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Abstract 

 The fruit fly Drosophila melanogaster is used extensively as a model for studying 

molecular, genetic and cellular aspects of human disease and physiology.  Our lab has used D. 

melanogaster and related species to study the structure of the testis stem cell niche, as well as 

other aspects of spermatogenesis.  We previously revealed a novel stem cell niche structure in D. 

pseudoobscura, a distant relative of D. melanogaster. The signaling center of the D. 

melanogaster stem cell niche has a well-characterized rosette arrangement of fasciclin-positive 

cells terms the “hub”.   D. pseudoobscura, however, lacks a punctuate hub and instead displays a 

hemispherical fasciclin-positive zone that fills the apical end of the testis.  The first aim of the 

current work was to characterize the stem cell niche in two additional species based on their 

evolutionary relationship to D. melanogaster and D. pseudoobscura:  D. ananassae and D. 

persimilis. D. persimilis is part of the obscura group and is closely related to D. pseudoobscura; 

D. ananassae is part of the melanogaster group. Our work shows that D. ananassae has the 

rosette hub morphology while D. persiimilis displays the D. pseudoobscura morphology. 

 The second focus of this project was to examine the effects of cadmium (CdCl2) exposure 

on spermatogenesis in D. melanogaster.  Cadmium toxicity is well-studied in mammalian testes 

and sperm production, but not in Drosophila. In order to assess the effects of CdCl2 on 

spermatogenesis in D. melanogaster we developed two assays: a nuclear staining (DAPI) assay 

to assess cadmium dosage effects on late spermiogenesis and a Live/Dead assay to assess mature 

sperm viability. The results of the DAPI assay and the Live/Dead assay both show a detrimental 

effect by CdCl 2 on spermatogenesis in D. melanogaster.   The goal of the DAPI assay was to 

examine the number and arrangement of sperm bundles in the basal end of the D. melanogaster 

testis following cadmium treatment. The DAPI assay showed that exposure to increasing 
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concentration of CdCl2 resulted in an increase in the appearance of abnormal sperm bundles. The 

Live/Dead assay showed: (1) an increase in the total number of sperm present in the seminal 

vesicle proportional to increasing amounts of cadmium chloride and (2) an increase in the 

number of dead sperm proportional to increasing amounts of cadmium chloride.

 

  



 

 
 

Introduction 

I. Drosophila Male Reproductive System  

Drosophilidae is a large family of flies with over 3000 species.
1
 The male reproductive 

system is comprised of paired testes, accessory glands, and seminal vesicles, as well as a single 

ejaculatory bulb and duct (Figure 1).  Spermatogenesis proceeds from the apical end of the 

testis towards the basal end, where mature sperm are moved into the seminal vesicles via 

peristaltic action.
 2

 Drosophila species have one of two types of testicular morphology: long, 

coiled testes or ellipsoid testes. The majority of Drosophila species have the long, coiled 

testicular morphology, except those species in the obscura group which have the ellipsoid 

morphology.  Testes of the long, coiled type have a rounded, free floating apical end that 

contains the germline stem cells that will eventually develop into sperm.
3-7

 Testes of the 

ellipsoid type are wide and oblong in shape with a broad, hemispherical apical end from which 

germline stem cells develop into sperm precursors in a wavelike fashion.
8 

Regardless of 

testicular morphology, spermatogenesis proceeds from the apical end of the testis towards the 

basal end where the seminal vesicle is attached to the testis by a narrow duct. Mature sperm 

empty from the seminal vesicle into the ejaculatory bulb during mating. Accessory glands attach 

to the male reproductive tract and produce fluids which contribute to the ejaculate (refer to 

Figure 1).  
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Figure 1: D. melanogaster and D. pseudoobscura male reproductive systems.   A) Bright field 

image of D. melanogaster testes. A – apical end of the testis. B – seminal vesicles. C – accessory 

glands. D – ejaculatory bulb. E – ejaculatory duct. The stem cell niche is located in the apical 

end of the testis. B) Bright field image of D. pseudoobscura testes. A – apical end of the testis. B 

– seminal vesicles. C – accessory glands. D – ejaculatory bulb and duct. Scale bar is 250 µm for 

both images. (Image from Beaury, 2012). 
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II. Spermatogenesis  

