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ABSTRACT

Upflow Moving Bed Hydrotreater (MBR) reactor is used for hydrotreating resid

crude oil. It is a two-phase upflow reactor having a catalyst bed with conical bottom, and

plena. At industrial conditions the reactor is not performing at its best and encountering

issues such as hot spots, catalyst agglomeration inside the catalyst bed leading to frequent

shutdown of the reactor. The root cause of these problems are linked to the improper

hydrodynamics inside the catalyst bed. To investigate this, the industrial scaleMBR is scaled

down to a pilot scale and indicative and key hydrodynamic parameters are investigated using

developed experimental methods and CFD simulation.

The local hydrodynamics is quantified using an experimental technique called two-

tip optical probe (TTOP). Developed algorithms for TTOP to derive the local phase satura-

tions, velocities, backmixing, maldistribution using the time series data of the probe. The

results indicates high maldistribution zones inside the catalyst bed and found convincing

evidence to link this to the conical design and plena of MBR.

Overall Gas and Liquid dispersion/Mixing in the catalyst bed is investigated by

tracer studies using a developed methodology based on residence time distribution (RTD),

Convolution, Regression, and Catalyst Bed Models based on axial dispersion and wave

model. Good gas/liquid dispersion is seen at the industrial scaled down operating condition.

A CFD model is developed for the lower plenum of MBR and validated with

gamma ray densitometry (GRD) for radial profile of line average phase volume fraction.

The simulation indicates that the current design of lower plenum is enabling a dominant

movement of phases only in the central region outlets of this plenum. A modification of the

current design proves to perform better in terms of movement of phases along entire outlets

of the lower plenum.



v

ACKNOWLEDGMENTS

The first and foremost acknowledgment goes to my advisor Prof. Muthanna Al-

Dahhan. I would like to thank him for being a constant source of support and guidance

during my Ph.D. life. I always admired him for his passion and dedication towards his

research activities and towards his responsibilities as a department chair. His out of box

thinking, never give up attitude, hard-working style, and good work ethics always inspired

me.

I would like to thank my committee members Dr. Joseph Smith, Dr. Parthasakha

Neogi, Dr. Joonataek Park, and Dr. Joshua Schlegel, for their thorough evaluation and

critical review of my Ph.D. research.

I wish to acknowledge my research group for their cooperation and helpful discus-

sions to advance my work. A special thanks to Dean Lenz, his in-depth understanding

and helpfulness with troubleshooting, ensured smooth functioning of my work. I am also

grateful to office staffs Marlene Albrecht, Emily Filkins, Dawn Schacht, and former staffs

Krista Welschmeyer, Morgan Coonrod, and Julia Burnette.

A sincere thanks to my friends Sarah Joseph, Kannan Suresh Kumar, Albin Thomas,

Malweka Sree Vishnupuram and many other friends I made during my PhD life. You guys

made this an enjoyable and memorable journey.

Lastly, I would like to thank the most important people in my life, my parents,

Alexander Kunjapay and Mariamma Cherian. This achievement is possible only due to

their hard work and blessings, and this dissertation belongs to them.



vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

SECTION

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. UPFLOWMOVING BED REACTOR (MBR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. OBJECTIVES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

PAPER

I. LOCALHYDRODYNAMICS INVESTIGATIONOF INDUSTRIALSCALED
DOWNUPFLOWMOVING BEDHYDROTREATER (MBR) REACTORUS-
ING TWO-TIP OPTICAL PROBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. MEASUREMENT TECHNIQUE: TWO-TIP OPTICAL PROBE (TTOP). . . 14

3.1. Local Phase Saturations Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2. Local Phase Velocities Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



vii

3.3. Local Backmixing Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4. Local Maldistribution Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1. Local Phase Saturations at Local Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2. Investigation of the Local Phase Velocities at Local Locations . . . . . . . 22

4.3. Local Backmixing at Local Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4. Local Maldistriubtion at Local Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5. DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6. REMARKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

II. GAS PHASE DISPERSION/MIXING INVESTIGATION IN GAS-LIQUID
UPFLOWMOVINGBEDHYDROTREATER REACTOR (MBR) USINGDE-
VELOPED GAS TRACER TECHNIQUE AND METHOD BASED ON CON-
VOLUTION/ REGRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2. EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3. GAS DYNAMIC TRACER TECHNIQUE FOR EVALUATION OF THE
RESIDENCE TIME DISTRIBUTION (RTD) OF THE GAS PHASE IN
THE GAS-LIQUID UPFLOWMBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1. Dynamic Gas Tracer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2. Gas Tracer System of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4. METHODOLOGY TO MEASURE GAS DISPERSION IN CATALYST
BED SECTION OF MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1. Injection and Sampling Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2. Convolution and RegressionApproach to Estimate Gas Dispersion
in Catalyst Bed of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3. Step 1: Procedure to Obtain Plenum Model Parameters and Inlet
Boundary Condition for ADM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



viii

4.4. Step 2: The Procedure to Obtain ADM Model Parameters using
Step 1 Inlet Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5. DIMENSIONLESS VARIANCE (TANK IN SERIES) . . . . . . . . . . . . . . . . . . . . . . . . 53

6. RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1. Effect of Flow Rate of Phases on Gas Dispersion Coefficient (Dg)
for Catalyst Bed in MBR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2. Effect of Flow Rate of Phases on the Gas Holdup (εg) in Catalyst
Bed of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3. Effect of Flow Rate of Phases on Peclet Number (Pe) in Catalyst
Bed of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4. Effect of Flow Rate of Phases on Dimensionless Number (σD
2) in

Catalyst Bed of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7. REMARKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

III. LIQUIDPHASEDISPERSION/MIXING INVESTIGATION INGAS-LIQUID
UPFLOWMOVINGBEDHYDROTREATER REACTOR (MBR) USINGDE-
VELOPED LIQUID TRACER TECHNIQUE AND METHOD BASED ON
CONVOLUTION/REGRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2. EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3. DYNAMIC LIQUID TRACER TECHNIQUE FOR RTD STUDIES OF
LIQUID PHASE IN GAS-LIQUID UPFLOWMOVING BED REACTOR . 73

3.1. Dynamic Liquid Tracer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2. Liquid Tracer System of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4. METHODOLOGYTODETERMINEDISPERSION/MIXINGPARAM-
ETER IN CATALYST BED SECTION OF MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1. Two Injection and One Detection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2. Wave Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



ix

4.3. Convolution and Regression Approach to Estimate Liquid Disper-
sion Coefficient (Dl) and Peclet Number (Pe) of Liquid Phase in
Catalyst Bed Section of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5. CASE STUDY TO SHOW FAILURE OF ADM.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6. DIMENSIONLESS VARIANCE (TANK IN SERIES) . . . . . . . . . . . . . . . . . . . . . . . . 85

7. RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1. Effect of Operating Condition on Dispersion Inside the Catalyst
Bed Section of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2. Effect of Operating Conditions on Peclet Number Inside the Cat-
alyst Bed Section of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3. Effect of Operating Conditions on Dimensionless Variance Inside
the Catalyst Bed Section of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8. REMARKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

IV. PHASE MASS DISTRIBUTION BASED PERFORMANCE EVALUATION
OF LOWER PLENUMOF UPFLOWMOVING BED HYDROTREATER RE-
ACTOR (MBR) AND PROPOSAL OF AN IMPROVED DESIGN USING CFD. . 95

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2. EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3. LOWER PLENUM OF MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4. CFD MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5. NUMERICAL SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6. VALIDATION OF THE MODEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1. Gamma-Ray Densitometry (GRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2. Analysis Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3. Experimental Procedure for Line Average Phase Holdup Calculations108

6.4. Comparison of Experimental and Simulation Results. . . . . . . . . . . . . . . . . 109

7. RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



x

7.1. Volume Fraction Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2. Liquid Mass Distribution at the Outlet of Chimneys . . . . . . . . . . . . . . . . . . 111

8. MODIFIED DESIGN OF LOWER PLENUM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.1. CFD Model and Numerical Solution for New Design. . . . . . . . . . . . . . . . . 114

9. COMPARISON OF OLD AND NEW DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.1. Comparison of Liquid Volume Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2. Comparison of Mass Distribution at Outlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10. REMARKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

SECTION

2. SUMMARY, CONCLUSIONS, AND RECOMMENDATION . . . . . . . . . . . . . . . . . . 120

2.1. SUMMARY AND CONCLUDING REMARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

2.2. RECOMMENDATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

APPENDICES

A. SCALING DOWN PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B. THE PROCEDURE TO DETERMINE LOCAL HYDRODYNAMICS USING
TTOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



xi

LIST OF ILLUSTRATIONS

Figure Page

PAPER I

1. Schematic diagram of scaled down MBR setup for local hydrodynamics study . . 13

2. Design of two-tip optical probe (TTOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Raw signal of TTOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4. Filtered signal of TTOP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5. Normalized signal of TTOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6. Schematic of matched bubble signals used for velocity measurement . . . . . . . . . . . . 19

7. Gas saturation at various radial and axial location of MBR at experimental
scaled down conditions shown in Table 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8. Histogram plot of phase velocities at r/R=0 and Z/D=0 (a) gas velocities (b)
liquid velocities at experimental scaled down conditions shown in Table 1. . . . . . . 22

9. Phase velocities at various local location of MBR at scaled down experimental
condition shown in Table 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10. Local backmixing of phases based on zero gas velocities at scaled down
experimental condition shown in Table 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

11. Local gas velocity histogram at Z/D=0 and r/R=0 for scaled down experimental
conditions shown in Table 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

12. Local maldistribuition plot at various location inside the packed bed for scaled
down experimental condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

13. Comparison of radial plot of gas saturations at Z/D=0 and Z/D= Z* at scaled
down experimental condition shown in Table 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

PAPER II

1. Schematic diagram of scaled down MBR setup for gas dynamics studies . . . . . . . . 38

2. Gas tracer components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3. Gas dynamic tracer system of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4. RTD of various injection-sampling at scaled experimental conditions . . . . . . . . . . . . 45



xii

5. Schematic of convolution and regression approach to obtain parameters for
plenum model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6. Cin (solution of plenum model; ideal CSTR+PFR), C(2) (experimental re-
sponse of zone-2 measured by I1-S), C∗in (convoluted signal of Cin and C(2)) . . . . 49

7. Regression of the theoretical output based on the plenum model (Cin∗) and the
experimental output (C(1)) of the whole reactor for minimum error . . . . . . . . . . . . . . 50

8. Schematic of convolution and regression approach to obtain parameters for
ADM model using input profile Cin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9. Cout (ADM solution of plenum model input), C(3) (experimental output of
zone1), Cout∗ (convoluted signal output of Cout and RTD of zone3). . . . . . . . . . . . . . . 51

10. Regression plot of Cout∗ (convoluted signal of ADM output and experimental
output of zone-3 (I3-S)) and C(1) (experimental output of zone1) for minimum
error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11. Gas dispersion plot for varying flow rate of phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

12. Gas holdup plot for varying flow rate of phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

13. Peclet number plot for varying flow rate of phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

14. Dimensionless variance of gas phase in the catalyst bed for various flow
conditions and scaled down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

PAPER III

1. Schematic diagram of scaled down MBR setup for liquid dynamics studies. . . . . . 71

2. Liquid tracer components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3. Liquid tracer system of MBR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4. RTD of various injection-sampling at scaled down experimental condition . . . . . . 77

5. Schematic of convolution and regression approach to obtain liquid mixing
parameters of catalyst bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6. Cout (solution of the wave Model), C(2) (experimental output of zone-2),
Cout∗ (convoluted signal of Cout and Zone-2), at the experimental scaled down
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7. The regression plot for minimum error between convoluted signal (Cout∗) and
experimental response C(1), at experimental scaled down condition. . . . . . . . . . . . . . 81

8. Schematic of convolution and regression approach using ADM model for
catalyst bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



xiii

9. The regression plot for minimum error between convoluted signal (using
ADM) and experimental response C(1), at scaled down experimental conditions 84

10. The liquid dispersion in the catalyst bed of MBR for varying flow rate of phases 87

11. The liquid peclet number in catalyst bed of MBR for varying flow rate of phases 89

12. The liquid dimensionless variance in catalyst bed of MBR for varying flow
rate of phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

PAPER IV

1. Schematic diagram of scaled down MBR setup for CFD studies . . . . . . . . . . . . . . . . . . 99

2. Schematic diagram of lower plenum of MBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3. Internals of lower plenum of MBR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4. Schematic diagram of GRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5. Radial location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6. Comparison of experimental and simulations result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7. Liquid volume fraction at plane-1 of the gas-liquid distributor . . . . . . . . . . . . . . . . . . . . 110

8. Designation of chimney outlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9. Mass fraction of liquid at the chimney outlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10. CAD model of new design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11. Deflector location in new design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

12. Comparison of liquid volume fraction of new and old design . . . . . . . . . . . . . . . . . . . . . 115

13. Comparison of mass fraction profile of new and old design . . . . . . . . . . . . . . . . . . . . . . . 116



xiv

LIST OF TABLES

Table Page

PAPER I

1. Experimental setup specification, operating conditions, measurement zones
for optical probe study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

PAPER II

1. Reactor design parameters and experimental condition for gas dispersion/mixing
study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2. Injection and sampling assembly of MBR for gas dynamics study . . . . . . . . . . . . . . . . 44

PAPER III

1. Experimental setup specifications and operating conditions for liquid dynam-
ics study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2. Injection and sampling assembly for liquid dynamics study in MBR . . . . . . . . . . . . . 77

PAPER IV

1. Experimental setup specification and operating conditions for CFD study . . . . . . . 101

2. Summary of the flow model and solution scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3. Boundary and operating conditions for the numerical simulation . . . . . . . . . . . . . . . . . 105



SECTION

1. INTRODUCTION

Hydrotreatment is a process in which hydrocarbon feed stream are catalytically

treated with hydrogen for removal of unwanted contents. Heavy liquid stream such as crude

oil or resid oil contains a lot of contaminants in the form of organometallic compounds and

heavy metals which tend to deactivate catalyst at hydroprocessing conditions (Kramer et al.,

1994). Strict environmental regulation, severe crude oil deterioration and product demand

shift towards lighter fuel have taken a movement towards improvement in hydroprocess-

ing technology and catalyst (Scheuerman et al., 1993a). Improved hydrotreaters have an

enormous impact on resid oil treatment as refiners can have utmost feed flexibility with the

maximum conversion.

The three-phase fluidized bed is one of the reactor configuration used in many H-oil

processes like hydrogenation and hydrodesulfurization of residual oil (Jena et al., 2008a).

Other configuration includes upflowmovement of hydrogen and oil with catalyst bedmoving

downward, this ensures high packing density and maximum conversion but can result in

metal plugging and catalyst deactivation (Kramer et al., 1994). Upflow moving packed or

slightly expanded bed with a conical bottom, industrially known as Upflow Moving Bed

Reactor (MBR) is a new configuration of the reactor for hydrotreatment.

1.1. UPFLOWMOVING BED REACTOR (MBR)

Upflow moving bed reactor has plena and catalyst bed section. The plena are

subdivided as lower and upper plenum. The catalyst bed section has a conical support

structure, and it demarcates plena from catalyst bed. Lower plenum is gas-liquid distributor



2

section having a deflector and chimneys with side holes attached to a plate distributor,

which provide a gas pocket on top of the lower plenum. This design of lower plenum is very

standard in the industry for upflow case. It is because the gas pocket acts as pressure surge

dampener which may arise due to varying operating conditions and it also provides good

distribution of gas-liquid to upper chambers (Kramer et al., 1994). Under proper design

conditions the gas flow through side holes of the tubes and mixes with the incoming liquid

from the bottom hole or inlet of chimney and fed as a spray to upper plenum. Upper plenum

is filled with passive spheres. There are skirts which are attached to the conical bottom.

This arrangement of upper plenum claimed to provide good distribution of gas and liquid,

and it feeds as annular ring of gas-liquid into the catalyst bed section which is supported

by a conical bottom structure. This cone is enlarging upwards and have holes size small

enough to prevent catalyst plugging and large enough to minimize the pressure drop across

the cone (Bachtel et al., 1996).

Moving Bed Reactor (MBR) is a new technology for hydrotreaters which incorpo-

rates provision for continuous replacement of spent catalyst and feeding of fresh catalyst

simultaneously under operating conditions. Under hydrotreatment conditions, the catalyst

gets deactivated and becomes heavy and eventually move downs towards the conical bottom

due to discharge catalyst and adding new catalyst (Krantz et al., 2002). There is a pipe

having a diameter substantially larger than the catalyst attached to the conical bottom for

removal of spent catalyst. The removal is done under laminar conditions to prevent distur-

bance in the bed (Kramer et al., 1994). The spent catalyst is regenerated and either mixed

with the fresh catalyst or fed alone to the top of the column in a similar laminar fashion to

avoid disturbances in bed. The catalyst removal is usually done once or twice in a week

and in small increments. Hence, MBR offers an efficient way of utilizing the catalyst and

provision of removal of spent catalyst without shutdown. The maximum linear velocity

of reactants is kept such that overall bed expansion is less than 10 percent (Kramer et al.,

1994). Hence, under normal conditions, the bed behaves as slightly expanded or packed



3

bed. It is mostly used as a replacement for fixed bed hydrodemetallization (HDM) reactor

which acts as a guard reactor to fixed bed residual desulfurization (RDS) unit (Scheuerman

et al., 1993a). MBR reactors can handle feed with higher metal content which is relatively

cheaper feed. Highly contaminated or heavy feed is hydrotreated with HDM catalyst in

MBR for metal removal then fed to fixed bed RDS unit having HDS catalyst. Overall it

should increase the run length of HDS catalyst. To summarize, MBR technology provide

refiners capability of handling feed with varying degree of contaminant, increased the life

cycle of fixed bed catalyst, reduced catalyst consumption.

Problems Associated with MBR: The MBR reactor as per design shall work to

enhance and improve the performance of overall hydroprocessing unit of ressidum oil

treatment. In fact, its replacement with fixed bed HDM as a guard reactor proved non-

beneficial for refiners. It is mainly due to various issues encountered at industrial scale

during operation of MBR. The usual problems which are met regularly in the refinery are

as follows.

• Coke deposition in catalyst bed and on the side holes of the tubes in lower plenum

• Increased pressure drop either at distributor assembly or in the outlet or both, and

hence the increase in overall pressure drop.

• Occasional difficulty in controlling reactor temperature

• Disturbance in the catalyst bed

• Variation in product quality

• Shortening cycle of fixed bed reactor

• Emergency shutdown
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No clear pattern of these problems is observed. However, coke deposition is the

major issue among them. Coke deposition can directly lead to other problems listed, like it

can cause pressure drop increase, hot spots result in catalyst agglomeration and variation in

temperature, catalyst deactivation, and eventually emergency shutdown. Manual scraping is

required to remove coke deposits and to bring backMBR to normal safe working conditions.

1.2. MOTIVATION

Efficient working of MBR has huge positive impact on hydroprocessing technology

for treating heavy ressidum oil. The major advantage is to handle feed with heavy metal

contents which are available for a relatively cheaper price. It helps to produce clean fuel,

and nowadays the major shift in product demand is towards lighter fuel and MBR is capable

of achieving it efficiently and inexpensively. For efficient working of MBR, the major

checklist are as follows

• Uniform flow distribution of gas-liquid in catalyst bed section

• Appropriate catalyst to ensure maximum conversion

• Minimum random motion and back mixing of the catalyst

• Good mixing of phases along the catalyst bed

• The maximum linear velocity of feed to limit bed expansion to 10 percent

These working conditions are never evaluated and quantified in MBR reactor. The

primary cause of coke deposition is flow irregularities and improper distribution of gas-

liquid in catalyst bed section and plenums. Hydrotreatment conditions are usually at 212oF

to 1200oF and pressure of 20 to 300 atm (Kramer et al., 1994), at these conditions, the

gas deprivation at local void space inside catalyst can cause thermal cracking and hence

coke formation on the catalyst. Coke deposition can cause thermal hot spots and catalyst
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agglomeration. Hence, it is essential to study the hydrodynamics of MBR and evaluate

the performance of current MBR. In literature, there are no hydrodynamic data available

for the reactor of the configuration of MBR. The closest reference to follow is with the

upflow three phase packed bed [(Benneker et al., 1996), (Collins et al., 2017), (Gutsche and

Bunke, 2008), (Iliuta et al., 1998), (Ji et al., 2015), (Saroha and Khera, 2006)], upflow three

phase slightly expanded bed [(Hu et al., 2001), (Wang et al., 2006b), (Wang et al., 2006a),

(Xie et al., 2013), (Yun et al., 2004), (Yun et al., 2005)], upflow three phase fluidized

bed [(Fraguío et al., 2006), (Jena et al., 2008a), (Lee et al., 2001), (Safoniuk et al., 2002),

(Zhang et al., 1998)] but again these reactor configurations are significantly different mainly

with respect to conical bottom structure of MBR.

1.3. OBJECTIVES

The primary objective of this work is to advance understanding the hydrodynamics

in MBR reactor at industrial best conditions and at various operating flow rate, by scaling it

down to pilot plant scale. This study will enhance the understanding of working and design

of this reactor, and helps refiners to make a better decision in selecting this hydrotreater

reactor for their needs. Various objectives to accomplish primary objectives are as follows.

Objective 1: Designing, construction, and commissioning of cold-flow unit of MBR

In this task, the industrial MBR is scaled-down to pilot plant scale. The scaling

down is approached in such a way to make dynamic and geometrical similarities between

Industrial and Pilot-scale. The details of scaling down procedure can be found in the

appendix A.

Objective 2: Local saturations, local phase velocities, local backmixing, and local

maldistribution investigation in packed bed of pilot-scale MBR
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A method (algorithm) is developed for Two-tip optical probe (TTOP) to extract

local liquid and gas saturations, local liquid and gas velocities, local maldistribution of

phases, and local backimixing of phases from two-phase flow packed bed reactor. This

study quantifies the local behavior of phases inside the void space of catalyst bed packing.

The detailed information about the procedure to obtain local hydrodynamic parameter from

TTOP is shown in appendix B. The experiments are conducted at industrial scaled down

flow condition.

Objective 3: Gas phase dispersion/mixing investigation in the catalyst bed section of pilot

scale MBR

The gas phase dispersion/mixing in the catalyst bed of MBR is investigated using

advanced gas tracer technique. The experimental setup is designed in such a way to

extract out the gas phase signal. A multiple injection and one sampling at reactor outlet

is performed to obtain RTDs of various section of MBR. Then these RTDs are evaluated

using a developed methodology based on convolution, regression, and ADM as catalyst bed

Model. The ADM parameters (Dg and Pe) quantifies mixing parameter of gas phase in

catalyst bed section of MBR. The experiments are conducted at various flow rates plus the

scaled down conditions

Objective 4: Liquid phase dispersion/mixing investigation in the catalyst bed of pilot-scale

MBR

The liquid phase mixing in catalyst bed section is investigated using advanced

liquid tracer technique. The RTDs are obtained for various section of MBR using a two-

injection and one-detection method. The obtained RTDs are evaluated using a developed

methodology based on convolution, regression, and Wave Model (WM). WM parameters

(Dl and Pe) quantifies mixing behavior in the catalyst bed section ofMBR. The experiments

are conducted at various flow rates of phases including the scaled down experimental

condition.
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Objective 5: Phase mass distribution based performance evaluation of lower plenum of

pilot-scale MBR using CFD

In this task, CFD model is developed for lower plenum of MBR. The lower plenum

consists of deflector, chimneys and distributor plates. This study will quantify the effect of

the deflector on this part of MBR reactor. This kind plenum are widely used in industries

for upflow case. The validation of the CFD code is done by the radial profile of line average

volume fraction obtained from Gamma-Ray Densitometry (GRD). A new design of lower

plenum is also proposed based on modified deflector which shows improved performance

in terms of mass distribution.
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ABSTRACT

UpflowMoving Bed Hydrotreater (MBR) is used in refineries as guard reactor to fixed bed

residual desulfurization (RDS) reactor. At the industrial scale, the reactor is facing issues of

coking, catalyst agglomeration, hotspots in the catalyst bed leading to emergency shutdown.

