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ABSTRACT

Wireless ad hoc network operates without any fixed infrastructure and centralized

administration. It is a group of wirelessly connected nodes having the capability to work

as host and router. Due to its features of open communication medium, dynamic changing

topology, and cooperative algorithm, security is the primary concern when designing wire-

less networks. Compared to the traditional wired network, a clean division of layers may

be sacrificed for performance in wireless ad hoc networks. As a result, they are vulnerable

to various types of attacks at different layers of the protocol stack. In this paper, I present

real-time series data analysis solutions to detect various attacks including in- band worm-

holes attack in the network layer, various MAC layer misbehaviors, and jamming attack in

the physical layer. And, I also investigate the problem of node localization in wireless and

sensor networks, where a total of n anchor nodes are used to determine the locations of other

nodes based on the received signal strengths. A range-based machine learning algorithm is

developed to tackle the challenges.
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1. INTRODUCTION

Wireless ad hoc networks have unique characteristics like dynamic changing topol-

ogy, wireless shareable communication medium, limited resources and lack of centralized

administration, etc. As a result, there are a wide variety of attacks that target these weakness.

In this type of network, security is not a single layer issue but a multilayer one. We have

focused on physical layer, network layer and MAC layer where the possible attack are most

vulnerable.

There are four major security vulnerabilities in wireless ad hoc network that need

to be discussed in order to understand how to maintain a reliable and secure networks

environment.

1.1. PROBLEM STATEMENT

Vulnerability of the open medium: Unlike physical hosts are connected by wires

in the wired networks, the channel in wireless ad-hoc network is exposed in the air. The

packets are easy to be eavesdropped and tampered with. The corrupted packets can be

replayed anywhere and anytime in the network to disturb the network order.

Vulnerability of the open medium: Unlike physical hosts are connected by wires

in the wired networks, the channel in wireless ad-hoc network is exposed in the air. The

packets are easy to be eavesdropped and tampered with. The corrupted packets can be

replayed anywhere and anytime in the network to disturb the network order.

Vulnerability of no fixed infrastructure: Ad-hoc networks nodes supposed to work

independently of any pre-existing infrastructure. That means decision-making among nodes

is usually decentralized. This makes the classic security methods, such as certification
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authorities and on-line servers hard to implement. The security and privacy have to rely

on distributed cooperation among nodes. The attacker can exploit this vulnerability by

breaking the cooperative algorithms. For example, the MAC protocols for wireless ad-

hoc networks is vulnerable as known when it designed. Even though there are difference

between different MAC protocols, the basic idea of most MAC protocols is similar. They

are contention-based. By strictly following pre-defined protocols, each node competes to

access the channel to avoid collisions or any other bad situation. However, if a node behaves

maliciously, the MAC protocol can be broken down easily and a denial-of-service attack

would be formed.

Vulnerability of dynamically changing topology: Also, the routing in ad-hoc net-

work presents another vulnerability. Most of routing protocols are cooperative in nature.

Unlike the wired network, there is no gateway or router nodes installed additional protection.

If the node was compromised by attacker, it could disseminate false routing information to

disturb the network, or even spread virus to compromised legitimate nodes.

Considering those vulnerabilities, several security requirements need to be met in

wireless ad-hoc network. First, the service provided by the network should be always

available. The depletion of some specific nodes in network core could cause unimaginable

damage. Second, any malicious alteration to the information exchanged in the network

should be detected and prevented. The integrity of information is essentially important in

military and hospital whose use wireless ad hoc network widely. Third, confidentiality and

privacy must be considered properly and comprehensively in design of any algorithm in

wireless ad-hoc networks. There are differences between confidentiality and privacy. The

former concerns hiding data from outer entities. The latter concerns avoiding the networks

access sensitive data intrusively.
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1.2. DOS ATTACKS AT DIFFERENT LAYERS

The past research work has put a lot works on the data integrity, confidentiality,

privacy, and authentication for wireless ad-hoc security. However, another essential security

requirement, availability has not been considered sufficiently. Nowadays, Denial of Service

(DoS) attacks can reduce the availability of resource and result in massive damage.

Generally, a DoS attack is an attempt to make a host or any network resource

unavailable to its intended users. Strictly speaking, a DoS attack not only referring to an

adversary’s attempt to disrupt, subvert, or destroy a network, but also is any event that

diminishes or eliminates a network’s capability to perform its function. Any hardware

failure, software bugs, environment condition change or any other complicated factor can

cause a DoS[60].

Although wireless ad-hoc network is considered to be used in harsh environment.

It should function with the presence of error. This robustness of principle may prevent

some classes of DoS attacks. For example, more efficient battery system or protocols

which control the data rate prevent the depletion of nodes, or self-defense program can

mitigate some classes of DoS attacks. However, the defender still need to consider the

threat from intelligent, determined and well-prepared attacker. They could primarily attack

the networks from protocols or design level instead just software bugs.

A layered network architecture can improve robustness. However, a clean division

of layers may be sacrificed for performance in wireless ad-hoc networks [60]. Different

attacks can target at any layer of ad-hoc networks. Known attacks perform on the physical,

the MAC, the network layers. I will analyze existing DoS attacks layer by layer.

Physical layer: in thewireless ad hoc network, attacker can target the communication

channel, which usually refer as jamming attack. It is a type of attack that uses radio

interference to impede normal communications [67]. A jammer does not follow any layer
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protocol as a normal wireless transmitter does. For instance, if TDMA is used by the normal

nodes, a jammer can send signals often at high power to interfere the transmission during

normal nodes’ allocated time slots; if CSMA is used by normal nodes, a jammer can defeat

the CSMA protocol by occupying the channel at arbitrary time making other nodes wait

for a long time. Jamming attacks will directly cause packet drops, high packet error rates,

reduced throughput, and long delay. It can easily disrupt a network, regardless of higher

level security mechanisms like encryption. The detection of jamming attacks requires not

only to detect the radio interference that caused network performance degradation, but also

to distinguish the observed degradation caused by network congestion or weak signals [62].

Many jamming detectors use test statistics derived from network measurements such as

packet delivery ratio, packet error rate, and received signal strength, etc. Their detection

logic is often simplistic as only summary information is used and the detection threshold

is often preset at the initial setup phase. The limitation of existing work is not being

able to maintain detection performance when the network dynamics increases as users join

and leave the network. Dynamics in the normal operation of a network as well as the

evasive techniques employed by the attacker makes fast and reliable jamming detection

very challenging. Despite the large body of literature in jamming attacks, there is still

unaddressed issues: mainly how to improve detection delay and accuracy. In section 4, we

try to solves these challenges and advance research in the jamming attack detection.

MAC layer: attacks can also be launched in MAC layer. the MAC protocols is

designed under the assumption that all participating nodes are well behaved [9]. Legitimate

nodes will strictly follow the protocols, while the misbehavior nodes may deviate from

the standard and cause the unfairness problems. The attacker could degrade the network

service by generating a great a mount of traffic to keep the channel busy or sends a small

packet as soon as he hears the start of transmission in order to corrupt the entire message.
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These are similar to jamming attack in physical layer. Or the malicious nodes with simple

changes of several protocol parameters can have devastating effects on the overall network

performance. This is MACmisbehaviors which could also lead to DoS. Misbehaving nodes

in wireless ad-hoc network intentionally alter the MAC protocols to improve their own

performance at the expense of other users. The possible attacks due to MAC misbehavior

have been explained below [4][17][43]:

1) Shorter IFS Attack: The IEEE 802.11 family of standards describe the DCF

protocol, which controls access to the physical medium. A station must sense the status of

the wireless medium before transmitting. If it finds that the medium is continuously idle

for DCF Interframe Space (DIFS) duration, it is then permitted to transmit a frame. If the

channel is found busy during the DIFS interval, the station should defer its transmission.

The DIFS plays an important role in contention-based medium access procedure. While

performing shorter DIFS attack, the compromised node waits for amount of time shorter

than DIFS which can help the attacker get more chance to access the channel. Meanwhile,

all other nodes in the network have to set up back-off timer after sensing the busy channel

which has already been taken by attacker. In another word, the attack gets higher priority

than other legitimate nodes.

2) Contention Window Manipulation Attack: According to 802.11 MAC protocols,

after frame transmission has completed and the DIFS has elapsed, all the nodes trying to

transmitting need to select a random back-off time from a fixed contention window (for

802.11b/g, CWmin = 31 and CWmax = 1023 while the case in 802.11a, CWmin = 15

and CWmax = 1023) and wait for that amount of time before transmitting. Each time

the collisions happened(retry counter increases), the contention window moves to the next

greatest power of two. It is the way preventing more collisions happening. However, if the

attacker doesn’t follow the back-off principles and choose a small back-off time each time
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when collisions happened, the attacker nodes will be able to access the channel more often

than the legitimate nodes and get smaller delay andmore throughput. Back-offmanipulation

attack could cause a lot of damage in a serious congested network. The attacker could always

get the channel and let the legitimate have zero chance to transmit. 3) RTS Flooding Attack:

The IEEE 802.11 allows stations to use Request to Send (RTS) and Clear to Send(CTS)

signals to solve collisions resulting from hidden nodes in wireless ad-hoc networks. The

node enabled RTS/CTS procedure sends a RTS at the beginning of transmitting and waits

for the CTS from the destination. It can send the frames after it receives CTS. This brings

out another safety issue. What if the attacker disseminates continuous RTS packets to

legitimate sink node? The attacker can occupy the channel and keep the sink node busy for

a long time. The sink node would probably âĂĲdieâĂİ at last, and other legitimate nodes

would suffer a larger congestion. There is not much research put on this particular attack

yet. In section 3, We have addressed these issues.

4) RTS Dropping Attack: In the RTS dropping attack, the receiver may not response

with a CTS upon receiving a RTS. It selectively drops RTS packets, which causes the

transmitter to retransmit several times, wasting time and channel resources. If the sender

does not receive a CTS in the specified time, it will time out and go into the back off state.

The attacker thus effectively deters the sender from channel access. In some case, the sender

may perceive the absence of CTS as a result of congestion and tell the upper layer to change

route in order to avoid the congested area. The ultimate benefit for the attacker is less

requests from neighbors to access the medium. We have addressed the detection of such

attacks by examining the performance time series from multiple nodes in this dissertation.

Network layer: attackers can also disrupt the network layer by spoofing, altering,

or replaying routing information. One of severe network layer attacks is wormhole attack.

The adversary could control two nodes, called wormhole end points, and a tunnel between
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them. It records a packet at one end point and replays it at the other end. The controlled

nodes make false route advertisements to the neighbors. It will give the illusion of having

a shorter path between each other, and attract large amount of traffic going through tunnel.

The adversaries can either launch an out-of band wormhole attack or an in-band

wormhole attack[17]. The former usually use an external high capacity wire to link two

nodes. There is no harm if attacker do nothing. But after the wormhole tunnel is established,

other attacks usually are lunched afterwards. For example, the tunnel end nodes can drop

packets, alter information, or even spread virus to compromised other legitimate nodes.

The in-band wormhole, on the other hand, doesn’t use additional infrastructure[53]. It

redirects the traffic to an existing multi-hop route in the network in order to establish an

inner-wormhole tunnel. Except the follow-up attacks after establishment, another serious

problem is the congestion in the inner-wormhole tunnel. It attracts most of surrounding

traffic to the tunnel and form a bad bottleneck in the network.

Another difference between them is in-band wormhole doesn’t need extra hardware,

it is easier to achieve than the out-of band attack[49]. As the wormhole attack is usually the

foreplay of other more sophisticated attacks, it is important that the detection is timely and

the alarm is sent as soon as possible when the legitimate nodes are aware of the existence

of the wormhole[11].

Motivated by the respective advantages and limitations of the methods in the litera-

ture, we proposed a novel change point detection algorithms to detect these DoS attacks



8

2. IN-BANDWORMHOLE DETECTION

2.1. BACKGROUND

In wireless ad hoc networks, the routing procedure consists of nodes exchanging

local information and relaying to others, and thus collectively determining a route towards a

destination by following a certain principle, such as the shortest path principle. The routing

process can be taken advantage of by an adversary to launch a wormhole attack, who wishes

to monitor and control the routes. Wormhole attacks are severe threats as they are easy to be

used by an adversary. Once a wormhole attack has succeeded, it can lead to other attacks.

In a wormhole attack, the adversary controls two nodes, called wormhole end points,

and a tunnel between them. It records a packet at one end point and replays it at the other

end. The controlled nodes make false route advertisements, give the illusion of a having a

shorter path to the destination, and attract large amount of traffic to go through the controlled

end points. In wireless networks, a category of protocols use dynamic routing and shortest

path routing principle. Hearing a shorter path will trigger the route update in these networks

and make the network vulnerable to a series of wormhole induced attacks.

The malicious nodes can either launch an out-band wormhole attack Figure. 2.1 or

an in-band wormhole attack Figure.2.2. The out-band wormhole attack utilizes an external

link between the two control points, such as a wired link or a long-range directional link. It

is usually faster than going through a multi-hop path in a wireless network. If the wormhole

nodes do not do anything else and simply add a link to the network to speed up the packet

transportation, it would be a great service to the network as it adds channel capacity to the

network. However, the real threat to the network is when other attacks are launched after a

wormhole tunnel is established.
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Figure 2.1. Out-band wormhole.

The in-band wormhole, on the other hand, does not use additional channel or

additional hardware at the end points [27, 52]. It redirect the traffic to a multi-hop tunnel

over existing wireless medium, and it consumes the network channel resource. Dropping

packets and other attacks follow after the in-band wormhole tunnel is established. Even

without other attacks, simply detour a lot of traffic to go through a longer path is enough

damage, as it increase the hop counts on these paths. In-band wormhole attack does not

need additional hardware, therefore it is easier to achieve than the out-band attack.

