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ABSTRACT

Data acquisition through sensors is very crucial in determining the operability of the

observed physical entity. Cyber Physical Systems (CPSs) are an example of distributed

systems where sensors embedded into the physical system are used in sensing and data

acquisition. CPSs are a collaboration between the physical and the computational cyber

components. The control decisions sent back to the actuators on the physical components

from the computational cyber components closes the feedback loop of the CPS. Since, this

feedback is solely based on the data collected through the embedded sensors, information

acquisition from the data plays an extremely vital role in determining the operational sta-

bility of the CPS. Data collection process may be hindered by disturbances such as system

faults, noise and security attacks. Hence, simple data acquisition techniques will not suffice

as accurate system representation cannot be obtained. Therefore, more powerful methods

of inferring information from collected data such as Information Fusion have to be used.

Information fusion is analogous to the cognitive process used by humans to integrate

data continuously from their senses to make inferences about their environment. Data from

the sensors is combined using techniques drawn from several disciplines such as Adaptive

Filtering, Machine Learning and Pattern Recognition. Decisions made from such combina-

tion of data form the crux of information fusion and differentiates it from a flat structured

data aggregation. In this dissertation, multi-layered information fusion models are used to

develop automated decision making architectures to service security and resource manage-

ment requirements in Cyber Physical Systems.
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1. INTRODUCTION

In the domain of distributed systems, information acquisition and processing has vital

importance in enabling accurate system representation to maintain operability via sustained

reliability and robustness. Cyber Physical Systems (CPS) are such a breed of distributed

systems with a tight coupling between collaborating computational elements controlling

physical entities. In a CPS, embedded computers and networks monitor and control the

physical processes, with feedback loops where physical processes affect computations and

vice versa. Some applications of CPS include but are not limited to Networked Control

Systems, Transportation Systems, Power Plants etc. Each of these CPSs have either hard

or soft real-time Quality of Service (QoS) constraints imposed by the criticality of the

information collected through the sensing components embedded in the system.

CPSs comprise of a network of sensors embedded to the control plant which perform

sensing and data acquisition. Inferring information from the collected data is performed

on local or or remote computing resources. However, there may be inaccuracies in the

data collected from the sensors owing to the presence of system faults or security attacks.

This will lead to an inaccurate representation of the system information further leading to

inefficient usage of the CPS resources. Since vulnerabilities exist in both physical system

and computing resources, multi-sensor information fusion to tackle security and resource

management is vital in maintaining the system operability.

The discipline of multi-sensor information fusion, distributed sensing and data acqui-

sition has rapidly evolved over the years to solve a set of diverse problems arising from the

increasing need of accurate system state representation in CPSs. Information fusion com-

bines data/ information from different sensors to give a global view of the system that is

being observed. This is in contrast to data acquisition from a set of individual sensor which

gives limited information, thereby, restricting inference about the features of data. Data
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from different sources is processed and combined using methods from several disciplines

such as adaptive filtering, statistical estimation, pattern recognition, machine learning, re-

gression analysis, network analysis and queuing theory.

As opposed to the general view where data aggregation and information fusion are

considered one and the same, information fusion extends to decision making in addition

to combining raw data obtained from the sensors. There are various levels of information

fusion which ultimately aid in automated decision making capabilities. They are:

• Level 1 processing - object assessment - Fusion of multi-sensor data to determine

attributes, characteristics and identity of the observed entity.

• Level 2 processing - situation assessment - Automated reasoning to determine the

relationships among the observed entities and the environment and the meaning of

the information obtained about the observed entities and generate hypotheses.

• Level 3 processing - impact assessment - Predicting and assessing the impact of

the information at hand in a future time step or window to generate an alternative

hypothesis other than the existing one to determine possible threats or vulnerabilities.

• Level 4 processing - process refinement - Regressive and recursive information fusion

in order to improve the accuracy of the information already inferred.

• Level 5 processing - cognitive refinement - Interaction between the data fusion system

and human decision maker to improve the interpretation of results.

A detailed description of the manner of usage of the multiple levels of information

fusion on data collected from the sensing components deployed in various applications that

have been researched in this dissertation is described.

The first chapter of this dissertation focuses on Wireless Sensor Networks which are

comprised of a network of sensors deployed in various topologies for sensing and data re-

porting. Typically, sensor participation is limited to passive sensing and reporting of the
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collected data to the base station, where, information obtained from the data is processed

offline. There are various methods of data forwarding schemes such as flooding, hierarchi-

cal routing, leader election etc. Of these, hierarchical routing methods are most commonly

used in WSNs. Due to the topology of sensor deployment in the different applications

of WSNs, energy conservation of the power sources of sensors becomes extremely cru-

cial. In order to tackle the challenges of energy consumption, in-network data aggregation

schemes have been extensively proposed. However, in spite of the various improvements,

data aggregation is still bottlenecked by the frequency of messages communicated and the

need for tight sensor synchronization. In order to alleviate this problem, a spatio-temporal

information fusion scheme which uses Level 1 of the information fusion was developed

in paper I. The scheme takes into consideration the fact that energy consumption during

communication is higher than that under computation by several orders of magnitude. An

adaptive filtering technique is used to reduce computation each time new data is sensed.

Spatio-temporal information is used to equip each sensor with the global knowledge of

the system state. This is advantageous in contrast to passive sensing and reporting where,

data corresponding to events and sensor faults cannot be quickly and accurately classified.

Through the information fusion scheme, data fusion is still possible even under weak sen-

sor synchronization owing to the global or local system knowledge of each sensor in the

topology. These advantages are highlighted by the overall energy reduction reflecting in

effective resource management of the WSNs.

The applications of WSNs extend to sensing and data acquisition in CPSs. However,

in CPS applications, the sensors cannot be abstracted from the physical system. They are

embedded and integrated in the functioning of the physical system of the CPS in real-time.

Hence, they cannot simply be treated as stand alone sensing devices, but as sensing devices

that have to cater to the changing Quality of Service (QoS) needs of the physical system. In-

formation about the sensing requirements is fed to the sensors through the control decisions

made by the cyber system in the CPS application. Along with the sensing information, the
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cyber system also sends information about the control decision to close the control feed-

back loop to the physical system. This entire process makes the CPS a much more dynamic

and complex domain. Increasing number of subsystems in the CPS increase the operational

complexity. Therefore, the servicing cyber system must be equipped with an efficient ar-

chitecture that can handle the changing QoS requirements of the physical system and the

embedded sensor network. The biggest challenge in maintaining the QoS requirements

will be under the influence of security attacks. Traditional CPSs comprise of wired sensing

devices that are connected to the remote processing units via internet. In such scenarios,

providing a strong firewall against attacks is sufficient. Recently, many organizations and

companies are considering the implementation of wireless devices connected to the base

station which is then connected to the remote processing units to reduce implementation

and operational costs. In such implementations, the attack space of the attacker intending

to launch security attacks on the system will be high.

Most common application of a CPS can be found in Networked Control Systems

(NCSs). NCSs using a wireless communication are called in Wireless Networked Control

Systems (WNCSs). Paper II of this dissertation takes into consideration the security aspects

that govern the NCS stability and proposes an information fusion architecture which uses

a novel Time-Varying Dynamic Bayesian Network (TVDBN) as the learning mechanism.

A feature extraction and selection algorithm is proposed along with the Gaussian Mixture

Models to classify the various features of the NCS. Paper II uses levels 1, 2 and 3 of the

information fusion to improve the decision making capabilities. The major contribution

of this work is that of proposing an multi-level inference architecture which probabilisti-

cally determines the overall effect of stand-alone and collaborative attacks through effective

feature selection. This eliminates the handicap existing security mechanisms in NCS and

WNCS that heavily rely on cryptographic techniques.

As the scope of CPS is increasing everyday there is an exponential growth in com-

plexity owing to an increase in the number of subsystems of the CPS. The research chal-
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lenge with such dynamic and complex systems is to tightly couple the physical and cyber

components through available physical attributes and acquired information. The solution

to this challenge is a decision support system through information fusion which tracks, pre-

dicts and addresses the needs of the physical system by outputting control decisions which

closes the feedback loop of a CPS. Such a decision support system cannot be made avail-

able through the on-board processors on the physical components or the existing computing

infrastructure which is static. Therefore there is a need for a more scalable infrastructure

such as provisioned by Cloud Computing. This new outlook of the CPS is called cloud-

assisted CPS. Paper III of this dissertation focuses on this research problem by proposing

an information fusion architecture that fuses information obtained from a feature selection

algorithm to build a causal graphical model. This graphical model is then used to allocate

resources appropriately through a dynamic scheduling algorithm. The proposed scheduling

algorithm ensures that even under variable and bursty incoming traffic, the resources of the

cyber system are not over utilized while constantly maintaining a bounded latency which is

one of the QoS requirements of the CPS. Paper III uses Levels 1, 2, 3 and 4 of information

fusion.

Next in paper IV of this dissertation, the research extends to the aspect of robust

scheduling of cyber resources under security attacks, where the cyber system is cloud.

Human intervention and interaction during security attacks have not been adequately ad-

dressed in the domain of a CPS. Hence, inputs regarding human behavior, decisions and

their scope and extent must be taken into consideration while developing scheduling algo-

rithms that satisfy the QoS requirements of CPS. To address this problem, a new approach

to semi-network form game theory to obtain a robust and attack resilient scheduling mecha-

nism for a cloud assisted CPS was proposed. The research progresses into studying the im-

portance of serving mixed-criticality of the scheduled tasks on the cyber resources. Mixed-

criticality CPS are systems which comprise of both dependent and independent tasks whose

priority is determined by their overall impact on stability and reliability. Paper IV uses Lev-
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els 1, 2, 3 and 4 and 5 of information fusion.

Throughout the research conducted in this dissertation, information fusion is used

across multiple levels to provide automated decision making capabilities to the applications

considered. The dissertation is organized in the order of papers produced while reflecting

the logical flow of the increased complexity and scope of research.
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2. LITERATURE SURVEY

Real world applications of Cyber Physical Systems extend to various domains such

as but not limiting to: Supervisory Control and Data Acquisition systems (SCADA), Smart

Grids and Transportation systems. However, the requirements and Quality of Service

(QoS) parameters for each of the applications varies in nature of the topological setting

and the communication environment. Hence, the primary aim of the cyber component

aiding such dynamic systems is to maintain system operational stability under changing

environments such as security attacks, and QoS requirements such as latency, availability

and robustness. In order to satisfy these QoS requirements, resource allocation plays a ma-

jor role. Allocating both serviced and serving components to the cyber physical domain in

a real time environment is a challenging task which at most times has no optimal solution.

Owing to the ever increasing heterogeneity of the CPS applications, large volumes of data

are being generated. Serving such large data can no longer be done on the traditional com-

puting resources that exist. This brings in the need for a scalable computing platform such

as the cloud.

In this dissertation, the main topics that have been tackled are (i) Security of CPS (ii)

Scheduling of mixed criticality CPS tasks under both normal and variable loads. Therefore,

in order to familiarize the reader with the existing work in the field, we present the literature

survey in two domain aspects of CPS that have been mentioned.

2.1. SECURITY IN CPS

There are primarily two types of security attacks in CPS: passive and active. Fur-

thermore, passive attacks have two types of behavior - releasing the message contents and

traffic analysis (using methods such as packet sniffing). Passive attackers view the contents

of the messages that they are not authorized for, or, in the case of traffic analysis, they
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observe the traffic patterns and use inferring techniques to determine the network behavior.

On the other hand, active attacks comprise of attack styles that include - masquerade at-

tacks where a signal is sent to the network from a seemingly valid user, who is in actuality

an attacker; Replay or deception attacks e.g. false data injection attack, where the attacker

captures the signal or data value at the previous time instant and repeatedly sends the same

signal or data value to destabilize the CPS or steal resources from the CPS; and Denial of

Service (DoS) attacks which are the most common types of attacks. In a DoS attack, ser-

vice to the users can be denied either on the physical component or on the cyber component

depending on the attackers incentive needs.