These problems are directly linked with the local flow maldistribution inside the catalyst

packing of MBR. The local maldistribution is investigated on a scaled-down MBR and

at scaled-down industrial flow condition using an experimental technique called Two-Tip

Optical Probe (TTOP), which gives local phase saturations, phase velocities, backmixing

and maldistribution at voids of two-phase flow packed bed. TTOP is invasive technique and

is placed in local void space at different radial, and axial locations along the catalyst bed.

The results indicate highly fluctuating phase saturations inside the catalyst bed, with zones

having very low to high gas or liquid saturations, these conditions are prone to facilitate

the significant issues seen at the industrial MBR. The local phase backmixing and local
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maldistribution is more on the expanded part of the bed. The severity in fluctuating local

saturations and local maldistribution is associated with improper design of key components

of MBR.

Keywords: Local Hydrodynamics, Two-Tip Optical Probe, Moving Bed Reactor, Maldis-

tribution

1. INTRODUCTION

Hydrotreatment is a standard process in refineries to treat heavy crude oil with hy-

drogen on hydrotreating catalyst for reducing sulfur, aromatics, and nitrogen from oil. This

process is usually done in the two-phase flow fixed bed reactor configuration, but the im-

purities (metals) present in crude oil to tend to deactivate catalyst fast and leads to frequent

shutdown for catalyst removal. Severe crude oil deterioration, strict environmental regula-

tion, and rapid demand for cleaner and light fuel emphasized the need for new technologies

for hydrotreatment (Scheuerman et al., 1993). Upflow moving bed hydrotreater reactor

(MBR) is a new technology for hydrotreating and is usually used as guard reactor to fixed

bed residual desulfurization (RDS) reactor. MBR reactor has hydrodemetallization catalyst

(HDM) which treats crude oil in the presence of hydrogen for metal and organometallic

removal, and treated oil is fed to RDS reactor. Efficient working of MBR has an enormous

effect on entire hydrotreatment process, as it enables refiners to handle feed with varying

degree of contaminants, increases the life cycle of fixed bed RDS catalyst, and overall

reduced catalyst consumption (Kramer et al., 1994).

MBR has a catalyst bed with the conical bottom, gas-liquid deflector, plenum,

gas-liquid distributor (from lower plenum to the conical surrounding compartment), and

compartment surrounding the conical bottom (upper plenum) packed with passive spheres.

The operation of this reactor is in upflow manner, with resid oil and hydrogen move up

at a combined maximum linear velocity at which the bed expansion is less than 10% by

volume (Bruce et al., 1999). Detail design and working of MBR is explained in section 2.
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The specialty of MBR is the conical bottom, which facilitates the removal of spent catalyst

without shutdown, then removed spent catalyst is either regenerated or mixed with fresh

catalyst and fed towards the top of the bed. At industrial condition, the removal would be

conducted once in a week and in small increments, the bed in all other times behaves as

two-phase upflow packed with slight expansion at the top. The bed at industrial conditions

is facing drastic issues such as hot spots, coking, and catalyst agglomeration, eventually

forced shutdown. These problems are local in nature and originate at pores scale level,

and is directly linked to either maldistribution of phases at the void space of packed bed

or the type of catalyst related to coking reaction. In this study we focus on root cause of

maldistribution of phases. Hence, It necessitates the study of local hydrodynamics in MBR

and to identify the flow distribution along the bed for the present configuration of MBR at

the industrial operating condition.

Local hydrodynamics are usually quantified in a multiphase system by measuring

the gas bubble properties such as holdups, saturation, chord length, interfacial area and local

liquid velocities and holdups. There are various measurement techniques to quantify local

phenomena and are primarily classified as invasive and noninvasive techniques. The most

common invasive techniques are needle probes (optical/conductivity), heat transfer probes,

ultrasound probes [(Boyer et al., 2002), (Dominic et al., 2014)].The noninvasive techniques

can be classified as photographic, particle tracking( PIV), radiography( X-Ray), resonance

based (MRI, NMR) (Boyer et al., 2002). These techniques are mostly implemented on the

gas-liquid system, and not so frequently on gas-liquid-solid or gas-solid system. There are

limited studies on local flow dynamics inside the packed bed.

(Salleh et al., 2014) developed X-Ray Digital Image Radiography (DIR) with par-

ticle tracking velocimetry and investigated local liquid velocities in gas-liquid downflow

packed bed of internal diameter 4.5 cm and height 40cm. (Johns et al., 2000) and (Seder-

man et al., 1997) used Magnetic Resonance Imaging (MRI) to investigate the local liquid

hydrodynamics (flow regime, velocities) on 4.6 cm diameter and length 70 cm packed bed
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column operating in downflow mode. (Götz et al., 2002) used NMR technique to find the

local liquid velocities and dispersion parameters in small scale liquid downflow packed

bed. (Sankey et al., 2009) and (Mantle et al., 2001) used MRI in two-phase upflow through

packed bed of 4cm diameter and 50 cm length to investigate the local liquid velocities, flow

profile and pores size. (Collins et al., 2017) used MRI to study gas phase hydrodynamics

on a 4.3 cm diameter and length 80 cm two-phase upflow packed bed reactor. All the liter-

ature mentioned above is limited to small-scale diameter, as these measurement techniques

(X-Ray, MRI, and NMR) are not feasible for large diameter reactor. Electrical Capacitance

Tomography (ECT) can be applied to slightly larger scale reactor, (Hamidipour and Larachi,

2010) used it on 5.3 cm diameter and 80 cm length packed bed column to study the liquid

dynamics in both two-phase upflow and downflow mode. (Chen et al., 2017) used ECT to

study gas phase dynamics (mean bubble size) in two-phase upflow packed bed reactor of

diameter 14cm and height of 100cm. The advantage of all the techniques mentioned above

is that its noninvasive and the major disadvantages are its implementation is limited by the

size of the column, operating condition (low gas holdup) and high operating cost (Boyer

et al., 2002). These disadvantages make it harder to implement in pilot or industrial scale

reactor as flow monitoring and measurement device. The alternatives to these techniques

are intrusive in nature.

(Schubert et al., 2010) developed wire mesh sensors (WMS) and implemented on

10 cm diameter and 111.4 cm length packed bed column operating in two-phase downflow

mode, to investigate liquid saturation distribution in the bed. The issue with this technique

is that its highly intrusive nature, as sensors occupy a significant amount of cross-section.

Optical probes are less intrusive and are widely used in the multiphase system in the

form of single tip, two-tips, four tips, especially in gas-liquid system (Xue, 2004). (Li

et al., 2012) has given a detailed review on the application of optical probe sensors in

multiphase reactors. The advantage of optical probe sensors is its small size and harsh

environment tolerance (Boyer et al., 2002), which makes it a good technique to investigate
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packed bed local hydrodynamics. (Mena et al., 2008) used single point optical probe

developed by (Cartellier and Barrau, 1998) to study gas residence time and velocity in a

gas-liquid-solid systems, with solids loading limited to 30% by volume. Their algorithms

are developed for the single probe orientation, where probe tip are pointing towards the

upward flowing phases. This particular orientation is not feasible for two-phase packed

bed. (Abdul Rahman, 2017) came up with two-tip optical probe (TTOP) design which is

compatible with two-phase packed bed operating in either upflow and downflowmode, they

used the procedure mentioned in appendix B to obtain local gas/liquid saturation and local

gas/liquid velocities in a trickle bed reactor, they validated TTOP for local liquid velocity

with X-ray DIR (Salleh et al., 2014).

In this study TTOP is used to investigate the local hydroynmaics in MBR, and

additional hydrodynamic parameters local backmixing and local maldistribution is also

measured along with local gas/liquid saturations and local gas/liquid velocities. Appendix

B shows the procedure to determine these parameters.

The objective of this study is to implement TTOP at various radial and axial location

inside the packed bed part of the pilot-scale MBR at scaled-down experimental conditions

and to investigate the performance of the catalyst bed in terms of measured parameters at

these conditions.

2. EXPERIMENTAL SETUP

Industrial Moving bed hydrotreater reactor (MBR) has been scaled down to pilot-

scale. The scaling down is based on matching the hydrodynamic and geometric similarity

between the industrial scale and pilot scale reactor. The reactor has a catalyst bed section

which has a conical bottom, and plena. The plena is divided into lower and upper plenum

by a distributor plate that consists of chimneys. The lower plenum is a gas-liquid distributor

(Bruce et al., 1999), which includes deflector and chimneys. The deflector is the inlet to

the lower plenum and then to the reactor at its bottom. The chimneys are at the top of lower
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Figure 1. Schematic diagram of scaled down MBR setup for local hydrodynamics study

plenum, attached to the distributor plate in a triangular pitch. The chimney is a hollow pipe

with an inlet- exit holes and additional side hole on chimneys just below the exit hole. The

exit holes of the chimney are screwed to the holes of the distributor plate, and this hole is

the exit of lower plenum and inlet to the upper plenum as the compartment surrounding the

conical section of the bed. The upper plenum is space filled with tightly packed passive

spheres and is between the conical bottom of the catalyst bed and the lower plenum. The

upper plenum is a packed bed type gas-liquid distributor, and its exit boundary is with the

conical bottom of the bed. The conical bottom has holes in a circular pitch and along the

length of enlarging diameter of the cone and holes at the base of the cone. These holes are

the inlet to the catalyst bed in the conical base of the bed which is attached to the cylindrical

bed. The catalyst bed section is filled with industrial hydrotreating catalyst, which is 3mm

in diameter and porous. Table 1 shows the specification of the scaled down MBR. The

experimentation done in this study is in cold flow manner, and the gas and liquid phase

are air and room temperature water, respectively. The pumps are used to push the phases
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into the reactor, and rotameters control it. Both gas and liquid are fed in a pre-mixed state

to the deflector inlet of the lower plenum. The phases enter the plena and distribute and

moves in an upward manner through the catalyst bed and exits at the reactor outlet, and

the outlet pipe extends to the water tank. The water tank is attached to a water pump to

recycle liquid and the tank is open to atmosphere to vent out the air. The reactor operates

at scaled-down experimental condition (Table 1), and at these conditions, the catalyst bed

behaves as upflow packed bed with slight expansion at the top of the reactor. The liquid

scaled-down experimental condition is obtained by matching the Liquid Hourly Space

velocity (volumetric flow rate of liquid/bulk catalyst volume) at industrial condition with

lab scale condition for a catalyst mass of 30 kg. The gas scaled down condition is obtained

by equating gas to liquid volumetric flow ratio of industrial condition with the lab-scale

condition. The scaled down operating conditions are shown in Table 1. The primary focus

of this study is to understand the local phase saturations, local velocities, local backmixing,

and local maldistribution at various locations inside the catalyst bed and to identify its

relation with the design of the reactor. Hence various local measurement zones are selected

at various radial and axial locations along the packed region of the catalyst bed as shown in

Figure 1 and Table 1.

3. MEASUREMENT TECHNIQUE: TWO-TIP OPTICAL PROBE (TTOP)

The optical probes are widely used to distinguish gas-liquid phase and its due

to light propagation behavior inside the probes which follows Snell’s law. It states that

when light travels from the optically dense medium (High refractive index) to optical

lesser dense medium (Lower refractive index), and the light falls at angle greater than

the critical angle at the plane of the interface, then light will be totally reflected back to

the optically denser medium. In all other cases, the light will refract. The total internal

reflection or backscattering phenomena of optical probe became the foundation for its use

as measurement technique to identify gas-liquid interface (Li et al., 2012). The sensitive
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Table 1. Experimental setup specification, operating conditions, measurement zones for
optical probe study

Parameters Value/Range Comment
ColumnDiameter 11 inch
Column Height 46.46 inch
Bed Height 24.8 inch Height from top of the

cone to the top of the
bed at no flow rate

Catalyst 3 mm Diameter Bulk Density (570
Kg/m3)

ScaledDownLiq-
uid Flow Rate

0.0175 cm/sec By matching LHSV of
industrial and scaled
down reactor

Scaled Down Gas
Flow Rate

7.7 cm/sec By matching Gas/liquid
volumetric flow rate of
industrial and scaled
down reactor

Measurement
zone (radial-r/R)

r/R=[-0.81,-0.75,-0.5,-
0.25,0,0.25,0.5,0.75,0.81]

r(distance form the
center to measurement
zone), R (Radius of the
reactor)

Measurement
zone (axial-z/D)

z/D=[0,1.1,1.82], and
Z∗

z(distance form the top
of conical bottom), D
(Diameter of the bed)

part of the tips is made into a conical shape which ensures the conditions necessary for

the light traveling inside the probe to reflect back when gas is in contact and refracts when

liquid is contact [(Boyer et al., 2002), (Choi and Lee, 1990)]. This reflection phenomenon

is utilized to distinguish gas-liquid phase.

The optical probe used in this study is manufactured by thor labs, the optical cable

has a quartz glass core of diameter 200 µm (micrometer), and a protective layer of silicon

cladding and teflon making a total diameter of 600 µm. The protective layer is removed at
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Figure 2. Design of two-tip optical probe (TTOP)

one end of the fiber optic cable, and exposed quartz glass core is made into the shape of

conical tip (Xue, 2004). The detailed procedure to manufacture optical probes can be found

in [(Abdul Rahman, 2017) (Xue, 2004)].

Figure 2 shows the design of TTOP, and procedure of (Abdul Rahman, 2017) is

followed to design and manufacture two-tip optical probe (TTOP). Two optic fiber cables

are taken and glued to 1/8 inch stainless steel tubings, and the distance between the two

tips are 1mm, as shown in the Figure 2. Tips are named as upper and lower tip, with upper

will always be at the higher axial location than the lower tip. The other end of the fiber

optics cables are attached to a light source emitting a 680 nm wavelength light from LED,

the transmitted light travels to the probe and illuminates the conical tip (Figure 2), this

assembly is placed in the local void space positions inside the bed of the MBR, and if the

gas phase is in contact, light reflects back due to total internal reflection, and retraces its

path back in fiber optics, and falls on the photodiode. The photodiode will generate voltages

signal, which is sampled at a frequency of 40Khz using a data acquisition system (Power

DAQ PD2-MFS-8-1M/12). When liquid touches the tip, the light refracts, and photodiode

generates the base voltage. Hence, based on the movement of phases in the vicinity of the

probe tips, step-up or step-down type signals are obtained as shown in the Figure 3. The



17

Figure 3. Raw signal of TTOP

Figure 4. Filtered signal of TTOP

two separate signal depicts the time series of two optical probe tips. The larger voltage

peaks depict the windows of the time frame of gas phase on the probe tip and similarly,

the base voltage slots show the time of liquid phase on the probe tip. The raw signals

are passed through a second-order butterworth filter to remove electronic noises, and the

obtained signals are shown in the Figure 4.

The above time series is normalized to obtain perfect step-up and step down of

signals, as shown in the Figure 5. The normalization is done using the method as shown

in appendix B. Normalization is vital, as it gives the times at which interphase of gas-
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Figure 5. Normalized signal of TTOP

liquid crosses the tip, and windows of the time frame of liquid and gas touching the tips.

These time series are used to calculate local phase saturations, local phase velocities, local

backmixing, and local maldistribution from the two-tip optical probe.

3.1. Local Phase Saturations Measurements. The saturation of any phase in a

two-phase flow packed bed reactor at the local void is the amount of volume occupied by

a particular phase with respect to the entire void volume. It is similar to local holdup but

only confined to local void space, and this does not account the volume occupied by the

solid phase. Hence it is defined as ratio of volume of a phase per volume of void. The

ergodic hypothesis states that volume average is equivalent to time average for the flowing

system. Hence, the local gas saturation is the ratio of time spent by the gas phase on the

probe tip to the total time of measurement (Equation-1). The liquid saturation is one minus

gas saturation (Equation-1), as the probe only senses the gas-liquid phase flowing in the

void space.

βg,local =
tG,Local

tL,Local + tG,Local
(1)

Local liquid Saturation = 1-βg,local
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Figure 6. Schematic of matched bubble signals used for velocity measurement

Whereas, tG,Local and tL,Local is the time spent by the gas and liquid phase respectively

on the probe tips. These time parameter are obtained from the normalized time series signal

(Figure 5) , Two tips of the optical probe gives two time series data, which is combined to

give one saturation values for either phase.

3.2. Local Phase Velocities Measurements. To obtain velocity parameters from

the normalized signal (Figure 5), the signals needs to bematched to identify the same bubble

touching the tips, and then by finding the delay time and using the distance between the

tips, phase velocities are obtained. To match the signal, the bubble tracking and matching

algorithm, explained in appendix B is implemented. This algorithm tracks all the bubbles

and uses every matched bubble signal for velocity parameter evaluation. The Figure 6

shows the schematic of one such matched bubble out of all the matched bubble in the time

series data.

Local gas velocities are obtained from the equation 2. Where, tla is the time at which

a gas bubble or gas slug arrives at the tip of lower optical probe, and tua time at which the

same gas bubble or slugs arrive at the upper tip. The time difference (tua − tla) is the delay

time of the signal to travel a distance of 1mm between the tips.

Vg,local =
1mm

tua − tla
(2)
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The liquid velocity is calculated using equation (3). Where, tldis the time at which

a gas bubble or gas slug departs the lower tip and tud is the time which the same gas bubble

or gas slug departs the upper tip. The time difference (tud − tld) gives the delay time of

liquid phase to travel a distance of 1mm between the tips.

VL,local =
1mm

tud − tld
(3)

The algorithm (appendix B) gives the velocities of all the matched signal for both

gas and liquid velocities. Hence a velocity distribution of both gas and liquid in the range

from negative to positive values are obtained at a local location for any particular flow rates

of phases.

3.3. Local Backmixing Measurement. The backmixing for any phase inside a

reactor is defined by the intensity of flow reversal of phases at a particular location. The

occurrences of negative velocities during velocity calculations are seen when the flow of

phases are reversed due to the local force field causing backpressure. Hence, by quantifying

the occurrences of negative velocities in terms of percentage, will indicate the extent of

back-mixing. This information can be used to compare the back-mixing zones inside various

local locations of the packed bed.

3.4. Local Maldistribution Measurement. Globally a good distributed system

will have a uniform flow distribution cross-sectional and over the entire volume of the

reactor, and for good distribution locally such as the void space of catalyst bed, the same

principle applies. Hence, the local maldistribution occurs when there is flow irregularities in

the void volume for MBR. These cases occur for the transient times when the signal (Figure

4) obtained from the two-tips of optical probe does not match to find the gas velocity or we

can call it zero gas velocity conditions. These condition mainly occur when the entire void

space is either filled with liquid or gas phase, or gas bubble are deviating without touching

both the tips, these condition represents maldistribution locally and are not good in terms of
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Figure 7. Gas saturation at various radial and axial location of MBR at experimental scaled
down conditions shown in Table 1

catalyst utilization in these local zones. Zero velocities are obtained from the gas velocity

calculation by following the method as shown in appendix B. The zero velocities quantified

in terms of percentage of occurrences will indicate the extent of maldistribution.

4. RESULTS

4.1. Local Phase Saturations at Local Locations. Figure 7 shows the saturation

values of gas phase at various local locations inside the packed bed. Figure 7 also gives

good indication of liquid saturations at local zones, which is one minus of gas saturations.

The results indicate that there is large fluctuation in saturation values all along the packed

bed, and it clearly indicates the extent of maldistribution. There are zones with more than

90% gas saturation (Z/D=0, r/R=-0.81) and less than 5% gas saturation [(Z/D=0, -r/R=0.25)

(Z/D=1.1, -r/R=-0.5)]. Only central region and towards the bottom of the bed [(r/R=0,

Z/D=0,1.1)], shows the gas saturation values in the range of 0.5-0.6, which indicates a good

local distribution of both gas and liquid phase. On observing saturation values along radial

locations, the fluctuations is seen quite significant, and its extent is seen maximum at the

bottom of the reactor. Gas saturation is seen more towards the wall region at the bottom of
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the bed (Z/D=0), and it may be due to the conical bottom of the bed, which is pushing the

gas towards the wall region of the bed. (Toukan, 2017) conducted the GRD studies on the

same reactor (MBR) and at the experimental scaled down condition (Table 1), and found

line average gas holdup at wall region is higher than those at the other radial locations at the

bottom (Z/D=0) of the bed. Towards the top in the packed bed region (Z/D=1.82) of the bed

the distribution is seen to improve radially, and is due to slight expansion of the bed along

the axial height (Yun et al., 2005), this allows more space for liquid and gas to redistribute

along the radial location of the bed.

4.2. Investigation of the Local Phase Velocities at Local Locations. The phase

velocity measurements show there is distribution of velocities at a local point. The distri-

bution of either gas or liquid phase velocities are usually depicted in the form of histogram

(Figure 8).

(a) (b)

Figure 8. Histogram plot of phase velocities at r/R=0 and Z/D=0 (a) gas velocities (b) liquid
velocities at experimental scaled down conditions shown in Table 1

Figure 8 shows the velocity distribution of gas phase (a) and liquid phase (b), at

location (Z/D=0,r/R=0) for the scaled down flow conditions. The X-axis shows the bands

of velocities in cm/sec, and Y-axis shows the number of occurrences of the velocities of

each matched signal in respective velocity band. The velocity distribution shows positive

velocities, which is the velocity of upward moving phases. It also shows negative velocity,

which is the velocity of downward moving phases due to flow reversal. The average of all
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the positive velocities obtained at a local point for a particular flow condition is reported as

average upward velocity, and similarly, the negative velocity average is reported as average

downward velocity.

(a) (b)

(c) (d)

Figure 9. Phase velocities at various local location of MBR at scaled down experimental
condition shown in Table 1

Figure 9 shows the local velocities of phases at various local locations inside the bed

for the scaled-down experimental condition. At the locations [(Z/D=0, r/R=0.81,0.25) and

(Z/D=1.1, r/R=-0.5)], no velocities are obtained, it is due to the local flow conditions at these

locations which failed to provide matching bubble signals to obtain velocities. These zones

also show very high and low gas saturation values (Figure 7). At scaled-down experimental

condition, the flow regime is found to be in pulse flow, as observed visually at the walls,

and on comparison with flow regime map of gas- liquid upflow packed bed reactor (Rao

et al., 2011). At pulse flow, the gas and liquid slugs move along the void region of the

packed bed, and hence the TTOP gives the velocity of gas/liquid slugs moving in upward or
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downward direction for the scaled down operating conditions. Figure 9 shows the average

velocities of gas/liquid slugs moving in an upward and downward direction at various local

locations, at the scaled down experimental conditions. It is seen that the velocity values of

gas and liquid are similar, and this phenomenon is linked with the pulsing flow of phases,

where the dispersed gas phase dictates the local hydrodynamics of continuous phase. The

velocity values for both phases are varying in the range of 50-250 cm/sec in both upward

and downward direction. (Sankey et al., 2009) observed for two-phase downflow the local

velocities can go up to 100 times superficial velocities. The higher velocities are seen in

Figure 9a at location (Z/D=1.1, r/R=0.5) and Figure 9c at location (Z/D=0, r/R=0.5) and it

may be due to channeling effect. (Sederman et al., 1997) and (Sankey et al., 2009) observed

channeling effect and a corresponding increase in phase velocities at the local location of

the packed bed. Figure 9b and Figure 9d shows the negative velocities of phase which arises

due to the countercurrent flow of phase [(Sederman et al., 1997), (Sankey et al., 2009)],

and it mainly arises due to the backpressure zones created at local void space due to bed

structure and flow conditions, creating recirculation of phases. Figure 9 also indicates the

radial velocity fluctuation is much less in the top region of packed bed (Z/D=1.82), and is

due to slight expansion, which redistributes gas and liquid in radial direction, as observed

from saturation plot (Figure 7) for the axial level (Z/D=1.82).

