical example of 2D tensed cable nets models: reinforced squared nets. 

(redrawn from [Coughlin and Stamenovic (2003); Paul et al, (2008)]). 
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Fig. 3. A typical octahedron tensegrity element structure. The inset is a view from the 

xy-plane, which looks identical to the views from the zx-plane and the yz-plane. 

(Redrawn from [Canadas et al., (2002)]). 

 

 

 

 

     

  (a)    (b)    (c) 

Fig. 4. The RVEs of (a) a typical open cell foam model (cuboid), (b) the semi-flexible 

polymer network model, and (c) the continuum polymer network models (8-chain 

model). (More details of each model are available in each original reference. Images 

were also redrawn [75,76, 81]). 
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Table 1. Summary of the cytoskeleton models 
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Table 1. Summary of the cytoskeleton models (cont.) 
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Table 1. Summary of the cytoskeleton models (cont.) 
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II. A constitutive model for entangled polymers incorporating binary 

entanglement pair dynamics and a configuration dependent friction coefficient 

 

 

 

Synopsis 

Following recent work [e.g. Park et al. (2012) J. Rheol. 56: 1057-1082, Yaoita et 

al. (2012) Macromolecules 45: 2773-2782, Ianniruberto et al. (2012) Macromolecules 45: 

8058-8066] we introduce the idea of a conFig.uration dependent friction coefficient (CDFC) 

based on the relative orientation of Kuhn bonds of the test and surrounding matrix chains. 

We incorporate CDFC into the “toy” model of Mead et al. (1998) [Macromolecules 31: 

7895-7914] in a manner akin to Yaoita et al. (2014) [Nihon Reoroji Gakkaishi, 42: 207-

213]. Additionally, we incorporate entanglement dynamics (ED) of discrete entanglement 

pairs into the new Mead-Banerjee-Park (MBP) model in a way similar to Ianniruberto and 

Marrucci, (2014) [J. Rheol. 58: 89-102]. The MBP model predicts a deformation dependent 

entanglement microstructure which is physically reflected in a reduced modulus that heals 

slowly following cessation of deformation. Incorporating ED into the model allows “shear 

modification” to be qualitatively captured. The MBP model is tested against experimental 

data in steady and transient extensional and shear flows. The MBP model captures the 

monotonic thinning of the extensional flow curve of entangled monodisperse polystyrene 

(PS) melts [Bach et al. (2003) Macromolecules 36: 5174-5179] while simultaneously 

predicting the extension hardening found in PS semi-dilute solutions where CDFC is 

diluted out [Bhattacharjee et al. (2002) Macromolecules 35: 10131-10148].  
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The simulation results also show that the rheological properties in nonlinear 

extensional flows of PS melts are sensitive to CDFC but not to convective constraint 

release (CCR) while those for shear flows are influenced more by CCR. The monodisperse 

MBP “toy” model is generalized to arbitrary polydispersity. 
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I. INTRODUCTION 

The idea of a configuration dependent friction coefficient (CDFC), which is based 

on the relative orientation of a test chain segment to the surrounding matrix chain segments, 

was previously introduced by [Park et al. (2012)]. Although related through a Kuhn-Grün 

analysis [e.g. Larson (1988)], a better, more fundamentally based proposition is to base 

CDFC on the relative orientation of the Kuhn bonds of the test and matrix chains 

respectively [Ianniruberto et al. (2011, 2012); Yaoita et al. (2012, 2014)]. Since CDFC 

impacts both the stretch (Rouse) and terminal relaxation times equally, CDFC can in 

principle capture the monotonic thinning of the extensional flow curve of entangled 

monodisperse polystyrene (PS) melts [Bach et al. (2003)] while simultaneously predicting 

the extension hardening found in entangled monodisperse PS solutions where the effects 

of CDFC is negligible due to dilution [Bhattacharjee et al. (2002); Desai and Larson 

(2014)]. 

In addition to altering the form of CDFC employed we shall also address other 

fundamental issues in molecular modelling the rheology of polymer melts. In particular, 

the mono and polydisperse MLD models (Mead-Larson-Doi model [Mead et al. (1998)]) 

assume a constant entanglement density in all flow situations. This fundamental 

assumption is almost certainly wrong. Theoretically, the assumption of a constant 

entanglement density is reflected in the fact that the equilibrium plateau modulus is used 

to scale the stress in all tube models, i.e. the GLaMM model [Graham et al. (2003)], all 

Doi-Edwards type models such as the MLD model [Mead et al. (1998); Mead (2007)], and 

the pom-pom model [McLeish and Larson (1998)]. It’s difficult to understand how the 
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equilibrium plateau modulus can be used to scale stress levels in the highly nonlinear flow 

regime since reductions in the entanglement density have been demonstrated in non-

equilibrium molecular dynamics simulations of shear flow [Baig et al. (2010)] and detailed 

molecular models [Andreev et al. (2013)]. Additionally, interrupted transient step shear 

rate rheological data on linear and long-chain branched (LCB) polyethylene melts by Dealy 

and Tsang (1981) [and references therein] strongly support the idea of a dynamic 

entanglement network. These theoretical and experimental results suggest that a 

fundamental re-appraisal is appropriate for the formulation of molecular constitutive 

models that span the full range of flows from linear viscoelasticity to the nonlinear fast 

flow regime of linear and LCB polymer melts.  

In this paper we develop a new molecular model based on the dynamics of discrete 

entanglement pairs (entanglement dynamics: ED) as opposed to traditional mean field tube 

descriptions [Desai and Larson (2014)]. Adopting this description is supported by recent 

atomistic simulations which reveal the nature of an entanglement to be that of a topological 

coupling of a discrete pair of chains [Everaers et al. (2004); Tzoumanekas and Theodorou 

(2006); Baig et al. (2010)]. Both the modulus and the terminal disengagement time are 

functions of the entanglement density and changes to the entanglement density will directly 

impact these quantities. This paper seeks to incorporate a quantitative description of 

entanglement pair dynamics and a Kuhn bond based CDFC into the mono and polydisperse 

MLD “toy” models. This will yield a general molecular constitutive model at the 

theoretically and computationally simple “toy” level that can handle arbitrary 

polydispersity in arbitrarily fast flows. 
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This paper is organized as follows: In Sec. II, we introduce a toy dynamical 

equation for entanglement pairs in monodisperse systems. In Sec. IIA we define the 

specific form of CDFC we shall use for monodisperse systems. Section III reviews aspects 

of the Desai-Larson modified DEMG model (Doi-Edwards-Marrucci-Grizzuti [Pearson et 

al. (1991), Mead and Leal (1995), Mead et al (1995)]) which will serve as a base case for 

the current work. Section IV introduces two new effects we anticipate will impact the 

dynamics of highly oriented systems. Section V summarizes the new monodisperse toy 

molecular model incorporating all the features presented in Secs. II-IV. Steady and 

transient uniaxial extension is simulated and compared with experimental data in Sec. VI. 

Steady and transient simulations are also performed for shear flow in Sec. VIA. The results 

of our new molecular model are discussed and summarized in Sec. VII. 
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II. MODELLING THE ENTANGLEMENT PAIR DYNAMICS FOR 

MONODISPERSE SYSTEMS 

We begin by constructing a toy dynamical equation for the number of 

entanglements on a chain in a monodisperse melt. This is inspired by analogy to the slip-

link entanglement dynamics in the stochastic simulator [Park et al. (2012)] and the discrete 

slip-link model of Andreev et al. (2013) and is similar in spirit to transient network models 

[Mewis and Denn (1983)]. Ianniruberto and Marrucci (2014) have independently pursued 

conceptually similar arguments to those presented below to construct a dynamical equation 

for the entanglement density. 

         
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Here,  tN , represents the number of entanglement pairs per polymer chain at the 

current time, t while 
e

e
M

M
N   represents the average equilibrium number of 

entanglement pairs per chain of molecular weight M with entanglement molecular weight

eM . The non-equilibrium tube disengagement time is  td

1 . In the second term on the 

RHS,   is a parameter that reflects the “efficiency” of the convective constraint release 

mechanism (CCR). The velocity gradient is given by   and the orientation tensor is defined 

by RRS
tube


 , where R


 is the unit end-to-end vector of a tube segment. The relative 

stretch of the “partially disentangled” chain variable is defined by   
 
 tL

tL
t

eq

  where  tL  



86 

 

 

 

is the current tube contour length and  tLeq
 is the equilibrium length. Note here that   t  

is different from the relative stretch of a “fully entangled” chain relative to the initial 

equilibrium length, which is defined as  
 

eqL

tL
t  . Additionally, the ratio between the 

maximum stretch ratios of both relative stretches is defined as  
 

max

max




t
t


 .  

What equation (1) represents is the idea that entanglements are destroyed by CCR 

in proportion to the current entanglement density,  tN , times the fractional rate at which 

they are destroyed via convection. Entanglements are created by tip diffusion/fluctuations 

of the test chain and the matrix chains at a rate in proportion to the difference between the 

entanglement density and its equilibrium value, a driving force, divided by the time scale 

for the process,  td

1 .  

We now derive the entanglement destruction term in (1), more specifically the 

expression for the fractional rate of convective destruction of entanglements:

     




















tt
S

tube


: . Since  tLeq

 is a function of the entanglement density  tN , i.e. 

   tNtLeq ~  (See equation A1.3 of Appendix A), differentiating  
 
 tL

tL
t

eq

  with respect 

to time and simplifying yields: 

                      
 

 

 
 
 

 
 

 
 t
t

tN

tN

t

t

tL

tL

tL

tL

mechanismsallvia
stretchtubeof

rateFractional

anglementdisentdrivenCRtodue
contourchaintheof

entsrearrangemInternal

eq

eq

















2

1           (2) 
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The fractional rate of change of the tube contour length  
 tL

tL  has two separate 

contributions. The first term on the RHS of (2) is new and represents the fractional tube 

shortening/lengthening rate due to constraint release (CR) driven disentanglement. The 

second term on the RHS represents the fractional rate of tube stretching due to affine stretch, 

chain retraction of the chain tips into interior parts of the chain and CCR driven tube 

shortening. All of the effects contained within the second term on the RHS have been 

presented in Mead et al 1998 and discussed in detail there. Only the disentanglement term,

 

 
 
 tN

tN

tL

tL

eq

eq


2

1
 , is new. However, even this term is discussed in Sec. II.A.2 of Mead et al 

1998. Note that in the original MLD model the entanglement density was assumed to be 

constant, 0N . 

From equation (16) or (29) we determine that 
   

 tN

tNt 

2

1





 so we finally have 

an expression for  
 tL

tL  in terms of MBP model terms, 

                                   
 

 
 

 
 

   
 t
tt

t

t

tN

tN

tL

tL

















2

1            (3) 

Thus, calculating  
 tL

tL  is straightforward in the MBP model. Equation (3) for  
 tL

tL  

can be used directly in equation (9) defining k of the MLD paper (Mead et al. 1998 pg. 

7901); 

                 
 

         




























t
S

tt
S

tL

tL
Sk


::: 




           (4) 
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Generally,      





tt
S







:  which when valid reduces (4) to the same CCR 

expression in the original MLD model. We use the expression for k (4) in the convective 

destruction of entanglements term in (1) as well as in the stretch equation and orientational 

relaxation equation, both of which include CCR, in the MBP model. 

Note that we have ignored factors of 2  in the denominator of the reptative 

diffusion entanglement creation/destruction terms in (1). We ignore this factor in light of 

the fact that we are not considering contour length fluctuations explicitly. Contour length 

fluctuations have no such factor scaling the diffusive creation/destruction of entanglements. 

Tip contour length fluctuations are presumably responsible for most of the diffusive 

entanglement creation/destruction processes. However, for the newly created tip 

entanglement to diffuse into the interior of the chain it takes the reptation time. Hence using 

the bare reptation time as a characteristic time scale for entanglement creation is a 

compromise in this simple toy version of the model. A tube coordinate is needed to have a 

proper description of the entanglement creation/destruction processes. The model of 

Andreev et al. (2013) provides just such a description in a detailed way. Experimentally, 

studies of the re-entanglement kinetics/dynamics from virgin (unentangled), nascent 

polymer melts provide a viable means to quantitatively determine the appropriate time 

scale for the re-entanglement processes described in equation (1) [Yamazaki et al (2006); 

Rastogi et al (2003); Wang et al (2009)]. 

 The factor   scaling the convective destruction of entanglements term represents 

a CCR “efficiency” factor related to the number of constraint release events required to 

generate a single disentanglement [Ianniruberto and Marrucci (1996)].  
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This interpretation suggests that 10   . The factor   was originally introduced 

by Ianniruberto and Marrucci (1996, 2001) to ensure a stable monotonic steady shear stress 

vs. shear rate curve and   retains this interpretation in the current work.   

The non-equilibrium tube disengagement time  td

1  is a function of the 

entanglement density,  tN . Physically this arises because the absolute distance for the 

chain to diffuse shortens as the number of entanglements decreases. In Appendix A we 

derive the result: 

 
 

 t
N

tN
t d

e

d 0,

1  









                        (5) 

Here  td

1  is the terminal tube disengagement time for arbitrary  tN  relative to the non-

equilibrium tube disengagement time,  td 0, , which will be lowered in fast flows by CDFC 

and hence is also a function of time (Sec. IIA).  

Using (5) in (1) the expression for the entanglement dynamics can now be 

simplified and re-written as: 

             

 
   

     
 
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


























:1

2

0,

           (6)

  

 

Note that the MLD “toy” model for ED does not explicitly contain tip fluctuations 

which are undoubtedly very important in the re-entanglement process [Mead (2011b); 
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Andreev et al. (2013)]. A more detailed model at the tube coordinate level is needed to 

properly capture the effects of tip fluctuations versus reptational effects. 

