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ABSTRACT 

 Under dynamic conditions, the dynamic contact angle (the angle that the liquid 

makes with the solid) of a liquid on a solid surface varies dramatically with substrate 

velocity from its equilibrium value. Experimental data of the dynamic contact angles for 

polydimethylsiloxane (PDMS or silicone oil) under air on a glass substrate coated with 

teflon, for water under PDMS, for solutions of the polymer polyethylene oxide (PEO) 

under air, for solutions of PEO under PDMS, were obtained to simulate and understand the 

systems of brine or brine containing a polymer displacing viscous crude. A variety of solid 

substrates were used other than above to displace oil with the object that the equilibrium 

contact angles ~ 90º. The method used was that of a plate immersed or withdrawn from a 

pool of liquid, and the machine (Cahn-Thermo) calculates for us the dynamic advancing 

and receding contact angles. The dynamic contact angles determine the basic driving forces 

such as capillary pressures. The data were correlated with a number of available models. 

In most cases, the models were developed further to fit the requirements of various cases. 

In general, it is necessary for the model to include fluid flow, interfacial phenomena, and 

rheology. Photography was used to verify cases of entrainment and instability. One object 

of the present work was to determine the contribution of the non-Newtonian nature of the 

PEO solution. For the PEO solution under oil (PDMS) no obvious signs are observed 

although solutions at high polymer concentrations, that is, high elasticity, show some 

anomalous effects. However, it is not possible to conclude that shear thinning effects will 

be absent in all cases since a criterion is established here that shows under what condition 

the above may not hold.   
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NOMENCLATURE 

Symbol            Description 

  
A  displaced fluid (silicone oil). 

B  displacing fluid (water). 

Ca  capillary number. 

g  the gravitational constant, 9.8 m/sec2 

H  the length below the liquid, mm 

h  the film thickness, mm 

P  the perimeter P, mm 

PDMS  polydimethylsiloxane.  

PET  polyethylene terephthalate. 

PVC  polyvinyl chloride. 

R  viscosity ratio.  

THF  tetrahydrofuran.  

U  the velocity of the substrate, m/sec. 

vr   the velocity component in r-direction, m/sec. 

v   the velocity component in θ-direction, m/sec. 

W  the weight of the plate, mg.  

x  the vertical direction, mm 

  surface tension, (mN/m) 

LV  liquid-vapor surface tension, (mN/m) 

SL  solid-liquid surface tension, (mN/m) 

SV  solid-vapor surface tension, (mN/m) 

µ  viscosity, cp. 



xvi 

 

µo   zero shear viscosity of the polymer, cp. 

µB  viscosity of the displacing fluid, cp. 

µA  viscosity of the displaced fluid, cp. 

  constant (3.1415) 

θ  the contact angle, degree 

  dynamic contact angle, (degree) 

  equilibrium contact angle (degree) 

a°  advancing equilibrium contact angle, (degree) 

r°  receding equilibrium contact angle, (degree) 

ρL  the density of the liquid, kg/m3 

ε   singularity, the ratio of micro length scale to the macro length scale. 

πe  the spreading pressure.
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1. INTRODUCTION 

1.1. EQUILIBRIUM CONTACT ANGLE 

One of the daily observations is that the raindrops fall and then spread on the 

automotive windshield. This phenomenon is known as spontaneous spreading of water 

droplets and the wetting physics here follows the Young–Dupré equation Eq. (1.1) 

          (1.1) 

Eq. (1.1) can be viewed as force balance in the horizontal direction as shown in Figure 1.1. 

It can also be obtained by minimizing free energy of the system.  Equilibrium contact angle 

λ is also known as static contact angle. Figure 1.1 illustrates three different behaviors of 

the liquid on the solid surface, the first one from the left shows small contact angle or 

hydrophilic surface and the liquid preferentially wets the surface of the solid at  < 90°, in 

the middle where   = 90° it is called hydrophobic surface or non-wetting liquid, the last 

one which shows bead or a complete sphere that is known as super hydrophobic surface 

where the wetting of the surface is impossible (Miller & Neogi, 2007; Adamson & Gast, 

1997). The case of λ = 0° is that of a wetting liquid. In this case the drop has no equilibrium 

configuration. 

 

Figure 1.1. Different behaviors of drop on a solid surface 

cosLV SV SL    
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1.2. CONTACT ANGLE HYSTERESIS 

Contact angle hysteresis is one of the most important phenomena in the pre-

dynamic wetting for liquid droplets on modified or unmodified substrates. There are two 

well-known features in the hysteresis, the first one is the advancing static contact angle a 

which defines the maximum contact angle achievable before the contact line starts to move 

forward and the other one is receding static contact angle r the minimum contact angle 

achievable before the contact line starts to retract, and shows a  > r. The common factors 

that cause hysteresis are, surface roughness, surface contamination, surface heterogeneity, 

and the adsorption of the liquid on the solid surface (Miller&Neogi, 2007). 

1.2.1. Tilting Surface Method.  This case is similar to the raindrop resting on the 

windshield which is an inclined surface; the gravity deforms the drops which form an 

asymmetric shape. When the droplet starts to slide on the tilted surface the contact angle 

in the front will reach to the maximum that is advancing static contact angle as shown in 

Figure 1.2 and the contact angle in the back shows the minimum that is receding static 

contact angle. 

 

Figure 1.2. Gravity driven droplet of liquid on an inclined surface. 
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1.2.2. Increased and Reduced Volume Method.  Another method also can be 

used here where a liquid drop is deposited on a horizontal flat surface. It is used to measure 

the contact angle hysteresis by adding or removing the liquid using a syringe. In advancing, 

it is required to add the liquid using syringe. As a result the volume will increase and the 

advanced static contact angle will be seen as in Figure 1.3A. On the other hand, in receding 

case, the liquid drop will be sucked out using the syringe as illustrated in Figure 1.3B, and 

the volume of the drop will be reduced to the minimum level and receding static contact 

angle can be observed, and follows a > r  and the contact angle hysteresis here is the 

difference between the two. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. A) Advancing static contact angle B) Receding static contact angle, 

both on horizontal flat surface by adding and removing liquid volume 

respectively. 

 


a

 
r
 

A) B) 
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1.3. SURFACE TENSION FORCES 

When a liquid drop is resting on horizontal flat solid surface, the shape of the drop 

is determined by the surface tension of the liquid. For example, the interactions of the water 

molecules in the drop are different according to their locations either in the bulk or at the 

surface. The adjacent molecules interact with each other in the bulk in all directions and 

the net force is zero, unlike the molecules at the surface that do not have neighbors as that 

in the bulk. This is the main reason in rearrangement of the forces among the molecules at 

the liquid surface resulting in increased surface energy. Those intermolecular forces work 

as bridge between liquid molecules as shown in Figure 1.4, the surface tension of the liquid 

is responsible for the shape of the interface. 

 

 

 

 

 

      

      

 

 

 

 

Figure 1.4. Interactions of the molecules at the surface and in the bulk of the liquid drop. 

 

Molecule at the surface  

Molecule in the bulk 

Attractive forces  
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1.4. PRECURSOR FILM 

When a small droplet of wetting liquid is deposited on a solid surface there are at 

least three to four regions that appear along the contact line as illustrated in Figure 1.5, 

Macroscopic front, wedge region, transition zone, and precursor film and the latter is a very 

thin film ahead of the wedge region (Derjaguin, 1940). The thin film has an added potential 

in form of disjoining pressure  which is a function of local film thickness h, measurable 

as long as h  0.1m. Disjoining pressure arises out of wall effects on the thermodynamic 

potential. Frumkin (1938) and Derjaguin (1940) showed that 

        (1.2) 

where  refers to the disjoining pressure as a function of the equilibrium film thickness 

h, and the film thickness of the precursor film ho  has to be determined from other 

constraints, the alternate to Eq. (1.2) is to rewrite Eq. (1.1) but this time to sv is added 

another term dealing to the disjoining pressure ( Brochard-Wyart et al., 1991 ). 

 

 

 

 

 

 

 

 

Figure 1.5. A spreading of wetting liquid on the solid surface shows the locations of the 

wedge region, transition zone, and precursor film. 
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1.5. DYNAMIC CONTACT ANGLES  

1.5.1. Non-Equilibrium Contact Angles. If a small drop of liquid is placed on 

horizontal solid surface and is allowed to spread, then the contact angle observed is the 

dynamic contact angle αa > a . Drop is less than 10l so that gravity is not important and 

microscopy is used to take measurements. Blake (1993) assumed that Eq. (1.1) was not 

valid in non-equilibrium situations, etc. Bascom et al. (1964) showed a profile like Figure 

1.5 where the film thickness drops very steeply near the contact line and then levels off to 

subtend zero contact angle at the contact line in keeping with the fact that a wetting liquid 

was being investigated.  

1.5.2. Wilhelmy Plate Method. The classical measurement of the dynamic 

contact angles were obtained photographically based on the profile and the shape of the 

meniscus in capillary tube (Fermigier & Jenffer, 1991) or by using the Wilhelmy plate 

(Gutoff & Kendrick, 1982). 

 In the present work, the technique is force based, and also can be used to measure 

the surface tension and interfacial tension. Dynamic contact angle is different from 

equilibrium contact angle αa > a and αr < r. A vertical plate is made of platinum or glass 

and brought in contact with the liquid. The Cahn microbalance device detects weight of 

the plate, buoyancy force, and the wetting force, and there are some input parameters 

needed here such as surface tension, width and the thickness of the plate. The Cahn 

machine calculates the advancing and receding dynamic contact angles, the total net force 

on the plate is illustrated in Eq. (1.3) 

 

cos
L

F W HP g P                                   (1.3) 
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the first term from the right is W, that is the weight of the plate and H is the distance 

travelled by the plate in the liquid, P is the perimeter, L is the density of the lower phase, 

g is the acceleration, and  is the surface tension. The second term describes the buoyancy 

force, and the third term the wetting force. Figure 1.6 and 1.7 describe one cycle for the 

Wilhelmy plate measurements (I) The force per wetted length is set to be zero and the 

substrate is plunged into the liquid surface. (II) The jump denotes the capillary effect, but 

it is difficult to quantify. However, we know the equation of line in (III) which is backed 

to obtain the jump P..cosα, so that the plate is travelling further and the buoyancy force is 

increased. However, the total net force is decreased. (IV) The plate is dragged out of the 

liquid and returned to the original location. Figure 1.8 shows actual data from Cahn 

machine using Wilhelmy plate. 

 

 

 

 

 

 

 

 

 

Figure 1.6. Wilhelmy plate pulled (in or out) the pool of liquid at constant plate velocity. 
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Figure 1.7. Force versus distance through travelling of the plate at constant velocity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Actual data using force based Wilhelmy plate. 
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1.5.3. Advancing and Receding Dynamic Contact Angles. Figure1.9 shows all 

the contact angles as a function of the velocities. a and r  are the advancing equilibrium 

contact angle and the receding equilibrium contact angle respectively, and the difference 

is what is often called the contact angle hysteresis. In the Figure below αa and αr are the 

advancing and receding dynamic contact angles respectively under dynamic conditions 

(Miller & Neogi, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Advancing and receding dynamic contact angles versus the velocity of the 
substrate 
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1.6. ENTRAINMENT 

Entrainment is one of the common problems that arise in various applications of 

chemical and petroleum industries. In simple words the entrainment occurs when the 

advancing fluid invades and entrains the receding fluid at sufficiently large displacing 

velocities. For instance, oil entrainment by water or gas flooding in the reservoir that causes 

some oil left behind. However, that entrainment decreases the oil recovery and reduces the 

efficiency of the oil production from petroleum reservoirs. 

Entrainment in receding contact angles has been explained by de Gennes (1986) 

and has been verified experimentally by Quéré (1991). de Gennes shows a fold in the plot 

of α versus Ca in the receding contact angles, this fold has a nose which is the limit of the 

minimum receding contact angle. Therefore, there is no solution beyond this limit and 

entrainment takes place. This gives rise to dip coating which is the basic coating flow       

(Miller & Neogi, 2007). On entrainment, Cahn Thermo shows the dynamic contact angles 

to be zeros. Quéré (1991) shows that the entrainment occurs only at critical velocity as 

predicted by de Gennes (1986). The coating thickness as a function of plate velocity has 

been given by Landau and Levich (1942). 

Entrainment in the advancing case also happens. First, the advancing contact lines 

α reaches 180°, this is followed by a period of instability (Blake & Ruschak, 1979), and 

then entrainment takes place at the highest velocity. 

1.7. HYDRODYNAMIC THEORY (HD) 

Theoretical investigations have been studied on the hydrodynamic theory in the 

form to make a relationship of the dynamic contact angle to the capillary number in two 

different scenarios. In the first, lubrication theory approximation is used under which the 
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flow field is given by vx(z) only, in other words, the lubrication theory approximation shows 

that the only significant term is  and it will be discussed later. The equations of motion 

and continuity are solved together with a slip or cut-off boundary condition to eliminate 

the contact line singularity. This gives us a small length scale , the dimensionless slip or 

cut-off length. It is now possible to solve for the profile shape and hence the dynamic 

contact angle using matched asymptotic expansions using   as the small quantity. The 

extrapolation of the outer solution to the interface is α (Neogi & Miller, 1982, 1983).  

However, it is also possible to work with the velocity profile in terms of local film 

thickness h.  Then using an energy balance the viscous dissipation in the wedge is equated 

to the surface work done (less an equilibrium contribution) (de Gennes, 1984). The velocity 

profile is used to calculate the viscous dissipation using h = α.x at this stage. On equating 

the viscous dissipation to surface work an expression for α in terms of capillary number is 

obtained.  

In the other scenario, a wedge of much larger angle is considered where the 

lubrication theory cannot be applied. The wedge angle is at equilibrium, λ, and it is 

perturbed to find α from the profile (Cox, 1986). 

1.8. APPLICATIONS IN ENHANCED OIL RECOVERY 

We are interested here in problems in recovering crude petroleum oil from 

underground reservoirs. In the first stage of oil recovery (primary) the oil is displaced from 

the reservoir into the wellbore and up to the surface under its own pressure. In the second 

stage, an external fluid such as water or gas is injected into the reservoir through injection 

wells that have fluid communication with the production wells. The purpose of secondary 

xdv

dz
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oil recovery is to maintain reservoir pressure and to displace hydrocarbons towards the 

wellbore. The most common secondary recovery technique is waterflooding  (Craig, 1971). 

After the secondary oil recovery process has been exhausted, about two-third of the original 

oil in place (OOIP) is left behind. Most of the enhanced oil recovery (EOR) methods aim 

at recovering some of this oil (Green & Wilhite, 1998). The reasons for the instability to 

recover the crude oil fall into two categories, macro and micro. 

1.8.1. Macroscale Oil Displacement. There are mechanisms operating at the 

macro-level category. The reservoir is stratified with some strata having high 

permeabilities and some having low permeabilities. The brine flood displaces the oil in the 

high permeability zones leaving oil in the low permeability zones untouched (Bai et al., 

2007a; Bai et al., 2007b). Even in a reservoir of uniform permeability, uniform 

displacement can breakdown. When displacing fluid is less viscous than the crude, the less 

viscous fluid penetrates the oil in places. This feature which is called viscous fingering, 

and is shown schematically in Figure 1.10. Viscous fingering will lead to poor sweep 

efficiencies (Neogi, 1987) and here the ratio of viscosities of the two fluids is called the 

adverse mobility ratio.  