4.3. Local Backmixing at Local Locations. Local backmixing is calculated based

on the number of occurence of negative gas velocities. At the location (r/R and Z/D=0)

for experimental scaled down condition, the backmixing in terms of gas phase (Figure

8a) is around 6.8%. Similarly, Figure 10 shows the extent of backmixing at different

local locations. The information is missing for location for [(Z/D=0, r/R=0.25,-0.81) and

(Z/D=1.1, r/R=-0.5)], as we do not have gas velocity values at these locations (Figure 9).

Backmixing is mainly due to the force field creating a backpressure zone which recirculates

phases. Figure 10 indicates that the backmixing is seen less in the central region and

overall its increases as we move up the bed. This kind of behavior is mainly due to two
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Figure 10. Local backmixing of phases based on zero gas velocities at scaled down
experimental condition shown in Table 1

phenomena, the bed expansion along the axial height, which results in local recirculation

zones (Muroyama and Fan, 1985), and the force field translating up from the plena towards

the bed. Bacmixining is seen very low (Z/D=0 and r/R=0), indicating good push of gas and

liquid upward through this place and on moving upward, the pressure drops and can result

in backflow.

4.4. Local Maldistriubtion at Local Locations. The Figure 11 shows the his-

togram plot of gas velocities with addition of occurrences of zero velocity. For the case

shown in Figure 11, the local maldistribution is 65.2%.

Figure 12 shows the local maldistribution plot for experimental scaled down con-

ditions. The lower values of maldistribution indicate better catalyst utilization at these

locations. The plot indicates a relative way of understanding the catalyst utilization along

various local location inside the packed bed. In the Figure 12 the lowest maldistribution is

seen at the bottom of the bed (Z/D=0) at (r/R=-0.5, 0, 0.5), it indicates the catalyst utilization

is better at these places compared to other local locations inside the bed. Even there are

spots of 100 percent maldistribution (Z/D=0, r/R=-0.81, 0.25) and (Z/D=1.1, r/R=-0.5), at

these locations we do not have velocities (Figure 9) and has either very high or low gas

saturation (Figure 7). These are the problem causing zones with low catalyst utilization
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Figure 11. Local gas velocity histogram at Z/D=0 and r/R=0 for scaled down experimental
conditions shown in Table 1

and can drastically affect the overall performance of the catalyst bed. Overall the Figure 12

indicates that the local maldistribution is increasing as we move up the reactor. Hence, it

can be inferred that in tightly packed bed, the catalyst utilization is much better than slightly

loose packing. It is also seen, that at the bottom of the bed (Z/D=0), which is tightly packed,

the local maldistribution values are higher (r/R=-0.81,-0.25, 0.25, 0.81). This behavior is

due to highly fluctuation flow behavior at the bottom of the bed along the radial direction,

as also observed from the Figure 7, which shows highly fluctuating saturations values at

Z/D=0. This behavior is directly linked to the flow distribution translating from the plena

to the catalyst bed section. The optimum working condition of the bed for desired perfor-

mance is the lower values of maldistribution and similar values at different radial and axial

locations along the bed. It can be achieved by tightly packing the bed and with a good

distribution of phases along the cross-sectional plane of the bed.
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Figure 12. Local maldistribuition plot at various location inside the packed bed for scaled
down experimental condition

5. DISCUSSION

The major issues with the industrial upflowmoving bed reactor is catalyst agglomer-

ation and hotspot formation inside the catalyst bed of the reactor. Now, it is evident from the

Figure 7, the flow maldistribution as the major cause of these problems. It is seen that there

are points within the bed where gas saturation values are greater than 100% and less than

5%, in the first cases void zones are liquid deprived and in the second case it is gas deprived.

In less gas zones and at the high temperature and pressure of hydrotreating conditions, the

liquid feed comprised of hydrocarbon cracks (thermal cracking), and carbon residues stick

to catalyst particle (coking) and reduces its activity (Absi-Halabi et al., 1991). In less liquid

zones, and at hydrotreatment condition can generate hot spots on the catalyst surface and can

lead to catalyst agglomeration (Dudukovic andMills, 2014). Figure 7 data shows the highest

maldistribution is seen at the bottom of the reactor (Z/D=0) with high gas region towards

the wall, and very low gas region (r/R=0.25). Coking and catalyst agglomeration can start

from these locations and easily spread along, creating reduced conversion, larger pressure

drop and uneven temperature distribution along the reactor, and eventually shut down. The

whole design of MBR is to facilitate removal of spent catalyst without shutdown, and these
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Figure 13. Comparison of radial plot of gas saturations at Z/D=0 and Z/D= Z* at scaled
down experimental condition shown in Table 1

extreme maldistribution cases reduces its purpose. These local maldistributions can occur

due to bed structure but are mainly due to the force field and flow profile of phases generated

by the plena towards the catalyst bed. To investigate the effect of the conical bottom and

gas-liquid distributor on the flow profile of phases, TTOP is implemented just below the

conical bottom at location Z* (Figure 1) in the upper plenum section.

Figure 13 shows the comparison of the radial profiles of gas saturation at locations

below the conical bottom and above the conical bottom. The profile at Z* indicates that

the gas is coming out as a fountain from the central region of the gas-liquid distributor.

Hence the distributor design needs modification to spread the phases evenly along the cross-

sectional area of its outlet. Upon comparison with the results at (Z* and Z/D=0) which it

will carry on whole the flow moving upward, it indicates that the conical bottom is pushing

the gas towards the wall region and making extreme flow maldistribution condition at the

bottom level (Z/D=0). Hence, the conical bottom needs design modification which can

translate the exact radial flow profile generated at bottom of the conical part (Z/D=Z*) to

the top of the conical bottom or bottom of the bed (Z/D=0).
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6. REMARKS

Local hydrodynamics are investigated for a scaled-down pilot scale upflow moving

bed hydrotreater (MBR) reactor using an experimental technique called two-tip optical probe

(TTOP). TTOP gives local phase saturations, local phase velocities, local backmixing, and

local maldistribution, and is implemented at various radial, and axial locations along the

catalyst bed for experimental scaled down operating condition. Local phase saturation

results indicate randomized behavior with many local locations having very high and low

phase saturation in the bed. Phase velocities results indicate the distribution of velocity at a

single point, with negative and positive velocities. Overall both local backmixing and local

maldistribution are increasing along the axial height of the bed. The gas saturation radial

behavior below the conical bottom of the catalyst bed indicates the lower plenum is pushing

the phases in the central region, and on comparing the radial behavior of gas saturation with

radial behavior at the top of the conical bottom, shows the cone is pushing the gas towards

the wall. For improved performance in terms of local hydrodynamics, which is based on

catalyst utilization, the bed shall be tightly packed with uniform flow distribution along the

cross-sectional plane at the different axial location of the bed. The plena design needs to

be modified to provide uniform flow distribution at the inlet of the catalyst bed.
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ABSTRACT

Gas dispersion studies has been executed for the catalyst bed section of a scaled-down

industrial Moving Bed Hydrotreater Reactor (MBR). Gas dispersion/mixing is one of the

critical design parameter concerning mass transfer and reactor performance, and is never

evaluated in MBR. The catalyst bed of MBR is modeled using Axial Dispersion Model

(ADM) and its parameters gas dispersion coefficient (Dg) and peclet number (Pe) are

estimated using Residence Time Distribution (RTD) and implementing a methodology

based on convolution and regression. Additionally, dimensionless variance (σ2
D) for the

catalyst bed is also measured using RTDs first and second moments to compare with the

findings of ADMmodel. This study is conducted at the varying flow rates of gas and liquid

including scaled down operating conditions. The results of Dg, Pe, and σ2
D indicate that

bed behaves as a packed bed for low liquid flow rate and moves towards with three-phase

fluidized bed for increasing liquid flow rate. Overall the gas phase behavior is seen to be in
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plug flow for all the operating conditions, with relatively high dispersion/mixing in packed

bed state. Scaled down flow conditions is seen to be best in terms of gas dispersion/mixing

and catalyst utilization.

Keywords: Residence Time Distribution (RTD), Moving Bed Reactor (MBR), Gas Tracer,

Gas Dispersion Coefficient, Peclet Number, Axial Dispersion Model (ADM)

1. INTRODUCTION

Uplfow moving bed reactor is a hydrotreater and used for removal heavy metal

content from crude oil. It is usually a replacement for fixed bed Hydrodemetalization

reactor, which is guard reactor to the fixed bed residual desulfurization (RDS) unit (Toukan

et al., 2017). This reactor has a catalyst bed section having a conical bottom and plena below

the cone. The operating parameters are upflow movement of resid oil and hydrogen over

hydrodemetalization catalyst (HDM), with flow conditions to limit the bed expansion to 10

percent of catalyst bulk volume (Bruce et al., 1999) . The specialty of MBR is the conical

bottom, which enables removal of spent catalyst under operation, this increases the run time

of the reactor without shutdown. At industrial conditions, the catalyst removal takes place

few times per week and that too in small increment, rest all time the reactor behaves as

upflow packed bed or expanded bed. It is usually operated at a low linear velocity of the

mixed feed to avoid substantial expansion (or contraction) of the bed (Bruce et al., 1999).

The expanded bed or ebullated bed can improve the distribution of phases cross-sectionally

but is usually not preferred due to increased catalyst attrition, bed mixing, increased reactor

length for the desired conversion (Bruce et al., 1999) at these conditions.

Themajor problems seen for this kind of reactor at industrial scale are catalyst coking,

agglomeration, and early shutdown. The primary factors for these unwanted phenomena

is maldistribution of phases (Bruce et al., 1999) which can result in unwanted mixing

behavior of phases or the coke reaction related to catalyst type and its reaction, which is

the least studied reaction, but this study focus is mixing. The mixing of a phase within the
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reactor is conventionally classified as micromixing and macromixing (Shah et al., 1978).

Micromixing is the mixing occurring at the molecular level, and it depends on the intimacy

of two nearby molecules. Micromixing parameter such as molecular diffusion is hard to

estimate using experimental measurement technique. The macromixing phenomena is at

a scale where the individual phase can be considered as an entity moving with convective

dispersion and bulk flow and dispersing along axial, radial and angular direction. It is not

feasible to measure the local velocity field profile at every possible local position within

the reactor to quantify macromixing. Therefore, RTD concept is used, where a tracer is

injected and detected a the boundaries of test section and obtained RTD curve quantifies

the dispserion/mixing in terms of its spread (Iliuta et al., 1998). RTD’s are comprehended

using mass balance model having dispersion coefficient parameter, which lumps the non-

ideality in terms of the convective dispersion and molecular diffusion, which dictates the

spread in the RTD curve. Dispersion coefficient is an important design parameter, as the

performance of any reactor depends on inter and intraparticle rate process for heat and mass

transfer which is directly related to the mixing of phases. Hence, it is essential to determine

the dispersion parameters and to integrate it with the intrinsic kinetics and other mass, and

heat transfer parameters to yield reactor design andmodels, that account for certain extent of

non ideality (Shah et al., 1978). The knowledge of gas phase dispersion/mixing quantified

in terms of dispersion coefficient is useful, as in most of the mathematical model for upflow

packed or fluidized bed the axial dispersion and film diffusion describe the bulk phase mass

transfer (Koh et al., 1998).

There are no studies in the open literature on gas dispersion/mixing study in MBR

reactor having a conical bottom. The closest possible literature is for gas mixing studies

in upflow packed bed [(Valenz et al., 2010), (Benneker et al., 1996), (Delgado, 2006)],

and expanded/fluidized bed (Muroyama and Fan, 1985), due to bed behavior of MBR from

packed bed to three phase fluidized bed based on the flow conditions of the phases. All

these studies used RTD concept and obtained dispersion coefficient using either moment
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method or modeling the test section with appropriate mass balance model having dispersion

parameter. In moment method, the second moment (variance) of the RTD (Saroha and

Khera, 2006) is matched with the equation of variance for different boundary conditions

(Levenspiel and Smith, 1957). In reactor modeling approach, the obtained RTD is fitted

for mixing parameters of a model describing the mass flow behavior inside the test section.

At macromixing level, the extreme flow conditions can be modeled using plug flow for no

mixing/dispersion, and CSTR for completely mixed flow (Shah et al., 1978). If the flow is

not much deviating from the plug flow, then Axial Dispersion Model (ADM) and its many

derivatives are the most common model used to describe the flow behavior [(Shah et al.,

1978), (Iliuta et al., 1998)].

In many cases, such as in hydrotreaters, the area of interest (catalyst bed) is accom-

panied by additional volumes (plena). Here, by injecting tracer at the inlet and detecting at

the outlet of the enitre reactor will not give the required RTD information of the test section

(catalyst bed). In these instances one injection and two-point measurement methods are

implemented.

In one injection and two-point measurement method, is an injection-sampling con-

cept in which an injected tracer at the inlet of the reactor is sampled before and after the

test section, and the difference in the variance of the two obtained RTD gives the effective

dispersion coefficient of the test section. It is based on the assumption that the spreading

of tracer or variance of the curve is linearly changing along the reactor [(Levenspiel and

Smith, 1957), (Edwards and Richardson, 1968))]. (Valenz et al., 2010) used this approach

with a step input to find the mixing of gas phase in a two-phase packed bed column.

(Han, PhD Thesis, 2007) advanced one injection and two-point detection method

by integrating this injection-sampling concept with convolution and regression principle.

In this approach the test section is modeled with appropriate model and the solution of the

model is considered as the RTD response of the test section, the response of the test section

is convoluted with the RTD signal sampled at the inlet. The convoluted signal is theoretical
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RTD at the outlet of the test section based on themodel parameters and for the inlet boundary

condition obtained by sampling at inlet of test section. The theoretical output response is

regressed with actual output response obtained from sampling of tracer at the outlet of

test section for minimum error to estimate mixing parameters. (Han, PhD Thesis, 2007)

implemented this method on a slurry bubble column reactor and (Abdulmohsin and Al-

Dahhan, 2016) followed this approach on pebble bed reactor to obtain dispersion parameters

of gas phase in plenum and bed zone (test section) of these reactors. They also measured the

RTD curve along the radial profile at the inlet of the bed section and found similar curves

radially. The significance of this radial study is that it shows the tracer from the plenum

is evenly distributing to the bed section. The one injection and two-point measurement

method is not applicable to the cases where the plenum are not evenly distributing the

phases to the bed section. As a single point measurement at the outlet of the plena does not

represent the actual flow behavior of the plena. The similar scenario is observed in MBR

due to conical bottom of the catalyst bed (test section) and complex internal of plena.

The solution to this problem is an alternative injection-sampling concept called

two-point/multiple injections and one detection method. In which the tracer is injected at

inlet and outlet of the test section and detected at the outlet of the reactor after a mixing

cup to ensure even distribution of tracer at the detection cross-sectional plane (Carleton

et al., 1967). (Midoux and Charpentier, 1972) used this method and compared with one

injection and two-point detection method, and found both method yield similar results when

experimental RTDs are interpreted with theoretical models using dankwerts boundary.

This study focuses on investigating the gasmixing behavior at various flow condition

in the catalyst bed section of MBR reactor. The approach followed is a injection-sampling

concept based on multiple injection and one detection method along with convolution-

regression principle approach proposed by (Han, PhD Thesis, 2007). This objective is

achieved by developing a gas tracer experimental facility for MBR based on the experi-

mental facility developed by (Han, PhD Thesis, 2007) for slurry bubble column reactor and
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Figure 1. Schematic diagram of scaled down MBR setup for gas dynamics studies

(Abdulmohsin and Al-Dahhan, 2016) for pebble bed reactor. This experimental facility

has multiple injections and one sampling port and provisions to obtain the RTD curve only

for gas phase from the two-phase upflow at different sections of the MBR. The RTDs of

different sections along with ADM and Ideal CSTR-PFR model for packed bed and plena

respectively, is used with convolution-regression to estimate dispersion/mixing parameters

of catalyst bed section.
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2. EXPERIMENTAL SETUP

The experimental set-up of the moving bed hydrotreater (MBR) reactor is scaled

down to pilot-plant scale from industrial scale based on hydrodynamic and geometric

similarity. The scaled down flow operating condition is obtained by matching the LHSV

and gas-liquid volumetric flow rate ratio with the industrial operating conditions.

The schematic of the pilot plant scale reactor is shown in Figure 1. The reactor is

a plexiglass column of height 118 cm and the internal diameter of 29.7 cm. It is divided

into three sections by distributor plate and conical bottom. The parts below conical bottom

are called plena, and it is further divided into lower and upper plenum. The lower plenum

consists of the deflector and 19 chimneys. The chimneys are attached to the distributor in

triangular pitch and have an additional side hole opening just below the distributor plate

(Figure 1). The upper plenum is the compartment between the conical bed and the upper

plenum wall which is tightly packed with passive spheres to cover the entire region between

the conical bottom and distributor plate. Above the conical bottom is bed section, which is

the region from conical base to the top of the bed at cylindrical column, It is filled with 3mm

industrial grade HDM (Hydrodemetallization) catalyst. The conical bottom is perforated,

and perforations are small enough to avoid catalyst plugging. At industrial operation, the

catalyst withdrawal is facilitated through the cone.

The ancillaries for the reactor are gas and liquid rotameters, liquid pump, and water

tank. This reactor operates in upflow state, with premixed gas-liquid which is under control

by rotameters are fed mixed into the deflector of the lower plenum. For scaled down

operating conditions the flow profile inside the lower plenum will have a gas pocket around

the chimneys side hole. The gas penetrates through the side hole, and liquid enters through

main hole of chimney at its bottom both are mixed below the distributor and ejects as a spray

to upper plenum. The passive spheres in the upper plenum distribute the incoming phases

and are fed to the bed section through the perforated cone. The distributed streammaintains
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Table 1. Reactor design parameters and experimental condition for gas dispersion/mixing
study

Parameters Value/Range Comment
Column Diameter 27.94 cm
Column Height 118 cm
Bed Height 63 cm Height from top

of the cone to the
top of the bed at
no flow rate

Catalyst 3 mm Diameter Bulk Density
(570 Kg/m3)

Liquid (Water) Superfi-
cial Velocity

0.01 to 0.4 cm/sec

Gas (Air) Superficial
Velocity

1.28 to 5.13 cm/sec

Scaled Down Liquid
Flow Rate

0.0175 cm/sec By matching
LHSV of indus-
trial and scaled
down reactor

Scaled Down Gas Flow
Rate

7.7 cm/sec By matching
Gas/liquid vol-
umetric flow
rate of industrial
and scaled down
reactor

the bed in packed or expanded bed state based on the flow conditions. For scaled-down

operating condition, the bed behaves as packed bed with slight expansion at the top of the

bed.

In this study, the gas dispersion is investigated by varying flow rate of gas and liquid

and at the scaled-down experimental condition. The dimensions of the experimental setup

and operating conditions used in this study are shown in the Table 1.
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3. GAS DYNAMIC TRACER TECHNIQUE FOR EVALUATION OF THE RESI-
DENCE TIME DISTRIBUTION (RTD) OF THE GAS PHASE IN THE GAS-
LIQUID UPFLOWMBR

The residence time distribution (RTD) concept is developed long time ago for flow

evaluation of reactor by developing a model for the reactor and quantification by RTD

[(Danckwerts, 1953), (Levenspiel and Smith, 1957), (Simcik et al., 2012)]. Its simplicity

has made it an useful part of engineering applications, but simplicity lies within a particular

range of applications such as single phase small-scale reactors. The complication arises

when the multiphase flow is encountered; it can be difficult to separate a phase from a

mixture and analyze them for tracer for RTD determination (Simcik et al., 2012). The

trouble increases when reactors have plena, and the RTD is only needed for the reactor-

bed section, where the conversion occurs. To overcome these difficulties, (Han, PhD

Thesis, 2007) developed dynamic gas tracer experimental and mathematical approach for

slurry bubble column. The developed dynamic gas tracer experimental technique and a

mathematical approach for a slurry bubble column reactor is used and implemented by

(Abdulmohsin and Al-Dahhan, 2016) on a pebble bed reactor. Here we extend this to

upflow moving bed reactor (MBR). The developed tracer technique for MBR can separate

gas phase from the mixture of gas-liquid.

3.1. Dynamic Gas Tracer Technique. Figure 2 shows the components of the gas

tracer technique. Gas tracer is analyzed using a Thermal Conductivity Detector (TCD-

Gow MAC 20 series) (Figure 2a). Helium is used as a gas tracer, which is non-reactive,

non-transferable to liquid phase (Han, PhD Thesis, 2007), and having the physical property

similar to the gas phase (air) (Shah et al., 1978). Different kind of gas tracer are used for

RTD studies based on the detection equipment and is summarized by (Shah et al., 1978).

Nitrogen (Figure 2b) is reference gas for the TCD. Water pump (Figure 2c) removes tracer

laden gas-liquid mixture out of the reactor. In house developed Gas-liquid separator (Figure
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(a) Gas Analayzer(TCD) (b) Helium(Tracer),Nitogen(Ref)

(c) 1-Water Pump, 2-Moisture Remover (d) 1-Gas-liq Seperator, 2-Air Pump

Figure 2. Gas tracer components

2d (1)) separates gas from the liquid using a gas-pump (Figure 2d) and before gas pump

there is a moisture remover (Figure 2c). These components along with data acquisition

system (Gow-Mac) and reactor forms gas dynamic tracer system.

3.2. Gas Tracer System of MBR. Figure 3 shows the gas tracer system of MBR.

Helium is injected through injection tubes (I1, I2, I3), detailed explanation of the injection

and sampling is given in section 4.1. Compressed helium gas cylinder (Figure 2b) is

connected to a solenoid valve using nylon tube (0.5 inches), and the connection continues

to injection points. The solenoid valve is controlled by a digital timer and set for 0.5 sec

opening interval; this provides a pulse injection. The tracer sticks to the gas phase and

follows its path along with the liquid phase. The gas-liquid mixture enters into mixing cup

as shown in the Figure 3, and after that, sampling (S) of the mixture is done using sampling
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Figure 3. Gas dynamic tracer system of MBR

tubes and water pump (Figure 2c), which draws out the mixture and feeds into an in-house

developed gas-liquid separator (Figure 2c). This pump creates a suction to remove gas phase

from the separator and then it passed through a moisture remover (Figure 2c), and then only

gas phase to the TCD (Figure 2a). The thermal conductivity of the helium mixed in the

gas phase is compared with the reference gas (Nitrogen) for TCD. The helium mixture in

gas has higher thermal conductivity than reference gas, and TCD response as voltage signal

is linear with the concentration of helium in the air. Response from the TCD is amplified

and recorded as time series at a sampling frequency of 10 Hz. Each injection will give

respective RTD and will be used all together in developed methodology to determine gas

dispersion parameter of the catalyst bed alone.
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Table 2. Injection and sampling assembly of MBR for gas dynamics study

Measurement Injection Sampling Dispersion Zones
C(1) I1 S Zone(1): Plena +CatalystBed

+ Upper external Volume +
Sampling Line (measurement
Volume)

C(2) I2 S Zone(2): Catalyst Bed + Up-
per External Volume + Sam-
pling Line (measurement vol-
ume)

C(3) I3 S Zone(3): Upper ExternalVol-
ume + Sampling Line (Mea-
surement Volume)

4. METHODOLOGYTOMEASUREGASDISPERSION INCATALYSTBEDSEC-
TION OF MBR

Amethodology is developed based on the injection-sampling concept calledmultiple

injection and one detection method, and a mathematical approach based on convolution and

regression proposed and implemented by (Han, PhD Thesis, 2007). This particular method

is developed for upflow moving bed reactor (MBR), but this method can be applied to any

multiphase reactors with plena.