The modulus scales the stress in molecular models and is a function of the 

entanglement density. It can be written as [Dealy and Wissbrun (1989)]: 

         
 

 
 

  0

N

ee

N G
N

tN

tN

M

RT

tM

RT
tG 












           (7) 

Here, 0

NG  is the equilibrium plateau modulus. , R, and T are density, gas constant, 

and absolute temperature, respectively. If the entanglement density is significantly lower 

than equilibrium the modulus will be directly impacted (lowered) for an extended period 

of time following deformation. This could explain the phenomena of “shear modification” 

which is still unexplained theoretically [Rokudai (1979); Yamaguchi and Wagner (2006); 

Leblans and Bastiaansen (1989)]. Shear modification is a deformation-induced reversible 

reduction in the dynamic moduli for high molecular weight polydisperse linear and LCB 

entangled polymers [Dealy and Wissbrun (1989)]. Shear modification is one of the last 

great unsolved theoretical problems in nonlinear molecular rheology.  

One of the conundrums with the above entanglement dynamics model is that in 

very fast extension virtually all the entanglements are convected away leaving a modulus 

that approaches zero. Not surprisingly the discrete slip-link model by Andreev et al. (2013) 

has similar issues. When all entanglements are stripped from the chain the Peterlin modulus 

will be applicable [Desai and Larson (2014)]. The Peterlin modulus is that of an 

unentangled ensemble of stretched chains in a flow field. 
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A. Formulation of the expression for Kuhn bond based CDFC on the stretch and 

terminal orientational relaxation times   

Here we briefly outline how to calculate the net fractional Kuhn bond orientation 

and the reformulated expression for the decrease in the friction coefficient due to net Kuhn 

relative bond alignment of the test chain with respect to the matrix chains. Note here that 

structural parameters of PS are used since the experimental data of PS melts and solutions 

are compared with the predictions by various models studied in this paper.  

We start by denoting the net Kuhn bond orientation in the polydisperse MLD “toy” 

model single segment as
Kuhn

S . The net Kuhn bond orientation of the matrix is proportional 

to the birefringence which, using the freely jointed chain model in a Kuhn-Grün analysis, 

yields: 

   
   

termsisotropicRR
x

x
termsisotropicS

x

x
S

tubeKuhn























11 L

3
1

L

3
1         (8) 

Where 
tube

S  is the single tube segment orientation. The inverse Langevin function term,  L-

1(x), in (8) can be accurately approximated within 1% [Treloar (1975) pg. 178] for easy 

calculation, 

   
 

642

1 5

1

5

1

5

3

L

3
1 xxx

x

x












              (9) 

where x  is the fractional chain extension: 

                                                             
max


x                      (10) 
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Note here that Yaoita et al. (2012) use the simplest approximation 
 

2

1L

3
1 x

x

x












 

in their work. It is also noted that the definition of x will be altered,

 max


x , for models 

that include entanglement density dynamics. 

The maximum relative stretch max  is calculated as [Mead (2011b)],                     

                                  

2/1

0

2/1

max 82.0 











J
MC

M
n e .           (11) 

Here J is the number of carbon-carbon sigma bonds in the backbone, J=2 for PS, 

eM  is the equilibrium average entanglement molecular weight (13333 Da for PS). In non-

equilibrium flow situations the entanglement molecular weight is a function of 

concentration and the dynamic entanglement density along the chain. C is the 

characteristic ratio, 9.8 for PS [Flory (1969)] and 0M  is the monomer molecular weight, 

104 Da for PS. n  is the number of Kuhn bonds in an entanglement segment. Note that for 

PS melts 2.4max  , a relatively small maximum stretch. The maximum stretch will be 

much larger ( 25max  ) for the entangled high MW entangled PS solutions considered by 

Bhattacharjee et al. (2002).  

Ianniruberto et al. calculated the functional form of the reduced friction versus 

matrix Kuhn bond orientation for monodisperse PS melts in their 2012 paper [Ianniruberto 

et al. (2012) see Fig. 4]. We use the Ianniruberto et al. (2012) CDFC calculation as a guide.  
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     
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ttt
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eqd
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eq 










          1.0KuhnS        (12) 

Where   is the monomeric friction coefficient, d is the reptation time, and s is 

the longest Rouse relaxation time. Subscript “eq” indicates equilibrium value and “0” 

means a value for a fully entangled chain.  

The true form of the dependence of the accelerated relaxation rate can in principle 

be determined by the nonlinear extensional stress relaxation experiments of Yaoita et al. 

(2012) which are of fundamental importance with respect to CDFC.  These experiments 

are discussed in detail in Section III and Fig. 7. 

Following Yaoita et al. (2012) we define the scalar net fractional Kuhn bond 

alignment 
KuhnS  as, 

              
tubepKuhn SxxxS 








 642

5

1

5

1

5

3
   10  KuhnS         (13) 

The fractional Kuhn bond orientation,
KuhnS , varies between zero and one for 

perfect orientation. The anisotropic tube orientation in uniaxial extension is denoted by

 
yyxxtube

SSS  . For shear deformation the principal values must be used,

  2
1

22
4 xyyyxxtube

SSSS  . The mass fraction of polymer scales the fractional Kuhn bond 

orientation and is represented by 
p  such that CDFC for both melts, 1p , and entangled 

solutions, 1p , can be modelled.  
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III. MODIFICATION OF THE DESAI-LARSON TOY DEMG MODEL TO 

INCORPORATE ED, CDFC AND CCR   

Here we briefly outline how to incorporate the new results in Sections II and IIA 

into the Desai-Larson modified DEMG model [Desai and Larson (2014)]. We eliminate 

the Desai and Larson tube dilation effect and replace it with the CDFC and entanglement 

dynamics results presented in Sections II and IIA above. This allows both the 

disengagement time and the stretch time to be modified by CDFC which should in principle 

allow an accurate modeling of steady state extensional viscosity data for both melts and 

solutions. 

One of the key theoretical developments in the Desai-Larson model is the 

derivation of a new stretch dynamics equation for the partially disentangled chain that 

incorporates the fact that the maximum extension is a function of the entanglement density 

[Mead (2011b)]. When  
 tN

M
tM e   changes (increases) with deformation induced 

disentanglement, the maximum stretch also increases as described below. 

               
 

 
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J
tNMC

M
J

MC

tM
nt e

        (14) 

There is one new stretching effect to account for in the stretch equation: stretch 

shortening due to removal of chain back folds. The stretch dynamical equation for the 

diluted (partially disentangled) chain, generalized to include constraint release effects, is 

[Desai and Larson (2014), Mead et al. (1998)]. 
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where,        
 

 
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        (16) 

and the nonlinearity of the spring is incorporated in a single factor denoted by sk  [Cohen 

(1991), Desai and Larson (2014)]: 
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 We have added a CCR tube shortening term to the Desai-Larson stretch equation 

(15) that requires discussion. This is done in Section IV below. 

The above generalized expression of the stretch dynamics is principally what we 

take from the Desai-Larson diluted tube model. We use the entanglement dynamics model 

presented in Section II to replace the tube dilation dynamics expressions in the Desai-

Larson model.   
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IV. MODIFICATION OF THE NEW CDFC-ED “TOY” MLD MODEL TO 

ACCOUNT FOR REDUCED LEVELS OF CCR FOR HIGHLY ALIGNED 

SYSTEMS 

In this Section we outline the manner in which the previously presented model can 

be modified to account for the idea that CCR effects are different (greatly reduced) in 

systems of slightly oriented versus highly oriented chains. These effects will impact CCR 

driven re-orientation as well as CCR driven stretch relaxation (tube shortening) in fast 

flows [Mead et al. (1998)]. These ideas are partly motivated by the work of Desai and 

Larson (2014) that showed that CCR appears not to be important to capture the salient 

features of fast nonlinear extensional flows. This is a conclusion that we affirm in 

calculations with our new model. 

The specific effect we wish to incorporate in our model is that CCR effects do not 

strongly impact highly aligned chains. For example, in the limit of perfectly aligned chains 

in fast flow there are no dynamical (topological) constraints and consequently CCR will 

have no effect on the orientation or stretch of the test chain even though 
tube

S: is very 

large [Desai and Larson (2014)]. Of course this ideal limiting situation can only be 

approached in any finite deformation rate flow. We propose an ad hoc empiricism that 

smoothly transits between the Gaussian and highly oriented extreme situations. A sketch 

of these ideas for CCR driven stretch relaxation is shown in Fig.s 1 and 2. 

We propose the following empirical changes to the stretch and orientation 

dynamical equations to account for the ideas presented in the above thought experiment. 

CCR in stretching flows relaxes  1
2

1
  of the stretch associated with a given 
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entanglement [Mead (2011a)]. Using the above ideas, we construct an empirical function 

that smoothly transits between the Gaussian and highly oriented cases. 

               11
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         (18) 

We have included a new empirical term to the tube shortening expression, 

 
tube

S1 . Fig. 1 illustrates the physical ideas underlying this empirical factor multiplying 

the tube shortening term. Note that for 1
tube

S  we assume the chain is unraveled and 

linear rather than a zig-zagged cat’s cradle (back folded) conformation. The new term 

effectively wipes out tube shortening stretch relaxation for fast flows where the tube is 

highly oriented. Desai and Larson (2014) have shown that this is a desirable feature to have 

in the model for fast uniaxial extension and this underlies the motivation for this ad hoc 

factor in the stretch equation. 

Incorporating the new proposed physics into the stretch equation yields: 
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                            (19) 

Thus, at high fractional extensions the effect of CCR on stretch smoothly disappears 

as 
tube

S  monotonically increases. Thus, CCR can effectively reduce stretch in shear flows 

where the orientation is lower than it is in extensional flows. 
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We also propose an ad hoc modification to the orientation dynamics equation to 

account for biased (reduced) re-orientation due to nematic (molecular packing) effects in 

highly aligned systems. Nematic effects are well established in cross-linked rubbers and 

polymer melts [Doi et al. (1989)]. In such highly oriented systems the switch function, 


1
, 

already diminishes the effect of CCR on the re-orientation process. We add to this effect 

with an ad hoc empirical nematic re-orientation suppression factor  KuhnS1 . 
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The factor  KuhnS1  empirically accounts for the idea that the re-orientation process 

will be biased (reduced) by nematic packing effects due to the net Kuhn bond orientation 

of the matrix. Note that we are actually not including a biased re-orientation but rather an 

increased orientational relaxation time which has a similar effect on the orientation level. 

Another way to look at this effect is that constraint release effects will be ineffectual in 

highly aligned systems i.e. when 
KuhnS  is large (see Fig.s 1 and 2). Including the new factor 

of  KuhnS1  along with the switch function will effectively reduce all CCR driven re-

orientation in fast stretching flows where 
KuhnS  is large.  

Note that there will be a sharp distinction between uniaxial extension and shear 

with the above two modifications. In uniaxial extension the orientation and stretch is severe 

and the above two modifications will both kick in. Conversely, in shear flows the 

orientation and stretch is weak and   11  KuhnS  such that there are no nematic effects in 

melts or solutions. 
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V. SUMMARY OF THE EQUATIONS IN THE EDS - KUHN BOND CDFC RE-

FORMULATION OF THE MONODISPERSE MLD TOY MODEL 

Here we briefly summarize the equation set for the new monodisperse MLD “toy” 

model [see Desai and Larson (2014) equations 31-37 and note the differences]. We are 

only considering the monodisperse case here. Generalizing the results to polydisperse 

systems is an important goal of this work. This is straightforward and is done in Appendix 

B.  

We start with the deterministic differential evolution equation for the entanglement 

pair orientation, 
tube

S  [Desai and Larson (2014), Mead (2007), Larson (1984), Marrucci 

(1984)]. We choose the differential approximation to the orientation evolution for coding 

simplicity and speed in computing. Here, 
tube

Ŝ  represents the upper convected time 

derivative.  
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 

 t
N

tN
t d

e

d 0,

1  









             (23) 
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where 
max


x and for uniaxial stretch  
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SSS    while for shear deformation 
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where the partially disentangled modulus is defined as:    
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The fact that the modulus is a function of time,  
  0

N

e

N G
N

tN
tG  , clearly 

demonstrates that the new model will predict “shear modification”. For high molecular 

weight systems or systems with LCB the entanglement microstructure will take an 

extended time to heal during which the measured dynamic moduli will be lower than their 

equilibrium values,     ,, **  GtG . This shear modification can be quite large and last 

for an extended period of time as the entanglement microstructure slowly heals via the 

diffusive process of reptation [Rastogi et al (2003), Rokudai (1979)]. The entanglement 

microstructure will heal on a time scale of the disengagement time,
0,d , which can be very 

long indeed for high molecular weight or LCB systems. 
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VI. SIMULATION OF MONODISPERSE LINEAR PS MELTS AND 

ENTANGLED SEMIDILUTE SOLUTIONS IN STEADY AND TRANSIENT 

UNIAXIAL EXTENSION  

In this Section we explore the properties of the new MBP entanglement dynamics 

model for monodisperse systems by numerically solving the system of equations (21) - (32) 

summarized in Sec. V. Although the equation set appears complex and formidable they are 

all ordinary differential equations that can be stepped forward in time using the simple 

Euler method. Because the Euler method is first order in time care must be taken to take 

small enough time step sizes to ensure convergence. Using the Euler method makes the 

code simple to write and fast to execute. Computational speed becomes an issue when 

polydispersity is introduced particularly so when the integral form of the orientation 

evolution equation is used [Mishler and Mead (2013a), (2013b)].  

We will execute our study by including/excluding various physical effects to isolate 

their significance. The physics we are interested in understanding are CCR, ED (through

 ), and CDFC. The simulation software allows us to turn the specific physics “on”/“off” 

and to thereby quantify the impact of the specific physics on rheology. We shall be 

particularly interested in the following basic models summarized in Table I. The 

experimental data sets, which are used to compare with the calculated prediction results, 

are summarized in Table II.  

The first simulations we perform are for the flow curves for steady uniaxial 

extension of monodisperse PS melts. For these simulations we shall choose a value of 

12.0  (ED “on”) in equation (27). This value is chosen such that the shear stress – shear 

rate curve is monotonic (see Fig. 10 of Section VIA).  
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A monotonic shear stress – shear rate curve is necessary for stable shear flow 

[Ianniruberto and Marrucci (2001)]. All values of 12.0  yield monotonic shear stress – 

shear rate curves. The first system we shall study is PS200K (130 oC monodisperse PS melt 

by Bach et al.’s (2003)) in steady state extensional flow. The average equilibrium number 

of entanglements per chain in this system is 15. The results of a variety of simulations are 

shown in Fig. 3 along with the experimental data. The base case for comparison is the 

DEMG model which has no ED, CCR or CDFC. The DEMG line in Fig. 3 shows a ladle 

shaped flow curve. The upturn in viscosity is associated with the onset of chain stretching 

and occurs when the stretch Weissenberg number is about unity, 1, eqs . Complimentary 

to the DEMG model is the MLD “toy” model which is simply the DEMG model with CCR 

switched “on”. Here again we see the ladle shaped flow curve, lowered relative to the 

DEMG model by the additional relaxation mechanism of CCR. The predicted flow curves 

of both the DEMG and MLD models are qualitatively and quantitatively at odds with the 

experimental data. 