To remedy this situation, a polymer is added to thicken the brine. Currently the 

favored polymer is partially hydrolyzed polyacrylamide (HPAM). Foams are gaining favor 

for imparting stability to a drive as they are less expensive than polymer and can be 

effective. Different types of polymers have been studied and here we investigate new trend 

of special kind of polymers which provide new features in terms of the elasticity and other 

rhological properties .  
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Figure 1.10. Instability in form of viscous fingering is shown schematically 
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1.8.2. Microscale Oil Displacement. In the micro category effects of oil-water 

interfacial tension (IFT) give rise to oil residing in pores and crevices from which it cannot 

be dislodged under even large applied pressures (Stegemeier, 1977; Slattery, 1974). As the 

smallest pore sizes go down to 0.1 m or less. It is not surprising that IFT will become very 

important. The key quantity is the oil that is left behind after a sweep, Sor the fraction 

residual oil. It is plotted against the capillary number Ca = U/  of the displacing fluid 

where  is the viscosity of the displacing fluid,   is the IFT and the velocity U varies in its 

definition, but in all cases Ca represents the ratio between viscous and surface tension 

forces.   

The key is that Sor falls with increasing Ca. If the capillary number defined with a 

velocity given by Darcy’s law  
k p

U
L


    is used where k is the permeability. Water 

flooding is confined to below Ca = 10-6, usually at 10-7. For EOR, Ca is at 10-3 to 10-4. The 

value of Sor is 0.005 at a Ca little higher than 10-2 (Foster, 1973). Obviously EOR methods 

that aim at reducing IFT will succeed in reaching a high value of Ca. Thus, high values are 

reached as miscibility is approached. 

A pore doublet model is one of the conceptual models for oil entrapment in porous 

medium, Figure 1.9 illustrates pore doublet model, two phase flow in simple geometry and 

two adjacent pores of different diameters. The crude oil represents the non-wetting fluid 

and the brine is the wetting liquid and the latter is used to displace and push the oil ahead, 

the displacement is carried successfully in the small size while entrapment happens in the 

large pore. The pore geometry, ratio of capillary to viscous forces, and contact angle are 

most effective parameters in oil displacement in such models. 
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In the pore double model illustrated in Figure 1.11. The equation in the Figure 

below shows that the smaller pore diameter the larger capillary pressure as a result of that 

the oil displacement takes place in the small pore and the entrapment occurs in the large 

one, this phenomenon is well known in water wet reservoir only.  In previous studies, 

dynamic contact angle 1  in capillary pressure equation was set as equilibrium contact 

angle λ and that contradicts the concept of the fluid flow under dynamic conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11. Pore doublet model. A) Pre-Oil Entrapment. B) Post-Oil Entrapment, above 

oil entrapment scenario takes place in the water wet reservoir only. 
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1.9. PRESENT STUDY 

This dissertation consists of various sections which are extensively covering the 

subject of dynamic contact angles, here we introduce these sections and briefly discuss 

them, the details and the literature review are included in the following individual sections. 

The main reason of conducting such research is to shed light on theory and experiments of 

the dynamic contact angles because of its importance in the industrial and petroleum 

applications such as enhanced oil recovery, coating flow problem, lubrications, and inkjet 

printing. 

In paper I, we have measured dynamic contact angles as a function of capillary 

number for a Newtonian liquid-air system, where the upper phase is the air and the lower 

phase is silicone oil (PDMS) with different viscosities 100, 200, 350, 500, 1000 cSt. The 

technique is the Wilhelmy plate force based. de Gennes’ theory (1984) and creeping flow 

system by Huh and Scriven (1971) were used to correlate the dynamic contact angles as 

function of the capillary number. For the first time, a successful mathematical model dHS 

(de Gennes’ Huh Scriven) was derived and the only one unknown is the cutoff length 

obtained from fitting to the experimental data. In the receding dynamic contact angles, the 

liquid entrained on the solid surface at sufficiently large speed of the substrate and high 

molecular weight of silicone oil. 

In paper II, since most of the liquids in chemical industries are non-Newtonian 

fluids, we have selected two polymers, low and high molecular weight polyethylene oxides. 

In this section, we have studied the effect of the shear thinning behavior and elasticity on 

the dynamic contact angles under air. The three- parameter Ellis model has been used to fit 

the rheological data to obtain shear thinning power n, characteristic shear stress and the 
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zero shear viscosity. We have calculated the viscous dissipation in the wedge and equated 

it to the surface work under lubrication theory approximation, and at low polymer 

concentrations the fitted n conforms to the power law n measured using Haak rheometer. 

However, the remaining three concentrations at larger polymer concentrations show the 

fitted power n to be quite different and very low. This present theory shows that the elastic 

effect becomes important at larger polymer concentrations that reduce the dependence on 

capillary number. 

In paper III, PDMS-water system has been used in this section which is similar to 

water flooding in oil recovery where the water displaces oil over the solid surface. The 

force tesniometer device is used to measure the excess force needed to plunge a vertical 

plate into a liquid-liquid interface or pull it out. This force is used to calculate the dynamic 

contact angle. We have used polydimethylsiloxane (PDMS) with different viscosities for 

the upper phase and water for the lower phase. An algebraic model was put together for 

the first time when both phases are liquids and it is called mdHS (modified de Gennes’ 

Huh Scriven) here to predict dynamic contact angles in PDMS-water system. The mdHS 

and Cox theories were compared to the experiments on the dynamic contact angles.  The 

receding contact angles showed significant scatter.  

In paper IV, (PDMS-PEO aqueous) system is similar to the polymer flooding, the 

aqueous polymer PEO is displacing oil in the petroleum reservoir. Besides, mdHS and 

Cox’s were used for comparison with experimental data. In this section, we found a good 

fit to the flow polymer displacing oil dominated by the zero shear viscosity of the shear 

thinning polymer. The last part in this dissertation provides the reader a conclusion for this 

study and recommendations for future research. 
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ABSTRACT 

A Wilhelmy plate method has been used here to measure the dynamic advancing 

and receding contact angles using a force balance method. The liquid phase here was 

silicone oils of different viscosities and the substrate was a cover glass coated with a 

perfluorinated polymer.  A model for such a system for comparison against the data was 

based on the de Gennes’ theory that the rate of viscous dissipation is equal to the rate of 

surface work.  In this analysis the region in the immediate vicinity of the contact line is 

cutoff and the dynamic contact line actually refers to a slope of the wedge-like in the bulk 

liquid. de Gennes’ original model has been extended here to cover larger contact angles. 

The comparison with the experimental data has shown the good agreement for both 

advancing and receding contact angles.  Data over an extensive range have been provided 

for the first time that such detailed agreement can be established.  In addition, when the 

speed of the plate is increased, the receding contact angle decreases with increasing 

capillary numbers but did not show any receding contact angle less than 30.  This sudden 

stop conforms to de Gennes’ result that there is a minimum receding contact angle below 
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which entrainment takes place.  In the entrained systems, the force method shows the 

dynamic contact angles to be zero. Photographs were taken of the dynamic meniscus to 

illustrate the onset of entrainment. The experimental results are supportive of de Gennes’ 

model, and disagree with many conjectures on where the receding contact lines are 

entrained, or whether the dynamic contact angle is due to the failure of the equilibrium, 

etc. 
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NOMENCLATURE 

 
 

Symbol  Description  

 

W  the weight of the plate, mg.  

g  the gravitational constant, 9.8 m/sec2 

H  the length below the liquid, mm 

P  the perimeter P, mm 

Ca  capillary number. 

R  viscosity ratio.  

U  the velocity of the substrate, m/sec. 

  dynamic contact angle, (degree) 

  surface tension, (mN/m) 

θ  the contact angle, degree 

   viscosity, cp. 

  constant (3.1415) 

  equilibrium contact angle (degree) 

L   the density of the liquid, kg/m3 

ε   singularity, the ratio of micro length scale to the macro length scale. 
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1. INTRODUCTION 

When a flat plate is partially immersed into a pool of liquid with a horizontal upper 

surface, the total force needed to keep the plate immobile can be related to the weight of 

the plate, buoyancy forces and the surface tension γ.  The balance makes it possible to 

calculate the surface tension, which is the basis of the Wilhelmy plate method for 

measuring surface tension.  When the liquid is non-wetting, γ is replaced with γ.cosλ where 

λ is the equilibrium contact angle. Of these two, one has to be known independently to 

exploit the force balance.   

 It is also possible to measure forces under dynamic conditions.  When the plate is 

plunged into the liquid, the liquid advances on the plate and the contact angle measured is 

the advancing dynamic contact angle α where α > λ.  When the plate is being withdrawn, 

the liquid is receding, and the receding dynamic contact angle α is less than λ.  This is 

shown schematically in Figure 1.1.  The force on the plate is 

cosLF W HP g P                 (1) 

where W is the weight of the plate and H is the length below the liquid.  The second term 

on the right represents buoyancy forces.  The procedure measures terms individually or as 

partial sums and returns the value of α provided the value of perimeter P and surface 

tension γ have been fed in. 

 In principle, if we can solve the fluid mechanical problem then it should be possible 

to predict α.  However, the problem is difficult to solve in its entirety and many 

approximate solutions are available, making comparisons between theory and experiments 

difficult.  Some issues have arisen that need to be addressed.  
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Figure 1.1. (a) the nature of the advancing dynamic contact angle on a plate and (b) to 

entrainment at higher plate velocities.  Next are (c) the nature of the receding dynamic 

contact angle and (d) subsequent entrainment at higher plate velocities. 

 

 The advancing dynamic contact angles increase with plate velocity to 180  (Gutoff 

and Kendrick, 1982),  but air entrainment, shown schematically in Figure 1.1, takes place 

at about 20% higher velocities (Blake and Ruschak, 1979).  The region in between is 

marked by a serrated contact line ( Blake and Ruschak, 1979; Burley and Kennedy, 1978; 

Benkreira and Ikin, 2010). 

 In case of receding contact line, the contact angle should decrease to zero with 

increasing plate velocity, but de Gennes’ theory (1986) suggests that the lowest value 

reached is λ/√3 after which the liquid is entrained.  In particular, the velocity at which 

entrainment takes place is 3U  . This has been verified by Quéré (1991).  However, 
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others (Hopf and Geidel, 1987; Eggers, 2004, 2005) disagree with this mechanism and 

suggest that with increasing velocities, α reaches zero and it is only then that entrainment 

takes place.  

 These features are summarized schematically in Figure 1.2. de Gennes’ results 

show that beyond a critical capillary number Ca = μU/γ the solution fails.  Here μ is the 

liquid viscosity.  This is taken to mean that entrainment occurs.  On the other hand the 

solution can smoothly reach zero.   

 

 

 

Figure 1.2. The receding dynamic contact angles as a function of capillary number.  The 

crosses are generally where the data are. The fold is de Gennes’ theory (de Gennes, 1986) 

and the dashed line is the Hopf-Geidel-Eggert  theory (Hopf and Geidel, 1987; Eggers, 

2004, 2005) . 
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In this case that is the point of entrainment.  It appears that most of the data are on 

the top branch that cannot be used to discriminate between the two models.  At larger 

capillary numbers, zero contact angles are observed, but it is not clear that this implies that 

entrainment has taken place.  This is a key feature under investigation here. 

 de Gennes’ theory (1984,1985) considers the energy balance in the wedge and 

shows the rate of viscous dissipation to be equal to the rate of surface work.  For calculating 

viscous dissipation, a thin and flat film with a small value of α was chosen.  Lubrication 

theory applies, under which only the velocity in the tangential direction is important and it 

varies mainly in the normal direction.  The solution for the velocity profile obtained when 

the plate was being withdrawn tangentially so that the contact line was stationary and used 

to calculate the viscous dissipation.  It showed correctly that the tangential velocity 3U 

, Hoffmann-Voinov-Tanner rule (Kistler, 1993). However, singularities were encountered 

and eliminated by using a cutoff in the contact line region.  This is the bulk region of the 

wedge which is characterized by α, and a thin precursor film ahead which moves at a faster 

velocity (Bascom et al., 1964) under molecular forces. Since it moves faster than the bulk, 

cutting it off does not produce complications as the film will not exert back pressure.  

Brochard-Wyart and Gennes  (1992) extended the analysis to non-wetting liquids.  They 

later looked at a special case (Brochard-Wyart and Gennes, 1994) where lubrication theory 

could not be used and the viscous dissipation was calculated using a solution to the fluid 

mechanical problem given by Huh and Scriven (1971).  Neogi (2010a) extended the 

treatment to include higher values of α and found that up to α ~ 70 could be explained by 

the theory even though the solution by Huh and Scriven (1971) does not satisfy the normal 

stress balance at the interface.   
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He has also considered shear thinning fluids (Neogi and Ybarra, 2001; Neogi, 2010b) and 

vaporizing contact lines (Ybarra and Neogi, 2004) all using the basic idea of de Gennes. 

 For the liquid-air system studied here it is possible to use Huh and Scriven (1971) 

solution to calculate the viscous dissipation in a closed form (and the numerical integration 

by Neogi (2010a) is not necessary). The result of the energy balance for a non-wetting 

liquid using this result and those from Brochard-Wyart and de Gennes (1992)  is 

2
2 1 2sin

(cos cos ). ln .
sin cos

U U


   
   

 


         (2) 

where / L  and ℓ is the microscopic cutoff length described earlier and L is the 

macroscale.  Eq. (2) holds for the advancing contact line. For small values of α and λ 

(Brochard-Wyart and Gennes, 1992)  result that (α2−λ2)α ∝ Ca is obtained and which 

becomes the Hoffman–Voinov–Tanner rule when λ = 0°. For the receding case, the two 

cosines are interchanged so that the resulting capillary number emerges as positive. The 

left hand side of Eq. (2) is the surface work that arises from the dot product between surface 

forces and the vector U, hence the origin of cosine α . Out of this work done, the work due 

to the spreading pressure is subtracted off and attributed to the cutoff region and hence the 

origin of the cosine λ there. The difference in the left hand side should be not construed as 

the difference between the “micro” and “macro” contact angles as they do not originate 

from such a concept. 

 Given below are descriptions of the experiments conducted to measure the dynamic 

contact angles on a Wilhelmy plate. Neogi (2010a) has shown earlier that the dynamic 

contact angles from the force balance method (Wilhelmy plate) and the energy balance 

method (de Gennes) are the same.  Another result from the hydrodynamic study was that 
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whereas the macroscale dynamic contact angles in both force and energy balances hold 

together, the results from visual observations are less clear. The data reported are more 

extensive than in previous works, making it possible for us to address the issue of 

entrainment in receding contact lines as well as some key questions on dynamic contact 

lines. Below is Figure 1.3. shows a schematic of liquid entrainment in receding case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Schematic shows PDMS entrained on solid surface at receding dynamic 

contact angles. 

Air 
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2. EXPERIMENTAL 

Experiments were conducted with Dow Corning silicone fluids of high viscosities, 

from 100 centiStokes (cSt) to a 1000 cSt.  Substrates were glass cover slips which were 

first washed in isopropyl alcohol – KOH solution and then in distilled water.  They were 

then dipped in about 0.3 wt% solution of a perfluorinated polymer in a perfluorinated 

solvent (3M), both supplied by du Pont.  The cover slips were dried and microscopy was 

unable to detect a structure at 1.0 μm resolution.  However, the equilibrium contact angle 

of silicone oils jumped from 0 for bare glass to 54 for the coated glass as illustrated in 

Figure 2.1.  Ranabothu et al. (2005) report 49 for a similar system.    

 The viscosities were measured using a Brookfield viscometer and the surface 

tension through a Wilhelmy plate that operated on a Cahn electrobalance ( Thermo Cahn 

DCA 300) using the fact that the liquids wet clean glass.  The equilibrium contact angles 

were measured using a Ramé-Hart contact angle goniometer.  The results are given in Table 

2.1.    

Table 2.1.  Properties of the liquids 

Silicone oil γ , mN/m μ , mPa.s λ 

100 cSt 21.53 95 54 

200 cSt 22.13 192 55 

350 cSt 22.30 336 56 

500 cSt 23.95 485 55 

1000 cSt 23.96 970 57 
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 The Cahn balance has five speeds 42, 82, 164 and 328 μm/s , up or down.  It was 

also made to travel 15 mm into the liquid. The dynamic contact angles are reported 

automatically and were read off.    