4.1. Injection and Sampling Assembly. Injection-sampling assembly is designed

in a way to have one point measurement (S) with three injections (I1, I2, I3) as shown in

the Figure 3. Table 2 shows the zones covered by each injection and sampling point. The

injection (I1) is at the bottom of the reactor and just below the plenum section, injection (I2)

is below the conical bottom, and injection (I3) is just above the catalyst bed as shown in the

Figure 3. The sampling (S) at the top of the reactor. Themeasurement C(1) (I1-S) gives RTD

of the entire reactor which includes the plena, catalyst bed section, upper external volume

from above the bed to sampling point, sampling assembly, and measurement system line.
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Figure 4. RTD of various injection-sampling at scaled experimental conditions

The measurement C(2) (I2-S) gives the RTD of zones other than plena, and measurement

C(3) (I3-S) gives the RTD of the zones other than plena and catalyst bed section. The RTDs

of each section are plotted in Figure 4 for industrial scale down conditions.

The shape of the RTD curve depends on the type of injection and flowing structure

(Shah et al., 1978). The injections are usually of the pulse, imperfect pulse, step, sinusoidal,

ramp and parabolic in nature (Shah et al., 1978). In the majority of the studies, mixing

characteristics of phases are investigated using pulse injection (Shah et al., 1978). In our

case, we injected tracer as pulse, and if the reactor mixing behavior is between pulse and

perfectly mixed CSTR, then the response of the system for pulse injection will be of Gauss

Jordan distribution type (Shah et al., 1978), as also observed from the Figure 4. The

RTD curves are usually plotted by normalizing it with its peak value [(Yun et al., 2005),

(Han, PhD Thesis, 2007), (Abdulmohsin and Al-Dahhan, 2016)] and are used to determine



46

holdups, mass transfer parameters, and linear isotherms parameters (Yun et al., 2005), the

same is done here. The plots are normalized based on the maximum concentration for each

RTD signal.

4.2. Convolution and Regression Approach to Estimate Gas Dispersion in Cat-

alyst Bed ofMBR. Convolution principle is widely used to get the RTD signal of the region

which is accompanied by additional volume hence additional dispersion. Deconvolution

in another mathematical way to extract out the signal of the interested zone by removing

dispersion for additional volumes from the overall signal, but this method is usually not

preferred in chemical engineering applications due to numerical instability (Han, PhD The-

sis, 2007). Convolution integral shown by equation 1 is a mathematical way to obtain

RTD of a system for any arbitrary input (Shah et al., 1978). In equation 1, Cin in the inlet

concentration or input and Cout is the response of the system and C∗out is the output of this

system for an inlet concentration profile of Cin. Both input (Cin) and system response (Cout)

can be obtained by proposing a model and regression to estimate model parameters, or

directly from experimental RTD for a Dirac pulse input.

C∗out =

∫ t

0
Cout(t′).Cin(t − t′).dt′ (1)

The different regions of the reactor either additional volumes or zone of interest, can

be modeled by simple or complex differential type model following diffusional type mixing

or stage-wise macro-mixing model where mixing is described by perfectly staged regions

(Iliuta et al., 1998). The complexity of the model increases with its increase in parameter,

and it tries to characterize the realistic flow pattern. Some of these models are summarized

in the review of (Shah et al., 1978).

The reactor shown in Figure 3 has three regions; catalyst bed section, plena (Ad-

ditional volume), upper external space plus sampling line (Additional volume). ADM is

the most commonly used model for the packed bed dispersion studies, here ADM is the

assumed model for the catalyst bed with two parameters Dg (Dispersion coefficient) and
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Figure 5. Schematic of convolution and regression approach to obtain parameters for
plenum model

Gas Holdup (εg). Ideal CSTR plus PFR series is the assumed model for the plena (lower

plenum, packed bed region between the conical bottom and distributor plate), as CSTR is

the most commonly used model for plenum for upflow reactors ((Han, PhD Thesis, 2007)),

and RTD experiment gives the response of upper external volume (I3-S Figure 4). Then a

single point multiple injection methods (section 4.1) is implemented along with convolu-

tion and regression to get ADM parameters. ADM is solved by two-step process, In first

step; by determining the concentration for inlet boundary condition for ADM, which is

the solution of ideal CSTR+ PFR model (quantifies mixing in plena). In the second step;

solving ADM numerically for the closed-closed boundary with inlet concentration from

step 1, and parameters for regression. If the ADM or ideal CSTR plus PFR are not a valid

model to quantify the gas mixing process in catalyst bed section and plena, then it fails

during regression test.

4.3. Step 1: Procedure to Obtain PlenumModel Parameters and Inlet Bound-

ary Condition for ADM. Figure 4.3 show the schematic of the procedure of step 1. The

plena are taken as ideal CSTR and PFR (equation 2), and it has two parameters τp (Space

time of PFR) and τs (Space time of CSTR), the parameters are at first assumed to initiate

the run for step 1. The assumed parameters give Cin, which is theoretically input to the

section zone-2 (Table 2).
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Cin(t) = 0, t < τp

Cin(t) = (
e

−(t − τp)
τs

τs
), t > τp (2)

Applying convolution principle; Cin is the input to the Zone 2 (Table 2) and the

response of the Zone-2 is measured by I2-S as shown in Figure 4, C(2) is obtained experi-

mentally by (I2-S) (Figure 4)

C∗in =
∫ t

0
Cin(t′).C(2)(t − t′).dt′ (3)

The convolution gives C∗in (Figure 6) which is the theoretical output of the zone

2 (Table 2), for an input concentration of Cin which represents mixing behavior of gas in

plena, as shown in Figure 6. Hence C∗in represents the theoretical RTD of the entire reactor

(Zone 1) as it comprises of Plena and Zone 2. Experimentally we have determined RTD

for the whole reactor (Zone 1) C(1) by I1-S. The regression of C(1) (experimental) and C∗in

(theoretical) for τp and τs yields these parameters for minimum error of averaged squared

error in the time domain (equation 6). The n in equation 6 is the number of data points.

Error =
1
n

n∑
j=1
[C∗in(t j) − C(1)(t j)]2 (4)

Figure 7 shows the plot of theoretical output based on plena model and experimental

output of the whole reactor for minimum error for the equation 6. The estimated regression

parameter are τp (1sec) and τs (1sec) for scaled down operating conditions. The error in

the equation for the estimated parameter at scaled down experimental conditions is 0.00041

and this indicates that the assumed model is valid enough to represent the gas mixing in

plena. The regressed τp and τs parameter are plugged into equation 2, which is used as an

initial concentration for inlet boundary condition of ADM.
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Figure 6. Cin (solution of plenum model; ideal CSTR+PFR), C(2) (experimental response
of zone-2 measured by I1-S), C∗in (convoluted signal of Cin and C(2))

4.4. Step 2: The Procedure to Obtain ADM Model Parameters using Step 1

Inlet Boundary Condition. The catalyst bed section shown in Figure 1 and Figure 3, is

modeled using Axial dispersion model (equation 5) with boundary condition (equation 6

and 7). The parameter of ADM are Dg (gas dispersion coefficient) and εg (gas holdup). The

ADM is solved numerically by plugging Cin in equation (6) from the Cin obtained from step

1 (Figure 5), and initiate the procedure (Figure 8) by assuming the parameters (Dg, and εg).

The solution of ADM yields Cout , which is output of ADM for inlet concentration of plena

as shown in Figure 9. In other words Cout is the theoretical RTD of plena plus catalyst bed

section for dirac pulse input. Cout is also an theoretical input for Zone 3 (Table 2).

∂Cg

∂t
= Dg

∂2Cg

∂Z2 −
Ug

εg

∂Cg

∂Z
(5)

Boundary Conditions:

Z = 0,Ug .Cin = Ug .Cg |z=0 − Dg

∂Cg

∂Z
|z=0 (6)
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Figure 7. Regression of the theoretical output based on the plenum model (Cin∗) and the
experimental output (C(1)) of the whole reactor for minimum error

Figure 8. Schematic of convolution and regression approach to obtain parameters for ADM
model using input profile Cin

Applying convolution principle (equation 8); Cout is the input to zone 3 and C(3) is

experimental response of zone 3 obtained by I3-S (Figure 4).

Z = L,
∂Cg

∂z
|z=L = 0 (7)

The convoluted outputCout∗ represents the output of the zone 3 for input profileCout ,

(which represents the RTD of plenums plus catalyst bed section). Hence Cout∗ represents

the theoretical output of the entire reactor or zone 1. Experimental output of the zone-1 is

obtained by C(1) (I1-S) (Figure 4).
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Figure 9. Cout (ADM solution of plenummodel input), C(3) (experimental output of zone1),
Cout∗ (convoluted signal output of Cout and RTD of zone3)

The regression of C(1) (experimental) and C∗out(theoretical) for Dg and εg yields

these parameters for minimum error of averaged squared error in time domain (equation 9).

Cout∗ =

∫ t

0
Cout(t′).C3(t − t′).dt′ (8)

The two parameter regression by equation involves unconstrained regression of

parameters (Yun et al., 2005). One of the parameter (εg) is constrained between εgmin and

εgmax as shown by equation 10, this improves accuracy and speed of regression calculation.

Peclet number (Pe) is also estimated using equation 11.

Error =
1
n

n∑
j=1
[Cout∗(t j) − C(1)(t j)]2 (9)

εgmin =
U ∗ t1

L
, εgmax =

U ∗ t2
L

(10)
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Figure 10. Regression plot of Cout∗ (convoluted signal of ADM output and experimental
output of zone-3 (I3-S)) and C(1) (experimental output of zone1) for minimum error

Whereas, U is superficial velocity of gas based on empty column, L is the linear

distance between injection (I2 and I3), t1 is time difference between first signal arriving for

C(2) and C(3), and t2 is the time difference between mean residence time (equation 19) for

C(2) and C(3), εg is the gas holdup in packed bed, Dg is the gas dispersion coefficient.

Pe =
U ∗ L
εg ∗ Dg

(11)

Figure 10 shows the regression for minimum error of equation 9 for parameter Dg

and εg The estimated regression parameters are Dg (0.1m2/s), εg (0.0823), and Pe (7.87)

for scaled down operating conditions. The minimum error for experimental scaled down

condition is 0.00051, which is lower than the tolerance limit of 0.001, and hence validates

that the ADM is a valid model to represent gas dynamics in catalyst bed of MBR. This

methodology is applicable for the catalyst bed section of the MBR reactor for gas dynamics

investigation. In addition to these parameters, dimensionless variance (σ2
D) is calculated

for the bed section of MBR using the RTDs (Table 2 ) , which also indicates the degree of

mixing, with σ2
D of zero indicates plug flow and σ2

D of one indicates complete mixing.
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5. DIMENSIONLESS VARIANCE (TANK IN SERIES)

Tank in series is modeling concept, where n tanks are modeled as ideal CSTR

in series for pulse injection of tracer. The theoretical residence time distribution (RTD)

obtained from themodel is regressedwith experimental RTDof non-ideal reactor by varying

the number of tank (n). Larger the value of n indicating the flow is towards plug flow and

lower means the flow is towards CSTR. (Fogler, 2005) showed that equation 12 is the

generalized RTD for n tank modeled as ideal CSTR in series.

E(t) = tn

(n − 1)!τn
i

e−t/τi (12)

Where τi is the means residence time in single tank, n is the number of tank, and τi

is equal to τ/n, and τ is mean residence time of entire reactor. Equation 12 is converted to

dimensionless form E(θ) as shown in Equation 13.

E(θ) = τE(θ) = n(nθ)n−1

(n − 1)! e−nθ (13)

Where θ is the ratio of t and τ. The variance of equation 13 can be found using

equation 14, which is called dimensionless variance (σ2
D), and this dimensionless variance

is equal to the ratio of variance (σ2) and square of mean residence time (tm).

σ2
D =

σ2

tm2 =

∫ ∞

0
(θ − 1)2E(θ)dθ (14)

(Fogler, 2005) showed the solution of equation 14 is equal to the inverse of number

of tanks (n), as shown in equation 15.

σ2
D =

σ2

tm2 =
1
n

(15)
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This indicates if σ2
D is zero then n is infinity, which is the case for plug flow, and

when σ2
D is one then is n is one, which means complete mixing. Dimensionless variance

can be determined by RTD experiments, as it is the ratio of variance (σ2) (second moment)

and square of mean residence time (tm) (first moment).

MeanResidenceTime(tm) =
∫ ∞

0
E(t)tdt (16)

Variance(σ2) =
∫ ∞

0
(t − tm)2E(t)dt (17)

In our case, the area of interest is packed bed region, and its dimensionless variance

is evaluated by finding the variance of RTD of zone 2 (tm2) (Figure 4 and Table 2) and RTD

of zone 3 (tm3) (Figure 4 and Table 2) using the equation 16 and similarly the variance (σ2
2

and σ2
3 ) using equation 17. Volume of Zone 2 minus volume of zone 3 gives volume of bed

, and as these moments are additive the bed variance will be (σ2
2 − σ

2
3 ) and mean residence

time in the bed will be (tm2 − tm3). Hence the σD for the bed is calculated using equation

18.

σ2
D(Bed) =

(σ2
2 − σ

2
3 )

(tm2 − tm3)2
(18)

Equation 18 shows the dimensionless variance of the gas phase in catalyst bed region

and for scaled down experimental condition (Table 1), σ2
D is 0.232.

6. RESULTS AND DISCUSSION

Gas transport inside a reactor with packing is mainly occurring due to three mech-

anism; bulk flow due to pressure gradients, diffusion due to concentration gradients, and

convective dispersion due to spatial velocity fluctuation (Pugliese et al., 2012). The sum-

mation of last two parameters defines the dispersion/mixing of phase in the system. The
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Dg values estimated from ADM equation is due to both molecular diffusion and convective

dispersion (hydrodynamic mixing) (Edwards and Richardson, 1968). Hence, our focus of

this study is to see dispersion/mixing behavior of gas in terms of Dg values. The value

of Dg functionally depends on the ratio of the particle diameter to column diameter, fluid

density and viscosity, superficial velocities of phases, ratio of the length of the reactor to

the column diameter, particle size distribution, and effect of temperature (Delgado, 2006).

In this study, we wanted to see the effect of superficial velocity on the dispersion coefficient

(Dg), peclet number (Pe), and dimensionless variance (σD
2) in the catalyst bed section of

MBR.

6.1. Effect of Flow Rate of Phases on Gas Dispersion Coefficient (Dg) for Cat-

alyst Bed in MBR. Figure 11 shows the trend in Dg values for varying superficial velocity

of the gas at low liquid superficial velocities (Figure 11a) and at high liquid superficial

velocities (Figure 11b). Figure 11a shows that the Dg values are increasing with increase in

gas flow rate and liquid flow rates, and this phenomenon is usually observed in packed bed

reactor [(Edwards and Richardson, 1968), (Delgado, 2006), (Abdulmohsin and Al-Dahhan,

2016)]. To understand the effect of velocity on Dg in packed bed , let us look into the equation

Dl = Dm
′ + ud/PeL(∞) [(Gunn and Pryce, 1969), (Edwards and Richardson, 1968), (Del-

gado, 2006)]. For packed bed, the estimated Dg is the summation of molecular diffusivity

(Dm
′) and dispersion due to turbulent or eddy motion of flow i.e, convection (ud/PeL(∞)).

At low particle Reynolds number; less than 1.8 for gases, molecular diffusivity plays a vital

role (Edward 1968). On increasing the velocity, the flow moves towards the turbulent flow,

and eddy diffusion plays a dominant role in gas transport due to spatial velocity variations

and fluctuations. The dispersive component due to eddy diffusion (ud/PeL(∞) ), depends

on interstitial velocity which in turn depends on packing structure, flow distribution, and

flow rates. Hence, increase in flow rate increases the convective dispersion component

(ud/PeL(∞) ), and also results in the increase in bubble breakage phenomena due to the

interaction of gas bubbles with catalyst bed particles ((Briens and Ellis, 2005)). Hence, on
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increasing gas flow rate, we observe wider bubble size distribution which results in wider

spread of gas phase along the 3-dimensional space of catalyst bed and increased mixing due

to the convective component of dispersion. Both of these mechanism leads to increase in

the estimated Dg value with increase in gas flow rate. From dispersion/mixing point of view

increasing the gas velocity at low liquid flow rate is good, as it increases the overall mixing,

reduces channeling (Edwards and Richardson, 1968), provides better radial distribution

(Abdulmohsin and Al-Dahhan, 2016). At scaled down experimental condition, visually,

the bed is behaving in packed bed state with slight expansion at the top of the bed. The

results (Figure 11a) also confirm that the bed is behaving as packed for these flow rates.

The gas phase flow dynamics completely change when the bed starts to expand and which

we observed for the higher flow rate of the liquid.

Figure 11b shows decreasing trend of Dg value with increase in both gas and liquid

flow rates, which is complete opposite trend of the phenomena observed for packed bed case

(Figure 11a). It shows the bed is not anymore in packed bed state and the bed expansion is

significant at the higher flow rate of liquid (Yun et al., 2005) which promote backmixing.

It is seen that with the increase in gas and liquid velocities result in more expansion of

the bed and bed flow dynamics move towards the 3-phase fluidized bed. At expanded bed

conditions the gas phase can displace suspended solid phase and gas phase follows least

resistance path, which results in a less cross-sectional distribution of gas phase at these

conditions. Although overall the bed is at high turbulent condition due to movement of

solid particles, but due to less spread of gas phase along the cross-section results in the

reduction in estimated values of Dg. In terms of mixing this condition is not good for

hydrotreating applications. As the bubbles try to coalesce and move without dispersing

cross-sectionally, which results in inefficient utilization of catalyst. Hence it is desired to

run this reactor at the conditions of packed bed with least and preferably no expansion of

the bed. By looking at the trend of Dg value for expanded bed, it looks the flow is more

towards the plug flow state. Usually in three-phase fluidized bed the gas phase flow as plug
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(a) Plots of Dg for varying flow rate of gas at low liquid velocity

(b) Plots of Dg for varying flow rate of gas at high liquid
velocity

Figure 11. Gas dispersion plot for varying flow rate of phases

flow with significant backmixing of the liquid phase (Fan et al., 1987). To see how much

deviation the gas flow is from plug flow, Pe and σ2
D evaluation is needed. To estimate Pe,

εg values are needed. For three phase flow, εg is the function of flow rate and packing (Beg

et al., 93-103) and is one of the estimated parameter from the ADM equation 5 which is

discussed in section 4.4, and its variation with flow conditions are measured to calculate Pe

(Equation 11).

6.2. Effect of Flow Rate of Phases on the Gas Holdup (εg) in Catalyst Bed of

MBR. From dispersion plot (Figure 11), we were able to identify the flow rates at which

the bed behaves as packed and expanded bed, respectively. The gas holdup results are also

shown for packed bed (Figure 12a) and for expanded bed (Figure 12b). Figure 12a shows
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(a) The gas holdup plot for varying gas flow rate at low liquid flow rates

(b) The gas holdup plot for varying gas flow rate at high liquid flow rate

Figure 12. Gas holdup plot for varying flow rate of phases

that with the increase in gas flow rate there is an increase in the gas holdup and with the

increase in liquid flow rate there is a decrease in the gas holdup. This behavior is expected

in packed bed reactor (Collins et al., 2017), as increasing gas flow rate results in better

radial distribution of gas phase (Abdulmohsin and Al-Dahhan, 2016) and thus increasing

the residence time of the gas phase, and increased residence time is equivalent to increase

in the gas holdup for flowing system. When the liquid flow rate is increased, the gas phase

moved out quickly and reduces the residence time hence reduces the gas holdup (Collins

et al., 2017).
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Figure 12b shows the gas holdup at expanded bed state for varying flow rate of

phases. The trend of the gas holdup is increasing with gas flow rate, similar to packed bed

case. With the increase in liquid velocity, the trend is fluctuating. On increasing the liquid

velocity form 0.0041 cm/sec to 0.072 cm/sec the gas holdp increases, and from increasing

the liquid velocity from 0.072 cm/sec to 0.103 cm/sec the gas holdup decreases, this kind

of trend is due to the degree of bed expansion. When the flow is increased from 0.0041

cm/sec to 0.072 cm/sec, the bed expands and reduces the solid concentration (Kumar et al.,

2012), which in turns increases the gas holdup, as much more voidage is available for gas to

distribute. As the bed is in the expanded state, hence, we expected the gas holdup to increase

further when the liquid velocity is increased from 0.072 cm/sec to 0.103 cm/sec, but the

gas holdup decreased, and it is due to bed behavior shifts more towards the three-phase

fluidized bed. At this state the bed is expanded, thus the solids are easily displaced by

moving gas phase, and on increasing the gas velocity results in bubble coalescence and

movement through least resistance path, which results in increased bubble rise velocity and

further reduction in gas holdup [(Kumar et al., 2012), (Jena et al., 2008)].

For hydrotreating purpose, gas to liquid mass transfer on the catalyst surface is

the rate-limiting step, and for high utilization of catalyst, high gas holdup at high solid

concentration is required, which is observed at scaled down conditions. Based on the

results this is occurring at low liquid and high gas flow rate where the bed is behaving as

packed bed.

6.3. Effect of Flow Rate of Phases on Peclet Number (Pe) in Catalyst Bed of

MBR. Using the Dg and εg values, Pe is calculated using equation 11. Pe is a dimensionless

number which gives the information of the dominance of transport mechanism between bulk

flow and dispersive force. Higher the Pe means bulk flow forces dominate the transport,

and lower Pe indicate the dispersion dominates flow through the bed. Figure 13a shows

the trend of Pe variation for varying flow rate of gas and liquid phase, and at these flow

rates, the bed behaves as a packed bed. Figure 13b shows the trend of Pe variation with the
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(a) Peclet Number plot for varying flow rate of gas at low liquid
flow rate

(b) Peclet Number plot for varying flow rate of gas at high
liquid flow rate

Figure 13. Peclet number plot for varying flow rate of phases

varying flow rate of gas and liquid phase at which the bed is in the expanded state. Figure

13a trends show that the Pe is not varying much with the increase in gas flow rate and

decreases with increase in liquid flow rate. With the increase in gas phase the dispersive

forces are increases as observed in Figure 11a, but this increase is due to the convective

dispersion component of (Dg). It indicates that at these flow rates the increase in disperse

force is proportional to the increase in bulk flow force and making the Pe values almost

constant. With the increase in liquid flow rate, the gas dispersion is increased, as observed

in Figure 11a and Pe number is also increase (Figure 13). It means at similar gas flow

rate for higher liquid flow rate dispersive forces are dominating for gas transport for packed

bed case, which increases overall gas dispersion/mixing in the bed. Figure 13b trend shows
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Figure 14. Dimensionless variance of gas phase in the catalyst bed for various flow
conditions and scaled down conditions

that with increasing gas flow rate for any liquid flow rate, the Pe increases, which means

bulk forces are dominating the transport mechanism. With increases in liquid flow rate,

the Pe varies but is again depended on the degree of expansion. Overall as the bed moves

towards 3 phase fluidized bed the Pe increases which means reduced dispersion/mixing of

gas phase or moving towards plug flow.The results indicate that gas dispersion/mixing is

better at packed state for higher liquid flow rate and at the higher gas flow rate. The scaled

down conditions (Figure 13a) in terms of mixing is good, as it comes under the purview

of packed bed with slight expansion at the top. At these flow rate, the gas mixing is good,

but overall gas distribution is largely function of plena and bed packing. To confirm the

findings from the results of Dg and Pe. A dimensionless variance (σ2
D) is calculated for the

bed section, which also indicates the dispersion/mixing behavior of phases.

6.4. Effect of Flow Rate of Phases on Dimensionless Number (σD
2) in Catalyst

Bed of MBR. The dimensionless variance for the catalyst bed section is calculated from

the RTDs using it moments (tm, σ2), as explained in the section 4.1. If its values is zero

then it means the gas movement is in plug flow manner, and if its one then the flow is

completely mixed. Figure 14 shows the dimensionless variance in the catalyst bed for

various flow condition and at scaled down conditions and it also indicates packed/expanded



62

bed operating condition. Overall for all the flow condition the values are close to zero,

indicating the gas flow is closer to plug flow. As for σ2
D less than 0.1 is usually considered

to be in plug flowof packed bed reactor (Tang et al., 2004). Relatively, gas dispersion/mixing

is more in packed bed region, and in this region increasing liquid velocity and gas velocity

increases dispersion/mixing, and in the expanded bed region the flow is moving closer to

plug with increase of both gas and liquid velocities. The results are similar to what we

observed from the results of Dispersion (Figure 11) and Peclet number (Figure 13). The gas

dispersion/mixing is higher in the packed bed region and even for scaled down condition

compared to the expanded bed regions.