In D. melanogaster, spermatogenesis follows an intricately arranged series of steps to 

yield motile sperm capable of fertilizing eggs. In D. melanogaster, spermatogenesis is initiated 

within the apical end of the testis in a region termed the stem cell niche.
32

 This region contains a 

rosette of somatic cells called the “hub”. The hub acts as a signaling center that maintains the 

stem cell population at a steady level so that sperm can be continually produced in a male fly’s 

lifetime.
1,4,9-10

Germline stem cells and cyst progenitor cells adhere to the hub and give rise to 

cells that will enter the terminal spermatogenic pathway. Fasciclin III protein is responsible for 

adherence between the hub cells while Armadillo and DE-Cadherin connect the germline stem 

cells and cyst progenitor cells to the hub.
11-12

 Each germline stem cell will undergo a mitotic 

division that yields a gonialblast cell that will undergo spermatogenesis and a stem cell that 

remains attached to the hub.
33

 The cyst progenitor cells also undergo mitotic divisions to yield 

cells that will surround the developing gonialblast throughout the spermatogenic process.
13

 

(Figure 3) The process of spermatogenesis takes place within a capsule called a cyst, which is 

formed by the union of two cyst progenitor cells.
7,14

 The gonialblast inside the cyst undergoes 

five mitotic divisions that results in 32 diploid clones, now termed spermatogonia.
15

 The 

developing spermatogonia are held together by 1B1, one of several α-Spectrin proteins which 

make up the fusosome, which forms a cytoplasmic bridge that links the spermatogonia together 

inside their cyst.
16

 The spermatogonia simultaneously enter into a pre-meiotic S-phase and then 

progress into a G2 phase where they expand their volume by approximately 25-fold. Cells at this 

stage are referred to as primary spermatocytes.
4,17

 Primary spermatocytes undergo the first 

meiotic division to produce 64 secondary spermatocytes. Secondary spermatocytes undergo the 

second meiotic division to produce 128 round, haploid spermatids. Haploid round spermatids 
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process through the post-meiotic stage of spermatogenesis, called spermiogenesis, where they 

transform into elongated, motile sperm cells capable of fertilization.
18,19

 During this process, the 

nuclei of the spermatids transform into their elongated, terminally differentiated form. Also, 

during this process the sperm tails are assembled.
19,20

 As the developing sperm travel from the 

apical to the basal end of the testis, the nuclei of the sperm will bunch together to form 

“arrowhead” structures that are easily distinguishable under confocal microscopy.
19

 When the 

now mature sperm reach the basal end of the testis, they will burst the cyst that has surrounded 

them for the entire process and enter into the seminal vesicle until they are ejaculated (Figure 

3).
19,20

  

This process has been extensively characterized in D. melanogaster but recent work with D. 

pseudoobscura has changed the existing model of spermatogenesis. Recent data suggests that D. 

pseudoobscura, and D. pseudoobscura like species of Drosophila, will eclose with a set number 

of germline stem cells that will differentiate in a wave-like pattern unlike the orderly mitotic 

divisions of D. melanogaster like species.
8
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Figure 2: Illustration showing the process of spermatogenesis in D. melanogaster. The top of 

the diagram shows the arrangement of cells in the stem cell niche in the apical end of the testis 

and the maturation of sperm progressing from gonialblast to secondary spermatogonia. The 

bottom part of the diagram shows the process of spermiogenesis in the basal end of the testis. It 

shows the terminally differentiated sperm inside the mature cyst embedded in the epithelium of 

the basal end of the testis. The cyst will coil around itself and then burst, releasing the mature 

sperm to travel into the seminal vesicle via peristalsis. The black X on the diagram marks the 

place in which it is believed CdCl2 disrupts the spermatogenic pathway (Cardaci, 2016).  
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III. Drosophila Phylogenetic Relationships 

  

The Drosophilidae Family is subdivided into 78 genera. 
21

 The most commonly studied 

genus, Drosophila, is the focus of the current work. Over 20 species within the Drosophila genus 

have their genomes completely sequenced.
22

  Specifically within the Sophophora subgenus our 

work will focus on the obscura and the melanogaster groups; D. pseudoobscura and D. persimilis 

from the obscura group, D. ananassae from the melanogaster group and D. melanogaster from 

the melanogaster subgroup. D. melanogaster is the best characterized species of the Drosophila 

family in regards to testes morphology and the spermatogenic pathway. D. melanogaster males 

have long, coiled testes with a free floating apical end that coils around to a basal end that 

attaches to the seminal vesicle. D. ananassae share the long, coiled testes with D. melanogaster. 

