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ABSTRACT 

Trickle bed reactors are packed beds of catalyst on which gas and liquid reactants 

flow concurrently downward. In this work, the experimental work was carried out in 0.14 

m diameter Plexiglas column using air-water system flowing over a packed bed of 3 mm 

glass bead particles. The local liquid and gas velocities, phase saturation and their time 

series have been investigated for the first time by developing, validating, and 

implementing a new two-tip optical fiber probe technique. It was found the radially and 

axially the liquid and gas velocities and their saturation vary and they also vary with 

times. In various locations, due to non-uniform distribution of the flowing phases, there 

are windows of time where the gas phase does not pass through that location where the 

optical fiber probe was put at. The non-invasive gamma-ray densitometry (GRD) 

technique has been implemented for the first time in trickle bed reactor as in online 

monitoring technique to identify flow regime, gross maldistribution and liquid 

distribution. The GRD technique was able to identify trickle and pulse flow regime and 

their transition. The findings have been consistent with what have been reported in the 

literature. The measurement of these techniques was conducted at various axial and radial 

positions with the superficial liquid velocity varies in the range 0.004 – 0.016 m/s and the 

superficial gas velocity varies in the range of 0.03-0.27 m/s covering trickling and 

pulsing flow regime. The results obtained confirm that these techniques can be used with 

fidelity for measurements and the studies mentioned above and can be employed in 

various sizes of reactor operated at industrial conditions including harsh conditions of 

corrosion materials, high pressure, and high temperatures. 
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1. INTRODUCTION 

1.1 SCOPE  

One of the major reactors in refineries and chemical plants is a trickle bed reactor 

(TBR). Billions of dollars have been spent to both build and maintain the quality 

performance of these reactors. A better understanding of the trickle beds reactor helps the 

industrial processes for better and efficient performance and energy saving operation.  

TBRs are packed beds in which gas and liquid flow concurrently downward. The 

gas and liquid come into contact with fixed solid particles that act as catalysts. These 

catalyst particles are always porous and are typically spherical, cylindrical, lumps of 

irregularly shaped which are extrudes and granules between 1.0 mm and 3.2 mm in size 

(Al-Dahhan et al., 1997; Pushnov, 2006). Figure 1.1 is an illustration of a typical TBR.  

 

 

 

 

 

 

 

 

 

 

 

Gas 

Liquid 

Gas 

Liquid 

Packing 

Figure 1.1. Schematic Diagram of a TBR 
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The comparison between typical laboratory, pilot plant, and industrial scale 

reactor parameters are shown in Table 1.1 (Adapted from Gunjal & Ranade, 2007). 

 

Table 1.1. Comparison between Laboratory, Pilot Plant Scale and Industrial Scale 

Reactor Parameters 

Reactor variables Laboratory Pilot reactor Industrial reactor 

Length, m 0.3-1.5 0.5 - 2.0 10 – 25 

Diameter, m 0.12-0.5 0.5 – 2 1 - 4  

Liquid superficial 

velocity, m/s 

2.52e-04-

1.01e-03 

0.0008 – 0.0025 0.008 – 0.025 

Gas superficial velocity, 

m/s 

5.04e-04-

6.05e-03 

0.0148 0.148 – 22 

Dispersion Significant Significant Poor 

Wetting 0.1-0.7 0.1 – 0.6 0.6 – 1 

Maldistribution Significant Significant Significant 

Wall effect Considerable Considerable Negligible 

 

 

Trickle beds have been applied in petroleum refining, petrochemical, and 

chemical industries. The application process includes hydrogenation, desulphurization, 

oxidation, and hydrocracking.  In addition, TBRs are used in the process of production of 

commodity and in the specialty chemicals (Al-Dahhan et al., 1997; Nigam et al., 2005; 

Huerta et al., 2014; Shen et al., 2014). TBRs are also used as organic filters in water 

treatment (Lopes et al., 2010; Lei et al., 2013; Kaplan et al., 2014) and biochemical 

processing (Dudukovic et al., 2002; Burkhardt & Busch, 2013).  

Nevertheless, when gas and liquid phases are flowing concurrently downward 

through a packed bed of solid particles, the situation is more complex compared to that 

associated with a single-phase flow. Both the advantages and disadvantages of using 

TBRs are listed in Table 1.2. Although there are some disadvantages, TBRs are still one 
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of the main reactors in the refinery. The comparisons between three phase reactor types 

are discussed by many researchers (Matsunaga et al., 2009; Wenmakers et al., 2010; 

Haase et al., 2013) 

 

Table 1.2. Advantages and Disadvantages of TBRs 

Advantages  Disadvantages  

The catalyst, or packing, is static. Operations are limited to a non-viscous 

fluid. 

The liquid flow closes to the plug flow. The laboratory-to-industrial scaling up 

process is difficult. 

They require low operating costs and 

investments. 

They have a low reaction rate due to a 

large catalyst size. 

The operations of TBRs are more 

flexible in terms of process. 

They are not only sensitive to thermal 

effects, but also inefficient at heat 

removal. 

They are operable at higher 

temperatures and pressures. 

They are usually facing the problem of 

incomplete of catalyst wetting and 

channeling. 

Low liquid-solid volume ratio: fewer 

occurrences of homogeneous side 

reactions. 

Long term catalyst stability and high 

crushing strength are required. 

Longer reactor sizes. The risk of increasing pressure drop or 

obstructing catalyst pores when side 

reactions lead to fouling products. 

 

 

The studies reported in the literature for TBRs investigation are broad. Many 

review and technical papers discussed various parameters such as pressure drop, holdup, 

bed properties, heat and mass transfer, dispersion of mass and heat, kinetics, conversion, 

macroscale/microscale phenomena and inlet distributor designs (Sundaresan, 2013; 

Mederos et al., 2009). Recently, a number of studies have been conducted on pressure 

drop (Giri & Majumder, 2014), bed properties (Janecki et al., 2014), mass transfer (Nicol 
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& Joubert, 2013), conversion (Bistan et al., 2012) and kinetics (Boahene et al., 2013). 

Furthermore, many studies on hydrodynamics of TBRs (i.e., flow distribution, liquid and 

gas holdup, pressure drop, liquid velocities and gas velocities) were performed in the 

literature (Van der Merwe et al., 2007; Boyer & Fanget, 2002; Al-Dahhan et al., 1997; 

Schubert et al., 2008; Sederman & Gladden, 2005; Sundaresan 2013; Honda et al., 2014; 

Janecki et al., 2014). Hydrodynamics of TBRs affect heat and mass transfer and as a 

result, it can influence reactor performance (Sundaresan, 2013). In general, as with any 

other packed-bed type reactor, these studies require various measurement techniques to 

probe and visualize the phenomena occurring inside the reactor (Salleh, 2014). However, 

in the literature, there are still lacking techniques related to the measurements of local 

liquid and gas velocities, flow regime identification, phase holdups distribution, liquid 

flow distribution and identification of maldistribution. Therefore, the focus of this 

research is to address such shortcomings, to develop techniques and perform 

investigations related to local liquid and gas velocities, flow regime identification, phase 

holdups and liquid distribution and identification of maldistribution. 

The four types of flow regimes were observed in TBRs which are trickle flow 

regime, pulse flow regime, spray flow regime, and bubbly flow regime. The prediction of 

the flow conditions at different flow regime transitions occur is of a great importance for 

the reaction, design and scale-up purposes. The liquid and gas flow rate are primary 

factor in determining the flow regimes. Additional factors include the inlet distributor, the 

reactor’s dimensions, the particle’s size and the shape of the packing, methods used, and 

the thermo-physical properties of the gas and liquid phases (Ranade et al, 2011).  
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The trickle flow regime occurs at low gas and liquid flow rates. The gas-liquid 

interaction is small and liquid flows in the forms of either films or rivulets over the 

packed particles. Meanwhile, pulse flow regimes are observed at moderate flow rates of 

gas and liquid. Two other additional flow regimes (spray and bubbly) may occur at 

higher gas and liquid flow rates. These flow regimes are less commonly used in practical 

industries. Figure 1.2 illustrates a sample diagram of the flow regimes map of TBRs. 

Interestingly, most industrial processes utilize a trickle flow, particularly 

hydrogenation. Still other utilizes a pulsing flow (hydrotreating process) due to the 

energetic interactions between the phases (Al-Naimi et al., 2011). Others are often 

operated close to a flow transition boundary (between the trickle and the pulse flow 

regimes). The transition regime condition improves the mass transfer rate, the catalyst 

utilization, and the production capacity (Ranade et al., 2011).  

 

 

Figure 1.2. A Sample of Flow Regime Map (Taken from Sie & Krishna, 1998) 
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 1.2 MOTIVATION  

Some of the trickle bed reactor (TBR) hydrodynamic parameters can be 

categorized as pressure drop, phase holdup, phase velocities, flow regime, and others. 

The local parameter such as liquid and gas velocities, and local liquid holdup behavior in 

TBRs are very complex. Boyer & Fanget., 2002, has presented two groups of techniques 

to measure hydrodynamic parameters. The non-intrusive techniques delivers global 

parameters, cross-section-averaged and/or local data, meanwhile intrusive probes are 

dedicated to local measurements. Intrusive technique is when the probes are inside the 

reactor whereas non-intrusive technique is when the probes are totally outside and do not 

disturb or interfere with the process. Example of intrusive techniques is wire mesh sensor 

(WMS) or any conductance based techniques where the probes are inside the reactor. 

Meanwhile, the example of non-intrusive techniques are mostly radiation based (Gamma-

ray Densitometry, Gamma-ray Computed tomography, X-ray Tomography, and Nuclear 

Magnetic Resonance Imaging). Magnetic-field gradient techniques is an example of non-

intrusive technique which is not radiation based. 

The wire mesh sensor (WMS) is used not only to study liquid saturation (fraction 

of the liquid volume in the void volume of the bed) and its distribution, but also local 

liquid velocity distribution (Schubert, 2010). The finding of WMS is be useful for better 

understanding of the liquid distribution inside the reactor. However, one of the 

disadvantages of the WMS is that it could affect the flow. This is because WMS has to be 

inserted in the middle of the packed bed in the reactor. The flow of the liquid will be 

obstructed by the wire mesh. The intrusive effect on gas-liquid flow has been studied by 
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Wangjiraniran et al., (2003). They found that the accuracy of the measurement is affected 

by the WMS.  

Several studies using non-intrusive (optical and radiation based) techniques were 

performed to measure the local liquid velocity in packed bed type reactors such as, for 

example, fluid velocity by Laser Doppler Velocimetry (LDV), (Johnston et al., 1975; 

Dancey et al., 2000) and Particle Image Velocimetry (PIV), (Lee & Lee, 2009; Patil & 

Liburdy, 2013). Particle tracking velocimetry (PTV) also has been used to measure the 

velocity field and the velocity distribution (Moroni & Cushman, 2001). Unfortunately, 

none of these techniques LDV, PIV and PTV applied in TBRs. Furthermore, LDV 

provides only a point velocity measurement. Meanwhile PIV suffered from background 

noise, producing poor quality data. However, recently combination techniques of Digital 

Imaging Radiography (DIR) and Particle Tracking Velocimetry (PTV) have been used by 

Salleh, 2014, to obtain the local liquid velocity in a vertical 2D panel of small diameter 

(4.5 cm) TBR. Unfortunately, the DIR & PTV techniques can only be used for the limited 

size of the column. 

The nuclear magnetic resonance imaging (MRI) is the most reliable technique to 

determine the liquid distribution and local liquid velocity. Unfortunately, the previous 

work on TBRs usually applied to small columns (less than 5.08 cm) and the techniques 

are expensive for regular use and cumbersome (Boyer & Fanget, 2002). Furthermore, the 

technique is not suitable for an industrial practice by many researchers (Schubert, et al., 

2010).  

  The determination of flow regimes is incredibly important because other 

hydrodynamic parameters, especially the mass transfer rates, are affected by different 
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hydrodynamics in each regime (Urseanu, et al., 2005). Previous studies investigated by a 

single-phase pressure transmitter to measure pressure fluctuations time series in the 

middle of the bed (Horowitz, et al., 1997). Al-Naimi, et al., 2011 used two-phase pressure 

drop data in the bed to identify the flow regime. The data from the pressure measurement 

were analysed with calculating standard deviation, Fourier power spectrum and Hurst 

exponent to determine flow regimes. Unfortunately, the determination flow regime by 

pressure can only be determined at the wall of the reactor. The data did not represent the 

whole reactors. It could be suitable for small diameter reactors and is applicable to small 

diameter reactors.  

Conductimetric probes are used to identify the flow regime transition in the TBR 

(Muzen & Cassanello, 2007). It is an intrusive techniques that capable to identify the 

flow regime by analyzing the conductivity data from the probes. However, the probes are 

not applicable industrial practice whereas, the probes are affected by the flow 

distribution, and special liquid need to be used to detect different conductivity. 

Earlier studies on liquid flow maldistribution have been done by using tracer 

techniques (Hanratty & Dudukovic, 1992). It is a successful technique in order to identify 

the flow maldistribution. However, a special type of tracers should be used. Conductance 

technique has been applied by Tsochatzidis et al., 2002 to investigate the liquid 

maldistribution. A different type of distributor such as a uniform, half-blocked and a 

quarter-blocked have been used to study the flow maldistribution. The conductance 

techniques are able to detect the maldistribution. Unfortunately, this technique needs a 

special conductivity liquid and the accuracy also depend on the size of the probe per size 

of the reactor. 
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As a result, a new method that is comparable to the established technique should 

be considered. The point and intrusive technique that combines with non-invasive 

technique is more appropriate for better understanding of the hydrodynamics of TBRs. 

 

 1.3 RESEARCH OBJECTIVES 

The overall objectives of this work are to develop a new, point measurement that 

uses optical fiber probes to measure the local liquid and gas velocity, holdup and their 

time series. In addition, a non-invasive technique which is Gamma-Ray Densitometry 

(GRD) will be implemented to measure flow regime identification as well as other 

hydrodynamic parameters. The detailed objectives can be grouped as follows: 

1. Developing a new Two Tip Optical Fiber Probe (TTOFP) for hydrodynamics 

measurement of local velocities, holdups and their time series at various radial, 

and axial locations. This includes angular. Validating the results of TTOFP with 

those obtained by Gamma Ray Densitometry (GRD), Digital Imaging 

Radiography (DIR) for 2D plane and a known velocity experiment for TTOFP. 

2. Investigating the effect of superficial liquid and gas velocities on the local liquid 

and gas velocities and holdups in radial and axial positions. 

3. Implementing a non-invasive measurement technique based on Gamma Ray 

Densitometry (GRD). Which can be used in pilot plant and industrial scales 

and/or using industrial operating conditions. This includes:  

• Implementing GRD to investigate the flow regime identification using 

different superficial liquid and gas velocities radially and axially. 
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• Implementing GRD to investigate the radial profiles of the line averaged 

phase holdups with different liquid and gas flow rates.  

• Implementing GRD on identifying gross maldistribution with different types 

of inlet distributors along the bed height.  

 

 1.4 DISSERTATION ORGANIZATION 

  This dissertation structured in the following manner.  

• Section 1 presents the introduction which consists of the scope, motivation, and 

objectives and thesis structure.  

• Paper I which is related to flow regime identification using on-line gamma ray 

densitometer for trickle bed reactors.  

• Paper II which is related to novel measurement technique based on optical probe 

to measure local flow dynamics in packed bed reactors. 

• Paper III which is related to overall distribution identification and effect of inlet 

distributor on the phase holdup in a trickle bed reactor using gamma ray 

densitometry (GRD). 

•  Section 2 summarizes the conclusions drawn from the entire study. 

Recommendations for future work on the hydrodynamic study of TBRs are also 

discussed. 
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PAPER  

I. FLOW REGIME IDENTIFICATION USING ON-LINE GAMMA-RAY 

DENSITOMETRY FOR TRICKLE BED REACTORS (TBRs) 

Mohd Fitri Abdul Rahman, Vineet Alexander and Muthanna H. Al Dahhan 

Department of Chemical and Biochemical Engineering, Missouri University of Science 

and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO 65409, USA 

ABSTRACT 

Flow regime identification of Trickle Bed Reactor (TBR) is one of the critical parameters 

to identify the good distribution of liquid and gas. Many techniques have been developed 

by previous researchers to measure this parameter. Unfortunately, most of the techniques 

require probes intervention in the reactor which affects the flow distributions of gas and 

liquid. Gamma-ray densitometry is a non-invasive technique which can be used for 

laboratory, pilot plant and industrial scales reactors. This work measures the flow regime 

identification by Gamma-ray Densitometry measurement techniques. The experiment 

was performed on 0.14 m diameter reactor made of Plexiglas filled with 3 mm glass bead 

which acts as the solid. Water is the liquid phase while the air is in the gas phase. The 

superficial velocities for both gas and liquid were in the range 0.03 m/s to 0.27 m/s and 

0.004 m/s to 0.014 m/s respectively.  