7. REMARKS

Gas dispersion/mixing has been investigated for the catalyst bed section of the pilot-

scale upflow moving bed hydrotreater reactor (MBR), using injection-sampling concept

based on multiple injection and detection method, and a mathematical approach of convo-

lution and regression, with appropriate model for catalyst bed and plena proposed by (Han,

PhD Thesis, 2007). The catalyst bed is Modeled with Axial DispersionModel (ADM), with

its inlet boundary condition obtained from the Ideal CSTR plus PFR model of plena, these

models are assumed first and validated based on the regression. This methodology is suc-

cessfully implemented in the MBR at the scaled-down experimental condition and various

other flow rates of phases.The dispersion plot indicates that at low liquid flow rates the Dg

increases with increases in gas flow rate and decreases with increase in liquid flow rate, this

trend is observed in packed bed state. At higher liquid flow rates the Dg is decreasing with

increase in both gas and liquid flow rate, and this trend is observed in expanded bed state.

Pe plot shows that the in packed bed state the flow is relatively dominated by the dispersive

forces and in expanded bed state gas flow moves towards plug flow state with the increase in

bed expansion. This is confirmed by calculating σD
2, which indicate overall the gas phase
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flow is towards plug flow, but at expanded bed state the flow is more closer to plug flow.

Hence, a good gas mixing is achieved for highest flow condition of phases where the bed

expansion is minimum, and that is seen in the scaled-down experimental condition.
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ABSTRACT

Liquid phase dispersion/mixing studies have been performed for the first time on the

catalyst bed of a cold flow scaled-down upflow moving bed reactor (MBR) using residence

time distribution (RTD) at various flow rates including the scaled down condition. MBR

is hydrotreater and its design includes catalyst bed with conical bottom and plena. The

catalyst bed is modeled using Wave Model, and its mixing parameters are estimated using

a mathematical approach based on convolution and regression. A study is also shown to

illustrate the limitation of Axial Dispersion Model (ADM) while modeling the flow which

noticeably deviates from plug flow. In addition, a dimensionless variance is also estimated

for the bed region from the RTDs. Overall liquid dispersion/mixing is seen high in MBR,

with more dispersion/mixing in the expanded bed region. Scaled down conditions are seen

best when considering the overall catalyst utilization and liquid mixing for hydrotreatment.
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1. INTRODUCTION

Gas-Liquid-Solid reactors are widely used for industrial processes and are designed

according to the hydrodynamics, heat, and mass transfer requirements of the process (Iliuta

et al., 1998). Two-phase upflow fixed bed reactors are used for hydrotreatment applications,

as it satisfies the principal design requirement of hydrotreatment process which is to provide

desired gas to liquid flow ratio, the low residence time of liquid, better liquid distribution,

and fully wetted catalyst along the length of the reactor [(Thanos et al., 2001), (Kressmann

et al., 2000)]. Although, the two-phase upflow fixed bed design provides a good working

condition for hydrotreatment applications, but it could fail in the proper handling of the

hydrocarbon feed with a high level of contaminants. As at hydrotreatment condition of

temperature around 400-410◦c and pressure of 100-200 bar (Kressmann et al., 2000) the

contaminates of crude oil deactivates catalyst fast and results in the frequent shutdown of

the reactor for catalyst replacement. Ebullated bed technology, which is upflow gas-liquid

over liquid fluidized bed (Kressmann et al., 2000) with provision for catalyst replacement,

is used for handling heavier crude oil feed. As the catalyst replacement enables reactor to

run continuously without frequent shutdown, but the catalyst activity is less for an economic

size of the reactor to handle a higher flow rate of the feed stream, and it is mainly due to the

fluidized state of the catalyst bed (Kressmaann, Boyer et al 2000). The new design of catalyst

bed with conical bottom called upflow moving bed reactor (MBR) solves issues pertaining

to hydrotreatment of heavy crude oil. The peculiarity of MBR is the conical bottom

attached to the catalyst bed (Figure 1), which enables the replacement of the catalyst during

hydrotreatment operation. The gas-liquid feed stream is fed upflow through the MBR and

maintaining the operating conditions to keep bed expansion less than 10 percent by volume
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(Kramer et al., 1994). The catalyst deactivates and move downward due to weight and due

to removal of catalyst from the conical bottom, and then fresh or regenerated catalyst are

added at the top of the bed (Krantz et al., 2002). The replacement operation is not so often,

and all the other times the bed behaves as upflow packed or slightly expanded bed condition.

At the industrial conditions, this reactor is facing a lot of issues and is undergoing frequent

shutdown, and these issues are directly linked with the design of MBR. The successful

design can provide proper hydrodynamics, heat and mass transfer of the system (Muroyama

and Fan, 1985) and that require predictable models validated with experimentation to lead

to the final design at industrial scale. One of the most important design parameters is liquid

mixing/dispersion which is never studied for MBR reactor.

Inside the reactor, there is random fluctuation in the movement of the phase which is

superimposed on the general flow of the phase, and it is mainly due to the velocity variations

and fluctuation due to varying convective force and bulk flow fields along the length of the

reactor. This variations and fluctuations is termed as convective dispersion/mixing of any

phase and is one of the most critical hydrodynamic phenomena and directly affects mass

and heat transport (Westerterp et al., 1995). Hydrotreating is a liquid limited reaction

and hence essential to understand the liquid hydrodynamics. Liquid dispersion/mixing

is critical design parameter and this information is needed from bench scale/pilot scale

experimental setup to scale-up the process to industrial scale (Thanos et al., 2001). The

dispersion/mixing is mainly due to velocity variations and fluctuations, and it is difficult

to estimate the local velocities along the entire length of the reactor to quantify mixing

(Iliuta et al., 1998). The easier way is to conduct residence time distribution studies (RTD)

for the region of interest in the reactor. Then fitting with an appropriate model having

dispersion/mixing parameters to RTD to estimate the dispersion/mixing parameters. These

parameters quantify three-dimensional mixing and dispersion phenomena of liquid in the

reactor.
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RTD studies for the liquid phase are widely conducted on gas-liquid-solid reactor

(Delgado, 2006), but the signals are usually estimated for the entire reactor, where the

liquid tracer is injected at the reactor inlet and detected at its outlet. In MBR, the area of

interest is the packed bed, and RTD signals are needed for the bed section alone which is

accompanied by an additional volume of plena below it and extra space on top of it. The

common approach to extract the RTD signal of the bed is to employ detection of tracer

below and above the volume of interest [(Edwards and Richardson, 1968), (Valenz et al.,

2010)], but due to the complexity of this reactor, injections are done below and top of the

bed and detection is done at reactor outlet. The obtained RTDs are followed through a

methodology based on convolution and regression with appropriate mass transfer model

describing dispersion phenomena. The most widely uses model to explain the dispersion

phenomena is Axial DispersionModel (ADM) (Muroyama and Fan, 1985), and is due to the

simplicity of the ADM equation having a single parameter which accounts for the spatial

complex velocity and concentration fluctuations inside the reactor (Westerterp et al., 1996).

ADM is obtained by superimposing diffusional phenomena on a plug flow and based on the

assumption that phase dispersion is analogous to diffusional phenomena (Westerterp et al.,

1995). This assumption is not valid for the cases where the velocity and timescale of the

dispersion phenomena are much deviating from the time and velocity scale of the diffusion

processes (Westerterp et al., 1996). In two-phase packed bed reactors, the dispersion is due

to the combination of various factors such as velocity variations and fluctuations (Taylor

dispersion), blending and separations due to flow through a tortuous path, mass exchange

between stagnant and dynamic zone, molecular diffusion. The time and length scale of

all these phenomena are different, and using ADM to find the dispersion phenomena fails

in these cases. ADM is fundamentally second order partial diffusion equation, which has

the property of infinite signal propagation (Westerterp et al., 1995) which necessitates the

condition of applicability of ADM limited to the case of slow temporal and spatial variation

of concentration field [(Danckwerts, 1953) (Taylor, 1954)]. This condition is only possible
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when the time scale of the transport process is extremely low and moves at infinite speed,

which is the case of diffusion [(Westerterp et al., 1995) (Westerterp et al., 1996)]. For the

cases, when the spatial concentration change is drastic during the time-scale of transport,

such as the case when the system is noticeably deviating from plug flow conditions, ADM

fails. A case study is shown in the section 5 below to emphasize this effect.

Many modifications of the ADM is found to account for various dispersion causing

factors in packed bed reactor. Like Piston-Exchange Model (PE) model which consider

stagnant and dynamic liquid zones without dispersion, Piston-Dispersion-Exchange (PDE)

model which accounts Dispersion also (Beg et al., 93-103). These modifications are just

adding up additional parameters to fit but not solving the fundamental issue related to

partial differential equation infinite signal propagation property which drastically limits the

applicability of ADM for the cases of large deviation from plug flow. To account these issue

(Westerterp et al., 1995) developed Wave Model (WM).

The proposed wave model by (Westerterp et al., 1995) consists of a set of two

hyperbolic equation based on the simple extension of the concept formulated by (Taylor,

1954) for ADM. The one equation is for the concentration change averaged over cross

section and other is for the dispersion flux, the equations are shown in the section 4.2. For

linear problems, the equation is combined to one-second order partial differential equation,

which has an analytical solution. For the normal pulse injection propagation of tracer in an

non-reactive system, the analytical solution ofWaveModel is in the form of transfer function

similar to Gauss Jordan Distribution function (Benneker et al., 1996). The simplicity and

overcoming the conceptual difficulties of Partial Differential Equation (PDE) makes WM a

best alternative for ADM for the limitations and conditions mentioned above.

In this work, a liquid tracer system is developed for two-phase upflow moving bed

reactor (MBR), and RTD studies are conducted based on an injection-sampling concept

called two-point injection and one detection method. The obtained RTD are processed by

following a methodology based on convolution, regression and Wave Model (for catalyst
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Figure 1. Schematic diagram of scaled down MBR setup for liquid dynamics studies

bed) for estimation of mixing parameter (Dl , Pe) of liquid. The results indicate the liquid

mixing is deviating noticeably from plug flow and a case study demonstrates that ADM

failed in explaining the flow behavior of liquid in the catalyst bed of MBR. In addition,

dimensionless variance (σ2
D) are estimated for the bed section of MBR, and it also indicates

the extent of dispersion/mixing in the bed section. Overall liquid dispersion/mixing is

seen higher in MBR, with dispersion/mixing being more in the expanded bed operating

conditions.
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2. EXPERIMENTAL SETUP

The experimental setup consists of scaled down to pilot plant form industrial scale

moving bed reactor based on matching the dynamic and geometric similarity. The dynamic

similarity is matched by keeping the pressure drop same through the internal holes for both

industrial and pilot scale unit. Pressure drop is calculated for industrial scale at its operating

condition and similarly, the pressure drop is estimated at pilot plant scale at the scaled down

conditions. The scaled down conditions is determined by matching the LHSV and gas to

liquid volumetric flow rate ratio same between industrial and pilot plant scale.

Figure 1 shows the schematic of the pilot scale upflow moving bed reactor (MBR).

The design of this reactor is peculiar in terms of its design. It has a catalyst bed with a

conical bottom, and plena classified as upper and lower plenum. The lower plenum contains

deflector, 19 chimneys attached to the distributor plate in triangular pitch. Upper plenum

is the compartment between the conical bottom and upper plenum wall, and this region

is tightly packed with passive spheres and above the distributor plate. We conducted cold

flow experimentation with gas and liquid phases as air and room temperature water. The

gas phase is controlled by rotameter (Dywer-RMC-106-SSV, Dywer-RMC-102-SSV) and

the liquid phase by rotameter (Omega FL7301, Omega FL-75C). The flow is set at desired

values and fed to the reactor below the bottom plenum in a premixed manner. The phases

enter the reactor through the inlet of lower plenum, and it enters to the deflector which has

slots on the lateral wall. The phases are pushed out through these slots to move upward to

the chimney region. The chimneys are hollow cylindrical pipes having a hole on its wall,

these chimneys are screwed to the distributor plate holes, such that the chimney side holes

are just below the distributor plate. At scaled down operating condition, the phases coming

from the distributor will make a gas pocket formation around the chimney side hole, the

liquid will enter through the chimney bottom, and the gas will mix with the incoming liquid

phase from the side hole, and mixed phases will be sprayed to the upper plenum. In the

upper plenum, the phases will distribute due to the packed spheres, and this mix then moves
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to the bed region through the perforations on the conical bottom. Then phases will move

upward through the bed region and air-water mix coming at the outlet is sent to the drain, as

this mix will contain liquid tracer in it while conducting experimentation, which if recycled

will cause calculation error for the methodology described in section 4.

The bed structure can change from upflow packed bed to three-phase fluidized bed

based on the flow conditions but for the scaled down operating condition the bed is in the

incipient fluidized conditions. At this state, the bed is almost in packed bed with slight

expansion at the top part of the bed. In this study, we investigate the impact of flow

conditions including the scaled-down conditions on liquid dispersion mixing inside the bed.

Table 1 shows the operating conditions and dimensions of the experimental setup.

3. DYNAMIC LIQUID TRACER TECHNIQUE FOR RTD STUDIES OF LIQUID
PHASE IN GAS-LIQUID UPFLOWMOVING BED REACTOR

3.1. Dynamic Liquid Tracer Technique. Figure 2 shows the component of the of

the dynamic liquid tracer technique. KCL solution is used as the liquid tracer, after trial and

error, we found 1.1 M KCL solution is needed for best response with the minimum of KCL

for our reactor volume. KCL solution qualifies to be used as tracer as it is non-reactive,

completely miscible in the liquid phase, and have the similar physical property of liquid

phase (Shah et al., 1978) . The tracer is stored in an in-house developed injection unit

having a cylinder and solenoid valve attached to the bottom of the cylinder (Figure 2d). The

injection unit is pressurized using nitrogen gas (Figure 2b). The solenoid valve powered to

open for the small amount of time using a push button, this provides a pulse injection of

tracer inside the reactor. Other types of injection such as step, sinusoidal, ramp, etc. (Shah

et al., 1978) can be achieved by programming the solenoid valve opening accordingly. A

water pump (Figure 2c) draws the sample out from the outlet and feeds it to the conductivity

probe. The Conductivity probe (Figure 2a) is used to detect the tracer concentration. The

probe connects to the data acquisition (edaq) and samples the signal at a frequency of
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Table 1. Experimental setup specifications and operating conditions for liquid dynamics
study

Parameters Value/Range Comment
Column Diameter 11 inch
Column Height 46.46 inch
Bed Height 24.8 inch Height from top

of the cone to the
top of the bed at
no flow rate

Catalyst 3 mm Diameter Bulk Density
(570 Kg/m3)

Liquid (Water) Superfi-
cial Velocity

0.01 to 0.4 cm/sec

Gas (Air) Superficial
Velocity

1.28 to 5.13 cm/sec

Scaled Down Liquid
Flow Rate

0.0175 cm/sec By matching
LHSV of indus-
trial and scaled
down reactor

Scaled Down Gas Flow
Rate

7.7 cm/sec By matching
Gas/liquid vol-
umetric flow
rate of industrial
and scaled down
reactor

25 Hz. The conductivity probe gives linear variation in the voltage signal based on the

conductivity of the passing liquid. The KCL solution has higher conductivity than pure

water and conductivity is proportional to the concentration of KCL solution, and it is even

sensitive to small traces of concentrations of KCL.

3.2. Liquid Tracer System of MBR. The liquid tracer system is shown in Figure

3, the system consists of two injection points (I1 and I2) and one sampling point (S). In

our previous work on gas dispersion/mixing studies in upflow moving bed reactor, we used

three injection and one detection, the different injection-sampling is due to the usage of

different models and way it is solved. The methodology and models used in this study
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(a) Conductivity Probe (b) Nitrogen(For Injection Unit

(c) Water Pump (d) Injection Unit

Figure 2. Liquid tracer components

is explained in section 4. Injection points are connected to the injection unit and is the

path of entry of tracer into the system. The sampling point (S) is at the outlet of the

reactor and above the mixing cup, from where the gas-liquid mix is drawn out and fed

to the conductivity probe using the water pump (Figure 2c). The mixing cup provides a

uniform concentration cross-sectionally at the sampling plane, which is essential to neglect

the effect of small tracer loss at the sampling point. Each injection and sampling point

gives the residence time distribution (RTD) of the section in between, Table 2 shows the

zones covered by injection-sampling point to measure of the RTD. These assemblies of the

injection/sampling are used for a method to obtain mixing parameter of the catalyst bed

only and will be discussed later.
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Figure 3. Liquid tracer system of MBR

Signal Processing: The raw time series signal of tracer response is filtered using

second-order butterworth filter to remove non-biased noise, such as noise due to electronics

(Al-Dahhan et al., 2006). The filtered signal is normalized to a base value of zero by

subtracting the signal values of filtered signal with the average signal value of the filtered

signal corresponding to the air-water mixture for particular flow without any tracer. Figure

4 shows the tracer response (RTD) for injection I1-S and I2-S, the signal is again normalized

to the range of 0 to 1 by dividing with maximum signal values. The shape of the RTD

is dependent on the nature of flow and tracer input. For pulse input of tracer, the output

response curve will be of gaussian distribution in nature and will be at the extreme of the

plug flow (zero dispersion) and CSTR (complete mixing) (Shah et al., 1978).
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Table 2. Injection and sampling assembly for liquid dynamics study in MBR

Measurement Injection Sampling Dispersion Zones
C(1) I1 S Zone(1): Catalystbed + Up-

per external Volume + Sam-
pling Line (measurement Vol-
ume)

C(2) I2 S Zone(2): Upper ExternalVol-
ume + Sampling Line (mea-
surement volume)

Figure 4. RTD of various injection-sampling at scaled down experimental condition

4. METHODOLOGYTODETERMINEDISPERSION/MIXING PARAMETER IN
CATALYST BED SECTION OF MBR

4.1. Two Injection and One DetectionMethod. The area of interest is the catalyst

bed section, but the catalyst bed is accompanied by additional volumes (Plenums, Upper

extra volume, Sampling line) as shown in Figure 3, and to exactly obtain the RTD of the bed

section we need to deconvolute the RTD signal from overall signal obtained by I-S (Table
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2). Deconvolution is numerically unstable (Han, PhD Thesis, 2007) and to overcome it

we follow the methodology of single detection and multiple injection and a mathematical

approach of convolution and regression proposed by (Han, PhD Thesis, 2007).

Usually two-point detection method (Cassanello et al., 1992), in which one injection

two detection is used to follow the convolution principle. However due to the complexity of

the MBR two-point injection and one detection is followed and mathematically both yield

similar results (Midoux and Charpentier, 1972). The injection is below (I1) and above (I2)

the catalyst bed and the detections is just above the mixing cup as shown in the Figure 1.

Using the RTDs obtained from the injection-sampling assembly a systematic approach is

followed to obtain the mixing parameters. The catalyst bed section is initially modeled using

an axial dispersion model (ADM), but it failed to describe the dispersion/mixing behavior

of liquid phase. The conceptual difficulty and explanation of its failure are described as a

case study in section 5. In an alternative to ADM, we used a wave model (WM) to describe

the liquid phase dispersion/mixing behavior, which overcomes the conceptual deficiencies

of ADM.

4.2. Wave Model. Wave Model is an alternative to Fickian-Type dispersion model

(ADM), and it overcomes some of the conceptual deficiencies of ADM (Westerterp et al.,

1995). It is a hyperbolic system of two first order equations for the average concentration

(c) (equation 1) and the dispersion flux (j) (equation 2). For development of model please

see (Westerterp et al., 1995).

∂c
∂t
+U

∂c
∂x
+
∂ j
∂x
+ q(c, x, t) = 0 (1)

[1 + τ.q′(c, x, t)] j + τ ∂ j
∂t
+ τ(u + ua)

∂ j
∂x
= −De

∂c
∂x

(2)
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Figure 5. Schematic of convolution and regression approach to obtain liquid mixing
parameters of catalyst bed

Where De is the Dispersion Coefficient, τ is the Relaxation time, and ua is the

Velocity Assymetry which are the parameters of the wave model. For the case of packed

bed with no reaction, unit pulse injection of tracer and for arbitrary boundary condition

and considering velocity asymmetry to be zero. The solution of wave model develops to

gaussian distribution of the concentration as shown in equation 3.

C(t) =
√
(−Pe ∗ τ)
4 ∗ π ∗ t

∗ exp[−Pe ∗ (τ − t)2
4 ∗ t ∗ τ ] (3)

Where as Pe (peclet number) and τ (mean residence time) are the parameters. For

detailed derivation of the solution of the wave model refers to (Westerterp et al., 1995) and

(Benneker et al., 1996).

PecletNumber(Pe) = U ∗ L
εl ∗ DL

(4)

Essentially the parameter of the solutions are εl (liquid holdup), Dl (Liquid disper-

sion), τ is equivalent to tm (mean residence time), U (superficial velocity), and L (Length

of the packed bed) This Gaussian function (Benneker et al., 1996) relates the concentration

at one position to that at another location with the degree of longitudinal mixing governed

by Pe. This transfer function is used in this study to evaluate liquid behavior in the bed at

the flowing conditions by estimating its parameters mentioned above.
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Figure 6. Cout (solution of the wave Model), C(2) (experimental output of zone-2), Cout∗

(convoluted signal of Cout and Zone-2), at the experimental scaled down conditions

4.3. Convolution and Regression Approach to Estimate Liquid Dispersion Co-

efficient (Dl) and Peclet Number (Pe) of Liquid Phase in Catalyst Bed Section of MBR.

Pe and τ values are assumed initially and fed into equation 3 and the resulting output Cout

(Figures 5 and 6) represents the solution for unit pulse input of tracer at the outlet of the

catalyst bed. Convolution Principle is applied using equation 5. Cout is input to zone-2 and

C(2) (Figure 5 and 6) is the experimental response of zone 2. The output Cout∗ (Figures 5

and 6) represents the output from zone 2 for an inlet response of Cout which itself is the

outlet of catalyst bed for unit pulse injection. Hence, Cout∗ is theoretical output of catalyst

bed section plus zone-2, which is equivalent to zone 1. It means Cout∗ is theoretical output

of Zone-1.

Cout∗ =

∫ t

0
Cout(t′).C2(t − t′).dt′ (5)
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Figure 7. The regression plot for minimum error between convoluted signal (Cout∗) and
experimental response C(1), at experimental scaled down condition

Estimation of Pe and τ: C(1) (Figure 7) represents the experimental output of zone

1 and Cout∗ (Figure 7) represents the theoretical output of Zone 1 based on the solution

of Wave Model for parameter Pe and τ. C1 and Cout∗ are regressed using equation(6)

for minimum error for the values of Pe and τ. These values represent the actual model

parameters for equation (3) representing the liquid phase flow behavior inside the catalyst

bed.

Error =
1
n

n∑
j=1
[Cout∗(t j) − C(1)(t j)]2 (6)

The minimum averaged sum of square error (equation 6) value for the case shown

in Figure 7 is 0.00013, this validates that Wave Model is applicable to quantify liquid flow

dynamics in catalyst bed section of MBR. The estimated parameter are Pe=3.78, and τ=32

min.