 

 

Figure 2.1. A drop of silicone oil (PDMS) deposited on a horizontal flat plate, Teflon 

coated, showing the equilibrium contact angle. 
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3. RESULTS AND DISCUSSION 

The results of dynamic contact angles as the function of the capillary number are 

shown in Figure 3.1.  The top locus of points refers to the advancing case and the bottom 

to the receding case.  The advancing case looks uncomplicated, and Eq. (2) can be 

rearranged to write 

        (3) 

 

 

Figure 3.1.  The force based dynamic contact angle data on Wilhelmy plate as a function 

of capillary number for a number of silicone oils. 
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Figure 3.2. has been plotted in the form of Y versus Ca using λ =54.  (The value 

for the liquid with the smallest viscosity has been taken here, as the rate of advance, for the 

viscous liquids near equilibrium is very low and the more viscous liquids could still be 

advancing to an equilibrium value that is lower than reported).  Very clearly an intercept 

is seen. The right hand side of Eq. (3) becomes in this case Ca21.786 + 0.0337.  The fitted 

value of  is similar to values found earlier (Neogi, 2010a) but larger than the 

anticipated results.   

 

Figure 3.2. Advancing contact angles versus capillary number with a best linear fit 

containing an intercept.  Y(α) has been calculated for Eq. (3) using the data. 
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The problem with an intercept is that the data point of α = 54 for Ca = 0.0 cannot 

fall on such a line.  The intercept could be due to the accumulated effect of transients and 

such a feature has been seen in spontaneous spreading (Lin et al., 1996).  It needs the 

intercept to fall to zero as this point is approached.  There is probably a better explanation 

for the intercept.  During the experiment, the force in Eq. (1) is reported as a function of 

time.  As the value of the extent of plate immersed H changes linearly with time for a 

constant value of the plate velocity U, the measured force changes linearly with time as 

well.  This change is noted by the machine to extrapolate the value to H = 0 and hence 

calculate to α. However, the reported change with time, is seen to be linear but very shaky, 

may change the effective value of U by a small amount which will show up as the intercept. 

A feature that is important in theoretical consideration is, here and in a related 

experiment, the effect of inertia can be seen (Cox, 1998; de Ryck and Quéré, 1996).  Order 

of magnitude estimates show that no inertia will be observed for liquid viscosities greater 

than 40 mPa.s, which all the liquids used here, satisfy.  Thus, the locus of advancing contact 

angle in Figure 2.1., as well Eq. (3), constitutes the inertialess asymptote.  Further, it is 

possible to show from Eq. (3), that α = 180 is reached only when Ca = .  In the 

experimental results by Blake (1993) show that as the liquid viscosity increases the 

capillary number at which 180 is reached also increases, and eventually the  largest 

viscosity liquid provides a very large such velocity, though not infinite. 

 For the receding contact angles, we have ignored all cases where α = 0, as 

according to us entrainment has happened.  A sign change is introduced in the definition 

of Y in Eq. (3) and Figure 3.3. shows that again Y is linearly dependent on Ca but clearly 
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there is an intercept. (For the same equipment and oils that wet the surface, Keller et al., 

(2007) show zero intercept for one fluid and negative intercept for the other).  The slope of 

10.857 is much lower than for the advancing case.  This suggests that the cutoff lengths are 

different for the advancing and receding case.   

 
 

Figure 3.3. Receding contact angles versus capillary number with a best linear fit 

containing an intercept.  Y(α) has been calculated for Eq. (3) with reversed signs and 

using the data. 
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Most importantly, the receding contact angle data of Figure 3.1. look like they have 

been terminated abruptly. de Gennes’ approximate analysis for small α (and the present 

values are not all small) tells us that the value of α cannot fall below 30, which they do 

not in Figure 3.1.  Thus, 30 is the nose of the fold in Figure 1.2.    

 In Figure 3.4., we have photographs to show some of the phenomena discussed 

here.  Two cases of the 350cSt fluid have been photographed from the edge to correspond 

with Figure 1.1.  These are the first point in Figure 3.1. where the dynamic contact angle 

is zero and the last point where it is not, both with increasing Ca. As seen in the photograph, 

the shape and meniscus do not change when the dynamic contact angle is not zero, and the 

height of the meniscus keeps increasing when the dynamic contact angle is zero.  That is, 

in the latter case, entrainment has happened. 

 Use of force based measurements on a Wilhelmy plate  is not new ( Ranabothu et 

al., 2005; Keller et al., 2007) but the data, particularly for the receding case are sparse or 

not recorded.  The fully populated data as reported here is central to the good comparison 

with the upgraded theory.  Because of the success in quantifying the experimental data, it 

is clear that the concept of the dynamic contact angle as different from the actual contact 

angle (de Gennes, 1985, 1984; Neogi and Miller, 1983, 1982)  is justified, and that of the 

dynamic contact angle as deviation from equilibrium (Blake, 1993)  is questionable. 

 We have not seen the single tooth observed by Blake & Ruschak  (1979) for the 

receding contact line.  However, we see that the liquid withdraws from the edge and the 

contact lines on the sides are straight lines that slope against the edges.  These two lines 

when extrapolated would form a triangle that is the saw tooth.  Such withdrawn edges in 

receding systems have been seen by Snoeijer et al. ( 2006), but it is not clear if there are 
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conditions under which the two will intersect to form a triangle.  In the case of advancing 

contact lines, the contact angles are so far removed from 180 that no serrated contact 

lines are expected. 

 

Figure 3.4. View of the meniscus from the side similar to Figure 1.1. The liquid is 350 

cSt, and in the velocities correspond to the first case of 0 and the last case of non-zero 

contact angle (~ 30) both from the left in Figure 3.1., in the first and second columns 

respectively.  The bright area is the meniscus with some reflection from the substrate.  

From top to bottom are with increasing times.  For the 0 case on the left, the size of the 

meniscus keeps increasing steadily with time and the developed thickness remains 

constant.  We conclude that this is an entrained case.  For the non-zero contact angle case 

on the right, the size of the meniscus does not change with time.  Total time span in both 

is ~ 1 min and the relative vertical displacement between the meniscus and the camera 

changes with time. 
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4. CONCLUSION 

The dynamic contact angles measured here all conform to the de Gennes’ model 

including entrainment seen in the receding case, where de Gennes’ model has been 

extended by us to cover larger contact angles.  There is no indication that for the receding 

contact lines, the contact angles smoothly drop to zero with increasing velocities where 

entrainment takes place.  Instead there is a jump to entrainment from a predicted point.  

There are also no saw teeth in the contact lines in the full range of receding lines and in a 

limited range of advancing lines.    
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ABSTRACT 

In the present study, we investigate the effect of the shear thinning behavior and 

elasticity of polymer solutions on the dynamic contact angles. Under dynamic conditions, 

the contact angle of a liquid on a solid surface, changes significantly with the substrate 

velocity from its equilibrium value. The dynamic contact angles for polyethylene oxide 

(PEO) solutions of two molecular weights 3x105 and 4 x106 have been measured using a 

polyethylene terephthalate (PET) plate.  This is a Wilhelmy plate technique but one that 

provides force based dynamic contact angles. We have used the three- parameter Ellis 

model to fit the rheological data to obtain shear thinning power n, characteristic shear stress 

and the zero shear viscosity. We have calculated the viscous dissipation in a wedge and 

equated it to the surface work, all calculated under lubrication theory approximation, and 

obtained cases of contact angles changing with rheology. For the cases of three 

concentrations of polymer solutions at low polymer concentrations, the fitted n coincides 

with the power law n measured using Haak rheometer. However, the remaining three 

concentrations at larger polymer concentrations show the fitted power n to be quite 

different and very low. The present theory indicates that the elastic effect becomes 
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important at larger polymer concentrations that reduces the dependence on capillary 

number, that is, reduces n keeping with the experimental observations. The theory also 

indicates why the dynamic contact angles follow power law in this instance instead of 

showing Newtonian behavior with zero shear viscosity when the shear thinning effects are 

considered. 
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NOMENCLATURE 

Symbol  Description  

A  displaced fluid (silicone oil). 

B   displacing fluid (water). 

Ca  capillary number. 

h  the film thickness, mm 

R  viscosity ratio.  

U  the velocity of the substrate, m/sec. 

vr   the velocity component in r-direction, m/sec. 

v  the velocity component in θ-direction, m/sec. 

x  the vertical direction, mm 

  dynamic contact angle, (degree) 

  surface tension, (mN/m) 

LV  liquid-vapor surface tension, (mN/m) 

SL  solid-liquid surface tension, (mN/m) 

SV  solid-vapor surface tension, (mN/m) 

θ  the contact angle, degree 

µ  viscosity, cp. 

µo   zero shear viscosity of the polymer, cp. 

µB  viscosity of the displacing fluid, cp. 

  constant (3.1415) 

  equilibrium contact angle (degree) 

a°  advancing equilibrium contact angle, (degree) 

r°  receding equilibrium contact angle, (degree) 
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ρ  the density of the liquid, kg/m3 

ε   singularity, the ratio of micro length scale to the macro length scale. 

πe  the spreading pressure. 

 



42 

 

1. INTRODUCTION 

A liquid drop makes an equilibrium contact angle λ on a solid surface given by 

Young-Dupré equation   

cosLV SV SL                 (1) 

 where γ is the surface tension and L, S and V refer to the liquid, solid and vapor.  These 

are shown schematically in Figure 1.1 for a drop lying on a solid surface and the contact 

angle λ is subtended at the contact line1. Under dynamic conditions when the solid is moved 

tangentially, the contact angle becomes the dynamic contact angle α.  For the advancing 

case, α > λ and for the receding case α < λ as shown schematically in Figure 1.2.  The 

substrate velocity U is expressed as the capillary number Ca = μU/γ and the knowledge of 

α as a function of capillary number is of some importance in oil recovery where most often 

just λ is seen to be used2. At sufficiently large velocities, entrainment can happen. For the 

advancing contact lines air is entrained and for the receding contact lines a uniform layer 

of liquid is coated on the emerging solid surface.  This is the basic coating flow1. 

 

Figure 1.1.  A view of the liquid droplet at rest on the substrate.  The equilibrium contact 

angle and contact line are shown. 

 

 



43 

 

 

 

 

 

 

 

 

 

Figure 1.2. Dynamic contact angles with Wilhelmy plate a) advancing and b) receding.  

 

Of interest here is the case where we have an aqueous polymer solution as one of 

the fluids and for simplicity air is another.  The non-Newtonian nature of the polymer 

solution is divided into two parts.  One part is that the viscosity is shear thinning which is 

often expressed through Ellis equation 

1

1/2

1 ( )qo 

 

                                    (2) 

where   is the dynamic shear viscosity (Pa.s) and o is the zero-shear viscosity. τ is the 

shear stress and 1/2  and q are system parameters.  At large shear stresses (or shear 

rates), Eq. (2) becomes that of power law with 

1~ nK  
                       (3) 

where   is the shear rate, and the consistency index 
1/ 1 1/

1/2

q q

oK    and 1/n q .  The 

other part of non-Newtonian behavior is the viscoelasticity and is often expressed using 

Criminale-Ericksen-Filbey equation for the stress3 . 

B 

A 

B 

A 

α 
α 

U 
U a) b) 
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1 (1) 2

1

2
p         I                        (4) 

where τ is the total stress tensor, I is the unit tensor, p the pressure, and Ψ1(Pa.s2) and Ψ2 

are the first and second normal stress coefficients respectively. The rate of deformation 

tensor is 

T( )  v v              (5) 

where v is the velocity. Further, 

(1) . ( . ( ) . )T

t


     



   v v v            (6)   

A rheometer is used to obtain   and Ψ1 after Ψ2 is assumed to be zero. Criminale-

Ericksen-Filbey model has worked well in a related problem of coating flows4. There is 

some independence on how   in Eq. (4) is determined, we choose Ellis’ model and in 

one instance take  to be a constant.  

Nieh et al.5 measured the spreading rates of a small drop of polystyrene in 

dibutylphthalate spreading on a glass surface, but no shear thinning character was seen. 

Instead of fluid mechanical solution to quantify the dynamic contact angle, de Gennes6 

started with an energy balance where the viscous dissipation was balanced by surface work. 

Later Neogi and Ybarra7 used the method given by de Gennes6 to show that the wetting 

kinetics of a shear thinning fluid modeled by Ellis equation was primarily due to the zero 

shear viscosity o.  Thus, it would act as a Newtonian liquid.  The data of Seevaratnam et 

al.8 were replotted by Neogi9 to show that the data now followed Newtonian behavior. 

Neogi and Ybarra7 also suggested that the elastic part had no role to play.  The model used 

lubrication theory approximation where the liquid wedge is thin and flat. Barone10 and 

Rafaï et al.11 verified both these results experimentally but in a later paper Rafaï and Bonn12 
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suggested that the elasticity had some role. Wei et al.13,14 found little effect of elasticity on 

dynamic contact angles. 

The data that still continue to work against this effectively Newtonian behavior are 

the data of  Carré and Eustache15 which show that their wetting kinetics data have non-

linear dependence on capillary number which can be explained by using power law for the 

viscosity.   

Before looking at the more useful case of polymer solutions displacing oil, it is 

necessary to first clarify how the polymer solutions behave during dynamic wetting.  We 

are presenting such data using Wilhelmy plate that gives us force based dynamic contact 

angles.  This kind of contact angle data have been shown to be more in accordance with 

those obtained by de Gennes’ method of balancing viscous dissipation with work9. The 

data of Seevaratnam et al.8 were obtained on a Wilhelmy plate using conventional 

technique of photographing the profile to measure the contact angle.  In the force based 

method, the force on the plate is measured to calculate the vertical component γ.cosα. It 

appears here that the details of the profile immediately near the contact line do not have 

much impact on the measured value of α.   

Finally in this section, we note that some effect of heterogeneity in the polymer 

solution near that contact line is expected. Nieh et al.5 observed that even though the solvent 

was wetting, the polymer solution was non-wetting. Ybarra et al.16 suggested (as had some 

before them) that polymer molecules showing random coils cannot reach the contact line 

corner as shown schematically in Figure 1.3.  When the coil size is small or overlaps among 

coils take place, the polymer does reach this corner which is then pried open by osmotic 

pressure. We do not know how this feature changes during flow. Since some of the 
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experiments conducted had particles besides polymers in the fluid, it should be pointed out 

that particles have been known to form structures near the contact line in both static17  and 

dynamic18 configurations.  

 

 

 

 

 

 

Figure 1.3. Polymer molecule finds it difficult to squeeze into the narrow corner of the 

wedge. 

 

Below, we first consider existing models and extend them to better suit polymer 

solutions.  This is followed by our experiments on polyethylene oxide (PEO) solutions.  

This work in keeping with the work of de Ryck and Quéré 4  on coating flows we have 

chosen polymers of large polymer molecular weights and large concentrations to increase 

the elastic effects.  Their coating flow experiments indicate thickening of the liquid film 

profile, which needs investigation in the dynamic contact angle case. 
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2. MODELS 

2.1. NEWTONIAN LIQUIDS 

 Consider a plate partially submerged in a Newtonian liquid and the plate advances 

steadily into the liquid with a constant velocity U.  The contact angle is α as shown in 

Figure 2.1. If the values of U and α are small then lubrication theory approximation can be 

used, under which only the velocity in the tangential direction x is important and varies 

mainly in the normal direction z.  The equations of motion become 

0 zxp

x z


  

 
           (7) 

0
p

z


 


            (8) 

 

 

 

 

 

 

 

 

 

Figure 2.1. Schematic shows the advancing process when the plate is plunged into a pool 

of liquid with velocity U and α is the dynamic contact angle confined between the three 

phases near the contact line. 