D. ananassae is part of the melanogaster group and diverged from the melanogaster subgroup 

ten million years ago
22

 (See Figure 3). D. persimilis testes have an ellipsoid morphology, 

characterized by a darker red pigment. D. persimilis is part of the obscura group; D. 

pseudoobscura is also a member of the obscura group and shares the ellipsoid testes morphology 

and red pigmentation of D. persmilis. The shared morphology of D. persimilis and D. 

pseudoobscura is explained by the fact that they diverged within the obscura group ~500,000 

years ago. The melanogaster and obscura group diverged ~30 million years ago, with the 

melanogaster subgroup diverging ~15 million years ago
23

. This evolutionary divergence explains 

the drastically different testes morphology seen between the obscura and melanogaster group 

species (See Figure 3). 
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Figure 3: Drosophila phylogenies. A phylogenic tree of the original 12 sequences species of 

Drosophila (Cardaci, 2016).  
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IV. Effects of Heavy Metals on Male Reproduction  

Cadmium chloride (CdCl2) is a highly carcinogenic salt that is used extensively in research 

due to its damaging effects on metabolic processes. Cadmium’s damaging effects are due to its 

ability to produce oxidative stress by depleting glutathione and protein-bound sulfhydryl groups; 

this results in an increased production of reactive oxygen species such as superoxide ions, 

hydroxyl radicals, and hydrogen peroxide.
24

 These reactive oxygen species will cause lipid 

peroxidation, DNA damage, membrane damage, altered gene expression, and apoptosis.
24

 CdCl2 

has been utilized extensively in Drosophila research in order to induce metallotheinein 

expression.
25,26

 CdCl2 is extremely toxic when ingested and has detrimental effects in case of 

skin contact and inhalation. Exposure to CdCl2 has proven toxicity to the kidneys, blood, liver, 

mucous membranes, and especially the testes in humans.
24

 Cadmium exposure occurs easily as a 

result from ingestion of certain foods and drinking water, inhalation of contaminated air, tobacco 

smoke, and ingestion of contaminated soil or dust.
24

 There has been extensive research done to 

examine the effects of cadmium on mammalian male reproduction. Recent work regarding single 

dose CdCl2 exposure on mouse sperm viability has shown that CdCl2 has a significant short term 

effect on sperm resulting in abnormal morphology and reduced motility with long term effects 

(after 35 days) of reduced sperm numbers and reduced sperm motility.
23,27

 Also of note, the 

researchers saw an increase in DNA fragmentation in sperm produced following CdCl2 

exposure.
27,28

 Another experiment showed that cadmium treatment resulted in increased numbers 

of apoptotic spermatid and elongate spermatid in seminiferous tubules of rats; they also 

discovered severe necrosis of the seminiferous epithelium itself.
29

  

Spermatogenesis is generally conserved throughout different species and produces 

structurally similar sperm. Drosophila and Homo sapiens will produce very similar sperm, with 
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exceptions in the shape and length of the sperm head and tails. The process of individualization 

in the sperm head and the microtubule arrangement of the sperm tail is evolutionary conserved.
13

 

From this it can be confidently concluded that a detrimental effect on spermatogenesis in 

Drosophila would translate to a detrimental effect on spermatogenesis in Homo sapiens.  

Several studies have shown that CdCl2 activates the Metal-responsive transcription factor I 

(MTF-1) which will bind to the metal responsive elements (MREs) in the promoter region of 

target genes and upregulates their transcription.
30

 Metallothioneins are the most frequently 

targeted genes for MTF-1 and encodes for small, cysteine rich scavenger proteins that will 

scavenge heavy metal particles.
30

 Two potential MTF-1 interactors in Drosophila have been 

identified, both related to the regulatory protein Dumpy-30 (Dpy30). Dpy-30L1 is widely 

expressed in various organs of Drosophila including: larval brain, gonads, imaginal discs, 

salivary glands and in the brain, testes, ovaries and salivary glands of adult flies. Dpy-30L2 

however is selectively expressed in the testes in adult male Drosophila, specifically elongating 

spermatids. Researchers found that transfection of Dpy-30L1 and Dpy-30L2 inhibited the 

expression of MTF-1 driven genes; MTF-1 is the only known factor to interact with MREs and 

inhibits production of metallothionein. They also found that constitutive expression of Dpy-30L1 

transgene in flies resulted in elevated sensitivity to both cadmium and zinc (Dpy-30L2 

overexpression did not exhibit the same result). Further results of selective gene knockout of 

Dpy-30L1 and Dpy-30L2: knockout of Dpy-30L1 resulted in viable, fertile adult male 

Drosophila whereas knockout of Dpy-30L2 results in complete male sterility. They investigated 

further by examining the sperm motility of Dpy-30L2 knockout inside the female Drosophila 

reproductive tract and found that motility is almost completely impaired and continue to decrease 

with aging.
31
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V. Goals of the Current Work  