Estimation of Dl : The Dl is calculated using the equation 4, where the unknown is

εl , and rest of all the quantities are known. εl can be estimated using the equation 7 and

equation 9 based on RTD response (Kressmann et al., 2000).
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εl1 =
VL

X
∗ tm1 (7)

Where εl1 is the liquid holdup of zone1, VL is the superficial liquid velocity based

on empty column, X is the linear distance of zone 1, and tm1 is the mean residence time

calculated using equation 8 for the RTD of Zone 1 (C(1)).

tm1 =

∫
C(1).t∫
C(1)

(8)

εl2 =
VL

Y
∗ tm2 (9)

Where εl2 is the Liquid holdup of zone-2, VL is the superficial liquid velocity based

on empty column, Y is the linear distance of zone-2, and tm2 is the mean residence time

calculated using equation 10 for the RTD of zone-2 (C(2)).

tm2 =

∫
C(2).t∫
C(2)

(10)

now using the equation

εL =
Volumeo f LiquidinBed

Volumeo f Bed
=
εL1 ∗ Vzone1 − εL2 ∗ Vzone2

Vcatalystbed
(11)

In equation 11, all the terms (εl1, εl2) are known from equation 7 and equation 9,

and Vzone1, Vzone2, and Vcatalystbed are known from reactor geometry. The estimated Dl =

0.0065 m2/min for the experimental scaled down condition.

5. CASE STUDY TO SHOW FAILURE OF ADM

The methodology shown in section 4 is applied with replacing the model of catalyst

bed with Axial Dispersion Model (ADM) for Dirac delta input as shown in Figure 8.
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Figure 8. Schematic of convolution and regression approach using ADMmodel for catalyst
bed

Cout is the solution of the ADM which is input to the zone-3. The same convolution

principle of equation (5) is applied andCout∗ is obtained. TheCout∗ represents the theoretical

output of zone-1 and C(1) represents the experimental output of zone-1. The Cout∗ and C(1)

are regressed for Dl and εl for minimum error using the equation 6.

∂CL

∂t
= Dl

∂2CL

∂Z2 −
UL

εL

∂CL

∂Z
(12)

Boundary Conditions:

Z = 0,Ug .Cin = UL .CL |z=0 − Dl
∂CL

∂Z
|z=0 (13)

Z = L,
∂CL

∂z
|z=L = 0 (14)

Figure 9 shows the regression plot for the theoretical output using ADM and Exper-

imental Output of RTD for Zone-1. The plots show the best regression possible for least

error of 0.125. The least error is much higher than the tolerance limit for good fit (max error

of 0.005), whereas using Wave Model for same operating conditions, the error was 0.00035

within the tolerance (Figure 7). This indicates, ADM is not a suitable model for liquid phase

dispersion studies in catalyst bed section of this reactor. On carefully analyzing the Figure

9, one can see that theoretical output has signal value at a time from (0 min), whereas for

the experimental output, the first signal value is at (3min), This is the primary reason for
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Figure 9. The regression plot for minimum error between convoluted signal (using ADM)
and experimental response C(1), at scaled down experimental conditions

the non-fit condition between theoretical and experimental output. Why theoretical output

generates a signal at zero time is due to the fundamental nature of ADM equation. ADM

is second order parabolic differential equation, and the solution of these equations have an

infinite speed of signal propagation, which means instantaneous signal (concentration) at

all the modeling space with the intensity proportional to dispersion coefficient (Westerterp

et al., 1995). ADM can be better understood by focusing on ficks law, based on which ADM

is conceived.

(Westerterp et al., 1996) analyzed the ficks law for diffusional phenomena at particle

level scrutiny and found that, to hold ficks law, the time taken (relaxation time) for random

particle movement (mean free path) shall approach zero. Hence, the velocity scale (mean

free path/relaxation time) of diffusional transport shall approach infinity. Hence, ADM is

applicable for the cases when these conditions are fulfilled or not much deviating from it,

or it is only properly applicable for the case of molecular diffusion, as infinite velocity scale

of molecular diffusion justifies physically the ADM behavior of infinite signal propagation

(Iordanidis et al., 2003). The cases, such the flow of gas phases, the relaxation time of

particle movement is very slow to the order of (10−10 to 10−11 sec) which is comparable with
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the diffusional time scale, and hence ADM is applicable for gas phase with a reasonable

level of accuracy (Westerterp et al., 1995). The liquid phase flow has a time scale of particle

movement higher than the diffusional phenomena and hence not reasonable to use ADM to

find dispersion phenomena.

6. DIMENSIONLESS VARIANCE (TANK IN SERIES)

Tank in series is a one parameter model and are used to describe non-ideal reactors.

In this modeling concept, n tanks are modeled as ideal CSTR in series for pulse injection

of tracer. The Residence Time Distribution (RTD) obtained from the model is matched

with experimental RTD of non-ideal reactor by varying n. Larger the value of n indicating

the flow is towards plug flow and lower means the flow is towards CSTR. (Fogler, 2005)

showed that equation 15 is the generalized RTD for n tank modeled as ideal CSTR in series.

E(t) = tn

(n − 1)!τn
i

e−t/τi (15)

Where τi is the means residence time in single tank, n is the number of tank, and τi

is equal to τ/n, and τ is mean residence time of entire reactor. Equation 15 is converted to

dimensionless form E(θ) as shown in Equation 16.

E(θ) = τE(θ) = n(nθ)n−1

(n − 1)! e−nθ (16)

Where θ is the ratio of t and τ. The variance of equation 16 can be found using

equation 17, which is called dimensionless variance (σ2
D), and this dimensionless variance

is equal to the ratio of variance (σ2) and square of mean residence time (tm).

σ2
D =

σ2

tm2 =

∫ ∞

0
(θ − 1)2E(θ)dθ (17)
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(Fogler, 2005) showed the solution of equation 17 is equal to the inverse of number

of tanks (n), as shown in equation 18.

This indicates ifσ2
D is zero then the flow is towards the plug flow as n tends to infinite

ideal CSTR in series, and whenσ2
D approaches one the flow is towards complete mixing as n

tends to one ideal CSTR . Dimensionless variance can be determined by RTD experiments,

as it is the ratio of variance (σ2) (second moment) and square of mean residence time (tm)

(first moment).

σ2
D =

σ2

tm2 =
1
n

(18)

MeanResidenceTime(tm) =
∫ ∞

0
E(t)tdt (19)

Variance(σ2) =
∫ ∞

0
(t − tm)2E(t)dt (20)

In our case, the area of interest is packed bed region, and its dimensionless variance

is evaluated by finding the variance of RTD of zone 1 (tm1) (Figure 4 and Table 2) and RTD

of zone 2 (tm2) (Figure 4 and Table 2) using the equation 19 and similarly the variance (σ2
1

and σ2
2 ) using equation 20. Volume of Zone 1 minus volume of zone 2 gives volume of bed

, and as these moments are additive the bed variance will (σ2
1 − σ

2
2 ) and mean residence

time in the bed will be (tm1 − tm2). Hence the σ2
D is calculated using equation 21.

σ2
D(Bed) =

(σ2
1 − σ

2
2 )

(tm1 − tm2)2
(21)

Equation 21 shows the dimensionless variance of the liquid phase in catalyst bed

region and for scaled down experimental condition (Table 1), σ2
D is 0.331.
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Figure 10. The liquid dispersion in the catalyst bed of MBR for varying flow rate of phases

7. RESULTS AND DISCUSSION

The evaluated wave model (WM) parameters are liquid dispersion coefficient (Dl)

and Peclet number (Pe). In addition, dimensionless variance (σ2
D) in the bed region is

evaluated. These parameters estimate the extent of mixing of liquid phase in catalyst

bed section of this reactor. The effect of operating conditions on these parameters are

investigated.

7.1. Effect of Operating Condition on Dispersion Inside the Catalyst Bed Sec-

tion of MBR. The physical representation of Dl is the quantification of the spread of tracer

signal in the catalyst bed section. The spreading is dependent on diffusive nature of tracer

and spread occurring due to the external force fieldwhich is dependent on the flow condition.

Hence, the dispersion coefficient (Dl) can be represented as the summation of molecular

diffusivity and dispersion due to convective term (Delgado, 2006). Any non-ideality in the

flow is reflected in the convective dispersion term. The primary source of non-ideality for

liquid flow in two-phase upflow packed or expanded bed are due to non-uniform velocity

profile, by passing streams of phases, velocity fluctuations due to turbulence, backflow of

liquid due to velocity difference with gas phase, non-uniform flow pattern of gas phase in

bed, mass transfer between dynamic and stagnant liquid zones (Iliuta et al., 1996). All
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these non-idealities are a function of reactor design, bed structure and operating condition

of phases. Figure 10 shows the effect of gas and liquid superficial velocity on the liquid

dispersion in the catalyst bed packing of this reactor. Based on the operating condition

the bed structure changes form packed bed to expanded. The previous study of (Article 2)

indicates that for liquid flow rate (0.0175 cm/sec) and varying gas flow rate from (1 to 7

cm/sec), the bed is in packed condition, with slight expansion at the top for scaled down

conditions (Table 1). For the rest of all the operating conditions the bed starts to expand,

and its extent depends on flow condition. The dispersion trend of liquid is seen different for

the packed bed and expanded bed case. In packed bed case (Figure 10) the liquid dispersion

is not changing significantly with increasing flow rate of gas and the same observed by

(Valenz et al., 2010). In packed bed region with increase in gas flow the bubble breakup

phenomena increases and moves upwards as small bubbles, these small rising bubbles cause

less dispersion/mixing in liquid (Belfares et al., 2001). Other main criteria which can induce

non-ideality or increased spreading of liquid are liquid flow rates and bed structure, where

the bed structure is not much changing for all the operating condition in packed bed case.

In expanded bed case the situation changes as the bed structure changes with operating

conditions.

The operating region of expanded bed is shown in Figure 10. In this region, the bed

starts to expands and moves toward three phase fluidization. It is seen that for all liquid

flow rates the liquid dispersion coefficient (Dl) is increasing with increase in gas flow rate.

A similar trend is observed by (Muroyama and Fan, 1985) for three-phase fluidized bed. It

is also seen that Dl increases with increase in liquid flow rate and the increasing effect with

respect to increase in the gas flow is greater for higher liquid flow rates. The extent of the

bed expansion is proportional to the increase in the flow rate of phases for MBR (Article-

2). With increasing liquid flow rate the bed expansion increases which result in increase

liquid spreading induced by moving solids. In expanded bed, with increasing gas flow rate

results in bubble coalescence, channeling and random flow distribution of gas phase along
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Figure 11. The liquid peclet number in catalyst bed of MBR for varying flow rate of phases

the bed, which increases the bubble-induced turbulence and macro recirculation of liquid

phase (Muroyama and Fan, 1985). These phenomena increase dispersion of liquid phase in

expanded bed region. From the results, it is indicative that the liquid dispersion is a strong

function of flow rate of phases and its effect is intense for a higher flow rate of phases.

Although this gives good trend to understand the dispersive nature but to identify nature of

flow such as pulse flow or completely mixed, a peclet number is needed. As the calculated

Dl is proportional to the convective component of liquid phase flow, and its increase will

result in increasing trend of Dl , but it does not mean the flow is moving toward completely

mixed flow. Hence, the comparison of bulk flow field with dispersive force field is done by

finding the peclet number (Pe).

7.2. Effect of Operating Conditions on Peclet Number Inside the Catalyst Bed

Section of MBR. Peclet (Pe) number is calculated using the equation 4, and it indicates

whether advective or dispersive field dominates the nature of the flow. Higher the Pe, flow

is towards the plug flow, and for lower Pe the flow is towards complete mixing. Figure 11

shows the peclet number plot for the liquid phase for the varying flow rate of phases. The

plot shows that for both packed bed and expanded bed region, the Pe number is decreasing

with increasing flow rate of gas phase and liquid phase, the decrease of Pe with increasing
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gas flow rate is more significant at higher liquid flow rates. For packed and slightly expanded

bed cases the Pe for liquid is seen to decrease with gas flow rate [(Thanos et al., 2001),

(Cassanello et al., 1992), (Xie et al., 2013), (Iliuta et al., 1998)]. The small values of the

peclet number clearly indicate that liquid phase non-ideality is quite significant and largely

deviating from the plug flow [(Delgado, 2006), (Abdulmohsin and Al-Dahhan, 2016)].

These non-idealities are much dominant in expanded bed case, and is seen to be increasing

function with bed expansion.

As the bed expands, dispersion of liquid phase increases as explained in the section

7.1. At expanded bed conditions the bubble coalescence and other maldistribution and

catalyst particle movement is observed. These movement creates a force field for micro

and macro recirculation zones in the bed for liquid phase (Saroha and Khera, 2006). These

recirculations increases the residence time of the liquid phase and results in dominance of

dispersive forces compared to convective. The dispersive forces are directly linked with

hydrodynamics mixing which includes backmixing and thus decreases Pe with increasing

liquid flow rate. ForMBR at the hydrotreating condition, the condition of low bed expansion

is preferable for maximum catalyst utilization (Kramer et al., 1994). In terms of liquid

mixing the scaled down conditions are suitable, as based on its low Pe value the mixing

is already quite good. Pe gives a good indication of mixing phenomena in the bed, but

additionally, dimensionless variance (σ2
D) is evaluated using the moments of experimental

RTDs, as this parameter is also indicates the degree of dispersion/mixing.

7.3. Effect of Operating Conditions on Dimensionless Variance Inside the Cat-

alyst Bed Section of MBR. The dimensionless variance (σ2
D) indicates the degree of

dispersion/mixing in the reactor. The procedure to calculate σ2
D is shown in section 6. If the

values of σ2
D is zero it indicates the flow is in plug flow and if its one then flow is completely

mixed. Figure 12 shows the dimensionless variance plot for varying flow rate of phases

and at scaled down conditions. The results indicates similar dispersion/mixing behavior

of liquid phase in the bed as we observed with peclet plot (Figure 11). For packed bed
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Figure 12. The liquid dimensionless variance in catalyst bed of MBR for varying flow rate
of phases

the σ2
D is slightly increases with gas velocity, indicating gas phase doesnt have significant

effect on liquid dispersion/mixing at these conditions. At expanded bed condition the σ2
D

is increasing with increasing flow rate of both the phases. This indicates the dispersion or

mixing is increasing and going towards complete mixing in the expanded bed case and is a

direct function of bed expansion. The value of σ2
D is in the range of 0.3 to 0.52 indicating

noticeable deviation from plug flow behavior, asσ2
D value of around 0.1 or less is considered

to be in plug flow (Tang et al., 2004). Scaled down experimental condition shows a σ2
D

value of 0.33 showing high dispersion/mixing of liquid phase at these conditions, and at

these conditions the bed behaves as upflow packed with slight expansion, which is needed

for better catalyst utilization.

8. REMARKS

Liquid phase dispersion/mixing is successfully investigated for the first time in

the catalyst bed of upflow moving bed reactor (MBR) using residence time distribution

(RTD) studies. The catalyst bed is modeled using Wave Model (WM), and its dispersion

or mixing parameters (Dl and Pe) are estimated using a mathematical approach based
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on convolution and regression. A case study is also shown to illustrate the limitation of

Axial Dispersion Model (ADM) for modeling the liquid phase flow behavior in MBR.

In addition, a dimensionless variance (σ2
D) in the bed section is estimated using the first

moment (tm) and second moment (σ2) of the experimental RTD. The Dl result indicates the

liquid dispersion is not much affected by the increase in gas flow rate in packed bed region,

but in expanded bed regions Dl increases with increasing flow rate of both the phases and

is due to the increase in bed expansion with flow rate. Pe and σ2
D showed that overall

liquid dispersion/mixing is higher in MBR for all the operating conditions studied, but

mixing/dispersion is more in expanded bed and increases with bed expansion. The value

of Pe and σ2
D also indicates that the liquid flow is noticeably deviating from plug flow and

moving towards completely mixing with bed expansion. For hydrotreatment application

in MBR, scaled down conditions are preferable, as the Pe and σ2
D indicates high liquid

mixing, and moreover, at these conditions, the bed behavior is in upflow packed with slight

expansion at the top, which is a necessary condition for good catalyst utilization.
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ABSTRACT

Upflow Moving Bed Hydrotreater Reactor (MBR) is used in hydroprocessing to remove

metal impurities from the crude oil. The reactor at industrial scale is facing issues such as

coking and catalyst agglomeration in its catalyst bed, and these issues are directly linked

to the maldistribution of phases in the bed. Maldistribution itself is connected with the

performance of lower plenum of MBR in term of distribution of phases uniformly. In this

study, a 3-D axisymmetric Euler-Euler CFD simulation is performed on the lower plenum

of a pilot-scale MBR, at industrial scaled down conditions. The results indicate that the

current design of lower plenum is not performing well, as uneven phase mass distribution

is seen through its outlets. A modified design is proposed for the lower plenum and its

CFD simulation shows improved performance in terms of uniform phase mass distribution

through the outlets.

Keywords: CFD, Moving Bed Reactor (MBR), Bubble Column, Lower Plenum
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1. INTRODUCTION

Upflow moving bed reactor (MBR) is a hydrotreater and is a new technology in

guard reactor for hydrotreatment process. MBR is usually placed before the fixed bed

residual desulfurization process (RDS), as this reactor hydrotreates to remove heavy metal

from ressidum oil. These metals can reduce the life cycle of RDS process, and hence MBR

guard RDS from these metal impurities [(Kramer et al., 1994), (Scheuerman et al., 1993)].

MBR has a peculiar design as it has a catalyst bed with a conical bottom and upstream

to the bed is plena, which can be classified as lower plenum and upper plenum by. In

MBR, hydrogen and ressidum oil flows in a concurrent upward direction, it enters the lower

plenum by a deflector that has holes to spread the mixture of gas and liquid. At the top of

the lower plenum is the gas-liquid distributor that has complex internals to distribute the

gas and liquid to the upper plenum. The uppper plenum is packed bed type of distributor

having inert spheres to feed the phases to the catalyst bed through the conical bottom having

perforation small enough to avoid catalyst plugging.

At the industrial scale, this reactor is not performing at its best, and it is facing

drastic issues such as coke formation, catalyst agglomeration inside the catalyst packing of

this reactor, and this leads to the frequent shutdown of MBR itself. Which in turns affect

the overall hydrotreatment processes. Our previous studies conducted on the pilot scale

reactor of MBR using a two-tip optical probe to investigate local hydrodynamics, shows a

maldistributed state of the bed at the scaled down industrial condition. We observed various

locations inside the catalyst bed having liquid and gas derived region. At hydrotreatment

condition of high temperature and pressure, the liquid deprived region can create hot

spots (Absi-Halabi et al., 1991), and gas deprived region forms hydrocracking, hence coke

formation on the catalyst (Dudukovic and Mills, 2014). We also inferred that this kind of

maldistribution is directly linked with improper functioning of the lower plenum of MBR.
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The type of the gas-liquid distributor used for MBR consists of chimneys to create

a gas pocket underneath the distributor plate. These type of distributors are widely used in

hydrotreatment application for upflow gas-liquid reactors. [(Paul and Brian, 1984), (Bruce

et al., 1999)] showed that a gas pocket type of distributor is achieved by using a hollow

pipe called chimneys having a side hole on the lateral wall near the top region of chimney.

These chimneys are placed underneath the gas-liquid distributor plate assembly, where a

distributor plates having openings is the interface between the distributor and remainder

of the reactor. Multiple chimneys are attached to the openings of the distributor plate and

are placed such that the chimneys side holes are just below the distributor plates and are

facing toward the same direction. There are three possible scenarios for flow through the

chimneys, the first case; the liquid moves up the inlet hole of the chimney, and the gas

flowing in from the side holes blocks the liquid to move up, and only gas phase exits the

chimney outlets. The second case; the liquid flows up through the inlet hole of chimney

and gas flowing through the side holes mixes, and gas-liquid mix flows out of the chimney

outlet. The third case; both gas and liquid flows from both inlet hole and side hole of the

chimneys and mix of gas-liquid moves out of the chimney outlet. For proper functioning, a

single mix of gas-liquid needs to be ejected from the chimney outlet, which is seen in the

second and third case. (Robert and Frederick, 2003) observed for the plenum containing gas

pocket type of distributor and circular inlets at the bottom of the plenum, the majority of gas

flow towards the central region of the distributor, they came up with a deflector design and

placed it to obstruct the gas-liquid flowing to the central region and deflect it towards the

sides. Even with this deflector, they observed central region having more gas movement,

and they further designed and placed obstruction to block the inlet holes of the chimneys

at the central region of distributor. (Christophe et al., 2006) found the deflector inside the

plenum creates a movement of phases towards the distributor, which induces oscillation of

gas-liquid interface and can cause maldistribution. They came up with enclosed mixing

design, in which the gas pocket type of distributor is used inside the plenum, but the gas
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inlet is through the sides and at the top portion of the plenum. The liquid flow upward

from the bottom inlet of the distributor and flows through the chimney inlet holes and the

gas coming from the sides, moves lateral and enters the chimney side holes, the gas-liquid

mix is then ejected out of the distributor outlet. Lower plenum of MBR also incorporates

a gas pocket type of distributors having chimneys, and a different deflector design, detailed

explanation of design is given in section 3.

There are no studies available in open literature on the lower plenum of MBR. In

this study we implement CFD simulation to investigate the flow behavior inside the plenum

and investigate its performance based on phase mass distribution through its outlet to upper

plenum. This lower plenum is basically a bubble column with internals. The internals

in MBR lower plenum are deflector and gas pocket type of gas-liquid distributor and is

discussed in detail in section 3. There are lot of work in the area of bubble column with well

advanced flow models and closures [(Larachi et al., 2006) (Li et al., 2009)]. CFD modeling

approach in bubble column are Euler-Euler and Euler-Langragian [ (Zhang and Ahmadi,

2005) (Sommerfeld et al., 2008) (Deen et al., 2004) (Hu and Celik, 2008) (S et al., 2002)].

It is preferable to run a 3D simulation but literature shows lot of work in 2D simulation

and 3D axisymmetric simulations (Li et al., 2009), as these simulations are very useful

in evaluating time averaged flow parameters in both rectangular and cylindrical geometry

and even at lab and industrial scale reactors [(Ekambara and Joshi, 2003) (Bech, 2005)

(Joshi, 2001) (Sankey et al., 2009) (Krishna et al., 2000)]. Moreover these simulations are

computationally inexpensive compared to 3D simulations for similar CFD models.

In this study, a 3D axisymmetric Euler-Euler simulation is conducted on the gas-

liquid distributor of a pilot-scale moving bed reactor (MBR) using ANSYS-Fluent. Simu-

lation is carried at cold flow conditions, and the CFD model validity is confirmed with the

radial profile of line average gas volume fraction obtained from a radioactive experimen-

tal technique called gamma-ray densitometry (GRD). The simulation result shows uneven
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Figure 1. Schematic diagram of scaled down MBR setup for CFD studies

liquid mass distribution through the outlet of this distributor. A modified design is pro-

posed, and its CFD simulation shows improved performance in terms of uniform liquid

mass distribution through its outlet.

2. EXPERIMENTAL SETUP

The industrial moving bed hydrotreater (MBR) reactor is scaled down to pilot-plant

scale based on hydrodynamic and geometric similarity. The scaled down flow operating

condition is obtained by matching the LHSV and gas-liquid volumetric flow rate ratio with

the industrial operating condition. The schematic of pilot plant scale reactor is shown in

Figure 1. The reactor is a plexiglass column of height 118 cm and the internal diameter

of 29.7 cm; it is divided into three section by distributor plate and conical bottom. The

parts below conical bottom are called plena, and it is further divided into lower and upper

plenum. The lower plenum details are given in Section (3). The upper plenum is the
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Figure 2. Schematic diagram of lower plenum of MBR

compartment form conical bottom wall to upper plenum wall , and above the distributor

plate, and tightly packed with passive spheres. The conical bottom supports the catalyst

bed, and it has perforation along the lateral wall and at its bottom. The catalyst bed region

which is the cylindircal bed along with conical bed is filled with 3 mm catalyst (Table 1).