In [1] deception and DoS attacks against an NCS are introduced, and, for the latter

attack, a countermeasure according to semi-definite programming is proposed. In [2, 3],

false data injection attacks against static state estimators are introduced and studied. It is

shown that undetectable false data injection attacks can be designed even when the attacker

has limited resources. In a similar fashion, stealthy deception attacks against the SCADA

systems are studied, among others, in [4, 5]. In [6], the effect of covert attacks against

networked control systems is investigated. In [7], a resilient control problem is studied, in

which control packets transmitted over a network are corrupted by a human adversary. This

kind of attack is an insider attack. A receding-horizon Stackelberg control law is proposed

to stabilize the control system despite the attack. Recently, the problem of estimating the

state of a linear system with corrupted measurements has been studied [9]. More precisely,

the maximum number of faulty sensors that can be tolerated is characterized, and a de-

coding algorithm is proposed to detect corrupted measurements. Finally, security issues of

some specific cyber-physical systems have received considerable attention, such as power

networks, linear networks with misbehaving components and water networks [3, 7].

Distributed DoS (DDoS) is another variant of the DoS attack performed on distributed

components of the CPS. It has a sufficiently long recorded history of attacks and warrants

a mention of all the existing work in relation to the work in this dissertation. Mirkovic and
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Reiher proposed a taxonomy of DDoS attack and defense mechanisms [10], and Peng et

al. presented a survey of network-based DoS attacks and defense techniques [11]. Game

theory has been previously applied to gain insights into cyber security issues. Roy et al.

surveyed game-theoretic solutions to network security applications, largely along the line

of the types of games used (i.e., static and dynamic games) and whether the information

available to the players is perfect or imperfect, and complete or incomplete [12]. Man-

shaei et al. surveyed previous works on applying game-theoretic techniques to address

security and privacy problems [30]. Previously, there were a few efforts on conducting

game-theoretic analysis of DDoS attacks and defense. Zang et al. applied a Bayesian game

model to analyze the defense against DDoS attack traffic with unclear signatures [14]. In

their model, the defender is uncertain about the type of the traffic origin, which can be

either a legitimate user or an attacker, and thus infers it using Bayesian rules. In [13],

Snyder et al. introduced a DDoS traffic injection game, which is a two-person zero-sum

game with imperfect knowledge. In the model developed by Wu et al. [15], the attacker

attempts to optimize the attack effect by choosing the most effective attack traffic sending

rate or number of zombie machines to send out attack traffic, while the defender optimizes

the effectiveness of filtering attack traffic at the firewall. The entire game works in a con-

tinuous setting and the Nash equilibrium strategy can be computed analytically. In [16],

Xu and Lee proposed a defense system against DDoS attacks and analyzed its performance

in a game-theoretic context. Khirwadkar et al. developed a repeated game model based on

the fictitious play process for pushback-based DDoS defense [18]. The key idea of their

approach is that each player estimates the mixed strategy of the opponent’s actions based

on her previous observations, and then plays the pure strategy that is the best response

accordingly. In [17], Yan and Eidenbenz proposed a truthful mechanism to provide eco-

nomic incentives to ISPs to defend against DDoS attacks in a non cooperative environment.

Besides pushback and firewall filtering, client puzzle is another DoS/DDoS defense mech-

anism, in which a client has to solve a computational puzzle before the server commits
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resources to deal with his or her request. In [19, 20], Game theory has also been applied to

study this type of protection against DDoS attacks.

2.2. SCHEDULING OF MIXED CRITICALITY CPS TASKS

Mixed-criticality systems are the subject of much recent research due to the emer-

gence of cyber-physical systems. The US Air Force Research Laboratory has been lead-

ing a Mixed Criticality Architecture Requirements (MCAR) [26] initiative to investigate

building blocks to safely construct such mixed criticality systems. An extensive litera-

ture on real-time systems exists regarding the study of offline overload scheduling problem

[23, 28]. These studies are focused on uni-processor systems, and try to maximize the

accrued value from task completions. Researchers have also looked at online scheduling

of overloads [21, 25, 27]. These schemes were not designed for mixed criticality systems

and do not include an explicit notion of criticality, and hence cannot take advantage of

this notion. Approaches such as the elastic scheduling model [22] deal with overloads in a

criticality-aware fashion by allowing tasks with higher elasticity to run at higher rates when

required, whereas tasks with lesser elasticity are restricted to more steady rates. Authors

in [24] have developed the Zero Slack Rate-Monotonic Scheduling (ZSRM) algorithm for

mixed-criticality scheduling on a single processing setting. ZSRM provides asymmetric

temporal protection guarantees under which low-criticality tasks cannot interfere with high

criticality tasks but high-criticality tasks can steal cycles from low-criticality tasks under

overload scenarios to meet their deadlines. Scheduling tasks on a set of processors is a well-

studied problem in the context of real-time systems. Traditional solutions are classified

into (i) global scheduling, (ii) partitioned scheduling, and (iii) semi-partitioned scheduling

[29]. Among these solutions, partitioned scheduling algorithms incur the least run time

cost. Such cost includes task state migration, number of rescheduling instants, and a larger

execution time of such rescheduling.
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I. EFFICIENT SPATIO-TEMPORAL INFORMATION FUSION IN SENSOR
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Missouri University of Science and Technology, Rolla, Missouri 65401

Making the sensor data look more meaningful in its representation of an observed en-

tity is the primary goal of sensor data fusion. Due to the energy constraint on sensors, there

exists a need for algorithms that minimize the fusion cost while maintaining the validity of

the data sent to the base station. Maintaining validity is even more difficult when we have

a limited knowledge of the factors that govern an observed sensor entity. To achieve this

goal, we modeled the uncertainties in sensor data and fed them into the system, employing

recursive data estimation. By doing so, we considered the dynamically changing environ-

mental parameters affecting the network to produce the most accurate representation of

the observed system state. We propose here a spatio-temporal, correlation-based estima-

tion procedure to corroborate the detection of an event in a sensor field. The number of

in-network communications plays a great role from the networking perspective. This is be-

cause the power consumption during communication is several times greater than the power

consumption during computation. To achieve this, our algorithm ensures that communica-

tion is done only during the time of an event. At all other times, the sensor motes maintain

an updated global estimate, without communicating, by using a prediction algorithm. This

reduces the need for frequent sensor synchronization. We conducted experiments using our

distributed fusion architecture to show our algorithm’s effectiveness; by a reduction in the

power consumption, in terms of both the computation and the communication.



12

I. INTRODUCTION

Wireless Sensor Networks collect data from sensor-monitored applications. Combin-

ing this data into a meaningful representation of the feature being monitored is referred as

data/information fusion. Many methods employ either a centralized or a distributed archi-

tecture to fuse data [3, 5, 8, 10]. Of these, the distributed scheme is becoming increasingly

relevant to systems that are ad-hoc by nature as the parallel nature of this architecture makes

it more robust and fault-tolerant. In sensor networks, the distributed architecture allows for

the calculation of globally fused estimates from the local estimates by using an appropriate

fusion criterion. The nodes have a good understanding of how the neighbors report data.

This understanding can also be useful in detecting not only faulty nodes but also outliers.

Many statistical techniques and signal processing methods have been proposed for

the purpose of data fusion [1, 2, 3, 4, 5]. These estimation schemes are generally proposed

for implementation on a centralized architecture. Their flexibility then becomes an issue in

many practical scenarios. C. J. Ran and Z. L. Deng in [3] realized the correlation of esti-

mation errors in a two-sensor structure. Kalman filtering [1] is one common approach used

in a distributed architecture that uses both estimation and prediction to obtain fused esti-

mates based on a suitable fusion algorithm. As sensors operate in environments surrounded

by uncertainties, they are capable of producing missing/corrupted data. Therefore, the fu-

sion algorithm must be both fault-tolerant and accurate enough to work with restrained

resources. An important issue that governs the accuracy of a system under observation is

the noise input to the state estimation. Most Kalman filter applications assume the noise is

a known a-priori and uncorrelated. This assumption is the major drawback in works that

use Kalman filter for fusion. In practice, the process noise behavior is unknown; it might

be correlated with the measurement noise. In general, errors induced in the estimation are

accounted for the noise in the system under observation. Regression allows us to obtain
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a good estimate from one filter. The use of multiple such filters to obtain accurate global

estimates in uncertain environments poses new problems in this direction. Fusing infor-

mation and not just data is, therefore, a challenge in a multi-sensor environment, where

each sensor could be affected differently by noise. Our scheme differs from other fusion

schemes in this aspect. In other works [13], in-network data aggregation is done to reduce

the communication cost. Various levels of information fusion, such as feature extraction

and decision-making, were not included. They were considered to be a separate part in the

fusion algorithm (i.e., most pre-processing and post-processing work is done offline). Log-

ically, this was done to reduce the computational overhead on the sensors. However, our

algorithm allows this to be done on the sensors so that they can take part in the decision-

making process without increasing the computational overhead.

Estimation is perhaps the primary purpose for using the Kalman filter. State predic-

tion is done based on the one-step prediction process. This process is generally done in a

static environment and thus does not deal with the effects of a varying noise. This predic-

tion can be extended and the filter can be made to predict several steps ahead to understand

the behavior of the system under study. Such a use of the Kalman filter in data fusion tech-

niques, in which, the decision process is performed on the motes, has not, to our knowledge

been applied previously.

Large networks require large matrices. The computation of a matrix inversion within

these large networks becomes a burden on the aggregating node. On the contrary, our

proposed method uses only the estimates that are bound to have a high variance with both

the previously observed value (temporal) and the reference global estimate (spatial). If

the previous estimate is accurate (i.e. the error is within the bound), the observed value is

considered as is. By doing so, we can reduce the number of times state estimation is done.

This process can be predetermined by the predicted values that tell us how a filter is going

to behave.

In our algorithm, we made use of both the temporal and the spatial correlations in
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determining which sensor data to use in the fusion process. The fusion rule we employed

uses the correlations among various sensors that report different parameters. Dynamically

updating the filter characteristics, has not, to our knowledge been explored previously for

sensor data fusion. Estimation of the noise also plays an important role in obtaining accu-

rate state estimates. Changing noise patterns are calculated periodically. Both the process

noise and the measurement noise covariance are updated in the filter implementation.

Our approach also reduces computational complexity by avoiding the use of complex

matrices. Only the values that are correlated to a sensor are taken into consideration, thus

keeping both the covariance and transition matrices small. Our aim was to reduce not only

the error and process covariance as much as possible but also reduce the convergence time.

This reduction will give us accurate estimates quickly in order to detect an event.

To prove the effectiveness of our algorithm, we ran simulations of an underground

mine in which environmental factors changed the observed value. This simulation was

done using FLUENT, based on an experiment conducted at NIOSH [14]. The simulation

took into consideration how the inflow of gases in a mine gob is affected by environmental

parameters, such as atmospheric pressure. A correlated noise file was generated offline.

The values were input to the filter to simulate the dynamic changing behavior of a real-

time application.

Our results indicate that our algorithm allows the system to dynamically adapt to the

changes in noise by updating the filter with new parameters. The filter predicts the values

at the pre-determined nth time step in advance, sending the value deemed the reference

value for a time slot. As a result the number of communications is reduced greatly. Time

slots were calculated based on previous observations. In critical event detection situations

such as detecting mine fires in an underground mine, predictions are important to allow

prior knowledge at a later stage for reference and to take appropriate action. Our scheme

shows good results as the fire is predicted based on the increase in the concentrations of

combustible gases. By this, mine fires are proactively prevented rather than reactively
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detected. This predicted value is sent to the base station. The worst-case scenario, in which

the prediction must be sent very frequently is naturally avoided, as such events do not occur

very often.

Our approach is also fault tolerant as each sensor in the network has the global es-

timate. This estimate is updated regularly through both spatial and temporal information.

The time the next set of transmissions for new global estimate calculation must be sent is

computed based on this information. This reduces the need for continuous synchronization

among the sensors, thereby reducing the number of transmissions required. Hence, this en-

sures that, if a good throughput is obtained, that throughput will reduce the communication

cost, as no retransmission of the same information occurs.