The current work had two main goals.  First, we sought to elucidate the structure of the 

apical testes in two species related to D. melanogaster, one of which displays the coiled tubular 

testicular morphology (D. ananassae) and one which has the ellipsoid morphology (D. 

persimilis). In order to examine the stem cell niche of the four species of interest in the 

Drosophila genus, the apical testes were examined by utilizing immunofluorescence staining of 

Fascillin III-positive cells under confocal microscopy. Second, we aimed to examine the effects 

of cadmium chloride exposure on spermatogenesis. In order to assess the effects of cadmium 

chloride on spermatogenesis, two assays were developed: (1) a DAPI assay to examine sperm 

bundles in the basal end of D. melanogaster testis and (2) a Live/Dead assay to examine total, 

live, and dead sperm present in the seminal vesicle of cadmium chloride treated D. melanogaster 

testes.  

 

 

 

 

 

 

 

 



 
 

11 
 

Materials and Methods 

I. Fly Stock and Cultures 

     D. melanogaster, D. ananassae, D. pseudoobscura and D. persimilis were obtained from the 

University of California, San Diego, Drosophila Species Stock Center. Flies were maintained on 

a Jazz Mix Drosophila media (Fischer Scientific) in plugged vials at 25ºC.  

II. Cadmium Chloride Food Preparation 

 Solid CdCl2 salt (Sigma Aldrich) was added to deionized water to prepare a 10 mM stock. 

CdCl2 food was prepared at concentrations of 10 µM, 25 µM, 50 µM, 75 µM, 100 µM, 300 µM, 

and 500 µM. Food was prepared by adding 10 µL, 25 µL, 50 µL, 75 µL, 100 µL, 300 µL, and 

500 µL to 10 mL of cooling JazzMix fly food and allowed to settle overnight. Freshly eclosed 

flies were added to CdCl2 and control food for 48 hours to allow for mating and egg-laying to 

occur. After 48 hours, the adult flies were removed from the vials and the larva were allowed to 

mature. Once the pupa eclosed, the males were separated from the females and allowed to 

mature on uncontaminated food for 72 hours prior to sacrifice and testes removal.  

III. DAPI-staining protocol 

Freshly eclosed D. melanogaster flies were transferred onto control (those without 

CdCl2), 10 µM, 25 µM, 50 µM, 75 µM, 100 µM, 300 µM, and 500 µM CdCl2 food vials for 48 

hours to allow mating and egg laying to occur. After 48 hours, the adult D. melanogaster flies 

were removed and the eggs allowed to mature into adult flies. Upon eclosure, the adult male flies 

were transferred to uncontaminated food for 72 hours.  On the third day, the virgin male flies 

were sacrificed and testes removed from the body and the accessory glands removed. The testes 

were placed in a 4% paraformaldehyde solution for 60 minutes, followed by 3 washes for 2 
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minutes each in 1X Phosphate Buffer Saline (PBS). The washed testes were placed on 

microscope slide with a solution of 4', 6-diamidino-2-phenylindole (DAPI) and MOWIOL and 

imaged using confocal microscopy.  

IV. Live/Dead Protocol 

Freshly eclosed D. melanogaster flies were transferred onto control (those without 

CdCl2), 10 µM, 25 µM, 50 µM, 75 µM, 100 µM, 300 µM, and 500 µM CdCl2 food vials for 48 

hours to allow mating and egg laying to occur. After 48 hours, the adult D. melanogaster flies 

were removed and the eggs allowed to mature to adult flies. Upon eclosure, the adult male flies 

were transferred to uncontaminated food for 72 hours.  On the third day, the virgin male flies 

were sacrificed and their testes removed. The seminal vesicles were removed from the testes and 

the isolated seminal vesicles were placed onto a separate dissecting slide with 1X PBS. Sperm 

were extracted by puncturing the seminal vesicle with an insulin needle and transferring the pool 

of sperm to 8 µL of 1X PBS on a large coverslip. 1 µL of SYBR® 14 dye was added to the 

sperm solution and was allowed to incubate in the dark for three minutes. 1 µL of propidium 

iodide was added to the sperm solution and was allowed to incubate in the dark for one minute. 