The gas and liquid phases are sent in a premixed manner to the inlet of the MBR and

the flowrate of these phases are controlled by gas and liquid rotameters. The premixed feed

enters the lower plenum and a single mix gas-liquid phase is ejected out through the lower

plenum outlets to the upper plenum. The working of lower plenum is explained in section

3. The incoming phases to the upper plenum is further distributed by the passive spheres

and is fed to the catalyst bed region through the perforations on the conical bottom. These

phases move upwards through the catalyst bed and through the outlet of MBR its sent to a

water tank which is open to atmosphere. The liquid collected in the tank is recycled. At

scaled down flow condition the catalyst bed behaves upflow packed with slight expansion

at the top. Experimental setup specification and operating conditions are shown in Table 1.
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Table 1. Experimental setup specification and operating conditions for CFD study

Parameters Value/Range Comment
Column Diameter 11 inch
Column Height 46.46 inch
Bed Height 24.8 inch Height from top

of the cone to the
top of the bed at
no flow rate

Catalyst 3 mm Diameter Bulk Density
(570 Kg/m3)

Scaled Down Liquid
Flow Rate

0.0175 cm/sec By matching
LHSV of indus-
trial and scaled
down reactor

Scaled Down Gas Flow
Rate

7.7 cm/sec By matching
Gas/liquid vol-
umetric flow
rate of industrial
and scaled down
reactor

3. LOWER PLENUM OF MBR

Figure 2 shows the schematic of the lower plenum of pilot-scale MBR. The lower

plenum contains of a deflector and gas pocket type of gas-liquid distributor, which is

assembly of 19 chimneys attached to the distributor plate, as shown in Figure 2.

The gas-liquid is premixed and enters into the lower plenum through the deflector.

The deflector is placed at the inlet of the lower plenum (Figure 2), and its specification are

shown in Figure 3a. This deflector has slots on the lateral wall, which shall push the phases

outward in an uniform way along the cross sectional plane towards the chimneys. The

chimneys are hollow cylinder having a side hole closer to one of its end, the specification of

chimneys are shown in Figure 3b. These chimneys are attached to the distributor plate having

19 openings arranged in triangular pitch, and its specifications are shown in Figure 3c. The
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(a) Deflector (b) Chimney

(c) Distributor Plate (d) Supporting Beams

Figure 3. Internals of lower plenum of MBR

chimney placement is such that the side holes are closer to the distributor plate and all the

chimneys side holes are facing in same direction. Now as per the design, this distributor

plate with chimneys assembly shall create a uniform gas pocket around the chimney side

holes at the scaled down experimental condition, and the gas-liquid mix coming from the

deflector shall well mix in the chimneys and eject as a single mix of gas-liquid spray through

its outlet to upper plenum of MBR (Figure 2). The distributor also has supporting beams

as shown in the Figure 3d.
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Table 2. Summary of the flow model and solution scheme

Multiphase Model Eulerian-Eulerian
Turbulence Model Realizable K-Epsilon (2 EQN)

Turbulence Multiphase model-per phase
Drag Model Schiller Naumann
Solution Methods Pressure Velocity Coupling-SIMPLE

4. CFD MODEL

Eulerian-Eulerian approach is used in this study. In this approach both the fluids

are considered as interpenetrating continua. Mass and momentum equations are solved for

each phase. Both the phases are interrelated by the interphase momentum forces like drag.

Both the phases are assumed as incompressible.

Continuity Equation: The mass balance of any phase (k) in a two phase (k, p) system

can be shown by the equation 1.

∂

∂t
(εk ρk) + ∇.(εk ρk®vk) = ( Ûmpk − Ûmkp) + Sk (1)

Where εk is the phasic volume fraction, ρk is the density, and ®vk are the velocity of

phase k. The right hand side terms are mass transfer terms, where, Ûmpk, Ûmkp characterize the

mass transfer from phase p to k and k to p, respectively, and SK is the mass generation term.

In our system for cold flow studies, mass transfer terms can be neglected. The resulting

form is equation 2.

∂

∂t
(εk ρk) + ∇.(εk ρk®vk) = 0 (2)

Momentum Equation: The force balance on any phase (k) in two-phase(k, p), is

represented by the equation 3.
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∂

∂t
(εk ρk®vk) + ∇.(εk ρk®vk®vk) = −εk∇(P) + εk ρk ®g + ∇.τk + Fkp (3)

k and p are liquid(l) and gas(g).

The right hand side of the equation 3 shows the forces due to pressure term, gravity,

viscous and Fkp is the interfacial forces, in this case we only consider drag force (FD). The

stress term of phase k is described by equation 4.

τk = −µe f f ,k(∇(®vk) + ∇(®vk)T ) −
2
3

I(∇.vk)) (4)

µe f f ,k is the effective viscosity due to the combination of molecular viscosity,

turbulent viscosity and viscosity due to bubble induced turbulence.

µe f f ,L = µI,L + µt,L + µBI,L (5)

Effective gas viscosity is based on the effective liquid visocity and is calculated

using the equation 6.

µe f f ,G =
ρg

ρl
µe f f ,L (6)

Interfacial moementum transfer due to drag force is accounted by equation 7.

FD =
3
4

CDεgρL
1
ds
|vg − Vl |(vg − Vl) (7)

The drag coeffecient CD is calculated using schiller nauman model (Schiller and

Naumann, 1935) as shown by equation 8.

CD =
24(1 + 0.15Re0.687)

Re
, Re <= 1000

CD = 0.44, Re > 1000
(8)
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Table 3. Boundary and operating conditions for the numerical simulation

Boundary Condition
Inlet Liquid Velocity 0.019256 m/sec

Gas Velocity 18.162525 m/sec
Gas Volume Fraction 0.3

Outlet Mixture Pressure 13789.5 pa
Wall No Slip

Operating Condition
Temperature Pressure Water (Primary Phase)
(273K) (101325 Pa) Air (Secondary Phase)

Where, Re (reynolds number) is given by Equation (9)

Re =
ρk | ®Vp − ®vk |dp

µk
(9)

5. NUMERICAL SOLUTION

The three dimensional CFD simulation is done for the gas-liquid distributor. The

model used in this simulation is summarized in Table 2. ANSYS-Fluent is used as a

simulation package, which is finite volume solver. The continuity and momentum balance

is solved for first order implicit methods for spatial and time discretization. The pressure

and velocity coupling is done using SIMPLE scheme.

A tetrahedral meshing is employed for the computational grid, with total mesh cells

of around 0.8 millions. The transient simulation were performed for the time step of 0.001

sec. The boundary and operating conditions of this study are shown in Table 3. The

convergence criteria is set to 0.001.
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Figure 4. Schematic diagram of GRD

6. VALIDATION OF THE MODEL

The CFD model used in this study is validated with a experimental technique called

Gamma-Ray Densitometery (GRD).

6.1. Gamma-Ray Densitometry (GRD). GRD is a radioactive and nonivasive

measurement technique. It is widely implemented in multiphase reactors to measure the

line avearge phase volume fractions, and its used as flow monitering device in industrial

applications [(Al-Dahhan et al., 2007), (Toukan et al., 2017)]. Figure 4 shows the schematic

of GRD, with its components; encapsulated radioactive source (Cesium-137) and lead

collimated Scintillating Detector (NaI(Tl)). The source and detector are aligned and the

photon emitted by the radioactive source is detected by the detector, which is translated to

photon count series using a multi channel analyzer (MCA). The amount of count received

by the detector varies based on the mixture density and the distance between the source and

detector. The detailed working principle of GRD is given by (Toukan, 2017). The source

and detector are properly aligned and in between is lower plenum (test section), the GRD

scanning is done along the radial location (Figure 5) and at the middle level of the gas liquid

distributor. The line average gas fraction is measured using the procedure of (Toukan et al.,

2017) from the GRD photon count signals.
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Figure 5. Radial location

6.2. Analysis Principle. The Gamma source of Cs-137 will eject gamma rays and

a detector detects the photon counts. The photon attenuation along the path was measured

based on Beer Lamberts Law. The intensity of photon attenuation transmitted through a

homogeneous material is expressed as follows.

I
Io
= e−µρl (10)

where I is detected radiation, Io is the incident radiation, µ is the mass attenuation

coefficient, ρ is the medium density, and l is the path length through the medium, if the

material is cylindrical then l is the chord length.

A new variable called A (ln( IoI )) is equal to integral sum of the attenuation through

the material along the beam path.

A = ln( I
Io
) = µρl (11)

Agls denotes the attenuation coefficient for a test section having three phase (gas, liquid,

and solid), and it shown by equation 12.

Agls = µgρglg + µlρl ll + µsρsls (12)
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Where, mass attenuation coefficients µg, µl , and µs, and densities ρg, ρl , and ρs, and

thicknesses lg, ll , and ls, for the gas, liquid, and solid phases, respectively. L is the total

length of the pixel of the test section through which gamma ray beam passes is shown by

equation 13.

L = lg + ll + ls, lg = εgL, ll = εl L, ls = εsL (13)

where εg, εl , and εs, are the line average holdup for the gas, liquid and solid phases,

respectively. Since the summation of the holdups equal unity (i.e. εg+ εl + εg =1) in each

line scan the attenuation of GRD scan for three-phase system (equation 14) can be written

as follows.

Agls = ln( Io

Igls
) = [µgρgεg + µlρl(1 − εg − εs) + µsρsεs]L (14)

6.3. Experimental Procedure for Line Average Phase Holdup Calculations.

The formula used to measure holdup distribution is similar as (Chen et al., 2001). The first

step before installing the test section is to scan with test section. This scan will give Io.

Scanning empty lower plenum: The photon attenuation in this case will be only due

to column wall and internal solids, which can be together called solids, and attenuation due

to solids will remain same as the position and size of solids are not changing for other GRD

scans. The attenuation in this case is as follows.

Ags = ln( Io

Igs
) = [µgρg(1 − εs) + µsρsεs,i]L (15)

µg is small compared to other phases hence the gas attenuation term can be neglected

from equation (15), and the resulting equation is as follows.

As = ln( Io

Igs
) = [µsρsεs]L (16)
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Scanning lower plenum filled with water: This will give attenuation (Al) due to

liquid and solids.

Als = ln( Io

Il
) = µlρl L(1 − εs) + µsρsεsL (17)

Scanning lower plenum with flow rates: In this case attenuation (Ag,l,s) is due to

gas liquids and solids, but gas attenuation are neglected and the resulting equation is shown

below.

Agls = ln( Io

Igls
) = [µlρlεl + µsρsεs]L (18)

Line average liquid holdup (εl) are estimated by following equation.

εl =
(Agls − Ags)
µl ∗ ρl ∗ L

(19)

Where mass attenuation coefficient of water (µl= 8.956 ∗ 10−2 gm/cm2), density of

water (ρl = 1 gm/cm3), and L is the chord length at particular line scan. The line average

solid holdup is obtained from equation 20.

εs = 1 −
(Als − Ags)
µl ∗ ρl ∗ L

(20)

The line average gas holdup (εg) is obtained by following equation 21.

εg = 1 − εl − εs (21)

6.4. Comparison of Experimental and Simulation Results. Figure 6 shows the

line average volume fraction of gas phase obtained from GRD and the average volume

fraction obtained from simulation results along the lines shown in Figure 5 for each radial

locations.
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Figure 6. Comparison of experimental and simulations result

Figure 7. Liquid volume fraction at plane-1 of the gas-liquid distributor

Figure 6 indicates that the results are closely matched with maximum error limit

within 18%, and it is also visible that the flow profile of both the results are similar. Hence,

on amacro level this CFDmodel is able to predict the flow profile in the gas liquid distributor

for the scaled down operating conditions.

7. RESULTS AND DISCUSSION

7.1. Volume Fraction Contour. Figure 7 shows the contour of liquid volume

fraction at the axisymmetric plane (plane-1) of the gas-liquid distributor for the experimental

scaled down condition. The dark red zones in the Figure 7 indicate high volume fraction of
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liquid and similarly dark blue zone implies the low volume fraction of liquid. It is clearly

visible that there is gas pocket formation at the top of the distributor around the side holes

of chimneys, with fountain shape flow movement of the liquid phase at the central region,

and also liquid upflow through the main holes of the chimney inlet.

At scaled-down experimental condition the flow rate of the gas phase in extremely

high compared to the liquid flow rate (Table 1). This indicates that the disperse gas phase

may be guiding the liquid phasemainly around the central region of the gas-liquid distributor.

Basically, this is a bubble column reactor with internals and in these systems disperse phase

(air) guide the flow of continuous phase (water) (Dudukovic, 2010). The Figure 7 also

shows that the gas is moving only around the deflector in an upward direction and spread

along the cross-sectional plane as moving towards the top region and clear demarcation of

gas and liquid boundaries inside the distributor.

This particular flow pattern of gas is not good in terms of even mass distribution

through the outlet of the chimneys to the upper plenum region. As on carefully examining

the area of chimneys from the side hole to the outlet in Figure 7. It is observed an unveven

distribution of mass through each chimneys, with largest mass of liquid flowing out from

the second chimney from the left side. It is due to the fountain shape of flow movement

and orientation of chimney side hole facing towards one side. Hence, it indicates uneven

mass distribution radially at the axisymmetric plane. It creates a doubt about the mass

distribution through outlets of all the chimneys, and to examine this a mass fraction profile

is obtained for all the chimney outlets.

7.2. Liquid Mass Distribution at the Outlet of Chimneys. Figure 8 shows the

designation of chimney outlet based on its position, all the blue dots show the chimney outlets

thought which gas-liquid mixture exits the distributor and enters to the upper plenum region.

Level 1 represents the plane at the axisymmetric plane, level-3 and level-2 represent the

plane towards the wall region and the plane in between respectively. Figure 9 shows themass

fraction of liquid through each chimney outlets, and each outlet is designated by its location
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Figure 8. Designation of chimney outlet

Figure 9. Mass fraction of liquid at the chimney outlet

at particular plane (level), and radial distance (r/R; r represents the distance from the center

of gas-liquid distributor to the distance of the chimney if it falls on the axisymmetric plane

or level-1, and R is the inner radius of the distributor). For example, level-2 and r/R=-0.63

indicates the first blue dot or chimney outlet from the left at the middle plane. Mass fraction

of each chimney is the ratio mass flux through each chimney outlet and summation of mass

flux through all the chimney outlets.

Figure 9 clearly indicates an uneven mass distribution of liquid through the outlet

of chimneys. With a maximum liquid mass fraction of around 25% from the chimney at

level-1 and r/R=-0.5. The similar observation is also seen from the liquid volume fraction

contour (Figure 7). The mass fraction at chimneys in the plane at wall region (level-3)
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Figure 10. CAD model of new design

Figure 11. Deflector location in new design

is less than 5% indicating very low liquid movement through these outlets. These results

show that this present design lower plenum does not qualify as a good distributor. As the

best performance of plenum is characterized by its uniform flow distribution through its

outlets [(Li et al., 2009) (Christophe et al., 2006)]. This uneven distribution behavior of

lower plenum is mainly due to fountain shape flow movement of liquid and gas phase as

seen in Figure 7, and this flow movement is due to the deflector design (Figure 3a), which

pushes the gas only around the deflector region. If we properly utilize this phenomenon of

the deflector, then overall liquid mass distribution can be improved.
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8. MODIFIED DESIGN OF LOWER PLENUM

It is observed from simulation result for the previous design of the lower plenum

(section 3) that the deflector (Figure 3a) is major reason for the under-performance of the

distributor in terms of even liquid mass distribution through the outlets of the distributor.

We observed a fountain shape of flow movement of gas phase due to deflector which in turn

is pushing more liquid along the fountain region. Keeping this in mind we proposed a new

design for this kind of lower plenum.

Figure 10 shows the axisymmetric CAD model of the new distributor. It has a

deflector which is similar in shape but scaled down to 1/4th in terms of size compared to

previous deflector design, presuming this reduction in size may reduce the fountain shape

compared to the previous design. The number of deflectors has been increased to four

and are placed at the locations as shown by Figure 11. We presume that multiplication of

deflector generates four small fountain shape inside the distributor, which may improve the

overall liquid mass distribution through the outlet of distributor. The gas pocket type of

gas-liquid distributor having chimneys and distributor plates assembly are same as that used

in the previous lower plenum design.

8.1. CFD Model and Numerical Solution for New Design. In this case too the

modeling scheme employed is similar with the old design. The model used for this study

are shown in Table 2 and the operating and boundary condition are shown in Table 3.

Numerical scheme is also similar. A tetrahedral meshing is employed for the computational

grid. The total mesh cells are around 2.2 million. The transient simulation were performed

for the time step of 0.001 sec.
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(a) Liquid Volume Fraction Contour New
Design

(b) Liquid Volume Fraction Contour New
Design

Figure 12. Comparison of liquid volume fraction of new and old design

9. COMPARISON OF OLD AND NEW DESIGN

9.1. Comparison of LiquidVolumeFraction. Figure 12a shows the liquid volume

fraction contour of the new design and Figure 12b shows the liquid volume fraction contour

for the old design at the axisymmetric plane (plane 1-Figure 7). The overall flow distribution

of phases is seen much better in the new design. It is mainly due to the smaller size of

the deflector, which produces a smaller fountain shape and its influence with the nearby

fountain of another deflector try to stabilize the overall flow pattern.

On examining the area from the chimney side hole to the chimney outlet, the liquid

distribution in the new design is seen much even compared to the previous design. It

indicates the liquid mass distribution is improved at the axisymmetric plane, but to see

the overall performance of new design, mass fraction through all the chimney outlets are

calculated.

9.2. Comparison of Mass Distribution at Outlet. Figure 13a shows the mass

fraction profile through chimney outlets for new design and Figure 13b shows the mass

fraction profile for old design. Level and r/R in Figure has the same meaning as explained

in section 7.2. The results indicates improved performance of new design compared to old

one. With mass fraction variation through all the chimney outlets of new design is in the
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(a) Mass fraction profile New Design (b) Mass fraction profile of old design

Figure 13. Comparison of mass fraction profile of new and old design

range of 5% to 13%, whereas in the old design there is drastic variation in the range of 3%

and 25%. For the new design also lesser mass movement is seen at level-3 (plane at wall

region), but these mass distribution is much more compared to old design. Hence, overall

the distribution of liquid through chimney outlets is improved with the new design. These

improvements can be solution for some of the maldistribution issues faced by MBR in the

bed region, and can improve the overall performance of MBR.

10. REMARKS

Performance evaluation of a lower plenum of pilot-scale MBR, is performed using

CFDsimulation. Performance evaluation parameterwas the liquidmass distribution through

the outlets of the lower plenum. The internal of the lower plenum includes a deflector and

19 chimneys which are attached to the distributor plate, and this plate is the outlet boundary

of lower plenum. The CFD simulation is performed using 3-D axisymmetric Euler-Euler

simulation for the experimental scaled down condition. The simulation results indicate gas

pocket formation along the chimneys top area (below the distributor plate) covering the

side holes and with clear demarcation of gas-liquid phase inside the distributor. This kind

of gas pocket formation is due to the chimney design. It is also seen that this gas pocket

is not uniform along all the chimneys and the reason is due to the flow pattern created
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by the deflector. The deflector design is seen to create a fountain type profile along the

central region of the distributor, which can create uneven mass distribution through the

outlets of the distributor. The results of mass fraction profile of liquid going through the

chimney outlet of lower plenum shows a majority of liquid mass moving out through one

chimney located in the central region and overall uneven mass distribution. A new design

of lower plenum is proposed, where chimneys design is not altered but a new deflector is

used which is similar in shape with the previous deflector but its size is reduced to 1/4th,

and total four deflectors are used in the new design. These four deflectors are placed at

inlet location of lower plenum. CFD simulations are performed on the new design with the

similar flow model, boundary and operating condition as that of previous one. The liquid

mass fraction profile based on the liquid flowing out from the new design indicates a much

even distribution of liquid compared to the previous design. The new distributor design can

improve the flow distribution through its outlet and hence flow distribution improvements

can be seen in the catalyst bed section of MBR, which may solve some of the drastic issues

in that region of MBR.
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SECTION

2. SUMMARY, CONCLUSIONS, AND RECOMMENDATION

2.1. SUMMARY AND CONCLUDING REMARK

Upflow Moving Bed Hydrotreater (MBR) reactor is an integral part of hydrotreat-

ment process, as it is used as a guard reactor to fixed bed residual desulfurization (RDS)

unit. MBR hydrotreats heavy crude or residuum oil to remove unwanted metal contents,

which can reduce the life cycle of RDS process. The MBR is a new technology in guard

reactor, and its specialty is its conical bottom bed which facilitates removal of the spent cat-

alyst during the operation. In effect, it reduces the shutdown time of entire hydrotreatment

process. MBR design also includes lower plenum which consists of deflector, chimneys,

and distributor plate and upper plenum which is a packed bed type of gas-liquid distributor.

MBR at industrial scale is facing drastic issues such as coking, hot spots, and catalyst

agglomeration inside the packed bed of MBR. Eventually it leads to emergency shutdown

and the anticipated cause of these problems are improper hydrodynamics (phase flow dis-

tribution and mixing ) inside the packed bed. There are no previous hydrodynamic studies

available in the open literature on MBR. Hence, the overall objective of this study is to do

the hydrodynamic evaluation of scaled down MBR which is achieved by following.

An industrial scale MBR is scaled-down to pilot-scale by matching geometric and

dynamic similarity. The pilot-scale MBR reactor is successfully commissioned and under

operation at Multiphase Reactors Engineering and Applications Laboratory at Missouri

S&T. The present pilot-scale MBR is capable of conducting cold flow studies, but modifi-

cations are needed to employ it for hot flow studies. We investigated the hydrodynamics by

developing experimental methods and systems for the pilot scale MBR.
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Improper local hydrodynamics inside the packed bed is the key factor for the major

issues (coking, agglomeration, etc.) of MBR. Hence, to investigate and quantify local

hydrodynamics, an invasive experimental technique called Two-Tip Optical Probe (TTOP)

is implemented at various radial and axial locations inside the bed for industrial scaled down

operating condition. Developed method (algorithm) to obtain local phase saturations, local

phase velocities, local backmixing, and local maldistribution form the time series signal of

TTOP. This study shows a highly maldistributed state of the bed, with local zones having

gas or liquid deprived regions, these regions are prone to coking or catalyst agglomeration

at hydrotreatment condition. Also, on comparing the radial phase saturation below and

above the conical bottom shows that cone is not translating the flow profile generated by

the lower plenum (gas-liquid distributor) to the bottom of the bed. Instead, it is seen to

push the gas towards side walls. In terms of local maldistribution, the bottom part of the

bed or tightly packed zones shows less maldistribution, or it means the maximum catalyst

utilization occurs at these zones compared to higher axial levels, where the bed slightly

expands.

Gas and liquid dispersion/mixing are essential performance parameter of MBR,

as it directly affects the mass transfer and hence the yield. The overall phase mixing is

investigated inside the bed using residence time distribution (RTD) concept. A gas tracer

and liquid tracer experimental facility are developed for pilot-scale MBR to obtain RTD

signal for gas and liquid respectively from two-phase gas-liquid upflow. Amultiple injection

(inlet of MBR, below the catalyst bed, and above the catalyst bed) and one detection (at

the outlet of MBR after mixing cup) method is followed for gas phase, and two injection

(below and above the catalyst bed) and one detection (outlet of MBR after mixing cup) for

liquid phase. The obtained RTDs of phases are evaluated using a methodology based on

convolution, regression, and catalyst bed model (ADM-for gas phase, and Wave Model-for

liquid phase) and estimated model parameters (D, Pe) for each gas and liquid phase. These

parameters quantify gas and liquid mixing inside the bed. These studies are conducted
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for varying flow rate of phases including the scaled-down experimental condition. Gas

dispersion/mixing studies results indicate the operating conditions where the bed in overall

sense behaves as packed or expanded. The gas dispersion/mixing is seen good in a packed

bed region and even at scaled-down experimental condition where the bed is in packed

bed state with slight expansion at the top. Liquid mixing studies show that liquid behavior

in the bed is largely deviating from plug flow, and in expanded bed, the liquid mixing is

much more, but even in the scaled-down experimental condition the liquid mixing is seen

quite high. It is needed that bed to be in packed bed state for better catalyst utilization as

seen from local hydrodynamic studies and for good gas mixing. Hence the liquid and gas

scaled-down experimental conditions are suitable for hydrotreatment applications.