In this paper, we address in-band wormhole attacks. To defend agains the wormhole

attack, three mechanisms are needed: a detection mechanism to sound the alarm, a localiza-

tion mechanism to pinpoint the location of the malicious nodes, and a defense mechanism

to mitigate the attack or to remove the wormhole tunnel. The literature has a collection

of worm hole detection and mitigation methods, and some of them have detection and

localization mechanisms combined into one scheme [25, 26].

In this work, we focus on the first phase of the counter-measurement, and develop a

high fidelity detection mechanism. As the wormhole attack is usually the foreplay of other

more sophisticated attacks, it is important that the detection is timely and the alarm is sent as
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Figure 2.2. In-band wormhole.

soon as possible. When the legitimate nodes are aware of the existence of the wormhole in

the network, the nodes can stop switching to a new route and effectively mitigate the effect of

the wormhole. Therefore it is important that the detection rate is high and the same time the

false alarm rate is low. This approach is light-weight compared to the combined approach

that tries to locate the wormhole nodes at the time of detection, since to accurately locate

the wormhole requires more information, and collecting the information regularly creates

a large overhead for the network. In the separate approach, such heavy-weight localization

mechanism is used only when the detection phase reports positive results.

With the observation that the end-to-end delay of a detoured flow will under go

an abrupt change when the in-band wormhole attack is launched, we propose to study the

end-to-end delay as a time series and use a sequential change point detection method to

report abrupt changes. This detection scheme requires neither location devices such as

GPS to provide location information of the nodes, nor tightly synchronized clocks on the

nodes. It only requires some timing device to provide a timestamp in the packet when the

source sends it. The clocks will not need to be tightly synchronized among the nodes in the

network, as each time series is between a pair of source and destination, and the change is
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relative to its own previous history. We are not interested in the absolute delay between a

pair of source and destination, instead, we are only interested in the relative change in the

end-to-end delay. Since the clock skew between the two nodes is a constant that is added

to each data point in the time series, the performance of the detection algorithm will not be

impacted by clock skews. Compared to the previous work that rely on exact location and

clock synchronization, the algorithm is light-weight in terms of the amount of information

it needs to collect, store and process, and it also has very low communication overhead. The

feature allows for a broad deployment of the detection algorithm on ordinary nodes that are

not equipped with additional processing power.

The rest of the paper is organized as follows. In Section 5.2, we summarize the

previous work in wormhole detection and mitigation. In Section 2.3, we describe the

detection scheme, and in Section 3.4, we propose the new change point detection algorithm

as the core component of the detection scheme. We present the detection performance and

comparison with the previous work in Section 4.5.

2.2. RELATEDWORK

A large number of wormhole detection methods have been proposed in the last

decade. Based on the algorithmic features used, we divide them into statistical analysis

methods and non-statistical analysis methods.

In statistical analysis, a common approach is to define a test statistics, and compute

the statistics of certain measurement and compare it with a threshold value. Detection is

positive when the test statistics exceeds the threshold value. The most related work to ours is

[66], in which a comparison of two sequential change point detection methods are compared

for in-band wormholes detection: the non-parametric cumulative sum (NP-CUSUM) and

the repeated sequential probability ratio test (R-SPRT). In this study, each node in the
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network collects three-hop transmission delay data by periodically sending out ping packets

to all the nodes that are three hops away.

In addition to the sequential change point detection methods, there are other sta-

tistical analysis approach such as [8? ], in which the test statistics are taken from the

information during route discovery: the relative frequency of each distinctive link appears

in all routes, and the difference between the most frequently appeared link and the second

most frequently appeared link. If the sample values are higher than the values in the normal

state, it is determined the network is under wormhole attack. This approach requires that

large number of routes in the network switch to use the wormhole tunnel in order to observe

a change in the statistics. In [8], two detection methods are provided. The Neighbor Number

Test (NNT) method detects the increase in the number of the neighbors of the sensors, and

the All Distances Test (ADT)method detects the decrease of the lengths of the shortest paths

between all pairs of sensors. It is expected that both the number of neighbors and the length

of the shortest paths will be changed due to the new links created by the wormhole.The base

station computes the expected histogram and the real histogram of neighbor numbers (or

path lengths), and compare them by using a χ2 test. If the computed χ2 number is larger

than a preset threshold that corresponds to a given significance level, then a wormhole is

indicated.

In addition to statistical analysis approach, there are topological [14] or graph

theoretical approaches [3, 36]. They first characterize the topological or graph theoretical

features of normal states and attack states, and then develop a detection logic based on

the characterization. The blacklist approach has also been proposed to address wormhole

detection. In [25, 26], a malicious counter Counter (i, j) is maintained at each guard node

i for each neighbor node j, and the counter is incremented for j if any malicious activity

of j is detected by guard node i. Local detection is positive if the counter cross a preset
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threshold value. Packet leash [23, 24] is another major approach for wormhole detection,

in which a notion of leash is proposed based on the time or distance the packet is allowed

to travel in the network. Similarly, in [59], the mechanism uses geographic information

to detect anomalies in neighbor relations and node movements. The limitation for these

approaches is that they need additional hardware such as GPS to get location information,

or require tightly synchronized clocks among all nodes.

2.3. WORMHOLE DETECTION SCHEME

Wormhole detection is based on the following logic: when a route change (to the

shorter one) is coupled with an abrupt increase in end-to-end delay, it is very likely the

packets are detoured to go through an in-band wormhole tunnel. In a non-attack scenario, a

shorter route is the result of either 1) adding in new relay nodes that create a short cut of the

previous long multi-hop route, or 2) node movements that change the link connectivity so a

shorter route is available. In these scenarios, shorter routes will result in shorter end-to-end

delay since it takes fewer number of transmissions. It reduces not only the queuing delay at

the relay nodes and propagation delay on the links, but also the number of transmissions,

and hence effectively reduces consumption of channel resources. Delay and congestion

have a non-linear relationship, and therefore a less congested network results in smaller

delay. However in an attack scenario, the perceived shorter route is actually longer and

takes more hops, therefore it increases the delay for the reasons above.

The detection scheme requires that each source add a timestamp when the packet is

sent, and the destination record the end-to-end delay. For all packets it received from the

same source, it creates a time series of delays. The algorithm for change point detection on

a time series is applied at each destination. If changes are detected, alarms are sent to the

designated node in the network. If it is a sensor network, such designated node could be
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the base station; if it is a wireless ad hoc network with no base station, a clustered structure

is sufficient. Then all alarms will be sent to the cluster heads, and cluster heads can make

decision whether a true attack has happened depends on the alarms it has received. Each

destinationwill continuouslymonitor the delay but will only need to send the detection result

to the designated node. Unlike the previous algorithms that use additional (often periodic)

probing messages to detect changes, this algorithm does not create a large communication

overhead. When a designated node receives alarms, accurate localization of the wormholes

is the next step, which can be done by using a more complex procedure, such as sending

probes and additional control messages. The localization procedure is an extension to

detection and will be addressed in our future work.

2.4. THE SEQUENTIAL CHANGE POINT DETECTION ALGORITHM

There are a couple of change point detection algorithms in the literature. Zheng et al.

provided a comparison study between the two change point detection algorithms [66]: The

non-parametric cumulative sum (NP-CUSUM) and repeated sequential probability ratio

test (R-SPRT). However, as will be pointed out in the next section, both algorithms involve

manually-set thresholds or parameters that limit the application of the algorithms on the

real-world dynamic traffic.

To detect a change point in a time series {x1, x2, . . . , xt, . . . , }, it is assumed that

before the change point, µ, the time series follows one distribution, and at time µ, a change

occurs, and then the time series starts to follow another distribution. Suppose the pre-change

and post-change density functions are f (·) and g(·), respectively. The hypotheses are then

formulated as: If no change has occurred, thenH0 is true; if a change has occurred, thenHµ

is true. The detection algorithm then decide which hypothesis is true.There are a number of

algorithms to decide which hypothesis is true. The parametric version CUSUM algorithm
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[32, 39] is the best when the pre- and post-change distributions are known. It uses the

likelihood ratio to compute the cumulative sum of the log likelihood ratio as follows:

Ln =
g

f
Wn =

(
Wn−1 + log Ln

)+ ,∀ n ≥ 1 (2.1)

where W0 = 0, and x+ = max(0, x). Then the cumulative sum is compared to a preset

threshold h. The procedure declares a change as soon as the detection statistics Wn exceeds

a preset threshold h:

T (h) = arg min
n:n≥1
{Wn ≥ h} (2.2)

Although mathematically sound, the reality is that the network traffic is very dynamic, and

the end-to-end delay does not follow any known distribution. Without knowing the exact

f (·) and g(·), the non-parametric version CUSUM is proposed to overcome the problem.

The non-parametric version cumulative sum algorithm (NP-CUSUM) eliminates the need

for the density functions, and use a heuristic approach to compute the detection statistics.

Wn = (Wn−1 + xn − c)+ ,∀ n ≥ 1 (2.3)

where c is a preset constant, and the rest follows the parametric version CUSUM. However,

if the traffic is highly dynamic, to set the detection threshold h and the constant c is a

challenging task, and historical data will be of little use since the current data may not

follow the pattern of historical data at all.

The repeated sequential probability ratio test (R-SPRT) works in a way similar to

the parametric version CUSUM, but instead with two detection thresholds: an upper bound

to claimHµ is true and a lower bound to claimH0 is true.
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When the detection statistics is between the two bounds, decision is deferred and

the algorithm continues.

R-SPRT is used when the distributions are known or can be reliably estimated.

When a large volume of sample data is available, estimating the distribution functions g

and f are possible. However, when it requires a large volume of data, it implies it requires

a long time series with relatively stable traffic profile.

We develop a new sequential change point detection algorithm that requires no

knowledge about the data characteristics. The algorithm uses a sliding window to calculate

its detection statistics, and the detection threshold is decided based on the Central Limit

Theory. The algorithm is named SW-CLT for its theoretical root.

The SW-CLT algorithm works as follows. Let m be the window size. Let t be an

integer with 0 ≤ t ≤ n − 2m. As the algorithm moves from t = 0 to t = n − 2m, it takes m

consecutive data points from the time series—call it window 1, and the next m data points—

call it window 2. Then we compute the sum of the x’s in the two windows.

Y1(t) =
t+m∑

i=t+1
xi and Y2(t) =

t+2m∑
i=t+m+1

xi D(t) =| Y1(t) − Y2(t) | (2.4)

We compare the difference between the sums of the two windows with a threshold DT h,

which is determined by the characteristics of the data and the desired upper bound for false

alarm rate.

The detection threshold DT h is computed by using the following procedure:

Let Φ(·) be the cumulative distribution function (CDF) for standard normal distri-

bution, defined as:

Φ(z) = ¶(a ≤ z) (2.5)
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Then 1 − Φ(z) is the probability of ¶(a > z) for a random variable a.For a desired

false alarm rate ε , we are able to solve the cutoff value z from the following equation:

1 − Φ(z) = ε (2.6)

Then the solution z for the above false alarm rate equation is scaled to be used as the

detection threshold:

DT h = z
√

2mσ, (2.7)

where σ is the square root of the sample variance.

As the windows slide from the low end to the high end of the time series, if the

following condition is met at time t

D(t) ≥ z
√

2mσ, (2.8)

then detection is positive. The algorithm decides a change point has occurred between the

boundary of two windows, and report change time µ̃ = t + m.

For a true positive, the detection delay is the time difference between a reported

change point and the true change point:

Latency = µ̃ − µ (2.9)

The algorithm is based on the Central Limit Theory and it works regardless of the

underlying distribution of the end-to-end delay {x1, . . . , xn}. For highly dynamic traffic,

when the previous CUSUM and its variations fail, SW-CLT can be applied.
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The use of the Central Limit Theorem eliminates the need to estimate the underlying

distribution of themeasurements, and relates the detection threshold with the allowable false

alarm rates.

In the simulation, we will show that the changes in the time series can be big and

small, however, the detection threshold is self-adjusting based on the dynamic characteristics

of the measurements. When the data shows high variance, the detection threshold is also

increased; and when the data is concentrated with a small variance, the detection threshold

is also decreased. The advantage of the algorithm over the previous methods with a preset

threshold is obvious.

2.5. SIMULATION

The simulation of wormhole attack is conducted in network simulator ns3. The

network size is 40 nodes. We randomly generate node locations on a 500m × 500m square

region, and deploy them in ns3 simulator. All nodes are equipped with 802.11b Wifi

interface with data rate 11 Mbps. The network is shown in Figure. 2.3.

All nodes within 100m are connected by an edge. When node 1 and node 2 start a

wormhole tunnel, there isn’t a direct link to connect the two nodes. An in-band wormhole

tunnel is created using the path 1-19-25-23-2. Nodes 1 and 2 as well as the nodes in the

tunnel are controlled by an adversary. Node 1 will advertise there is a link from node 1

to node 2, then the routing paths are redirected to go through the tunnel if the new routes

are shorter than the existing ones. Node 1 then use the in-band wormhole tunnel to send to

node 2. Due to the fact that this path is longer than the previous route, it is expected that

there will be noticeable increase in end-to-end delay. We try to detect the change as soon

as the wormhole attack has started.
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Figure 2.3. A 40-node network with in-band wormhole between nodes 1—2.

2.5.1. Wormhole Detection in a Stationary Network. In the first simulation, we

set every node to be stationary. Simulation time is 100 seconds. At t=50 seconds into the

simulation, packets start to be redirected to use the wormhole tunnel.It goes through the

node 1, node 19, node 25, node 23, node 2.

We first observe the end-to-end delay when all traffic in the network is redirected

to the wormhole tunnel. In Figure. 2.4, there are two flows 18–28 and 17–38, and both

changed their paths after 50 seconds. The x-axis shows packets departure time from the

source, and y-axis shows the end-to-end delay of packets.