The next simulation we execute is the base DEMG model with CDFC now turned 

“on” (DEMG-cdfc). Its flow curve is now monotonic extension thinning and closely 

mimics the experimental data both before and after
eqs,

1


  . This result, and those presented 

in what follows, strongly suggest that CDFC is the essential feature needed to achieve a 

monotonic thinning extensional flow curve for monodisperse PS melts [Desai and Larson 

(2014)].   
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The simulation results are sensitive to the details of the specific expression for 

CDFC used. In particular, the details of the form of the expression for
KuhnS  used matter in 

the simulations. The shape of the flow curve is determined by the specific functional form 

of CDFC used (see equations (24-26)). In particular, to achieve a monotonic flow curve 

CDFC must be activated slightly before
eqs,

1


  . If CDFC is activated later than 

eqs,

1


  , a 

“kink” will occur in the flow curve. Precisely when CDFC is activated depends on the 

specific functional form of the CDFC we use. 

 The next simulation we perform is to include ED in the simulation. In this case, we 

choose 12.0  with both CCR “on” and CDFC “on”, i.e. the MBP model. ED is “on” for 

any 01   . This generates the black solid curve in Fig. 3. Here for 
eqs ,

1


  , we observe 

excessive thinning with lower viscosity values relative to those for DEMG-cdfc which is 

caused by CCR. The curve also shows an upturn around 
eqs,

1


   due to the onset of stretch. 

However, for 
eqs ,

1


  , it becomes a thinning curve again, approximately parallel to the 

DEMG-cdfc case.  This thinning effect is due to the effects of CDFC being activated. 

Hence, the results especially at 
eqs ,

1


  are approximately equivalent to the DEMG-cdfc 

model when we add ED despite the fact that the internal workings of the two models are 

entirely different. In particular the average number of entanglements is dramatically lower 

when ED is turned “on” resulting in a lower modulus. The lower modulus implies a 
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different entanglement microstructure relative to the DEMG model with CDFC now turned 

“on” which predicts a constant entanglement density. 

 The final simulation we perform is with 12.0 , ED “on”, CCR “off” and CDFC 

“on” (MBP-xccr). This is shown as the blue dashed line curve in Fig. 3. As with the DEMG-

cdfc model, the MBP-xccr model generates results very close to the experimental data. The 

flow curve shows a much smaller “kink” right after 
eqs,

1


   than that of the MBP curve 

and closely mimics the experimental data. The small “kink” is the result of stretch being 

activated prior to CDFC being activated. Choosing a different functional form for CDFC 

can in principle eliminate this “kink” by modifying precisely when CDFC is activated 

relative to 
eqs,

1


  . Precisely when CDFC is activated is impacted by whether ED and CCR 

are “on” or “off”. The details of the models, including when CDFC is activated, are 

displayed in the Fig.s of Appendix C. 

We now address the perplexing question of why the simulations of the “straight” 

DEMG-cdfc are very similar to the new MBP-xccr model with 12.0 , i.e. although the 

details of the two models, such as the number of entanglements and the modulus, are 

profoundly different, they nevertheless yield approximately equivalent extensional flow 

curves in close agreement with experimental data. Fig. 4 plots the average number of 

entanglements per chain versus extension rate for 12.0  with CCR “off” and CDFC “on” 

(MBP-xccr model). We see that for fast extensional flows the average number of 

entanglements per chain is approximately half that at equilibrium. Physically, the modulus 

is the manifestation of the entanglement microstructure (see equation (32)) and hence the 
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modulus drops off proportionately. Thus, the new MBP-xccr model predicts significant 

changes in the entanglement microstructure in fast extensional flow. 

Figure 5 plots the steady state relative stretches,   and Λ, for the two different 

models (DEMG-cdfc and MBP-xccr) versus extension rate. Clearly the relative stretch of 

the MBP simulations, Λ, is significantly larger than the relative stretch of the DEMG-cdfc 

simulation,  . The reason that these two simulations yield approximately equivalent 

extensional flow curves is that the effect of ED on the modulus, equation (32), is effectively 

canceled by the corresponding increase in stretch. Using the expression for the stress (31) 

we argue that for the two models the following products are proportional to the extensional 

stress and are approximately equal even though  : 

                     tGttG DEMGcdfcNMBPxccrN

202      (33) 

Here we have made the assumption that orientation has effectively saturated when 

stretch commences. The saturated orientation cancels on both sides of (33). We have also 

assumed that the non-Gaussian factors 
sk  are both close to unity and cancel. Note that for 

any given model with ED the following equality holds; 
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Here,  tED

2  represents the stretch relative to the equilibrium extension in any 

model with ED. Hence, another way to see the approximation in (33) is to note that both 

the DEMG-cdfc and MBPxccr models yield similar expressions for the extensional stress 
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in fast steady extension, (34). However, note that  tED

2  and  tDEMG

2  are calculated 

differently in each model and hence are not equal. 

The argument underlying equation (33) may very well explain the apparent 

“success” of the mono and polydisperse MLD models in predicting nonlinear flows despite 

the fact that all MLD models assume a constant entanglement density [Mead (1998), Mead 

(2011a), Mishler and Mead (2013a,b)]. 

In Fig. 6 we examine the transient extensional viscosity versus time for the PS200K 

melt. Transient extensional viscosities are more typical of what one encounters in practice 

since steady state (Hencky strains greater than ~3) extensional viscosities are very difficult 

to achieve experimentally. The specific case that we examine is for an extension rate of 

0.01 sec-1 which corresponds to a stretch Weissenberg number of 1, eqs . Note the broad 

maximum in the MBP curve at a Hencky strain of ~1.5. The cause of the maximum is that 

entanglement dynamics [  tN ] is controlled by ED and lags the stress, only slowly 

approaching its steady state value. As in the case for the steady uniaxial flow curves, the 

DEMG-cdfc and MBP-xccr models provide the best fit to the data. 

The next transient extensional experiment we examine is stress relaxation after 

imposing 3 Hencky strain units on a PS145K at 120oC. These experiments were performed 

by Yaoita et al. (2012) and provide definitive, hard experimental evidence for the existence 

of CDFC. Fig. 7 displays the results of our simulations along with the experimental data. 

Fig. 7 experimentally demonstrates that CDFC accelerates the relaxation following 

cessation of stretch. The higher the initial stress, the higher the net Kuhn bond orientation 

and the larger the CDFC effect and hence the faster the initial relaxation rate. The 
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systematic increase in the initial rate of relaxation strongly supports the existence of CDFC 

and this effect is quantitatively captured in the MBP model. Additionally, for the MBP 

model, the entanglement density relaxes on a time scale of sec7800d , much slower than 

the time scale shown in Fig. 7. Hence the modulus is lowered relative to the equilibrium 

state and persists even though the deformation has ceased and this effect does not impact 

the relaxation processes in Fig. 7. This phenomenon is “shear modification”. 

Finally, we examine another PS melt, PS545k studied by Huang et al. (2013). The 

principal difference between this set of experiments/simulations and Fig. 3 is that the 

average number of entanglements per chain is very large, Z~41. Hence the separation 

between the equilibrium stretch and orientational relaxation times is correspondingly large 

since 
sd Z 3 . However, despite this distinction the salient features of Fig. 8 are largely 

similar to those discussed for the PS200K melt in Fig. 3. In particular, we see an enhanced 

sensitivity as to precisely when CDFC is activated relative to the onset of stretch. This 

sensitivity manifests itself in the size of the “kink” in the flow curve as discussed above 

with respect to Fig. 3. These simulations provide a severe test for the precise functional 

form of CDFC used. 

Figure 9 shows the steady state experimental extensional flow curves for 20 wt.% 

1.95M PS solution at 21oC showing monotonic thinning before, and hardening after, 

1, eqs  [Acharya et al. (2008)]. The new MBP model qualitatively captures the salient 

ladle shape features of the flow curve data as does the straight DEMG model without ED, 

CDFC or CCR. Once again, the DEMG-cdfc and MBP-xccr provide the best fits to the 

experimental data. 
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Thus the new MBP-xccr model, which includes ED and CDFC, captures both the 

monotonic thinning behavior of monodisperse PS melts and the thinning/hardening 

behavior observed for entangled PS solutions. For solutions, CDFC is effectively diluted 

out and is ineffective due to the factor of 
p  in (13) a point which is also discussed by 

Yaoita et al. (2012). Hence, the results from the DEMG and DEMG-cdfc models are almost 

identical since CDFC is diluted out and is essentially inactive in semi-dilute solutions. 

A. Simulation of monodisperse linear PS melts and solutions in steady and transient 

shear flow 

Since we are interested in a generally applicable “toy” molecular model, we 

examine the predictions of the new MBP model in steady and transient shear flow. Here 

the orientations will be lower than in fast extensional flows and we anticipate that CCR 

will be more important than it is in fast extensional flows. 

The first issue we address is determining the range of allowable values for  . We 

do this by demanding that the shear stress vs. shear rate curve be monotonic such that, 

consistent with most experiments, shear flow of melts is stable [McLeish & Ball (1986)]. 

Fig. 10 displays the derivative of several shear stress vs. shear rate curves for different 

values of  . It is evident that the shear stress-shear rate curves are monotonic (all positive 

slopes) for all 12.0  and exhibit a broad maximum for 12.0 . Hence for our simulations 

we choose the maximum allowable value for 12.0 . 

In Fig. 11. we compare the calculated shear flow curve for a 7 wt. % 8.42M PS 

solution with experimental data [Pattamaprom and Larson (2001)]. We also compare the 

first normal stress difference with data in Fig. 12. In both cases all the models 
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approximately mimic the data. The MBP model improves the agreement with the 

experimental viscosity at high shear rates whereas the normal stress differences are under 

predicted. Note that the results from the DEMG and DEMG-cdfc models were very similar, 

which indicates the effect of CDFC is very weak for solutions as was the case in the 

extensional flows of semi-dilute solutions. The flow curve of MBP-xccr in Fig. 12 is very 

similar to those of DEMG models but the discrepancy from the experimental data is a little 

lower than that of DEMG models.  

Figure 13 shows the simulation results of transient shear viscosity of a PS200K-S 

melt [Schweizer et al (2004)]. All the models display similar trends to those found in steady 

shear flow of solutions with the DEMG-cdfc and MBP-xccr models performing best. The 

shear stress overshoot is missed by all models in fast shear flows, = 30 sec-1. This is caused 

by the differential form of the orientation evolution equation used in this work rather than 

the rigorous integral formulation [Larson (1984), Marrucci (1984)]. Using the original Doi-

Edwards integral evolution equation employing the universal orientation tensor will 

significantly improve these fast transient shear simulations at the expense of more complex 

simulation software. 
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VII. DISCUSSION/SUMMARY 

We have constructed a mathematically and computationally simple “toy” molecular 

model that includes ED, CDFC and CCR into the base DEMG “toy” model: the MBP 

model. This model is a natural next step in the systematic progression of increasingly 

detailed and complex molecular models for entangled linear flexible polymers. This point 

can be seen by noting that there are three essential components to the constitutive equation 

for a monodisperse polymer melt or an entangled semi-dilute solution. This can be seen by 

referencing the stress calculator equation (31). (Note that equations (31) or (35) can be 

generated directly from the stress-optical rule which is valid in both the linear and 

nonlinear flow regions [Larson (1988)].) 

                                  


dynamics
nOrientatio

tube

dynamics
Stretch

dynamics
nglementEnta

N tSttGt 23           (35) 

The three fundamental components of any monodisperse constitutive relationship are; 1) 

A quantitative description of the orientation dynamics (21), 2) A quantitative description 

of the stretch dynamics (28) and 3) A quantitative description of the entanglement 

dynamics (27) (which are manifested in (35) through the nonlinear modulus  tGN
 eq. 

(32)). The three essential constitutive equation components are, of course, all coupled and 

nonlinear. They also incorporate effects like CDFC in the time scales in their descriptions.  

The original Doi-Edwards model assumed no stretch and no entanglement 

dynamics only considering the orientation dynamics in (35) [Doi-Edwards (1986)]. 

Consequently, the original family of Doi-Edwards tube and reptation models is restricted 



112 

 

 

 

to the linear viscoelastic region. To access more general, nonlinear flow situations, the Doi-

Edwards model evolved naturally and systematically by next including the stretch 

dynamics to generate the DEMG model [Pearson et al (1991), Mead et al (1995), Mead 

and Leal (1995)]. The next step in the evolutionary progression was the MLD model which 

considered entanglement dynamics in the form of constraint release (CCR) in the restricted 

context of a constant net entanglement density [Mead et al (1998)]. The new MBP model 

relaxes the final restriction of a constant entanglement density in order to access nonlinear 

flow phenomena far from equilibrium. In the above manner we can see the logical and 

systematic progression/evolution of molecular models starting from the seminal work of 

de Gennes and Doi-Edwards. 

The new MBP model generates extensional flow curves that are monotonic thinning 

(with a small “kink” near 1, eqs ) for monodisperse PS melts qualitatively consistent 

with experiment. The results are sensitive to the specific functional form of CDFC used 

and the predictions could potentially be improved by modifying the expression for CDFC 

to fit the flow curve data (equations 24-26). We have not performed this exercise but could 

do so in principle. We have used a shifted version of the specific functional form of CDFC 

calculated by Ianniruberto et al. (2012) which has a sound theoretical basis underlying it. 

For monodisperse PS solutions the effects of CDFC are effectively diluted out and the 

classical tube model ladle shaped extensional flow curve is generated. The simulation 

results strongly suggest that CDFC is important in the prediction of rheological properties 

in nonlinear extensional flows of monodisperse PS melts. CCR is detrimental to the 

predictions in extensional flows but is important for the rheological properties in shear 

flows.  