Keywords Trickle bed reactor; Gamma-ray Densitometry; Flow Regimes Identification 
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1. INTRODUCTION 

Trickle bed reactors (TBRs) are widely used in petroleum, petrochemical and 

chemical industry, wastewater treatment and biochemical processing (Ranade et al., 

2011). TBRs is a packed bed in which gas and liquid reactants flow concurrently 

downward. When gas and liquid flow over the fixed bed, complex interactions between 

the flowing gas and liquid and stationary particles are encountered in TBRs, lead to 

different regimes. Flow regime represents the flow pattern of liquid and gas which 

depends on gas and liquid flow rates, physical properties and bed characteristics (Al-

Naimi et al., 2011; Al-Dahhan et al., 1997). Various flow regimes exist in trickle bed 

reactors such as trickling, pulse, spray and bubbling regimes (Ng, 1986; Al-Dahhan et al., 

1997; Attou et al., 1999, Ranade et al., 2011).   

The trickle flow regime occurs at low gas and liquid flow rates. An increase in the 

liquid and gas mass flow rates leads to pulsing flow regime. In industries, TBRs are 

usually operated in a trickle, transition, and pulse flow regime (Satterfield, 1975; Saroha 

& Nigam, 1996; Attou & Ferschneider, 1999; Al-Naimi et al., 2011; Al-Dahhan et al., 

1998), and it is based on the literature reported correlations and data which have 

uncertainty due to the different conditions used in the lab as compared to those in 

industrial applications. 

Liquid distribution, pressure drop, liquid holdup, catalyst contacting, catalyst 

utilization heat and mass transfer and other hydrodynamic parameters vary with flow 

regime type since the phases interaction and flow structure change with the flow regime 

(Latifi et al., 1992; Al-Dahhan et al., 1998). Therefore, it is important to define which 

flow regime the reactor is operating at for a given set of conditions and the desired 
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reaction and kinetics. Several techniques have been developed and implemented to 

improve the measurement of flow regimes and their transition. Hence, studies in the 

literature have been conducted on identifying flow regimes using laboratory scales 

reactors where the facilitations are not related to industrial processes. Most of the studies 

used visual observations to monitor the flow regimes (Ranade et al., 2011). Also 

measuring time series pressure drop or pressure signals at the wall and statistically 

analyzing them regarding mean, variance, and standard deviation have been used in the 

literature (Horowitz et. Al, 1997; Urseanu et al., 2004 and Al-Naimi et al., 2011). Table 

1.1 summarize some studies on flow regime identification with the techniques used. 

An extensive study has been done on pressure drop in TBRs. Pressure drop is one 

of the critical parameters on hydrodynamics. The pressure drop represents the energy 

dissipated to offset the resistance to fluid motion through the reactor bed. It is important 

in determining energy losses, the sizing of the compression and pumping devices, and 

very often, in assessing the liquid holdup, the external wetting efficiency, the interfacial 

mass transfer coefficients level, among other aspects (Wammes et al., 1991; Larachi et 

al., 1991, 2000; Al-Dahhan & Dudukovic, 1994; Latifi et al., 1999; Narasimhan et al., 

2002; Cai &  Resetarits, 2011).  

Horowitz et al., 1997 has developed a method for identification of flow regime 

from pressure fluctuation time series. Setra C206 pressure transmitter, located 40 cm 

above the column bottom is used to measure the pressure fluctuation. The measurement 

time was10s with a sampling rate of 100 Hz.
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Table 1. Summary some Studies on the Flow Regime with the Techniques Used. 

Author Reactor Conditions Techniques used Indicator used and comments 

Al-Naimi et al., 2011 Stainless steel TBR. 

0.05 m ID 

Total Length 1.25m. 

Alumina Sphere, 0.00016m diameter. 

Air-water and air-acetone systems. 

Conductance and 

Pressure Drop 

Measurement 

A sudden transient in the standard 

deviation of pressure drop signals 

value was observed for the transition 

from a trickle to pulse regime. 

Lopes & Quinta-Ferreira, 2010 

reported conductance technique did 

not give sharp boundary at which the 

transition observed. 

Compared with correlation 

Munteanu & Larachi, 

2009 

Transparent TBR. 

1.6 cm ID 

Total Length 28 cm. 

Glass bead, 1 mm diameter 

Air-water and phenylacetylene-

kerosene/hydrogen systems. 

Magnetic emulation of  

micro and  

macrogravity 

Magnetic fields were found to 

displace the transition boundary from 

a trickle to pulse flow.  

Proposed a correlation for the bubble 

flow to pulse transition based on the 

gas-to-liquid Reynolds number ratio. 

Unfortunately, their technique 

applied on a small scale reactor. 

Horowitz et al., 1997 Acrylic Column, 7.1 cm ID, 135cm 

long and packed with alumina spheres 

(2-5mm diameter) 

Gas-Liquid-Solid system 

Liquid: Water and Foaming solution 

Gas: Air 

Visual inspection 

Pressure Measurement. 

Standard deviation, Fourier power 

spectrum, Hurst exponent and 

correlation dimension of the attractor 

describing the system dynamics. 

The transition regime observed by a 

sharp increase of standard deviation 

plot of pressure measurement data. 

Correlation dimension increases with 

an increase in liquid flow rate.  
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Table 1. Summary some Studies on the Flow Regime with the Techniques Used. (Continued). 

   No clear indication of using 

correlation dimension due to limited 

error on low signal/noise ratio. 

No correlation comparison 
Urseanu et al., 2004 Steel Column, 0.051m diameter and 

1.2 m height. 

Cumene-Hydrogen System. 

Pressure Measurement 

Acoustic Signal 

Measurement 

Pulses regime indicated by broad 

peaks in the signals of acoustic 

measurement. 

The simple correlation was 

developed and compared with Trickle 

Bed Simulator of University Laval. 

Muzen and Cassanello, 

2007 

Square acrylic column (4cm x 4cm) 

Structure packed of plastic sheets. 

Gas-Liquid-Solid system. 

Air and Pottasium Chloride (Liquid). 

Conductimeter Standard Deviation and Kolmogorov 

Entropy (KE). KE significantly 

decrease for intermediate liquid 

velocities and increase again for 

larger liquid velocities. No 

correlation comparison. 

Latifi et al., 1992 Trickle bed 5cm ID 

5 mm glass bed 

Gas-Liquid-Solid System 

Gas: Nitrogen 

Liquid: Electrolyte Solution 

Microelectrode Compared with literature in the form 

of the variation of (L/G)λψ as a 

function of G/λ. The agreement is 

quite satisfactory.Compared visually 

observed and microelectrode 

technique.Detailed pulse regime 

distribution was not reported. (Lopes 

& Quinta-Ferreira, 2010) 

Anadon et al., 2008 Cylindrical Column 70cm length and 

ID 43 mm. 

Packed with γ-Al2O3 packing 3mm 

diameter. 

Air-Water system. 

MRI MRI compared with pressure drop 

and conductance measurement. 

The transition regime indicated by 

isolated local pulsing events on the 

MRI images.No correlation. 



20 

 

  

 

The raw data of time series have been plotted and quickly determined the trickle, 

transition and pulse regime without any data analysis from the signals (Figure 1). 

However, further analysis also has been conducted by the authors with standard deviation 

plot, power spectrum, and correlation dimension calculation. 

 

Figure 1. Typical Results of Pressure Fluctuation Time Series without any Data Analysis 

(Taken from Horowitz et al., 1997) 

 

Correlation dimension is a parameter that describes the dynamics of the systems 

after all transients die out by introducing an attractor. An attractor is a zero-volume set in 

phase system to which a dissipative system converges as time tends to infinity. To 

calculate the correlation dimension, a method suggested by (Grassberger and 

Procaccia1983) was applied. The procedure involves correlation dimension is evaluated 

from the scaling region in a logarithmic plot of the correlation integral vs. the size of a 

sphere in the embedding space (Grassberger and Procacia, 1983). The author concluded 
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correlation dimension increases as an increase in the liquid flow rate but gave no clear-

cut criterion for identifying flow regime. 

Furthermore, the finding of Horowitz et al., 1997 was repeated by Urseanu et al., 

2004 which measured the two-phase pressure drop for flow regime identification for 

high-pressure TBR (0.051 m reactor diameter and packing with 3 mm glass bead). They 

have also plotted standard deviation versus superficial liquid velocity (Ul) which showed 

a characteristic shape, increased proportionally with Ul. 

The regime transition was approximately determined using the inflection point 

from each standard deviation curve, and they have also backed-up the finding by a 

parallel set of experiments using acoustic signal measurements. Acoustic signals were 

recorded using Ultra probe 2000, with a frequency of 1000 Hz. From the data, the 

standard deviation was calculated and plotted. The experiment was done with one 

operating pressure 0.2MPa and Ug = 0.2 m/s. They found a similar trend between the 

standard deviation from pressure drop and acoustic signal data. 

Unfortunately, the measurement of pressure drop was obtained only at the wall of 

the reactor. The measurement could be reliable only for small TBRs, but it will not 

represent the bigger size of the reactor. Many researchers have identified the flow 

regimes by the sudden change from the standard deviation plotted over the Ul  (Horowitz 

et al., 1997; Urseanu et al., 2005; Muzen & Cassanello, 2007; and Al-Naimi et al., 2011). 

Unfortunately, the finding was only a rough estimation of the time series analysis. 

Further analysis on time series is needed. Also, comparison with other techniques needs 

to be performed to better understanding the differential pressure drop and other 

hydrodynamics properties.  
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Tjugum et al., (2002) demonstrated the use of multibeam gamma-ray 

densitometry for flow regime identification in the pipe (76.2 mm inner diameter). They 

plotted average intensity distribution and compared with the theoretical calculation of 

Gas Volume Fraction (GVF). The expression formula of GVF is given by transmitted 

intensity, water cut, and calibration of pipes with gas, oil, and water. However, they 

assumed oil/water/gas mixture is homogeneous. They have successfully identified several 

flow regimes occur in the pipe with different liquid and gas flow rates. Unfortunately, 

limited reference on gamma-ray densitometry conducted on the packed bed with air-

water-solid systems. 

Usually, the industrial scale TBRs are large in diameters (2-6m diameter) and 

operated at high pressures and temperature. Hence, monitoring the flow regimes is the 

most cumbersome. Therefore, there is a need to develop techniques involving non-

invasive approaches that can be applied in the laboratory, pilot plant and industrial 

reactors. There is also need to develop a technique for flow regime diagnosis that is non-

invasive, which are implemented on industrial scale columns without upsetting the 

operation, and that provides reliable information. 

One of the techniques of non-invasive is Gamma Ray Densitometry (GRD). GRD 

is used extensively in industry for applications such as level control, density 

measurement, and weight measurements in conveyors (Charlton 1984; Johansen & 

Jackson 2004; Zain et al. 2008). GRD can also be permanent installed permanently on the 

respective unit operation or portable. Zain et al. (2008), used a portable gamma-ray 

densitometry to inspect column for any malfunction regarding mechanical or process in 

industries. Many companies used GRD as one of the Non-Destructive Testing (NDT) 
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technique for diagnostic inspection of column or pipe for example Tower Scan company 

(www.towerscan.com), Plant Assessment Technology Group, Nuclear Malaysia and 

Tracerco Company (www.tracerco.com).  

Accordingly, in this work, gamma-ray densitometry (GRD) based technique has 

been developed, validated and implemented as a non-invasive technique capable of 

identifying the flow regimes and their transition in the operated lab, pilot plant and 

industrial scales trickle bed reactors. 

 

2. EXPERIMENTAL WORK 

 

2.1. TRICKLE BED REACTOR EXPERIMENTAL SETUP 

 Figure 2 shows the experimental setup which consisting of 0.14 m diameter and 2.13 

m height Plexiglas column packed with 3 mm diameter glass beads. The height of the 

packing bed is 1.83 m. The top section of the column has a shower head for the liquid 

phase of 0.013 m diameter and two gas inlet for the gas phase of 0.0064 m diameter. The 

shower head inlet consists of 22 holes of 0.003 m (1/8 inches). Meanwhile, the distributor 

has two sizes of holes of 0.009 m (3/8 inches) diameter and 0.003 m (1/8 inches) 

respectively. The twos size of the distributor to get a better initial distribution of gas and 

liquid. 

Deionized water with a temperature of about 70oF was used as the liquid phase, 

and the inlet pressure was maintained at 20 psi. Dry air supplied by high pressure and the 

high capacity compressor was used as the gas phase. The water is circulated to the 

column through flow downward and their water collecting tank (The water motor pump 

used model 503186, 3E-12NT from Little Giant Pump Company, Oklahoma, USA, with 



24 

 

  

 

maximum flow rate 500GPH). Valves controlled both liquid and gas flow rates and 

measured by two types of Rotameters (Dwyer Instruments, USA, Model RMC-102-SSV 

and RMC-106-SSV flowmeter range 10-100 SCFH air and 100-1000 SCFH air for the 

gas flow meter and liquid flowmeter model FL-75E from Omega flow rate range 1.5-

15GPM).  

The superficial liquid flow rates used were in the range of 0.004 – 0.016 m/s and 

the superficial gas flow rates were in the range 0.03 – 0.27 m/s covering flow regime 

through pulsing flow regime.  

 

  

Figure 2. Trickle Bed Reactor Experimental Setup (A: Pressure drop probe, B: Shower 

Head C: Distributor, D: Mesh Support E: Inlet) 

As mentioned earlier the trickle bed reactor was mounted inside the structure of 

the GRD technique to perform measurement at various height and radial location as 
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illustrated in Figure3. A pressure drop transducers (Omega Pressure Transducer PX409 

015DWUV) also installed and used to measure the change in pressure between the bed. 

 

2.2 GAMMA RAY DENSITOMETRY (GRD) TECHNIQUE  

The newly developed GRD technique consist of a radioactive collimated sealed 

source of Cs-137 of initial activity 250 mCi on Jun 12, 2012, and a 0.0508 m collimated 

detector which mounted on the opposite side on the flexible structure. The structure of 

GRD allows the source/detector to move and to be rotated at various angles. 

 

Figure 3. Scan Positions in Trickle Bed Reactor 

 

The sealed sources collimator has a hole of 0.001 m while the detector collimator 

has an aperture of 0.005 m wide and 0.2 m tall. It is evident that the alignment of the 

holes of the source and the detector is a critical step in implementing our GRD technique. 
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Therefore, a laser-based light technique with a demo detector has been guided to achieve 

proper alignment and to maintain during the experiments. A series of counts it measures 

by demo detector to make sure the highest counts should be recorded with the particular 

position of the alignment. Then, the alignment will be fixed with guided laser beam. 

Couples of check and balance of the source/detector positions done during before and 

after experiments. 

The radioactive source transmitted a focused beam through the column and 

process material, to the detector. The amount the radiation (counts) receives by the 

detector changes consequently as the density of the material in the column changes. The 

amount of the radiation (counts) that reaches the detector through the process material is 

reflective of the phases and collective densities of the materials along the radiation line. 

Hence, these counts or the radiation received by the detector reflects the flow along the 

radiation line. The photon beam of γ-rays coming from the radioactive sealed source is 

made such that it provides a point beam, which is custom made by Tracer Co Company 

(Pasadena, Texas) to enhance the resolution of our measurements. 

The major advantages of GRD that make it attractive for industrial use are,  

1. Non-invasive.  

2. High integrity.  

3. High reliability and low maintenance.  

4.  Low installation costs 

     The current GRD system in the lab can measure the flow regime identification and 

also the radial diameter profile of solids, gas, and liquid hold-up and it can be used as 

reduced tomography technique. 
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2.3. GRD SIGNALS AND THEIR ANALYSIS FOR FLOW REGIME 

IDENTIFICATION 

 

Figure 4 shows the time series of the photon counts for a baseline condition when 

the reactor is packed with glass beads particles without flowing of gas and liquid phase. 

While Figure 5 shows the time series of the photon count at a selected condition of 0.01 

m/s superficial liquid velocity and 0.06 m/s superficial gas velocity. The photon count 

measured for varying flow rate will be due gas-liquid, solids, and column. The variation 

of photon count will be only due to the gas-liquid movement as the photon attenuation of 

solids (packed bed), and column is fixed. Hence, the GRD fluctuation at varying flow 

rate translates the phenomena of gas-liquid flow pattern at a various flow rate over the 

catalyst bed.  There are different methods to analyze the time series and in this study, the 

following methods are implemented. 