The rest of the paper is organized as follows. Section II talks about the existing works

in this field and gives a comparison to our paper. Section III gives a brief introduction to

Kalman filter. In section IV we give a formal description of the problem solved. Section V

describes our approach in detail. In section VI we detail our fusion algorithm. Section VII

shows the experimental setup and we analyze our results and finally, in Section VIII we

conclude the paper.
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II. RELATED WORK

A number of data fusion schemes have been proposed on wireless sensor networks.

Fusion and aggregation are the same with two exceptions: information fusion and decision

fusion. Data fusion, for applications like target tracking, use state estimation schemes

that provide good estimates about the system state at a particular time. These estimations

are then fused based on mathematical techniques, such as min max, averaging, average

weighted estimates and regression [3]. These averaging techniques are used in applications

in which a certain degree of leniency is not only handled but is also acceptable. These

fusion/aggregation schemes, when applied to wireless sensor networks, need a great deal

of both modification and accuracy. This is because of the time critical and mission critical

applications in which the sensors are deployed. In many real world applications, we do not

have prior knowledge. In such cases, both estimation and prediction techniques such as

Kalman filtering [1] have been used extensively. The basic Kalman filtering technique is

linear. It is the only Kalman filtering technique that is computationally cheap (as compared

to other techniques of its kind). Thus, a number of fusion techniques have been built upon

its capability [2, 3, 4, 5, 8, 9, 10].

Olfati-Saber [8] proposed a distributed Kalman filtering algorithm. This algorithm

uses the consensus filters that allow for the calculation of average consensus in time-varying

signals. We used the Kalman filtering scheme to obtain estimates from several sensors by

giving weights to each observation. Each sensor acted as a micro-Kalman filter whose

estimates are the local states. These are then fed into the global estimator. Li et.al and Ran

et.al [2, 3] propose methods, where, each method calculates the optimal state estimates

by using the prediction capabilities of the Kalman filter. They considered one step state

predictions only. The computations are very heavy as the filters use complex matrices. For

situations in which the inverse of a matrix is to be computed, the computational cost on the
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sensor is very high, thereby draining the energy available.

Abdelgawad et.al [10] proposed a method in which the sensor readings are quantized

to one bit so as to reduce the communication costs. This method can work for sensor

deployments in which quantized values are not a cause for concern. Again, although it

has a very effective way of communicating among nodes, the algorithm is very flat. It

does not include decision-making abilities embedded into the algorithm. Khan et.al [5]

discussed reducing the number of sensors’ readings included in the matrices by presenting

a graph-based solution. This solution works effectively for sensors with less correlation.

The computational matrix, however, may remain large for correlated sensor values in a very

large sensor network deployment. Various researchers [7, 13] have discussed the fusion of

sensor data with regard to communication constraints in the channel, thereby reducing the

total number of messages sent. This in turn reduces the communication costs and energy

used. The fusion is done as per the effectiveness of performing a fusion scheme during

the implementation of a routing procedure. Authors in [12] talk about data fusion from

a controls perspective. This perspective is a layered approach that uses information from

heterogeneous sensors. The higher-level sensors send feedback to the lower-level sensors

that acts as a validation mechanism. All of these approaches fail to consider the changing

parameters. Our aim was to develop an algorithm that makes the sensors decide whether or

not to send a sensed value. This is shown in the subsequent sections.



18

III. A BRIEF INTRODUCTION TO KALMAN FILTER

A state is a mathematical representation of a physical system as a set of both input

and output variables. Many scholars have worked towards improving the state space rep-

resentation, developing many estimation techniques in the process. The Kalman filtering

technique [1] is the most commonly used method on the merit of its accuracy and ease of

use. It is a regression technique capable of producing quickly converging accurate states,

even with minimal prior information.

A regression technique is one in which the typical value of the dependent variable

changes when any one of the independent variables is varied, while, the other independent

variables are held fixed. In figure 1, we show the depiction of how a Kalman filter works in

its entirety. Here, x̂− is the state of the system. x̂−k−1 is the input to the system. Pk is the error

covariance of the system. Kk is the Kalman gain of the system. Q and R are the process

and measurement noise co-variances of the system [3], respectively, z is the measurement

of the system, I is the unity matrix, A is an n×n transition matrix, and B is an n×n input

matrix.

TIME UPDATE (Predict)

1. Project State Ahead

2. Project error covariance ahead 

MEASUREMENT UPDATE (Correct)

1. Compute the Kalman gain 

2. Update estimate with measurement 

3. Update the error covariance

Figure 1. The Kalman filter update and correction steps
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IV. PROBLEM FORMULATION

Sensors are deployed in areas where the noise is uncertain because of changing en-

vironmental variables. Any estimate of the noise is only an approximation of its possible

behavior. We can determine the accurate readings from this noise model with little confi-

dence. When these estimates are used in data fusion for feature extraction, these inaccura-

cies may only mislead us, thereby defeating the purpose of fusion.

Many false positives and false negatives will result in event detection applications.

We focus here on one such event detection application, which is underground mine fire

reporting. Reporting a mine fire when it occurs is perhaps most crucial in the mining

industry. Several methods have been implemented for fire detection. Typically, however, it

is reported after the fire has been detected and sometimes the detection is delayed. By using

the prediction capability of the Kalman filter, we can estimate the time at which an event

might take place, alerting the base station to prevent any hazards. We can then request help

in advance by taking necessary measures. To this effect, we modeled the entire process as

a linear time discrete system. This system is stochastic with unknown process noise.

xk = Fxk−1 +Buk−1 +wk−1 yk = Hxk + vk

E(wkwT
j ) = Qkδk− j

E(vkvT
j ) = Rkδk− j

E(wkvT
j ) = Sk jδk− j

Here, E is the expectation, or mean of the values. Qk and Rk are the process noise

covariance and measurement noise covariance respectively. Sk is the cross-covariance of

the process and the measurement noise, w and v are the process and measurement noises
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respectively, F is the transfer function, and xk−1 is the state of the system at the time instant

k. δk− j is the Kronecker delta function. It is 1 if k = j, otherwise it is 0. B is a known

matrix, u is the input to the system, and H is the matrix that is the orthogonal projection of

y on x.

In order to solve the problem using Kalman filter, we have done the following:

• Found the predicted nth step estimate of the system i.e. find xk+n‖xk from the state

xk.

• Built the unknown noise parameters Sk from the known parameters Qk, Rk. Also,

we built new estimates of the noise covariances Qk and Rk and updated the system

dynamically.

• Defined the fusion process that takes into account the correlations among the sensor

parameters.
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V. APPROACH OVERVIEW

We used the Kalman filter to estimate the noise that is input to the filter. In most

cases, the measurement noise and the process noise are correlated to each other. In general

although we do not have a strong understanding of how the process noise changes, we

should be able to start off with a good idea about the measurement noise. We can determine

the process noise based on the correlation between the two. Updating the Kalman filter with

these noise parameters will keep the system state as close to the actual state as possible.

Estimated states of sensors are fused using the spatially correlated states multiplied

by the individual cross-correlation coefficient and the inverse of the estimation error. This

is done in a distributed environment (this is the ’fuse’ mentioned in the algorithm). This

value is then normalized to obtain the posteriori-fused estimate. Next, the nth step fused

state estimate is computed. This estimate determines when the sensors will become active,

come out of the sleep state, and send information. Doing so ensures that the sensors do not

have to keep broadcasting their values at several time instants if the value of the observed

state at that point of time is below a predetermined threshold value (which is calculated

offline). This in turn ensures that a synchronization protocol is not a necessity. Event

detection is done using both the time-correlated values of each sensor and the reference

estimate. If the fused estimate value crosses the threshold, an alert message is sent to the

base station for appropriate action. If the alert is a false positive, the Kalman filter is reset

with new input parameters that more accurately reflect the changes in the environment.

A stepwise explanation of the proposed algorithm when the sensor is in an active

mode is as follows:

1. Collect the data on each sensor mote in shorter time intervals.

2. Compute the state prediction up to the kth state using the n-step state prediction ac-

cording to how dynamically the system varies.
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3. To obtain accurate results, input the changing noise parameters into the filter as new

variables that govern the system state.

4. Fuse estimates based on the weighting function, which is the product of the correla-

tion (spatial and temporal) and cross covariance (spatial and temporal) of the sensors

in communication and sensing range.

5. Use the fused estimate as the reference for event detection (based on a preset thresh-

old). This is reported to the base station using relay messages.

Our algorithm can be extended to a dynamically changing system with mobile nodes.

In our case, the implementation constraints boil down the algorithm to a static sensor de-

ployment with a fixed group of sensors in a given area. This is consistent with the sensor

network setup in a mine.

Our algorithm is written for the up time of the sensor mote, where the sensor is active.

The sensor comes out of the SLEEP state based on a predefined manner in accordance with

the synchronization mechanism explained above.

The sensor is put into the SLEEP state manually, to simulate the faulty behavior of a

sensor. During this time, the sensor does not take any readings, and we can test for the fault

tolerance of the sensor network setup. The following two subsections describe in detail

how we compute the n-step state prediction, update the covariances Q and R, and build

from the unknown noise parameters.

A. NT H STEP STATE PREDICTION

Let us consider the case where the Kalman filter is used for one step prediction. The

process and the measurement noises are one step correlated i.e. the measurement noise vk
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Algorithm 1: Dynamic Spatio-Temporal Information
Input: System state x̂−i , co-variances Q, R
Output: predicted state x̂+i
BOOLEAN: SLEEP
DEFINE: Preset Threshold
while T RUE do

if !SLEEP then
data← xi
collect data and assign as new state xi
compute one step Kalman f ilter state prediction using Q and R
ErrorcovarianceP̂+

i = min(P̂i, P̂−i )

P = P̂+
i

if x̂i < preset threshold then
compute n step state prediction

else
routex̂n to the base station
Update Q, R
Fuse x̂i ∈ Spatio− temporal correlated nodes
/*fuse is done using the fusion process described later on*/
Updatex̂i = x̂i f used

end
if x̂i f used > preset threshold then

Send x̂i f used

/*send to base station*/
end
SLEEP = TRUE
/*send the motes to sleep state*/

end
end

is correlated with wk−1. The estimation errors are given as

ε
−
k = xk− ˆxk−1

− (1)

ε
+
k = xk− ˆxk−1

+

Where, ˆxk−1
− is the apriori one-step prediction at time k, and ˆxk−1

+ is the posteriori.