113 

 

 

 

We have also provided a plausible explanation as to why the DEMG-cdfc model 

yields a monotonic thinning flow curve of monodisperse PS melts that are approximately 

equivalent to those predicted by the new MBP-xccr model, i.e. DEMG with ED “on”, 

CDFC “on” and CCR “off”. This may partially explain the previous apparent “success” of 

the mono and polydisperse MLD models in predicting phenomena such as the Cox-Merz 

rule even though the flow curves calculated assume a constant entanglement density [Mead 

(2011b)]. This suspicious coincidence masks the underlying details that are actually 

occurring in fast nonlinear flows of entangled polymers. Our new model simultaneously 

captures nonlinear flows and the entanglement microstructure modification that occurs in 

these fast flows. 

Incorporating ED into the model allows the nonlinear phenomenon of “shear 

modification” to be captured by the model [Dealy and Wissbrun (1989)]. Shear 

modification manifests itself in linear polymer melts with broad, high MWD and melts 

with LCB. Direct measurement of the reduced modulus during or after shear or extension 

would provide an excellent test of the new ED model [Mead (2013)]. Note that current 

molecular constitutive models for polymer systems with LCB do not predict “shear 

modification” despite the fact that this is a prominent nonlinear property [McLeish and 

Larson (1998)]. 

Generalizing the new MBP model to polydisperse systems is straightforward and 

is performed in Appendix B. Having a generally applicable model for polydisperse systems 

that is easy to code and fast to execute has many practical applications in analytic rheology. 



114 

 

 

 

We shall pursue applications such as MWD determination from transient extensional 

rheology experiments in future work. 

Finally, knowledge of the melt entanglement density following polymer shaping 

operations (finite deformations) is crucially important with respect to determining the 

ultimate mechanical properties of the part. Specifically, crystallization processes are 

severely impacted by the entanglement density of the melt [Yamazaki et al. (2006), Wang 

et al. (2009), Eder et al. (1990)]. The morphology of the resulting crystallites determines 

the physical and mechanical properties of the final product [Rastogi et al. (2003)]. Hence, 

the information gleaned from molecular models with ED, such as the MBP model, is 

directly relevant to polymer processing operations. 
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FIG. 1. Schematic diagram for tube shortening when 1

tube
S : The tube is crinkled and 

constraint release shortens the tube and relaxes stretch and orientation [Mead et al. (1998), 

Mead (2011a)].  

 

 

 

 

 

 

 

FIG. 2. Schematic diagram for tube shortening when 1
tube

S : Constraint release does not 

relax any stretch. Note that the tube is unraveled and linear rather than in a zig-zag cat’s 

cradle (back folded) conformation ( 1
tube

S  in both cases). Fast, large deformations 

unravel the chain and generate highly extended nearly linear conformations [Desai and 

Larson (2014) see Fig. 1]. 
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FIG. 3. Steady state extensional viscosity as a function of extension rate: Experimental 

data is for monodisperse PS200K at 130oC [Bach et al. (2003)]. Predictions are from 

various options of the family of models (see Fig. legend and Table 1). This allows us to 

determine that CDFC is the essential ingredient required to capture the monotonic 

extensional flow curve of monodisperse PS melts. The “kink” in the MBP flow curve 

begins at 1, eqs . 
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FIG. 4. The steady state entanglement density,  N , versus extension rate,  , for the 

MBP model and the MBP-xccr model. The system simulated is monodisperse PS200K at 

130oC. For the case where ED is turned “off”, i.e. DEMG-CDFC the entanglement density 

is a constant equal to the equilibrium value of 15 (Data not shown). 
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FIG. 5. The relative stretches for MBP, MBP-xccr, and DEMG-cdfc. The respective curves 

are:     vs.    (DEMG-cdfc) and    vs.   (MBP and MBP-xccr) for the monodisperse 

PS200K melt. The relative stretch    is increased relative to the base DEMG-cdfc case 

by virtue of the unraveling of back folds that occurs in the new model [Desai and Larson 

(2014)]. 
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FIG. 6. Transient extensional viscosity,  te  versus t  , for monodisperse PS200K at an 

extension rate of 0.01 sec-1 ( 1, eqs ). Note the small and broad maximum in the transient 

viscosity at a Hencky strain of ~1.5 for the MBP model. This is caused because ED lags 

the stress, i.e. it takes many Hencky strain units to partially disentangle the melt. Note that 

the results from the DEMG and DEMG-cdfc models are effectively on top of each other 

since this extension rate is below the onset of CDFC threshold.  
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FIG. 7. Normalized stress relaxation after imposing 3 Hencky strain units for a 

monodisperse PS145K melt at 120oC at three different steady extension rates. The higher 

the extension rate, the higher the net Kuhn bond orientation and the greater the effect of 

CDFC on the initial rate of stress relaxation. The MBP model captures this effect. 
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FIG. 8. Steady state extensional viscosity as a function of extension rate. Experimental 

data is for monodisperse PS545K melt at 130oC [Huang et al. (2013)]. Predictions are from 

various options of the family of models (see Fig. legend and Table 1). Once again the 

DEMG-CDFC and MBPxccr models perform best. 
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FIG. 9. Steady state extensional viscosity as a function of extension rate. Experimental 

data is for a monodisperse 20% 1.95M PS solutions at 21oC [Acharya et al. (2008)]. 

Predictions are from various options of the family of models (see Fig. legend and Table 1). 

Note that the results from DEMG and DEMG-cdfc are on top of each other.  
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FIG. 10. The (slope of shear stress-shear rate curve) derivative of steady shear stress with 

respect to  ,  




d

d xy  versus   for a family of   values. For stable shear flow the shear 

stress vs shear rate curve must be monotonic (positive slope everywhere). The maximum 

value of     that yields a monotonic curve of stress-shear rate is 12.0 . The results from 

13.0  showed negative values around shear rate of 0.01s-1 (curve not shown). 
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FIG. 11. The shear flow curve,   vs.  , for a monodisperse PS solution 7% 8.42M PS. 

Predictions are from various options of the family of models (see Fig. legend and Table 1). 

Note that the results from the DEMG and DEMG-cdfc models effectively superpose since 

CDFC is diluted out of this semi-dilute system.  



125 

 

 

 

 

FIG. 12. The first normal stress difference for a monodisperse PS solution 7% 8.42M PS 

is shown, 
1N  vs.  . Predictions are from various options of the family of models (see Fig. 

legend and Table 1). Note that the results from the DEMG and DEMG-cdfc models are on 

top of each other since CDFC is diluted out of this system.  
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FIG. 13. Transient monodisperse 200K-S PS melt at shear rates of 1s-1, 10s-1 and 30s-1. 

Since the net Kuhn bond orientation is low the effect of CDFC is negligible and the DEMG-

cdfc model is approximately equal to the DEMG model. The poor agreement with data at 

30 sec-1 is due to the use of the differential form of the orientation evolution equation. 
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TABLE I: Summary of the family of toy molecular models studied. 

Model CCR ED CDFC 

DEMG off off ( 0 ) Off 

DEMG-cdfc off off ( 0 ) On 

MLD on off ( 0 ) Off 

MBP on on( 0 ) On 

MBP-xccr off on( 0 ) On 

 

 

TABLE II: Experimental data sets compared (Input parameter estimations were referred 

to Desai and Larson (2014) and Likhtman and McLeish (2002). Me=13333 Da is used for 

all PS melts to give max=4.2 whereas Me for solutions are evaluated by dividing by p
1.2. 

The values of τd,f  given below include the effect of double reptation.) 

Sample 

GN
0 

(kPa) 

 d,f (s) S,eq (s) Neq Ref 

PS200K 200 1610 94.3 15 Bach et al. (2003) 

PS200K-S 200 1.33 0.065 15 Schweizer et al. (2004) 

PS545K 250 54418 779 41 Huang et al. (2013) 

PS145K 290 7839 1134 10.7 Yaoita et al. (2012) 

20% 1.95M PS 6.8 6.26 0.17 30.4 Acharya et al. (2008) 

7% 8.42M PS 0.52 31.65 0.6 44.3 Pattamaprom & Larson (2001) 
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APPENDIX A: DERIVATION 

In this Appendix we derive equation (5) in the main text, the relationship between 

the non-equilibrium tube disengagement time 
 Nd

1
 , the number of entanglements N  and 

the equilibrium terminal disengagement time, 0,d . We start with the relationship between 

the tube length b  and the Kuhn bond length a  [Doi and Edwards (1986)]: 

                                       
22 aMNb k                    (A1) 

Here, N  is the number of entanglements (tube segments). The end-to-end distance of the 

tube segments and Kuhn bonds within them must be equal. kM
 is the number of Kuhn 

segments of length a . Hence, the tube length b is related to the number of entanglements 

through: 

                                           

a

N

M
b k

2

1

2

1



                      (A2) 

The equilibrium tube contour length, 
NbLeq   , is a function of the number of 

entanglements N, 

                                 








 aMNNbL keq

2

1
2

1

                      (A3) 

Note that eqL
 is a monotonically increasing function of N. 
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The terminal tube disengagement time d  is related to the tube length through [Doi 

and Edwards (1986)], 

                                                 c

eq

d
D

L

2

2


 

                      (A4) 

Here o

c
M

kT
D




 is the curvilinear diffusion coefficient and o  is the monomeric friction 

coefficient. We define the equilibrium terminal disengagement time as 

c

ke

c
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d
D

bMN

D
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2

2

2

2

0,

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 where eN
 is the equilibrium number of entanglements. 

Substituting these expressions into equation (A1.4) above yields the result (5): 
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APPENDIX B: GENERALIZATION OF THE NEW EDS – CDFC MLD TOY 

MODEL TO POLYDISPERSE SYSTEMS 

In this Appendix we outline the manner in which the ideas presented in the main 

text can be generalized to describe polydisperse systems. In this Section i-j subscripts 

denote components of the MWD and not tensor components [Mead (2007)]. 

The ij entanglement pair dynamics are described by the following equation which 

generalizes eq. (1): 
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Here, 
 tN ij  represents the number of j entanglements on an i chain and

e

i

jiejij
M

M
wNwN  ,

0

 represents the equilibrium number of j entanglements on an i-chain 

and e

i

ie
M

M
N ,

 is the total equilibrium number of net entanglements on an i chain. ieN ,  is 

a function of molecular weight and the molecular weight between entanglements which is 

assumed not to be affected by polydispersity. 

The reptation time of an i-chain is modified by the number of current entanglements of all 

other chains on the i-chain (eq. 5 and Appendix I), 
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Of course, CDFC as described in Section IIA will also be present which will reduce 
 tid ,

 

in fast flows.  
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The first approximation to try for the functional form of the reduced friction CDFC is that 

used in our first paper [Park et al. (2012)]: 

     
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The above expression is written for a polydisperse system where the components 

are denoted by subscripts and jw
 represents the weight fraction of MW component j. The 

effect of Kuhn bond concentration is accounted for in the weight fraction of matrix 

polymers and/or solvent. The relative orientation of the test chain and the matrix is 

quantified by the double dot product of the two orientations. 

This is one possible algorithm that we propose for CDFC of the polydisperse MLD model. 

Other functional forms for the dependence of the friction factor on relative test chain – 

matrix Kuhn bond alignment can be tried too. For example by generalizing (24) we see 

that: 
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This function approximates the monodisperse case, equation (24). Note that for 

most common commercial molecular weight distributions the effects of CDFC will largely 

disappear due to the lower overall level of Kuhn bond orientation in polydisperse systems 

under ordinary flow conditions. The low MW components effectively act as solvent for the 

high MW components [Mead (2011b)]. 
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The i-component partially disentangled chain stretch equation remains unchanged: 
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where   is the fractional rate of matrix entanglement renewal, 
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chain tube orientation, 
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. The nonlinear spring factor 
 tk is ,  is defined 

by (30) for each i chain. 

 The maximum stretch ratio factor 
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 needs to be calculated to solve 

the stretch equation. The easiest way to accomplish this is using the definition of 
 ti  

along with the known entanglement pair dynamics, 
 tN ij , 
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The factor 
 ti  in (B6) can be calculated numerically at each time step rather than solving 

the ordinary differential equation for 
 ti . 

Similarly, the orientation of the ij entanglement pairs obeys the following differential 

equation [Mead (2007)]: 
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Where the ij entanglement disengagement time ijd ,
  is: 
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And KuhnS
 is the net matrix Kuhn bond orientation, 

itubei

i

iiKuhn

i

iKuhn SxwSwS
,

2

,  

. 

Of course, the Kuhn bond conformation dependence (CDFC) of the disengagement and 

stretch times is applicable. This is why we write both 
 tid ,

 and 
 tis ,

 as functions of time.  

Additionally, the effect of “solvent like” entanglements with respect to stretch processes 

needs to be accounted for in polydisperse systems. This can be accomplished in the manner 

described in Mishler and Mead (2013a,b) where entanglements with an average lifetime 

less than the Rouse time act as solvent with respect to stretch relaxation processes. 

The expression for the stress is more involved and requires some discussion. Consider the 

expression for the stress from the polydisperse MLD model without entanglement 

dynamics: 
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Here e

N
M

RT
G


0

 represents the equilibrium value of the modulus and eM
 is the molecular 

weight between entanglements which for the MLD model is a constant. The factor isk ,

represents the effects of the i-component finitely extensible nonlinear spring, eq. (30). In 

(A2.9) we have assumed that
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We need to generalize this expression to allow for varying degrees of deformation 

induced disentanglement where the molecular weight between entanglements varies from 

component to component in the MWD. The non-equilibrium modulus can be written as 
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,
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. Here, 
 tM ie,  is the molecular weight between entanglements on the i-

component. In the polydisperse case with varying degrees of disentanglement two things 

in the expression for NG  change: 
 ii w

 the number of i-strands per unit volume and the 

molecular weight between entanglements on i-component chains
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M
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.  