1. TIME SERIES ANALYSIS 

A. Mean and Standard Deviation 

B. Autocorrelation. 

2. FREQUENCY DOMAIN ANALYSIS  

A. Spectral Analysis 

3. STATE SPACE ANALYSIS 

A. Kolmogorov Entropy. 

 

3. RESULTS AND DISCUSSION 

 

 3.1 RESULTS OF STATISTICAL ANALYSIS 
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 Statistical quantities of GRD signals can be obtained only for gas-liquid flow 

rates, and it can be done by subtracting the statistical quantities measured at operating 

condition with the baseline conditions. The baseline condition is defined for the scanning 

state for fixed solid bed without any flow conditions. In this case, the attenuation is due to 

solids (catalyst) and due to column wall. The baseline attenuation is always fixed as the 

catalyst is non-porous and immovable and same goes for the column wall. So simple 

subtraction of statistical quantities is undergone to see the statistical prints observed for 

various flow rate which is the representation gas-liquid flow distribution variation or 

transition or operation at different flow regime. The statistical quantities measured are a 

standard deviation and mean. 

 

 

Figure 4. Time Series Signals of the Photon Count Baseline of the Condition of the TBR 

Packed with the Particles without Flowing of Gas and Liquid. 
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Figure 5. Time Series Signals of the Photon Counts at Ul = 0.01 m/s and Ug = 0.06 m/s at 

Z/D = 5 and r/R = 0. 

 

 

The standard deviation (σ ) measures the amount of dispersion around the mean. The 

formula for σ  is as follows; 

 

 

𝜎 = √
∑ (𝑥𝑖 − �̅� )2𝑁

𝑖=1

(𝑁 − 1)
 (1) 

 

Where N is total number of data point, xi is the measured signals and �̅� is the mean. The 

general time series mean as follow; 

 

 
𝜇 =  

∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
 (2) 
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The data can be analyzed with a mean and standard deviation of the attenuation of the 

signal only due to gas-liquid flow or the process condition. The overall mean for the 

process can be written as follows:                                 

 

 μ =  μ𝒃 – (μc)𝑖   (3) 

 

Where μ𝒃 mean for time series of baseline data (only solid) and μc for mean of time series 

with different flow rates of liquid. This can be done because the mean of base line 

condition which is fixed is embedded in the mean of flow rate condition. 

Similarly, the standard deviation for process conditions is the difference of standard 

deviation of baseline data to standard deviation plot for the time series at different 

superficial liquid velocities; 

 i)c(σ – bσ=    σ (4) 

Where σb is the standard deviation of baseline data and σc is the standard deviation of 

time series data with different superficial liquid and gas velocities. The subtraction of 

time series of baseline data is implemented in this research from the static scans of the 

TBR. The photon attenuation counts obtained from this method represents only the 

dynamic or static liquid behavior with different superficial liquid and gas velocities. 

Figure 6 and 7 show the results of GRD for the mean and standard deviation with 

varying superficial liquid velocity Ul. The mean and standard deviation increase with 

increasing superficial liquid velocity. Flow regime transition can be observed at the 

inflection point where there is a sudden variation of the slope  The patterns of the curves 

were similar at the different level of axial position with similar results of inflection points 
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which are the point of transition from a trickle to pulse flow. It shows that the flow 

behavior or gas-liquid flow is quite similar at these axial locations and the center of the 

bed. It can also be inferred that there is no maldistribution of liquid at the center of the 

bed along the axial height.  The transition superficial liquid velocity is found to in the 

range of 0.1 to 0.12m/sec for the fixed superficial gas velocity of 0.09 m/sec 

Figure 8 shows the standard deviation plot at Z/D=5 and r/R=0 for varying 

superficial liquid velocity and keeping three fixed superficial gas velocity (0.03m/sec, 

0.12 m/sec, 0.18m/sec). It was observed the similar trend of transition regime, trickle, and 

pulse regimes. The transition range is found to superficial liquid velocity (0.1-0.12m/sec) 

for all the cases. There is one interesting observation that the standard deviation values 

are more for higher gas flow rate in trickle regime and vice versa in pulse regime. It can 

be attributed to the fact the at higher gas- higher liquid flow rate the system is in more 

ordered form compared to the case when high liquid and low gas flow rate. The results 

are in good agreement with Horowitz et al., (1997), Urseanu et al., (2005), and Al-Naimi 

et al., (2011), despite different techniques such as pressure drop fluctuations data and 

acoustic signals. The measurements were taken in a time series as similar to the GRD 

technique. Van Ommen et al., (2011) suggested that any change in the standard deviation 

of time series data (regardless of any techniques of measurement) was often used to 

identify the flow regime. The comparison was made with pressure drop measurement on 

the plotted standard deviation in Figure 9. The pressure drop measurement determines the 

global phenomena which is the results of overall prevailing microscopic phenomena of 

the bed. It shows similar transition regime for overall and line average measurement 

using Gamma-Ray Densitometry (GRD).  
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Figure 6. Average Count (Mean) of GRD for TBR with Different Superficial Liquid Flow 

Rate at Z/D = 2 at Ug = 0.09 m/s at the middle scans of the TBR 

 

Figure 7. Standard Deviation of GRD Counts for TBR with Different Superficial Liquid 

Flow Rate at Z/D = 2 at Ug = 0.09 m/s at the middle scans of the TBR. 

 

Pulse regime 

Trickle regime 

0

100

200

300

400

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

C
o

u
n

ts

Ul (m/s)

Mean vs Ul

Z/D = 2

Z/D = 5

Z/D = 7

0

100

200

300

400

500

600

0 0.020.040.060.08 0.1 0.120.140.160.18

St
an

d
ar

d
 D

ev
ia

ti
o

n

Ul (m/s)

Standard Deviation vs Ul

Z/D = 2

Z/D = 5

Z/D = 7Inflection point = Transition 

regime 

Pulse regime 

Trickle regime 



33 

 

  

 

 

Figure 8. Standard Deviation versus Different Superficial Liquid and Gas Velocities at 

Z/D = 5 and r/R = 0. 

 

 

Figure 9. Flow Regime Identification Using Pressure Drop Measurement with different 

Ug at Z/D = 5 and r/R =0. 
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There is one disadvantage of using time series method that is the measurement 

technique may not be able to capture different phenomena occurring at different time 

scale. There were some losses of information in the time series of data from the GRD 

because many factors affected the flow such as the type of packing, the size of packing 

and superficial liquid and gas velocities which generate information at different time 

scales. Hence, further analysis by changing the time series domain to frequency domain 

analysis was implemented. 

 

3.2. RESULT OF SPECTRAL ANLAYSIS  

The spectral analysis converts the time domain based signal to frequency domain, 

and it describes the distribution of power contained in a signal over frequency. The 

spectral analysis is performed using Fourier transformation F(x). 

Fourier transform of a time series x(t) is as follows:  

 

𝐹(𝑥) = ∫ 𝑥(𝑡) exp(−𝑗2𝜋𝑓. 𝑡) 𝑑𝑡

+∞

−∞

 

 

(5) 

Where, f, is frequency. The power spectral density (PSD), φxx, is the square of the 

magnitude of the continuous Fourier transform which represents as follow, 

 𝜑𝑥𝑥 = 𝐹(𝑥). 𝐹∗(𝑥) 

 

(6) 

Where F*(x) is the complex conjugate of Fourier transform. 

Shaikh and Al-Dahhan (2013) developed flow regime identifier based on analysis of PSD 

(𝜑𝑥𝑥) plot. They said the power law fall of the signal at higher flow rate is the indicator 
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of flow regime change. Figure 10 shows the plot of PSD for varying liquid flow rate at 

fixed gas velocity 0.09 m/sec at Z/D=5 and r/R=0.  It is seen from Figure 10, power law 

fall is observed at Ul = 0.012 m/s and it is the indicator of the pulse flow regime. This can 

be also explained phenomenologically, as at trickle flow the gas will be in continuous 

phase and liquid will also be fairly in continuous phase with film over the solids and rare 

occurrences of small droplets in bulk phase. The PSD for this state will be kind 

homogenous across all frequency range as the GRD signal attenuation is only due to 

stationary solid (nonporous) and the liquid film. This is observed in figure 10a and 10b. 

In pulse flow, the gas phase is continuous with liquid phase is in semi-continuous state 

with high interaction. In this case the PSD can show non homogenous behavior like drop 

due to high interaction of liquid and generating different powers of signal at different 

frequency scale. This is observed in figure 10c and 10d with the power law fall in signal. 

This fall may be due to the high interaction of liquid phase. Hence, the power law fall 

may be the rough indicator demarking the trickle and pulse flow regime. In figure 10c 

where the first fall is observed can be the indicator of pulse flow which is 0.012 m/sec. 

 

3.3 RESULT OF AUTOCORRELATION  

Autocorrelation is the cross-correlation of a signal with itself. It is the similarity 

between observations as a function of the time lag between them. It is a mathematical 

tool for finding repeating patterns, such as the presence of a periodic signal obscured by 

noise, or identifying the missing fundamental frequency in a signal implied by 

its harmonic frequencies. It is often used in signal processing for analyzing functions or 

series of values, such as time domain signals. 
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In signal processing, the statistical definition of autocorrelation is often used 

without the normalization, that is, without subtracting the mean and dividing by the 

variance. When mean and variance normalize the autocorrelation function, it is 

sometimes referred to as the autocorrelation coefficient. The autocorrelation was used by 

Shaikh & Al-Dahhan (2013) to monitor the flow regime in a bubble column online and 

developed flow regime identifier 

 

 
 

 

 

 

 

 

 

 

 

 

(c) 

Figure 10. a) PSD for Ul = 0.008 m/s (trickle regime) , (b) Ul = 0.010 m/s (trickle 

regime), (c) PSD for Ul = 0.010 m/s (pulse regime) and (d) PSD for Ul = 0.014 m/s 

(pulse regime) all plot with constant Ug = 0.09 m/s with axial at Z/D = 5 and r/R=0. 

(a) (b) 

(d) 
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In signal processing, the statistical definition of autocorrelation is often used 

without the normalization, that is, without subtracting the mean and dividing by the 

variance. When mean and variance normalize the autocorrelation function, it is 

sometimes referred to as the autocorrelation coefficient. The autocorrelation was used by 

Shaikh & Al-Dahhan (2013) to monitor the flow regime in a bubble column online and 

developed flow regime identifier based on the exponential type plot for periodic and 

homogenous conditions. The autocorrelation function in signal processing expresses the 

linear relationship between signal values at two different times and mathematically it is 

written as 

𝐶𝑥𝑥(𝜏) =
1

𝑇
∫ 𝑥(𝑡)𝑥(𝑡 − 𝜏). 𝑑𝑡

𝑇

0
         (7) 

where τ is a time lag. 

The autocorrelation function is used to estimate how well upcoming values of a 

signal can be predicted from knowledge of the signal history. The behavior of the 

autocorrelation curves is a reflection of the nature of the time-series, irrespective of its 

operating and design conditions (Shaikh & Al-Dahhan 2013). Figure 11 shows the plot of 

autocorrelation coefficient with the time lag for varying liquid flow rate with a constant 

gas flow rate of 0.09m/sec at Z/D=5 and r/R=0. In trickle flow, there is inherent periodic 

nature of liquid due to thin film flow over the catalyst and less occurrence of liquid 

droplets in bulk flow. Hence the signals can be correlated in this regime. It is seen that 

the exponential type of plot in figure 11a and 11b in the time lag of 0-2 sec. This 

exponential correlation is observed due to trickle flow in the system. In pulse flow regime 

the correlation is difficult due to inherent inhomogeneity created because of the higher 

interaction of liquid. It is seen in Figure 11c and 11d the exponential nature is distorted, 
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and it can be attributed to pulse flow regime, and no particular correlation pattern is 

observed. Hence, Figure 11c and 11d represents pulse flow conditions with transition 

velocity of 0.012m/sec.  Long term processes are not appeared in autocorrelations cure, 

so time lag of 0-2 sec is generally enough to evaluate without any loss in information 

(Smith,1999). 

 

3.4 RESULT OF KOLMOGOROV ENTROPY (KE)  

Kolmogorov Entropy is one of the chaotic analysis technique which can be 

implemented on time series of GRD photon count fluctuation. Kolmogorov entropy is 

state space analysis and measures the level of disorder in a chaotic system. In a classical 

system, KE is a measure of the degree of ‘chaos’ inherent in the dynamics of the system 

(Pechukas, 1982).  Multiphase flow in TBR is a chaotic system, and the varying degree of 

chaos are observed at various flow regimes. This criterion is utilized to demarcate 

different regime in a TBR.  Kolmogorov Entropy is a quantitative measure of the rate of 

information loss of the system dynamics due different level of disorder in the system. 

KE values of a periodic non-chaotic system are zero, for the random chaotic 

system it’s a finite positive quantity, and for complete disorder or non-deterministic 

system, its value is Infinite. The KE also quantifies the degree of unpredictability of the 

system. The method used in this study to evaluate KE is the approach of Schouten: 

maximum likelihood estimation of Entropy (Schouten et al., 1994) and MATLAB 

program is developed at multiphase Engineering and applications laboratory (mReal) on 

the basis of the same. This method is used due to its successful implementation on 

pressure fluctuation to identify flow to identify flow regime (Nedeltchev et al., 2011). 
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Figure 11. Results of Autocorrelation for Z/D =5 and r/R=0 with different Ul with 

constant Ug = 0.09 m/s 

  

Figure 12 shows the results of Kolmogorov Entropy calculation at Z/D=5 and 

r/R=0, for fixed superficial gas velocity of 0.09cm/sec and varying superficial liquid 

velocity. The maximum peaks observed in the plots are the point of instability, and the 

minimum is the point of stability, the point of stability are transition point of flow regime 
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(Toukan, 2016).  At low flow rate, the system is in trickle flow and on increasing liquid 

flow rate the system disorder is increased hence the KE values too. The KE reaches the 

first peak value at 0.08m/sec at this point the system in trickle flow at most random or 

chaotic state. On further increasing the liquid velocity the system reorganizes itself in 

trickle flow and disorder reduces in this same regime and reaches the minimum point at 

0.012 m/sec. At this point, the system is in trickle flow, but it's in the most organized 

state. Further increase in liquid velocity increases the KE value and hence the disorder 

and jumps to pulse flow regime. Again the same trend is noted in pulse flow regime. The 

transition velocity from trickle flow to pulse flow is 0.012m/sec. This observation is in 

agreement with all the other analysis reported in this study. 

 

 

Figure 12. Superficial Liquid Velocity versus Kolmogorov Entropy at Different Ug,  Z/D 

= 5 and r/R = 0. 
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4. REMARKS 

Identification of flow regime is made on a TBR based on the photon count signal 

obtained from non-invasive GRD technique. The time series data obtained from GRD is 

subjected to statistical analysis by measuring standard deviation (SD) and mean. The 

slope change in mean and SD plot with varying liquid flow rates and at different constant 

gas flow rate is used to demarcate the regimes. The transition region is identified, and it is 

found to same for all the axial measurement at the center of the reactor. It shows the flow 

distribution is quite uniform along the axial length at the center of the reactor. Pressure 

drop measurement also indicated similar transition trend which indicates the overall and 

line average phenomena at the center of the reactor are behaving in a similar manner.  

To accurately pinpoint the flow regime transition point, the GRD signal obtained 

at the middle of the reactor (Z/D=5, r/R=0) is tested on another time domain 

(Autocorrelation), frequency domain (Spectral Analysis) and state space (Kolmogorov 

Entropy). The identified flow regimes are a trickle and pulse flow. Autocorrelation 

showed that in trickle flow the signals could be correlated, and there is no identifiable 

correlation exists in pulse flow. The spectral analysis identified the flow regime based on 

power law fall. Kolmogorov entropy which is state space analysis distinguished flow 

regime based on the trend of change in disorder or randomness in the system. All the 

analysis are successful in identifying flow regime and are in agreement with each other. 

This finding shows that the GRD is capable of determining flow regime in all three 

domain of analysis which time, frequency and state space. This information is vital for 

industrial purpose, as GRD can be successfully implemented at industrial scale and flow 

analysis in any domain can make regime identification. 
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ABSTRACT 

 

In this work a novel experimental technique called Two-Tips Optical Probe (TTOP) is 

developed and implemented on a trickle bed reactor (TBR).  This technique identifies 

local flow dynamic parameters such as local liquid and gas velocities, local liquid and gas 

saturations in void space of packed bed packing. This measurement technique is validated 

with X-Ray Digital Industrial Radiography (DIR) and known velocity experiment. The 

TBR used in this study is made up of Plexiglas column of diameter 0.14m and filled with 

3 mm glass bead packing. Water and air are the phases with the superficial velocity of 

liquid from 0.004 m/sec to 0.016 m/sec and fixed superficial velocity of the gas at 0.09 

m/sec. Local hydrodynamic parameters are evaluated using TTOP at these conditions. 