A coverslip was placed over the sperm solution and the image taken within six minutes using 

confocal microscopy. After the z-stack was collected, a maximum intensity projection image was 

generated using Fluoview. Using the counting tool in Fluoview, the live and dead sperm were 

counted (refer to Figure 4).  
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V. Statistical Analysis 

 Two-tailed Student’s t-tests were performed using GraphPad Prism, version 4.  A 

minimum n value of three was used for all datasets.  Results were considered statistically 

significant with p-value > 0.05. 
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Figure 4: Live/Dead stain quantification protocol. The left panel shows the tagging of the live 

sperm, stained green with SYBR® 14 dye. The middle panel shows the tagging of the dead 

sperm, stained red with propidium iodide. The right panel shows the overlay of the live/dead 

stain. 
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V. Fasciclin III Antibody Staining  

Five or six sets of dissected testes were fixed by placing in ice-cold 1:1 methanol/acetone 

solution for 20 minutes. Testes were washed in 1X PBS 3 times for 2 minutes each. Testes were 

then permeabalized in 0.5% PBS (1X PBS containing 0.5% Triton X-100) for 15 minutes on a 

shaker. Testes were washed 3 times for 2 minutes each in 1X PBS then blocked in 3% bovine 

serum albumin (BSA) in 1X PBS for 1 hour on a shaker. The testes were then washed 3 times for 

2 minutes each in 1X PBS. The testes were stained with a primary antibody using a 1:5 dilution 

of mouse anti-Fasciclin III (Developmental Studies Hybridoma Bank; University of Iowa, 

Department of Biology) in 1X PBS solution. Each experimental set was placed in a 4 C 

refrigerator overnight. At least two control testes were placed in 1X PBS solution lacking the 

primary antibody overnight as well. After 12 hours the testes were rinsed 3 times for 2 minutes 

each in 1X PBS. The experimental testes and the control testes were then stained in secondary 

antibody, Alexa Fluor 488 goat anti-rat, at a 1:100 concentration in a 1X PBS solution and 

placed on a shaker for an hour. The testes were then washed in 1X PBS 3 times for 5 minutes 

each. They were then mounted in 25 µL of a MOWIOL and DAPI solution on glass slides, 

sealed with glass coverslips, and viewed on an Olympus FV 1000 confocal microscope.  

VI. Drosophila persimilis immunofluorescence staining 

     The same staining protocol was used for D. persimilis as for D. anansassae with a few 

differences. A set of 5-6 testes was dissected from 5-6 male flies in 1X PBS for each 

experimental concentration and control. The testes were fixed by being placed on ice-cold 1:1 

methanol/acetone solution for 20 minutes. The testes were then washed in 1X PBS 3 times for 2 

minutes each. They were then permeabalized in 0.5% PBS (1X PBS containing 0.5% Triton X-
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100) for 15 minutes on a shaker. The testes were then washed 3 times for 2 minutes each again in 

1X PBS. They were then blocked in 3% BSA in1X PBS blocking solution for 1 hour on a shaker. 

They were then again washed 3 times for 2 minutes each in 1X PBS. The testes were then 

initially stained with a primary antibody with a 1:10 dilution of mouse anti-Fasciclin III in 1X 

PBS solution. Each experimental set was placed in a 4 C fridge overnight. At least two control 

testes were placed in 1X PBS overnight as well. After 12 hours, they were rinsed again 3 times 

for 2 minutes each in 1X PBS. The experimental testes as well as the control were then stained in 

secondary antibody, Alexa Fluor 488 goat anti-rat, at a 1:500 concentration in a 1X PBS solution 

and placed on a shaker for an hour. They were then washed in 1X PBS 3 times for 5 minutes 

each. They were then mounted in a MOWIOL and DAPI solution on glass slides with micro-

glass cover slips, and viewed under confocal microscopy. The process was repeated twice with a 

1:5 dilution of primary as well, with a secondary concentration of 1:500 for the latter two trials. 

VII. Confocal microscopy 

     Samples were imaged on an Olympus FV 1000 confocal laser scanning microscope (CLSM). 

Image stacks of the prepared Drosophila testes were obtained using 20x, 40x, and 60x objective 

lenses. A 405 nm laser was used to excite the DAPI nuclear stain, and a 488 nm argon laser was 

used to excite the secondary antibody, Alexa Fluor 488, as well as the SYBR® 14 stain and a 

493 nm laser was used to excite the propidium iodide stain.  Saturation levels were set using the 

hi-low tool available in the color look-up table (LUT). The thickness of the z stacks was 

optimized depending on the trial and the structure being observed, but the best images were 

taken at 1024x1024 pixel resolution, with an 8 microsecond/pixel scan rate using the 40X oil 

immersion lens.  
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Results 

I.  Anti-Fasciclin Staining of the Apical Testis 

In order to elucidate the structure of the apical testis in D. ananassae and D. persimilis the 

apical end of the testes was stained with antibodies raised against known D. melanogaster 

and D. pseudoobscura stem cell niche proteins. Figure 5 shows the anti-Fasciclin staining 