With these two changes in mind we can write the non-equilibrium i-chain modulus 

iNG ,  by analogy to the monodisperse equilibrium case.   
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So, using the above expression for the i-chain modulus we can write the stress for a system 

with arbitrary polydispersity as: 
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As with the monodisperse case, polydisperse systems are predicted to display shear 

modification since 
 tN ik  will recover its equilibrium entanglement density ieN ,  on 

reptation time scales which can be extremely long for high molecular weight entanglement 

pairs.   
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 We anticipate that for typical commercial polydisperse polymer melts most of the 

effects of CDFC discussed in this paper will disappear since the average level of Kuhn 

bond orientation will be low. However, this will not be the case for the entanglement 

dynamics effects. The effects of ED such as “shear modification” will manifest themselves 

for broad polydisperse melts with high molecular weight tails [Dealy and Tsang (1981), 

Rokudai (1979)].  
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APPENDIX C: INTERNAL DETAILS OF THE MODEL CALCULATIONS 

In this Appendix we detail the inner model workings underlying Fig. 3. In this way 

the mechanisms responsible for the observed uniaxial flow curves can be readily 

understood. In Fig. 14 the steady state orientation as a function of extension rate is 

displayed for the system described in Fig. 3. Similarly, Fig. 15 displays the steady state 

Kuhn bond orientation as a function of extension rate. An inflection point is seen in the 

curves at 
1, eqs  corresponding to the onset of significant stretch. CDFC effects set in for 

Kuhn bond orientations greater than 0.1. Finally, Fig. 16 displays CDFC, 
0

,

,

is

is

eq 








, as a 

function of extension rate and the onset of CDFC effects is clearly shown. All of the above 

Fig.s can be correlated to the extensional viscosity flow curve shown in Fig. 3 and obvious 

conclusions concerning the causes for the various features can be drawn. In particular, 

precisely when CDFC is activated relative to eqs,

1


 

  is impacted by whether ED and CCR 

are “on” or “off”. Choosing a different functional form for CDFC can in principle modify 

precisely when CDFC is activated relative to eqs,

1


 

. 

 

 



138 

 

 

 

 

FIG. 14. Steady state orientation as a function of extension rate for monodisperse PS200K 

at 130oC [Bach et al. (2003)]. Predictions are from various options of the family of models 

(see Fig. legend and Table 1). This allows us to determine the orientation levels when 

stretch and CDFC commence. The equilibrium stretch relaxation time is 
94, eqs  sec 

which doesn’t include the effects of CDFC. 
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FIG. 15. Steady state Kuhn bond orientation as a function of extension rate for 

monodisperse PS200K at 130oC. Predictions are from various options of the family of 

models (see Fig. legend and Table 1). The equilibrium stretch relaxation time is 94, eqs  

which doesn’t include the effects of CDFC. CDFC commences when Kuhn bond 

orientation is greater than 0.10. 
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FIG. 16. Steady state ratio of 
0

,

,

is

is

eq 






  as a function of extension rate for monodisperse 

PS200K at 130oC. The equilibrium stretch relaxation time is 94, eqs  sec which doesn’t 

include the effects of CDFC. Predictions are from various options of the family of models 

(see Fig. legend and Table 1).  
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III. Constitutive model for polydisperse entangled polymers incorporating 

binary entanglement pair dynamics and a configuration dependent friction 

coefficient 

 

 

 

Synopsis 

The concepts of entanglement dynamics (ED) and configuration dependent friction 

coefficient (CDFC) in our previous monodisperse Mead-Banerjee-Park (MBP) “toy” 

constitutive model [Mead et al., J. Rheol. 59, 335-363 (2015)] have been combined with 

that of diluted stretch tube theory of Mishler and Mead [J. Non-Newtonian Fluid Mech. 

(2013)] to develop the polydisperse MBP “toy” constitutive model. The model is first used 

in the “forward” direction to predict the nonlinear viscoelastic material properties of model 

polydisperse systems. The polydisperse MBP toy model accurately predicts the material 

properties in the forward direction for transient and steady uniaxial extension and shear 

flow melt and solution conditions. The model can correctly generate the long and short 

chain component contributions to the rheological property measured.  
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I. INTRODUCTION 

In our previous paper we developed the Mead-Banerjee-Park (MBP) “toy” 

constitutive model for entangled monodisperse linear flexible polymers that displayed 

considerable promise in predicting both extensional and shear flow properties in the highly 

nonlinear flow regime [Mead et al (2015)]. In this paper we continue our study of the MBP 

model by examining model polydisperse systems in fast extensional and shearing flows. 

We shall consider both model and general molecular weight distributions with P discrete 

weight fractions, 1
1




P

j

jw . Here and throughout this paper subscripts denote discrete 

molecular weight components not tensor component indices.  

As pointed out by Mishler and Mead (2013a and b), construction of a naïve 

polydispersity model is straightforward given the monodisperse MBP model developed in 

Appendix B of Mead et al., (2015). However, this naïve construction does not take account 

of the fact that for systems with broad polydispersity low molecular weight components 

may have an orientational relaxation time less than the stretch relaxation time of the high 

molecular weight component (See Figure 1).  

In this case, the low molecular weight components act effectively as “solvent” with 

respect to the stretch processes of the long chains. This fact necessitates the construction 

of a “diluted stretch tube” to describe stretching processes for polymer systems with broad 

molecular weight distribution (MWD) in nonlinear flows [Mishler and Mead (2013a and 

b)].  
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Hence, we incorporated the dilute tube theory into the monodisperse MBP to 

develop a new “toy” constitutive model for the improved prediction of viscoelastic material 

properties of polydisperse systems. Note here that our new model for polydisperse system 

is called as “MBP” model whereas the previous model for monodisperse system is 

distinguished as “monodisperse MBP”. The model by Mishler and Mead (2013a and b) 

will be abbreviated as “MM” model.  

In this paper, as in our previous work [Mead et al., (2015)], we use the term “tube” 

despite the fact that we believe that defining entanglements as discrete pair-wise couplings 

between two chains is a more accurate physical description of chain-chain interactions. 

Indeed, the traditional “tube” is an unhelpful concept in nonlinear rheology. Invoking a 

“tube” effectively fixes the entanglement density at a prescribed level consistent with the 

“tube diameter”. Thus the tube concept is not conducive to simple descriptions of 

entanglement dynamics since this would necessitate a continuously varying dynamic tube 

diameter.  

We believe that a simpler and more natural approach is to describe the viscoelastic 

properties in terms of the pair-wise entanglement dynamics as the conceptual paradigm 

rather than a mean field “tube”. Hence, when we use the term “tube” in this paper we mean 

a series of discrete, oriented ij entanglement couplings along the test chain. 

This paper is organized in the following manner; In Section II we outline how the 

dilute tube theory of MM model is combined with the monodisperse MBP model to result 

in MBP model. Section III.A uses the MBP model to simulate transient uniaxial extension 

for validation against the experimental data and to be compared with the MM model 
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prediction. Similarly, Section III.B predicts the transient shear flows. Section IV discusses 

the effect of polydisperse components on the rheological properties. Section V summarizes 

and concludes our results. 
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II. THE POLYDISPERSE MBP “TOY” MODEL FOR LINEAR POLYMERS 

A. Incorporation of dilute tube theory into the monodisperse MBP model 

 In this Section we outline the manner in which the entanglement dynamics ideas 

proposed by Mead et al., (2015) and Mishler and Mead (2013a, b) can be generalized to 

describe polydispersity within the MBP “toy” model framework (See Appendix B of Mead 

et al., (2015)). As alluded in the introduction, in the general MWD case we shall have to 

consider the possibility that some components of the MWD act like “solvent” with respect 

to stretch of the i-component. As we shall see, such situations manifest themselves for 

MWD’s with polydispersity indices (PI) greater than around 2. Specifically, solvent-like 

entanglements with respect to stretch occur when there is overlap in the stretch and 

orientational relaxation spectra (Figure 2). 

Generalizing the i-component toy stretch equation for polydisperse systems with 

broad MWD’s requires discussion. As proposed in previously published work by Mishler 

and Mead, entanglements with a lifetime less than the Rouse (stretch) relaxation time 

effectively act as solvent with respect to stretch processes of the test chain. The criteria 

 
1

,

,


 jdi

is

t 



 

defines a “cut-off” molecular weight, jM , relative to the test chain 

molecular weight, iM , splitting the MWD into solvent-like and full entanglement 
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fractions with respect to stretch relaxation processes of the i-chain†, see Figure 2. Auhl et 

al have demonstrated that the effective (experimentally observed) stretch relaxation 
eff

is,  

is altered from the bare Rouse time is,  by “stretch tube dilution” such that
i

iseff
is




,
,


 . Here, 

 ti1  is the “dilution” level of solvent like entanglements with respect to stretch of 

the long chains defined by the cutoff criteria 1
,

,


 jdi

is




 (see Figure 2); 

                                               

 

 

 

 tN

tN

tN

tN

t
i

cutj

ij

j

ij

cutj

ij

i








            (1) 

Physically, Eq (1) represents the fraction of viable stretch entanglements. Note that 

entanglement densities replace weight fractions in the definition of  ti . Note that we 

have had to generalize the definition of 
 ti

 to account for the ij entanglement dynamics 

which were not considered in the work of Mishler and Mead (2013).  

                                                 

† In order to calculate  

 

 

 
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cutj

ij

j

ij

cutj

ij

i









 
self consistently an iterative procedure is 

required. For the first iteration we choose 1i  and determine a new dilution level and cut-off molecular 

weight. The new value of i  is then fed into the cut-off criteria and this iterative process is repeated until 

convergence is achieved (Figure 2). This procedure is necessary to generate a dilution level that is self-

consistent with the definition of the effective stretch relaxation time we use in the diluted stretch tube, 

i

iseff
is




,
,


 . Note that the position of the j-cut changes with time and must be updated accordingly. 
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Similar modifications have to be made in the definition of  tS
di,

, Eq (6) below. 

These are essentially elaborate bookkeeping measures; counting ij entanglement pairs on 

the chain when entanglement dynamics and stretch tube dilution are operational (see Figure 

3. for a qualitative illustration of the model, identification of variables and the hierarchy of 

“tubes”). 

 The main polydispersity ideas and equations are detailed by Mead et al., (2015) 

Appendix B. We summarize the MBP model equations previously described by Mead et 

al., (2015) and the diluted stretch tube model of Mishler and Mead (2013a) in Section II.B. 

  As described in Mishler and Mead, the purpose of creating a diluted stretch tube is 

to calculate the i-chain stretch in systems with broad MWDs where some of the 

entanglements are solvent-like with respect to stretch processes of a given test chain (see 

Figure 2). Subsequent work by Mead et al., (2015) revealed that entanglement dynamics 

reduce the entanglement density and this effect also needs to be factored into the i-chain 

stretch dynamics equation. The result is that we calculate the stretch in the diluted and 

partially disentangled stretch “tube” (see Figure 3.). This stretch,  tdi, , is then related to 

the stretch in the partially disentangled “tube”,  ti , through the stretch coupling Eq (9). 

Stress is then calculated in the partially disentangled tube, Eq (11). We note that the 

expression for the stress, Eq (11), collapses to the correct linear viscoelastic limit after 

complete relaxation of the system. In the following section we will take a look at the 

equations that have been developed to study the polydisperse systems, both solutions and 

melts under shear and extension conditions. 
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B. Summary of the polydisperse MBP “toy” model equations  

1) The ij disentangled “tube” entanglement density evolution equation; 

           
 
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2) The ij entanglement pair orientation evolution equation; 

The orientation tensor  tS
ijtube,

 for the slow relaxing stretch entanglements ( cutj  ) 

evolves as; 
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And the orientation tensor  tS
ijtube,

 for the fast relaxing ij stretch entanglements 

( cutj  ) evolves as; 
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Where the tension induced orientation tensor,  tI
ij

, in the fast relaxing entanglements 

( cutj  ) is defined as [Mead and Mishler (2013) Eq. (12)]: 
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where  
 

 t

t
tx

di

di

di

max,

,

,



   is the fractional extension of the partially diluted and 
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 4) Diluted and partially disentangled i-stretch tube – partially disentangled i-tube stretch 

coupling relationship; 
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where  
i

i
ix

max,


   is the fractional extension of the partially disentangled i-tube. 

5) The ij partially disentangled tube entanglement pair relaxation time equation; 
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6) The general non-Gaussian stress calculated in the partially disentangled tube 
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Since the stress is calculated by Eq. (11) in the partially disentangled tube (see 

Figure 3 tube (B)) a reference modulus must be invoked in order to do quantitative 

calculations. This is done with the plateau modulus 
o

NG  which is referenced to the 

equilibrium entanglement state where the modulus is known (see Figure 3 tube (A)). 

Similarly, the partially disentangled tube orientation 
itube

S
,

 is related to the orientation of 

its constituent ij-entanglement pairs which requires a weighting based on the entanglement 

composition present. 

These important points explain the presence of the two new factors in the 

expression for the stress, Eq. (11). Specifically, the j-entanglement fraction on an i-chain 

factor, 
 

 tN

tN

i

ij
, appears in the calculation of the partially disentangled tube orientation

itube
S

,
. 

For the equilibrium entanglement microstructure, the factor 
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 is equal to the weight 
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j
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  and the Mishler and Mead expression for 
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,

 is recovered.  Hence 

the factor 
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i

ij
 is a correction to account for non-equilibrium entanglement 

microstructure in the partially disentangled tube. The factor 
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 tN

tN

i

ij
 accounts for differing 
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amounts of Kuhn bonds oriented per entanglement pair as the entanglement microstructure 

is modified. 

In a similar manner the i-chain modulus is corrected from its equilibrium 

entanglement microstructure reference value with a similarly motivated factor, 

 
0

,

N

ie

k

ik

G
N

tN
















. Hence there are two effects that account for the modified entanglement 

microstructure in a deforming melt one to account for the modification of the chain 

modulus and another to account for varying numbers of Kuhn bonds per entanglement pair. 

C. Numerical simulation 

Numerical solution of equations (2) - (13) was obtained by integration using Euler 

method. We confirmed that a small step size of t=510-11s gives convergent results 

including trace of   tS
ijtube,

=1.0000 of in Eq. (3). The value of β (CCR efficiency) in Eq. 