• Flow 18–28:

– Before 50 seconds: use path 18-9-34-35-37-28
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– After 50 seconds: use path 18-1 ... 2-28

• Flow 17–38:

– Before 50 seconds: use path 17-14-21-16-38

– After 50 seconds: use path 17-1...2-38

Since two flows both have minimum interference from other flows before the worm-

hole attack, and after the attack both switch to use the same tunnel, there is a significant and

abrupt change in end-to-end delay after 50 seconds as shown in Figure. 2.4. The abrupt

changes in delay are caused by both longer path and interference from each other.

Then we observe the end-to-end delay when some flows go through the wormhole

tunnel while others follow their previous routes. The affected flows are those whose paths

are one-hop away from either node 1 or node 2, so the source or relay nodes heard the

fraudulent advertisement (of a shorter path) and decided to switch. The background flows

are those whose packets stay on the original routes either because the routes won’t be

improved by going through the wormhole tunnel or because the source or relay nodes did

not hear the fraudulent advertisement.

Due to the inter-flow interference, the end-to-end delay of the affected flows may

not immediately undergo dramatic changes after 50 seconds. In Figure. 2.5, we observe the

delay time series in three flows of different data rates. The three affected flows are 9–24,

18–28, and 17–38. The background traffic include flow 18–10 and flow 37-12. The packet

sizes are the same for all flows, however the foreground traffic and background traffic packet

transmission rates are different. For instance, in (a) the packet size is 256 bytes, foreground

traffic packet interval is one packet every 0.01 second, and the background traffic packet

interval is one packet every 0.025 second. As is shown in Figure. 2.5, some flow (e.g.,
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Figure 2.4. The end-to-end delay of two flows when they route through the wormhole
tunnel.

17–38) experiences significant increase in delay in all cases, and some flow (e.g., 18–28 )

does not, and the outcome depends on the degree of congestion.

2.5.2. Wormhole Detection in a Mobile Network. In the second simulation, we

use a mobile model for the network. All nodes are wandering within a small range around

their original positions using the random walk 2d mobility model. The change of path in

a wormhole attack scenario can be easily confused with the case when node 1 and node

2 are moving towards each other therefore the actual path length is reduced when they

become closer. We will evaluate if the detection algorithm can successfully distinguish the

benign case, in which route change is caused by node mobility, and the attack case, in which

the route change is caused by wormhole. In the former, the actual path length is indeed
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decreased, while in the latter case, the actual length is increased while it is believed to be

decreased.

Figure. 2.6 shows the end-to-end delay of three flows using different traffic load. As

is observed, when the network is already under heavy traffic load, the net-effect of wormhole

is not obvious. Although there isn’t a clear or consistent pattern of change, it is detectable

by SW-CLT since the detection threshold is adjusted with the data.

2.5.3. SW-CLT and NP-CUSUM Detection Results. The detection results are

summarized in Table 2.1. Due to the space limit, we present the results for two extreme

cases, one with dramatic change (Scenario 1), and the other with subtle changes (Scenario

2).

It is noted that in SW-CLT the only parameter that needs to be set manually is the

window size m. The choice of m is not critical for the detection accuracy. We chose m = 10

for all scenarios. However in NP-CUSUM there are two parameters, the detection threshold

h and the constant c, that are manually selected, and both are critical to the detection

accuracy. For scenario 1, when the changes are big, the selection of h and c takes multiple

trials to make it work, and the false alarm rate is high. For Scenario 2, when the changes

are small, it is difficult to find the pair of parameters to detect the change points.

Table 2.1. Comparison of SW-CLT and NP-CUSUM on change point detection.

Algorithms Scenarios Detected False Alarms Latency (s)

SW-CLT 1 (18–28) Yes 3 3.094
SW-CLT 1 (17–38) Yes 7 6.995
SW-CLT 2 ( 9–24) Yes 0 0.034
SW-CLT 2 (17–38) Yes 1 0.038
SW-CLT 2 (18–12) Yes 0 0.093

NP-CUSUM 1, all flows Yes >100 —
NP-CUSUM 2, all flows No — —
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Figure 2.5. The end-to-end delay of three flows that go through the wormhole tunnel while
the background traffic steers on the original routes.
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Figure 2.6. The end-to-end delay of two flows when they route through the wormhole
tunnel.



25

3. IEEE 802.11 MAC MISBEHAVIOR DETECTION

3.1. BACKGROUND

The IEEE 802.11 MAC protocol is the de facto protocol for wireless local area

networks (WLANs). The multiple access control mechanism features a distributed coordi-

nation function (DCF), which offers random and distributed access to participating nodes

[6, 13]. One of the big success of IEEE 802.11 MAC protocol is it addresses the hidden

terminal problem by using the Request to Send/ Clear to Send (RTS/CTS)message exchange

before data packets are transmitted. Nodes in the vicinity of the sender and receiver will

receive the RTS and CTS packets and therefore will refrain from channel access. Once a

node has sensed the channel is busy, it enters binary exponential back-off to wait until the

channel is clear. This is the key mechanism for collision avoidance.

In order for the protocol to be successfully executed, every node in the sameWLAN

is expected to conform to the protocol and follow the rules to determine the set of control

parameters. These parameters include the carrier sense time Distributed Inter-Frame Space

(DIFS) and Short Inter-Frame Space (SIFS), as well as the back-off value in the contention

phase. If some nodes do not obey the protocol, it will create unfairness to other nodes,

and even cause further damage to the network. We can categorize the attacks at the MAC

layer into two categories: selfish attack, in which the offender committed mainly for its

own benefit although they may also cause performance degradation of other nodes, for

instance, monopolizing the channel so it can gain exclusive access to channel resource;

malicious attack, in which the offender committed mainly for the purpose of creating

damage for other nodes in the network. Selfish attack are also called greedy attacks or

misbehaviors. Examples of such selfish misbehaviors include sender using a smaller back-
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off value, using shorter carrier sense time in order to have advantage in channel access, and

receiver selectively dropping RTS packets in order to have more chance to transmit its own

data. In this paper, we focus on the detection procedure and its application on three types

of attacks: 1) manipulation on carrier sense time, 2) manipulation on back-off value, and 3)

RTS dropping attack.

Although there are security mechanisms employed in IEEE 802.11 MAC, the cryp-

tography based protection provided by WEP and WPA cannot deter such misbehaviors.

The aforementioned misbehaviors are attacks on the channel resource, not on the data

packets transmitted in the network. As long as the nodes are considered legitimate nodes

in the network and are given secure keys for authentication, the misbehaviors cannot be

stopped. The challenge in defending against such misbehaviors is that they all appear to

be conforming to the protocol in the sense they all follow the carrier sense and then the

sequence of RTS/CTS/DATA/ACK message exchange. In case of the RTS dropping attack

by the receiver, the sender can be easily confused with collision on the RTS packet and

retransmit one. To detect the misbehaviors, examining one sequence of packets exchanged

is not enough, instead, a more sophisticated detection mechanism is needed that involves

comparison of network wide observations as well as performance measurements in the past.

In this paper, we use a time-series analysis approach for the detection of MAC

layer misbehaviors: we model the network performance measurements taken over time as

time series and then apply a change point detection algorithm on time series to detect the

abrupt changes caused by the misbehaviors. The objective is to detect misbehaviors as

soon as they have started so that there is plenty of time to find the root cause and take

effective counter-measures accordingly. In the context of network security, we take a two-

step procedure to protect the network: detection and diagnosis. The detection procedure is

active all the time. It is set out to hunt for anything that appears to be suspicious. Upon
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receiving alarms from the detection procedure, the diagnosis procedure will be activated

to determine the root cause of the suspicious behavior. Therefore the requirement for the

detection algorithm is to detect any suspicious behavior as soon as it starts. We argue that

a real-time detection method that uses current data to perform attack detection is the most

suitable for the application, as the data to process are network performance measures taken

over time. Using archived data will require large storage and high processing power, and

yet the historical data provides little insight about the current state of the network.

The rest of the paper is organized as follows. In Section 5.2, we survey the previous

work in MAC layer attacks and detection methods. In Section 4.3, we provide the back-

ground for misbehavior detection using time series analysis approach. In Section 3.4, we

present the core algorithmic component of the detection method. In Section 4.4, we show

how the algorithm is used for the detection of each type of misbehavior. In Section 4.5, we

present the detection performance.

3.2. RELATEDWORK

Attacks on the lower layer protocols of wireless networks have been extensively

studied in recent years, for instance, attacks on the network layer to disrupt routing [12],

attacks on the MAC layer to gain more channel access [41, 44], and attacks on the physical

layer to jam the channel [34]. Studies on MAC layer attacks as well as prevention and

mitigation techniques constituted the main body of the literature. We further distinguish

two types of attacks at the MAC layer: malicious attacks and selfish attacks.

In a malicious attack, an attacker intentionally attacks on a service node by keeping

the channel busy near the service node [18], causes denial of service (DoS) to other nodes by

injecting enormous amount of traffic into the network[69], or masquerades as a legitimate

node byMAC address spoofing in order to disrupt network services [47]. In a selfish attack,
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a selfish node violates the rules of the protocol in order to gain more channel access to itself

at the cost of performance degradation of others [16, 19, 43].

IEEE 802.11 MAC offers distributed and random access to nodes, but also leaves

a lot of room for a selfish nodes to exploit. The selfish attacks are mainly targeted at the

Distributed Coordinated Function (DCF) of IEEE 802.11 MAC [6, 13]. In the literature,

the most addressed attack is cheating on the backoff rule [1, 9, 15, 16, 20, 28, 30, 44]. The

well-behaved nodes would follow the binary exponential back-off rule to decide its waiting

time during the backoff stage, whereas a selfish node can just choose a small back-off value

and increase its channel access time.

To detect the misbehavior of cheating on the back-off rule, many studies used the

comparison of a selfish node and the well-behaved nodes on their performance measures.

Without knowing whether there is a selfish node and who is the selfish node, the access

point would periodically collect data from all nodes to get a center line (or average). A

general principle of these detection methods is that if a node’s data deviate from the center

line too much, it is considered selfish. Performance measures used as detection statistics

include throughput [15, 16, 43], the mean time between received packets [15], RTS and data

packets retransmission rates [55], and node’s channel access time [19], etc. This approach

involves determining the average from all nodes, and setting a detection threshold. The

detection threshold is either a constant shift from the center line, or a constant fraction of the

center line, where the constant shift or constant coefficient are manually set or calculated

from historical data.

Another category of detection methods involve more sophisticated statistical meth-

ods, such as the sequential probability ration test (SPRT) method [44], or the statistical

process control (SPC) method [1]. The SPRT method in [44] determines if a selfish node

exists in a network by observing a sequence of n data points representing packet inter-
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arrival time. The distribution of packet inter-arrival time is estimated, and then SPRT is

performed on each new data point using the estimated probability density functions under

both hypotheses. It stops when either of the stopping criteria is met, i.e., either accepting

the null hypothesis that there is no selfish behavior, or accepting the alternative hypothesis

that there is selfish behavior. Although it is a sequential method, it is not designed to detect

the selfish behavior at the moment it starts; it is rather used to determine whether the n data

points are generated by a selfish node or a well-behaved node. It is assumed that the node

behavior has been consistent in the sequence of n data points, therefore it is not a change

point detection method. Section 4.3 provides more detailed description of the method.

The SPCmethod in [1] uses the data collected from normal cases without misbehav-

ior to set the upper and lower control limits and the center line, andmonitors the performance

metrics (i.e.,throughput and packet inter-arrival time) using the control chart, and decides

that there is selfish behavior when the metrics deviate from the chart significantly. Detection

is in real-time if the new data points fall out of the control limits. However, the control chart

is determined using historical data.

The change point detection approach in this paper differs from all previous work in

the sense that it is not assumed that the misbehavior exists from the beginning of the time

series. The detection method can detect the misbehavior as soon as it starts. It also does not

use archived data to set the detection threshold. The detection threshold is calculated from

the current data, and therefore it significantly improves the detection rate and false alarm

rate for highly dynamic data.

3.3. TIME SERIES ANALYSIS METHODS

Network Measurements: MAC layer misbehaviors cause performance degradation

of the victims. For instance, if one node becomes selfish and starts to use shorter carrier
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sense time to give itself higher priority in accessing the channel, other flows will have

less channel resource to use. This will result in longer delay and less throughput than in

a normal situation. If a node decides to switch to selfish behavior at some point in time,

such behavior should be observed in 1) the degraded performance measurements of other

flows, and 2) the improved performance of its own. The performance degradation in an

attack scenario is distinguishable from the degradation caused by network congestion on

a busy network or from channel condition deterioration, since in a benign scenario, the

performance degradation is from all flows.

The detection procedure requires that we sample round-trip time from successfully

received packets starting from sending RTS until receiving ACK, and also monitor the data

packets received over time. Attack detection is running on each active node. A sender

node should sample the round-trip time over time, and a receiver node should record the

received data packets from a particular sender over time. The number of packets received

over time is bursty even in the non-attack scenario due to the random nature of IEEE 802.11

MAC. If we use this time series for attack detection, it will generate too many false alarms.