Now the classical Kalman filter state estimation is given as



24

x̂k
− = Fk−1 ˆxk−1

+ (2)

ˆxk−1
+ = x̂k

−+Kk(yk +Hx̂k
−)

The error can be computed, from the above equations as

ε
−
k = xk− ˆxk−1

− = Fk−1ε
+
k +wk−1 (3)

ε
+
k = xk− ˆxk−1

+ = ε
−
k −Kk(Hkεk

−+ vk)

The priori and posteriori error covariance from [11] can be computed as

P−k = E[ε−k (ε
−
k )

T ] = Fk−1Pk−1 +Fk−1 +Qk−1

P+
k = E[ε+k (ε

+
k )

T ] = P−k −KkHkP−k −KkE[vk(ε
+
k )

T ]

−P−k HT
k KT

k +PkHT
k KT

k −HT
k KT

k

+KkE[vk(ε
−
k )

T ]HT
k KT

k −E[ε−k vT
k ]K

T
k

+KkHkE[vT
k ]K

T
k +KkE[vkvT

k ]K
T
k

(4)

and, E[ε−k vT
k ] can be computed as

E[ε−k vT
k ] = E[(xk− x−k )v

T
k ] = E[(Fk−1xk−1 +Gk−1uk−1 +wk−1)vT

k ]−E[x−k vT
k ] = Sk (5)

Because, the state x and the noise v are not correlated, the expectation is 0. Likewise,

input uk−1 is also uncorrelated with v and the final term is also 0 as neither the priori nor
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the next step measurement noises are correlated. Substituting E[ε−k vT
k ] in the covariance

(P+
k ) equation and re-arranging the terms by eliminating terms that become 0, gives us:

P+
k = (I−KkHk)P−k (I−KkHk)

T +KkRkKT
k Kk(HkSk +HkST

k )K
T
k −SkKT

k −K−KST
k (6)

Based on the previously described technique, consider the case of n step correlation

between the process and measurement noise. The expectation/mean can be stated as

E[wkvT
j ] = Si jδk− j+1∀i = 1,2, ...n (7)

Now, from the system state equations 1 we have

xk+1 = Fkxk +Buk

xk+2 = Fk+1Fkxk +Fk+1Buk

...

xk+n = Fk+n−1 · · ·Fkxk +Fk+n−1 · · ·Fk+1Buk

(8)

From the process covariance, expanding the term E[(Fk−1xk−1 + Gk−1uk−1 +

wk−1)vT
k ] similarly until the nth step the term, (Fk+n−1 · · ·Fkwk−1)vT

k and all other terms

become 0; which gives us the covariance of the two correlated process. Substituting the

above in the process noise covariance P+
k and expanding P+

k we can obtain the nth step

covariance as

P+
k = P−k −Kk[HkP−k +

n

∑
j=1

α jkS jk−
n−2

∑
i=1

βi ∗ (
k+n−1

∑
j=k+1

α jkS jk)−βn−1Snk

T

]

where, α jk = Fk+n−1 · · ·Fk and
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β = Fk(I − KkHk) ∗ Fk+1(I − Kk+1Hk+1) ∗ · · ·Fk+n−1(I − Kk+n−1Hk+n−1) ∗

(Fk+nHk+nKk+n)

Hence, using the above equations we can find the nth step predicted state estimates.

As the number of steps (after which predictions are required) increases, the error covari-

ance adjusts accordingly. The Kalman filter gain, which plays a major role in the prediction

process, is governed by both the measurement noise variance and the correlated noise co-

variance Sk j. By estimating the unknown process noise, the measurement noise, and the

correlated noise, we can dynamically update the system state for better estimates.

B. BUILDING THE UNKNOWN NOISE PARAMETERS

Let us consider a system in which the two given noise parameters keep changing. In

such a system, the general case of fixing noise as a constant will not suffice. The filter

must be fed with the right noise parameters by using a method that dynamically estimates

a change in noise, to obtain an accurate state estimation. Only then, will the filter behave

accurately, remaining true to the system’s observations with a reduced error.

In practice, before implementing the filter, noise parameters are fed into the state

equations. These inputs might be close enough for the filter to begin producing expected

results. We can input a high process error covariance value for cases in which the initial

process noise is unknown, to start with. We can then run the filter until such time that the

error converges to an accepted value. By that time, the measurement error values would

also be optimal. We must also consider the correlation between the process noise and the

measurement noise. For cases in which the measurement noise is unknown, the measure-

ment error can pass as the measurement noise until we can calculate the measurement noise.

From this correlation, we can better understand the noise parameters, how they behave, and

how they affect the environment in which the sensors are deployed.

We can better understand how much the system will alter under the influence of a

particular noise model, where the noise model represents the different input noise based on
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the error covariance. We can then build a correlation function based on this understanding.

This function defines the correlation between the process and the measurement noises.

For scenarios in which there is a sudden change in both the environment and the

noise model, we propose computing the changed noise parameters by running the same

process described above on spatially correlated sensors. Thus far we have calculated the

temporally correlated noise of the system. A change alters the correlation coefficient, and

this alteration cannot be estimated. Hence, we repeat the above process before taking the

global noise covariance estimates. This is done by fusing the local noise covariance from

each spatially correlated sensor. This ensures that the noise input to the filters is the one

that is relevant to the area that a particular sensor is sensing.

Let us again consider the linear system 1. We can construct the unknown parameters

as follows. Let us consider the inputs to the filter as the observations from other filters.

Doing so allows us to build the correlated noise parameters. Using x for both the input

values and the noise parameter produces

xk− z−1Fxk = z−1Buk + z−1wkxk = (I−Fz−1)−1Bz−1uk +(I−Fz−1)−1z−1wk (9)

These values correspond to the time k (time instant for which we are estimating the

noise parameters). Substituting the value of xk in yk = Hxk + vk produces,

yk =H(I−Fz−1)−1Bz−1uk+H(I−Fz−1)−1z−1wk+vkH(I−Fz−1)=Bz−1uk+z−1wk+vkH(I−Fz−1)

(10)

Now, the error is,

(I−Fz−1)−1Bz−1uk = z−1wk + vkH(I−Fz−1) (11)
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From this, we can find the covariance of this error as

E[((I−Fz−1)−1Bz−1uk)(I−Fz−1)−1(Bz−1uk)
T ]

= E[(z−1wk + vkH(I−Fz−1))(z−1wk + vkH(I−Fz−1))T ]

This will help us find the correlation coefficient of the process and measurement

noise. Thus, we can determine the unknown terms in the noise model using this scheme.

Once we understand the unknowns, the filter must be updated with the new values for the

covariance to obtain an accurate state estimation.
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VI. SENSING, DATA ACQUISITION AND REPORTING

A. FUSION ALGORITHM

Previous studies that used the Kalman filter for fusion have used it only for estimation.

They have then fused the estimated values by considering some weighted fusion approach.

As most papers use the matrices in Kalman filters, using weighted matrices in the LMV

(Linear Minimum Variance) sense is one of the most common approaches. Our approach

tends to avoid the complex matrix calculations by considering only the values from the

sensors that are both time and space correlated. Temporal autocorrelation is used to de-

termine the relation several changing parameters have on the observed system state. This

autocorrelation is also used to determine the threshold value. Spatial correlations are used

in determining whether or not a particular sensor node participates in the fusion process.

The advantage in using this approach is that we can avoid the complex matrix calculations

while reducing the overall computational and communication complexity.

Our approach first fuses the data from several sensors. It then estimates the current

state based on data from both multiple sensors as well as its own a-priori estimate. Natu-

rally, the sensor gives utmost credit to its own reading. The other sensors’ readings are fed

as the inputs to this sensor (filter). The governing factor that determines the weight of the

received value is a product of both the correlation and the inverse of the cross-covariance of

the two filters. This cross-covariance is a result of taking into account the system’s noise.

We believe this approach gives the closest possible estimate of the observed state.

The spatial correlations in a static sensor network deployment will not change greatly

unless there is a sensor that reports false data (as observed globally by a group of sensors).

Under such scenarios, the correlation of that particular sensor ceases to exist with those

of the group to which it belongs. This process can be done either before sensor network
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deployment or during the information gathering stage.

Our algorithm also works effectively for cases in which group information is drawn

from sensor transmissions. The temporal correlations determine how much a sensor is

deviating from its previous reading. We do not consider the case of a compromised sensor

to be a faulty behavior. The sensor has enough storage capacity on it to hold values of both

its neighbors’ and its own until such a time the kth state is estimated. This comparison of

values is used in the decision making process i.e. to send or discard sending a message.

B. EVENT DETECTION AND REPORTING ALGORITHM

Our approach uses a co-variance as a measure of the deviation the model should

exhibit under the observed conditions. We expect both the detection of events and the

subsequent reporting to be very accurate. Each, however, will depend on how fast the filter

converges. The error covariance of a Kalman filter defines the amount of deviation from

the actual value the estimated value can have. Thus, threshold required for an event to be

detected is placed as the maximum covariance observed after the filter converges.

An event will be reported to the base station when a particular measurement crosses

the threshold under a certain noise model. As previously mentioned, the predicted value is

set as the reference for the correlated sensors’ measurements. This value is first computed

and then sent in an adaptive manner. This method of reporting is done to reduce the total

number of messages that will be exchanged in the network.

Typically, the observed values that are observed should be exchanged at every time

step for data fusion. This, however, is undesired in real-time scenarios, as events do not

occur every time. In our approach, we update the base station only when an event is pre-

dicted based on previous observations. The sensor sends a message to the base station that

an event could occur based on the current system model. The base station takes neces-

sary precautions accordingly. These precautions are important as, in underground mines,

monitoring sudden combustion is difficult. According to previously conducted studies on
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Figure 2. Graphical flow representing our scheme

underground mines, fire is reported at least five minutes after its onset. Our approach pre-

dicts this event before that time to allow workers the opportunity to take precautionary

measures. When this prediction is a false negative, the filter in the sensor updates its input

parameters.

The time at which the sensors calculate the estimates and communicate with other

sensors is calculated in an adaptive manner. The filter learns about the behavior of the

environment. It then dynamically changes the time instances at which data collection,

estimation, prediction and communication are mandatory. A sensor may also request infor-

mation from its neighbors if its observation shows an anomaly. The worst-case scenario,

when the number of communications becomes maximum, occurs when all of the sensors

exchange information at every time an observation is made. This scenario cannot be the

case in practical applications. Thus, we can say that our approach reduces the total number

of messages for the communication. Additionally, the sensors are updated dynamically

with the noise parameters to give accurate results.
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VII. EXPERIMENTAL EVALUATION

A. EXPERIMENTAL SETUP

An underground mine scenario was simulated using FLUENT. The conditions used

to simulate a flow both in and out of a gob in a mineshaft have been considered [14].

They were implemented based on the C subroutines mentioned in [15]. A coal mine was

considered as the test bed, and release of gases is from coal combustion. This release rate

was determined by several parameters, such as atmospheric pressure and temperature, in the

shaft at that time. For more information on this, [14] discusses the effects of atmospheric

pressure on the flow of gases into and out from the mine gobs. Any sudden change in

pressure might diffuse more gas into the mineshaft from the gob. This change could be

misinterpreted as a possible fire hazard by the sensors monitoring the release of gases in

the mine. Such a scenario was modeled using FLUENT to obtain a complete flow of

gases in the mineshaft. In FLUENT, the deployment of the nodes is done as follows: the

information for corresponding sensor nodes (assumed to be placed in several locations in

the simulated mine shaft) is done by choosing what are called nodes in the environment

generated.

The network setup is a distributed architecture. The nodes are located at different

areas within the mine to monitor the release rates at the corresponding location. The nodes

are connected to the base station in an efficient manner, with nodes in geographic vicinity

being fully connected to one another. Hence, the spatial structure is built. The simula-

tion was run over a 22-day period. An observation was taken every hour. Tossim was

used to simulate the behavior on sensors. In accordance with the nodes’ placement in the

simulated mine, sensor network was simulated using TinyOS to record the communication

among nodes. In order to obtain the execution times and power consumption, AVRORA



33

(a set of simulation and analysis tools for programs written for the AVR microcontroller

produced for Mica2 and Atmel sensor motes) was used. These sensors were grouped into

three groups of four sensors each. The approach we used to update the sensor system is

a distributed approach. We simulated previously run algorithmic implementations on our

test-bed to compare our scheme with existing schemes [5, 10]. The advantages of those

schemes have been discussed in the related works section.

B. SIMULATION RESULTS

We ran our simulations over a 22-day time frame according to the simulation test

bed. Both the inflow and outflow of gases from the gobs were the result of changes in the

barometric pressure. The noise model of the system changed dynamically almost every day.

The process noise was calculated according to the changes in the measurement noise. The

covariance value of the measurement noise was varied between 0.75 and 2. The covariance

value of the process noise was varied between 0.1 and 1. Initially to run the simulations, we

considered the value of process noise covariance Q to be 1.5. The value of measurement

noise covariance R was taken as 4 as the actual noise in the system was unknown. The new

parameters are fed into the system and the fusion was completed after the simulation was

initially run. Figure 3 illustrates the fused estimates at the time instants. When the values

were not fused, the observed readings for the sensor implementing a lower R value were

considered. That value was then sent to the base station. This value was chosen because,

as R and Q approach 0 the observed and estimated values (respectively) become true.