(2) was set as 0.12, same as monodisperse MBP model [Mead et al., (2015)]. The 

experimental data sets used for comparison with the model predictions are summarized in 

Table I. Input parameters for each experimental data are summarized in Table II, Table III, 

Table V, Table VI and Table VII. 
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III. COMPARISON TO EXPERIMENTAL DATA 

A. Uniaxial extensional flow of polydisperse PS melts and solutions 

In this section, our model is used to simulate transient uniaxial extensional flows 

of polydisperse polystyrene (PS) melts and solutions. The results are compared to the 

experimental data as well as the results from the MM model.  

The experimental data for the uniaxial extension of bidisperse melts and solutions 

are chosen for PS melt with PI<2 [Read et al., (2012)], PS melt with PI>2 [Minegishi et 

al.], and PS solution [Ye et al., (2002)]. The PS melt with PI>2 (PSM2), is a wide molecular 

weight distribution system of 20 components and spiked with a high molecular weight 

component of 3.2 106. The PSM1 and PSS1 are both bidisperse systems. The simulation 

input parameters and the abbreviations for each experimental data are summarized in Table 

II and Table III.   

Figure 4 shows the transient uniaxial extensional viscosity of the PSM2, which has 

broad MWD spiked by small portion of longer chain component (see Table III for data), at 

extension rates of 𝜀̇=0.013, 0.097, and 0.572 s-1. All the predictions by MM model and 

MBP model show excellent agreement with the experimental data up to t~40s, where 

experimental data is available. At t >40s, the steady state viscosity predicted by MBP 

model is lower than that by MM model. Due to the lack of steady state experimental data 

for PSM2 data set, the difference between MM model and MBP model predictions could 

not be validated. Therefore, we chose an experimental set of which steady state data are 

available (PSM1: Table II).     
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 Figure 5 shows the transient uniaxial extensional viscosity of the PSM1 (see Table 

II for data) at extension rates of  𝜀̇ =0.00015, 0.01, and 0.3 s-1. Compared to the prediction 

by MM model, MBP model shows the improved agreement with the experimental data. 

Since our model incorporated ED and CDFC to the MM model, we performed simulations 

by including/excluding the physical effects to isolate each contribution to the improved 

agreement. Table IV summarizes which physical effect is included/excluded in each model 

compared in Figure 6. Note here again that exclusion of both ED and CDFC from our 

model is equivalent to the MM model (MBP –ED-CDFC is equivalent to MM). Exclusion of 

ED alone (MBP –ED or MM +CDFC) resulted in slight reduction of the discrepancy from the 

experimental data and its result is similar to that of MM model. However, the results from 

the model without CDFC only (MBP –CDFC or MM +ED) show similarity to those from our 

model with only slightly larger values. This comparison indicates that the effect of ED on 

rheological properties of polydisperse polymer melts under uniaxial extension is more 

important than that of CDFC. In contrast to our previous monodisperse MBP model, which 

showed prominent effect of CDFC but not much effect of ED, the observed trend is 

opposite.  This can be explained by that shorter chains behave like solvent to longer chains, 

which resulted in diminished CDFC effect as in entangled polymer solution [Mead et al. 

(2015)]. In this case the polydisperse melt under extension condition shows similar 

behavior as that of the monodisperse solution system under high extension, where too we 

observed a weakening of CDFC due to the presence of the solvent. 

Next we simulate uniaxial extension of PSS1 (see Table II for details) to extend the 

validation to solutions. Figure 7 shows the transient extensional viscosity vs strain curves 

at extension rates of 0.5 and 1.0 s-1. The MBP results also show the similar trends as 
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predicted in extension of melts: lower viscosity values than those predicted by MM model 

and excellent agreement with the experimental data. Even in case of solutions, ED is an 

important physics to scale the system, whereas CDFC is not. The effect of CDFC is further 

reduced due to the presence of solvent. 

B. Shear flow of polydisperse PS melts and solutions 

In this Section we simulate transient shear flows of polydisperse polymer systems 

using the MBP model. The results are compared to the prediction by MM model and the 

experimental data for validation. A data set (PSS2) from Pattamaprom and Larson (2001) 

was chosen for shearing of PS solution and a data set (PSM3) from Ye and Sridhar (2005) 

for shearing of PS melts. Input parameters for numerical calculation are summarized in 

Tables.  

Figures 8 and 9 shows the transient shear viscosities and transient normal stress 

differences of 7% bidisperse PS solution (PSS2) at shear rates 0.01, 1.0 and 100 sec-1 

respectively. As in the results for uniaxial extensions in Section III.A, the predictions by 

MBP model show good agreement with the experimental data. All the rheological 

properties are also predicted to have lower values than those by MM model. Figure 10 also 

shows the same trend for transient shear viscosities of PS melt (PSM3).  
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IV. INVESTIGATION ON THE EFFECT OF POLYDISPERSITY  

In this section, we discuss the effects of each polymer component on rheological 

properties. We go back to the PSM1 and examined the contributions of short and long 

polymer components to transient extensional viscosity. The results are shown in Fig 11. At 

a low extension rate of 0.00015 s-1, short components mainly contribute to the transient 

extensional viscosity up to around 1000s. After that time, long components start to become 

dominant in the viscosity contribution. At an intermediate extension rate of 0.01 s-1, the 

transient viscosity trend is mainly due to the long components. At a high extension rate of 

0.3 s-1, both curves of long and short components show similar trend as the transient 

viscosity curve.  

The differences in the contributions by each component are due to the differences 

in relaxation times which are different according to polymer chain lengths. For example, 

the extension rate of 0.01s-1 is large enough to stretch the long components (𝜀̇𝜏0𝑟,𝑙𝑜𝑛𝑔 =

4.2 > 1) whereas the short components are still under orientation (𝜀̇𝜏0𝑟,𝑠ℎ𝑜𝑟𝑡 = 0.29 < 1).  

Figure 12 also shows how much each component is stretched at each extension rate in terms 

of the fractional stretch, x(t)=(t)/max. At the low rate of 0.00015s-1, both components are 

not stretched. At the intermediate rate of 0.01s-1, it is clearly seen that only the long 

component is stretched to contribute to the transient extensional flow curve. At the high 

rate of 0.3s-1, both components are stretched. The short components show smaller steady 

state value of x than that of the long components due to the difference between each 

relaxation time. Figure 13 shows the stretches of each component in terms of relative 
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stretch (t)=L(t)/Leq(t). While x(t) reached at steady state values, the curves of (t) show 

increasing trends.  

This is due to the reduction of Leq(t) by the reduced Nij(t). The transient behaviors 

of Nij(t) are shown in Fig. 14. As the extension is applied, polymer chains get disentangled 

with different rates for each pair. It is observed that long-long entanglements were rapidly 

disentangled compared to others. This is because the re-entanglement or formation of new 

entanglements in case of long-long entanglements is much slower compared to others due 

to their larger reptation/orientation time. Thus when the chains are getting disentangled, 

new entanglements are not forming fast enough for the long-long component. The number 

of long-short and short-long entanglements reduces to the same extent, as they have 

comparable characteristic time scales. The number of short-short entanglements falls the 

least, may be because the reduction in the equilibrium number of entanglements is 

compensated by faster formation of new entanglements. It can be deducted that the 

polydispersity enhances ED to relax orientation more than in monodisperse system, which 

results in the lower values of rheological properties than predicted by the previous MM 

model.     

Finally, we also investigated the effects of polymer components with different 

lengths by applying MBP model to simulate extension of a model polydisperse system of 

MWD of Wesslau’s log-normal 10 components of systems with average molecular weight 

of 2.4105 and PI 2.33 (see Table VII). Figure 15 shows the relative stretch of each 

component at an extension rate of 10s-1. Clearly, the longest component is stretched first 

before shorter. Thus we can firmly conclude that the strain hardening observed in the 
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polydisperse system, causing the deviation from linear viscoelastic envelope (LVE) is due 

to the stretching in longer chain components. This is true till the time when the shorter 

chains do not start stretching. As for the PSM1 [Read et al., (2012)] it can be seen, that at 

very high extension rates, when both the long and the short chains are getting stretched, 

then the viscosity is equally scaled by both the short and the long chains. 
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V. CONCLUSION 

The MBP monodisperse model and Mishler and Mead’s (2013a, 2013b) “diluted 

stretch tube” theory is combined together to develop the MBP polydisperse model. The 

concepts of CDFC and ED are sustained in the MBP polydisperse “toy” model. We verified 

our new constitutive model for polydisperse system against the experimental data and 

compared with the previous model (Mishler and Mead (2013a and 2013b). The MBP 

polydisperse model can correctly predict the PS bi-blend both melt and solution behavior 

under uniaxial extension, defining each component’s effect on the overall system.  

We found that the ED effect is more important in polydisperse system than the 

CDFC effect in the monodisperse system. This observation is not unpredictable as the 

entanglement structure is very complex for a polydisperse system. With different time 

scales, the strong effect of ED is imperative. The polydispeprsity enhances 

disentanglements to result in more relaxed orientation than in monodisperse system. 

Further due to the solution-like behavior of some of the entanglements, the CDFC effect 

weakens and is not important in defining the overall viscosity of the system. The CDFC 

effect is similar to what observed in case of monodisperse solution systems (Mead et al., 

2015). 

We also examined to confirm that the effects of longer components are dominant 

in rheological properties. The model can predict the individual effects due to the short and 

the long components of the system. It is observed, that the deviation that occurs in the 

transient viscosity from LVE (strain hardening), is due to the commencement of stretch in 
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the long chain component. Further increase in extension rates causes the shorter chain to 

start stretching and then the overall viscosity is scaled both by longer and shorter chain. 

The wide MWD PS 686, and the model generated Wesslau’s log-normal MWD are 

simulated to understand the effect of the high molecular weight component on the overall 

viscosity of the system. The model can predict the experimental behavior for PS 686 very 

accurately. For both the PS 686 and Wesslau’s log-normal MWD, the strain hardening is 

observed exactly at the point when the high molecular weight component begins stretching. 

The model can also correctly predict the shear flow transient and steady state (shear 

viscosity, shear stress and first normal stress difference) behavior for both the bidisperse 

solution and large MWD melt, again confirming that ED is important to both qualitatively 

and quantitatively describe the properties. Even in shear melt and solution systems, CDFC 

is found to be inconsequent.  

 It has long been known that a polymer melt’s rheological properties reflect the 

underlying fluid microstructure [Dealy and Saucier (2000), Dealy and Larson (2006)]. 

Microstructure here refers to the MWD, entanglement density and long chain branching. 

Consequently, rheology is commonly used in industry to characterize polymer resins using 

relatively crude rheological criteria such as the Melt Flow Index (MFI) [Bremner et al., 

(1990)]. Such rheological criteria were until recently largely based on empiricism rather 

than sound theory. However, molecular rheology has advanced to the point where it is now 

possible to definitively and quantitatively characterize commercial polymer resins from 

their rheology alone. These ideas form the motivation and basis of Analytic Rheology as a 

science. 
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FIG. 1. Qualitative sketch of the orientational and stretch relaxation spectra for two 

hypothetical molecular weight distributions. A) A narrow MWD 










 2~

n

w

M

M
 where the 

stretch and orientational relaxation spectra are widely separated as envisioned in the 

original Doi-Edwards model. B) A broad MWD 







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
 2~

n

w

M

M
typical of most commercial 

polymer systems where there is a wide overlap of the stretch and orientational relaxation 

spectra. Dispersion in the MWD and dispersion in the stretch and orientational relaxation 

spectra go hand in hand. Entanglement constraints that do not survive longer than the 

stretch relaxation time of the test chain do not impact the stretch dynamics of the high 

molecular weight components of a polydisperse system. 

 

 

 



167 

 

 

FIG. 2. Sketch of a typical broad MWD for a commercial polymer system with 

orientational and stretch relaxation spectra overlap. A given test chain of molecular weight, 

Mi, is chosen and the self-consistent cut-off criteria 
 
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

 jjdii

iis
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


 is applied which 

defines a conjugate molecular weight chain, Mj, that demarcates the boundary between 

“solvent-like” chains with respect to stretch processes of the i chain and “full” 

entanglements with respect to i chain stretch processes.  
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FIG. 3. Sketch of the three distinct unraveled “tubes” used in the polydisperse MBP model 

and their interrelationships. The construction of these tubes is motivated by the need to 

calculate the chain stretch in the presence of “solvent-like” entanglements and 

entanglements lost by deformation (convection off the chain ends). The lengths of the tubes 

are not in general equal (as they are drawn). We draw them as such for illustrative 

simplicity. The sketch illustrates a bi-disperse system of fast relaxers (red entanglements) 

and slow relaxers (green (i) entanglements) relative to the stretch relaxation time of the 

green (i) chains. The disentangled tube has fewer red and green entanglements. The 

disentangled and diluted stretch tube has no red (fast) stretch entanglements. Careful 

attention to the ij entanglement bookkeeping must be made. 
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FIG. 4. Transient extensional viscosity curves for PSM2 (see Table III for the data) at 

𝜀̇=0.013, 0.097, and 0.572s-1. Predictions by MM and MBP, experimental data, and LVE 

curves are compared. 
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FIG. 5. Transient extensional viscosity curves for PSM1 (see Table II for the data) at 

𝜀̇=0.00015, 0.01, and 0.3 s-1. Predictions by MM and MBP, experimental data, and LVE 

curves are compared. 
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FIG. 6. Transient extensional viscosity curves for PSM1 (see Table II for the data) at 𝜀̇=0.3 

s-1. Predictions from different models are compared (see Table III for the details). 
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FIG. 7. Transient extensional viscosities for PSS1 (see Table II for the data) at 𝜀̇=0.5 and 

1.0 s-1. Predictions by MM and MBP, experimental data [Ye et al. (2003)], and LVE curves 

are compared. 
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FIG. 8. Transient shear viscosities for 7% PS blend solution (PSS2 see Table V for details) 

at  𝛾̇  0.01, 0.1 and 100 sec-1. Predictions by MM and MBP and experimental data 

[Pattamaprom and Larson (2001)] are compared with each other. 
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FIG. 9. Transient normal stress differences for 7% PS blend solution (PSS2 see Table V 

for details) at  𝛾̇ 0.01, 0.1 and 100 sec-1. Predictions by MM and MBP and experimental 

data [Pattamaprom and Larson (2001)] are compared with each other. 
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FIG. 10. Transient shear viscosity for PS melt (PSM3) (PI = 3.2) (see Table VI for details) 

at 𝛾̇ 0.05 and 2.0 sec-1 respectively. The experimental data given by markers are taken from 

Ye and Sridhar (2005). 
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FIG. 11. Transient uniaxial extensional viscosity curves of each polymer component for 

PS bidisperse melt, PSM1 [Read et al. (2012)], at 𝜀̇=0.00015, 0.01 and 0.3 s-1, predicted 

by MBP model. 