Keywords: Trickle bed reactor; optical fiber probe; 
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 1. INTRODUCTION 

Packed bed reactors (PBR) are widely used in industries such as petroleum, 

petrochemical, chemicals and biochemical industries. Especially, Trickle bed reactors 

(TBR), which are concurrent downflow of gas-liquid over the fixed-bed catalyst and is 

one of the main reactor of choice for various industrial appli- cations (Al-Dahhan & 

Dudukovi´c (1994),Al-Dahhan et al. (1997),Burkhardt & Busch (2013),Zehraoui et al. 

(2013),Meng et al. (2013)). PBR flow patterns are highly complex due to three phase 

interaction and results in different flow regime at various operating conditions. In 

general, most of the industrial applications are run at the trickle or pulse flow regime. 

Although these flow regimes are based on the overall flow pattern, it may not be the case 

at different local positions inside the void space of the catalyst packing. The flow 

behavior in local regions directly impacts the overall performance of these reactors, and it 

can be categorized based on the contact pattern of phases with the catalyst at these 

locations. The contact pattern can be defined as fully wetted, partial and dry wetting of 

catalyst and it directly depends on operating conditions and design of the reactor. For 

liquid limiting reactions fully wetting of catalyst is desired ((Al-Dahhan et al., 1997)), 

otherwise for the exothermic process, it can result in undesirable conditions like hot spots 

and catalyst agglomeration. 

Identification and quantification of the local hydrodynamic parameter are highly 

essential for better understanding the behavior of these reactors. The local flow 

distribution or saturation of phases and their respective local ve- locities at void space of 

catalyst packing quantifies the local flow dynamics. Many researchers have put the effort 

over the years to understand the com- plex hydrodynamics of these reactors, but most of 
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the research focus was on overall hydrodynamics, such as overall liquid and gas holdups, 

pressure drop, flow regimes, catalyst wetting effectiveness, mass transfer, and heat 

transfer (Al- Dahhan et al. (1997),Sederman & Gladden (2001),Schubert et al. 

(2010b)).There are limited studies observed for local measurements, and it is mainly due 

to lack of reliable and low-cost techniques that can measure them locally at   desired 

locations (Boyer & Fanget (2002),Schubert et al. (2010a),Anuar Mohd Salleh et al. 

(2015)). While some attempts were made at evaluating local liq- uid velocities (Sederman 

& Gladden (2005),Schubert et al. (2010b),Mohammed et al. (2013),Mohd Salleh et al. 

(2014) ) , and the local gas dynamics (Collins et al. (2017)) for packed bed systems. For 

local liquid velocities, some measure- ment techniques have been explored and reported 

in the literature for packed bed systems. These measurement techniques can be classified 

based on radi- ation and non-radiation. The radiation-based technique such as MRI and 

X- Ray Radiography are non-invasive and are capable of scanning opaque systems. Non-

Radiation based techniques include light-based imaging technique such as Particle Image 

Velocimetry (PIV), and other non-radiation based techniques are mostly intrusive such as 

Wire Mesh Sensors and Conductivity probes. The detailed application of optical probe 

sensors in multiphase reactors has been reviewed by (Li et al. (2012)). 

Mohd Salleh (2014) developed X-Ray Digital Industrial Radiography (DIR) and 

Particle Tracing Velocimetry (PTV) technique and implemented on a 4.5cm internal 

diameter (ID) and 40cm height trickle bed reactor to measure local liquid velocity. DIR 

consists of X-Ray source and a complementary metal oxide semiconductor (CMOS) 

digital detector. Tracking particles of size 106 − 125um diameter is fed and particle 

tracking is done by the developed algorithm from DIR images and measured local liquid 
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velocity. They observed the local liquid velocity could reach from 35 to 50 times the 

overall superficial liquid velocity. Scalability of this technique is not being studied yet, 

and it is only implemented at lab scale level. 

Gladden et al. (2003) and Sederman & Gladden (2001) used Magnetic Reso- 

nance Imaging (MRI) and performed 3-D flow study in two phase( solid-liquid) and three 

phase( gas-solid-liquid) packed bed reactor of internal diameter 43 mm and 700 mm long 

PolyTetraFluroEthylene (PTFE) tube. They generated image size 45mm X 45mm and 

observed the local liquid velocity can go up to 5 times superficial liquid velocity for 

single phase (only liquid) flow and for two- phase (gas-liquid) flow it can go up to 50 

times superficial liquid velocity. MRI is a reliable noninvasive technique with high speed 

and temporal resolution but it is highly expensive to implement at large diameter reactors, 

and mostly it applied to small scale columns less than 2 inches. 

Schubert et al. (2010a) and Mohammed et al. (2013) developed wire mesh sensors 

(WMS). The whole assembly of WMS contains wires meshes at two planes with a 

distance of 6.0mm. The wire mesh has 16 stainless steel wires of 0.2mm diameter and 

detects the liquid flow pattern based on the electrical permittivity of passing fluid. They 

implemented this on TBR having internal diameter 100mm and packed with 2.5mm 

spherical alumina catalyst till height of 135.5cm. The time difference of flow sensing 

between the sensors and the distance between the two planes are used to measure the 

liquid interstitial velocity, based on the assumption that the trickling liquid follows a 

straight line between the sensors. They observed the liquid interstitial velocity increases 

with increasing liquid mass flow rate. The issues with WMS is that it is highly intrusive 

as the sensors occupy the significant amount of cross-sectional area and can drastically 
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alter the flow pattern and the assumption to neglect tortuosity factor causes serious 

restrictions on derived interstitial liquid velocity. 

The literature shows very promising experimental techniques to measure local 

hydrodynamics in three phase systems but all focus on measuring liquid dynamics. There 

is still a lot of knowledge gap in this area especially dealing with large scale or even 

industrial scale reactor. The objective of this work is to develop and validate a 

measurement technique called two-tip optical probe which can measure and quantify the 

local flow dynamics of both gas and liquid phase in packed bed reactors and its 

implementation on TBR to measure local liquid and gas velocities and their respective 

local saturation’s at void space of catalyst bed. The data based on these local 

hydrodynamic parameters yields benchmark data for the reactor, pellet or multi-scale 

models, scale-up, and CFD validation and helps in better comprehension of flow structure 

through the bed at various local locations for packed bed reactor. 

 

2. TWO TIP OPTICAL PROBE 

Measurement technique based on optical probes called four-point optical probe 

are extensively used for gas-liquid systems (Xue et al. (2008), Youssef & Al-Dahhan 

(2009),Kagumba & Al-Dahhan (2015)). Four point optical probes characterizes the 

bubble dynamics like bubble chord length, bubble rise velocity, bubble interfacial area 

(Xue et al. (2003)). The orientation of the four-point optical probe to obtain bubble 

characteristics makes it impossible to place it in the packed bed systems.  Hence, a 

concept based on two tips is   devised, in which a two fiber optical cables are placed 

parallel to each other at 1mm distance. When this assembly is placed inside the packed 
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bed, then both tips face towards the diametrically opposite side. This orientation of two-

tip optical probe makes it possible to place these probe at desired local locations. The 

algorithms are developed to quantify the local flow dynamics from its time series data. 

 

2.1 MEASUREMENT PRINCIPLE FOR OPTICAL PROBES 

The optical probe used as measurement technique to characterize the gas-liquid 

flow is due to total internal reflection phenomena encountered at the probe tip when gas 

medium touches the tip and refraction phenomena when liquid medium touches the probe 

tip (Xue et al. (2003),Kagumba & Al-Dahhan (2015)). The Refractive index (ni) and 

critical angle (θc) characterize the total internal reflection phenomena 

  According to Snells law when light traverse through the interface of different 

media. The light will bend towards the  normal  when  it  enters  into  optically dense 

media, and it bends away from normal if it  enters  optically  less  dense media. Whereas 

the normal here is referred to the perpendicular line  to  the surface. This phenomenon is 

used to distinguish gas and liquid phase. Figure 1 shows the mathematical form of snell’s   

law. 

Hence, if a situation in which n1 > n2, then the light traveling from medium 1 to 

medium 2 bends towards the interface.  The two possible phenomena can occur 

depending on the critical angle θc as shown in the Figure 2 If the incident light is less 

than critical angle then refraction occurs (Figure 2a) and otherwise total internal 

reflection occurs (Figure 2b). If n2 > n1 then the light will completely transmit form 

medium1 to medium2. 
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Figure 1. Snell’s Law 

 

 

 

Figure 2. (a) Angle of  Incidence is Less Than Critical Angle; Light bends toward 

interface without total internal reflection (b) Angle of Incidence Greater than Critical 

Angle; Total Internal Reflection Occurs. 

 

 

The light inside the core of the fiber propagates through total internal reflection 

(Figure 3). The light incidents at an angle greater than the critical angle and total internal 

reflection occurs at either side of the wall through the length of the fiber. 
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Figure 3. Light Propagation inside the Optical Fiber Probe. 

 

 

2.2. THE OPTICAL FIBER PROBE TIP BEHAVIOR INSIDE THE GAS-LIQUID 

  SYSTEMS  

The optical fiber probe tip is transformed to a conical shaped tip as shown in 

Figure 4a.  This tapered tip facilitates the total internal reflection phenomena. The 

refractive index of the optical fiber is approximately 1.15, and gas is around 1, and that of 

is liquid around 1.3-1.5. Hence, with the conical shaped tip, when light touches the gas 

phase the criteria for total internal reflection satisfies as shown in Figure 4b and when the 

liquid touches, the criteria for refraction satisfies as illustrated in Figure 4c. 

The optical fiber box with data acquisition is used to generate and process the 

signal Figure 5.  A 680nm wavelength of light emitted by Laser   Emitting Diode is 

transmitted through standard fiberglass connectors and relayed to the probe tip and 

reflected light is detected by a photodiode. The photodiode signals are translated into 

voltage signals which were collected by data acquisition board (United Electronics 

Industries, PowerDAQ PD-2MFS-8-1M/12) at a sampling frequency of 40 kHz. When 

the tip is in the presence of gas, most of the light internally reflects and travels back up 

the fiber. When the tip is in the presence of a liquid, most of the light refracts out into the 

liquid, and little light travels back up the fiber. The light traveling back up the fiber re-
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enters the coupler, which sends a percentage usually 50% of this reflected light down the 

other leg of the coupler to a photodiode. The photodiode then converts the quanta of light 

into a voltage signal. The Figure 6 shows how a single probe responds to a bubble 

striking and leaving in a gas-liquid system. In the Figure 6, (A) and (E) shows the probe 

response inside the water, (C) shows the response inside the gas, (D) and (E) shows the 

gas bubble entering and leaving the tip, basically it defines gas-liquid interface.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
(b) (c) 

Figure 4.  (a) Optical fiber probe tip made into conical shape (b) Refraction phenomena 

gas touches the probe tip (c) Reflection phenomena when liquid touches the probe tip. 

(Xue et al. (2003)) 
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Figure 5. Schematic of Optical Fiber Box (Kagumba & Al-Dahhan  (2015)) 

 

A 680 nm wavelength of light emitted by Laser Emitting Diode is transmitted 

through standard fiberglass connectors and relayed to the probe tip and reflected light is 

detected by a photodiode. The photodiode signals are translated into voltage signals 

which were collected by data acquisition board (United Electronics Industries, 

PowerDAQ PD-2MFS-8-1M/12) at a sampling frequency of 40 kHz. When the tip is in 

the presence of gas, most of the light internally reflects and travels back up the fiber.  

When the tip is in the presence of a liquid, most of the light refracts out into the liquid, 

and little light travels back up the fiber.  The light traveling back up the fiber re-enters the 

coupler, which sends a percentage usually 50% of this reflected light down the other leg 

of the coupler to a photodiode.  The photodiode then converts the quanta of light into a 

voltage signal. The Figure 6 shows how a single probe responds to a bubble striking and 

leaving in a gas-liquid system. In the Figure 6, (A) and (E) shows the probe response 

inside the water, (C) shows the response inside the gas, (D) and (E) shows the gas bubble 

entering and leaving the tip, basically it defines gas-liquid interface. 
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The Figure 6 (a) and (e) shows the probe response inside the water, (c) shows the 

response inside the gas, (d) and (e) shows the gas bubble entering and leaving the tip, 

basically it defines gas-liquid interface.       

 

2.3 DESIGN AND FABRICATION OF TWO-TIP OPTICAL PROBE 

The fiber optical cable used in this study is made up of quartz glass core with a 

diameter of 200 µm, with silicon cladding to make total diameter to 380 µm, and a 

protective layer of Teflon makes overall diameter 600 µm A 200 cm length of fiber 

optical is taken and peeled from one edge to leave 2 cm quartz glass core A small fire 

Figure 6. The step response of a bubble striking a single probe tip. 
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flame is used to make arc-shaped pointed tip with the length of about 0.02 cm quartz 

glass The single fiber optic cable is cleaned and then tested with the water and gas 

environment to make sure to get clear gas and liquid signal. This probe and the technique 

components are manufactured at multiphase reactors engineering and applications 

laboratory (mReal) in Missouri University of Science and Technology. 

 Two fiber optical cable are arranged in geometrical configuration as shown in 

Figure 7. The fibers are then glued to 1/8 stainless steel tubing for insertion into the 

reactor. 

 

 

 

Figure 8.  (a) Two-tip optical probe (b) Placement of two-tip optical probe at local 

locations inside packed bed 

 

Figure 7. Orientation of Two-Tip Optical Probe 

(a) (b) 
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The assembly of two fiber optical cables in this manner is called two-tip fiber 

optical probe Figure 8a. It can be placed at desired local radial and axial locations inside 

the packed bed as shown in the Figure 8b. 

 

3. PARAMETERS MEASURED FROM TWO-TIP OPTICAL PROBE 

The typical signal obtained from the two-tip optical probe is shown in the Figure 

9. The graph depicts the time series signal received from the both the tips. The y-axis is 

the voltage signal generated and the top band signals having higher voltage represent the 

time when gas phase was on the tip surface and similarly the bottom band represents the 

time when the liquid phase was on the tip surface. From the time series signal shown in 

the Figure 9 different parameters to quantify local flow dynamics are measured using 

developed algorithm. The parameters measured are as follows. 

 

 

Figure 9. Raw Signal Obtained from Two-Tip Optical Probe 
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Local Gas Saturation: It is the local gas holdup concerning the gas-liquid 

mixture present in the catalyst void space for a two-phase flow through packed bed 

system. It is defined as the fraction of volume occupied by the gas in the catalyst void 

space where there is flow of gas-liquid   phase. 

                                                (1) 

The ergodic hypothesis says that the ensemble average is equivalent to time 

average, spatially volume time average can be replaced by time average holdup. Hence, 

time average holdup is the ratio of time spent by gas on the probe tip surface by the total 

measurement time when gas or liquid phase are on the probe tip surface. 

                                      (2) 

Local Liquid Saturation: It is the local liquid holdup with respect to gas-liquid 

mixture within the catalyst void space of packed bed reactor. The summation of local 

saturation of both phases in the void space should be one as the probe only detects the 

flow of gas or liquid phase in the measured region. Hence, to obtain local liquid 

saturation subtract local gas saturation from one. 
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                                    (3) 

Local Gas Velocity: The two-tip optical probe is designed in such a way to 

obtain local phase velocity. The velocity as by definition is the distance traveled divided 

by the time taken to travel that much distance. In our case the two tips are placed at a 

distance of 1 mm and so the only requirement here is to determine the time taken by the 

bubble to travel this distance between the tips. Figure 10 shows the schematic of probe 

response to illustrate local velocity calculations. 

 

Figure 10. Schematic of Probe Response of Two-Tips of Optical Probe 
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The two tips are categorized as lower and upper based on their geometrical 

orientation. In the above case, the tip 2 is the lower as it is placed below tip 1. tla  is the 

time when a bubble first touches the lower probe or tip 2, and tua isthe time at which the 

same bubble touches the upper probe or tip  1. The time difference (tla-tua or (tua-tla) 

will give the time taken by the gas bubble to travel 1mm, which is the distance between 

two tips. Hence the local gas velocity is given as: 

                                         (4) 

 

For gas-liquid upflow through packed bed (tua − tla) , and for downflow (tla − 

tua) is used in equation 4. When the gas-liquid flow is in the opposite direction to general 

flow negative time difference values are observed. The detailed discussion of negative 

velocities are in Section 7. 