We obtained the flow from the set of values that do not induce any anomaly. Thus, no

events were detected in the gob. We introduced an artificial event to simulate the detection

of the occurrence of an event. This was done by manually modifying the atmospheric

pressure values to either increase or decrease the flow both into and out of the gob. As the

barometric pressure decreased, the gob breathed out, making less oxygen available for coal

oxidation.
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Figure 3. Barometric pressure induced flow

On the contrary, as the barometric pressure increased, the gob breathed in, making

more oxygen available for coal oxidation. The maximum inflow was 0.46875 kg/s, and the

maximum outflow was 0.43413 kg/s. These values were the actual values. The predicted

values were 0.43455 kg/s for the inflow. The actual value before the manual change was

0.25506 kg/s.

Whenever the values went beyond the error covariance value of 0.2, the sensors re-

ported the readings to the base station (see fig. 3). A spike occurs in the observed values at

approximately day seven. This spike however (see figure 5), was not reported to the base

station, as this is a false positive. The Kalman filter was then assessed for accuracy.

As we can see from the error covariance plot of our algorithm, the filter inputs were

updated. The observed value was much lower than the estimated value at the time of actual

observation. To determine the effectiveness of our scheme, we intentionally changed the

values when prediction was complete. This indicates that our model works well when an

event is detected. The error covariance varied when values of Q and R changed over a

22-day period (see figure 6).

The values converge soon enough to report an accurate value. A similar simulation
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Figure 4. Blow up showing estimated values of the time when an event occurs
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Figure 5. Illustration of False positive detection

was run for several runs, and all of the values concurred. In order to test the efficiency of our

scheme we compared it with other schemes, Algorithm 1 [5] and Algorithm 2 [10]. The

results of the error covariance show that our scheme clearly outperforms those schemes.

Although in their schemes, the error covariance converged soon, and stabilized to a con-

stant, this did not reflect the change in the noise. As we mentioned, this greatly affects the
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Figure 6. Error covariance at different times for the three algorithms

accuracy of the value estimated and reported after fusion.

C. NUMBER OF MESSAGES COMMUNICATED

The algorithm was implemented and the results were generated using TinyOS. The

results of the flow through the gob concurred with those generated using MATLAB simu-

lation. As we can see from figure 7, the number of messages generated initially was large.

This is because, all the sensors exchange messages after sensing the data, estimating the

corresponding states and computing the predicted state estimates. Knowledge obtained

from all of the sensors in the group will enable the individual sensors to obtain global state

knowledge. This helps in more accurately determining the local states. After initially con-

verging to a reasonably accurate state estimation, the communication process takes place

only when the sensors sense an event. This is when there is a gas inflow into the gob, or,

when the covariance values go beyond the accepted threshold of 0.3.

D. TOTAL ENERGY CONSUMPTION

The energy computation was computed per-mote over a 24-hour period for all the
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three schemes for comparison purposes. We assume the sleep mode to be a state where the

radio is still on and the sensor can listen to any messages. During this state, the compu-

tation was temporarily halted. As we can see from figure 8, the energy consumed in our

algorithm was less than half when compared to an instance in which no fusion occurred.

Our algorithm has an extra 381.6 mJ at the start of the fusion process.

This is because of the extra computational time of the initial estimates and for conver-
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gence of the filter. This compensates for the amount of energy that is saved thereafter where

computations were not required every time a senor sensed a new value. This, as compared

to Algorithm 1 [5] and Algorithm 2 [10] was much less. Those schemes have a higher

computational overhead as compared to ours. This is owing to the fact that we avoided

using complex matrices. The computational cost for Algorithm 1 is higher than Algorithm

2 as they considered the entire network during fusion. Algorithm 2 uses a reduced matrix in

its fusion computation. We can also see from the graph that the power consumption while

receiving Rx and transmitting Tx is about less than a quarter as compared to the instance

in which there was no fusion. This performance is better than those two algorithms in

comparison. The sensors kept sending the messages to check for accuracy which incurred

power consumption. This power consumption was maximum and largely only for the first

day.

From the results obtained, we see that our algorithm works well in all the aspects of

data fusion, viz. accurate state estimation in uncertain environmental conditions, reduc-

ing the number of messages thereby greatly reducing the computation and communication

costs which are bound to extend the life-time of the battery.

E. APPLICATION IN UNDERGROUND MINES

In underground mines, ventilation systems are of utmost importance. This is because

they regulate the flow of air in the mine shafts. Critical parameters for mine safety like

temperature control, gas dilution, gas detection etc. require this regulation to be perfectly

monitored. Existing procedures in mines do not make use of the sensors to actuate the

process, thereby, requiring constant human monitoring. Raising any alerts (relating to fire

etc.) to the central mine-safety system takes time. Prevention of mine fires has not been

tackled effectively. Also, the detection is slow and hazardous. Under such scenarios, our

algorithmic implementation allows us to actuate the mine ventilation system with the help

of sensors. In essence, the algorithm acts as a feedback to the actuation system. The
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sensors send the readings, fuse the values observed and then send them to the base station/

actuating system. The control messages from the actuators then regulate the flow of air in

the mine shaft as per the requirement. The proposed algorithm can also be applied to a

SCADA(Supervisory Control and Data Acquisition) system.
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VIII. CONCLUSIONS

We proposed a method to estimate the unknown noise parameters in the sensor net-

work. We developed an efficient method for calculating these values on power constrained

sensor motes as the computations do not consider any matrices and inverses. In order to

test our algorithm on a real-time environment, the simulation of the underground mine was

done using FLUENT. The values input to the simulation were the ones we obtained from

real-time readings in a mine. The simulation was done for several runs for randomly gen-

erated noise. We then ran the simulation in TinyOS to test the working of the algorithm

on a sensor network scenario. Using the number of messages and the energy consumption,

we conclude that the algorithm works well even in highly unstable system giving us the

desired results. Our experimental results show that our model is fault resistant to a large

extant. The results obtained thus proved the effectiveness of our fusion scheme. They were

then compared with existing schemes to see where it stood. In future, we would like to

extend our model for a multiple level data fusion process.
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WIRELESS NETOWRKED CONTROL SYSTEM
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Wireless sensor network security essentially governs the usability and stability in

control systems such as modeled by Networked Control Systems. We propose an informa-

tion fusion architecture, which allows the profiling of different attacks on wireless sensor

networks used in such applications and the study of their effects on the control system’s

stability. We use a Dynamic Bayesian Network to obtain control decisions which govern

the control messages that are then input to the actuators. The decision making process al-

lows us to ensure that the Wireless Network Controlled System (WNCS) works smoothly

without any aberrations, or, at worst, has a graceful degradation even under the influence

of security attacks. We consider the theoretical stability of a WNCS and the bounds on

transmission delays in order to obtain a robust system. Using the proposed information

fusion architecture, we are able to detect the presence of both stand-alone and collabora-

tive attacks on the WNCS. New control messages sent to the actuators were transmitted

based on these decisions which ensure system stability and security. Experiments were

performed to validate our claim of providing the WNCS with robustness under security

attacks. Our results showed that our fusion architecture can detect collaborative attacks

and profile them with an average accuracy of 91.7%. Given the difficulty in detecting the

presence of collaborative attacks in WNCS, this level of accuracy is high.
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I. INTRODUCTION

Wireless Sensor Networks (WSNs) have numerous applications when data gathered

by sensors is used to monitor and/or control the behavior of the system under observation.

WSNs are also used in control systems such as power plant systems, home automation

systems and in other Cyber-Physical Systems (CPS) like road transportation etc.

In an industrial setting, Networked Control Systems (NCSs) are Supervisory Control

and Data Acquisition (SCADA) systems which comprise of a set of sensors to report read-

ings/ observations and an actuator system which controls the plant operations. Tradition-

ally, the readings sent by a set of sensors are processed at the control station. The control

messages are then sent to the actuators. These actuators control the system operation as

per the control unit’s commands in real time to maintain its stability. The most important

aspect of a control system is its operational stability as an unstable control system cannot

be operational. Stability of a system is defined as the operational condition where even

under errors or faults the system still yields finite and bounded outputs. System stability is

governed by both functional faults and induced faults, where, induced faults could largely

be a result of security breaches. Due to the time criticality of the information transmitted

in a control system, security plays a major role in maintaining the system stability. In this

paper, we attempt to mitigate system stability issues in NCS caused by security concerns.

Providing security mechanisms to any system is in itself a challenging task. In an ap-

plication like Wireless Networked Control System (WNCS), where, the data is transmitted

wirelessly, providing security becomes all the more challenging. An attacker can perform

stand alone or collaborative attacks to disrupt system security, thereby, rendering the sys-

tem unstable. Security attacks that compromise the NCS can be related to both integrity

violation and data loss. Insofar, most of the existing works have focused on upholding the

integrity of the data packets sent. In order to tackle this problem of security, many en-
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cryption schemes [1, 2, 3, 1, 5] have been employed in WSNs to protect both privacy and

integrity of the data. Although data is encrypted, encryption alone is not enough to provide

comprehensive security to a control system.

Scheduling is another crucial aspect that plays a very important role in maintaining

stability of a WNCS. Hence, its vulnerability towards attacks is high. Several attack sce-

narios exist with both a single attacker and multiple attackers. A stand-alone attacker may

launch several attacks or multiple attackers may collaborate and launch multiple attacks.

Many of these attacks look to exploit the vulnerabilities of the existing solutions to disrupt

the scheduling and reporting process. Hence, care must be taken to develop a method that

detects the presence of an attacker while simultaneously thwarting the attacker from further

disrupting the stability of the plant. To tackle this problem, we propose an information fu-

sion architecture which co-designs control and automation and allows the WNCS to work

effectively even under the influence of attacks (both collaborative and stand alone).

In WNCS, the network is shared by controller nodes and actuator nodes. Therefore,

it is extremely crucial to ensure appropriate scheduling among the nodes to account for

transmission times that uphold stability. Scheduling the nodes to transmit information in

both open loop and closed loop conditions is a major research area. In addition to the

scheduling problem, exogenous disturbances into the system cause further complications

that have to be addressed. Exogenous disturbances could exist because of a malicious

attacker, in which case it is difficult to control the input of such disturbances. This warrants

an architecture that detects the presence of an attacker and mitigates the losses caused by

his/her activities. Our information fusion architecture works towards this goal by studying

the different conditions that cause the WNCS to become unstable and provides solutions

that keep the WNCS stable.

To achieve the goal of stability, researchers have focused primarily on control engi-

neering where disturbances input to the system can be known. Contrary to this research

direction, our focus is to provide operational stability by providing comprehensive security
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framework against collaborative attacks. Our security framework ensures the functional ro-

bustness of the WNCS by providing graceful degradation in situations where most security

mechanism fail.

To this effect, we built an intelligent information fusion architecture on top of the

WNCS. It acts as an automation system which chooses from among a set of decisions and

takes required actions. These actions are based on the hypotheses generated according to

the outputs of a dynamic Bayesian Network (DBN). Conditional probabilities are used to

define the causal relationships among the nodes in the DBN. We provision the handling of

non-Gaussian distributions in our framework, thereby, increasing the solution scope beyond

the limitations of Gaussian distributed data. The ability to provide an integrated solution to

profile different attacks (both stand alone and collaborative) is the defining feature of our

approach. We were able to monitor the system for attacks while simultaneously providing

stability thereby robustness. To the best of our knowledge, no prior work in this area has

provided an integrated fusion architecture used in co-designing stability and security of a

WNCS under the influence of security attacks.

To summarize, the primary contribution of this paper is as follows:

(i) Study the stability constraints of a WNCS under long delays, quantization effects and

sampling delays

(ii) Propose a novel time-varying dynamic Bayesian network (TVDBN) aided by feature

extraction

(iii) Effectively profile both stand-alone and collaborative attacks to accurately represent

network behavior

(iv) Enable accurate decision making under security attacks by proposing an Information

Fusion Architecture

The rest of the paper is organized as follows: We formally define the problem in

section II. Section III gives an understanding of theoretical constraints on transmission
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times and delays, time varying sampling and quantization in maintaining system stability,.