 

 

 

 

 

 

 



177 

 

 

FIG. 12. Transient fractional stretch, x(t)=(t)/max, curves of each polymer component 

for PS bidisperse melt, PSM1 [Read et al. (2012)], at 𝜀̇=0.00015, 0.01 and 0.3 s-1, predicted 

by MBP model. 
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FIG. 13. Transient relative stretch, (t)=L(t)/Leq(t), curves of each polymer component for 

PS bidisperse melt, PSM1 [Read et al. (2012)], at 𝜀̇=0.00015, 0.01 and 0.3 s-1, predicted 

by MBP model. 
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FIG. 14. Transient normalized entanglement dynamics curves of each entanglement pair 

for PS bidisperse melt, PSM1 [Read et al. (2012)], at 𝜀̇=0.00015, 0.01 and 0.3 s-1, predicted 

by MBP model. 
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FIG. 15. Transient relative stretch curves for Wesslau’s log-normal MWD, for components 

1, 4, 7, and 10, at 𝜀̇=10 s-1, predicted by MBP model.  
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TABLE I. Summary of the experimental data sets used in this study. (PSMW* is not an 

experimental data set but a model MWD with log distribution). 

Symbol Melt/Solution 

Section 

used in 

Input 

parameters 

Reference 

PSM1 Melt III.A, IV Table II Read et al. (2012)  

PSM2 Melt III.A Table III Minegishi et al. 

PSM3 Melt III.B Table V Ye & Sridhar (2005) 

PSS1 Solution III.A Table II Ye et al. (2003) 

PSS2 Solution III.B Table VI 

Pattamaprom & Larson 

(2003) 

PSMW* Melt IV Table VII *Model MWD system 

 

 

 

 

TABLE II. Simulation input values for the uniaxial extension of bidisperse PS melt with 

PI = 1.248 (PSM1) [Read et al., (2012)] and bidisperse 7% PS solution (PSS1) [Ye et al., 

(2003)]. 

Symbol GN
o [Pa] 

Molecular 

weight 

[kg/mol] 

Weight 

fraction 
  τ0

d,i [s]  τ0
r,i [s] Ne 

PSM1 2.46 105 
390 0.1402 2.564 104 420.84 20.31 

103 0.8598 4.696 102 29.24 5.354 

PSS1 6.13 102 

2890 0.8 9.40 0.765 12.33 

8420 0.2 189.60 5 35.93 
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TABLE III. Simulation input values for the data set PSM2 (PS 686 spiked with MW 

3.2106 component; PI=2.33) directly taken from [Mishler and Mead (2013b)], which was 

originally obtained from Minegishi et al. 

Weight 

fraction 
GN

o [Pa] 

Molecular 

weight 

(kg/mol) 

τ0
d,i [s] τ0

r,i [s] Ne 

0.0186 

3.00 105 

22.9 1.37 10-3 1.37 10-3 1.762 

0.0415 42.3 6.27 10-3 4.69 10-3 3.254 

0.0687 67.2 3.02 10-2 1.18 10-2 5.169 

0.0961 83.0 0.110 2.53 10-2 0.638 

0.117 137 0.340 4.92 10-2 10.538 

0.127 184 0.928 8.87 10-2 14.154 

0.123 241 2.320 0.152 18.538 

0.108 310 5.470 0.252 23.846 

0.0879 392 12.100 0.403 30.154 

0.0665 490 25.900 0.629 37.692 

0.0474 605 53.100 0.959 46.538 

0.0321 740 105.000 1.430 56.923 

0.0208 897 203.000 2.110 69.000 

0.0129 1080 381.000 3.060 83.077 

0.00777 1290 697.000 4.360 99.231 

0.00452 1530 1.24 103 6.130 117.692 

0.00255 1810 2.20 103 8.580 139.231 

0.0014 2130 3.83 103 11.900 163.846 

7.54 104 2500 6.61 103 16.400 192.308 

3.96 104 2910 1.11104 22.200 223.846 

0.015 32000 1.53104 26.800 246.154 
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TABLE IV. Summary of which physical effects are included/excluded in each model, 

compared in Figure 5. 

Model Symbol Equivalent Symbol ED CDFC 

MBP MM +ED+CDFC On On 

MBP -ED MM +CDFC Off On 

MBP -CDFC MM +ED On Off 

MBP -ED -CDFC MM Off Off 

 

 

 

 

 

TABLE V. Simulation input values for shear 7% bidisperse PS solution (PSS2) 

[Pattamaprom and Larson (2001)]. 

 

 

 

 

 

 

 

 

 

TABLE VI. Simulation input values for shear PSM3 [PS melt (P1) (PI=3.5)] [Ye and 

Sridhar (2005)]. 

Weight 

fraction 
GN

o [Pa] 

Molecular 

weight 

(kg/mol) 

  τ0
d,i [s]  τ0

r,i [s] Ne 

0.002 

6.19 102 

52.6 1.46 10-4 2.16 10-4 0.225 

0.003 76.5 4.47 10-4 4.56 10-4 0.327 

0.004 100 1.01 10-3 7.86 10-4 0.429 

0.004 120 1.73 10-3 1.13 10-3 0.513 

0.01 147 3.17 10-3 1.69 10-3 0.627 

0.032 218 1.03 10-3 3.71 10-3 0.930 

Symbol GN
o [Pa] 

Molecular 

weight 

(kg/mol) 

Weight 

fraction 
  τ0

d,i [s]  τ0
r,i [s] Ne 

PSS 

2.9/8.4 
5.20 102 

2890 0.6 1.53 0.13 15.21 

8420 0.4 31.65 0.6 44.30 
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Table VI. Simulation input values for shear PSM3 [PS melt (P1) (PI=3.5)] [Ye and 

Sridhar (2005)] (cont.) 

0.009 

 

284 2.29 10-2 6.29 10-3 1.212 

0.049 344 4.05 10-2 9.21 10-3 1.467 

0.02 442 8.62 10-2 1.52 10-2 1.886 

0.122 601 2.17 10-1 2.82 10-2 2.566 

0.087 869 6.55 10-1 5.89 10-2 3.708 

0.035 978 9.34 10-1 7.46 10-2 4.174 

0.179 1410 2.80 1.55 10-1 6.018 

0.041 2070 8.83 3.34 10-1 8.826 

0.141 2460 1.49 101 4.72 10-1 10.504 

0.123 4200 7.38 101 1.37 17.909 

0.123 8190 5.48 102 5.23 34.938 

0.016 29640 2.60 104 68.5 126.504 

 

 

TABLE VII. Simulation input values for model generated Wesslau’s log-normal PS melt 

MWD with PI = 2.33 and weight avg. MW =2.4 105 (PSMW). 

Weight 

fraction 
GN

o [Pa] 

Molecular 

weight 

(kg/mol) 

τ0
d,i [s] τ0

r,i [s] Ne 

3.53 10-4 

2.46 105 

5.00 2.64 10-6 3.38 10-6 2.60 10-1 

2.69 10-3 9.01 1.95 10-5 1.39 10-5 4.69 10-1 

0.014 16.2 1.44 10-5 5.67 10-5 8.44 10-1 

0.0499 29.2 1.06 10-3 2.33 10-4 1.52 

0.123 52.7 7.92 10-3 9.62 10-4 2.74 

0.209 94.9 5.85 10-2 3.95 10-3 4.94 

0.247 171 0.43 1.62 10-2 8.91 

0.2009 308 3.20 6.66 10-2 16.0 

0.111 555 23.73 2.74 10-1 28.9 

0.0422 1000 175.65 1.12 52.1 
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SECTION 

5. CONCLUSION 

This dissertation has successfully elucidated the importance of the knowledge of 

entangled polymer rheological properties in both the fields of biological science and 

polymer processing. The write-up has been organized in three major sections. Firstly, a 

review on the mathematical models developed to quantify cytoskeleton mechanical 

behavior has been presented; followed by development of constitutive “toy” models to 

describe the rheological properties of both monodisperse and polydisperse linear 

entangled polymer systems under various deformation conditions. 

In the review on mathematical models to study cytoskeleton mechanical 

properties, a framework for approaching and understanding the plethora of biopolymer 

network models in terms of length scales has been provided. The length scales and their 

proper description are important as they are related to the stress components and the 

phenomena of interest. Identifying the length scale categories of a model also can give a 

quick insight into the advantages and disadvantages of the model and the types of 

behaviors and properties described. Conversely, models can be selected based on the 

length scale of the phenomena of interest. Models mainly based on the passive dynamics 

associated with pure mechanical/rheological responses were focused on. However, there 

are models based on different approaches, such as the gel-like model: it was proposed by 

Pollock that the cell movement and shape alteration can be described by the phase-

transition mechanism of a gel-like structure (Pollock, 2006). There have been models that 

consider the active behaviors which are related with biological responses or structural 
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rearrangement by polymerization/depolymerization. For example, the granular model 

considered microtubule rearrangement to describe cell crawling (Maurin et al., 2008). 

There have been models which described active behaviors of motor proteins (Chen & 

Shenoy, 2011) and growth and remodeling (Na et al., 2007). Although many reviews 

have pointed out the need to improve models for active dynamics (Unterberger & 

Holzapfel, 2014; Chen et al., 2012; Nava et al., 2014), apparent barriers to that 

development are the inherent complexity of the models for passive dynamics and the 

need for broader interdisciplinary research including biomedical engineering, medical 

science, biophysics, biology, chemistry, materials science, and chemical engineering, etc. 

The correct prediction of biopolymer network mechanical/rheological properties is 

important in many biomedical applications associated with biopolymer networks.  

Therefore, the framework provided by this review is expected to promote various studies 

on biopolymer networks (Banerjee & Park, 2015).  

Moving on from the field of medicine to that of polymer processing, the research 

attempted to understand and answer some of the persisting questions regarding linear 

monodisperse entangled polymer systems under fast non-linear deformation conditions.  

 In that effort a mathematically and computationally simple “toy” molecular 

model that incorporates ED, CDFC, and CCR into the base DEMG “toy” model, the 

MBP model for monodisperse entangled polymers was constructed. This model is a 

natural next step in the systematic progression of increasingly detailed and complex 

molecular models for entangled linear flexible polymers. The constitutive equation 

developed for monodisperse polymer melt or an entangled semi-dilute solution has three 
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major components (see equation (1)): 1) A quantitative description of the orientation 

dynamics, 2) a quantitative description of the stretch dynamics, and 3) a quantitative 

description of the entanglement dynamics (which are manifested through the nonlinear 

modulus  tGN
). All the three components are coupled together and nonlinear. The effect 

of CDFC has been incorporated in the description of the time scales (Mead et al., 2015).  

                                             


dynamics
nOrientatio

tube

dynamics
Stretch

dynamics
nglementEnta

N tSttGt 23                                                     (1) 

The new MBP model generates extensional flow curves that are monotonically 

thinning (with a small “kink” near 1, eqs ) for monodisperse PS melts that are 

qualitatively consistent with the experiment. The results are sensitive to the specific 

functional form of the CDFC used. For monodisperse PS solutions, the effects of CDFC 

are effectively diluted out and the classical tube model ladle shaped extensional flow 

curve is generated. The simulation results strongly suggest that CDFC is important in the 

prediction of rheological properties in nonlinear extensional flows of monodisperse PS 

melts. CCR is detrimental to the predictions in extensional flows but is important for the 

rheological properties in shear flows (Mead et al., 2015).  

A plausible explanation as to why the DEMG-cdfc model yields a monotonically 

thinning flow curve of monodisperse PS melts that are approximately equivalent to those 

predicted by the new MBP-xccr model (i.e. DEMG with ED “on”, CDFC “on” and CCR 

“off”) is also provided. This suspicious coincidence masks the underlying details that are 

actually occurring in fast nonlinear flows of entangled polymers. The new model 
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simultaneously captures nonlinear flows and the entanglement microstructure 

modification that occurs in these fast flows (Mead et al., 2015).  

Furthermore, the knowledge of the melt entanglement density following polymer 

shaping operations (finite deformations) is crucially important with respect to 

determining the ultimate mechanical properties of the part. Hence, the information 

gleaned from molecular models with ED, such as the MBP model, is directly relevant to 

polymer processing operations (Mead et al., 2015). 

The next endeavor is to generalize the new MBP model to polydisperse systems. 

Having a generally applicable model for polydisperse systems that is easy to code and 

fast to execute has many practical applications in analytic rheology. The MBP 

monodisperse model and Mishler and Mead’s (2013a, 2013b) “diluted stretch tube” 

theory is combined together to develop the MBP polydisperse model. The concepts of 

CDFC and ED are sustained in the MBP polydisperse “toy” model.   

The MBP polydisperse model can correctly predict the PS bi-blend both melt and 

solution behavior under uniaxial extension, defining each component’s effect on the 

overall system. It can be concluded that due to the solution-like behavior of some of the 

entanglements, the CDFC effect weakens and is not important in defining the overall 

viscosity of the system. The CDFC effect is similar to what observed in case of 

monodisperse solution systems (Mead et al., 2015). 

Entanglement dynamics (ED), on the other hand, proved to be very important 

physics in defining the system. This observation is not unpredictable as the entanglement 
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structure is very complex for a polydisperse system. With different time scales, the strong 

effect of ED is imperative. The model can also predict the individual effects due to the 

short and the long components of the system. It is observed, that the deviation that occurs 

in the transient viscosity from LVE (strain hardening), is due to the commencement of 

stretch in the long chain component. Further increase in extension rates causes the shorter 

chain to start stretching and then the overall viscosity is scaled both by longer and shorter 

chain. 