Local Liquid Velocity:  To measure liquid velocity the time taken by the liquid 

to travel the distance between two tips is calculated. As the interested measurement zone 

only has gas and liquid phase. Hence, it means that as soon as the gas departs from the 

tip, the liquid will arrive or the difference between departure times of gas bubble will 

give the time taken by the liquid to travel the distance of 1mm. From Figure 10 tld and 

tud is the time at which the gas bubble departs from the respective tips of the probe. 

Hence local liquid velocity can be given as: 
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                                        (5) 

Here also if the general direction of gas-liquid phase is upflow then (tud −tld) or 

in case of downflow (tld − tud) is considered in equation 5. 

 

4. PROCEDURE TO DETERMINE LOCAL HYDRODYNAMIC PARAMETERS 

FROM TWO-TIP OPTICAL PROBE 

 

 

4.1 RAW SIGNAL  

The total measurement time for one set of experiment is 52 seconds, in this 

duration approximately 3,000,000 signal data points are generated. It is hard to visualize 

the whole set of data in one frame. Hence, total data points are split into different frames 

with each frame containing 100,000 data points. Then the 

 

              

    (a)       (b) 

Figure 11.  (a) Raw Time Series Data of The Frame Between 17.5 Sec And 20 Sec (B) 

Raw Time Series Data of The Frame Between 20 Sec And 22.5 Sec 
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                                   (a)                                                           (b) 

Figure 12. (a) Filtered Time Series Data of the Frame Between 17.5 Sec And 20 Sec (b) 

Filtered Time Series Data of the Frame Between 20 Sec And 22.5 Sec 

                            

 

 

Data points are converted to sampling time based on the sampling frequency, and 

each frame which is part of one set of measurements will represent different time slots as 

show in Figure 11. 

 

4.2 FILTERED SIGNAL  

The raw signal has noises associated with it as seen in the Figure 11. These noises 

are mostly due to electronics of data acquisition (DAQ) ports. It is reduced by designing a 

low pass filter and passing the raw signal through it. Figure 12 shows the filtered signal. 

 

4.3 SMOOTHING OF FILTERED SIGNAL 

The filtered signal is smoothed for clear cut demarcation of gas and liquid bands.  

It is accomplished by assigning a threshold voltage value above which all signals are 

considered gas phase and below are considered as the liquid phase. The gas phase will be 
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assigned value one and liquid phase will be assigned value of zero. The histogram plot of 

raw signal is generated to obtain threshold voltage value. Figure 13 represents the 

histogram plot of both upper and lower probe signal and each probes signal has two 

peaks. The peak on the left represents the liquid phase, and the peak on right represents 

gas phase. These peaks shape varies, and the number of occurrences varies based on the 

flow conditions. In the case shown in Figure 13 the number of occurrences of the liquid 

band is more as compared to gas bands. The threshold voltage value is taken as the 

voltage at which the peak of liquid region drops. In Figure 13a for the upper probe signal 

the threshold voltage value is 1 and similarly in Figure 13b the threshold voltage value 

for the lower probe is 1.2. The threshold values are changed from 1 to 1.5 in upper probe 

signal and 1.1 to 1.5 in lower probe signal and minimal variation in results are seen. For 

standardization, the voltage at which the first drop for the liquid region is observed is 

taken as the threshold voltage. 

Figure 14 represents the smoothened signal, and all the gas bands are as- signed 

value of one and liquid bands are allocated value of zero. The smoothened signal will 

give the exact time when the gas bubble touches the tip of the probe and the exact time 

when it leaves the tip of the probe. 

 

4.4 DETERMINATION OF LOCAL GAS AND LIQUID SATURATION  

The usage of the optical probe in measuring local gas and liquid holdup was done 

by Wang et al. (2003) in a fluidized bed and Xue et al. (2008) in a bubble column. They 

all used the ergodic hypothesis to determine the local holdup of phases. According to 

ergodic hypothesis volume fraction of flowing phases is equivalent to time spent by the 
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phases in those regions. Hence, the local holdup is measured by dividing the time spent 

by the gas or liquid phase with total measurement time. In packed bed reactor, the same 

procedure is applied, but the obtained values are not local holdups but rather local 

saturations. It is because the tip in the void space of packed bed only senses gas or liquid 

phase and quantifies the amount of time spent by gas and liquid phase in this regions. The 

solids are not moved and are not detected by these probes. The wetting factor in local 

void space is directly proportional to local liquid saturation. 

 

 

                                      (a)                                                                      (b)  

Figure 13. The histogram plot of raw signal; (a)For the upper probe (b) For the lower 

probe

       
 

The smoothened signal is used to calculate local gas and liquid saturation. The 

total time is calculated when the signal value is one. This time and the total measurement 

time is fed to Equation 2 to calculate local gas saturation. Then using local gas saturation 

in Equation 3 to calculate local liquid saturation. 
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          (a)           (b) 

Figure 14. Smoothed Signal of Filtered Data of Two-Tip Optical Probe; (a) For Time 

Frame 17.5 Sec To 20 (b) For Time Frame 20 Sec To 22.5 

                   

 

 

 

Figure 15. Detected bubbles and validation test: (1) accepted, (2) rejected, (3) rejected, 

and (4) rejected (Magaud et al. (2001),Aloui & Souhar  (1996) 

 

 

4.5 DETERMINATION OF LOCAL GAS AND LIQUID VELOCITIES 

Smoothed data as shown in Figure 14 is used to determine the local velocity 

parameter of phases, as smoothed data clearly demarcates the gas and liquid region by the 

voltage value of one and zero. As seen in the equation 4 and 5, to obtain local velocity we 

need the time of arrivals and time of departures of the bubble in both the tips. To find the 
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arrival and departure time of bubble an algorithm is developed to track the transition of 

the voltage value from zero to one in the entire smoothed time series, and this gives us 

the time of arrival of bubbles. Similarly, the developed algorithm tracks the transition 

from one to zero to determine the time of departures of bubbles. The complication here is 

to select the same bubbles which touch both the tips to determine local velocity, as there 

is the possibility of bubble deviation due to the local force field. Signal selection criteria 

are to be set to filter out the tracked bubble which can give us the local velocities. In 

work done on bubble column using the optical probe, Magaud et al. (2001) followed 

acceptance-rejection algorithm of Aloui & Souhar (1996) on the selection of signals to 

detect the bubble velocity (Figure 15). The acceptance-rejection algorithm works on the 

assumption that the bubble chord length is larger than the distance between two tips. This 

selection criterion may not work in packed bed reactors. 

Hence, a new criterion is developed in which all the tracked bubble are filtered 

out through a condition that the absolute time difference of time of arrivals and time of 

departures of both the tips shall fall below certain threshold time-limit. This time-limit is 

determined at the lowest flow rate of phases, all the tracked bubbles at these conditions 

are visually analyzed and maximum time difference when the same bubble touches both  

the tips are measured. 

This maximum time difference value is the threshold time-limit. The tracked 

bubble which is not falling in this time-limit is not considered for velocity calculations. It 

is assumed that the for higher flow rates the same bubble which touch both the tips shall 

fall below threshold time limit. 
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Figure 16. Selection Criteria for Local Gas Velocity Calculation in Two-Tip Optical 

Probe; Bubbles Similar to Green Circled are Accepted and Bubbles Similar to Black 

Circled are Rejected 

 

As shown in the Figure 16, the bubble similar to as circled in green is selected to 

find local gas velocity, as the time difference of arrivals of the same bubble in both the 

tips falls below the threshold time-limit. Bubbles similar to as circled in black does not 

satisfy the selection criteria; hence they are rejected from velocity calculations. Similarly, 

in Figure 17 the bubble similar to as circled in green is selected to find local liquid 

velocity as the time difference of departures of the same bubble in both the tip falls below 

the threshold time-limit. Bubbles similar to the black circled one are rejected in this case 

for failing to match the selection criteria. 
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Figure 17. Selection Criteria for Local Liquid Velocity Calculation in Two-Tip Optical 

Probe; Bubbles Similar to Green Circled are Accepted and Bubbles Similar to Black 

Circled are  Rejected. 

 

Additionally, the developed algorithm will make sure that even under the 

threshold time-limit conditions no bubbles are repeated. It means all matched bubbles for 

velocity calculation will have a unique time of arrivals or time of departures, such that no 

two sets of matched signal have a common time of arrival or departure. Time of arrivals 

and departures of matched signal obtained after filtering thorough matching conditions is 

used in equation 4 and equation 5 to get local gas and local liquid velocity respectively. 
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5. VALIDATION OF TWO-TIP OPTICAL PROBE TECHNIQUE 

 

5.1 VALIDATION WITH X-RAY DIGITAL INDUSTRIAL RADIOGRAPHY 

TECHNIUQE (DIR) MOHD SALLEH ET AL. (2014), MOHD SALLEH (2014) 

 

A 2inch trickle bed reactor setup packed with 3mm EPS beads was developed by 

(Mohd Salleh (2014) to determine the local liquid velocity using X-Ray Digital 

Industrial Radiography Technique, which is the combination of digital industrial 

radiography (DIR) and particle tracking velocimetry  (PTV). 

The detailed information of this technique and the procedure to measure local 

liquid velocity is given in (Mohd Salleh (2014), Anuar Mohd Salleh et al. (2015)). The 

location for measuring local liquid velocity using optical probes are Z/D=3.3,3.9, and 4.5 

as shown in Figure 18. Whereas Z is the axial height from the top of the reactor and D is 

the diameter of the column. The superficial liquid and gas velocities used in this 

experiment were 0.003m/s and 0.052m/s respectively. 

The axial locations are divided into three smaller locations radially as shown by 

the blue dashed circle in Figure 19. In these sites, optical probes are placed, and local 

liquid velocities are measured. The data of X-Ray digital industrial radiography technique 

is time averaged at these dashed circle locations (Figure 19) to obtain local liquid 

velocities. 

The local velocities data measured from both the techniques are compared and 

statistically tested using a t-test to check how significantly close or different are two sets 

of data. The detailed description of statistical testing on this set of data is given Mohd 

Salleh et al. (2014) 
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The t-Test is conducted with p-value set at 0.05 (α = 0.05), and the results are 

tabulated in Table 1. If the p-values are less than 0.05 then both set of data different, 

conversely if the p-value is greater than 0.05 then there is not enough proof statistically to 

differentiate both sets of data or group. The table 1 shows the p-values are greater than 

0.05, which means both the technique data on local liquid velocities are same and falls in 

same group. 

 

 

 

Figure 18. The Two-inch TBR Setup with (a) Fiber Optic Probe and (b) Radiographic 

Image Port Located at each Z/D Mohd Salleh  (2014) 

 

 

 

Figure 19. Localized Position of Optical Probe and whole section scanned by DIR (Mohd 

Salleh (2014)) 
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Table 1 Comparison between Mean, Standard Deviation (σ), Variance (σ2), Degree of 

Freedom (df), t-Value, and p-Value (α level 0.05) Generated by Statistical Analysis 

Software (SAS) between the Measured ULL(OP ) by Optical Probe (OP) And ULL(DIR) 

by X-Ray Digital Industrial Radiography (DIR) in a Two-inch TBR (Blue Dashed 

Circle).( Mohd Salleh (2014)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 VALIDATION WITH KNOWN LIQUID VELOCITY 

A syringe filled with water is attached to a pump. The pump can push the liquid at 

desired flow rate. The two-tip optical probe is validated using this syringe pump 

assembly as shown in Figure. The TTOP is placed just below the syringe pump. The 

pump is set to get three different liquid flow rate of 0.1, 0.2, and 0.3 ml/min. The actual 

velocity at which water leaves the syringe is calculated from the volumetric flow rate and 

cross-sectional area. The liquid velocity is also calculated with TTOP and compared with 

actual liquid velocity as shown in Table 2. The Ula is actual superficial liquid velocity 

and Ulm are measured liquid velocity using TTOP. The results indicate the measured 

Location ULL(OP ) ULL(DIR) t-test 

 mean

nnnn

nnnn

nnn 

σ σ2 mea

n 

σ σ2 df t p 

 Z/D=3.3 

3.3(1) 7.33 0.1

8 

0.03 5.49 1.64 2.67 3 1.5 0.23 

          

3.3(2) 9.05 0.1

8 

0.03 6.97 4.05 16.4 16 0.84 0.41 

3.3(3) 8.50 0.1

9 

0.03 7.46 5.27 27.8 5 0.29 0.78 

 Z/D=3.9 

3.9(1) 6.62 0.1

2 

0.01 8.12 0.00 0.00 2 9.02 0.01 

3.9(2) 8.90 0.3

2 

0.10 8.04 4.08 16.7 10 0.33 0.75 

3.9(3) 8.43 0.1

4 

0.02 7.85 1.97 3.86 6 0.2 0.85 

 Z/D=4.5 

4.5(1) 8.47 0.2

5 

0.06 7.45 4.6 21.2 3 0.4 0.72 

4.5(2) 6.58 0.2

2 

0.05 9.98 5.06 25.6 7 1.02 0.34 

4.5(3) 8.03 0.0

6 

0.00 6.93 2.97 8.82 7 0.84 0.43 
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velocity from the probe deviates from actual velocity at maximum of around (+10%/ − 

10%). 

 

 

 

Figure 20. Syringe Pump with Two-Tip Optical Probe 

 

 

Table 2 Comparison of Actual and Measured Liquid Velocity 

Flow Rate  

( ml/min) 

Ula 

(cm/s) 

Ulm(1) 

(cm/s) 

Ulm(2) 

(cm/s) 

Ulm(3) 

(cm/s) 

Mean 

(cm/s) 

Percentage 

Deviation 

0.1 0.05 0.043 0.048 0.047 0.046 -8.02% 

0.2 0.11 0.103 0.117 0.123 0.114 3.9% 

0.3 0.16 0.169 0.168 0.164 0.167 4.34% 
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6. EXPERIMENTAL SETUP 

The experimental setup shown in Figure 21 consists of Plexiglas column of 0.14 

m internal diameter and 1.83m height. The glass beads of 0.003m diameter were 

randomly packed. Deionized water with a temperature of about 70oF was used as the 

liquid phase, and the inlet pressure was maintained at 20 psi. Dry air supplied by high 

pressure and high capacity compressor was used as the gas phase. 

The water is circulated to the column from the top and flows downward and then 

to water collection tank (water motor pump model; 503186, 3E-12NT from Little Giant 

Pump Company). Valves controlled both liquid and gas flow rates and measured by two 

types of Rotameters (Dwyer Instruments, USA, Model RMC-102-SSV and RMC-106-

SSV flowmeter range 10-100 SCFH air and 100- 1000 SCFH air for the gas flow meter 

and liquid flowmeter model FL-75E from Omega flow rate range 1.5-15GPM). 

The glass beads are used to fill the column to the top which acts as a bed for 

trickle bed reactor. The optical probes are inserted into the column through 0.635 cm 

diameter portholes provided along the axial height of the column. The measurements are 

carried out at the center of the reactor (r/R=0), and three axial locations Z/D= 2, 5, and 7 

(Figure 21). Whereas r is the radial position from the center, R is the total radius of the 

column, Z is the height from the bottom of the reactor, and D is the diameter of the 

column. 

The liquid and gas superficial velocity are 0.09m/sec and 0.004m/s to 0.016m/s 

and it is seen that this range produce a change of flow regime from trickling to pulse 

flow. All measurement experiments were replicated three times. 
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Figure 21. Schematic Diagrams of Optical Probe Measurement Points with Axial and 

Radial Scan Locations. 

 

 7. RESULT OF LOCAL LIQUID AND GAS VELOCITY 

Local velocities are measured at various axial positions (Z/D=2, 5, 7) and the 

center of the bed (r/R=0). As discussed in the Section 4.5 the developed algorithm tracks 

all the bubble which touches both the tips to find local velocities. In this condition, we 

observed sometimes getting negative velocities, which indicates that at particular force 

field in these locations there is a reversal of flow of phase or there is back mixing of 

phases. The positive velocity indicates that the flow of phases is with the general flow 

conditions. The zero velocity are also obtained which represents the condition at which 

either the entire void space is covered with the liquid or gas or bubbles are deviating 

without touching both the probes simultaneously. Figure 22 shows the number of 

occurrences of local liquid velocity in terms of positive, negative and zero velocities. 
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Figure 22. Number of Occurrences Liquid Velocities at Different Axial Locations and 

Varying Flow Conditions 

 

It is seen at most of the time at all locations and operating conditions the number 

of occurrences of zero velocity is higher than compared to positive and negative velocity, 

and the trend is decreasing as we down up the reactor and decreasing the liquid flow rate. 