for D.melanogaster; the blue signal is the DAPI stain and the green is the Fluor488 which 

indicates Anti-Fasciclin. A positive staining for the rosette hub is shown in panel B. Figure 6 

shows the results of anti-Fasciclin in D.pseudoobscura where blue indicates DAPI stain and 

green is the Fluor488 which indicates Anti-Fasciclin. A diffuse staining of the hub was 

shown. Figure 7 shows the staining results for D. ananassae. D. ananassae displayed the 

rosette staining pattern of the hub usually seen in D. melanogaster. Figure 8 shows the 

staining results for D. persimilis. D. persimilis displays the wave like staining pattern of the 

hub previously seen in D. pseudoobscura.  
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Figure 5: Anti fasciclin (1:50) staining in D. melanogaster.  (A) 1:50 concentration negative 

control for D. melanogaster. Apical end is indicated by the arrow. The blue is DAPI staining and 

the green is Fluor488. No signal is seen. (B) 1:50 concentration experimental for D. 

melanogaster. Apical end is indicated by the arrow. The blue signal is DAPI staining and the 

green signal is Fluor488. There is signal seen in the hub area, the hub is the green rosette. (C) 

The same image as (B), but with only the Fluor488 channel shown. Arrows indicate the apical 

end. Images were taken with a 20x oil immersion lens. 
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Figure 6: Anti fasciclin staining in D. pseudoobscura.  (A) Apical end of D. pseudoobscura 

control. The apical end is indicated by the arrow. (B) Apical end of D. pseudoobscura 

experimental. Signal is seen. Arrows indicate the hub area. (Images taken from Marenco, 2014.) 
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Figure 7: Anti fasciclin (1:5) staining in D. ananassae.  (A) The 1:5 concentration negative 

control for D. ananassae. The apical end of one testis and one accessory gland is shown. DAPI 

staining is shown in grey, and Fluor 488 is the faint green. No signal is shown in the control. (B) 

The 1:5 concentration experimental for D. ananassae. The two apical ends are shown of the 

testes. DAPI is shown in blue, and Fluor488 is shown in green. Signal is seen in the hub area. (C) 

The same image as (B) with only the Fluor488 shown. The hub is present at the tip. Arrows 

indicate the apical ends. (A) 20x oil immersion, and (B)-(C) are at 60x. 
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Figure 8: Anti fasciclin (1:5) staining in D. persimilis.  (A) The 1:5 concentration experimental 

for D. persimilis. A testis is shown. The blue is DAPI staining and the green is Fluor488. There 

is signal shown in the hub area. (B) The same image as (A) with only the Fluor488 channel 

shown. Arrows indicate the apical ends and hub areas. Images taken with a 40x oil immersion 

objective lens. 
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II. Cadmium Chloride Assays 

In order to perform the CdCl2 treatment assays, CdCl2 was incorporated into Drosophila 

JazzMix and D. melanogaster larva were cultured until they eclosed. Once eclosed, virgin 

males were transfered onto uncontaminated JazzMix for 72 hours to allow sexual organs to 

mature. After 72 hours the testes were removed and mounted and stained with DAPI (for the 

spermiogenesis assay) or the sperm removed from the seminal vesicle and stained with 

Live/Dead stain (for the sperm quantification assay). Figure 9 shows the fly culture vials in 

which D. melanogaster were cultured. There was an obvious decrease in the amount of larva, 

pupa, and eclosed flies proportional to the increase in CdCl2 exposure. Figure 10 shows the 

results of the DAPI assay; testes were examined for the presence of sperm bundles in the 

basal end of D. melanogaster testes. Of note, there was an increase in the presence of 

abnormal sperm bundles proportional to increasing CdCl2 exposure. Figure 11 compares the 

number of normal to abnormal sperm bundles found in each experimental condition. At the 

highest concentration, the number of abnormal sperm bundles was roughly equal to the 

number of normal sperm bundles. Figure 12 has two graphs: the top shows the percentage of 

normal sperm bundles seen for each experimental condition and the bottom graph shows the 

total number of sperm bundles shown for each experimental condition. The number of total 

sperm bundles stayed constant for each experimental condition but the percentage of normal 

sperm bundles decreased with increasing exposure to CdCl2. Figure 13 is the confocal 

images from the Live/Dead assay in which the live sperm are stained green and the dead 

sperm stained red. Figure 14 quantifies the total number of sperm seen for each experimental 

condition; there was an increase in total number of sperm proportional to an increase in 

CdCl2 exposure. The second graph shows the percentage of live sperm shown for each 

experimental condition; there was less live sperm shown with an increase in CdCl2 exposure. 
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Figure 15 shows the comparison of live to dead sperm for each experimental condition; it 

shows an increase in the amount of dead sperm proportional to increasing CdCl2 exposure.  
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Figure 9: Cadmium Cultures. From left to right: control vials, 25µM CdCl2, 50µM CdCl2, 

100µM CdCl2, and 500µM CdCl2 fly culture vials (10µM CdCl2, 75µM CdCl2, and 300µM 

CdCl2 concentrations were added at a later date). Two vials of each concentration were prepared. 