 

α U 
h(x) 

z 
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Since pressure is not a function of z, Eq. (7) can be integrated once subject to the 

boundary condition that 0zx  at z = h, the local film thickness.  Substituting the 

constitutive equation  

x
zx

v

z
 





            (9) 

the resulting equation is integrated once to obtain the velocity profile which is subject to 

xv U at z = 0.  This is again subject to a condition that the flow rate is zero to obtain the 

unknown pressure gradient 

2

3p U

x h





          (10) 

This allows one to calculate the viscous dissipation per unit volume 

2

xv

z


 
 
 

which 

integrated from z = 0 to z = h, to get an intermediate result  

p
Uh

x






                     (11) 

Eq. (10) is substituted into Eq. (11).  The local film thickness h is approximated as h = α.x 

in and integrated from x =  to x = L.  Here is the micro length scale used to cutoff the 

region in vicinity of the contact line to exclude the contact line singularity and L is the 

macro length scale.  This viscous dissipation is equated to the surface work to get 

23 1
. (1 cos ) ln

U
U


 

 
           (12) 

where the left hand side is the surface work done and a dot product between surface 

tension forces and the velocity.  A reference value (equilibrium) has been subtracted off.  

On the right hand side, the small quantity ε = /L.  The logarithmic dependence shows 
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the lack of sensitivity of the results on the length scales.  Eq. (12) was obtained by de 

Gennes and for small values of α becomes the Voinov-Hoffman-Tanner rule19  that 

3U  .  For non-wetting liquids,  Brochard-Wyart and de Gennes20 obtain 

23 1
. (cos cos ) ln

U
U


  

 
                                 (13) 

which is rearranged to read 

      
3 1

(cos cos ) ln
Ca

 
 

                           (14) 

 

2.2.       POWER LAW LIQUIDS 

  If the viscosity is chosen to be given by power law Eq. (3), the result is 

  

1

11/2

1
( 2)

cos cos ( )
(1 )

n
n

n nCa n L
n


 

 






 

   
 

                    (15) 

where ε, the lower limit of integration over the length, has been set to zero wherever 

possible.  Eq. (15) is the result of  Carré and Eustache15.  It turns out that this problem has 

no contact line singularity. However, the results are dependent on the macrolength scale.  

Since 0 < n < 1 for a shear thinning fluid, the dependence on L can be re-expressed through  

1/2

ln1/L





 
  

 
                    (16) 

Eq. (15) takes a more conventional look into Eq. (17)  

1

1
( 2)

cos cos ( ) [ 1/ ]
(1 )

n

n nCa nln
n

  





 


                   (17) 
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However,   now has a very different meaning from the conventional cutoff length or 

slip length21, 22. 

2.3. ELLIS  MODEL 

  Eq. (2) encompasses both Newtonian and power law models.  If this is used for the 

viscosity then the expression for the pressure gradient changes from the simple Eq. (10) to 

1
1

( 2)

q

q

X
X

q H 
 


         (18) 

which has been obtained  1/23 /o oh U and / oH h hand 
2( / 3 ) /oX h U p x  where 

8), is important When the first term on the right hand side in Eq. (1 .7Neogi and Ybarraby 

the result is  

1X                              (19) 

The pressure gradient can be found and substituted into Eq. (11) eventually leads on 

integration to the Newtonian fluid case of Eq. (14).  If the second term in Eq. (18) is 

important  

1/ 1 1/( 2) q qX q H          (20) 

This limit leads to the power law case of Eq. (17) and (1 1/ )q is positive.  It is apparent 

that a general solution to Eq. (18) is needed, which appears impossible.  In Eq. (18), if

0X  , the first term on the right hand side vanishes, but the second term need not vanish 

if 0H  .  Thus an alternate way to look at Eq. (20) is to say that it is valid for small values 

of H.  Similarly as 1X  , the second term has to be zero or H  .  A simple 

interpolation between two limits is, 1/ 1 1/

1 1 1

1 ( 2) q qX q H 
 


        (21) 
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This allows us to calculate the pressure gradient, which is substituted into Eq. (11) and 

integrated over x between limits.  It turns out that the integral has no singularity at x = 0 

and the result is  

1 1/
2

1/3
(cos cos ) ln[1 ( 2) ]

(1 1/ )

q

qo

o

U L
U q

q h

 
  



 
    

  
       (22) 

where the right hand side is the viscous dissipation.  If L is very large, then it reduces to 

3
(cos cos ) ln

Ca
L 


            (23) 

Eq. (23) has been obtained by  Neogi and Ybarra7. There is no contact line singularity.  If 

ho is large in Eq. (22), then the expansion of the logarithmic term leads to Eq. (17). 

If we equate the right hand sides of Eqs. (19) and (20) we get 

1

1* .( 2) q

oh h q            (24) 

As local wedge thickness h exceeds h*, Newtonian behavior changes to power law 

behavior. 

2.4. VISCOELASTIC BEHAVIOR OF FLUIDS 

For viscoelastic fluid the equation of motion becomes 

2

10 [ ( ) ] [ ]x xv vp

x x z z z


   
    

    
        (25) 

The model for 1 is 

2 2

1 ( ) nxv
N

z


 


         (26) 

where N is a constant. Neogi and Ybarra7 assumed that under lubrication theory 

approximation, the variation in the tangential direction can be ignored.  That is the second 
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term on the right hand side can be set to zero, and hence there are no elastic effects.  If 

however, we say that 1 is very large (a feature that we incorporate in our experiments), 

then this term could be small but not negligible.  In that case, a perturbation expansion for 

small values of the middle term can be made23. Eq. (26) is valid for instance at small shear 

rates where viscosity can be approximated as the zero shear viscosity μo.  Thus Eq. (25) 

becomes 

2
2

2
0 [( ) ]nx x

o

v vp
N

x x z z


  
   

   
        (27) 

Thus, at first the middle term is ignored and the resulting equation solved subject to the 

boundary conditions to get  

2

3 1
( );xv U p

A z h A
z h x

 
    

 
        (28) 

This velocity gradient is now substituted in the middle term in Eq. (27) to get 

2
2 2 2

4 2

1
0 3 [( ) ]n n n x

on

vp
N U h z

x x h z


   
     

   
       (29) 

Eq. (29) is solved by first differentiating the middle term by parts to bring out the term 

containing z and then integrating twice subject to the boundary conditions to get xv

z




and 

xv .  Then the velocity is integrated over z get the flow rate which is set to zero.  It gives us 

an expression for 
p

x




 which is inserted into the previous expression for xv

z




and the 

viscous dissipation per unit volume is calculated as

2

x
o

v

z


 
 
 

. First integration is with 

respect to z, the second integration is over x between the two limits.  The result on equating 

to surface work is 



53 

 

2 2

2 1

3 1 2.3 8 18 9
cos cos ln .

(1 2 ) (2 1)(2 2)(2 3)

n

n

Ca n n
Ca De

n n n n
 

   

 
  

   
      (30) 

where Deborah number
1UDe
L


  and the estimate of the first normal stress difference 

is given by 

2 2

1 2 2

n

n

U
N

L




  . Since CaDe is of the order of U2 or U2n, we take it to be 

small. 

The interesting conclusion is that the first normal stress difference leads only to a 

normal stress which should not affect the viscous dissipation.  However, it affects the 

velocity distribution, such that the velocity gradient and the viscous dissipation are 

affected.   

The results of de Ryck and Quéré 4  show that the first normal stress difference 

makes the films thicker, which could reduce viscous dissipation.  Thus at large values of 

1, the dynamic contact angle changes less with increasing velocities.  

It is important to note that the term (1 2 )n is being assumed to be positive.  Now, 

( 1/ )n q is usually less than 0.5 but not always so. Consequently we have reworked Eq. 

(30a) for n = 1/2 to get  

5 1
cos cos . .ln

3 12

Ca
Ca De 

 

 
   

 
   which still shows that elastic effects cut down the 

dependence of α on velocity. Here     De = N/o.  

As mentioned previously, the lubrication theory approximation confines us to cases 

of small α and small Ca.  Nevertheless there are instances where the agreement is still good 

at higher values of α and Ca (as will be seen below).   
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Similarly, the method of de Gennes has an assumption that at the end one has to 

take the profile to be linear. Nevertheless, previous comparison with experiments has been 

good24. We hope that when the above results do not quantitatively agree with the 

experiments, they are still good enough to shed some light on the observations. 
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3. EXPERIMENTAL 

The substrate was cut from sheets of polyethylene terephthalate (PET) to be used 

in Cahn Thermo to form the Wilhelmy plate.  The sheets were found to be sufficiently 

smooth under microscope (40X magnification) and used as such.  Cahn Thermo moves the 

plate up or down at 42, 82, 164 and 328 μm/s.  When it moves into the liquid by cutting 

through the liquid-air interface, the force measured is used to calculate α if the values of 

the perimeter of the plate, surface tension and specific gravity are supplied.  The machine 

is essentially a balance and the liquid in the beaker is moved up or down at fixed velocities.  

For an air-liquid interface, the plate weight in air is set to zero.  When the plate moves into 

the liquid a jump in weight is measured along with a base line drift due to change in 

buoyancy.  The base line is calculated from the velocity of travel, time taken, the height of 

travel and the specific gravity of the liquid. When the buoyancy forces are subtracted off, 

the jump left is perimeter times γ.cosα.  Since the value of surface tension is supplied, α is 

returned by the machine.  The system is begun first with the plate advancing with the lowest 

speed and then receding with the same. This is repeated with the next highest speed, until 

all four have been studied.  Then it is returned to the lowest speed to start the process again.  

The advancing contact angles can be reproduced up to 1º, but the receding contact angles 

have larger errors. The 1º error sometimes increases to 5º, and even 10º when the point of 

entrainment is reached.  As will be discussed later, entrainment occurs in the case of 

receding contact angles and the reported dynamic contact angle is zero.  In the receding 

case only the first set of readings are reported. 

  In the surface tension mode, the machine measures .cos  .  Glass substrate was 

used.  The solutions wet glass, and Cahn Thermo device was used to measure γ.cos λ with 
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λ = 0º which gives us the surface tension.  The advancing equilibrium contact angle on PET 

was determined using Ramé-Hart contact angle goniometer and the results are listed in 

Table 3.1. 

 The polymer polyethylene oxide (PEO) was dissolved in distilled water at 

concentrations of 1 - 7 g/dl for  PEO of molecular weight 3 x105, as well at 0.5 - 5 g/dl for 

PEO  of molecular weight 4 x106  same as in the work of de Ryck & Quéré 4, both molecular 

weight polymers were used here in the rheological and contact angles experiments. These 

are polymers of very large molecular weights and can tear on too much stirring.  They were 

dissolved in distilled water and left on a shaker for a day after which the solutions were 

stored sealed for a month.  By that time the solutions which looked cloudy turned 

homogeneous. The densities were calculated assuming the additivity of volume; however, 

the solutions were so dilute that the specific gravities were about the same as the solvent.     

 

Table 3.1. Macroscopic parameters for PEO solution spreading on the PET substrate 

 

Figure 3.1. shows how the advancing and receding equilibrium contact angles were 

measured. Standard deviations are shown for the angles.  It appears that the advancing 

equilibrium contact angles as shown in Table 3.1. do not appear to be affected by polymer 

PEO/300K 1gm/dl 2 gm/dl 3 gm/dl 4 gm/dl 5 gm/dl 6 gm/dl 

Surface tension γ , mN/m 64.45 65.11 65.60 66.12 66.45 67.12 

Adv. equ. contact angle,λa 68.50 

±0.86 

73.40 

±0.38 

70.00 

±1.54 

72.60 

±0.64 

73.20 

±0.49 

72.50 

±0.73 

PEO/4M 
0.15 

gm/dl 

0.25 

gm/dl 

0.5 

gm/dl 

0.7 

gm/dl 
1 gm/dl 2 gm/dl 

Surface tension γ , mN/m 65.12 66.25 66.80 67.12 67.85 67.89 

Adv. equ. contact angle,λa 73.30 

±0.41 

73.10 

±0.62 

71.50 

±0.51 

72.80 

±0.45 

75.80 

±0.16 

74.21 

±0.61 
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concentrations given their standard deviations, and the mean values of 71.6º and 73.5º were 

used for 300K and 4M polymer respectively.  The rheological features were measured 

using HAAKE Rheometer.  The process is standard, but its description lengthy and some 

results are discussed in the Appendix.  The viscosity-shear stress data are fitted to Ellis’ 

model to calculate the zero shear viscosity μo as a function of polymer concentration c as 

shown in the Appendix.  Zero shear viscosities are easily determined for the polymer with 

the lower molecular weight but are more difficult and show more errors, where the 

molecular weight is high.  As a result the μo – c plot for the first has no scatter but the plot 

for the polymer molecular weight has some.   

 

 

 

 

 

Figure 3.1. A drop of 300K PEO solution on a tilted surface showing advancing and 

receding equilibrium contact angles. 
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4. RESULTS AND DISCUSSION  

The α versus capillary number results are shown in Figures 4.1. for a polymer with 

molecular weight of 3 x105 and in Figure 4.2. for 4 x 106 respectively. The upper values 

are for the advancing case α > λ and the lower values are for the receding case α < λ, and 

the advancing equilibrium contact angle values in both cases have been shown on the y-

axes.  The data cover almost one order of magnitude in polymer concentrations, two to 

three orders in zero shear viscosity μo and two to three orders of magnitude in capillary 

numbers Ca.  

 

Figure 4.1. Advancing and receding dynamic contact angles versus capillary number for 

PEO/PET/air system at 300K PEO. 
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Figure 4.2. Advancing and receding dynamic contact angles versus capillary number for 

PEO/PET/air system at 4M PEO. 

 

 

The data have been plotted in logarithmic scale in Figures 4.3. and 4.4., using the 

results of power law from Eq. (17).  The expected fit to straight line in log-log plots is very 

good.  However, a close view of the basic data show that there may be some more effects 

there, but such signs are too low for us to consider any further.  Now, out of six sets of data 

on each plot, the first three sets show the value of slopes to be essentially the same those 

measured from the rheological experiments but the remaining three at higher capillary 

numbers show a smaller dependence of the dynamic contact angle α on the velocity U.  We 

interpret this as due to the effect of elasticity at large values of U as predicted by Eq. (30) 
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(note that the term Ca.De there is independent of viscosity).  We cannot say why it results 

in a power law type of relationship, but many approximations have been made in deriving 

Eq. (30) and such features could have been lost in them.  Our interest lies in the three cases 

of largest concentrations for both polymers where the elastic effects are the highest.  For 

these cases n is less than 0.5 usually by a small amount except for one case where it is 

0.525.  That is, in the cases where the elastic effect is expected to show up, the term (1 2 )n

is positive as required for the above discussion to hold. 

 

Figure 4.3. Advancing dynamic contact angle data are plotted according to Eq. (17) for 

power law fluids for 300K PEO.  Values of n obtained from the plots corresponding to 

Eq. (17) and have been shown along with the values obtained from rheological 

measurements discussed in the Appendix.  The polymer concentrations are shown as 

weight percent. 

 

0.01

0.1

1

0.000001 0.00001 0.0001 0.001 0.01 0.1 1

co
s 

α
-

co
s 


Ca/α

1%, fitted n = 0.44 , measured n =0.46

2%, fitted n = 0.40 , measured n = 0.5

3%, fitted n = 0.42 , measured n = 0.49

4%, fitted n = 0.15 , measured n = 0.49

5%, fitted n = 0.19 , measured n = 0.48

6%, fitted n =0.12 , measured n = 0.46



61 

 

 

 

Figure 4.4. Advancing dynamic contact angle data are plotted according to Eq. (17) for 

power law fluids for 4M PEO.  Values of n obtained from the plots corresponding to Eq. 