It infers that mixing in local areas at the center of the reactor improves as we move down 

the reactor. Regarding negative velocity the back-mixing was seen less at the top of the 

reactor and it is seen increasing as we move down the reactor. The possible explanation is 

the pressure forces arising due to the effect of the distributor, as on moving down the 

column distributor effects are reduced. The histogram of local liquid velocities are plotted 

in Figure 23. The results show large distribution in velocity ranges and it shows the 

complexity or non-homogeneous distribution of measured local liquid velocity observed 

at local locations. The most dominating positive local liquid velocity is in the range of 0 

− 5m/sec at all locations and operating conditions. These findings of local liquid velocity 
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distribution are in good agreement with techniques such as wire mesh tomography 

(Schubert et al. (2010b)) and MRI (Sankey et al. (2009)). 

 

 

 

Figure 23. Range of Liquid Velocities at Different Axial Locations and Varying Flow 

Conditions 

 

 

Figure 24 shows the number of occurrences of measured local gas velocities. In 

this case also, we observed occurrences of positive, negative and zeros velocities. The 

trend is similar to what we have seen in local liquid velocities. The back-mixing is seen 

to be more at the bottom and explanation is similar to local liquid velocity as the force 

field dictating the movement of both the phases are same. Figure 25 shows the velocity 

distribution of local gas velocity. Similar to local liquid velocities the gas phase also 

shows non-homogeneous gas distributions, with the most dominating positive velocity 
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range of 0 − 5m/sec. The similar trend is due to the no-slip conditions arising at local 

void space of packed bed. 

 

 

8. RESULT OF LOCAL LIQUID AND GAS SATURATIONS 

Local liquid and gas saturation’s are the local liquid and gas holdup in the local 

void space of the catalyst bed section. Local saturations give the amount of volume 

occupied by a gas or liquid phase for a particular period in the local void space of the 

catalyst packing. These local saturation’s values are not equivalent to local holdups of the 

entire reactor because this does not take solid   catalyst into consideration, as to determine 

local holdups in three phase systems all phases should be taken into considerations. For a 

two-phase system of gas- liquid, local saturation measured from optical probes (Kagumba 

& Al-Dahhan (2015), Xue et al. (2008)) are equivalent to local holdups. The 

measurement principle to determine local saturation’s are discussed in section 4.4. The 

two tips generate two local saturation value at each local locations. The average values of 

two tips are taken and plotted. 

Figure 26 shows the local liquid saturation values at the various axial location and 

varying liquid flow rate. Liquid saturation value of 0.55 means on an average 55 percent 

volume of the local void space is occupied by the liquid and 45 percent volume is 

occupied by gas during the measurement time. It is seen that the values of liquid 

saturations are increasing on increasing the liquid flow rate. It means the wetting of 

catalyst at these local location increases with increasing liquid flow rate. The center 

location (r/R=0) seems to have good distribution of liquid and gas along the axial 

direction as local liquid saturation’s are not much varying along the axial length at these 
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flow conditions. Local gas saturation’s are obtained by subtracting local liquid saturation 

from one. Figure 27 shows the local gas saturation plot at similar condition. 

 

 

Figure 24. Number of Occurrences Gas Velocities at Different Axial Locations and 

Varying Flow Conditions 

 

 

 

Figure 25. Range of Gas Velocities at Different Axial Locations and Varying Flow 

Conditions 
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Figure 26. Liquid Saturation Values at Different Axial Location and Varying Liquid 

Flow Condition 

 

 

 

Figure 27. Gas Saturation Values at Different Axial Location and Varying Liquid Flow 

Condition 

 

 

9. REMARKS 

Two-tip optical probe measurement technique is developed to quantify the local 

flow dynamics in packed bed reactors. It is implemented on a trickle bed reactor and 
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successfully measured the local liquid and gas velocities and saturations using developed 

algorithms. This technique is validated with Industrial X-Ray Digital Radiography 

Technique (DIR) (Mohd Salleh et al. (2014)). The local liquid flow dynamics measured 

using the two-tip optical probe in a trickle bed reactor are in good agreement with 

experiments by Schubert et al. (2010b) and Sankey et al. (2009). For the first time that 

local flow dynamics of both gas and liquid phase have been investigated for packed bed 

reactor. 
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III. OVERALL DISTRIBUTION IDENTIFICATION AND EFFECT OF INLET 

DISTRIBUTOR ON THE PHASE HOLDUP IN A TRICKLE BED REACTOR 

USING GAMMA-RAY DENSITOMETRY (GRD) 
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ABSTRACT 

 

Local liquid and gas maldistribution and their holdups in a packed column are 

difficult to identify due to multiphase properties and other design factors. Good liquid 

and gas flow distribution important to get high performance of Trickle Bed Reactor 

(TBR). Gross maldistribution indicates some faulty or bad flow distribution of liquid and 

gas. In this work, gross maldistribution of phases has been identified using Gamma Ray 

Densitometry (GRD) technique with three types of inlet distributors (single inlet towards 

the wall, single inlet at the center, and proper shower) by measuring line average 

diameter profile of phases (liquid, gas, and solids) holdups. Gamma-ray densitometry is a 

non-invasive technique which can be implemented at the laboratory, pilot plant and 

industrial scales reactors. Experiments were performed on 0.14 m diameter reactor made 

of Plexiglas filled with 0.003 m glass bead which acts as the solid. The superficial 

velocities for both gas and liquid were in the range of 0.03 m/s to 0.27 m/s and 0.004 m/s 

to 0.014 m/s respectively. Proper shower distributor showed early liquid spreading in 

comparison to other distributors. The effect of superficial gas velocity on liquid spread 
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was seen to be non-significant, and liquid distribution is found to be almost uniform at 

the center region of the catalyst bed 

Keywords: Maldistribution, Trickle Bed Reactor (TBR), Gamma-Ray Densitometry 

(GRD) 

 

 

1.  INTRODUCTION 

Maldistribution or inhomogeneous flow, in general, can be termed as improper 

flow distribution of phases along the catalyst bed in Trickle-Bed Reactors (TBRs) . In 

trickle bed reactor, liquid maldistribution can be classified into two categories: gross 

maldistribution and local maldistribution. Improper liquid distribution at the inlet causes 

gross maldistribution which can be minimized by proper design of the distributor. On the 

other hand, local maldistribution may occur due to various factors such as properties of 

particles (size, shape, surface roughness, etc.), the arrangement of particles, packing 

density, and properties of the gas and liquid phases.  

Liquid distribution in (TBRs) can significantly influence its performance. Poor 

liquid distribution can lead to significant gas or liquid pockets, resulting in a reduced 

overall external mass transfer of gas or liquid reactants to the catalyst surface and lower 

the reactor performance. If the reaction is exothermic and comprises volatile liquid 

components, then the gas phase reactions in the non-wetted region can cause the 

formation of local hot spots leading to catalyst deactivation. Therefore, uniform 

distribution of the liquid at the inlet as well as in the bed is essential for achieving better 

performance of the reactor. There are many factors which can result in maldistribution of 

phases; some of them are partial wetting, flow rates of liquid and gas, non-uniform 
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distributor, etc. Ideal inlet distributor should dispense the liquid phase uniformly at the 

top of the column thus facilitating the uniformity of liquid distribution in the remainder of 

the bed. Proper distribution at the inlet of the bed is one of the effective ways to minimize 

adverse effects of the liquid maldistribution. Despite uniform distribution at the inlet, 

liquid maldistribution may occur along the length of the column because of other factors 

such as packing characteristics and bed tilt. In such cases, redistribution of liquid after a 

certain height of the bed is necessary to control the liquid maldistribution. It is important 

to note that the porous bed of catalyst particles facilitates liquid distribution. A significant 

portion of the bed near the liquid inlet may remain unwetted if proper distributor at the 

inlet is not used.  

 Alvarez et al. (2007) reviewed the critical role of internals including reactor inlet 

that could provide the initial distribution of the reactants and protection against fouling 

and maldistribution.  Mederos et al. (2009) showed the effect of column diameter on 

maldistribution by reporting that in reactors larger than 0.0254 m diameter observed a 

significant liquid maldistribution. Various distributor designs used in the industrial TBRs 

are thoroughly reviewed by Maiti & Nigam, (2007). 

Studies reveal that if the liquid is introduced non-uniformly at the top of the bed, 

the flow distribution is not likely to improve down the bed even for the conditions of the 

high gas velocity  (Maiti & Nigam (2007); LLlamas et al.  (2008)). The flow distribution 

is distinctly different for the various types of inlet distributor and improves when going 

from the point, line, multipoint, to the uniform distributor  (Ravindra et al. (1997); 

Marcandelli et al. (2000)). Point and Line distributor by its geometry give maldistribution 

at the inlet. The studies using these types of inlets are much needed to get a real insight 
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into the effect of the non-uniform distributor, and it can provide the prediction 

capabilities of the hydrodynamic models  (Boyer et al. (2005)) to help examine the effect 

of various operating parameters on the resulting flow distribution.  There are extensive 

studies on distributor technologies  (Bazer-Bachi et al. (2013)). Table 1 lists a selected 

summary of the studies on maldistribution and inlet distributor in TBRs. Many 

experimental techniques have been developed to study the effect of the inlet distributors 

and to identify any maldistribution. The techniques are Gamma-Ray Computed 

Tomography (CT), Tracer, Nuclear Magnetic Resonance (NMR), Wire Mesh, 

Conductance, and Pressure Transducers. These techniques can easily identify any 

maldistribution. Furthermore, CFD simulation has been conducted to verify the findings 

and to examine the flow distribution  (Atta et al. (2010)).  Tsochatzidis et al. (2002) had 

investigated the effect of a different kind of inlet distributor on liquid maldistribution 

using pressure drop and conductance probe. Three distinct types of distributors were used 

such as uniform, half-blocked and quarter-blocked. The main conclusion is that high 

maldistribution at inlet results in lower pressure drop. Also, they found the uneven liquid 

distribution is associated with the higher holdup values. However, the uniform radial 

liquid distribution tends to be reduced with increasing flow rates.  

Llamas et al. (2009) have developed the wire mesh tomography sensors for the 

study of liquid maldistribution in TBRs.  One of the experiments was to investigate the 

dispersion of the liquid saturation at the central zone of the reactor. It showed the ability 

of the catalyst to spread the liquid in the radial direction. Maldistribution was easily 

visualized with different types of the liquid distributor.  
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Recently,  Bazmi et al. (2013) studied the flow maldistribution in dense and sock 

loaded trilobe catalyst TBR with experimentation data from the liquid collector and 

modeling using Neural Networks. The experiment setup consists of 0.14 m ID column 

and the adjustable height of column varies from 0.1 m to 1 m. The liquid collector used 

was divided into seven compartments with an equal surface area. The flow rate through 

each chamber was determined by averaging the flux of the outlet liquid in a specific 

amount time. Maldistribution coefficient (Mf) was used and is defined according to 

Marcandelli et al. (2000). Results showed that by increasing the gas and liquid ow rates, 

the liquid spreading quality was improved and in good agreement with the Artificial 

Neural Network (ANN) model predictions. draining to the reactor volume. 

Meanwhile, the study of liquid spreading from a single point source has been 

done by Boyer et al. (2005) using CT technique and liquid collecting device. The 

experimental data was used to validate the CFD model. The findings are that the liquid 

spreading is more in pre-wetted bed, and it reduces when the gas flow rate is increased. 

but the effect of the liquid flow rate and different packing characteristics failed to appear. 

However, the Computed Tomography (CT) can quantify the liquid spreading in pre-

wetted and non-pre-wetted beds for various gas and liquid flow rates.  Schubert et al. 

(2008) also studied liquid spreading with high-resolution CT. They used a Cs-137 

radiator with 662 KeV photon energy and approximately 160 GBq activity.  Boyer et al. 

(2005) used a similar CT radioactive source but with activity 11.1GBq. They found liquid 

spreading with packing length was clearly observed in the glass packing, while in the 

catalyst packing it is hard to distinguish between high and low dynamics liquid 

containing zones.  
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Table 1  A selected summary of investigations of local maldistribution in TBRs 

 

References Techniques Key Findings 

Tsochatzidis et al. 

(2002) 

Pressure drop 

measurement & local 

conductance probe. 

The bed length is required to establish 

uniform radial distribution tends to be 

reduced with increasing flow rates. 

 

Uneven liquid distribution is 

associated with higher holdup values. 

Atta et al., (2007) 

CFD model using 

porous media flow 

concept. 

The increase in flow rates improves 

the liquid distribution. 

 

The CFD-based porous model can 

forecast the reactor maldistribution. 

Llamas et al., (2008) Wire Mesh 

Tomography. A 

different type of liquid 

distributor was used. 

Maldistribution is easily visualized at 

a cross-sectional area of the reactor. 

Bazmi et al., (2013) Liquid Collector and 

Modeling Artificial 

Neural Network. 

Increasing the gas and liquid flow 

rates caused the liquid spreading 

quality is improved 

 

Increasing of the bed height would 

result in better liquid spreading up to 

the certain level. At this level, the 

liquid redistributor is needed for 

avoiding the channeling flow in bed 

 

In general, liquid maldistribution directly affects the performance due to improper 

contacting of gas-liquid phases over catalyst surface and channeling of the flow. Gravity-
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driven nature of liquid flow offers relatively few degrees of freedom to tune/manipulate 

the liquid distribution.  

However, detailed studies are still lacking on identifying liquid maldistribution 

using a technique that can be implemented on a large scale and opaque systems.  

Therefore, in this work, GRD technique has been implemented to identify the 

liquid maldistribution in a 0.1524 m TBR. It is also used to investigate the effect of inlet 

distributor on the liquid distribution via line averaged phase holdup along the bed 

diameter and along the length of the catalyst bed. 

 

2. EXPERIMENAL SETUP 

Figure 1 shows schematic of the trickle bed reactor (TBR) used in this study. The 

TBR is placed in between Cs-137 gamma source and thallium activated sodium iodide 

NaI (Tl) scintillation detector. 

The experiment was conducted on 0.14 m (ID) Plexiglas column, randomly 

packed with 0.003 m glass beads to a bed height of 1.83 m. The GRD scanning was 

carried out at different radial (r/R= - 0.80, 0.60, -0.40,-0.20, 0, 0.20, 0.40, 0.60, 0.80) and 

three axial positions (Z/D= 2, 5, and 7), whereas r is the distance from center to the 

scanning location and R is the radius of the column.  

The Z is the distance from the bottom of the column to scanning location and D is 

the diameter of the column. The operating condition used for this study are at superficial 

liquid (0.004 m/s to 0.014 m/s) and superficial gas velocity (0.03 m/s to 0.27 m/s).  

. 
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Three kinds of inlet distributors are used in this study; they are listed as follows:  

 

1.  Single inlet near to the wall of the column. (Fig. 2)  

2.  Single inlet at the center of the column. (Fig. 3)  

3. Proper Shower Inlet. (Fig. 4)  

 

The inlet distributors showed in Figure 2, and Figure 3 are used to create 

maldistribution at the inlet. These distributors are made of brass and having Internal 

Figure 1.  Experimental setup 
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Diameter (ID) of 0.025 m. The length of these inlet distributors is made in such a way 

that it touches the top portion of the bed. This is necessary to ensure the liquid flow is 

continuous and does not get affected by gas flow rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Single Inlet Near The Wall 

Figure 3. Single Inlet/Distributor At The Center Of The Column 



94 

 

  

 

 

Figure 4. Proper Shower Inlet/Distributor 

 

 

The inlet distributor shown in Figure 4 is used to create a better distribution of 

liquid at the inlet compared to other two kinds of distributor. This is an eight shape 

distributor with equally spaced inlet holes to distribute liquid evenly at the inlet of the 

bed. 

 

3. METHOD OF ANALYSIS 

The Gamma source of Cs-137 will eject gamma rays, and a detector which is 

placed in a straight line will detect the photon counts emitted by gamma ray source. The 

amount of photon count received is evaluated using software called ProSpect from 

Canberra (www.canberra.com). The data from the GRD experiment are analyzed using 

Microsoft Excel and MATLAB software.  

The photon attenuation was measured at different radial and axial position 

through the reactor. Based on Beer Lamberts Law, the intensity of photon attenuation that 

is transmitted through a homogenous material is expressed as follows: 

𝑇 =
𝐼

𝐼𝑜
= 𝑒−𝜇𝜌𝑙                                                 (1) 

Where T is the transmission ratio, Io, is the incident radiation, I is detected radiation, 

μ is the mass attenuation coefficient,ρ is the medium density, and l is the path length 

through the medium.  
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The measured ln (Io/I) (called A, for simplicity) is equal to the integral sum of the 

attenuation through the material along the beam path. 