The wide MWD PS 686, a most probable MWD and the model generated 

Wesslau’s log-normal MWD are simulated to understand the effect of the high molecular 

weight component on the overall viscosity of the system. The model can predict the 

experimental behavior for PS 686 very accurately. For both the PS 686 and Wesslau’s 

log-normal MWD, the strain hardening is observed exactly at the point when the high 

molecular weight component begins stretching. The model can also correctly predict the 

shear flow transient and steady state (shear viscosity, shear stress and first normal stress 

difference) behavior for both the bidisperse solution and large MWD melt, again 

confirming that ED is important to both qualitatively and quantitatively describe the 

properties. Even in shear melt and solution systems, CDFC is found to be inconsequent.  

It has long been known that a polymer melt’s rheological properties reflect the 

underlying fluid microstructure (Dealy and Saucier, 2000; Dealy and Larson, 2006). 

Microstructure here refers to the MWD, entanglement density and long chain branching. 

Consequently, rheology is commonly used in industry to characterize polymer resins 
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using relatively crude rheological criteria such as the Melt Flow Index (MFI) (Bremner et 

al., 1990).  

 

 

Figure 5.1. Analytic rheology scheme.  

 

Such rheological criteria were until recently largely based on empiricism rather 

than sound theory. However, molecular rheology has advanced to the point where it is 

now possible to definitively and quantitatively characterize commercial polymer resins 

from their rheology alone. These ideas form the motivation and basis of Analytic 

Rheology as a science. Thus, having a generally applicable model for polydisperse 
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systems that is easy to code and fast to execute has many practical applications in 

analytic rheology. Analytic rheology is the prediction of the molecular weight 

distribution of the system from the viscosity and stress data. Figure 5.1, gives a glimpse 

of the analytic rheology procedure. 

 



 

 

 

 

 

 

 

 

 

 

 

APPENDIX A. 

TRACE OF ORIENTATION TENSOR (  tS
ijtube,

) FOR THE MBP 

POLYDISPERSE “TOY” MODEL 
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TRACE OF ORIENTATION TENSOR (  tS
ijtube,

)  

The trace of orientation tensor  tS
ijtube,

=1.00, is a method of validation for the 

numerical analysis of polydisperse system. The ij entanglement pair orientation evolution 

equations (3a and 3b) in paper III, are checked for their trace values. 

 tS
ijtube,

=  [

𝑆𝑥𝑥 𝑆𝑥𝑦 0

𝑆𝑦𝑥 𝑆𝑦𝑦 0

0 0 𝑆𝑧𝑧

]
 

Trace (tr) of   tS
ijtube,

= 𝑆𝑥𝑥 +  𝑆𝑦𝑦 +  𝑆𝑧𝑧  (sum of the diagonals of the matrix). 

For extension deformation condition at extension rate 0.01s-1 the trace of 

 tS
ijtube,

= 0.999998 at t=510-11s. For shear deformation condition at shear rate 1.0s-1 

the trace of  tS
ijtube,

= 0.999999 at t=510-11s. Under other deformation rates the trace 

of  tS
ijtube,

 also show same level of convergence, hence, the values for only single 

extension and shear rates are discussed in here. 

The above results validate that the numerical analysis for the MBP polydisperse 

constitutive “toy” model using Euler’s method is accurate and shows a convergence for a 

step size of t=510-11s. 

 

 

 



 
 

 

 

 

 

 

 

 

 

APPENDIX B. 

ADDITIONAL FIGURES AND TABLES FOR THE MBP POLYDISPERSE 

“TOY” MODEL 
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B.1. Component entanglement dynamics results: 

The importance of entanglement dynamics (ED) to describe the polydisperse 

system has been discussed in detail in paper III (Sections III.A and IV). Figure B.1 shows 

the transient normalized entanglement dynamics curve for the short and the long chain 

components, for PSM1 (see Table 2., in paper III Section III.A for details) at extension 

rates έ 0.00015, 0.01 and 0.3 sec-1.  This shows the drop in the number of entanglements 

in long and short chains w.r.t to the equilibrium number of entanglements. 

 

 

 

 

Figure B.1. Transient normalized entanglement dynamics curve for PSM1 at έ 0.00015, 

0.01 and 0.3 sec-1 showing the short and long chain entanglement dynamics. 
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As can be seen from Figure B.1, the number of entanglements on the longer chain 

component falls of more than the short chain components. This is because the 

entanglements on long-long components fall off to a larger extend compared to the long-

short, short-short and short-long which can be seen from Figure 14, in Paper III. The 

reason behind the faster disentanglement of long-long components as discussed is due to 

the reduced re-entanglement or formation of new entanglements for the long-long 

components. 

 

 

Figure B.2. Transient normalized entanglement dynamics curve (𝑁_𝑖𝑗 (𝑡)) ⁄ 𝑁_𝑖 )for 

PSM1 at έ 0.00015, 0.01 and 0.3 sec-1 showing the short and long chain entanglement 

dynamics. 
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Figure B.3. Transient normalized entanglement dynamics curve (𝑁_𝑖𝑗 (𝑡)) ⁄ 𝑁_𝑒𝑖 )for 

PSM1 at έ 0.00015, 0.01 and 0.3 sec-1 showing the short and long chain entanglement 

dynamics. 

 

 

In order to investigate the entanglement dynamics behavior of each of the 

individual components at different extension rates, different normalized curves have been 

plotted. Figure B.2. shows the Transient normalized entanglement dynamics curve 

(𝑁_𝑖𝑗 (𝑡)) ⁄ 𝑁_𝑖 )for PSM1 at έ 0.00015, 0.01 and 0.3 sec-1. Similarly, Figure B.3 and 

B.4 show the Transient normalized entanglement dynamics curve (𝑁_𝑖𝑗 (𝑡)) ⁄ 𝑁_𝑒𝑖 ) and 

(𝑁_𝑖𝑗 (𝑡)) ⁄ ((𝑁_𝑖 (𝑡) ∗ 𝑤_𝑗))  or PSM1 respectively.  Each of these curves show how 

the number of entanglements on the chain is changing with time. 
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Figure B.4. Transient normalized entanglement dynamics curve (𝑁_𝑖𝑗 (𝑡)) ⁄ ((𝑁_𝑖 (𝑡) ∗

𝑤_𝑗))  or PSM1 at έ 0.00015, 0.01 and 0.3 sec-1 showing the short and long chain 

entanglement dynamics. 

 

 

B.2. Steady state uniaxial extension melt and shear solution results: 

Along with the transient behavior, the steady state behavior of PSM1 under 

uniaxial extension and of PSS2 under shear is of interest. Figure B.5 gives the steady 

uniaxial extensional viscosity curve for PSM1 (see Table 2., in paper III for details) along 

with the short chain and the long chain contributions. The observations in close 

agreement with the experimental results from Read et al. (2012). One can again see that 

with increase in extension rates, the contributions of the long chains increases as the it 
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starts stretching at 𝜀̇ > ~0.002 =
1

𝜏𝑟−𝑙𝑜𝑛𝑔
. On further increasing the extension rates, the 

short chain starts stretching 𝜀̇ > ~0.04 =
1

𝜏𝑟−𝑠ℎ𝑜𝑟𝑡
, and its contribution becomes more 

prominent. For high extension rate condition both the short and the long chains contribute 

equally to the overall viscosity of the system. The stretching effects of the individual 

components have been more clearly described in paper III, Section IV. 

 

 

 

Figure B.5. Steady state extensional viscosity curve for PS bidisperse melt (see Table 2., 

in paper III for details). The long and short chain component effects are given by dashed 

and dotted lines respectively. The experimental data given by markers are taken from 

Read et al. (2012). 
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Figure B.6 shows the steady state shear viscosity and first normal stress difference 

vs shear rate curve, for PSS2 (see Table 5., in paper III for details). The MBP predictions 

are in close agreement with the experimental results from Pattamaprom and Larson 

(2001). As expected, the shear viscosity for polydisperse solution system monotonically 

reduces with increase in shear rate, whereas the first normal stress difference shows a 

monotonic increase with shear rate. 

  

 

 

 

 

Figure B.6. Steady state shear viscosity and first normal stress difference vs shear rate 

curve difference for 7% PS bidisperse solution (see Table 5., in paper III for details). The 

experimental data given by markers are taken from Pattamaprom and Larson (2001). 
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B.3. [PS 686] and PSMW [Wesslau’s log-normal] MWD under uniaxial extension 

results: 

The effect of higher molecular weight component, on the overall viscosity of the 

system, for wide molecular weight distribution (MWD), is of interest. The PSM2 (PS 686 

melt system spiked with 3.2106 MW component (Mishler & Mead, 2013)) (see Table 3., 

in paper III for details) is simulated and the results (see Figure 4) are discussed in paper 

III, Section III.A. Figure B.7, shows the transient relative stretch curves for components, 

9, 13, and 21 (see Table 3., in paper III for details) at extension rate 0.572sec-1.  

 

 

 

Figure B.7. Relative stretch curve for PSM2 (PS 686, for components (9, 13 and 21)) (see 

Table 3., in paper III for details) at έ 0.572 sec-1.  



206 
 

It can be clearly seen that the strain hardening observed in the system (see Figure 

4., in paper III for the transient viscosity curve) is due to stretch occurring in the high 

molecular weight component.  

The PSMW (Wesslau’s log-normal 10 components PS melt MWD (PI = 2.33)) 

for uniaxial extension deformation (see Table 7., in paper III for details) is a model 

generated MWD which is simulated to validate the stretching effects of high molecular 

weight components on the overall viscosity of the system under high uniaxial extension 

deformation.  

 

 

 

Figure B.8. Transient extensional viscosity curve for PSMW (Wesslau’s log-normal PS 

melt MWD) (see Table 7., in paper III for details) at extension rates 0.001, 1.0 and 10 

sec-1. The LVE is given by grey dashed line. 
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Figure B.8. shows the transient extensional viscosity curves at extension rates 

0.001, 1.0 and 10 sec-1 respectively. The effects of the stretching in the high molecular 

weight components have been discussed in paper III, Section IV (see Figure 14). 

B.4. Most probable MWD results: 

The most probable two components MWD is generated using the code. Figure 

B.9. shows the transient extensional viscosity curve at extension rates 0.001, 1.0 and 10 

sec-1 respectively.  

 

 

 

Figure B.9. Transient extensional viscosity curve for most probable PS melt MWD (see 

Table B.1. for details) at extension rates 0.001, 1.0 and 10 sec-1. The LVE is given by 

grey dashed line. 
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 The simulation is performed to validate the numerical analysis of the MBP 

polydisperse model. Table B.1. gives the simulation inputs for the most probable MWD 

melt. The system is simulated for uniaxial extension. Again the strain hardening behavior 

is observed. As this is a model generated data to just check the code, it has not been 

validated against experimental results. 

 

 

 

Table B.1. Simulation input values for model generated most probable MWD bidisperse 

PS melt. 

GN
o [Pa] 

Weight 

fraction 

Molecular 

weight 

(kg/mol) 

  τ0
d,i [s]  τ0

r,i [s] Ne 

2.46105 

0.8 5.00 2.64 10-6 3.3810-6 0.26 

0.2 1000 175.65 1.12 52.08 

 

 

 

 

 

B.5.  CCR effect in polydisperse system: 

 For the monodisperse extension system it was observed that the effect of  

(convective constraint release) CCR on the system depended on the deformation 

condition. Shear deformation requires CCR to describe the shear thinning observed for 

high shear rates, on the other hand, CCR caused over prediction og relaxation in casee of 

extension. The effect of CCR or even the persence of it and its requirement to define a 

system have always been controvertial. This made it improtant to study its effect. 
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Fig B.10. Transient extensional viscosity for PS melt (PSM1) at 0.3 s-1 extension rate for 

different simulation combinations to check the effect of the individual physics. 

 

 

 

 

 

To check the effect of CCR in case of polydisperse melt extension (PSM1) and 

see how CCR is effecting the system MBP xCCR. Figure B.10 shows the individual effect 

of ED, CDFC and CCR. The effects of ED and CDFC have been discussed in detail in 

Paper III. On turning “off” CCR, it can be seen that the curve deviates from the 

experimental results and the behavior is similar to that of MBP without CDFC. Thus one 

can conclude that CCR again have a week effect on the overall behavior of the system. 

The behavior is thus similar to that of the monodisperse extension melt systems when 
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CCR becomed ineefective due to the loss of ttopological constraint when the system gets 

highly oriented. 

 B.6. Diluted tube Stretch, Maximum relative stretch and CDFC 

 Figure B.11 shows the comparison bbetween the relative stretch in the primary 

and the diluted tube for bidisperse PS melt (PSM1) under extension rates έ 0.00015, 0.01 

and 0.3 sec-1. It can be seen that as the extension rates increases, the stretching in the 

diluted tube becomes more prominent compared to that of the primary tube.  

 

 

 

 

 
Figure B.11. Transient normalized entanglement dynamics curve (𝑁_𝑖𝑗 (𝑡)) ⁄ 𝑁_𝑒𝑖 )for 

PSM1 at έ 0.00015, 0.01 and 0.3 sec-1 showing the short and long chain entanglement 

dynamics. 
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The diluted tube for the longer chain component is stretched more than the 

primary tube. This may be becarse the siluted tube is defined by only viable components 

whereas, the primary tube is defined by all the entanglements present in the sytem. This 

allows the diluted tube to unravel more and get stretched. 

 Figure B.12. shows the maximum relative stretch for diluted tube for bidisperse 

PS melt (PSM1) under extension rates έ 0.00015, 0.01 and 0.3 sec-1. Here one can see 

that the diluted tube starts unravelling under high extension rates. The chain start to 

stretch and the back bends and loops in the chain gets straightened. 

 

 

 

 
Figure B.12. Transient maximum relative stretch for diluted tube for PSM1 at έ 0.00015, 

0.01 and 0.3 sec-1 showing the short and long chain entanglement dynamics. 
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Figure B.13. Transient CDFC for PSM1 at έ 0.00015, 0.01 and 0.3 sec-1 showing the 

short and long chain entanglement dynamics. 

 

 

 

 

 

Figure B.13. shows the transient CDFC effect PSM1 at έ 0.00015, 0.01 and 0.3 

sec-1. From this curve one can observe that the with increase in extension rate, the long 

chain gets effected first, then both long and short chains showing CDFC due to 

orientation. Though CDFC effect is there, the reduction due to CDFC is not high and thus 

their effect on the overall behavior of the system is not prominent. 
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