Therefore, instead of using the instantaneous throughput, we use the cumulative throughput

over time as the time series to perform attack detection. Detection algorithm is performed

at each node independently. Each node run a sequential change point detection algorithm

on the time series it generates, some may requires using derived data instead of raw data to

perform. If a node has detected a change point, alarms are sent to the designated node in

the network. If it is a sensor network, such designated node could be the base station; if it

is a wireless ad hoc network with no base station, a clustered structure is sufficient. Then

all alarms will be sent to the cluster heads, and cluster heads can make decision whether a

true attack has happened depends on the alarms it has received.
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3.3.1. Problem Statement. In mathematical abstraction, detecting abrupt changes

caused by the misbehaving nodes is casted as a change point detection problem in time

series. A time series is a sequence of data points {x1, x2, . . . , xt, . . . , } representing some

measurements/observations taken from a stochastic process over a continuous time interval,

and a change point in the time series is a time instance starting from which the probability

distribution of the stochastic process has changed. It is assumed that before the change point,

the time series follows one distribution, and after the change point, and the time series starts

to follow another distribution. Suppose the pre-change and post-change density functions

are f (·) and g(·), respectively, and the change point is µ. The alternative hypothesis is then

formulated as:

If no change has occurred, then H0 is true; if a change has occurred, then Hµ is

true. The detection algorithm is tasked with deciding which hypothesis is true, and if the

alternative hypothesis is true, the algorithm reports the change point. It is desired that the

algorithm have high detection rate and low false alarm rate, and a low detection latency,

which is the time interval from the true value of µ to the time a change is detected.

3.3.2. SPRTvs. ChangePointDetection onTimeSeries. The repeated sequential

probability ratio test (SPRT) [58] also works on a sequence of data and processes each data

point sequentially. In SPRT, two hypotheses are made:

The algorithm uses two probability density functions, ¶(x | H1) and ¶(x | H0).

Given a time series {x1, . . . , xn}, the probability ratio is calculated using the following

equation:

rn = rn−1
P(xn | H1)
P(xn | H0)

, ∀n ≥ 2 (3.1)
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r1 =
P(x1 | H1)
P(x1 | H0)

(3.2)

Intuitively, when rn is large, it means that the sequence {x1, . . . , xn} is more likely generated

from the distribution under H1 than from the distribution under H0, therefore H1 should be

accepted. The algorithm proceeds until the detection statistics rn hits a threshold value.

Instead of using one detection threshold, it uses two detection thresholds: an upper

bound A to claim the alternative hypothesis is true and a lower bound B to claim null

hypothesis is true. The two detection thresholds A and B are set by using the given type

I and type II error rates. The algorithm starts from the first data point and sequentially

process each new data point xi until one of the stopping criteria is met:

• when rn ≤ B, H0 is accepted;

• when rn ≥ A, H1 is accepted;

• when B < rn < A, defer decision and continue with the next data point.

When the detection statistics rn is below the lower bound, the null hypothesis is accepted

stating that the data follow the distribution of well-behaved nodes; when the detection

statistics rn is above the upper bound, the alternative hypothesis is accepted stating that the

data follow the distribution of misbehaving nodes; when the detection statistics is between

the upper and lower bounds, decision is deferred and the algorithm continues to next data

point. SPRT is suitable when the distributions under both hypotheses are known or can

be reliably estimated. In practice, the true distribution is unknown. When a large volume

of sample data is available, estimating the probability density functions ¶(x | H1) and

¶(x | H0) are possible. However, this requires a long time series with relatively stable

traffic profile, which is hard to obtain in a highly dynamic network.
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Another significant difference between SPRT and change point detection is that

SPRT uses hypothesis testing approach to find out if there is misbehavior, whereas change

point detection uses hypothesis testing to find out if there is change point in the time series.

In SPRT, between H1 and H0, only one them is always true. This means there is no change

point in the time series. In case the misbehavior starts somewhere in the middle of the

time series, SPRT can prematurely terminates with conclusion that H0 is true. In Figure.

3.1, the algorithm SPRT terminates in the first segment of data accepting H0 whereas the

misbehavior starts after the stopping point.

CUSUM Algorithms: There are a number of algorithms for change point detection

on time series. The parametric version CUSUM algorithm [32, 39] is the best when the

pre- and post-change distributions are known. It uses the likelihood ratio to compute the

cumulative sum of the log likelihood ratio as follows:

Ln =
g

f
(3.3)

Wn =
(
Wn−1 + log Ln

)+ ,∀ n ≥ 1 (3.4)

where W0 = 0, and x+ = max(0, x). Then the cumulative sum is compared to a preset

threshold h. The procedure declares a change as soon as the detection statistics Wn exceeds

a preset threshold h:

T (h) = arg min
n:n≥1
{Wn ≥ h} (3.5)

Although mathematically sound, the reality is that the network traffic is very dynamic, and

the end-to-end delay does not follow any known distribution. Without knowing the exact
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Figure 3.1. SPRT algorithm terminates prematurely accepting H0 when the misbehavior
appears after the stopping point.

f (·) and g(·), the non-parametric version CUSUM is proposed to overcome the problem.

The non-parametric version cumulative sum algorithm (NP-CUSUM) eliminates the need

for the density functions, and use a heuristic approach to compute the detection statistics.

Wn = (Wn−1 + xn − c)+ ,∀ n ≥ 1 (3.6)

where c is a preset constant, and the rest follows the parametric version CUSUM. However,

if the traffic is highly dynamic, to set the detection threshold h and the constant c is a

challenging task, and historical data will be of little use since the current data may not

follow the pattern of historical data at all.

Despite the popularity of the CUSUM family algorithms, which pretty much is due

to the lack of other types of algorithms, these algorithms involve manually-set thresholds

or parameters that limit the application of the algorithms on the real-world dynamic traffic.

Network traffic is highly dynamic and random, to use a manually set parameters based on

historical data will not work.
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3.4. CHANGE POINT DETECTION ALGORITHMS

Let m be the window size. Let t be an integer with 0 ≤ t ≤ n−2m. As the algorithm

moves from t = 0 to t = n−2m, it takes m consecutive data points from the time series—call

it window 1, and the next m data points— call it window 2. Then we compute the sum of

the x’s.

Y1(t) =
t+m∑

i=t+1
xi and Y2(t) =

t+2m∑
i=t+m+1

xi (3.7)

D(t) =| Y1(t) − Y2(t) | (3.8)

We compare the difference between the sums of the two windows with a threshold DT h,

which is determined by the characteristics of the data and the desired upper bound for false

alarm rate. The detection threshold DT h is computed by using the following procedure:

Let Φ(·) be the cumulative distribution function (CDF) for standard normal distri-

bution, defined as:

Φ(z) = ¶(a ≤ z) (3.9)

Then 1 − Φ(z) is the probability of ¶(a > z) for a random variable a that follows the

standard normal distribution.

For a desired false alarm rate ε , we can solve the cutoff value z from the following

equation:

1 − Φ(z) = ε (3.10)
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Then the solution z for the above false alarm rate equation is scaled to be used as the

detection threshold:

DT h = z
√

2mσ, (3.11)

where σ is the square root of the sample variance.As the windows slide from the low end

to the high end of the time series, if the following condition is met at time t

D(t) ≥ z
√

2mσ, (3.12)

then detection is positive. The algorithm decides a change point has occurred between the

boundary of two windows, and report change time µ̃ = t + m. For a true positive, the

detection delay is the time difference between a reported change point and the true change

point:

Latency = µ̃ − µ (3.13)

The algorithm is based on the Central Limit Theory and it works regardless of the underlying

distribution of the end-to-end delay {x1, . . . , xn}. For highly dynamic traffic, when the

previous CUSUM and its variations fail, CLT-based algorithm can be applied. The use of

the Central Limit Theorem eliminates the need to estimate the underlying distribution of

the measurements, and relates the detection threshold with the allowable false alarm rates.

3.5. MISBEHAVIOR DETECTION IN IEEE 802.11 MAC

In IEEE 802.11 MAC, ordinary asynchronous traffic all uses the distributed coordi-

nation function for medium access. Before the sender transmits a frame, it performs carrier
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sense. The carrier sense duration is dependent upon the Inter-Frame Space (IFS) value at

the present time. If the medium is idle for IFS amount of time, it transmits a frame. Each

atomic unit for frame transmission is a four-frame sequence: RTS-CTS-DATA-ACK. If the

medium is busy or becomes busy before the IFS amount of time counting down to zero,

it waits until the current transmission ends and waits for IFS amount of time again before

going to contention. During the contention period, each node performs binary exponential

back-off to select a waiting time. The node that selects a smaller back-off time among the

contenders will be the winner and will transmit a frame. For asynchronous traffic, there

are two different IFS values: Distributed coordination function IFS (DIFS) and Short IFS

(SIFS). DIFS is used before sending RTS, while SIFS is used in the later part of the sequence

before CTS, DATA, and ACK.

In this paper, we address three types of attacks targeted at IEEE 802.11 MAC

protocol. A selfish node can exploit the vulnerability of the protocol to give itself more

channel access time and degrade the throughput performance of other nodes. Type I Attack:

shorter DIFS,Type II Attack: shorter DIFS combined with smaller back-off value,Type III

Attack: RTS dropping.The back-off value manipulation has been extensively studied in the

past and we do not intend to repeat in this study. It is also observed that only when the

network traffic load is high and nodes frequently enter the back-off stage, the impact of this

attack is high. If there is no contention among nodes, there is no chance for a selfish node

to use this attack. Furthermore, nodes still need to wait for DIFS amount of time before

counting down on the back-off counter. Therefore we think it is necessary to consider the

joint effect of shorter DIFS and smaller back-value, and compare it with the first attack that

uses shorter DIFS only.

When the attacker launches an attack, the other flows experience performance degra-

dation notable from the time series of performance measures. At the moment of detection,
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we cannot distinguish what type of attack it is. Further investigation is needed to distinguish

whether the change is caused by an attacker or by a new flow that just joined the network.

The focus of this paper is to first detect such changes in real-time as soon as new data points

are collected. The identification of attacks will be the next step after detection.

3.5.1. Type I Attack: Shorter DIFS. Based on the carrier sense protocol, a node

refrain from transmission if the medium is busy. If a node uses a shorter DIFS value than its

peers, it gains a lot of advantage. It is essentially a priority to use the transmission medium.

If two nodes both have a frame to transmit and they start to perform carrier sense at the

same time, the node with shorter DIFS will start to transmit ahead of the other one. Carrier

sense prevents the other node from interrupting the ongoing transmission so the other node

will have to wait until the medium is cleared. If a node always uses shorter DIFS values,

it will have a larger share of the channel resource than other nodes, so the throughput and

delay performance will be improved, meanwhile the throughput and delay performance of

other flows will be degraded.

To detect the selfish behavior, we cannot rely on the selfish node to perform attack

detection on its own data and report itself. We can only detect the misbehavior from the

performance degradation of other flows. The delay time series in an attack scenario won’t

be a constant shift from its normal state. As delay increases, the jitter or variance of delay

also increases. If we put the delay data in a time series, it is expected that the distribution

of the cumulative means of delay and variance of delay have a change point at the moment

of attack. Throughput time series will show similar increase in both cumulative means and

variance. Applying the change point detection algorithm on any one of the time series will

be able to detect the attack.

3.5.2. Type II Attack: Shorter DIFS and Smaller Back-off Value. In the carrier

sense period, if a sender sensed that the medium is busy, it will refrain from channel access.
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After the medium becomes free for DIFS or SIFS amount of time, if all senders start to

transmit a frame right away, there is potential collision among the senders in the back-off

stage. Therefore it is necessary to make each sender wait for a random number of slots

before transmitting a frame. This period is called contention. The random number is

chosen between zero and a power of 2 (not inclusive) based on the binary exponential back-

off algorithm. In the non-attack case, every node chooses its random number independently,

the one that chooses the smallest number will start to transmit first and deter others from

transmission. In the attack case, the attacker either chooses a random number from a

smaller window or uses a fixed back-off value, γ, instead of following the exponential

back-off algorithm during the contention period. The attacker will have higher probability

to gain channel access than the rest of nodes.

It is observed that when the attacker uses a smaller γ, it gains more channel access

than using a larger γ. Whether the combined use of shorter DIFS and smaller back-off

value further create more detrimental effect on other flows, this is interesting to find out.

Intuitively, a more aggressive attacker will cause more damage to the network. However

the data from simulation show that this is not the case.

3.5.3. Type III Attack: RTS Dropping. In the RTS dropping attack, the receiver

may not response with a CTS upon receiving a RTS. It selectively drops RTS packets, which

causes the transmitter to retransmit several times, wasting time and channel resources. If

the sender does not receive a CTS in the specified time, it will time out and go into the

back-off state. The attacker thus effectively deters the sender from channel access. In some

case, the sender may perceive the absence of CTS as a result of congestion and tell the

upper layer to change route in order to avoid the congested area. The ultimate benefit for

the attacker is less requests from neighbors to access the medium. The attacker thus clears

the channel for itself so that it can have more channel access time.
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Absence of CTS is often regarded as a result of collision, or poor wireless channel

condition. It may not be immediately taken as a sign of attack. The distinction between

congestion and selfish misbehavior is possible when more flows are observed. In the

congestion case, all flows show performance degradation along with high retransmission

rates of RTS packets, whereas in the attack case, only the flow that has the attacker as a relay

node or receiver will suffer, and the attacker as a sender actually has improved throughput

due to increased channel access time.

3.6. SIMULATION

To simulate the misbehaviors, we hacked into IEEE 802.11 WiFi MAC in ns-3 to

create three attacker classes different from well-behaved nodes. The well-behaved nodes

will follow the IEEE 802.11 MAC protocol and use default parameters, while the attacker

classes can deviate from the rules of the protocol and use different parameters.

We use ns-3 to generate network traffic, and then retrieve performance measures

such as delay, throughput and inter-packet interval from the trace file. To collect delay data,

the sender needs to time-stamp the packet at the MAC layer when RTS is sent. receiver

can recollect end-to-end delay, throughput, and inter-packet interval from the received

packets.Figure. 3.2 shows the network used for simulation. Nodes are deployed in a

150m × 150m terrain area. Every sender is one hop away from its receiver. Node 2 is the

selfish node in all cases.