(17) and have been shown along with the values obtained from rheological measurements 

discussed in the Appendix.  The polymer concentrations are shown as weight percent. 

 

  

One feature that also needs to be explained is why the present data conform to 

power law fluid, instead of Newtonian fluid with zero shear viscosity9. For answer to this 

we look at Eq. (24).  There is not much difference between *h and oh and we will use oh

below.  If ~mh L is the largest thickness of the wedge, then if mh < oh  then we should 

expect Newtonian behavior.  If mh  > oh then we should expect power law behavior.  
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However, mh is difficult to estimate.  Consequently, we turn to a less powerful condition 

that if oh is small then we should expect power law behavior, but if oh is large then we 

expect Newtonian behavior, without much grounds in determining what large or small are. 

Now, 1/23 /o oh U  and requires shear thinning parameters and it also changes with 

velocity U.  Other than the present work, only Seevaratnam et al.8  provide both dynamic 

contact angles and rheological data that allow us to calculate oh . All values of oh below are 

shown in cms. The above results for 2M xanthan gum in water show large values from 0.02 

to 0.2, hence Newtonian behavior is expected and we do see that9. On the other hand, 

present data for 300K PEO show oh to lie from 3.33x10-7 to 6.28x10-4, all very small values 

suitable for power law as found here.  It should be kept in mind that at large values of U, 

elastic effects come into play and the corresponding values of oh lie outside our discussion. 

For 4M PEO, the low concentration cases lie from 4.57x10-3 to 0.2 and should show power 

law which they do.  At higher concentrations and higher values of U, they exceed the limit, 

but we do not expect these cases to depend on viscosity only as elasticity will play a role.  

Hence, the milder constraint predicts reasonably when we should see Newtonian and when 

we should see power law.   

Further, Eq. (15) and Figures 4.3 and 4.4, show that the values of L can actually be 

calculated as shown in Figure 4.5.  Generally, the values of microlength scales are 

approximately known, but Figure 4.5. provides the macrolength scale directly for the first 

time.  It is seen that as the concentration of the polymer goes to zero (the liquid becomes 

Newtonian), L settles down to about 1 m.  This is what causes the ratio of microlength scale 

to the macrolength scales to be very small in the experiments 24.   
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Figure 4.5. The macro length scale according to Eq. (15) versus the polymer 

concentration of PEO 300K and 4M. 

 

 

 The receding contact angle data in Figures 4.1 and 4.2 are more difficult to quantify. 
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5 1
cos cos . .ln

3 12

Ca
Ca De 

 

 
   

 
        (31) 

That is, the effect of elasticity is reversed over the advancing case. Further, if we 

differentiate Eq. (30) with respect to α and set dU/dα to zero, we get a value for α.  This is 

de Gennes’ 25 criterion for entrainment since α versus U in Eq. (30) represents a fold.  The 

above critical value of α determines the nose of the fold beyond which there is no solution.  

This critical value of α is given by 

 
5 1

cos .sin cos . .ln
12

Ca De   


             (32) 

It says that when De is zero, the critical value of α is about / 3 , but is dependent on 

the elastic effect when De is not zero. 

Finally we note that for receding contact angles, the cases with three lowest 

concentrations of polymer, fall on the same curve as seen in Figure 4.1. The ones with 

higher concentrations all entrain. In Figure 4.2 with higher molecular weight polymer, the 

three at lowest concentrations show increasing departures from  with increasing polymer 

concentrations. At higher polymer concentrations entrainment is seen. 



65 

 

5. CONCLUSION 

We have shown here that the dynamic contact angles of polymer solutions are 

affected by shear thinning and elasticity.  In case of elasticity, the first normal stress 

difference has to be high to observe an effect.  Our data adhere faithfully to a power 

law/shear thinning model.  We are also able to show that there are conditions under which 

shear thinning would not have an effect and the viscous effect is fully described by the zero 

shear viscosity, as shown in Eq. (24).  In effect, we have come up with adequate tools to 

classify “non-Newtonian” behavior for the first time, although more is certainly required.  
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APPENDIX 

 

In the mode where the cone of the cone and plate rheometer, rotates at constant 

angular velocity, the viscosity and corresponding shear rates are reported by the machine.  

These are shown in Figures A1 and A2.  The data are fitted to Ellis’ model Eq. (2) using 

vsicosity-shear stress data that are also reported.  Zero shear viscosities are seen in Figure 

A1 and only shoulders are seen in Figure A2.  The zero shear viscosities are shown in 

Figures A3 and A4.  In the oscillatory mode, a dissipation (viscous) G and storage ( 

elastic) G are measured as a function of frequency ω.  The dissipation leads to viscosity 

which is not reported here and storage leads to 
2

1 2 /G   which have been plotted in 

Figures A5 and A6.  Finally in Table A2, we have reported all the data for Ellis’ model 

and data for xanthan 2M solution used by Seevaratnam et al.8 

Table A1.  Ellis’ model data 

PEO/300K 1gm/dl 2 gm/dl 3 gm/dl 4 gm/dl 5 gm/dl 6 gm/dl 

q 2.17 2 2.04 2.04 2.08 2.17 

o, Pa.s 0.0095 0.0375 0.1062 0.2924 0.6322 1.5205 

1/2, Pa 119.587 124.677 119.285 121.773 130.361 138.211 

PEO/4M 0.15 gm/dl 0.25 gm/dl 0.5 gm/dl 0.7 gm/dl 1 gm/dl 2 gm/dl 

q 1.61 1.69 1.74 1.90 2.51 3.06 

o, Pa.s 0.081 0.15 0.402 1.046 8.913 47.347 

1/2, Pa 0.107 0.129 0.141 0.193 1.349 5.867 

xanthan/2M 0.15 gm/dl 0.25 gm/dl 

q 2.5 2.94 

o, Pa.s 1.43 7.16 

1/2, Pa 0.215 0.358 
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Figure A1. The viscosity and shear rate data are shown for 300K PEO solutions.  Also 

shown are fitted curves of Ellis model 
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Figure A2.  The viscosity and shear rate data are shown for 4M PEO solutions.  Also 

shown are fitted curves of Ellis model. 
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Figure A3:  Zero shear viscosities calculated by using Ellis model are shown for 300K 

PEO solutions versus polymer concentrations. 
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Figure A4:  Zero shear viscosities calculated by using Ellis model are shown for 4M PEO 

solutions versus polymer concentrations. 
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Figure A5. First normal stress coefficient 1 as a function of ω for PEO 300K 
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Figure A6. First normal stress coefficient 1 as a function of ω for PEO 4M 
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ABSTRACT 

Correlation of the dynamic contact angles as a function of the capillary number in 

liquid-liquid-solid systems is important in a number of applications. For instance, it is one 

of the ways used to predict water penetration into a porous medium. The Cahn-Thermo 

device is used to measure the excess force needed to plunge a plate vertically into a liquid-

liquid interface or pull it out. This force is used to calculate the dynamic contact angle. We 

have used polydimethylsiloxane (PDMS) with different viscosities for the upper phase and 

water for the lower phase. An algebraic expression that predicts the dynamic contact angles 

has been derived using the concept that the total viscous dissipation is equal to the surface 

work in the contact line region.  This theory, together with another hydrodynamic theory, 

was compared to the experiments on the advancing contact angles.  The advancing contact 

lines agree with the theory, and one adjustable parameter that is recovered is found to 

depend inversely on the viscosity ratio.  The receding contact angles showed significant 

scatter.  A closer photographic examination showed the system to be unstable.     
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NOMENCLATURE 

 

Symbol  Description  

  
A  displaced fluid (silicone oil). 

B  displacing fluid (water). 

Ca  capillary number. 

CaB  capillary number based on the viscosity of displacing fluid B. 

h  the film thickness, mm 

R   viscosity ratio.  

U  the velocity of the substrate, m/sec. 

vr   the velocity component in r-direction, m/sec. 

v   the velocity component in θ-direction, m/sec. 

x  the vertical direction, mm 

  dynamic contact angle, (degree) 

   surface tension, (mN/m) 

AB  interfacial tension of silicone oil / water, (mN/m) 

LV  liquid-vapor surface tension, (mN/m) 

SL  solid-liquid surface tension, (mN/m) 

SV  solid-vapor surface tension, (mN/m) 

θ   the contact angle, degree 

µ  viscosity, cp. 

µA   viscosity of the displaced fluid, cp. 

µA  viscosity of the displacing fluid, cp. 

   constant (3.1415) 

  equilibrium contact angle (degree) 
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a°  advancing equilibrium contact angle, (degree) 

r°  receding equilibrium contact angle, (degree) 

ρ  the density of the liquid, kg/m3 

ε   singularity, the ratio of micro length scale to the macro length scale. 

πe  the spreading pressure. 

ω   molecular kinetics theory constant. 

Ω  molecular kinetics theory constant. 
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1. INTRODUCTION 

When a drop or a wedge lies on a solid surface, the line common to the three phases 

is the three phase contact line, and the angle that the liquid makes with the solid is the 

contact angle. At equilibrium this value   is a thermodynamic  quantity which is given by 

the Young-Dupré equation 

cosLV SV SL               (1) 

where γ is the surface tension at the liquid-vapor (LV), solid-vapor (SV) and solid-liquid 

(SL) interfaces.  When the surface of the solid ahead of the contact line has an adsorbed 

layer, SV is replaced with SV e  where e is the spreading pressure.  When there is a 

thin film instead of a layer, a more complicated expression involving disjoining pressure 

is used instead of e  (Brochard-Wyart et al., 1991) Thus, the basic format of Young-Dupré 

equation shows no change although the values of λ will.  For wetting liquids λ = 0 and in 

many experimental setups equilibrium is not reached.  We are interested in non-wetting 

liquids for reasons discussed below and the differences with wetting liquids are stated in 

brief where relevant.  It is also possible to replace the ambient vapor with an immiscible 

liquid without change in above.  The solid surfaces can be rough at small length scales.  

Using geometrical arguments Lin et al. (1996) showed that on a rough surface λ carried an 

error of δ, where δ is the ratio between the length scale of the amplitude to the wavelength 

of the roughness.  Consequently, it is the jagged roughness with high δ that has a large 

impact on the measured value of λ (Hitchcock et al., 1981) not so much the others. 
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Under dynamic conditions, the dynamic contact angle α is measured, which is 

different from λ. According to one theory, the dynamic contact angle represents the 

breakdown of Eq. (1) (Blake, 1993). However, according to others  (Bascom et al., 1964; 

Radigan et al., 1974)  α is an artifact and with better resolution the contact angle is seen to 

be λ, the equilibrium value.  Nevertheless, the reported values of α obtained 

photographically appeared to be robust and correlate with the capillary number 

B B ABCa = μ .U γ  where BCa  is the value based on the lower liquid and Bμ  is the viscosity 

there.  We are interested here in liquid-liquid systems, where the lower liquid (B) is water 

and the upper liquid is oil (A).  This setup is found in oil recovery (Morrow, 1990) where 

water, the displacing liquid, is used for calculating the capillary number as well as in 

measuring α.  The arrangements are shown in Figure 1.1, where in most cases the upper 

fluid is air.  Both advancing and receding cases are studied, and both ranges are cutoff by 

entrainment. In general, it is important to know the relationship of α as a function of BCa , 

the capillary number of the lower liquid.  

Most data have air as the ambient liquid, where the viscosity ratio /A BR     is 

approximately zero.  Experimental data on liquid-liquid systems are of interest here and 

have been given by Foister ( 1990) and Lin et al. (1998)  for a drop spreading on a solid 

surface under a liquid.  These are cases of spontaneous spreading.  Data for forced 

spreading have been reported by  Fermigier and Jenffer ( 1991) for one liquid displacing 

another in a capillary tube.   Gutoff and Kendrick ( 1982)  present some data for liquid-

liquid systems using a plate device.  All data are for advancing contact lines. The exception 

is the work on drops by Basu et al.(1996) on receding contact angles but at R≈0. 
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Figure 1.1. (a)  The advancing dynamic contact angle at a moderate speed (b) gas 

entrainment at large values of the advancing speed (d) the nature of the receding dynamic 

contact angle and (e) liquid entrained on the plate at high velocities during the receding 

process. A and B are the locations of the phases. 

 

Besides measurements of α versus BCa , investigators have also reported instability 

of the contact lines.  Lin et al. (1998) found the contact lines to be scalloped in a liquid-

liquid system.  A different kind of profile was observed for the receding contact line by 

Maleki et al. ( 2007) under air.  The conventional profile and the one observed by them 
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which shows a bead near the contact line are shown in Figure 1.2.  They observed that the 

bead rolled down after a short time.  The formation of a bead with a narrow neck is 

predicted by theory (Duffy and Wilson, 1997). However, investigators have suggested that 

the region of large curvature at the neck makes it unstable (Neogi, 2010b). The bead will 

break and roll down. 

 

 

 

 

 

 

 

 

 

Figure 1.2. a) The usual shape of a meniscus and, b) that when a bead is formed, are 

shown.  The bead is seen only in the receding contact lines. 

 

We have left photography based measurements.  The Cahn-Thermo device is  a 

Wilhelmy plate device shown in Figure 1.1, which measures an unbalanced force 

cosAB   in the vertical direction and calculates α when the values of other parameters 

 
 

  
 

 

 

a) b) U U 
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are given.  There is no guarantee that the values of α measured this way will agree with the 

values obtained photographically; as is shown in the bead configuration in Figure 1.2.  

However, most often they agree and it is suggested that even in beads, α measured this way 

is the slope of the profile away from the bead.  Thus, the uncertainties of what the region 

in the immediate vicinity of the contact line looks like are avoided.  However, new issues 

arise regarding how to explain these measurements theoretically. Now, instead of force 

balance,  de Gennes (1984)  made the use of energy balance.  He showed that the viscous 

dissipation in the wedge could be equated to the surface work done.  He obtained an 

expression for α versus BCa  which agreed with the data obtained from the profiles, at least 

for some systems. Neogi (2010a) showed that for those conditions the results of force 

balance and energy methods agree, which establishes the importance of the Cahn-Thermo 

measurements.  Brochard-Wyart and de Gennes  (1994) have extended the above by  using 

the fluid mechanical solution by Huh and Scriven (1971).  In our previous work, an 

algebraic expression was derived in a closed form for air-liquid systems; that is, R ≈ 0 (Al-

Shareef et al., 2013) which will be referred to as the de Gennes-Huh-Scriven solution 

(dHS).  It showed excellent agreement with the advancing and receding dynamic contact 

angle data for air - silicone oil system for both advancing and receding contact lines.  

 To understand the displacement of one liquid by another in a porous medium at the 

micro-level, displacement in a single pore or a doublet is often studied. It requires the 

knowledge of surface tension and contact angles, where the latter is taken to be the 

equilibrium contact angle although dynamic contact angles should be used. Below we have 

presented force based dynamic contact angle data. Being force based, they are exactly 

suitable for above calculations which arise from force balances. We also examine existing 
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theories to find correlations. In that, we present the modified  de Gennes-Huh-Scriven 

(mdHS) solution for a liquid-liquid system as well as that of  Cox (1986) and Blake (1993). 