Of importance to note is the decreasing number of larva, pupa, and eclosed flies with the 

increasing concentration of CdCl2 with no larva, pupa or eclosed flies noted in the 300 µM CdCl2 

and 500µm CdCl2 vials for every trial.  
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Figure 10: DAPI staining of the basal end of D. melanogaster testis. Arrows indicate bundles 

of developing sperm. DAPI stains nucleic acid; sperm bundles are distinguished by their 

arrowhead shape appearance. Exposure to increasing concentrations of cadmium chloride 

showed an increase in the number of abnormal bundles (those with a more diffuse appearance). 
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Figure 10, enlargement: DAPI staining of the basal end of D. melanogaster testis. 

Comparison of control testis with normal sperm bundle formation to 75 µM exposed testis with 

abnormal sperm bundles. 
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Figure 11: Quantified Effects of Cadmium Chloride on Spermiogenesis. Graph shows the 

quantification of normal sperm bundles compared to abnormal sperm bundles in the basal end of 

D. melanogaster for each experimental condition. Of note is the overall decrease in the number 

of total bundles with increasing CdCl2 exposure. See Figure 12 for statistical analysis.  
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Figure 12: Quantified Effects of Cadmium Chloride on Spermiogenesis. The top graph 

shows the percentage of normal sperm bundles seen in each experimental condition. Standard 

error bars are shown and stars indicate p < 0.05; n value was at least 3. The bottom graph shows 

the total number of sperm bundles seen for each experimental condition. Standard error bars are 

shown. 



 
 

29 
 

 

 

Figure 13: Live/Dead Staining of sperm extracted from the seminal vesicles of D. 

melanogaster. The green stain is SYBR Green which stains live tissue and the red stain is 

propidium iodide which stains dead tissue. Of note is the increasing amount of sperm stained red 

proportional to the increasing concentration of cadmium chloride exposure.  
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Figure 14: Live/Dead sperm Quantification. The top graph shows the total number of sperm 

found for each concentration for all data sets collected. Standard error bars are shown and stars 

indicate p<0.05; n value of at least 3. The bottom graph shows the percentage of live sperm seen 

for each experimental condition. Standard error bars are shown and stars indicate p<0.05; n value 

of at least 3.  
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Figure 15: The Effect of Cadmium Chloride on Sperm Viability. Graph showcases the 

quantification of live, dead, and total sperm in each experimental condition. Numbers of Live 

versus Dead sperm are displayed as percentages of total number of sperm quantified. See Figure 

14 for statistical analysis.  
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Discussion 

I. Structural Characterization of the Stem Cell Niche  

The stem cell niche of D. persimilis and D. ananassae were successfully stained 

using antibodies raised against anti-Fasciclin III. D. ananassae displayed the rosette staining 

pattern previously seen in D.melanogaster (Figure 7). This indicates that the process of 

spermatogenesis in D. ananassae will follow the same sequence of events as in D. melanogaster. 

D. persimilis showed the same wave like pattern of the hub shown in D. pseudoobscura (Figure 

8). Recent data from our lab suggests that D. pseudoobscura, and D. pseudoobscura like species 

of Drosophila, will eclose with a set number of germline stem cells that will differentiate in a 

wave-like pattern unlike the orderly mitotic divisions of D. melanogaster like species
8
. This 

suggests that D. pseudoobscura is lacking a hub that signals the differentiation of germline stem 

cells into mature sperm. 