3.6.1. Case 1: Shorter DIFS Attack. Simulation Setup: The IEEE 802.11 family

of standards describe the DCF protocol, which controls access to the physical medium. A

station must sense the status of the wireless medium before transmitting. If it finds that

the medium is continuously idle for DIFS amount of time, it is then permitted to transmit

a frame. If the channel is found busy during the DIFS interval, the station should defer
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Figure 3.2. The 802.11 network under selfish attack and Node 2 (red) is the attacker in all
cases.

its transmission. The DIFS plays an important role in contention-based medium access

process. If the attacker can modify the value of DIFS and get a smaller one, it can get

more chance to access the channel and let other legitimate nodes suffer various delay. In

IEEE 802.11b, the default value of DIFS is SIFS + 2 × slot-time, with SIFS=10µs and a

slot-time=20µs. In this simulation, the selfish node uses DIFS=SIFS.

There are five flows from the well-behaved nodes: 19 - 1, 14 - 1, 12 - 1, 10 - 1, 6 - 1.

The attacker starts to behave selfishly at simulation time 50 second. The attacker is near the

sink node, and for some flows it is also near the sender. Due to the shorter DIFS, the attacker

has better chance to send out RTS and reserve the channel, thus deter the other flows from

transmission. We expect that all other flows will experience a performance degradation.
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Results: With the attacker using a shorter DIFS value, other flows are given less

channel access time. Figure. 3.3 shows the delay and throughput as well as the mean and

variance of them for the flow from node 14 to node 1. Although the throughput shows

oscillation, the cumulative mean of throughput is decreasing therefore the throughput is still

decreased over time. Other flows are shown in Figure. 3.4. As we can see, the delay of a

normal flow increases and the throughput drops. All victim flows show similar pattern.

In 802.11 MAC, the contention window size is measured in slot-time, with each

slot-time=20µs. A well-behaved node follows the binary exponential back-off rule to select

a random number γ between [0, CW-1], where CW is the contention window size. The

minimum contention window size is 32 and the maximum contention window size is 1024.

A node would double its contention window size each time it enters the contention state

without a successful transmission until it reaches the maximum value. Upon successful

transmission, the contention window size is reset to the minimum value 32.

The selfish node can cheat on the back-off rule by using a smaller back-off value.

In this simulation, we choose a fixed γ = 2. In the contention period, when the channel is

sensed idle for DIFS amount of time, the back-off counter starts to count down. When the

counter reaches zero, a node transmits a RTS frame. Since the selfish node uses DIFS=SIFS

and a fixed back-off value γ = 2, whereas the normal nodes have DIFS=SIFS+2 × slot-time,

it is equivalent to say that the selfish node waits no time after a normal DIFS amount of time

to transmit a new RTS packet, while the normal nodes have to wait an additional random

number of time-slot.

The network setup is the same as in case 1. The results show that all five flows

experience significant throughput loss, companioned by increased delay. Figure. 3.5 shows

the delay and throughput of four flows. The fifth flow from node 6 to node 1 is shown with

more detail in Figure. 3.6. Applying the change point detection algorithm on the cumulative
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means time series can easily detect the performance change caused by the selfish node at

near 50 seconds.

A counter-intuitive observation is that the performance degradation of normal flows

are not as severe as in the first case where the attacker only uses shorter DIFS but still

follows the same rule for contention. Table 3.1 shows the cumulative means of delay and

throughput of each victim flow. This is due to the fact that the selfish node no longer

participates in contention when the well-behaved nodes start to contend, and therefore the

number of nodes in the contention period is reduced. As a result, all other flows experience

lighter traffic load in the contention period.

Table 3.1. Cumulative means of delay and throughput of all five flows in case 1 and case 2.

19-1 14-1 12-1 10-1 6-1
Case 1 Delay 0.0283 0.0541 0.0064 0.0360 0.0521
Case 2 Delay 0.0042 0.0044 0.0035 0.0038 0.0048
Case 1 Throughput 818.95 812.22 819.12 817.44 816.26
Case 2 Throughput 818.95 819.20 819.20 819.20 819.03

3.6.2. Case 3: RTS-dropping Attack. Simulation Setup: In the RTS-dropping

attack, the selfish receiver may not response with a CTS by selectively dropping a number

of RTS packets, which will cause the transmitter node to retransmit serval times, deterring

other nodes from transmission while the selfish node can ignore it and go ahead with its

own transmission. Since the transmitter does not receive CTS in the specified time, it will

time out on CTS and use binary exponential time to back off. And it definitely make the

network latency higher.

We use the same network as shown in Figure. 3.2 to simulate the attack. There are

five flows in the network: 20-2, 11 - 2. 8 - 2. 7 - 2, 5 - 2. Node 2 is the selfish node that
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selectively drops RTS. In the simulation, the ratio of CTS to RTS is 1/20, i.e., it drops the

first 20 RTS packets and responds to the 21st with CTS, and repeats.

Results: Figure. 3.7 shows the delay and throughput for one flow. Other flows show

similar patterns. It is interesting to observe that the delay does not show significant increase.

This is due to the fact that the RTS retransmission limit is set to 7. With a high drop rate

of 20/21, the RTS packets including the retransmitted RTS are mostly dropped, and only a

small portion can get through. The ones that did get through did not experience much delay

since the network traffic load is lighter. This is clearly observed on the delay chart where the

received packets are sparser after 50 seconds. Note that the x-axis shows the receiving time

of the packets. Figure. 3.7(b) shows that the inter-packet interval experiences significant

increase after the attack starts.

In this case, instead of using the delay time series, the detection is performed on

the inter-packet interval and throughput time series. Both data are available at the receiver,

however, we cannot rely on the receiver to perform attack detection since the receiver is the

attacker. The sender has to keep track of successfully transmitted data packets and record

the packet interval based on the sending time and the total number of bytes transmitted.

Figure. 3.8 show the data rate and the inter-packet interval for the successfully transmitted

packets.To directly apply the change point detection algorithm on the transmitter data rate

and packet interval time series will generate many false alarms, however when we use the

cumulative average of the data rate and packet interval, the time series are smoothed out,

and the "change point" corresponding to the attack time is obvious, as shown in Figure. 3.9.

3.6.3. DetectionResults Summary. Comparison betweenSW-CLTandnon-parametric

CUSUM: SW-CLT has smaller false alarm rate and higher detection rate. The false alarm

rate of SW-CLT is bounded from above by the given ε . SW-CLT also has a bounded

detection latency. In this simulation, we have been using window size m = 10, therefore for
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the successful detections, the detection latency is bounded by 10 data points after the attack

time. Nonparametric CUSUM does not have a bounded detection latency.Detection results

for three types of attacks:

• Shorter DIFS attack: applying the SW-CLT change point detection algorithm on

delay, throughput, and cumulative means of throughput series can detect the attack

at 50 seconds. Applying it on other time series will have larger detection latency.

The cumulative means of throughput provides the overall best detection result— the

smallest false alarm rate and the lowest detection latency.

• Shorter DIFS and smaller back-off value attack: applying SW-CLT on the cumulative

means of delay and throughput can detect the attack at 50 seconds, with delay series

having higher false alarm rate.

• RTS Dropping attack: although the change point is visible on the transmitter data

rate and transmitted packet interval time series, applying SW-CLT on these two time

series generates high false alarms. Applying SW-CLT on the cumulative means of

data rate and packet interval generates fewer false alarms.
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Figure 3.3. The delay and throughput as well as their mean and variance for one flow (14-1).
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Figure 3.4. The delay and throughput of all other flows show similar performance degrada-
tion.
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Figure 3.5. The delay and throughput of four flows in the combined shorter DIFS and
smaller back-off value attack.
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Figure 3.6. The delay and throughput of flow 6-1 in the combined shorter DIFS and smaller
back-off value attack.
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Figure 3.7. The delay and inter-packet interval of a victim flow (20-2) under RTS dropping
attack.
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Figure 3.8. The transmitter data rate and inter-packet interval of a victim flow (20-2) under
RTS dropping attack.
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Figure 3.9. The cumulative means of the transmitter data rate and inter-packet interval of a
victim flow (20-2) under RTS dropping attack.
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4. JAMMING DETECTION

4.1. BACKGROUND

Wireless transmissions are exposed to shared media. This is a nice feature that

makes them pervasively available but also makes them vulnerable to physical layer attacks.

Jamming attack is a type of security attack that uses radio interference to impede normal

communications [68]. A jammer does not follow the MAC layer protocol as a normal

wireless transmitter does. For instance, if TDMA is used by the normal nodes, a jammer

can send signals— often at high power— to interfere the transmission during normal nodes’

allocated time slots; if CSMA is used by normal nodes, a jammer can defeat the CSMA

protocol by occupying the channel at arbitrary time making other nodes wait for a long

time. Jamming attacks will directly cause packet drops, high packet error rates, reduced

throughput, and long delay. To effectively protect wireless networks from jamming attacks,

it is important that the jamming attack is timely detected. In this paper, we focuses on

detection in real-time and leaves mitigation in future work.

The detection of jamming attacks requires not only to detect the radio interference

that caused network performance degradation, but also to to distinguish the observed

degradation caused by a jammer from those caused by network congestion or weak signals.

Many jamming detectors use test statistics derived from network measurements such as

packet delivery ratio, packet error rate, and received signal strength, etc. for jamming attack

detection, however the detection logic is often simplistic as only summary information is

used and the detection threshold is often preset at the initial setup phase. The limitation

of existing work is not being able to maintain detection performance when the network

dynamics increases as users join and leave the network. Dynamics in the normal operation of
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a network as well as the evasive techniques employed by the attacker makes fast and reliable

jamming detection very challenging. Despite the large body of literature in jamming attacks,

there is still unaddressed issues: mainly how to improve detection delay and accuracy.

In this paper, we aim to address these challenges and advance the research in

jamming attack detection. The proposed methodology involves profiling and detecting a

change of state in time series, which improves over the existing method in time series change

point detection for data with high variance, and the application of the method can be very

broad and not limited to a specific type of jamming attack. The features that distinguish

this work from previous work in jamming detection are: 1) new detection methodology—

advanced time series analysis techniques are used to detect the change of network state,

which improves over the previous methods that compare the extremes (i.e., maxima) with

a preset threshold; 2) short detection delay— detection happens as soon as the attack

starts, which makes it suitable for real-time detection. This is a significant difference from

retrospective analysis, which has to wait until the attack has lasted for a long period of time

to conclude that a jamming attack has happened; 3) improved detection effectiveness— false

positive rate and false negative rate are both low. In particular, it distinguishes a jammer’s

interference from a normal node’s interference, and it distinguishes the packet drops due to

jamming from those due to weak signals.

The rest of the manuscript is organized as follows. In Section 5.2, we briefly

review the representative work in jamming attack detection; in Section 4.3, we present the

statistical methods for jamming attack detection; in Section 4.4, we present the proposed

time series based detection method and its application in wireless networks for jamming

attack detection; in Section 4.5 we show the performance of the detection method in

simulated wireless networks. Section ?? concludes the paper and points out future research

directions.
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4.2. RELATEDWORK

Due to the shared nature of wireless channels, wireless networks are susceptible

to channel jamming attacks. A variety of detection methods have been investigated to

detect different types of jamming attacks. We survey and compare jamming detection

research in two aspects: detection methodology and detection statistics. Many jamming

detection methods involve sampling at attack-free time to decide initial network parameters

and detection thresholds [10], and jamming detection during normal operation is simply

done by comparing the current measurements with the preset thresholds. Unlike previous

work, the proposed method in this paper does not use a preset threshold and the detection

threshold is dynamically updated as new measurements are collected.

Detection statistics used in the literature range from packet-level network measure-

ments such as Packet Delivery Ratio and Bad Packet Ratio (BPR), to network-wide statistics

such as Energy Consumption Amount (ECA) and channel utilization [37], etc. In some

work, physical layer statistics such as signal collision ratio [29], received signal strength

(RSS) have also been used for jamming detection. In [51], an anti-jamming scheme is

developed to protect the reactive alarm systems. It monitors the received signal strength

during the reception of bits in sensor networks, and is able to differentiate packet errors

due to jamming attacks from errors caused by weak signals. In [50], chip error rate-based

metric is used instead of packet-level metrics. It involves extracting statistics from the

jamming-free symbols of the DSSS synchronizer to discern jammed packets from those

lost due to bad channel conditions. The technique has been successfully applied to the

most sophisticated reactive jammers. In [63], authors presented four jammer attack models

that can be used against a wireless network and proposed two detection methods. The two

detection methods both use the notion of consistency checking, which is simply comparing

the maximum value with a preset threshold value. Packet Delivery Ratio (PDR), signal
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strength, and carrier sensing time are used as detection statistics, and consistency checks on

signal strength and location are performed in order to further distinguish attack scenarios

and benign scenarios. The proposed detection method in this paper is also a type of consis-

tency checking in the sense that we check the changes in network measurements before and

after the attack, however it is change point detection on a time series and therefore is more

advanced and effective than simple comparison of summary statistics.

[64] is a improvement over [63] by including not only PDR but also Packet Send

Ratio (PSR) at the transmitter side in order to distinguish the types of the jamming attack.

Packet Delivery Ratio-based detection method also includes [48], in which a collaborative

detection method is proposed to evaluate the Packet Delivery Ratio in an given area instead

of a pair of nodes. In [54] a decentralized jamming detection method is presented for ad

hoc networks. Cross layer metrics from MAC and network layers are used to differentiate

congestion and jamming.