 An important feature in all hydrodynamic theories is that the shear stress is found 

to be infinite at the contact line.  As a result a slip boundary condition is necessary which 

is characterized by the slip length.  The dimensionless slip length ε is small such that the 

effects of slip are not felt unless the local thickness of the liquid layer h becomes 

comparable to ε. Neogi (2006)  has reviewed the extent and nature of roughness on 

electrochemical and chemical vapor deposited surfaces. Although very smooth crystalline 

surfaces can be made, it is the surfaces with submicron roughness that are commonly 

available and need to be addressed first. Neogi and Miller (1983) took this up as a central 

issue and modeled the surface of the solid as the surface of porous media of permeability 

k ~ ε.  If δ ~ ε, then as stated earlier the contact angles do not change and slip velocity is 

given by Darcy’s law.  Profiles and spreading rates were obtained for both wetting and 

non-wetting liquids.  They compared their results for the rate of spreading of small drops 

to the available data on wetting liquids to calculate the surface rough as 1-3 μm consistent 

with information available there.  Thus the model deals with what can be considered to be 

the dynamics of bulk liquid which is usually followed in the experiments.  The thin 

precursor film containing the contact line is lost in the porous surface and as it moves ahead 

faster than the bulk (Bascom et al., 1964) it does not put a back pressure on the bulk and 

the dynamics of the two can be uncoupled.  Further, the results of spreading kinetics 

obtained by Neogi and Miller (1983)  are no different from the others above where the slip 

is defined differently.  The slip condition defines the mobility of the contact line.  Thus on 
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a smooth surface the next slip mechanism in line steps in as observed by Lin et al. (1996) 

on spontaneous spreading of small drops on freshly cleaved mica.   

Experiments and comparison with theory are given below, and Table 1.1. 

summarizes where our work belongs. 

 

Table 1.1. Classification of the previous and present works based on the viscosity 

ratio for advancing and receding cases. 

Case type R≈ 0 R~ 1 R →∞ 

Advancing many 

Foister ( 1990), capillary tube 

 Fermigier and Jenffer ( 1991), capillary tube 

Gutoff and Kendrick ( 1982) , flat plate 

Present work 

Receding none none Present work 
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2. MODELS 

  In the first model from de Gennes (1984) an energy balance is made.  Huh and 

Scriven (1971) obtained the stream functions for phase A and phase B, from which the 

velocities rv  and v  can be calculated in each phase.  The viscous dissipation  (Bird et al., 

2007) can be obtained and integrated over the full volume of each phase.  Equating this to 

the surface work leads to the result.  

 
2

2 2

2

1 A

B B B B

A

B

A Ad

π α sin2α
c - -

α sin2α 1-cos2α α sin2α 2 2 4
cosλ-cosα = 4. ln . c + -c d +d - +R  

cos2α-1 π α sin2α2 4 2 2 4
-c +d - +

2 2 2 4

Ca .


 
                               
     

     

    (2) 

where ε is the ratio of micro length scale to the macro length scale.  The constants are the 

same as in Huh and Scriven (1971).  The main problem with the solution of Huh and 

Scriven is that the normal stress boundary condition is not satisfied at the liquid-liquid 

interface.  In addition, the de Gennes development assumes that the interface is given by 

an equation of a straight line. 

 2 2 2 2

B

sin sin R sin
c

D

      
             (3) 

 2 2 2sin cos tan

B
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d

D

          
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 2 2 2 2

A

sin sin R sin
c

D

     
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 2 2 2sin cos tan

A

sin R sin
d

D

          
                          (6) 
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     2 2 2 2sin cos sin sin cos sinD R                  (7) 

       (8) 

Although this method does not satisfy force balances adequately, the results have been 

shown to compare well with the experiments (Al-Shareef et al., 2013; Neogi, 2010a).  

Further, Basu et al. (1996)  have used this method to quantify their experimental results. 

de Gennes (1984) used a cutoff instead of slip, but the results (where they can be compared) 

are the same.  

Cox’s results are 

1
( ) ( ) .lnBg g Ca 


 

               
(9)
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      
             

(11) 

Cox’s solution assumes that cos cos  are small and a smaller term of the order of Ca 

has been ignored in above. Besides the continuum models, Blake (1993) has proposed a 

theory of wetting kinetics using a molecular model which takes the form 

1(cos cos ) sinh [ ]AB A BCa                         (12) 
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where ω and Ω are constants.  Consequently, we have in above an energy balance approach 

in mdHS model, a profile based approach and a molecular model to analyze the data 

presented next. 
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3. EXPERIMENTAL  

3.1. DIP COATING OF COVER GLASS WITH PVC     

The glass cover slips 1” x 1” were cleaned first in ethanol for 10 minutes and then 

in distilled water for 30 minutes.  They were dried in an oven at 40ºC for an hour.  

Separately we dissolved polyvinyl chloride (PVC) in the solvent tetrahydrofuran (THF), 

and solutions were prepared with different concentrations of PVC: 0.25gm/dl, 0.5gm/dl, 

1gm/dl, and 5gm/dl. We then deposited the PVC on the cover glass slips by dip coating at 

slow speeds.  The dip coating step had been the procedure used earlier by Al-Shareef et al. 

(2013) for coating glass with a fluoropolymer.  The samples were then kept in the oven at 

40○C for 30 minutes till dry and examined under microscope at 40X as shown in Figure 

3.1. Only 3c was used which in our estimate has roughness of about ~ 0.5 μm in height.  

The second substrate was PET (polyethylene terephthalate) slips used as supplied.  

Manufactures quote a tolerance in the thickness of PET sheets ~ ± 1.25 μm. However, the 

thickness varies on the surface over a large length scales and no bumps can be see under 

the microscope.  Some sparse sets of scratches could be seen. 

 For all measurements involving two liquids, it is necessary to rule out mass transfer 

even though the silicone oils very strongly repel water.  The two liquids were first 

emulsified using a homogenizer, then centrifuged and allowed to settle overnight following 

an earlier procedure (Lin et al., 1998).   
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Figure 3.1. PVC was deposited on the cleaned glass surface at different concentrations of                   

a) 0.25, b) 0.5, c) 1 and d) 5 wt% in tertrahydrofuran (THF).  Microscopy images 40x are 

shown.  The case c) was picked both because of somewhat homogeneous appearance and 

as the equilibrium contact angles showed reproducibility. 

 

a) 

c) d) 

b) 
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3.2. EQUILIBRIUM ADVANCING AND RECEDING CONTACT ANGLE 

MEASUREMENTS  

 

We have measured the equilibrium contact angles through water using a Ramé-Hart 

contact angle goniometer.  A drop of water was layered under air and the chamber was 

flooded with oil.  The drop volumes were larger than 10 μl which is the limit below which 

gravity is negligible.  The advancing and receding contact angles were measured by tilting 

the sample as shown in Figure 3.2. as observed in a contact angle goniometer.  The angle 

of tilt could go up to about 70º.  However, the values of contact angles became independent 

of the tilt angle much earlier.  The values of contact angles are given in Table 1.1.  λ ~ 90 

is useful since the range of α for advancing dynamic contact angle is 180º to λ and for 

receding case λ to 0º.  If λ were zero (wetting) then the receding case would be fully 

suppressed, but an intermediate value of λ makes certain that neither advancing nor 

receding ranges are suppressed.   

 

 

Figure 3.2. View of a water droplet under silicone oil in the goniometer under oil on an 

incline. Small amount of potassium permanganate has been added to water for contrast  
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3.3. INTERFACIAL TENSION MEASUREMENTS OF PDMS / WATER 

SYSTEM 

 

It is possible to measure the interfacial tension using the Wilhelmy plate technique.  

It is the force on the plate that is measured and used to calculate AB .  For a non-wetting 

liquid  

exp. .cosAB             (13) 

Obviously, λ has to be measured separately.  This experiment was carried out on glass 

where   λ = 65.36º (measured using contact angle goniometer and translated to the value of 

contact angle measured through water).  AB  works out to be 40.77 mN/m.  Note that the 

scope of error with polymer substrate is very high as λ ~ 90º in Eq. (13).  This compounds 

the already problematic feature that the two liquids have specific gravities that are quite 

close.  Hence, glass substrate was used.  Glass was washed in KOH-isopropyl alcohol for 

four hours followed by three washes in distilled water (Nieh et al., 1996). 

3.4.  CAHN-THERMO TECHNIQUE 

  The force balance method was used to measure the advancing and receding 

dynamic contact angles.  The tensiometer eventually calculates .cosAB   when the two 

densities, the wetted perimeter and AB , are supplied.  The machine is a balance and the 

two liquids in a beaker are moved up or down at fixed velocities.  For an air-liquid interface, 

the plate weight in air is set to zero.  When the plate moves into the liquid a jump in weight 

is measured and a base line in the change in weight due to buoyancy is also measured and 

used to calculate this value accurately.  The base line is calculated from the velocity of 

travel, time taken, the height of travel and the specific gravity of the liquid.  This jump is 

perimeter times .cos  .  For the liquid-liquid system, the plate is initially all submerged in 
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the upper liquid and the specific gravity of the lower liquid is now replaced in calculations 

with the specific gravity of the bottom liquid (water) less the specific gravity of the top 

liquid (oil).  The entire above are automated and only the value of α is returned.  

The Cahn-Thermo operates at speeds of 42, 82, 164 and 328 μm/s with which the 

motorized platform moves up or down.  These are larger than the velocities encountered in 

oil recovery work (~ 7 μm/s).  One fluid will displace another at the moving contact line 

and at those velocities. The plate was also made to move from the upper liquid where it 

was fully immersed at the start, and then fully into the lower liquid.  The total travel is 10 

mm. The procedure was started by immersing the plate fully in oil, and then it was lowered 

into water at the lowest speed.   

After fully immersing it in water, the travel was reversed until the plate became 

fully immersed in oil.  Both operations were conducted at the lowest velocity.  The 

procedure was started again with the next velocity until the four cycles were completed.  

This was followed by another cycle at the lowest speed to check if the results were the 

same as in the first operation.  The results for the advancing dynamic contact angles were 

always within 1º and the data were accepted for that oil – water pair.  However, the receding 

dynamic contact angles looked significantly different and led us to investigate the situation 

further.   

Dow Corning silicone oils of high viscosities, from 100 cSt to a 500 cSt were used 

as the upper phase and distilled water as the lower phase. The viscosities were measured 

using Brookfield viscometer. 
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4. RESULTS AND DISCUSSION   

The measured advancing and receding equilibrium (static) contact angles are 

listed in Table 4.1.  The contact angles were measured through water. 

 

 Table 4.1.  Advancing and receding static contact angles for different viscosity ratio. 

Phase 

A  

AB  

mN/

m 

Water /Oil/Glass Water /Oil/PET Water /Oil/PVC 

a° r° a° 
r° 

a° 
r° 

100 cSt 40.01 65.36 30.12 93.29 70.45 94.66 78.24 

200 cSt  40.12 66.54 34.15 94.63 73.41 94.22 80.49 

350 cSt  40.23 66.85 37.17 94.88 74.45 94.36 83.45 

500 cSt  40.89 67.45 39.42 94.65 75.89 94.97 84.45 

  

 

The mean values over three runs are shown.  The standard deviations were 

calculated all were all less than ± 2.14º, which is larger than the variations among cases of 

oils of different viscosities for all the contact angles.  So we use one value for the advancing 

equilibrium contact angles and that is chosen to be that of 100 cSt oil, 65.36º.  The 100 cSt 

oil moves five times faster than 500 cSt oil and these drops are closer to being equilibrated.  

Using above contact angle on glass, AB  was obtained as 40.77 mN/m as mentioned earlier 

and by using the advancing equilibrium contact angle.  It agrees with the result of Marinova 

et al.( 2005) of  41  0.5 mN/m.   

Now, the advancing dynamic contact angles are shown along with the fit to the 

mdHS and Cox’s theory in Figures 4.1 and 4.2 respectively. Eq. (2) is restated as 
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1
(cos cos ) .ln . ( , )BCa X R  


   and hence

(cos cos ) 1
( , ) .lnBY R Ca

X

 





  .  This 

has allowed us to plot Y versus BCa  in Figures 4.1 and 4.2.  Similarly, Eq. (9) is written as 

1
( , ) ( ) ( ) ln . BY R g g Ca  


    and plotted as Y versus BCa .    

 

 

 

Figure 4.1. Y defined in the text for mdHS model has been plotted against CaB.  The data 

fit straight lines with slopes of 
1

ln


.  The error in measuring α  is about 1°. 
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Figure  4.2. Y defined in the text for Cox’s model has been plotted against BCa .  The data 

fit straight lines with slopes of 
1

ln


.  The error in measuring α  is about 1° . 
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The reason is that in both cases, the theories suggest that the data when plotted as 

Y versus BCa  should fall on straight lines and they do. There is a small but non-zero 

intercept.  

 All values of Y should go to zero at zero capillary number and provide zero 

intercepts showing that there equilibrium contact angle is reached, and the data nearly do 

so. However, the fit is not as good as the experiments error in measuring α (± 1º).   

It is possible that a small term discarded in the theory presented here, may improve 

the fit when it is included.  Now, the slopes which are 
1

ln


vary a lot. These values are 

plotted in Figure 4.3, where it appears that they fit to very good approximation 
11

ln R


  

for both theories.  To fit their data to Cox’s theory, Fermigier and Jenffer (1991) obtain ~ 

55, which falls in the range in Figure 4.3. 

Their data were collected from number of  experiments conducted in capillary glass 

tube with different systems of displacement, silicone oil / air and silicone oil / glycerin. 

The comparison was with Hoffman-Tanner law and  theory of Cox. Their experimental 

data of dynamic contact angles in liquid-liquid system show a significant increase 

compared to the dynamic contact angles predicted by theory of Cox. The fitting parameter 

was quite large also. 

Similarly, Foister's (1990) numbers are also in this range.  Since our data are force 

based dynamic contact angles, their indirect agreement with the profile based contact angle 

data suggest that the two sets are at least close. 
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Figure 4.3. The values of 
1

ln


 for the advancing case have been plotted against 

R in log-log.  The black symbols are when mdHS model has been used and white when 

Cox’s model has been used.  Further, the diamonds are for the PET substrate and the 

squares are for the PVC substrate.  In all cases 
1

ln


  is a good approximation 

proportional to R-1.  In fact; a line of slope – 1 is obtained by joining the top left corner 

(50, 100) to (500, 10). 
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    Both force based data and their apparent agreement with profile based data are 

shown for the first time.  Whereas some ideas exist for the microscopic length, the 

Wilhelmy plate does not provide a macroscopic length scale. If the macroscopic length 

scale is taken to be in (mm – cm), 
1

ln


works out to 5 – 9.  However, when fitted to the 

data, a much larger range of 25 - 75 is observed.  Although some thinking has gone into 

what the macro length scale could be for liquids under air (Eggers and Stone, 2004), there 

is still no conclusion. For the liquid-liquid system the result that 
11

ln R


  is striking.  

One feature seen here is interesting and of consequence. Over the range of BCa  

used here α does not change much over the equilibrium value λ.  Possibly in the liquid-

liquid systems, the viscous dissipation when the contact angle changes from λ to α is large 

and cannot be balanced by surface work unless this change remains small.  That is, 

compared to liquid-air system (Al-Shareef et al., 2013). 

The receding contact line data have been plotted in Figures 4.4 and 4.5 differently 

from those in the advancing case.  The fitted values of 
1

ln


range from 50 to 1000.  The 

logarithm scale in BCa  compresses a family of theoretical plots into what appears to be a 

single curve.  The bold lines follow mdHS, Eq. (1) and the dashed one in the theory of Cox, 

Eq. (8).  The reason for illustrating the receding contact line data in this form is that in spite 

of significant effort on our part to bring the data together, the data still show large scatter.  

(If the advancing dynamic contact angles were plotted this way, then all the data would fall 

on one another and on the theoretical plot.) 
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Figure 4.4. Experimental data of receding contact angles versus the capillary number for 

the PDMS/Water/PET system; the bold line is the fitting with  mdHS, Eq. (1), solution at 

cutoff length ln(1/) = 1000,and dotted line is the fitted with Cox’s, Eq. (8) at cutoff 

length ln(1/) = 1000.  The theoretical curves are independent of R at the large values of 

R used here 
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Figure 4.5. Experimental data of receding contact angles versus capillary number for 

PDMS/Water/PVC system, the bold line is the fitting with  mdHS, Eq. (1), solution at 

cutoff length ln(1/) = 30,and dotted line is the fitted with Cox’s, Eq. (8) at cutoff length 

ln(1/) = 30. The theoretical curves are independent of R at the large values of R used 

here. 
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As a result, we further investigated the receding contact lines using photography.  