Lastly, the performance of lower plenum of pilot-scale MBR based on mass distri-

bution is evaluated using 3-D axisymmetric CFD simulation. The results indicate that the

present configuration of the plenum is not performing well in terms of even phase mass

distribution through its outlet to upper plenum and is due to its deflector design. A modified

deflector arrangement is proposed for lower plenum and conducted CFD simulation using

similar flow model, operating and boundary conditions as used for the previous design.

The results show a much even distribution of phases in the new design compared to the

old design of the lower plenum. This improvement can solve some of the maldistribution

issues seen the packed bed region of MBR. Hence, it can improve the overall performance

of MBR

2.2. RECOMMENDATION

Taking all the results into consideration, a new design of MBR can be proposed.

From CFD study, we have proposed a new design for the lower plenum showing improved

performance. We recommended utilizing this lower plenum for the new design. It is

also seen from the local hydrodynamic study that conical bottom is one of the factors

creating maldistribution inside the bed. Hence, the new design needs either removal of
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conical bottom completely, or a different bottom design for catalyst support and this support

shall also have the provision to remove spent catalyst. Another criterion to take into

consideration while designing these catalyst support is that it shall exactly translate the flow

profile generated by the lower plenum to the catalyst bed region. The current operating

condition can be followed for new design, as based on phase mixing studies at scaled down

conditions, we observed an overall good gas and liquid mixing and bed behavior as upflow

packed bed with slight expansion at the top.

All proposed new design of MBR needs experimental validation at pilot scale using

the developed experimental method in this study, to see whether there is an improvement

or not with the current design. It is also highly recommended that additional experimental

investigation using single-source or dual-source computed tomography (CT/DSCT) and

radioactive particle tracking (RPT) are needed to investigate 3-D phase distribution and

particle movement inside the catalyst bed, which are major factor affecting the performance

of this reactor.

The best design of MBR needs scaling up, and one of the recommended scaling up

strategy is to enable CFD as scaling up tool. The experimental results obtained from these

sophisticated measurement techniques can be converted to dimensionless parameters, and

a CFD model can be developed for smaller-scale design and validated for these parameters.

The validated CFD model can be applied to higher-scale design and identifying flow pa-

rameters through simulations to obtain similar dimensionless number having values close

enough to the smaller scale design.
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SCALING DOWN PROCEDURE
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The general principle followed in this scale downoperation is tomatch hydrodynamic

and similarity between the commercial and industrial MBR reactor.

SCALED DOWN OPERATING PARAMETER OF PILOT SCALE MBR

Scaled Down Lab Scale Liquid and Gas Flow Rate: To calculate liquid flow rate,

the Liquid hourly space velocity (LHSV) is kept same between the commercial and lab

scale models, to find the gas flow rate, H2 to oil volumetric flow ratio of commercial unit is

equated to gas to liquid volumetric ratio of lab scale.

• LHSV=Volumetric Liquid Flow Rate/ Catalyst Volume

• Catalyst Volume= Weight of Catalyst/ Compacted Bulk Density

• Weight of Catlayst Used in Lab Scale= 30 kg, and Bulk Density of Catlalyst= 570

Kg/m3

• Lab Scale Liquid Volumetric Flow Rate= 0.173 gallon/min

• Lab Scale Gas Volumetric Flow Rate= 595.228 standard ft cube per hour (SCFH)

• Lab Scale MBR Reactor Inside Diameter is selected as 11 inch.

Principle Behind Number of Holes and Hole Diameter in the Internals of Pilot

ScaleMBR: The calculation of number of holes in the internals lab scale reactor is based on

matching Hydrodynamic similarity, and is done by matching drop pressure through internal

same in both the refinery scale and lab scale identical. The equation of the drop pressure

which is used in this calculation is expressed as follows

4P =
U2 ∗ ρ f luid

C ∗ 2
(A.1)

U =
Q
A

(A.2)
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Figure A.1. Schematic of pilot scale cone

Whereas, 4P is pressure drop, U is superficial velocity, ρ f luid is the density of the

fluid, C is a coefficient equal to 0.64, A is cross sectional area, and Q is volumetric flow rate

INTERNAL-CONE

Cone Dimension: Figure A.1 shows the cone dimension of lab scale MBR. Top

diameter of the cone is selected as 10 inch. Height of the cone is 7.15 inch, and is obtained

by matching the aspect ratio (Top Diameter/Height) with industrial cone. Slant height of

the cone is 8.2503 inch and is obtained by keeping the slant angle same between the lab and

industrial cone. Bottom Diameter is 1.74 inch, and is obtained using Pythagoras theorem,

slant height and top diameter of the reactor

Methodology to calculate the number and diameter of holes in the cone:

• Consider liquid and gas pass through the cone.

• Assume the density of the liquid and gas is identical in both refinery and lab scales.
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For refinery:

• Add the volumetric flow rate of liquid and gas to get the total volumetric flow rate of

the fluid Qtotal (The volumetric flow rate of the liquid and gas is known)

• Find the volumetric flow rate passing one hole by dividing the total volumetric flow

rate of the fluid to the total number of hole. (Total number of holes are known)

• Find the area of the one hole. (the diameter of one hole is known)

• Equate the drop pressure equation for refinery and lab scales. All term in the equation

will be canceled only the superficial velocity will be remained.

• Find the superficial velocity of the fluid passing one hole by divided the volumetric

flow rate of the fluid passing one hole to the area of one hole.

For lab:

• Total volumetric flow rate of fluid (gas+ liquid) is known.

• Assume number of hole in order from 1 to 800. Then divide the total volumetric

flow rate to the number of hole. For example total volumetric flow rate of fluid is

16.895m3/h and number of hole 1, the volumetric flow rate passing one hole become

16.895/1 = 16.895 m3/h if number of hole 2, the volumetric flow rate passing one

hole 16.895/2 = 8.4475 m3/h, and so on.

• Because of the delta P equation is equated for refinery and Lab scales, superficial

velocity of the refinery and the flow rate of one hole in the lab is calculated then the

area of one hole in the lab can be calculated by dividing the volumetric flow rate

passing one hole in the lab scale to the superficial velocity of the refinery scale.

• After the area of the one hole in the lab is calculated, the diameter of one hole can be

calculated by the equation Diameter (D)= 2
√

4 ∗ areao f onehole)/π
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• At each number of holes for the lab scale was assumed the flow rate of one hole and

diameter of hole will be calculated.

• To confirm the results of the total flow rate: multiply number of hole assumed into

the volumetric flow rate of one hole to give the total flow rate of the fluid.

• To confirm superficial velocity of fluid passing one hole for both lab and refinery

scales are equal: divide volumetric flow rate passing one hole to the area of one hole.

• Select reasonable number and diameter of holes of the cone in the lab scale.

• To calculate the pitch between the holes. The AutoCAD software was used. The

pitch was assumed and the radius of each will measure at different levels. The radius

of the cone will decrease from the top to the bottom and the distance between two

radius levels is the assumed pitch value. Then the equation (π*radius)/pitch value

was used to calculate number of hole in each radius level.

• The summary of the design and the drawing of cone of the lab scale are shown the

Figure A.1.

INTERNAL-SKIRT

Lab Scale Skirt Design Calculation:

• Length of skirt= Arbitrary length(X) + Length of the skirt exceeding the bottom part

of cone (Y)

• X= sin60* (slant height/2) => 0.86*(8.25/2)= 3.5475

• We have taken (Y) as equal to 0.5 inch

• Length of skirt= 3.5474+0.5= 4.06 inch

• Number of Skirts=2
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Figure A.2. Schematic of pilot scale skirt

• Distance Between skirts along the slant height= 4.125 inch

INTERNAL-BOTTOM CONE CIRCLE

Methodology to calculate Number of Holes in bottom cone circle:

• Consider that gas and liquid pass through the bottom of cone plate.

• The calculation number of holes in the lab scale for the bottom of the cone in the

reactor is based on the dynamics similarity and makes drop pressure in both the

refinery scale and lab scale identical.

• Assume the density of the liquid and gas is identical in both refinery and lab scales.

• The methodology for calculation the number of holes in the bottom of the cone is

same as the methodology shown in the cone section. The procedure will not be

repeated.

• The AutoCAD software was used to estimate the equal distance between the holes.

• The summary of design results and drawing of the design is shown below.
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Figure A.3. Schematic of pilot scale bottom cone circle

INTERNAL-DEFLECTOR

Diameter of deflector in lab model:

• Keeping (diameter of Column commercial/ Diameter of Deflector commercial )=

(Diameter of Column Lab / Diameter of Deflector lab )

• So Diameter of deflector= (11* 27/223) = 1.331 inch

• The diameter comes out to be very small so we doubled the diameter and now the

diameter becomes 2.662 inch

Height of the deflector in lab model:

• Keeping (diameter of deflector commercial/ Height of Deflector commercial)= (Di-

ameter of Deflector Lab / Height of Deflector lab)

• Height of the deflector= ( 2.662* 11.7)/27= 1.15 inch

Diameter of slot in lab model:

• Keeping (diameter of deflector commercial/ Diameter of slot commercial )= (Diam-

eter of Deflector Lab / Diameter of slot lab )
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Figure A.4. Schematic of pilot scale deflector

• Diameter of slot= (2.6*2)/27= 0.2 inch

Number and the height of slots in lab model:

• Consider that gas and liquid pass through the bottom of cone plate.

• The calculation of number of holes in the lab scale for the bottom of the cone in

the reactor is based on the dynamics similarity and makes drop pressure in both the

refinery scale and lab scale identical.

• Assume the density of the liquid and gas is identical in both refinery and lab scales.

• The methodology for calculation the number of slots in the deflector is same as the

methodology shown in the cone section. The only difference is the number of slot

will be assumed instead of the number of holes and

• To find the height of the slot in lab scale, the diameter of the slot will remain fixed.

The volumetric flow rate of fluid passing one slot calculated in lab scale divided to

the superficial velocity of the refinery for one slot to find the area of one slot. Then

length of one slot in lab scale will be calculated from the equation Lslot=(Area of the

one slot-(3.14*D2)/4)/D
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Figure A.5. Schematic of pilot scale distributor

• Select proper number of slots

• The AutoCAD software was used to estimate the equal distance between the slots.

• The summary of design results and drawing of the design is shown below.

INTERNAL-DISTRIBUTOR

To find number of hole and pitch in distributor:

• Consider passing gas and liquid through the hole of distributor (chimney)

• The calculation number of holes of the lab scale for the distributor plate in the reactor

is based on the dynamics similarity and makes drop pressure in both the refinery scale

and lab scale identical.

• Assume the density of the liquid and gas is identical in both refinery and lab scales.

• The methodology for calculation the number of holes in the bottom of the distributor

plate is same as the methodology shown in the cone section. The procedure will not

be repeated.



133

Figure A.6. Schematic of pilot scale chimney

• The AutoCAD software was used to estimate the equal distance between the holes

(pitch).

• The summary of design results and drawing of the design is shown in Figure A.5.

INTERNAL-CHIMNEY

• The chimney is a hollow pipe having inlet and exit holes, with additional holes on the

side of pipe wall below the exit holes.

• The inlet hole is same as the diameter of the distributor hole, and the exit hole of

chimney are slightly lesser the inlet size, and the exit holes side screws into the

distributor (Figure A.5) holes.

• The number of chimneys are equal to the number of holes of distributor

• The length and the side hole diameter of the chimney are calculated based on an

equation (Proprietary and will not be discussed), to have a good pocket of gas around

the chimney side holes, while operating under scaled down condition.

• Figure A.6 shows the schematic of scaled down chimney.



APPENDIX B

THE PROCEDURE TO DETERMINE LOCAL HYDRODYNAMICS USING TTOP
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Figure B.1. Raw signal obtained from two-tip optical probe

RAW SIGNAL OF TTOP

The signals of two-tip optical probes are shown in the Figure B.1. The graph

illustrates the time-series signal received from the both the tips. The y-axis represents the

voltage generated and the top-band values having higher voltage represent the time of gas

phase on tip surface and similarly the bottom band values shows the time of liquid on the tip

surface. From the time series signal shown in the Figure B.1 different local hydrodynamic

parameters are measured using developed algorithm. The procedure to measure local

gas/liquid saturations and local gas/liquid velocities are also shown in (Abdul Rahman,

2017).

The total measurement time for one set of experiment is 52 seconds, in this duration

approximately 3,000,000 signal data points are generated. It is hard to visualize the whole

set of data in one frame. Hence, total data points are split into different frames with each

frame containing 100,000 data points. Then the data points are converted to sampling time

based on the sampling frequency, and each frame which is part of one set of measurement

will represent different time slots as show in Figure B.2
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(a) (b)

Figure B.2. (a) Raw time series data of the frame between 17.5 sec and 20 sec (b) Raw time
series data of the frame between 20 sec and 22.5 sec

(a) (b)

Figure B.3. (a) Filtered time series data of the frame between 17.5 sec and 20 sec (b)
Filtered time series data of the frame between 20 sec and 22.5 sec

FILTERED SIGNAL OF TTOP

The raw signal has noises associated with it as seen in the Figure B.2. These noises

are mostly due to electronics of data acquisition (DAQ) ports. It is reduced by designing a

low pass filter and passing the raw signal through it. Figure B.3 shows the filtered signal.

NORMALIZING OF FILTERED SIGNAL

The filtered signal is normalized for clear cut demarcation of gas and liquid bands.

It is accomplished by assigning a threshold voltage value above which all signals are

considered gas phase and below are considered as the liquid phase. The gas phase will
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(a) (b)

Figure B.4. The histogram plot of raw signal; (a) for the upper probe (b) for the lower probe

be assigned value one and liquid phase will be assigned value of zero. The histogram

plot of raw signal is generated to obtain threshold voltage value. Figure B.4 represents

the histogram plot of both upper and lower probe signal and each probes signal has two

peaks. The peak on the left represents the liquid phase, and the peak on right represents gas

phase. These peaks shape varies, and the number of occurrences varies based on the flow

conditions. In the case shown in Figure B.4 the number of occurrences of the liquid band is

more as compared to gas bands. The threshold voltage value is taken as the voltage at which

the peak of liquid region drops. In Figure B.4a for the upper probe signal the threshold

voltage value is 1 and similarly in Figure B.4b the threshold voltage value for the lower

probe is 1.2. The threshold values are changed from 1 to 1.5 in upper probe signal and 1.1

to 1.5 in lower probe signal and minimal variation in results are seen. For standardization,

the voltage at which the first drop for the liquid region is observed is taken as the threshold

voltage.

Figure B.5 represents the normalized signal, and all the gas bands are assigned value

of one and liquid bands are allocated value of zero. The normalized signal will give the

exact time when the gas bubble touches the tip of the probe and the exact time when it

leaves the tip of the probe.
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(a) (b)

Figure B.5. Smoothed signal of filtered data of two-tip optical probe; (a) for time frame
17.5 sec to 20 (b) for time frame 20 sec to 22.5

DETERMINATION OF LOCAL GAS AND LIQUID SATURATION

Local Gas Saturation: It is the local gas holdup concerning the gas-liquid mixture

present in the catalyst void space for a two-phase flow through packed bed system. It is

defined as the fraction of volume occupied by the gas in the catalyst void space where there

is flow of gas-liquid phase.

εg(s),local =
Vg,local

Vg,local + Vl,Local
(B.1)

The ergodic hypothesis says that the ensemble average is equivalent to time average,

spatially volume time average can be replaced by time average holdup. Hence, time average

holdup is the ratio of time spent by gas on the probe tip surface by the total measurement

time when gas or liquid phase are on the probe tip surface.

εg(s),local =
tg

tg + tl
(B.2)
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Local Liquid Saturation: It is the local liquid holdup with respect to gas-liquid

mixture within the catalyst void space of packed bed reactor. The summation of local

saturation of both phases in the void space should be one as the probe only detects the

flow of gas or liquid phase in the measured region. Hence, to obtain local liquid saturation

subtract local gas saturation from one.

εl(s),local = 1 − εg(s),local (B.3)

The usage of the optical probe in measuring local gas and liquid holdup was done

by (Wang et al., 2003) in a fluidized bed and (Xue et al., 2008) in a bubble column. They all

used the ergodic hypothesis to determine the local holdup of phases. In packed bed reactor,

the same procedure is applied, but the obtained values are not local holdups but rather local

saturations. It is because the tip in the void space of packed bed only senses gas or liquid

phase and quantifies the amount of time spent by gas and liquid phase in this regions. The

solids are not moved and are not detected by these probes. The wetting factor in local void

space is directly proportional to local liquid saturation.

The smoothened signal is used to calculate local gas and liquid saturation. The total

time is calculated when the signal value is one. This time and the total measurement time

is fed to Equation B.2 to calculate local gas saturation. Then using local gas saturation in

Equation B.3 to calculate local liquid saturation.

DETERMINATION OF LOCAL GAS AND LIQUID VELOCITIES

Local Gas Velocity: The two-tip optical probe is designed in such a way to obtain

local phase velocity. The velocity as by definition is the distance traveled divided by the

time taken to travel that much distance. In our case the two tips are placed at a distance
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Figure B.6. Schematic of probe response of two-tips of optical probe

of 1 mm and so the only requirement here is to determine the time taken by the bubble to

travel this distance between the tips. Figure 14 shows the schematic of probe response to

illustrate local velocity calculations.

The two tips are categorized as lower and upper based on their geometrical orienta-

tion. In the above case, the tip 2 is the lower as it is placed below tip 1. tla is the time when

a bubble first touches the lower probe or tip 2, and tua is the time at which the same bubble

touches the upper probe or tip 1.

The time difference (tla-tua) or (tua-tla) will give the time taken by the gas bubble to

travel 1mm, which is the distance between two tips. Hence the local gas velocity is given

as:

Vg,local =
1mm

tla − tua
or Vg,local =

1mm
tua − tla

(B.4)

For gas-liquid upflow through packed bed (tua − tla) , and for downflow (tla − tua) is

used in equation B.4 . When the gas-liquid flow is in the opposite direction to general flow

negative time difference values are observed.

Local Liquid Velocity: To measure liquid velocity the time taken by the liquid to

travel the distance between two tips is calculated. As the interested measurement zone only

has gas and liquid phase. Hence, it means that as soon as the gas departs from the tip, the

liquid will arrive or the difference between departure times of gas bubble will give the time
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taken by the liquid to travel the distance of 1mm. From Figure B.6 tld and tud is the time

at which the gas bubble departs from the respective tips of the probe. Hence local liquid

velocity can be given as:

Vg,local =
1mm

tld − tud
or Vg,local =

1mm
tud − tld

(B.5)

Here also if the general direction of gas-liquid phase is upflow then (tud − tld) or in

case of downflow (tld − tud) is considered in equation B.5. Normalized data as shown in

Figure B.5 is used to determine the local velocity parameter of phases, as smoothed data

clearly demarcates the gas and liquid region by the voltage value of one and zero. As seen

in the equation B.4 and B.5, to obtain local velocity we need the time of arrivals and time

of departures of the bubble in both the tips. To find the arrival and departure time of bubble

an algorithm is developed as part of the method to track the transition of the voltage value

from zero to one in the entire smoothed time series, and this gives us the time of arrival

of bubbles. Similarly, the developed algorithm tracks the transition from one to zero to

determine the time of departures of bubbles. The complication here is to select the same

bubbles which touch both the tips to determine local velocity, as there is the possibility of

bubble deviation due to the local force field. Signal selection criteria are to be set to filter out

the tracked bubble which can give us the local velocities. In work done on bubble column

using the optical probe, (Magaud et al., 2001) followed acceptance-rejection algorithm of

(Aloui and Souhar, 1996) on the selection of signals to detect the bubble velocity (Figure

B.7). The acceptance-rejection algorithm works on the assumption that the bubble chord

length is larger than the distance between two tips. The other criteria is to match the signal

using Autocorrelation or Correlation function, which matches the signal in an time averaged

way rather than putting an actual limiting criteria, and it may not work in two-phase packed

bed reactors.
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Figure B.7. Detected bubbles and validation test: (1) accepted, (2) rejected, (3) rejected,
and (4) rejected ((Magaud et al., 2001),(Aloui and Souhar, 1996)

Figure B.8. Selection criteria for local gas velocity calculation in two-tip optical probe;
bubbles similar to green circled are accepted and bubbles similar to black circled are rejected

Hence, a new criterion is developed in which all the tracked bubble are filtered

out through a condition that the absolute time difference of time of arrivals and time of

departures of both the tips shall fall below certain threshold time-limit. This time-limit is

determined at the lowest flow rate of phases, all the tracked bubbles at these conditions are

visually analyzed and maximum time difference when the same bubble touches both the tips

are measured. This maximum time difference value is the threshold time-limit. The tracked

bubble which is not falling in this time-limit is not considered for velocity calculations. It

is assumed that the for higher flow rates the same bubble which touch both the tips shall fall

below threshold time limit.
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Figure B.9. Selection criteria for local liquid velocity calculation in two-tip optical probe;
bubbles similar to green circled are accepted and bubbles similar to black circled are rejected

As shown in the Figure B.8, the bubble similar to as circled in green is selected to

find local gas velocity, as the time difference of arrivals of the same bubble in both the tips

falls below the threshold time-limit. Bubbles similar to as circled in black does not satisfy

the selection criteria; hence they are rejected from velocity calculations. Similarly, in Figure

B.9 the bubble similar to as circled in green is selected to find local liquid velocity as the

time difference of departures of the same bubble in both the tip falls below the threshold

time-limit. Bubbles similar to the black circled one are rejected in this case for failing to

match the selection criteria.

Additionally, the developed method will make sure that even under the threshold

time-limit conditions no bubbles are repeated. It means all matched bubbles for velocity

calculation will have a unique time of arrivals or time of departures, such that no two sets of

matched signal have a common time of arrival or departure. Time of arrivals and departures

of matched signal obtained after filtering thorough matching conditions is used in equation

B.4 and equation B.5 to get local gas and local liquid velocity respectively.
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Local Negative Velocities: By following the above method, we will generate the

velocity distribution for all the bubbles tracked and fulfilled by the selection criteria. Many

of the matched bubbles will give negative values and is due to the flow reversal of phase

at that local void space. This reversal mainly occur due to the force field developed due to

backpressure. Hence on quantifying the occurrence of negative velocity will indicate the

extent of backpressure or backmixing in those local void space in two-phase packed bed.

Zero Velocities: Zero velocity occurrence is a condition when either the entire void

space is covered by liquid or gas phase or gas bubble deviation during themeasured transient.

These velocities are quantified using the velocity distribution obtained by following the

method for two-tip optical probe for packed in two-phase flow.These conditions are not

good for the reactor and represent the extent of local maldistribution in that small region, It

can be represented in terms of percentage.

The following procedure is followed at each measurement point to obtain number

of occurences of zero velocities

1= Total Data points ( Obtained from method)

2= Total Data points of gas phase (Obtained from method)

3= Total Number of Bubbles (Number of tracked bubble-Obtained from method)

4= Average datapoints per bubble (2/3)

5= Total of bubbles giving velocities (Number of tracked bubble which matches selection

criteria for velocity measurement-Obtained from method)

6= Total number of velocity (equal to (5), 1 bubble gives one velocity)

7= Total number of datapoints taken by velocity (4*6)

8= Total data points of not having velocity or zero velocity (1-7)

9= Percentage of time we get zero velocity [(8/1)*100]

10= Number of zero velocity occurence (8/4)

Determination of (9) and (10) gives the extent of local maldistribution at a local

void space of a two-phase packed bed reactor
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