𝐴 = 𝑙𝑛 (
𝐼

𝐼𝑜
) = 𝜇𝜌𝑙     (2) 

The index i denotes the line scan and if the medium is made of three materials 

with mass attenuation coefficients μg, μl, and μs, densities ρg, ρl, and ρs, and thicknesses lg, 

ll, and ls, for the gas, liquid, and solid phases, respectively, then the total attenuation Agls,i 

is,  

𝐴𝑔𝑙𝑠,𝑖 =  𝜇𝑔𝜌𝑔𝑙𝑔,𝑖 + 𝜇𝑙𝜌𝑙𝑙𝑙,𝑖 + 𝜇𝑠𝜌𝑠𝑙𝑠,𝑖    (3) 

Li is the total length of the pixel through which gamma ray beam passes is, 

𝐿 = 𝑙𝑔 + 𝑙𝑙 + 𝑙𝑠,     𝑙𝑔,𝑖 = 𝜀𝑔𝐿𝑔,𝑖, 𝑙𝑔,𝑖 = 𝜀𝑙𝐿𝑙,𝑖,      𝑙𝑠,𝑖 = 𝜀𝑠𝐿𝑠,𝑖    (4) 

 

Where, 𝜀𝑔, 𝜀𝑙, and 𝜀𝑠 are the line average holdups (volumetric fractions) for the 

gas, liquid and solid phases, respectively. Since the summation of the holdups equal unity 

(i.e.𝜀𝑔 + 𝜀𝑙 + 𝜀𝑠 = 1) in each line scan i, the attenuation of GRD scan for three-phase 

system (Equation 3) can be written as shown in Equation 5. 

𝐴𝑔𝑙𝑠,𝑖 = 𝑙𝑛 (
𝐼𝑜

𝐼𝑔𝑙𝑠
) = [𝜇𝑔𝜌𝑔𝜀𝑔,𝑖 + 𝜇𝑙𝜌𝑙(1 − 𝜀𝑔,𝑖 − 𝜀𝑠,𝑖) + 𝜇𝑠𝜌𝑠𝜀𝑠,𝑖]𝐿𝑖      (5) 

 

3.1 EXPERIMENTAL DETERMINATION OF PHASE HOLDUPS  

The formula used to measure holdup distribution is similar as  (Chen et al.  (2001)). 

The procedure of various scans is as follows: 

1. Scanning empty column to get background count. 

In this case, GRD scan is conducted on an empty column. The photon 

attenuation will occur only due to the wall and will remain constant for another 

kind of scanning. So the photon count measured in this case is considered as Io. 
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This value of Io is used in other scans to find A as mentioned in equation (2).  

 

 2. Scanning TBR column filled with water. 

In this case, TBR is scanned with water filled in it. This will give attenuation 

(Al,i) due to liquid only. 

𝐴𝑙,𝑖 = 𝑙𝑛 (
𝐼𝑜

𝐼𝑙
) = 𝜇𝑙𝜌𝑙𝐿𝑙,𝑖     (6) 

3. Scanning TBR only filled with random packing glass beads of 0.003 m diameter. 

  In this case attenuation (Ag,s) is due to gas and solids. 

𝐴𝑔𝑠,𝑖 = 𝑙𝑛 (
𝐼𝑜

𝐼𝑔𝑠
) = [𝜇𝑔𝜌𝑔(1 − 𝜀𝑠,𝑖) + 𝜇𝑠𝜌𝑠𝜀𝑠,𝑖]𝐿𝑖   (7) 

4. Scanning TBR filled with solid and liquid phase.  

In this case, the attenuation (Al,s) is due to solid catalyst and liquid filled in the 

void space of catalyst packing.  

𝐴𝑙𝑠,𝑖 = 𝑙𝑛 (
𝐼𝑜

𝐼𝑙𝑠
) = [𝜇𝑙𝜌𝑙(1 − 𝜀𝑠,𝑖) + 𝜇𝑠𝜌𝑠𝜀𝑠,𝑖]𝐿𝑖   (8) 

Since ρg ˂˂ ρl or ρs, and μg, μl, and μg, are of the same order of magnitude, the 

attenuation caused by the gas phase is negligible. Hence, combining Equation 6, 

7, and Equation 8 yields the solid holdup in line i,  

𝜀𝑠,𝑖 = 1 −
(𝐴𝑙𝑠,𝑖−𝐴𝑔𝑠,𝑖)

𝐴𝑙,𝑖
                         (9) 

This solid holdup is fixed for all the cases for the line (i), as the solids are not 

moving in the catalyst packing for the various operating condition. 

5. Scanning TBR for varying gas and liquid flow rates. 

In this case, the attenuation is due to the all the three phase. The attenuation 
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(Agls) is similar to equation  5.  

By solving equation 5, 6, and 8, estimation of gas holdup (εg,i) can be obtained 

as follows,  

        𝜀𝑔,𝑖 =
(𝐴𝑙𝑠,𝑖−𝐴𝑔𝑙𝑠,𝑖)

𝐴𝑙,𝑖
                              (10) 

Thus, liquid holdup (εl) in line i is calculated as follows. 

𝜀𝑙,𝑖 = 1 − 𝜀𝑔,𝑖 − 𝜀𝑠,𝑖                     (11) 

The above equations are modified from gamma-ray computed tomography 

instrument which used similar types of source and used by  Al-Dahhan et al. (2006),  Roy 

(2006). Also, the principles of attenuation of gamma-ray are the same, but in computed 

tomography, they are scanned in the whole cross-section with denoted the index of ij, 

while the GRD is an only a line scans of i index.  

 

4. RESULT AND DISCUSSION 

In this study, three different kinds of inlet distributor are used to investigate the 

gross maldistribution in TBR. Line average phase holdups are measured at the various 

radial and axial locations using GRD to see the impact of distributors on overall 

maldistribution. All the measurements are conducted on a pre-wetted catalyst bed. 

 

4.1 PHASE HOLDUP WITH SINGLE INLET NEAR TO COLUMN WALL 

  This experiment was conducted to create apparent maldistribution of liquid in the 

system. In industries, this kind of distributor is not used, but this study is done to tests 

GRD capability to detect any maldistribution in the system and to provide data for better 

hydrodynamic models. In this study, both visual observation and GRD results are taken, 
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to see the extent of maldistribution in the system.  Sample GRD results of radial phase 

holdup distribution at Ug = 0.03 m/s and Ul = 0.004 m/s is shown here. The liquid is more 

towards the side where inlet distributor is located and is clearly visible in Figure 5.  

The liquid starts to spread evenly only in between Z/D=7 and Z/D=5. GRD result 

is compared with visual observation to see the capability of GRD to measure 

maldistribution. In the Figure 6, the liquid holdup at Z/D=7 is seen to be higher toward 

one side, which was expected from visual observation and even measured by GRD also. 

The liquid spreads better on moving down the reactor and Z/D=5, which is the middle of 

the reactor the spread is somewhat even. There is slight maldistribution seen at the 

bottom of the column. It can be attributed to the fact that, there is a catalyst structure at 

the base, which is tightly packed and creates lots of resistance to the fluid flow path, and 

in this area fluid flow is mostly gravity driven. 

Figure 7. Showed the effect of different gas velocity on liquid holdup at Z/D=5. 

In all the cases, maldistribution was evident. Increasing superficial gas velocity is not 

improving the liquid distribution at this location for this kind of distributor. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Liquid Distribution for Single Inlet Near the Wall Column 
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Figure 6. Liquid Holdup for Single Inlet Near The Wall in TBR Of 0.14m Internal 

Diameter (ID) 

 

4.2 PHASE HOLDUP WITH SINGLE INLET IN THE CENTER 

From the previous section, it can be seen that the GRD is capable of identifying 

phase maldistribution. In this case, a point inlet distributor at the center of the reactor is 

used, and average line holdup of phases is measured using GRD. The sample results are 

shown for Ug = 0.03 m/s and Ul = 0.004 m/s at three different axial position. 

The visual observation revealed that the liquid starts spreading at approximate 

0.15 m from the top of the column and spreads almost evenly by reaching Z/D =7 (Figure 

8). Liquid holdup and gas holdup measured from GRD showed that there is an almost 

uniform distribution at all the measured axial position, of which the best distribution is 

seen in the middle of the reactor (Z/D=5). This can be seen in Figure 8 and  Figure 9. 
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Figure 7. The Liquid Holdup for Different Gas Flow Rate With Constant Ul = 0.012 m/s 

Single Inlet Near the Wall at Axial Position Z/D = 5. 

 

Although the variation is quite uniform, there is a slight increase of holdup for 

both phases towards the sides of the column. Variation of the liquid holdup near wall can 

be due to wall effect. The wall effect is significant for small diameter column and creates 

flow bypassing and results in a large holdup in those areas. 

 

            

 

 

Figure 8. Liquid Distribution for Single Inlet Near The Center 



101 

 

  

 

 

 

Figure 9. Liquid Holdup for Single Inlet in the Center in TBR 0.14m (ID) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Gas Holdup for Single Inlet at the Center in TBR of 0.14m Internal Diameter 

(ID) 
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Figure 11. Solid Holdup for Single Inlet in the Center in TBR of 0.14m Internal Diameter 

(ID) 

 

The solid holdup is also measured and plotted (Figure 11). There is slight 

maldistribution seen at Z/D=7. It is because of loose packing at the top. The gas and 

liquid flow can slightly disturb the packing arrangement. Toward the bottom, the packing 

is quite uniform, and it is due to the catalyst weight on top. 

 Figure 12 showed the effect of different gas velocity on liquid holdup at Z/D=5. 

There is maldistribution in all the cases. In this case also increasing superficial gas 

velocity is not improving the liquid distribution at this location for this kind of 

distributor. 
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4.3 PHASE HOLDUP WITH PROPER SHOWER INLET 

 This inlet distributor was aimed to give a homogenous distribution of gas and 

liquid. The  Figure (13, 14, 15) show the phase holdup calculation at Ug = 0.03m/s and Ul 

= 0.004 m/s. The solid holdup shows almost uniform distribution along the radial 

direction at all axial position. A slight maldistribution is observed radially for both gas 

and liquid phase, but the trend is similar at all axial locations. This can be due to the fact 

that liquid is evenly spreading at the top of the bed, and the driving force is uniformly 

distributed cross sectional along the bed height.  

 

 

Figure 12. The Liquid Holdup for Different Gas Flow Rate with Constant Ul = 0.012 m/s 

Single Inlet In The Center At Axial Position Z/D = 5. 

 

 The methodology to determine holdup are similar to Gamma-Ray Computed 

Tomography technique (CT). Hence, results obtained from CT can be used to validate 

these results of GRD.  Kuzeljevic (2010) et al. conducted study on TBR using CT and 
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they used a column of 0.163m diameter, catalyst bed height of 0.68 m, glass beads of 

diameter 0.003 m as a catalyst, bed porosity of 0.41, water and air as a gas and liquid 

medium and results are shown in Figure 16. These conditions are almost similar to the 

experimental condition of this study. Figure 17 shows that variation of liquid holdup 

Z/D=5 for various Ug with fixed Ul = 0.004 m/s. The comparison of Figure 16 and from 

Kuzeljevic study indicates that the TBR results obtained from GRD are in good 

agreement with the trend showed by CT results.  

 

 

 

 

Figure 13. Liquid Holdup from GRD for TBR 0.14 m Internal Diameter (ID) at the 

Different Axial Position of Z/D 2, 5 and 7. 
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Figure 14. Gas Holdup from GRD For TBR 0.14m Internal Diameter (ID) at Different 

Axial Position of Z/D 2, 5 And 7. 

Figure 15. Solid Holdup from GRD For TBR 0.14m Internal Diameter (ID) at Different 

Axial Position Of Z/D 2, 5 And 7. 
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Figure 16. Liquid Holdup for TBR from Gamma Ray Computed Tomography (Taken 

from Kuzeljevic, 2010) 
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5. REMARKS  

 

GRD has been able to identify maldistribution of phases in the catalyst bed of TBR. 

Also, GRD has been able to measure line average diameter profile of liquid, gas, and 

solid holdups. This technique is flexible and easily applied to various sizes of the reactor. 

Also, this technique can even be implemented at extreme conditions of high pressure and 

temperature as seen in the industries. It is found that inlet distributor plays a vital role in 

flow distribution of phases along the catalyst bed of the reactor. The distributor with good 

distribution at inlet results in early spreading of liquid uniformly than compared with the 

case, when the flow is not uniform at the inlet. The effect of superficial gas velocity on 

liquid distribution is not significant, and the optimum distribution was seen to be in the 

middle of the reactor. Some of the other factors which affect flow distribution are 

packing material, operating conditions, etc. CT results of TBR obtained from literature 

are used to validate GRD results of TBR, and it is seen to be in good agreement. These 

kind of study are very critical to provide benchmark data for CFD validation. It helps to 

produce better hydrodynamic models capable of predicting maldistribution in TBR. This 

study is still in its nascent stage, and further studies are needed using different types of 

packing material, various sizes of the reactor. This research can advance knowledge in 

maldistribution of phases in TBR.  
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SECTION  

2. OVERALL CONCLUSION AND RECOMMENDATION 

 

In this section overall conclusion and the summary of the key findings of this 

work alongside with recommendations for future work in TBR are presented.  

 

2.1. OVERALL CONCLUSION 

The overall objective of this work is to develop the non-invasive gamma-ray 

densitometry technique to identify flow regime, gross maldistribution and liquid 

distribution. The investigation can be applied while the trickle bed reactor was in 

operation or online. The local liquid and gas velocities, phase saturation and their time 

series have been studied and investigated for the first time by developing, implementing 

and validating by the two-tip optical fiber probe technique. For the overall conclusion, 

the findings were consistent with what reported in the literature. The measurements and 

studies can be applied in various sizes of trickle bed reactor operated in the industrial 

conditions.  

 

2.2. FLOW REGIME IDENTIFICATION USING ON-LINE GAMMA RAY   

DENSITOMETER FOR TRICKLE BED REACTORS 

 

The key findings of the flow regime identification studies are briefly summarized 

as follows: 

1. The slope change in mean and standard deviation plot with varying liquid flow 

rates and at different constant gas flow rate is used to identify the regimes. The 
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transition region is recognized, and it is found to same for all the axial 

measurement at the center of the reactor.  

2. The flow distribution is quite uniform along the axial length at the center of the 

reactor. Pressure drop measurement also showed similar transition trend which 

indicates the overall and line average phenomena at the center of the reactor are 

behaving in a comparable manner.  

3. To precisely locate the flow regime transition point, the GRD signal obtained at 

the middle of the reactor (Z/D=5, r/R=0) is verified on another time domain 

(Autocorrelation), frequency domain (Spectral Analysis) and state space 

(Kolmogorov Entropy). The identified flow regimes are a trickle and pulse flow.  

4. Autocorrelation presented that in trickle flow the signals could be correlated, and 

there is no distinguishable correlation exists in pulse flow.  

5. The spectral analysis identified the flow regime based on power law fall. 

Kolmogorov entropy which is state space analysis notable flow regime based on 

the trend of change in disorder or unpredictability in the system.  

 

2.3. NOVEL MEASUREMENT TECHNIQUE BASED ON OPTICAL PROBE TO  

MEASURE LOCAL FLOW DYNAMICS IN PACKED BED REACTORS 

 

The key findings of optical fiber probe are briefly summarized as follows: 

1. New developed optical fiber probe successful measured the local liquid and gas 

velocities and saturations.  

1. The local liquid and gas velocities shows non-homogenous gas/liquid 

distributions, with the most dominating positive velocity range of 0-5 m/sec. 
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2. The back-mixing is seen to be more at the bottom because as the force field 

dictating the movement of both the phases are same. 

3. The values of liquid saturations are increasing on increasing the liquid flow rate. 

The center location (r/R =0) seems to have good distribution of liquid and gas 

along the axial direction as local liquid saturation’s are not much varying along 

the axial length at these flow conditions. 

2. This technique is validated with Industrial X-Ray Digital Radiography Technique 

(DIR) (Mohd Salleh et al. (2014)). The local liquid flow dynamics measured 

using the two-tip optical probe in a trickle bed reactor are in good agreement with 

experiments by Schubert et al. (2010b) and Sankey et al. (2009).  

 

2.4. OVERALL DISTRIBUTION IDENTIFICATION AND EFFECT OF INLET 

DISTRIBUTOR ON THE PHASE HOLDUP IN A TRICKLE BED REACTOR 

USING GAMMA-RAY DENSITOMETRY (GRD) 

 

The key findings of this work are briefly summarized as follows: 

1. For the single inlet distributor in the center, the liquid holdup and gas holdup 

measured from the GRD showed almost uniform distribution at all measured axial 

position, of which the best distribution is seen in the middle of the reactor (Z/D = 

5). 

2. The distribution is quite uniform but there is slight increase of holdup for both 

phases towards the sides of the column. This variation of the liquid holdup near 

the wall can be due to wall effect. 