This is shown in Figure 4.6, which shows that in 4.6 (a) the advancing contact lines and 

the menisci on two sides are similar, smooth and given reasonably by an equation of a 

straight line. However, beads form at the receding contact line as seen in Figure 4.6 (b). 

Both (c) and (d) cases are not symmetric; (c) shows that one bead is beginning to collapse, 

and both (c) and (d) show the presence of waves running perpendicular to the figure. Figure 

4.7 has been drawn as an aid in viewing Figure 4.6.  The representative dimension here is 

about 2 mm.  Water (B), the lower liquid has been colored with a small amount of 

potassium permanganate. The curved walls of the beaker and the presence of a small 

meniscus there give rise to some distortions in the images. It becomes clear that this 

formation of beads leads to unstable contact lines and hence shows a scatter in the measured 

values of α.     

Neogi (2010a) argued that the contact line in the receding case was a stagnation 

region where the stream lines turn around, and hence, the pressure there is high and a bump 

or bead appears. A typical fluid mechanical model for the meniscus in Figure 1.2 uses 

lubrication theory approximation.  It leads to the equation (Duffy and Wilson, 1997; Neogi, 

2010b)  

        

3
2

3

3d h U
h

dx




                      (14) 

Here, h is the film thickness and x is the vertical direction. The system is liquid under air, 

R = 0, and the solution shows bead formation. This profile was matched with the 

equilibrium profile that is formed as a balance between gravity and capillarity.  The bead 

shows a very narrow neck and (Neogi, 2010a) argued on the basis on previous work (Neogi, 
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2001) that the region of large curvature was unstable, will break and the bead will roll off 

as seen in the experiments of  Maleki et al.(2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. a) The menisci on the two sides for the advancing case are almost linear and 

almost symmetric. b) The menisci for the receding case show clearly the formation of 

beads.  c) The bead on the left appears to have collapsed and concentric patterns show 

waves in the direction perpendicular to the plane of the figure and.  d) The same view 

emphasizing the waves and the lack of left and right symmetry of deformable bead. The 

scale of the objects is in few millimeters and water, the lower liquid, has been colored 

with potassium permanganate. 

 

 

a) b) 

c) d) 
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Figure 4.7. The contours of Figure 4.6 after image processing to remove the shadows and 

glare. 

 

That gravity may not be the reason for the break is suggested by the scale of the 

region ~ 2mm.  The disturbances of the wavelengths that are affected by gravity are long.  

Nevertheless, their rolling down after the break is due to gravity.   

 
 

a) 
b) 

c) d) 
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In a liquid-liquid system, when the upper liquid (A) is a very viscous liquid, that is, 

R is very large (here, R lies at 100 and above), then the zero tangential stress boundary 

condition at the interface will be changed to zero tangential velocity boundary condition. 

The only change is that the factor 3 in Eq. (14) is changed to 6. In that case all features 

discussed for liquid-air system will remain.  That is, bead will form, break and roll down 

(although very slowly because of the large buoyancy effect).  It is interesting that in most 

theoretical developments including Cox’s, the capillary number μU/γ is assumed to be 

small, or terms of methods of matched asymptotic expansions ~o(1), actually O([ln1/ε]-1).  

However, the bead formation is seen only when it is ~ O(1).  The full solution for the 

meniscus needs gravity and although the capillary numbers in Figures 4.4 and 4.5 appear 

to be small, this is not the case (Neogi, 2010a) . 

 Blake's theory (1993) in Eq. (12) suggests that all data for the advancing contact 

angles would fall on a single curve if (cos cos )AB    were plotted against A BCa . They 

do not. The scatter is significant and the model was not investigated any further. 
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5. CONCLUSION 

The force based contact angles have been reported here. The system is that of a 

liquid displacing another liquid where the displacement velocities and the viscosity ratios 

correspond to those in crude oil recovery.  We found the fitting parameter, logarithmic of 

the ratio of microscopic to the macroscopic length scale using the mdHS (modified de 

Gennes Huh Scriven ) model as calculated by us and another by Cox (1986).  Both cases 

led to the observation that the logarithm is inversely proportional to the viscosity ratio.  In 

this range both mdHS (modified de Gennes Huh Scriven) model and Cox’s model are 

adequate for predicting the values of contact angles for the advancing case.  In the receding 

case there is instability near the contact line because of which good data could not be 

obtained.    
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ABSTRACT 

 

Polymer flooding is an important process in oil recovery. The displacement front is 

unstable when low viscosity brine displaces the crude oil in the reservoir.  Polymer is added 

to the brine to increase its viscosity which stabilizes the displacement process. To 

investigate the displacement process at a micro-level, we have investigated the dynamic 

contact angles in silicone oil-polymer (polyethylene oxide) solution. Dynamic contact 

angle is the apparent contact angle at the three phase contact line which governs the 

capillary pressure, which is important in the displacement process. The data show no 

obvious signs of either shear thinning or elastic behavior; although for some systems with 

highest elastic effects some unexplained effects are seen. Overall, dynamic contact angles 

are explained well using existing models for two Newtonian fluids, when the zero shear 

viscosity is used for the polymer solution. 
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1. INTRODUCTION 

Polymer flooding has been one of older enhanced oil recovery processes and 

perhaps the most successful one 1–5.  The key feature is that the displacement of oil by brine 

has an unfavorable mobility ratio, explained in a simple way as the high ratio between the 

viscosity of oil to the viscosity of brine. As a result the displacement front in the oil field, 

which is a porous medium, becomes unstable. If a thickener such as a polymer is added to 

the brine then the mobility ratio becomes less than one (favorable) and the displacement 

becomes stable.  The question also arises as to what happens at the micro level6 other than 

polymer adsorption and exclusion from very fine pores.   

At micro level the interfacial tension plays an important role.  When a drop lies on           

a solid surface, Young-Dupré equation is given by  

.cosLV SV SL                (1) 

where γ is the surface tension and S, L and V are solid, liquid and vapor phases, and λ is 

the equilibrium contact angle which is the angle the drop makes with stationary solid 

surface at the contact line.  The schematic view is shown in Figure 1.1.  The vapor phase 

can be replaced by a second immiscible liquid.   

 

Figure 1.1. A drop of liquid is shown on a plate with a horizontal upper surface.  Three 

phases, solid (S), liquid (L) and vapor (V) are shown where the vapor phase can be 

replaced with an immiscible liquid.  The contact line is at O and the equilibrium contact 

angle is λ. 
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In addition, under dynamic conditions (such as the substrate moving tangentially at 

a velocity U), λ is replaced by α, the dynamic contact angle.  However, under dynamic 

conditions λ should be replaced by α, the dynamic contact angle. Like λ, which has an 

advancing equilibrium contact angle and a receding equilibrium contact angle, α too has 

advancing dynamic contact angles and receding dynamic contact angles.  For the advancing 

case, α > λ, and for the receding case α < λ.  The values of substrate velocities U are capped 

by entrainment. The arrangement is shown in Figure 1.2. Above discussion assumes that 

the ambient fluid is air. However, air can be replaced with a second immiscible liquid and 

the present discussion will hold.   

 

  

 

Figure 1.2. The arrangement for dynamic contact angle (α) is shown.  Liquid A is 

crude/silicone oil and liquid B is water/brine/aqueous polymer solution.  The contact 

angle is measured through the aqueous phase and α is the advancing contact angle.  

Receding contact angle is observed when the direction of plate velocity U is reversed. 

The liquid entrainment also takes place at large speed of the plate. 
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 In general, capillary imbibition in a porous medium7 has surface forces in form of 

.cos   where under dynamic conditions λ should be replaced with α, and such efforts are 

being made8,9.   Similarly in a consolidated porous medium, .cos   term is used to 

correlate the capillary pressure cp 10 whereas α should be used.  

 Recent work by the present investigators11 using water and silicone oils, showed 

that over ranges of interest α did not change significantly from λ. Instead of brine, water 

was used as no effect was found on adding 1wt % NaCl to water.  Silicone oils were used 

instead of crude oil because the ability to observe visually the experiments was important. 

For instance Keller et al.12 report only advancing contact angles of crude oil under air.  The 

problem now is if water is replaced with a polymer solution, we no longer have a 

Newtonian liquid.  Previously, it had been suggested that shear thinning and elastic effects 

do not play a role13.  Although this is true for the most part, exceptions appear now and 

then14–16.  In addition to possible effects of non-Newtonian behaviors, presence of polymers 

affects the equilibrium contact angles17,18.  The reasons are that polymer coils cannot 

squeeze into narrow corners.  When they do, the solution becomes non-wetting even though 

the solvent may be wetting.  Such issues also arise when squeezing polymer molecules into 

fine pores19, however those are not being considered here. 

 Below, we present data on dynamic contact angles measured when a flat plate is 

inserted vertically into a liquid-liquid interface or withdrawn from it. The top liquid is 

silicone oil with fixed viscosity 100cSt, and the bottom liquid is the polymer solution with 

various concentrations.  The polymer used is polyethylene oxide (PEO) of molecular 

weights of 300K and 4M at various concentrations.  We have chosen PEO because PEO is 

a linear uncharged polymer and is easy to characterize.  We also use polyethylene 
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terephthalate (PET) sheet as the solid substrate for ease of measurement. Correlations 

produced in this manner, will not exclude the cases of small or large equilibrium contact 

angles. We follow our previous work on dynamic wetting by polymer solutions under air 

quite closely16 and will refer to it as part I (paper II).   
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2. EXPERIMENTAL   

Polyethylene terephthalate (PET) sheets were cut and used as such (same as in part 

I (paper II)).  They have a tolerance of ± 1.25 μm and under microscope (40X) no bumps 

or patches were seen on the surface. The polymer polyethylene oxide (PEO) was dissolved 

in distilled water at 1-5 gm/dl concentrations for PEO of molecular weight 3 x105 (300K), 

as well at 0.15 - 2 gm/dl for PEO of molecular weight 4 x106 (4M)  same as in de Ryck 

and Quéré20. As these are polymers of very large molecular weights and can tear on too 

much stirring, they were dissolved in distilled water and left on a shaker for a day after 

which the solutions were stored sealed for a month, by that time they turned homogeneous. 

The solutions prepared are the same ones used in part I (paper II). They were characterized 

for their rheological properties using Haake rheometer the results of which have also been 

given there.  The difference between part I (paper II) and the present problem is that air as 

the top fluid has been replaced by polydimethylsiloxane. Thus to the above polymer 

solutions polydimethylsiloxane oil (PDMS) at 100 cSt was added. To prevent any effect of 

mass transfer, the immiscible mixtures were hand shaken to form emulsions, and then left 

on shaker for a day. They were then left to stand where they formed two phases.  The 

systems were then centrifuged to make the separation certain.  

Equilibrium advancing contact angles were measured through the aqueous phase in 

a Ramé-Hart contact angle goniometer.  The ambient fluid was PDMS previously 

equilibrated with the aqueous phase, which was lightly colored by using a small amount of 

potassium permanganate.  The base plate was tilted up to 70º, and the angle at the leading 

edge is the advancing equilibrium contact angle.  It was found that this value steadied very 

quickly with increasing tilt angles and showed no change beyond tilt angle of ~ 30º. 
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The advancing and receding dynamic contact angles were measured using Cahn 

Thermo device.  It is a balance to which the PET plate is attached.  The beaker contains the 

two immiscible liquids placed on a motorized stage is moved up or down at 42, 82, 164 

and 328 μm/s traversing the interface.  The force that is measured is the weight of the plate 

less buoyancy forces and if the value of perimeter P and surface tension are supplied,  

cosLF W HP g P                (2) 

α can be calculated.  Eq. (2) applies to air-liquid system.  The same holds for liquid-liquid 

system except that L  is replaced by L  less the density of the upper liquid.  The plate can 

cut through only the liquid-liquid interface, starting with it being fully immersed in one 

liquid and finishing with it fully immersed in the other liquid over the distance of travel of 

1 cm.  The procedure that we use is first advancing then receding the plate, both at the 

lowest velocity.  This is followed by the same at the next higher velocity, etc., until the set 

is complete.  The entire set is redone to check reproducibility.  Although the advancing 

dynamic contact angle values are reproducible to ~ 1º, the receding values are 

unsatisfactory with variations up to 15º. 

 We repeat here that the lower liquid is the aqueous solution of PEO (B) and the 

upper liquid is the silicone oil (A).  All contact angles reported in the next section are those 

through the aqueous phase, fluid B in Figure 1.2.  

 Other than measuring the dynamic contact angles, Cahn Thermo can also be using 

to measure interfacial tension. It measures .cos  .  If λ is measured separately using a 

contact angle goniometer, the interfacial tension can be calculated.  Because the measured 

interfacial tensions were low, we also checked our results using du Nuoy ring. In one case 

only du Nuoy ring could be used. The method is described in Figure 2.1. 
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Figure 2.1. Schematic shows IFT techniques: a) Wilhelmy plate, b) duNuoy ring. 
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3. RESULTS AND DISCUSSION  

The advancing equilibrium contact angles measured (through the aqueous phase) 

are shown in Figure 3.1.   

 

 

 

Figure 3.1. Advancing equilibrium contact angles for oil-aqueous PEO solutions are 

shown.  Initially the drop in the value is large followed by levelling off. 

 

 

The substrate moves towards becoming water wet by more than 15º.  We do not 

know what causes this behavior, but in systems where PEO is replaced by air in part I 

(paper II), the addition of polymer in water initially also decreases the advancing 

equilibrium contact angle similarly, but no significant changes are seen with subsequent 

increase in polymer concentration.   
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Similarly, the surface tension at oil-water interface as shown in Figures 3.2 and 3.3 

for PEO 300K and 4M respectively also reduces substantially on introducing the polymer 

in water. PEO must adsorb at the oil-water interface for the surface tension to decrease 

even though oil is very hydrophobic and the polymer very hydrophilic. Both decrease in 

contact angle (from the water side) and decrease in interfacial tension, would improve oil 

recovery. It is noteworthy that the surface tension also changes similarly when PEO is 

replaced by air as observed in part I (paper II).  

 

 

Figure 3.2. Interfacial tension measurements using Wilhelmy plate and Du Nouy ring 

techniques for oil-aqueous polymer PEO 300K system versus PEO 300K polymer 

concertation. 
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Figure 3.3. Interfacial tension measurements using Wilhelmy plate and Du Nouy ring 

techniques for oil-aqueous polymer PEO 4M system versus PEO 4M polymer 

concertation.  

 

 

The advancing dynamic contact angles have been plotted in Figures 3.4 and 3.5 for 

PEO of two molecular weights 300K and 4M, in a form suited for comparison with a model 

called the modified de Gennes21-Huh-Scriven22 model (mdHS) where a function of α is 

plotted against BCa .  Here 
/

B
B

A B

U
Ca




 is the capillary number of the lower liquid, polymer 

solution.  Its viscosity B o   is the zero shear viscosity reported in part I (paper II). The 

model along with the physical basis are given in the Appendix16.  The important feature in 

the plots is that in mdHS model both liquids are Newtonian. There is no sign of shear 
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thinning or elastic behaviors that have been observed in part I (paper II) for the same 

polymer solutions under air. 

 

 

Figure 3.4. The advancing dynamic contact angles have been plotted for PEO 300K in a 

form suited for comparison with  modified de Gennes-Huh-Scriven model (mdHS) where 

a function of α is plotted versus 
BCa . 
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Figure 3.5. The advancing dynamic contact angles have been plotted for PEO 4M in a 

form suited for comparison with modified de Gennes-Huh-Scriven model (mdHS) where 

a function of α is plotted versus
BCa . 
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observed anything that explains why that peak happens (such as waves, unstable behavior, 

etc.), and in any case the model used is too simplified to provide the secondary effects.   