Jamming detection for sensor networks has attracted a lot of research interests in

recent years mainly due to the low power of sensor nodes and relatively high power of

jamming nodes. In [31], a distributed detection scheme in wireless sensor networks is

presented. It uses a fixed set of sensors for collecting collision results and sending them to

a center node for final decision making. Bayesian decision framework is used at the central

node to make decision with the objective of minimizing the error probability. In [61], not

only detection of jamming attacks but also mapping of jammed areas has been studied. In

[61], jamming detection is performed by monitoring channel utilization. If the channel

utility is below a preset threshold, it is determined that it is jammed. A jammed node will

defeat CSMA limitation and send messages to neighbors, then neighbor nodes collectively

build a map of the jammed region.In defense of wireless networks against jamming attacks,

the first step is detection and the next step is mitigation. Mitigation can be done by avoiding
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or actively competing with the jammer. In [62], two mitigation methods are presented for

sensor network. One approach is to simply retreat from the jammer by using either spectral

evasion (channel surfing) or spatial evasion (spatial retreats). The second approach aims to

compete more actively with the interferer by adjusting resources, such as increasing power

levels or using coding to achieve communication in the presence of the jammer.

4.3. STATISTICAL JAMMING ATTACK DETECTION

In the Bayesian estimation approach [31], it is assumed that each node has a known

probability to transmit in each slot, based on which, the collision probability is derived if

no jamming has occurred. It is also assumed that the jammer has a fixed probability to jam

the network.

4.3.1. Bayesian Estimation. Bayesian decision framework is used to determine

whether jamming has occurred based on the number of observed collisions during a period

of time. Each node monitors whether there is a collision independently and sends the

observation to a fusion center. The fusion center will make the final decision based on the

collective observations. The fusion center uses theMaximum A Posterior (MAP) estimator

to decide whether a jamming attack has occurred.

For the simple Bayesian decision framework to work, the network has to follow the

rigid assumptions, for instance, each node has a fixed probability to transmit in a slot. If

different nodes have different transmission probabilities, or the probabilities are unknown

or not constant, the method would be unsuitable. It is also hard to apply it in a random

access network due to the MAC layer randomness.

4.3.2. Simple Threshold-Based Detector. The majority of statistical detection

methods falls in this category, called statistical anomaly detection [10]. In this approach, the

system profile in the normal state is created, and then anomalies are detected by comparing
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with the normal state profile. Based on the historic data, a threshold is determined and the

parameters are compared with a preset threshold. For instance, the 6−σ method is a widely

used method, in which the upper and lower limits of the normal range is set by µ + 6σ

and µ − 6σ, where µ, σ are the mean and standard deviation of the normal samples from

historical data. Values that fall out of the upper and lower limits of the "band" is considered

abnormal. Although the detection logic sounds correct, the difficulty in the real world is

that network traffic is very dynamic, and fixed thresholds cannot be applied to a constantly

changing network.

The proposed method in this paper is also a statistical anomaly detection method in

the sense we also treat attacks as anomalies. However, different from the previous work, we

do not use fixed thresholds for detection. The detection threshold is computed in real time

based on a sequential time-series analysis method.

4.4. TIME SERIES ANALYSIS APPROACH

The proposed method differs from previous work in both detection statistics and the

algorithmic idea.

4.4.1. Characterization of Jamming Attacks. In previous work [10], the param-

eters used to describe the system profile include Packet Delivery ratio(PDR), Bad Packet

Ratio(BPR), and Energy Consumption Amount(ECA). The assumption is that jammer does

not follow MAC layer protocol, and therefore the jamming signal will interfere with the

ongoing traffic, which causes the rise of BPR and ECA and the drop of PDR. However, if

CSMA is used, the legitimate node will refrain from transmission when the jamming signal

is active. The PDR or BPR won’t be severely impacted. They will still be worse than in

the no-attack case, but won’t be significantly worse. For any type of network, regardless

of the MAC layer protocol used, the damage is ultimately on the network performance.
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Throughput will be decreased and delay will be increased due to the reduced channel access

time. If the two measurements are not impacted, then the jamming attack has not caused

serious damage to the network. In this paper, we characterize jamming attacks by the perfor-

mance degradation in throughput and delay of normal nodes. The jamming indicator is the

synchronized performance degradation of all affected nodes coupled with the occurrence

of longer signal blocks and higher signal power than normal nodes.

4.4.2. Change Point Detection on Time Series. Having observed the limitation

of previous work in threshold-based detection, we propose a real time detection method

suitable for dynamic data set. In this method, we avoid creating a static normal state profile

as network traffic is forever changing. The detection threshold won’t be a preset value based

on archived data. Wemodel the delay and throughput measurements taken over time as time

series, and try to find a change point from the time series, which is likely an indicator of

the network state change. At the time of detection on a single time series, we only conclude

that an abrupt change has been observed but the cause of the change is unknown. We use

separate procedures for detection and further determination of the exact type of jamming

attacks. The detection procedure is always active, and it is set out to hunt for any anomaly

in real time. Only after an anomaly is detected, the detailed analysis to decide the cause of

it is activated.

There are a handful of algorithms in the literature for change point detection on

time series. The most widely used is the CUSUM family [32, 39]. However, the original

parametric version CUSUM algorithm requires the knowledge of the distributions before

and after the change point. In practice, these distributions are unknown. The non-parametric

version CUSUM and its variations all require manual selection of the detection thresholds,

which again fall in the drawback of the aforementioned statistical anomaly detectionmethods

for having preset thresholds.
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In this paper, we apply a different method for time series change point detection.

Let {x1, x2, . . . , xn} be the time series of interest. The change point detection problem is the

problem of deciding which of the following hypotheses is true, where f () and g() are two

different distribution functions:

If the null hypothesis H0 is true, then there is no change point; if the alternative

hypothesis HA is true, then a change point has been detected.

Instead of using preset threshold values as those used in the non-parametric version

CUSUMalgorithms, we calculate the threshold on-the-go and update the detection threshold

as soon new measurements are sampled.

The algorithm uses the upper bound for false alarm rate to decide the detection

threshold.

Let Φ(·) be the cumulative distribution function (CDF) for standard normal distri-

bution, defined as:

Φ(z) = ¶(a ≤ z) (4.1)

Then 1 − Φ(z) is the probability of ¶(a > z) for a random variable a that follows the

standard normal distribution. Suppose a desired false alarm rate ε is given as input, we can

solve the cutoff value z from the following equation:

Φ(z) = 1 − ε (4.2)

The solution value of z will be used in the detection procedure to compute the detection

threshold. The algorithm works as follows:



60

1. Decide a window size m. Usually for an N data point time series, m = N1/3 is used.

2. Read in two windows worth of data {xi+1, . . . , xi+2m} each containing m data points.

As the algorithm proceeds with the next data point, the two windows each move one

data point.

3. Compute the sum of m data points in each window, and then the absolute difference

between the sums of the two windows

D(i) =
������

m∑
t=1

x (i)
t −

2m∑
t=m+1

x (i)
t

������

2

(4.3)

4. Update the sample variance σ2

5. Compute the detection threshold T h(i) by using the following procedure:

T h(i) = zσ
√

2m (4.4)

6. As soon as the the detection statistics D(i) exceeds the detection threshold T h(i), the

algorithm returns with positive result (i.e., HA is true), and T is the detection time:

T = arg min
i

D(i) ≥ zσ
√

2m (4.5)

If no change point has been detected, update i = i + 1, read in a new data point xi+2m

and advance each window by one position, and then repeat the procedure [3]-[6].

Remark: An important parameter is ε . A small ε means small false alarm rate. The

detection threshold will increase as ε decreases, and the algorithm will be less sensitive to

minor changes.
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4.5. JAMMING ATTACK SIMULATION

4.5.1. Simulation Setup. The jamming attacks are simulated in network simulator

ns-3 (https://www.nsnam.org). We redeveloped the jamming modules in ns-3.21 based on

a legacy jamming module from Network Security Lab (University of Washington). The

legacy module was developed for ns-3.11.

A wireless network is simulated where a node can reach all other nodes in one-hop.

Normal nodes send frames with a frame header. Jammers are implemented as transmitters

sending giant packets of arbitrary length. Jamming signals do not have frame headers; they

are a continuous block of signals. Normal nodes and jammers all use a fixed transmission

power 0.04 W.

In the second simulated network, a total of 6 normal nodes are deployed in a square

region (See Figure. 4.5(a)). Node 6 is the jammer. We observe three flows 0 → 1, 2 → 3,

and 4 → 5. The simulation time is 100 seconds, and the jammer starts attack at 50.8

seconds.

In the third simulated network, a total of 12 nodes are deployed in the same square

region as in the previous case (see Figure. 4.5(b)). There is no jammer in this case. Three

flows 0 → 1, 2 → 3, and 4 → 5 are existing flows and we observe that as new transmitters

join the network later how the new transmissions impact the existing flows. Flow 6 → 7

starts at 30.5 seconds, flow 8 → 9 starts at 31 seconds, and flow 10 → 11 starts at 31.5

seconds. All three new flows are sending at a packet rate of 10 packets per second.

4.5.2. Impact of Jamming Signal Duration. The first objective of the simulation

study is to observe how the jamming signals impact the transmitting and receiving of normal

packets. A jammer does not follow the MAC protocol for channel access. It is expected that

jamming signals will not only collide with transmitted packets, but also refrain the normal

nodes from sending due to the channel capturing effect. In the simulated network, a total
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of 4 normal nodes are deployed in a square region (See Figure. 4.1). Node 4 is the jammer.

We observe the flow from node 0 to node 3. Node 0 transmits to node 3 at a packet rate of

one packet per second, and the packet size is 200 bytes. The simulation time is 100 seconds,

and the jammer starts attack at 30.8 seconds.

Several measurements are taken at the receiver side when packets are received:

duration of the received packet, number of bytes in the received packets, end-to-end delay

of the packet, and signal-to-interference-plus-noise ratio (SINR) together with the time of

reception. Other information can be derived from these measurements, such as throughput,

inter-packet time interval (gap), etc. When the jamming attack starts, it is expected that

normal nodes will experience increased delay and reduced throughput. Jammers usually

use either higher transmission power in order to create strong radio interference, or larger

blocks of continuous transmission in order to capture the channel, or the combination of

both. We observe the SINR values and the duration of the received signals.

In order to study the impact of jamming packet duration, we used three different

durations for the network in Figure. 4.1: 0.0005s, 0.8s and 1.5s. The impact of the jamming

packet duration can be clearly observed on the network measurements, especially the end-

to-end delay. When the jamming packet duration is short, the normal packets get transmitted

more often during the jamming packet intervals, therefore the total number of packets being

transmitted is more, and the throughput is higher compared to the scenario with longer

jamming packets. The delay shows oscillation in Figure. 4.2(b). This is due to the effect of

queue management— packets staying in the queue for more than 0.5s are dropped so new

packets will have shorter delay. The delay in Figure. 4.2(c) also has oscillation, but with

a longer cycle. This is due to the long jamming duration— even if the packets staying in

the queue for more than 0.5s get dropped, the new packets may still not have a chance to

transmit due to channel being jammed. The SINR data further confirmed that the received
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Figure 4.1. One flow with a jammer. (node 4)

packets (blue lines) are more sparsely interspaced in (f) than in (e) after the jamming attack,

and throughout data show that the throughput drop is more significant in (i) than in (h).

We apply the detection algorithm on the delay and throughput time series in Figure.

4.2 The results are that abrupt changes are detected at simulation time 31s for middle and

bottom rows on both delay and throughput data, but not detected from the top row due to

the large inter-packet interval that makes it easy for normal nodes’ packets to get through

even with the presence of a jammer.

We also apply the detection algorithm on the other two time series derived from

the SINR measurements as shown in Figure. 4.3. Left column shows the signal duration

and right column shows the packet inter-frame space. The detection results are: all abrupt

changes are detected from the left column (signal duration) even for the top row, which is

not obvious to observe from delay and throughput series in Figure. 4.2, also not obvious

from the received packet IFS in Figure. 4.3(b).

4.5.3. Impact of Traffic Dynamics. The second objective of the simulation study

is to evaluate the detection algorithm in a multiuser environment and examine how the

detection performance will be impacted by the dynamics of the network traffic. We compare
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Figure 4.2. Top row: jamming packet duration 0.0005s, inter-packet interval 1s; Middle
row: jamming packet duration 0.8s, inter-packet interval 5ms; bottom row: jamming packet
duration 1.5s, inter-packet interval 5ms.

an attack scenario and a non-attack scenario. For the attack scenario in Figure. 4.5(a), we

used jamming packet duration 0.8s, and observe the effect of jamming on three flows, in
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Figure 4.3. Jamming packet duration 0.0005s (top row), 0.8s (middle row), and 1.5s (bottom
row).

which either the transmitter, the receiver, or neither is close to the jammer. The network

measurements all look similar to the series in Figure. 4.2. However the three flows are

affected to different degrees as their distances to the jammer varies. Table 4.1 shows the
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delay and packet delivery ratio (PDR) of the three flows. Due to the CSMA effect, flows

0→ 1 and 2→ 3 are more severely impacted than flow 4→ 5.

Table 4.1. Delay and packet delivery ratio (PDR) of the three flows.

0→ 1 2→ 3 4→ 5
Delay$Mean (ms) 99.35 99.26 0.41
Delay$Jitter (ms) 100.28 100.41 0.028
PDR 84% 84% 100%

For the non-attack scenario in Figure. 4.5(b), there are more flows joining the

network but no jammers. In a multiple flow scenario, it is possible that adding another

flow will degrade the performance of other flows because of the contention of channel. It

is important that the detection algorithm can tell the difference between the performance

drop due to congestion in non-attack scenarios from that due to jamming attacks.In order

to distinguish the attack case in Figure. 4.5(a) from the benign case in Figure. 4.5(b),

we perform change point detection on the end-to-end delay time series, SINR duration of

the received signal, and intervals of the received good packets. The three time series are

aligned in time (or synchronized). If a change point is detected on all three time series at

times close to each other, then detection is positive.

For Figure. 4.5(a) and (b), the detection algorithm is applied to the three time series

shown in Figure. 4.4.