3. There is slight maldistribution seen at the bottom of the column for the single inlet 

distributor near the wall. 
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4. Inlet distributor plays a vital role in flow distribution of phases along the catalyst 

bed of reactor. 

 

2.5. RECOMMENDATIONS FOR FUTURE WORK 

 

• The current work is used only glass beads with the similar size. It is 

recommended to used different types and size of any solid materials that can 

mimics solid phases in the industrial. Real types of catalysts with different sizes 

also can be used to get better results. 

• Various size of trickle bed reactor can be recommended. The results obtained can 

be compared and analyzed as the effect of reactor size to the findings. 

• This work presents a phase holdup from GRD technique. It is recommended that, 

a validation process should be performed by Computed Tomography with 

gamma-ray or X-ray as a source of radiation.  

• In future studies, a computational fluid dynamics (CFD) should be implemented 

to be validated against the experimental data obtained from TTOFP with the used 

inlet distributor. Information obtained from the hybrid measurement technique 

provides detailed understanding of the relation between the local velocities and 

inlet distributor effect. 

• A single probe that combines the measurements of the local velocities, phase 

saturation and flow regime and maldistribution identifications, needs to be 

considered and implemented based on the developed optical fiber probe.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A. 

 

 

PROCEDURE MAKING TWO-TIP OPTICAL FIBER PROBE 
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Step by Step Procedure for Making the 2-Point Probe 

 

1. Using scissors, cut two lengths of fiber – each approximately 2 meters in length. 

2. Repeat the following sequence for each of the two fibers: 

a. Strip about 1” of the jacket off one end the fiber. 

b. Hang the fiber from the stand and attach the weight to the stripped end, 

leaving about ½” of the stripped fiber exposed. 

c. Use the hydrogen/oxygen torch to create a small, intense flame and cut the 

fiber just above the weight.  As the glass melts, the weight pulls on the fiber 

which eventually snaps creating the tapered end.  The size of the flame is 

shown below in Figure 1. 

 

 

 

Figure 1.  Size and Shape of Intense H2/O2 Flame. 

 

 

d. Under the microscope, use the diamond-tipped scribe to trim the tapered end 

of the desired geometry. (see Figure 2 below) 
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Figure 2.  Typical Tip After the Flame Cut; Typical Trim Point and Resulting Tip After 

Flame Polishing. 

e. Using the torch – only a gentle hydrogen flame – polish the very tip of the 

fiber.  This melts the flat end left by the scribe into a more rounded point.  If a 

very intense flame is used, it will melt the glass too quickly and actually blow 

the tip over. 

 

 

Figure 3.  Flame Size and Shape for Flame Polishing. 
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f. Ensure that about 10 mm of the glasses (including the tip) is exposed beyond 

the jacket.  If not, use the stripper to strip off any excess of the jacket. 

g. Test the fiber. 

i. On the back end of the probe, strip off about 7 mm of the jacket and use 

the fiber cleaver to make a flush cut of the fiber (almost at the point 

where the jacket is just removed). 

ii. Apply a small amount of index matching gel to the back end of the fiber 

and mate it with a coupler using the grey PVC connector.  It will help to 

tape the coupler (and fibers) in place to make sure they don’t move 

during testing.  A reliable connection is made when the tip is the 

brightest. 

iii. With one channel of the probe now connected to the Fiber box, check to 

make sure that the voltage drops are acceptable by dipping the probe tip 

repeatedly in a glass of water. 

iv. If the voltage drops are not acceptable, first try repeating step e. (The 

most common problem is under-polishing the tip.)  If that does not work, 

remake the tip again. 

3. With all two of the fiber tips now made and functioning well.  Insert the two fibers, 

back-ends first, into the section of stainless steel tubing (bend the tubing if required).  

Leave about 1 ½” of the fiber exposed from the tip of the tubing.  This will help to keep 

the fibers together so that they can be more easily aligned in the jig. 

4. Place the jig in the lockable tweezers so that the triangle is pointing downward toward 

the table and align the tubing/fibers with the face of the jig.  (see Figure 4 below) 
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Figure 4.  Positioning of the Jig. 

 

 

5. Take one fiber and thread it into the bottom-most hole in the jig. 

6. Thread the next fiber into the center hole and then thread the remaining two fibers 

into the two uppermost holes. 

7. Identify which fiber is threaded into each hole of the jig by gently tugging on the end 

of each fiber to see which moves.  Mark the ends with the Sharpie so that they can 

be easily identified. 

8. The next four steps will have to be done quickly (within the 5 minute cure time of 

the epoxy). 

a. Mix the epoxy thoroughly with a toothpick and apply the epoxy only 

along the jacket of the fibers (do not place epoxy on the glass of the fiber).  

Start about 3 inches from the exposed glass and apply the epoxy to the 

upper and undersides of the fiber bundle being careful not to pull the fiber 

ends out of the jig.  Continue to cover the fiber bundle with epoxy until 

you are about 1 inch away from the exposed glass. 

b. Holding the fibers in place, pull the stainless steel tubing up to the tips.  

As the tubing moves it will pull the epoxy along with it, so be sure to 

clean off any excess with a toothpick.  Pull the tubing to about ¼” away 

from the exposed glass. 

c. Having identified which fiber is threaded into each hole, adjust the lengths 

of the fibers in the jig by pulling on the end of the appropriate fiber.  The 3 
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outer fibers should all be set at the same length with the central fiber 

approximately 2 mm longer. 

d. With the fiber lengths now set in the jig, hold the back end firmly and 

gently push the tubing so that the glue/tubing is almost near the exposed 

glass.  Be sure to remove any excess glue from the SS tubing. 

9. Allow the glue to dry.  Wait at least 30 minutes to allow the glue to cure more. 

10. Once the glue has dried, carefully pull the probe from the jig and place the probe 

securely so that the probe tips are safe from hard impacts. 

11. Secure any appropriate fittings on the probe (for insertion into a reactor) by running 

them up the back of the probe. 

12. Plug in the fibers to the fiber box. 

13. The 2-point probe is now ready for use.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B. 

 

 

MATLAB PROGRAM FOR TWO-TIP OPTICAL PROBE 
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A: Plotting and Smoothing Progran 
clear all; 
format short g; 
format compact; 

  
a=load('Fittest1.txt'); 
data_points = length(a); 
N = 1000; 
lolim1 = -0.02;  %min 
lolim2 = -0.3;   %max 
uplim1 = 1.5;    %max 
uplim2 = 1.4;    %min threshold *dominan 
x=1:N+1; 

  
time = 52;  %total measurement time 
dt = time/data_points; 
t = linspace(0,dt*(N+1),N+1); 

  
for i=1:data_points/(N+1); 
    upper=a(N*i:N*(i+1),4)-uplim2; 
    lower=a(N*i:N*(i+1),2)-lolim2; 
    for k=1:N+1 
       if upper(k) > (uplim1+uplim2)/2-uplim2 
           upper_n(k) = 1; 
       else 
           upper_n(k) = 0; 
       end 
       if lower(k) > abs((lolim1+lolim2)/2-lolim2) 
           lower_n(k) = 1; 
       else 
           lower_n(k) = 0; 
       end 
    end 
    s=1; 
    figure(s); set(s,'Position',[690 607 987 373]); 
    subplot(211), plot(x,upper,'b',x,upper_n,'r'); grid; 
    ylim([-1 2]); 
    xlim([0 N]); 
    set(gca,'FontSize',10); 
    xlabel('x','FontSize',10); 
    ylabel('Volts','FontSize',10); 
    plot_title = ['Optical Probe data for x = ',num2str(N*i),' and y = 

',num2str(N*(i+1))]; 
    title(plot_title,'FontSize',10) 

     
    subplot(212), plot(x,lower,'r',x,lower_n,'m'); grid; 
    ylim([-1 3]); 
    xlim([0 N]); 
    fprintf('i =%d, x =%6d, y =%6d\n',i,N*i,N*(i+1)); 
    set(gca,'FontSize',10); 
    xlabel('x','FontSize',10); 
    ylabel('Volts','FontSize',10); 
    plot_title = ['Optical Probe data for x = ',num2str(N*i),' and y = 

',num2str(N*(i+1))]; 
    title(plot_title,'FontSize',10) 
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    [tua,tud,du]=findtimes(upper_n,0); 
    [tla,tld,dl]=findtimes(lower_n,0); 

     
    s=2; 
    figure(s); set(s,'Position',[690 160 987 372]); 
    subplot(211), plot(du,'b'); grid; 
    ylim([-1 2]); 
    set(gca,'FontSize',10); 
    xlabel('x','FontSize',10); 
    ylabel('Differential','FontSize',10); 
    plot_title = ['Differential Plot for x = ',num2str(N*i),' and y = 

',num2str(N*(i+1))]; 
    title(plot_title,'FontSize',10)  
    subplot(212), plot(dl,'r'); grid; 
    ylim([-1 3]); 
    set(gca,'FontSize',10); 
    xlabel('x','FontSize',10); 
    ylabel('Differential','FontSize',10); 
    plot_title = ['Differential Plot for x = ',num2str(N*i),' and y = 

',num2str(N*(i+1))]; 
    title(plot_title,'FontSize',10)    
    pause; 
end 

 

B: Liquid and Gss Velocity Calculation 
function [ outp ] = VelocityFinder1 
clear all 

  
f1=['………..txt']; 

            
format short g; 
format compact; 
for ki=1:1  
            a=load(f1); 
            data_points = length(a); 
            N = 100000; 
            perc_meas =0.50;  % 50% measurment  
            num_frame=500;    % number of frame 
            upthresh=( max(a(:,2))+min(a(:,2)))/2 
            lothresh=( max(a(:,3))+min(a(:,3)))/2 

  
           x=1:N+1; 
            time =(8192 * (num_frame*perc_meas))/40000  
            dt = time/data_points; 
            t = linspace(0,dt*(N+1),N+1); 
            z=1; 
            for i=2:data_points/(N+1); 
                upper=a(N*i:N*(i+1),2);  
                lower=a(N*i:N*(i+1),3);  
                for k=1:N+1 
                    if upper(k) > upthresh 
                        upper_n(k) = 1; 
                    else 
                        upper_n(k) = 0; 
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                    end 

                     
                    if lower(k) > lothresh 
                        lower_n(k) = 1; 
                    else 
                        lower_n(k) = 0; 
                    end 
                end 
                 s=1; 

     
   %Findind the time 

  
                [tua,tud,du]=findtimes(upper_n,0); 
                [tla,tld,dl]=findtimes(lower_n,0); 

                 
                [z1,z2]=size(tla);    
                [z1,z3]=size(tua);    

                                             
   % sorrting the data and found the matching signal 
                 for ii=1:z2 
                       for jj=1:z3 
                             if abs(tla(ii)-tua(jj)) <=1500  
                                   if abs(tla(ii)-tua(jj)) ~=0  
                                       if (tla(ii)-tua(jj)) >0 

                                        
                                          vv = 0.1/(t(tla(ii))-

t(tua(jj))); 
                                           if vv < 50 
                                             vl(z,1)=vv;       
                                             vl(z,2)=tla(ii);               
                                             vl(z,3)=tua(jj); 
                                             vl(z,4)=i                                          
                                             z=z+1 
                                           end 
                                       end 
                                   end   
                             end 
                       end 
                     if z > 75 
                     xlswrite(f1(1:9),vl);  
                     break; 
                     end;    
                 end 

  
            end 

  
end 

 
function [tx_arrive,tx_depart,dx]=findtimes(x,thresh) 

 
dx = diff(x); 
tx_depart=find(dx < -thresh); 
tx_arrive=find(dx >  thresh); 
end 
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C: Calculation Progarm for Gas Holup 
 

%Develop by Vineet Alexander 

 

clear all 
f=load('………….txt');  %% loading text file 
y=f(:,2);  %% extracting 2nd coloumn 
l=f(:,3);   %% extracting 4th coloumn 
upperthreshold= (max(y)+min(y))/2;  % for finding the upperthreshold 

value 
lowerthreshold=(max(l)+min(l))/2; % for finding the lowerthreshold 

value 
ju=0; jl=0; jud=0;jld=0;         %ju=no of transtion from 0 to 1(upper) 
mu=0; ml=0;                      %ml=no of transiton from 1 to 0(lower) 
                                 %jud=no of data points having 1 value 
                                 %value(upper)                                
for i=1:length(y) 
      if y(i)>upperthreshold 
        k(i)=1; 
        jud=jud+1;                 %% no of data points having 1 value 
    elseif  y(i)<upperthreshold; 
        k(i)=0;                    %%% loop for normalizing 
    end          
    if l(i)>lowerthreshold 
        n(i)=1; 
        jld=jld+1;                 %% no of data points having 1 value 
    elseif l(i)<lowerthreshold 
        n(i)=0; 
    end 

       
end 
for i=1:length(y)-1 
 if k(i+1)>k(i) 

        ju=ju+1;                      %% for finding no of peaks 
 elseif k(i+1)<k(i) 
        mu=mu+1; 
 end 
    if n(i+1)>n(i) 
        jl=jl+1; 
    elseif n(i+1)<n(i) 
        ml=ml+1; 
    end 
end 

  
if ju>mu   
    upperholdup=((jud-ju)/(length(y)-1)) 
elseif mu>ju                                  %% to find the holdup 
    upperholdup=((jud-mu)/(length(y)-1)) 
elseif mu==ju 
    upperholdup=((jud-mu)/(length(y)-1)) 
end 

  
if jl>ml   
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    lowerholdup=((jld-jl)/(length(y)-1)) 
elseif ml>jl                                  %% to find the holdup 
    lowerholdup=((jld-ml)/(length(y)-1)) 
elseif ml==jl  
    lowerholdup=((jld-ml)/(length(y)-1))      
end 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

 

 

PROGRAM OF KOLMOGOROV ENTROPY CALCULATION   



128 

 

  

 

%***************************************************************** 
%Topic      : Kolmogorov Entropy Calculation 
%Input      : Data in excel 
%Output     : Kolmogorov Entropy (KE) 
%***************************************************************** 

  
%----------------------------------------------------------------  
%1. Load the data 
y=xlsread('datafile.xlsx'); 
%----------------------------------------------------------------  

  
%----------------------------------------------------------------  
%2. Calculate the mean, cut off length L. 
%   L should be three times the average absolute deviation (AAD) 
%----------------------------------------------------------------  
 MeanData = mean(y); 
 Deviat = abs(y-MeanData); 
 SumDeviat = sum(Deviat); 
 LengthData =length(y); 
 AAD = SumDeviat/LengthData; 
 L=3*AAD; 
%----------------------------------------------------------------  
%3. Initial the parameter 
%    
%----------------------------------------------------------------  
n=50;          %vector elements   
m=1000;        %number of pair vector 
fulltotb=0; 
storeb=0; 
s=80;          %can be changed between 80-100. 

  
%----------------------------------------------------------------  
%4. Main loop for  
%   a. Setting randomly initial vector pair 
%   b. Calculate the difference between the pair X1 & X2 
%   c. Find the maximum value of the difference (diff1) 
%   d. Compare with the L and store the value of b when difference < L 
%---------------------------------------------------------------- 

  
fprintf('k\t   vec1\t   vec2\n'); 
for k=1:m                  %Create initial # vector pair 

vec1 = randi([1 200],1,1);  
vec2 = randi([1 200],1,1)+n; 

  
if (abs(vec1-vec2) > n) 

tempb=0; 
fprintf('%d\t   %d\t   %d\n',k,vec1,vec2); 

    for i=1:s           %for next value of vector i.  
X1 = y(vec1+i:vec1+n+i-1); 
X2 = y(vec2+i:vec2+n+i-1); 
X12=[X1 X2]'; 
diff1=abs(X1-X2); 
maxdiff(k) = max(diff1);   %Find the maximum value  

   if (maxdiff(k) <= L)   
    tempb=tempb+1;         %Count the b value  
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else 
    break; 
end 

   storeb(k)=tempb;           %Store the b value 
   fprintf('i=%d Value of b = %3d\n',i,storeb(k)); 
   end      %for i       
end       %end for if vec1~= vec2 

end        %for k 

  
%----------------------------------------------------------------  
%5. Calculate the 
%   a. Average of b value. 
%   b. Calculate the Kolmogorov Entropy. 
%---------------------------------------------------------------- 

  
storeb(storeb==0)=[];      %Eliminate the 0 value  
fulltotb=sum(storeb);      %Sum the b value 

  
Average_b=fulltotb/length(storeb); 
fprintf('Number of b = %4d, Sum of b = %6d Average of b = %6.2f 

\n',length(storeb),fulltotb,Average_b); 

  
fs = 66.67; 
KE = -fs*log(1-(1/Average_b));  %Calculate the Kolmogorov Entropy 
fprintf('KE = %6.5f\n',KE); 
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