II. Cadmium Chloride Treatment:  Sperm Bundle Assay 

The results of the DAPI assay demonstrate that cadmium chloride exposure has a detrimental 

effect on spermiogenesis in Drosophila. Figure 10 shows the result of the spermiogenesis assay; 

it shows the appearance of abnormal sperm bundles after exposure to high levels of cadmium as 

compared to control. Figure 11 shows the comparison of abnormal to normal sperm bundles for 

each experimental condition. Figure 12 shows the percentage of normal sperm bundles (the top 

graph) and the total number of sperm bundles (the bottom graph) for each experimental 

condition; following an increasing concentration of cadmium chloride exposure there was an 

increased incidence of abnormal sperm bundles. Normal sperm bundles have an arrowhead 

appearance; abnormal sperm bundles appear as diffuse clouds (Figure 10 enlargement). A 

possible mechanism for the appearance of the abnormal sperm bundles is that the sperm bundles 
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are not embedding in the epithelium of the basal end of the testes. It is probable that these 

abnormal sperm bundles are bursting prematurely in the testes so that a higher number of total 

sperm is found in the seminal vesicle at higher concentrations of cadmium. Our data indicate that 

the coiling of the sperm bundles is timed, that is, it appears that one cyst is bursting at a time 

(refer to Figure 3). One sperm bundle should yield 128 mature sperm.  As shown in Figure 14, 

the maximum number of sperm produced was 148 in the control flies but 217 in the 100 µM 

treated group. Recent work has shown that as the cyst embeds in the basal epithelium of the 

testes, F- actin based processes extend from the head cyst cell to fill the interstitial space of the 

maturing spermatid bundle. These actin processes appear to hold the sperm heads in place. 

Disruption of these F-actin based processes resulted in spermatid bundle disassembly and 

premature release of sperm from the cyst.
19

 It is possible that CdCl2 exposure results in a 

disruption of these F-actin based processes so that the sperm bundles do not form properly and 

sperm are released prematurely from their cyst.   

III. Cadmium Chloride Treatment: Live/Dead Assay 

The results of the Live/Dead assay demonstrate that cadmium chloride exposure has a 

detrimental effect on the production of viable sperm. Figure 13 shows the results of the 

Live/Dead assay where dead sperm are stained red and live sperm stained green; there was an 

obvious increase in the amount of dead sperm proportional to increasing exposure to higher 

concentrations of cadmium. Additionally, there is an increasing number of total sperm found in 

the seminal vesicle that is directly proportional to the cadmium chloride concentration. Figure 

15 shows the comparison of live to dead sperm for each experimental condition; the amount of 

live sperm decreased with exposure to increasing concentrations of cadmium while the amount 

of dead sperm increased with exposure to increasing concentrations of cadmium. Work by Zeng 
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et al (2011) in rats showed that cadmium exposure resulted in increased number of apoptotic and 

elongate spermatids in seminiferous tubules of rats, as well as necrosis of the seminiferous 

epithelium.
29

 The exact mechanism that results in a high number of dead sperm at high 

concentrations of CdCl2 is unknown. However, work by Oliveira, et al (2009) showed that CdCl2 

exposure resulted in DNA fragmentation in rats. It is possible that nuclear degradation is 

occurring in the CdCl2 treated Drosophila sperm; this theory is supported by the high number of 

dead sperm found in the 100µM seminal vesicle.  Another possibility is the cadmium treatment 

induced necrosis in the epithelium of the basal testis, resulting in the head cyst cell being unable 

to embed and thus abnormal sperm bundle formation.  This theory is supported by the data 

showing that the abnormal sperm bundles yielded a higher number of sperm as a result of 

premature bursting of the sperm bundles and thus a higher number of dead sperm in the higher 

concentrations of cadmium chloride exposure.   This theory is also supported by work by Hew et 

al (1993) that showed a failure of sperm release from Sertoli cells in rats following a single 

intraperitoneal injection of cadmium chloride.
35

 Another possible explanation for the disrupted 

sperm head arrangement in cadmium-treated flies may be that the migration of sperm nuclei in 

round spermatid cysts is perturbed so that the nuclei never associate properly with the head cyst 

cell.
20,34 

IV. Future Directions 

 Our lab has extensively studied the Sophophora subgenus of Drosophilidae. Future 

studies will examine the stem cell niche relationship in the Drosophila subgenus. Recent work 

has shown that two arrangements exist in the Sophophora genus: either a rosette arrangement or 

a wave-like pattern. We plan further work on the arrangement of the stem cell niche in the 



 
 

35 
 

Drosophila subgenus to examine the evolutionary relationship between the various species and 

its effect on the development of the stem cell niche.  

 Other future directions include examining the effect of cadmium chloride exposure on 

spermatogenesis in other members of the Sophophora subgenus. One such possibility is within 

the obscura group, typified by D. pseudoobscura or D. persimilis (species that do not exhibit the 

same hub pattern seen in the melanogaster group). Also of potential interest could be examining 

the effects of CdCl2 exposure on the retarded development of D. melanogaster through the 

larval, pupal and eclosure stages of development. Lastly, the mechanism of the possible DNA 

fragmentation in the CdCl2 treated sperm could be examined in order to determine if nuclear 

degradation is occurring.  
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