 In Figures 3.6 and 3.7 the data have been plotted following Cox’s23 results which 

holds for two Newtonian liquids displacing one another.  Cox’s23 results have also been 

included in the Appendix.  The results of fitting are similar to the mdHS case. The major 

difference lies in the term
1

ln


.   

 

 

Figure 3.6. The advancing dynamic contact angles have been plotted for PEO 300K in a 

form suited for comparison with Cox’s theory where a function of α is plotted versus 
BCa .  
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Figure 3.7. The advancing dynamic contact angles have been plotted for PEO 4M in a 

form suited for comparison with Cox’s theory where a function of α is plotted versus BCa . 
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dimensionalization. 
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Figure 3.8. The fitting parameter 
1

ln


calculated by mdHS model has been plotted 

versus viscosity ratio R to the given system. 
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Figure 3.9. The fitting parameter 
1

ln


calculated by Cox’s model has been plotted versus 

viscosity ratio R to the given system. 
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and thus 
1

ln


decreases with increasing polymer concentration.  Since R decreases with 

increasing polymer concentrations, 
1

ln


 should increase with R as seen in Figures 3.8 and 

3.9.  

 In the part I (paper II), data of polymer solution under air were very strongly 

influenced by the shear thinning nature of the liquid.  However, many other data for shear 

thinning fluids show only Newtonian behavior with a viscosity that is the zero shear 

viscosity for the liquid.  A criterion was proposed when the liquid would show shear 

thinning or Newtonian behavior.  However, the criterion was difficult to use and a weaker 

criterion based on same principles and the parameters describing the shear thinning was 

used successfully. It showed that indeed the weaker criterion worked to separate the two 

cases where the parameters were reported.  To extend such analysis to liquid-liquid systems 

is practically impossible because the flow in the ambient liquid can no longer be ignored.  

The results of part I (paper II) do prepare us to except that shear thinning may or may not 

show up possibly as all or nothing phenomenon.   

 Similarly, no obvious effects of elasticity are seen.  In part I (paper II), the elastic 

effects are seen only at high capillary numbers in form of lowered dependence on capillary 

numbers.  Also important is the fact that the Deborah numbers calculated were small but 

not negligible. Where Deborah numbers were taken to be zero because the first normal 

stress difference was too small to be measured or measured with accuracy, corresponded 

well with cases that showed no elastic effects. In the data presented here, we see none of 

the above elastic effects.  
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  There is a complete shift in the data for the highest concentration in Figure 3.5 

(mdHS model and 4M PEO).  In Figures 3.6 and 3.7 (Cox’s model) and at the higher 

concentrations, the peak mentioned earlier give way to a maximum and sometimes only 

show negative slopes and thus were not fitted to the two-Newtonian liquid model.  It should 

be noted that all these unusual results are seen in liquids with high polymer concentrations 

where elastic effects are significant and not explained by any of the theories. 

 Like in part I (paper II) we have not included the data for the receding contact angle 

because of complete scatter.  The flow is most likely unstable.  
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4. CONCLUSION  

 

We find here to a good approximation that the flow of polymer displacing oil is 

described by a Newtonian liquid with the viscosity given by the zero shear viscosity.  

Except at high polymer concentrations both mdHS model and Cox’s23  model (see 

Appendix) can correlate the experimental data.  The unknown 
1

ln


calculated from the 

data shows good agreement with the viscosity ratio R.  
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APPENDIX 

de Gennes21 made an energy balance that led to a result that viscous dissipation in 

a wedge containing the contact line equal to the surface work done (less the equilibrium). 

The viscous dissipation was calculated in a wedge where the interface was given by the 

equation of a straight line .h x .  If the viscous dissipation is calculated using the fluid 

mechanical solution by Huh and Scriven22 for two Newtonian liquids, then we get what we 

refer to in the text as the modified de Gennes-Huh-Scriven (mdHS) equation: 

 
2

2 2

2

1 A

B B B B

A

B

A Ad

π α sin2α
c - -

α sin2α 1-cos2α α sin2α 2 2 4
cosλ-cosα = 4. ln . c + -c d +d - +R  

cos2α-1 π α sin2α2 4 2 2 4
-c +d - +

2 2 2 4

Ca .


 
                               
     

     

   (A-1) 

 2 2 2 2

B

sin sin R sin
c

D

      
            (A-2) 

 2 2 2sin cos tan

B

sin R sin R
d

D

          
   (A-3) 

 2 2 2 2

A

sin sin R sin
c

D

     
     (A-4) 

 2 2 2sin cos tan

A

sin R sin
d

D

          
       (A-5) 

     2 2 2 2sin cos sin sin cos sinD R                 (A-6) 

              (A-7) 
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R is the viscosity ratio and /A oR   where μo is the zero shear viscosity in B.  Now 

1
ln


comes out of the fact that the stress at the contact line is infinite and it (and immediate 

vicinity) is excluded from the calculations.  The dimensionless term ε is small and 

represents the size of the region, that is, cutoff length which in the case of rough surfaces 

is of the order of surface roughness.  Thus mdHS model is the consequence of an energy 

balance. If we move over all terms in α in Eq. (A-1) to the left, we can rewrite Eq. (A-1) 

as  

1
( ) lnBY Ca


        (A-8) 

Similarly Cox's22 results from approximate solution to the fluid mechanical equations are 

1
( ) ( ) .lnBg g Ca 


             (A-9) 

 0

d
g( ,R )

f ,R







                        (A-10) 

 
       

        

22 2 2 2 2

22 2 2

2sin sin 2 sin sin
,

sin sin cos sin sin cos

R R
f R

R

         


           

       
  

      
  (A-11) 

Cox’s solution assumes that cos cos  are small.  Here, 
1

ln


represents the effects of 

slip in alleviating infinite stress at the contact line, where ε the dimensionless slip length 
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is small.  For rough surfaces it is of the order of surface roughness.  This result is that 

from force balance and has the same form as Eq. (A-8). 

Next are the Figures A1 and A2 show the experimental data of advancing dynamic 

contact angles versus capillary number for PEO 300K and 4M respectively they were used 

as displacing fluid to invade the silicone oil (PDMS) over the PET as substrate. 

We have prepared the liquid-liquid system in such way to prevent the diffusion 

through the experiment, first the solution has been shaken and well mixed and left for one 

night then we use the centrifuge to separate the oil from polymer. Figure A3 shows mixing 

the two phases in two systems (oil + water) or (oil + polymer). After centrifugation, the 

first system (oil + water) shows a clear interface and the other system which contains 

polymer shows a cloud of emulsion at the interface. Figure A4 illustrates the liquid 

entrained on the solid surface in presence of other immiscible liquid.  
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Figure A1. Advancing dynamic contact angles of PEO300K/PDMS/PET  vs. CaB 
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Figure A2. Advancing dynamic contact angles of PEO4M/PDMS/PET  vs. CaB 
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Figure A3. PDMS/PEO solutions were shaking by hand to avoid any mass transfer during 

the experiment and it is following by centrifugation to separate the phases a part. 

 

 

 

 

 

 

Figure A4.  Receding liquid is entrained on the substrate beneath the advancing liquid. 
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SECTION 

 

 CONCLUSIONS & RECOMMENDATIONS FOR FUTURE WORK 

 

2.1. CONCLUSIONS 

In this dissertation, we present a comprehensive comparison to our experimental 

data of dynamic contact angles with our mathematical models for Newtonian and non-

Newtonian fluids. We introduce a solution to the fluid mechanical problem at low Reynold 

number in a variety of fluid flow systems. We shed light on the dynamic contact angles in 

a diverse set of multiphase flows. The corresponding applications to the present study 

involve coating flow problems and enhanced oil recovery (water flooding and  polymer 

flooding). 

To draw a conclusion, in paper I, we introduce concept of de Gennes’ that states 

the total viscous dissipation is equal to the surface work done at immediate vicinity of the 

contact line. We present an algebraic model dHS (de Gennes’ Huh Scriven) that predicts 

the dynamic contact angles in gas-liquid systems and such model shows an excellent fit to 

the experimental data for advancing and receding dynamic contact angles. Liquid 

entrainment occurs in the receding dynamic contact angles in the liquid-air systems at 

sufficiently large speed of the substrate. 

In paper II, we present the dynamic wetting of  non-Newtonian shear thinning 

polymer solutions. This study observed the effect of the shear thinning and elastic behavior 

of  two molecular weight polyethylene oxide on the dynamic contact angles under air. The 

three low polymer concentrations have shown the fitted shear thinning exponent conforms 

to that measured n using Haak rheometer. Conversely, the other three large polymer 

concentrations have shown shear thinning exponent to be quite different and small. The 
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present theoretical work shows that the elastic effect becomes important at larger polymer 

concentrations that reduce the dependence on capillary number. The theory also indicates 

why the dynamic contact angles follow power law in this example instead of showing 

Newtonian behavior with zero shear viscosity when the shear thinning effects are 

considered. 

In paper III, we present the water flooding problem to understand the interfacial 

phenomena at water-oil interface. Different viscosities of silicone oil have been used as 

upper phase and the lower phase is fixed at water.  To the best of our knowledge, the water 

is displacing the silicone oil over two different substrates PET and PVC. We observed that 

in the advancing case the comparison of the experimental data to our mdHS (modified de 

Gennes’ Huh Scriven) and theory of Cox show that the length scale is dependent on the 

viscosity ratio. In the receding case, the fitting has shown a broad range of scattering and 

can be attributed to the instability of the contact line. Close-up photographs also show that 

the contact line is unstable. 

In paper IV, we have introduced a further treatment process of polymer flooding, 

which used to minimize the mobility ratio when water flooding fails to recover high 

viscosity oil from the reservoir. The viscous fingering problems appeared when the oil is 

much more viscous than that in drive water. Here, we investigate the dynamic contact 

angles when silicone oil with fixed viscosity is displaced by different polyethylene oxide 

solutions. We have observed a decline in the IFT and aqueous droplet advancing 

equilibrium contact angles of the PDMS-PEO system when polymer concentration is 

increased. 
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2.2. RECOMMENDATIONS  FOR  FUTURE WORK 

This dissertation provides a comprehensive theoretical and experimental study to 

the dynamic contact angles in multiphase flow systems. We shed light on the three phase 

contact line problem and we have established a fundamental base to the contact angle under 

dynamic conditions in the immediate vicinity of the contact line. We have summarized 

some points that can benefit future researchers as following: 

 It will be worth if a future study followed this current work to include a surfactant 

together with PEO to see how that affects the wettability of the solid surface, interfacial 

tension and dynamic contact angles. 

 The oil displacement here is on the Wilhelmy plate whether in air flooding, water 

flooding or polymer flooding, in such displacement it would be important if a future 

researcher conducted this experiment in non-uniform geometry (Non-uniform Hele-

Shaw) or microfluidic device. It would be much clearer to observe the contact line and 

its stability through the oil displacement. 

 Here we extensively cover the fitting of our theoretical models to our experimental 

data. A simulation study is recommended as a third choice for comparison.  For 

example “Surface evolver” is a promising simulation program could introduce new 

ideas for contact line problems. 

 

 

 

 

 

 

 

 

 



139 

 

REFERENCES 

Adamson W. & Gast, A. (1997) Physical Chemistry of Surfaces, 6th edition John Wiley 

and Sons, New York, p.352,353,362. 

Bai B., Liu Y., Coste JP, Li L. (2007a). Preformed Particle Gel for Conformance Control: 

Transport Mechanism through Porous Media, SPE Reservoir Evaluation and 

Engineering. April 2007a, 176-184.  

Bai B., Li LX, Liu Y.Z, Liu H, Wang Z., You C. (2007b). Conformance Control by 

Preformed Particle Gel: Factors Affecting its Properties and Applications. SPE 

Reservoir Evaluation and Engineering, Aug 2007b, 10 (2), 415-421.  

Bascom, W., Cottington, R., Singleterry, C., 1964. Dynamic surface phenomena in the 

spontaneous spreading of oils on solids, in: Gould, R. (Ed.), Contact Angle, 

Wettability, and Adhesion. American Chemical Society, Washington, D. C., pp. 

355–380. 

Blake, T. D. & Ruschak, K. J.(1979). A maximum speed of wetting. Nature 282,  

 489-491. 

Blake, T.D., (1993). Dynamic contact angles and wetting kinetics, in: Berg, J.C. (Ed.), 

Wettability. Marcel Dekker, Inc., New York, pp. 251–309. 

Brochard-Wyart, F., Meglio, J., Quéré, D., de Gennes, P., (1991). Spreading of 

nonvolatile liquids in a continuum picture. Langmuir 12, 335–338. 

Cox, R.G., (1986). The dynamics of the spreading of liquids on a solid surface. Part 1. 

Viscous flow. J. Fluid Mech. 168, 169–194. doi:10.1017/S0022112086000332 

Craig, F.F., Jr. (1971) The reservoir aspects of water flooding, SPE Dallas, TX. 

de Gennes PG (1986) Deposition of Langmuir-Blofgett layers. Colloid Polym. Sci. 

264:463–465.  

Derjaguin,B.V. (1940). A theory of capillary condensation in the pores of sorbents and of 

other capillary phenomena taking into account the disjoining action of 

polymolecular liquid films, Zh. Fiz. Khim., 14,137-147. 

Fermigier, M., Jenffer, P., (1991). An experimental investigation of the dynamic contact 

angle in liquid-liquid systems. J. Colloid Interface Sci. 146, 226–241. 

Foster, W.R, (1973). A low-tension waterflooding process, SPE J., 25, 205-210. 

Frumkin, A.N. (1938). Wetting and adherence of bubbles, Zh. Fiz. Khim., 12,337-345. 



140 

 

Green, D.W., and Wilhite, G.P. (1998) Enhanced Oil Recovery, SPE Dallas, TX. 

Gutoff, E.B., Kendrick, C.E., (1982). Dynamic contact angles. AIChE J. 28, 459–466. 

Landau, L. & Levich, B.(1942). Dragging of a liquid by a moving plate. Acta  

         Physicochim.  (USSR)17, 42–54. 

Miller, C. & Neogi, P. (2007) Interfacial Phenomena: Equilibrium and Dynamic Effects. 

Marcel Dekker, New York. 

Neogi P. (1987) Oil recovery and microemulsions, in Microemulsions: Structure and 

Dynamic, S.E. Friberg and P. Bothorel, eds., CRC press, Boca Raton, Fl., p.197. 

Quéré, D. (1991). On the minimal velocity of forced spreading in partial wetting. C.R.  

        Acad. Sci.Paris II 313, 313-318.  

Slattery, J.C. (1974) Interfacial effects in the entrapment and displacement of residual oil. 

AIChE  Journal 20, 1145.  

 

Stegemeier. G.L. (1977) Mechanisms of entrapment and mobilization of oil in porous 

media. Improved oil recovery by surfactant and polymer flooding, D.O. Shah and 

R.S. Schechter, eds., Academic Press, New York, p.55. 

 

 

 

 

 

 

 

 

 

 



141 

 

VITA 

Amer Mohammad Al-Shareef was born and bred in Al Khums city located on the 

Libyan coast of the Mediterranean Sea. He received his BS degree in Chemical 

Engineering from University of Elmergib in 2002. He attended The National University of 

Malaysia in 2004 and he received his M.Sc. in Chemical Engineering in 2006. He was 

employed as a lecturer in Chemical Engineering Department at Elmergib University in 

2007. In fall of 2011, he joined the Chemical and Biochemical Engineering Department at 

Missouri University of Science and Technology (Rolla, Missouri, USA) and received his 

Ph.D. in Chemical Engineering in May of 2016.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Wetting kinetics in forced spreading
	Recommended Citation

	II