Section B gives an in-depth understanding of our implementation architecture. We then

discuss the simulation results in A and analyze them. Section B talks in detail about the

advantages and drawbacks of existing works in the field. Finally, we conclude the paper

with our remarks about our contribution in section B.
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II. PROBLEM STATEMENT

The problem studied is that of providing a security framework which guarantees the

stability and operability of a WNCS under security attacks. Security attacks can be profiled

as stand alone or collaborative attacks. We address the problem of security to support the

theoretical stability constraints of a WNCS.

Let us consider a continuous time plant model

ẋp = fp(xp, û,w), y = gp(xp) (1)

where, fp and gp are continuous time functions and xp, û, w are the state input and

noise/disturbance variables respectively and y is the output of the plant. At the time in-

stant tsi (sampling time), the inputs to the actuator or the observations from the sensor

node are transmitted. The transmission/sampling times follow 0 ≤ ts0 < ts1 < ts2 < ts3....

and ∃ a δ > 0 such that the transmission intervals given by tsi − ts are bounded by

δ < tsi − tsi−1 < τmati∀i ∈ N, where, τmati is the Maximally Allowable Transmission In-

terval (MATI). For every sampling time instant tsi a set of nodes n j ∈ N j, j ∈ 1,2,3, ... is

chosen for data transmission. The information collected from the sensors are y(tsi) and

û(tsi). The information sent over the network has a delay of τd . This delay encompasses

τcommunication and τprocessing. In other words, the plant gets back the control signals after

tsi + τd time units.

Under exogenous disturbances, maximally allowable delay τmad =max{τd} can grow

larger than τmati. This is a hard problem to solve. This delay can be caused by an attacker

who has control over a portion of the network. Hence, it is of utmost priority to detect the

presence and the effect of an attacker in the WNCS. In addition to delays over the com-

munication channel, the attacker can cause delays by disrupting the scheduling function of
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the WNCS. There are multiple methods in which he can do this. Some of them are varying

sampling times and ineffective quantization. For instance, reducing quantization errors re-

sults in the transmission of larger packets which could affect the delays (τmad). It must be

noted that quantization is not a serious problem in packets sent over internet traffic, but is

a considerable problem in WNCS where sensors are used with a limit on the packet size.

An attacker can also affect the sampling times and cause both energy depletion of wireless

nodes and unwanted rescheduling of the network. This could cause some of the nodes to

be discarded from the network, in which case the attacker can continue his malpractices.

To this effect there is a very serious need to study the most pertinent attacks that can

be employed to cause system instability and inoperability, and develop an architecture that

detects and avoids such attacks. Hence in this paper, we propose an Information Fusion

Architecture.

In the next section, we go on to describe the stability considerations needed to provide

security.
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III. STABILITY ANALYSIS AND TRANSMISSION TIME BOUNDS OF WNCS

A. DELAYS DUE TO PACKET DROPS

Let us again, consider the continuous time plant model of an NCS as eq. (1). There is

a bound on the total delay that can be allowed for the system to be stable. Delay τd ≤ τmad

where, τmad is the Maximally Allowable Delay (MAD). To put both τmati and τmad into

perspective, we can state the time bounds as follows:

δ≤ tsi+1− tsi ≤ τmati, i ∈ N (2)

0≤ τd ≤min{τmad, tsi+1− tsi}, i ∈ N (3)

The above two conditions imply that the data is transmitted after it is sampled and

arrives only before the next sample is taken. These conditions will be violated in the case of

a transmission delay larger than τmati. Incorporating cases where the delays are larger than

the maximally allowable time interval is a hard problem and requires intelligent decisions

to overcome it. Although, use of bounds on transmission times can be used directly to

determine the DoS and Jamming attacks, they are not wholly sufficient in determining the

nature of the attack. One must have additional information regarding the packet drops

etc. Assume that the number of successive packet drops is η, then with each successful

successive packet drop, the new MATI becomes ´τmati = τmati/η+ 1. In other words, the

maximally allowable time interval decreases.

In order to complete the stability analysis, we have to consider the error in the system

which is governed by the function that determines it at every time instant. The amount of

error that is allowed to creep in is based on the nodes that are chosen to transmit data over

the network. Now, let the observed and input values after tsi + τd be
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ŷ(tsi + τd) = y(tsi)+ ḟ (i, ε̇ (tsi)) (4)

û(tsi + τd) = u(tsi)+ ḟ (i, ε̇ (tsi)) (5)

where, ε̇(tsi) = ˆytsi
− ˆytsi−1

; ˆutsi
− ˆutsi−1

is the error and ḟ is a function that determines

the nodes that are chosen at the time instant i.

B. STABILITY ANALYSIS BASED ON DIFFERENT CONSTRAINTS

The stability analysis of a NCS and thereby a WNCS is based on [6]. Let W̃ (κ, `, ε̇,s)

be a Lyapunov function satisfying

W̃ (κ+1,1, ε̇, ḟ (κ, ε̇)− ε̇)≤ λW̃ (κ,0, ε̇,s) (6)

W̃ (κ,0,s+ ε̇,−s− ε̇)≤ W̃ (κ,1, ε̇,s) (7)

∀κ ∈ N, ` ∈ {0,1} and ε̇,s ∈ Rne;ne = ny,nu , where, specifically, ` is a boolean

which determines if there is a data or control packet transmission, or if there is a system

state update; ε is the error and s is the arbitrary variable that holds the value correspond-

ing to ḟ (i, ε̇ (tsi)) and κ is a counter that keeps track of the number of transmissions and

0 ≤ λ < 1.

Consider the following differential equations

φ̇0 =−2L0φ0− γ0(φ
2
0 +1) (8)

φ̇1 =−2L0φ1− γ0(φ
2
1 +

γ2
1

γ2
0
)

These equations describe the behavior of the plant based on the initial conditions φ0
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and φ1. Here, L` ≥ 0 and γ` > 0, ` = 0,1 are constants of the locally Lipschitz function

W̃ (κ, `, ε̇,s).

The following theorem gives the stability of an NCS conditioned upon τmati and τmad .

Theorem 1. Consider an NCS that satisfies the condition that there exits a Lyapunov func-

tion W̃ (κ, `, ε̇,s) which is locally Lipschitz. Now, if τmati ≥ 0 and τmad ≥ 0 satisfy

φ0(τi)≥ λ
2
φ1(0) ∀ 0≤ τi ≤ τmati (9)

φ1(τi)≥ φ0(τi) ∀ 0≤ τi ≤ τmad (10)

for various solutions of φ0 and φ1 from (8), with corresponding initial conditions φ` > 0,

`= 0,1 and φ1(0)≥ φ0(0)≥ λ2φ1(0)≥ 0 with 0≤ λ < 1, then the system is considered to

be Uniform Globally Asymptotically Stable (UGAS).

The proof of this theorem is given in [6] and its Lyapunov stability proof is discussed.

From the proof, the system is both UGAS and Uniformly Globally Exponentially Stable

(UGES) based on Lyapunov arguments. For the case of Input to State Stability (ISS), Lp

stability proof is also provided under delay considerations. Our contribution is the inclusion

of long delay (τmad > τmati) case that cause system instability which is not discussed in [6].

In order to incorporate long delays, we alter the condition in (9) and (10), i.e. we assume

that the reception and transmission times for the actuator and sensor nodes are asymmetric.

In order to solve this problem, we propose to use a longer control packet without adding

any further delays, which holds the value of the future control messages based on the output

generated up to that time instant. In our implementation, since the control messages are sent

based on the determination of the τmati, if τmad > τmati is observed, the estimated control

input ûtsi
is fed into the actuator which becomes the latest control input to the plant before

τmati expires. This does not violate the stability proof at the same time solves the problem

of lost or delayed control packets to the actuator. The decision of sending larger control

packet is taken based on the hypotheses that is generated from our fusion architecture.
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From the theorem the quantitative numbers for τmati and τmad are obtained by constructing

solutions to (8). In order to determine τmati, the intersection of φ0 and the constant line

λ2φ1(0) is observed and to obtain τmad , the intersection of φ0 and φ1 is observed. Different

values of the initial conditions lead to different τ = {τmati,τmad} values. Hence, based on

the different initial conditions as observed by our information fusion architecture, we adjust

the τ values accordingly to obtain system stability. Its study is provided in section A.

A. Time-Varying Sampling times.

In addition to the stability constraints given above for the τmati, we now consider the

stability under time varying sampling times. It is considered since constant sampling in

WNCS cannot be assumed. Consider the existence of Lyapunov functions as described

above, the closed loop system is semi-globally practically stable if eq. (8) is parametrized

by a modeling parameter h which is in turn based on the sampling time. Decision about the

modeling parameter is based on the input conditions of the WNCS and network parameters

such as bandwidth, sensor data rate etc. At each time interval, h is a constant and h> τmad ≥

0, then for the discrete-time representation of (1), tsi+1− tsi = h, the WNCS is exponentially

stable iff Φ(h,τmad) has eigen values that are strictly less than one and Φ()̇ is a exponential

function.

Now, let Cseq = {0 ≤ ts0 < ts1 < ts2 < ts3....} be a communication sequence for the

plant. For each sampling time tsi , the plant state x(i) is measured and the corresponding

data are sent over the network to the controller node. Also, for each tsi , let τRT T be the

corresponding total round-trip time (RTT) delay. This means that, if a state measurement

is performed at ith sampling instant, tsi , the corresponding control action is available at the

actuator starting from tsi + τRT T sampling instant. At this point, no restrictions are applied

on Cseq and τRT T ; in particular, it is possible that τRT T = +∞ for some tsi ∈ Cseq, which

corresponds to the case of packet dropout. Again as in the previous section based on the

initial conditions φi, i ∈ {1,2} and the values of τmati thus determined, we can determine

the upper bound on τRT T . Based on this bound, the sampling rates and sampling times have
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to be changed.

B. Quantization.

The impact of quantization in the system will lead to controlled output of behaviors

such as limit circle, dead zones and chaos. This, in addition to security loop holes can create

more disturbance in the system than the system can handle and it is important to ensure

stability under the constraints of quantization. In a wired network control system, the

effect of quantization does not really account for much disturbance owing to the presence

of large packet sizes. However, in a wireless setting, where the control plants analog signals

are sampled periodically, quantization plays a major role in determining the overall system

stability and accuracy. It is important to ensure a bounded-input bounded-output stability in

this case as Global Asymptotic Stability does not talk about the cases when the convergence

point is not at or around the origin. In other words, WNCS will be stable for any bounded

input, which means it will always yield a bounded output. For the same plant, a quantizer

is a piecewise constant function q : Rn→ Q,where Q is a finite subset of real numbers Rn

and n is number of nodes. We assume that there exist real numbers such that the following

two conditions hold:

|z| ≤M⇒ |q(z)− z| ≤ ∆ (11)

and,

|z|> M⇒ |q(z)− z|> M−∆ (12)

where, M and ∆ are the range and error bound of the quantizer, and z is the quantized

value respectively. The first condition gives a bound on the quantization error when the

quantizer does not saturate, while the second one provides a way to detect the possibility of



55

saturation. Based on these conditions, the bound on the acceptable quantization errors can

be calculated depending on z which is the quantized value of the state x. In order to avoid

the quantization problem, we propose to alter the sampling frequency as required. Also, the

error in quantization will be useful in the determination of allowable residual value (ref C).

We refer the readers to [7] for a more technical and detailed study of quantization induced

delays.
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IV. FUSION ARCHITECTURE

A. OVERVIEW

The proposed information fusion scheme takes into account the previously mentioned

parameters, and outputs control messages that both stabilize and secure the WNCS. We

used a two layer approach to tackle both detection and eventual prevention of attacks.