Detection result is summarized as follows: All but Figure. 4.4(d) reported positive

from the change point detection algorithm. For the positive ones, changes are detected at

simulation time 51s. In the attack case, detection of abrupt changes in delay is coupled with

abrupt changes in signal duration and packet IFS; in the benign case, detection is positive
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Figure 4.4. Left column: attack case in Figure. 4.5(a); Right column: benign case in
Figure. 4.5(b).

for the delay and packet IFS but negative for the signal duration; in addition, the anomaly

score measured by the difference between the detection statistics and detection threshold is

not significant. The implication of this study is that if a jammer uses the packet size and
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interval the same as a normal node, we will be able to detect the slight changes brought by

it, but won’t be able to conclude it is a jammer since it behaves like a normal node.
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Figure 4.5. (a)Three flows with a jammer (node 6). (b) No jammer.
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5. LOCALIZATION

5.1. BACKGROUND

In sensor networks and wireless networks, sometimes we need to locate the source

of transmission based on the received signal strength. In sensor networks, sometimes due to

the cost of precision positioning, for large-scale sensor networks, it is common to have only a

small number of nodes accurately positioned, and the rest of nodes approximately deployed.

The small number of nodes, whose exact locations are known, will serve as anchors to help

determine the locations of other nodes. This process is referred to as localization. Sensor

node localization is important because the scheduling and routing functions of a sensor

network will benefit from knowing the locations of all sensor nodes. Sensor networks can

also be used to track an object based on the received signals from the object. A similar

localization problem arises in wireless networks when there is a jamming attack and all the

nodes that received the signal from the jammer can collectively determine the position of

the jammer. Once the jammer is precisely located, corresponding mitigation and defense

strategies can be developed. In this paper, we address the common algorithm aspect in

sensor/target/jammer localization problems. We refer to the node whose location is to be

determined as the unknown node. The unknown node could be another sensor node, an

object being monitored, or a jammer to be located.

We present a new machine learning-based methodology for the general localization

problem in wireless networks. Unlike the previous work that uses a signal propagation

model and received signal strengths as inputs to determine the target location, the proposed

algorithm does not rely on any pre-assumed signal propagation model, and hence is named

Model-Free Localization (MFL). We first address the localization problem when the trans-
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mission power of the unknown node is known, then we address the localization problem

when the transmission power of the unknown node is not known.

The proposed machine-learning algorithm MFL learns from the instances that are

correctly labeled. In the target localization problem, the labeled instances would be the

anchor nodes whose exact positions are known. Therefore, the localization performance

improves as the number of anchors increases. However, even when there are very few

number of anchor nodes (it can be as few as only three anchors), MFL works significantly

better than the Support Vector Machine (SVM)-based algorithms [38, 56]. MFL is well-

suited in a large sensor network where there are only a few anchor nodes available. MFL

is also highly efficient for a network where there are a large number of targets whose

positions need to be determined. This is because the machine learning algorithm has an

estimation step and a prediction step, and estimation has higher complexity than prediction,

but estimation does not need to be repeated for each target. Once a relationship has been

estimated, it can be used for all targets, and only the prediction step is repeated for each

target.

The article is organized as follows. In section 5.2, we survey major methodologies

in localization and representative works. In section 5.3, we provide a formal statement of

the problem. In section 5.4, we present the details of the proposed algorithm MFL. We first

address the localization problemwith the target node’s transmission power known in section

5.4, and then we address the more challenging problem of localizing a node with unknown

transmission power in section 5.5. In sections 5.6 and 5.7, we use extensive simulation

study to evaluate the performance of the algorithms.
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5.2. RELATEDWORK

There are a variety of localization schemes in the literature. Some use graph

connectivity information, such as hop counts [2, 56], and most use the received signals [5].

These schemes can be broadly divided into range-based and range-free schemes [22].

The range-based schemes first estimate pairwise distances between the target and

the anchors, by using information derived from the received packets or signals, then the

estimated distances are used to recover the location of the target in the second step. Broadly

speaking, the range-based schemes also include the algorithms that use time of arrival

([42]), time difference of arrival ([45]), and angle of arrival ([40]), etc. to derive the

distance information. In this paper, we focus on the algorithms that use the received signal

strengths for ranging purpose.

The ranging step typically uses a pre-assumed signal propagation model, and uses

sample data for the calibration of parameters in the model. However, difficulty arises

in choosing the signal propagation model. The relationship between the received signal

strength and the distance between the sender and the receiver is very noisy across the

network. This is due to the impairment of signals caused by multi-path propagation,

environment white noise, as well as device variability, etc. [7, 38]. If the assumed model

structure is wrong, calibration of model parameters can not correct it. Since it is a two-step

procedure, errors introduced in the first step will be carried into the second step. Therefore

the methods based on existing ranging schemes inherit these inaccuracies.

The range-free schemes avoid the difficulty in signal modeling by bypassing the

direct estimation of distance. Instead, they define a set of overlapping regions in the area,

and use signal information to estimate which regions the source of the signal resides in.

It involves solving a classification problem for each predefined region. Each classification

problem is to decide whether the source resides in a particular region. The location of
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unknown target is then computed as the mean of the centroids of the regions that contain

the source [38]. This approach can result in very large localization error.

Other range-free algorithms that use regression analysis for direct estimation of the

target location from signal strengths have also occurred in the literature [57]. However, they

attempted to build one regression model for the entire network based on the signal strength

matrix. These approaches suffer from low accuracy due to the nonuniform impairment of

signals across the network, therefore model fitting of any model is intrinsically inaccurate.

The classification method based on support vector machines can work well only if

there are enough number of anchor nodes to provide enough number of support vectors [46].

It shows excellent performance if the anchor nodes are densely and uniformly deployed on

a grid structure. Challenges arise when anchors are sparse and their positions are not at

grid points. The range-based methods that use pre-assumed signal models work well only if

the signal models are accurate. Performance degradation is observed when the relationship

between signal strength and distance is noisy. Despite so many algorithms in the literature,

these challenges have not been sufficiently addressed. In this paper, we will develop a new

machine learning approach to address these challenges.

In addition to the absolute positioning techniques mentioned above, there are also

relative localization schemes. For instance, in [21], raw satellite measurements from a

network of receivers are used to derive relative location from each other. For indoor

localization, a big challenge is the multi-path effect. While most work considers the multi-

path effect a “curse” in signal modeling, there is also innovative work that explores the power

of multi-path propagation to achieve good accuracy for indoor positioning [65]. There is

also recent work in indoor localization that takes advantage of crowd sourcing, which

traces user walking trajectories and uses a large number of user contributed trajectories for

indoor localization [33]. While we recognize these recent trends that explore new network
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configuration and new information to advance localization technology, we focus on the

algorithmic aspect of the fundamental methodology. Among the many contributions in

localization, the most related work is the support vector-based learning algorithm in [38],

which has the same problem definition and uses the same input, and therefore serves as a

valid comparison study.

5.3. LOCALIZATION PROBLEM

In the context of localization, the nodes whose coordinates are known are called

anchor nodes, and the node whose coordinates are to be determined is called target nodes.

The target node could be another sensor node, a jammer, or an object whose radio signals

are received by the anchor nodes. The anchor nodes collectively determine the location of

the target node based on the signals they receive from the target node. In case there are

multiple target nodes, the anchor nodes need to be able to distinguish whose signal it is in

order to locate the target nodes.

The localization process requires each anchor node collect the received signals

from all other anchor nodes. This can be done by having all anchor nodes beacon a signal

periodically so that others can record it. Once the target node starts to transmit, anchor nodes

record the signal and use this signal to determine the location of the unknown transmitter.

We can generalize the problem to have multiple target nodes as follows:

For a sensor or wireless network with n (n ≥ 3) anchor nodes and m target nodes,

given the coordinates of the n anchor nodes, and the received signal strength vectors

{Sj | j = 1, . . . , n} with each vector including the received signals from all other anchors

and the target nodes, determine the coordinates of the m target nodes. The signal strength

vector Sj of an anchor node j contains at least one sample from each of the other nodes

in the network. If the signal variability is high or the noise level is high, multiple samples
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from each node, especially from each of the anchor nodes, are necessary to get accurate

results. As shown next, the machine learning algorithms have an estimation procedure and

a prediction procedure. The samples that an anchor node receives from other anchor nodes

will be used as training data to train the machine learning algorithm, and therefore more

training data will yield more accurate estimation; the samples that an anchor node receives

from a target node will be used to determine the location of the target node. If the signal

variability is high, the mean of the multiple samples from a target node will be used for

prediction.

5.4. ALGORITHM I: LOCALIZATION WITH KNOWN TARGET TRANSMIS-
SION POWER

We first address the localization problem when the target node’s transmission power

is known. In Part II, we will address the more challenging version with unknown transmis-

sion power.In this section, we present a two-step localization algorithm. The first step takes

the received signal strength vector as input and estimates the distances between the target

node and the anchor nodes, and the second step uses the resulting distances from the first

step as input and estimate the accurate coordinates of the target node. The first step is called

Ranging, and hence the proposed algorithm belongs to the range-based category.

The Algorithm. For each pair of transmitter and receiver, the relationship between

the received signal strength and the distance between the transmitter and receiver is rep-

resented as a signal model. There are several signal models developed so far, varying in

complexity and accuracy. For instance, the simplified path loss model, which is determin-

istic and takes the form of a polynomial kernel:

Pr (d) = Pt K
(

d
d0

)−γ
. (5.1)
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where the constant γ is the path-loss exponent. The typical values of γ is between 2 and 6,

varying with the antenna orientation and environment factors (indoor vs.outdoor, obstructed

vs. open space etc.). γ is often determined empirically. d is the actual distance between the

sender and the receiver, and d0 is a reference distance. It is assumed when d ≤ d0, there is

no loss in signal power.The most widely used signal propagation model is the log-normal

shadowing model, usually expressed in dB form:

Pr

Pt
(dB) = 10 log10 K − 10γ log10

d
d0
+N (0, σNdB

). (5.2)

where N (0, σNdB
) is a Gaussian random variable with zero mean and σ2

NdB
variance that

models the random variation of the received signal strength.

The literature has also seen the use of a different fading channel model, in which the

signal energy decays exponentially with respect to distance square [38]. This model takes

the form of a Gaussian kernel with additive random noise:

Pr (d) = Pte
− d2
σf +N (0, τ), (5.3)

whereN (0, τ) denotes an independently generated normal random variable with zero mean

and standard deviation τ.

Had we known the exact signal propagation model, the distance can be conveniently

computed from the inverse function of the signal model. However, the signal propagation

model is only an approximate model, and can be highly inaccurate sometimes when the

environment and devices vary. First, the exact signal propagationmodel is usually unknown,

which means not only we do not know the parameters in the models, we may not even know

which model is suitable for describing the signals. Second, unless the wireless channel

condition is exactly the same for the entire network, we cannot have a universal signal
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model applicable to the entire network. In reality, the channel condition can be different at

different locations within a network due to impairments frommulti-path effects, obstruction,

and ambient noise interference, etc. Third, transmitters and receivers can add device-level

variability and make any pre-assumed model inaccurate. In the previous range-based

localization algorithms, usually a signal model is selected from one of the known models,

and signal samples are used only to calibrate the parameters. The problem is that if the type

of function is not selected correctly, tuning the constant parameters of the model cannot

fix it. It is pointed out that unless the problems with the signal modeling have been fixed,

localization methods based on ranging inherit these inaccuracies[38].

In this paper, we will avoid model selection by human. The algorithm is named

Model Free Localization mainly because the ranging step does not use any pre-assumed

signal model. We show that localization methods based on ranging can achieve fairly good

performance provided that the issues with signal modeling are sufficiently addressed.

In particular, we address the first issue, i.e., the unknown model issue, by using a

machine learning method, which results in the suitable type of model and the corresponding

parameters of the model. To address the second and the third issues, i.e., the channel and

device variability issues, we use a different strategy from previous work— instead of trying

to build a global signal model, we try to infer a signal model for each anchor node.

There are n anchor nodes in the network, so there will be a total of n estimation

problems to solve. For each anchor node, we use the received signal strength at this node

from other anchors and the distance from this node to other anchors as training data. The

predictor variables are functions of the received signal strength, and the response variable

or outcome variable is a function of the distance.

Y (log d) ∼ X (log RSS, log(− log RSS)). (5.4)
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In (5.4),Y is the outcome variable, and X is the collection of predictor variables. X can have

several components. RSS is the received signal strength. RSS ∈ (0, 1] is normalized by the

transmitter power. The ith entry of the training data contains data for the ith anchor node.

The general form in (5.4) will allow each anchor node to have a different set of regression

coefficients that account for different signal models in reality.

Once the coefficients have been decided, the distance from a new target node to

anchor node i can be calculated as follows:

log di = βi,0 + βi,1 log RSS + βi,2 log(− log RSS). (5.5)

The coefficient for the log RSS term is associated with the polynomial path-loss model, and

the coefficient for the log(− log RSS) term is associated with the exponential model. If the

real signal model follows the polynomial path-loss model, then the log RSS term will be

dominant, and vice versa. If the real signal model follows neither one but decays faster

than a polynomial model and slower than an exponential model, then the weights of both

terms will be comparable.Using this model, we can predict the distance without assuming

a specific radio signal model, therefore the problems associated with signal modeling will

not have an impact on the accuracy of distance prediction. Moreover, since the regression

coefficients are estimated per anchor node, it allows transmitter and receiver as well as

environment variability without assuming a generic model for the entire network.

It is common that the sensitivity of the receivers across different radio chips is

different. If one anchor node has high fluctuation in received signal strength even when

all other parameters are kept constant, the highly noisy data generated in the training set

will only affect the distance prediction to this anchor node alone and has no impact on

others. However, if the transmitters also have high variability, which means if a transmitter
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is configured to transmit at power level Pt , it will transmit at a power level very close to Pt

but not necessarily exactly equal to Pt [35]. Higher variability at transmitter will pollute

the training data of all receivers. In this case, the only solution to this problem is for each

receiver to record multiple samples from a single transmitter.

Examples.The ranging algorithm based on (5.4) - (5.5) results in fairly good range

estimation. We ran the algorithm over three sets of data: (1) data generated by the log-

normal shadowing model, (2) data generated by the exponential decay model, and (3) mixed

data from multiple models. Nodes are deployed on a square area of 10 × 10 units.

The algorithm performs over all three sets of data without knowing what model

is used to generate the data, and the estimation errors are shown in Table 5.1. The three

columns represent the mean training error, the mean test error, and the overall error, which

is the mean estimation error by including both training errors and test errors.

Another view of the estimation error is presented in Table 5.2, which shows the

percentage of estimations that have estimation error larger than 1 unit. It is noticeable that

the performance does not degrade with the mixing of data, i.e., when signals for different

nodes follow different propagation models, The algorithm can still accurately estimate the

distance based on the received signal strengthwhile being oblivious to the signal propagation

models.

The performance degradation is mainly from large noise in data itself, and the

degradation is significant even when all nodes follow the same signal propagation model.

As the variance in noise increases, the estimation error reasonably increases.

For instance, for the data generated by the exponential model, the standard deviation

τ = 0.02 is quite large for a random variable between 0 and e−1 with most values concen-

trated near 0, and the test error can be as large as 1.66 on a square of 10 × 10 units. The

performance improves as the number of anchor nodes is increased. For instance, if we use
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9 anchor nodes instead of 7, the test error decreases from 1.66 to 0.95 for the same noise

variance.If the distance data were accurate with no errors, three anchor nodes are enough

to get the unique and exact coordinates of the target node.

However the distance data is only an estimate with non-zero errors. We will instead

use the nonlinear Least Squares Estimation (LSE) to find the target node coordinates.The

nonlinear Least Squares Estimation is based on the followingmodel:where X = {x1, . . . , xn}

is the input vector and Y = {y1, . . . , yn} is the observation vector, θ is the unknown p × 1

vector parameter, g(xi, θ) is a known continuous nonlinear function.

yi = g(xi, θ) + ε i, i = 1, . . . , n, (5.6)

Noise ε is assumed to be i.i.d. with zero mean and unknown variance σ2
ε > 0.The LSE

computes a value θ̂ that minimizes the sum of squared errors:

θ̂ = arg min
θ

*
,

n∑
i=1

(yi − g(xi, θ))2+
-

(5.7)

In the sensor node localization problem, xi is the coordinates of the ith anchor node and

has dimension 2 × 1, yi is the observed distance between the target node and the ith anchor

node, i.e., yi = di, θ is the coordinates of the target node and has dimension 2 × 1. The

function g(xi, θ) is the distance function given by

g(xi, θ) =
√

(xi,1 − θ1)2 + (xi,2 − θ2)2 (5.8)

A target node’s coordinates are computed by solving a nonlinear Least Square Error problem:

n∑
i=1

(
di −

√
(xi,1 − θ1)2 + (xi,2 − θ2)2

)2
(5.9)
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We compare our LSE based estimation with a straightforward regression based estimation

for computing the target node coordinates from given distance values. The regression

method uses a node’s location as the response variable and uses the distances from anchor

nodes to this node as predictor variables:

Y (P) ∼ X (d1, d2, . . . , dn) (5.10)

Since there are two coordinates, it takes two regression analyses to get the two coordinates

separately, while the LSE based method only needs to solve the optimization problem once.

We assume the distance data are corrupted by a random noise. The regression based method

has overall error 1.6973, training error 0, and test error 2.0574 on a 10 × 10 square region,

regardless of the noise level. LSE based estimation improves significantly as the variance

in noise decreases, as shown in Figure 5.1.

5.5. ALGORITHM II: LOCALIZATION WITH UNKNOWN TARGET TRANS-
MISSION POWER

When the target node’s transmission power is unknown, using the ranging procedure

in Section 5.4 won’t be able to estimate the distances from the target to the anchor nodes

since the regression model uses RSS as predictor variable, which is the ratio of the received

signal strength to the transmission power. Although we can estimate the function (5.4)

from the anchor nodes, we won’t be able to use target node’s RSS in (5.5) to determine the

distance. We will develop a new regression model that estimates the relationship between

distance d and the transmission power and received power. A new regression model is built
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Figure 5.1. Location estimation error vs. noise in input.

for each anchor node as receiver:

Y (log d) ∼ X (log
Pr
Pt
, log(− log

Pr
Pt

)), (5.11)

Using the anchor nodes’s signal vectors and the locations, we can estimate the function

coefficients βi,0, βi,1 and βi,2 in (5.12):

log di = βi,0 + βi,1 log
Pr
Pt
+ βi,2 log(− log

Pr
Pt

). (5.12)

However,we will not directly use (5.12) to estimate the distances from the target node to

the anchor nodes since the transmission power Pt of the target node is unknown. Instead,

we will use the transmission power Pt as a variable and use the nonlinear LSE to find the
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target node’s transmission power and coordinates. First, the distance di to anchor node i is

expressed as a function of transmission power Pt .

di = eβi,0+βi,1(log Pr−log Pt )+βi,2 log(log Pt−log Pr ) . (5.13)

Then nonlinear LSE estimation is used to estimate Pt and the coordinates (θ1, θ2) of the

target node as follows:

n∑
i=1

(
di (Pt ) −

√
(xi,1 − θ1)2 + (xi,2 − θ2)2

)2
(5.14)

where di (Pt ) is a function of Pt as indicated in (5.13).If there is only one anchor node, with

known target transmission power, using (??) can estimate the distance from this anchor

node to the target node. However with unknown target transmission power, using (5.12)

can yield infinite number of pairs of (Pt, di). In other words, we have to know one of them

to decide the other. One equation won’t be able to solve two variables.

How do we find the true values of (Pt, θ1, θ2)? The problem is addressed within

the procedure of LSE by using multiple anchor nodes (i = 1, . . . , n) and by minimizing the

squared error. We know the transmission power is at least as large as the maximum value

of the received signal power. Therefore we set the initial value of Pt to be the maximum

received signal power: Pt = maxi Pr,i, and set the initial position of the target node to be

the center of the network. After the first iteration, we use the estimated (Pt, θ1, θ2) to be

the initial values of the next iteration and iteratively improve the results until they converge.

The stopping criterion is when the differences between the values from two consecutive

iterations are within a preset threshold ε :

| P(k)
t − P(k−1)

t |≤ ε , and (5.15)
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| θ (k)
1 − θ (k−1)

1 |≤ ε , and (5.16)

| θ (k)
2 − θ (k−1)

2 |≤ ε (5.17)

In the experiment, we observed that with ε = 10E−2, convergence is achieved within 2 ∼ 3

iterations.

5.6. EXPERIMENTALRESULTS FORALGORITHM I:WITHKNOWNTARGET
TRANSMISSION POWER

Comparison with the Kernel Method : We compare our algorithm with kernel based

algorithms. Kernel based algorithms utilize kernel functions to decide the location of the

target node. There are plenty of choices for kernel functions. According to [38], the

second-tier linear kernel model performs much better than the first-tier model. Therefore

in this study we compare our algorithm with the support vector machine method with a

second-tier linear kernel.

5.6.1. Simulation Set-up. We compare the two algorithms as the noise level, the

number of anchor nodes, and the regularity of anchor nodes change. Due to the various

configurations required in this study and the limitation of the real-world data, we use

synthetic data for this simulation.

Target nodes and anchor nodes are deployed on a 10 × 10 square region. The signal

data are generated from a variety of path loss models plus random noise. However, neither

of the two algorithms is provided with the knowledge of the models or the procedure that

generated the signals.
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5.6.2. Impact of the Regularity of Anchors. Figures 5.2 - 5.3 show the location

estimation results from the proposed algorithm and the SVM algorithm. Lines connect the

estimate positions (in blue dots) to their true positions (in black unfilled circles). Anchor

nodes are shown in triangles. Figure 5.2 shows the results when the anchor nodes are at grid

positions, and Figure 5.3 shows the results when the anchor nodes are randomly deployed.

We can see that SVM performs better when the anchor nodes are uniformly deployed than

randomly deployed. The average estimation error for SVM is 1.502 and 1.904 for Figure 5.2

and 5.3 respectively. However the proposed range-based algorithm MFL does not show

much difference whether the anchor nodes are uniformly deployed or not. The average

estimation error is only 0.0934 for Figure 5.2 and 0.0972 for 5.3. Results are for noise level

σ = 0.05, and 9 anchor nodes.

5.6.3. Impact of the Sparsity of Anchors. Next, we show the effects of the number

of anchor nodes and the noise level on location estimation.The proposed algorithm is

labeled as “MFL”. Since the SVM algorithm performs better when anchor nodes are on grid

positions, we will deploy anchor nodes on grid positions for the following simulations. The

number of anchor nodes ranges from 2 × 2 = 4 to 12 × 12 = 144.

In SVM algorithm, K × K regions are used for classification, so there will be K2

classification problems. In this simulation, two levels of granularity are used: K = 5 and

K = 20. As K increases, the estimation accuracy of SVM algorithm statistically improves,

although only marginally, at the cost of longer running time.

The mean estimation errors are plotted in Figure 5.4(a). The SVM algorithm

performs poorly when the anchors are sparse, but MFL can do much better than SVM and

perform fairly well even when only four anchor nodes are used.

5.6.4. Impact of Signal Noise. We compared the two algorithms when the noise

level changes. The range for σ goes from 0.005 to 0.05. It was believed that noisy data
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are bad for range-based algorithms, and that kernel-based algorithms were designed to

overcome the issue of a noisy relationship between signal strength and distance. However,

SVM classification is still based on signal strength and it only turns a continuous distance

estimation into a discrete classification problem. When data are noisy, the inaccuracy is

inherited into location classification. Figure 5.4(b) shows the location estimation error.

4 × 4 = 16 anchor nodes are used in this simulation, and anchor nodes are all at grid

positions. The SVM algorithm used two levels of granularity, with K = 5 and K = 10.

In [38] it is reported that the level of accuracy with the kernel-based approach is

on the order of one third of the distance between the sensor nodes. The simulation results

in this paper show that the mean of the distances in our deployment is 4.86, and the mean

estimation error is 1.65. The level of accuracy observed here is consistent with what is

reported in [38]. This is when the anchor nodes are densely and uniformly distributed at

grid positions. The performance degrades when anchor nodes are fewer and more irregular.

However, the proposed algorithm MFL performs well for both dense and sparse scenarios,

and for both uniform and random deployment. The average error reported by MFL is only

0.058 on a 10 × 10 square region.

5.7. EXPERIMENTALRESULTS FORALGORITHM II:WITHUNKNOWNTAR-
GET TRANSMISSION POWER

In this experiment, we use jammer localization to test the algorithm since usually we

do not know the transmission power of the jammer. Location error is measured as distance

to the true location, power level error is measured as percentage of the true power level.

The experiment is done by deploying a total of 19 anchor nodes and one jammer

node in the square region of 1000m × 1000m. The jammer node varies its position and

transmission power: position #1= (-150,50), and position #2= (-130,30). Transmission
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power Pt = 16.0206, 20 and 25 dB. There are a total of 6 experiments. In all 6 experiments,

we set the initial position to be the center of the region. Does the initial position have a

large impact on the converged result? -Not necessarily. We put the initial position to be the

true position, and the converged results are the same as those with initial position=(0,0).

Table 5.1. The distance estimation error.

Data Overall Training Error Test Error
lognormal, σ = 0.05 0.0686 0.0486 0.1153
exponential, τ = 0.005 0.5845 0.2265 1.4199
mixed 0.2167 0.1512 0.3696
lognormal, σ = 0.5 0.5783 0.4291 0.9264
exponential, τ = 0.02 0.7437 0.3501 1.6620
mixed 0.6370 0.5380 0.8681

Table 5.2. The percentage of estimations with error > 1 unit.

Data Overall Training Data Test Data
lognormal, σ = 0.05 0 0 0
exponential, τ = 0.005 17.1% 1.4% 15.7%
mixed 5.7% 1.4% 4.3%
lognormal, σ = 0.5 20.0% 7.1% 12.9%
exponential, τ = 0.02 24.3% 8.6% 15.7%
mixed 21.4% 10.0% 11.4%
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Figure 5.2. With anchor nodes at grid positions, (a) estimated positions by the proposed
algorithm MFL, and (b) estimated positions by the SVM algorithm.
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Figure 5.3. With anchor nodes at grid positions, (a) estimated positions by the proposed
algorithm MFL, and (b) estimated positions by the SVM algorithm.
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Figure 5.4. (a) The impact of anchor nodes sparsity on the estimation error, (b) the impact
of data noise on the estimation error.
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6. CONCLUSIONS

This paper addresses the in-band wormhole detection problem, the MAC layer

misbehavior detection problem and physical layer jamming detection in wireless ad hoc

network. I formulate the detection problem as a change point detection problem in a time

series, and propose a new sequential change point detection algorithm, called SW-CLT. The

SW-CLT algorithm outperforms the widely used CUSUM algorithm in the sense it adjust

its detection threshold according to the variance in the data instead of using a fixed preset

threshold, and is more suitable to detect changes in dynamic data where the underlying

distribution is unknown and unpredictable.

I Also proposed a machine learning algorithm for localization problems in wireless

sensor networks. The algorithm does not assume any signal model; instead it uses sample

data to estimate the function and the parameters of the model all at the same time. Different

from previous works that use regression tools to tune the parameters of a pre-assumed

signal model, our algorithm is model-free, and therefore does not inherit the inaccuracies

associated with a particular signal model when the relationship between signal strength and

distance deviates from the model. The proposed algorithm can perform fairly well under

extreme cases when the anchor nodes are sparsely and irregularly deployed, which often

present difficulty for other methods.
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