Level 1 comprises of extracting features from the incoming stream of data and the

traffic patterns. Based on this feature extraction, a causal graph structure is generated with

nodes representing the different parameters. Causality is determined by the correlation

among parameters and the features of the network. These features include the attacks and

the network behavior. In order to capture the dynamic nature of the sensor network, we

then made use of a Dynamic Bayesian Network (DBN). The DBN unrolls itself over time

and the next state is affected only by the previous state. The hidden state gives us an

understanding of the system transition before outputting the final state. The input to the

DBN were the probability values of

1. the occurrence of the parameters

2. conditional occurrence of the features of the network

With the continuous stream of observed data being fed from the sensors, DBN is

unrolled over continuous time slices and the attacks are profiled and differentiated from

among other existing and known attacks using feature extraction. Initial probability values

were input to the DBN based on the probability of occurrence of an attack based on existing

literature. As our model uses a DBN, the probability values are updated over time slices

and eventually, the BN converges to give an accurate representation of the system behavior.

Feature extraction is done based on the temporal information obtained from the NCS

data traffic. Information such as the second order moments of the traffic trace and temporal
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auto-correlation among time slices yields the most appropriate feature of the WNCS. Un-

rolling the causal graph over time slices unless done without including system unknowns

will result in faulty WNCS analysis. In our architecture, system unknown is defined as a

probability value which reflects the lack of absolute knowledge of the system’s parameters.

Feature extraction is of utmost importance as the content of the control signal input to the

actuators is determined by its accuracy.

Level 2 comprises of further pruning the edges of the causal graph based on feature

extraction, using DBN for decision making for further information acquisition and hy-

potheses selection, formulating the content of control packets and altering the scheduling

strategies and data rates of the sensors to suit the needs of the WNCS.

B. FEATURE EXTRACTION

A. Level 1.

Firstly, the causal network is constructed with arcs towards all the nodes (parameters)

that exhibit causality among each other. Later, this causal graph transforms into a Bayesian

network. The strength of the causality (arc weights) is determined by factors such as cor-

relation among the nodes and conditional probabilities (which determine the dependency

among parameters in selecting a feature of the network). The features of the network that

are chosen are the attacks on the system. The parameters that are chosen are: packet drops,

inconsistent data, end to end delays, communication delays, system delays, propagation

delays, inter-arrival times, insider and outsider attacker, quantization errors and sampling

time tsampling. The attacks that are profiled based on these parameters include, but not lim-

ited to, stealthy attacks - data deception attack and replay attacks, and Denial of Service

(DoS) attacks (e.g., Wormhole attacks, Energy drain attacks, and jamming attacks).

In order to train the graph structure and to establish relationships among the nodes of

the graph, we used the data set of a water plant provided in [8]. We conducted experiments

using the data set by injecting the four attacks used in this paper into the data trace. This
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was done in order to establish a difference in how the incoming data will be processed by

our fusion algorithm upon simulating the plants behavior. The packet arrival rates, delay

times and state estimate errors of the dataset under attacks were then compared with the

introduction of different noise levels in the system but under no attack. It gave us an insight

into how the network behaved under various conditions and helped us better determine the

causality among arcs. We then went on to compute the inter-arrival times τiat , end-to-end

delays τe2e, system delays τsys, successive packet drops η, error ε, sampling times τsam, and

the quantization error εq which is determined by the initial conditions φi, i ∈ {1,2}. upon

obtaining the values of these parameters, we looked at how the causal graph built itself

and how the strength of the arcs based on correlations among nodes affected the feature

extraction process.

The next step in Level 1 is graph pruning. In order to prune the graph and to obtain a

locally optimal network structure, the graph has to be dynamically updated. This pruning

was done to eliminate the edges which are less causally related and as a result do not

affect the feature selection process. As there were many sensors to choose from, data

fusion/aggregation was an obvious choice in order to eliminate redundancy and save the

channel bandwidth. Use of AES was not considered as it does not support aggregation.

However, it must be noted that even upon the use of a secure data aggregation scheme, the

system will still be vulnerable to ’insider’ attacks. Upon use of a secure data aggregation

scheme in unison with our IFA, we can now call our scheme as SIFA (Secure Information

Fusion Architecture).

Once the basic algorithm of Level 1 is run, the values of τmati and τmad can be found

out for different input values of the differential equation (8). These values are then updated

into the system and act as the bounds on the maximally allowable time interval and max-

imally allowable delay. In situations where the delay is larger than the time interval, the

NCS scheduling, data collection and sampling is adjusted accordingly in Level 2. This is

usually a hard problem to solve and our decision making system overcomes it as mentioned
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in the discussion in sec. III. An algorithmic representation of Level 1 is provided in algo-

rithm 2. During the initial run, Level 2 is FALSE, but in the subsequent unrolling of the

DBN, control inputs from Level 2 are input to Level 1 and the process continues.

Algorithm 2: LEVEL 1 Feature Extraction
Input: Network parameters, Causal Graph G
Output: Features, Attacker nature, New Graph Ǵ
if Level2 == T RUE then

G← Ǵ
control input {u← ú},{τmati,τmad ← ´τmati, ´τmad}

else
∀ sensors si ∈ {S},collect observations Oi,
i ∈ {1...n}

while system stability == T RUE do
compute τiat ,τe2e,τsys,η,error ε, τsam, εq
generate PDF and Correlation Rsi,s j∀si,s j ∈ {S}
Perform SDA
Send values to Controller node
Update G

end
choose new nodes to obtain in f ormation
return Attack, nature o f attacker,τmati,τmad

end

C. SECURITY ATTACKS AND THEIR MITIGATION METHODS

A few of the attacks previously mentioned that are most pertinent to WSNs deployed

in an industrial controls scenario have been studied. We give a brief description of them

and how we intend to tackle them.

Denial of Service attack: This attack is the most common choice of attack to disrupt

the control system operations. A Denial of Service (DoS) attack in a sensor network targets

the resources of a sensor node thereby making them inactive after some time. This kind of
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attack falls under the category of both an insider and an outsider attack. Message rerouting

attacks, spoofing attacks and jamming attacks are some examples of DoS attacks. For a

DoS attack, the probability that an attack is taking place is calculated by looking at the

packet arrival rates, end-to-end delays and communication delays. Anomalies in the trans-

mission times caused by genuine system noise are also considered to detect its presence.

In this paper we consider the jamming attack. Wormhole attack is another DoS attack.

Our objective is to be able to differentiate between the different types of attacks to better

address the security issues. One of the methods (at the application layer) in which DoS

attack can be countered is the data aggregation by forming secure clusters. We intend to

mitigate the Jamming attack by flagging the nodes where packet drops and network delays

are very frequent. Rerouting data through other sensors around such nodes and passing

control messages that contain information about which sensors get to use the channel for

data transmission helps mitigate the Jamming attack. Another commonly used approach is

the usage of multiple frequency channels.

Wormhole attacks: The wormhole attack is one in which a sensor node receives a

message at its origin and sends it to its destination. A wormhole attack is difficult to

detect when packet delivery ratio is low owing to packet drops caused by system noise.

A genuine packet drop due to poor network conditions can be mistaken as a wormhole

attack. Under high noise levels, we obtained the packet arrival rates PDFs with different

network parameters at the start of the network deployment. These PDFs were the reference

PDFs with which the packet arrival rates of the sensors during real time was compared.

We examined the total packet delivery ratio from different sensors (aggregator nodes and

forwarding nodes). Doing so provided a better understanding of how long a sensor node

had held a packet and where it sent the packet. The probability of an intruder in the system

was derived according to these results. This probability aided in developing the overall

probability of the presence of a standalone Wormhole attack or a collaborative attack. In a

WSN environment, where the nodes are static, the solution for wormhole attack talk about
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using multiple base stations. Rerouting traffic to other nodes is the most common solution.

However, in a WNCS, this rerouting is not as straightforward as it seems. This is because,

rerouting may affect the network scheduling and also, under collaborative attacks, rerouting

may only aid an attacker more.

Stealthy attacks: Deception attacks in a sensor networks work by manipulating the

data that is transmitted or by changing the data to be sent in a manner that allows corruption

of data to go undetected. This kind of attack is difficult to detect. But for this attack

to be successful the requirements grow manifold. Both an outsider and an insider can

perform this attack. Over time, the probability that the data is inconsistent is calculated.

This probability is fed as one of the conditional probabilities of the system. The different

types of stealthy attacks are replay attacks, injection attacks, bias-injection attacks, data

deception attacks etc. Below, we mention the two kinds of attacks that are implemented in

this paper and our methods to detect them.

a) Data Deception attack: The system state that we studied can be written as

ẋ(t) = Ax(t)+Bu(t)y(t) =Cx(t)+Du(t)

where, A ∈ Rn×n is the input matrix, C ∈ Rk×n is the output matrix. Both B ∈ Rn×m

and D ∈ Rk×m are attack matrices. These values define the attack state affecting the system

input and the output attack matrix affecting the measurement vector respectively. For an

observer,

ż(t) = Fz(t)+Cbu(t)+Ky(t)x̂(t) = ż(t)+Hy(t)

where, z is the measurement (observed), x̂ is the new estimate according to the observed

measurement. H is the observation matrix for the original observed value y, F is the obser-

vation matrix and Cb is the observed attack matrix with the corrupted input. For a global

observer, we have

ẋ = Ax(t)+Bu(t)+B f at ẏi = Jix(t)+Du(t)
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where, at = a1,a2,a3, ...an is the attack vector, J is the observation matrix corre-

sponding to the estimate x and B f should have a full column rank. The corrupted estimate

is calculated as

zk = Fk +T kBu(t)+Kky(t)x̂k(t) = zk +Hky(t)

The estimation error ė = Fe where, e = x̂
z −Hx is used to detect the attack. This

error must be in a tolerable bound. Note that this estimation error can arise because of

quantization errors which in turn arise from lower sampling rates. Lower sampling rates in

WSNs are required to conserve energy on the sensor node. Here, F governs the stability

of the system so that the error has to become zero over time. The measurement residual

ρ = z−Hx̂ , where z is a function of the input u and the actual measurement, and, H is

the observation matrix, is the acceptable deviation in the value to maintain stability. The

residual ρ = H(x̂− x)ė has to be less than a predetermined threshold value as governed

by the Level 2 of the Information Fusion Architecture. This threshold value is determined

based on its effectiveness in detecting the attack. It must be noted that a small residual

will lead to discarding genuine data under relatively high noise, and, a higher residual

will lead to faulty packets being accepted. Hence, determining the threshold value is of

utmost importance in detecting this attack. Our information fusion architecture ensures

that a locally optimum threshold value is chosen to best represent the system behavior

i.e. determine the cause as either noise or attack. If an attack is detected this threshold is

updated and it is minimized to reduce the effect of this type of attack.

b) Replay attack: For a replay attack considering the same system as (13); in order to

detect the attack, we injected an unknown signal into the system at a random point in the

system operation or at a chosen time. This signal is unknown to the attacker in the sense

that system behavior with this input cannot be determined by the attacker to converge the

state estimates to fit the expected pdf. The information inferred from the abnormality in

system state is represented in the control input to the actuator according to the output of the
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hypotheses selected. Therefore, we can detect the presence of an attacker. This is from the

measurement attack vector that can be found out by

Du(t) = y(t)−Cx̂(t) (13)

where, x̂(t) is the reconstructed state estimate from the new signal at the time of

inducing the signal that the user injects into the system and is input at the corresponding

time. Again if the value of Du(t) is not within the accepted bounds, we confirm the presence

of an attacker. In attacks where the attacker makes the difference between the attack state

estimate and the actual state estimate x̂∼ x very low, there is a possibility that the attackers

presence may go undetected. In such instances, however, the attack itself causes no harm

to the system’s stability. Furthermore, the attacker must vastly increase his attack scope

(number of nodes to be attacked) to either create disruptions or steal any resources. We did

not investigate an effective solution to this effect as gaining access to a large pool of sensor

nodes is in itself a challenging task even to an attacker. As in the case of data deception

attacks, the data sampling is altered according to the control information sent to the sensors

and actuators from Level 2.

Based on the parameters and the procedure mentioned previously, feature extraction

of several attack scenarios is done repetitively in order to reflect the most accurate represen-

tation of the WNCS. Information form the feature extraction is used to perform likelihood

ratio tests for different test samples to help profile the various attacks. These samples are

obtained from the control system’s operation under attacks. Multiple hypotheses were gen-

erated and a few with the highest likelihood ratio were chosen according to the operation

of the system under the various attack scenarios. This profiling and Hypotheses generation

and choice is done offline before the information fusion system is integrated into the sensor

network structure.
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Figure 1. Bayesian Network Model for feature extraction and decision process

D. INFERENCE ALGORITHM

A. Level 2.

It consists of the time varying Dynamic Bayesian Network (TVDBN), the hypotheses

selector and the control unit (whose output is fed into the actuators). The causal relation-

ships in the Bayesian Network (BN) are initially generated from a-priori probabilities.

These probabilities are derived from the information obtained from the feature extraction

process. Once the causal relationships are built as graph G, information from the feature

extraction process is fed periodically into the TVDBN. The TVDBN then unrolls over time

slices and is conditioned upon only the input at the previous time slice. Edges are then

either pruned or added according to the strength of probability values combined with the

correlation among the nodes. This unrolling over time slices constitutes the dynamic as-

pect of the Bayesian network. In a real-time environment, the BN does not update very

frequently. The provision to both dynamically adapt and update will prove helpful in the

case of an attack.



65

In this paper, we use a novel time varying dynamic Bayesian network (TVDBN)

model for online inferencing. We extend the basic DBN model so that both the structure

G and parameter Θ of network such as attacks, delays, quantization, packet arrival times

etc. become random variables that can change through time. These random variables G[t]

and Θ[t] are treated as additional hidden nodes in our graph model because they cannot

be observed directly. Contrary to most off-line learning methods, we employ our feature

extraction mechanism to dynamically infer the hidden states of network as well as miss-

ing data. Our framework is proposed in such a manner that any distribution, i.e. either

multinomial or Gaussian is dealt with effectively. A smooth transition prior is imposed on

their temporal variation to ease the problem of data scarcity. This novel representation of

changing network allows a unified modeling of both data and network itself under the same

dynamic Bayesian framework. In order to solve the problem of limited information to ac-

curately obtain the conditional probabilities, we employ a feature extraction and selection

method such as the particle filter. A particle filter (or Sequential Monte Carlo) is used to

determine the state posteriori because it can handle arbitrary system and observation mod-

els. The posterior distribution is approximated by a finite set of state samples {si
t} and its

associated weights {wi
t}.

p(st |o1:t ≈
Ns

∑
i=1

wi
tδ(st− si

t) (14)

and when Ns approaches infinity, the approximation can be close to the true distri-

bution. At each time epoch, filtering in done with the sample {si
t−1,w

i
t−1} of the previous

time. New samples are drawn from a proposal distribution q(•). With this, inference of

the hidden states can be performed for different network structures and parameters with

different dimensions.

We would like to mention the notable differences in our model and the ones that are
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comparable to it. A hidden variable is used to represent the change of network in [20],

but it only serves as an auxiliary variable to facilitate implementation. The structure and

parameter nodes in our TVDBN are principal components of the whole model, and they

represent the statistical attributes of current network. The online adaptation methods in

[13] can only model piecewise constant variation of network; while our method deals with

both continuous change in parameter and discrete change in structure. Smooth change of

network is ensured in [17] with a kernel window applied on data sequences; we achieve

similar goal via a smooth transition model with the aid of feature extraction and parameter

selection for the generation of conditional probability, which is a more favorable solution

from a Bayesian perspective. In the Gaussian graphical model [23], network parameter is

marginalized out and network structure is the only thing that is investigated. This does not

yield complete and accurate results as it cannot comprehensively determinate the causal

relations. In our approach, the states of both structure G and parameter Θ are inferred to

give a full description of current network.

As we deal with probability values, we can also use predictive mechanisms to de-

termine the effect of one parameter on the entire network. This understanding allows us

to generate hypotheses in the second phase of level 2 which comprises of hypotheses gen-

eration and testing. The generation is done according to the knowledge of the network

behavior. The hypothesis that is chosen is then sent to the Bayes output generator. This

generator then computes the best possible data rates, sampling, re-scheduling information

for optimal performance and stability. The cause and effect of parameters chosen for the

next time slice is determined and the control commands to the actuators are preset accord-

ingly. The commands will eventually be updated according to network’s performance and

behavior. This entire process is possible because of the information acquisition and fusion.

Our method also incorporates the possibility of an non-Gaussian input to the BN. We em-

ploy the Gaussian Mixture Model, which is a probability density function represented as
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the weighted sum of the Gaussian component densities. It is given by

p(x|λ) =
M

∑
i=1

wig(x|µi,σi) (15)

where, x is the D-dimensional data vector of measurements or features, wi is the mixture

weights and g(x|µi,σi ∀i = 1,2, ...M are the sub densities (components of the non-Gaussian

input), µi and σi are the mean and covariance respectively. By splitting the incoming PDF

in this manner of subcomponents, our information fusion scheme can tackle non-Gaussian

distributed data.
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Algorithm 3: LEVEL 2: Inference Algorithm
Input: Input graph from level 1 G, attacks, system state values
Output: Hypotheses, Control Messages, Network rescheduling
for attacks ai ∈ At = {a1, ...ak}&sk ∈ S do

while DoS attack do
compute τmati,τmad,τe2e,τsys
update all
flag Sensor {sk} ∈ {S}

end
while Wormhole attack do

compute τmati,τmad,τe2e,τsys
update all
obtain no. o f hops,τtn
flag Sensor {sk} ∈ {S}

end
while Stealthy attack do

compute State estimate xt
infer inconsistent data values
compute Quantization error εq
update τsam
flag Sensor {sk} ∈ {S}

end
while Replay attack do

compute State estimate xt
infer repetitive data values
compute residual error ρ

update τsam
flag Sensor {sk} ∈ {S}

end
determine f aulty sensors← f lagged sensors
recompute τsam,τmati,τmad
updateDBN
G← Ǵ
Level 2 == T RUE
return Hypotheses,Control Messages,Network
rescheduling, in f ormation, τmati,τmad
END

end
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V. EXPERIMENTAL SETUP

We made use of both PiccSim [13] and NS2 to simulate the NCS. PiccSim is a simulation

software that allows us to model the control plant. This model is the input to the simulator.

The sensor network is simulated using NS2. PiccSim is MATLAB based with a feature that

can link the control model in MATLAB to the network model in NS2 . The communication

between the two is done using specific assigned ports as shown in figure 2.

An inbuilt scheduling method schedules the manner in which the data and control

messages are transmitted. The packet transmissions are done over UDP protocol. TCP

can be used, but it increases unwanted retransmissions thereby congesting the network.

We used JCSTR (Jacketed Continuous Stirred-tank Reactor) as described in [14]. In this

simulation, a tank inlet stream is received from another process unit and there is a heat

transfer liquid that circulates through the jacket to heat the liquid in the tank. The objective

is to control the temperature and the volume in the tank by varying not only the jacket inlet

valve flow rate but also the tank outlet valve flow rate.

The control system is modeled first by linearizing the non-linear model (building

an appropriate linear model). The sensors are placed at the jacket inlet, tank outlet and

to determine the level of the liquid in the tank and also to determine the temperature of

the liquid in the tank. In total, 100 sensors are deployed. We loaded the plant model

into the simulation GUI by using PiccSim. The plant model is constructed in MATLAB

and the m-file is loaded. On another system, which runs NS2, the network topology is

loaded with required wireless network parameters like the propagation model, Routing

protocol, MAC protocol (MAC CSMA/CA) and the network connection pattern. As, the

network connection varies to reroute traffic according to new scheduling policies, different

possibilities of network connections are considered in the .tcl file. Our aim was to generate

data from a real time simulation, however, due to known issues with network emulation
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Figure 2. Representation of the PiccSim model

in NS2 and problems with 802.11 in emulations we chose not to. This however does not

lessen the correctness of the simulation as experiments were run over two machines, which

had to connect to each other over Internet. Synchronization is inbuilt in simulation models

in PiccSim. We can however alter this depending upon our requirements. PiccSim uses

an inbuilt synchronization protocol. Blocks are pre-built in PiccSim to trigger a subsystem

when a packet has/ has not arrived at a node block. The data was analyzed using the an

Bayesian network. BayesiaLab [15] was used to build the BN and generate new hypotheses

and choose from the existing ones.
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VI. RESULTS AND ANALYSIS

Experimental results are obtained after 500 simulation runs performed for each attack. The

results are averaged out values for the convenience of analysis.

A. SIMULATION OF LEVEL 1 ATTACKS

Replay attacks: Figure 5 illustrates the average packet reject 1 % in a replay attack.

A replay attack is one in which the attacker takes control of a certain section of nodes,

captures the data values being sent and replays them. In order to detect such attacks, the

control messages as determined by the level 2 of the architecture carry information in them

which requests a modification of transmitted value by sensors. This modification in the

data is calculated by a function with a correctness only the base station can corroborate.

Although an attacker captures a node, he will not have information regarding the function

and thus, the attack is detected.

In the 500 simulation runs, for replay attacks, the number of nodes captured, defines

the packet reject %. In figure 5, the packet reject % indicates the number of packets that

are rejected as a result of a successful attack. The actual attack line depicts the base case

of performance when no security mechanism is in place. We compare our algorithm Fu-

sion TVDBN (F-TVDBN) with the Switched Linear Dynamics System (SLDS) [16] and

the kernel-weighted TVDBN (k-TVDBN) [17] methods of implementation. F-TVDBN

indicates the use of our technique where the rejection ratio is significantly low. This is

because, we use Kalman filters to predict the data values at the controller node which feeds

the actuators of the control plant with a very close approximation of the actual data. The

measurement residual was adjusted based on the output from the inference algorithm about

an attack. This approach ensures a gradual degradation in the functioning of the control

1packet reject % is the % of packets that are rejected by the IFA or the user as opposed to packet drops
which are specific to network behavior
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plant rather than working on entirely false data that does not reflect the actual working of

the plant as reported by sensors.

Figure 3 shows the accuracy of packet reject % with respect to the number of genuine

packets being rejected. The number of genuine packets being rejected is low because of the

relative ease of finding out the distortion in the expected pdf of the state estimates. The pdf

of the state estimates for a certain section of the WNCS is known a priori. However, it is

also known that the pdf of the system state does not repeat itself over several time intervals.

The accepted values of the system state is determined by the confidence intervals of the pdf.

Injecting random signals into the system will alter the moments of the pdf. Packets that fall

within the bounds determined by the moments are considered good packets. However, due

to varying noise levels and system faults some good packets may fall outside this range

and are considered faulty. In our simulations, for replay attacks, on an average, the total

number of packets was 1000 per hour. In which, the average number of faulty packets

during various attack strengths were 434 making the average number of good packets to be

566.
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Figure 3. Good packet rejection % in Replay attacks

Stealthy data deception attacks: A similar approach was employed to determine of
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the presence of a data deception attack. A stealthy data deception attack works by clev-

erly deceiving the base station into believing that the values reported are accurate whereas

the actual values are modified in such a manner that they appear genuine. An intelligent

attacker will try to ensure that the corrupted system state never exceed the measurement

residual. This type of attack is used for the objective to steal resources from the plant e.g.

power grid theft and water supply theft. We use similar methods of detection employed by

[1, 3]. However, in our method, we tighten the error tolerance rate based on the hypotheses

generated in level 2 of our information fusion architecture. This error tolerance rate is de-

termined by sensor network aggregation, which makes sure that the error bound condition

has to be met by the group of sensors. By doing so, we force an increase in the scope

of attack implementation making it difficult for an attacker to attack. This can be seen in

figure 6 where, if upto 40% of the nodes are captured, the packet rejection % slowly starts

coming down and then increases gradually.

Figure 4 discusses the rejection rate of the number of good data packets in the stealthy

deception attack. Based on the discussion in ??, for varying system noise levels, allowable

errors due to bad model design arising from incomplete knowledge of system behavior, the

number of genuine packets rejected by our information fusion model for different attack

strengths is shown in figure 4. It is assumed that the attacker at any given time does not

have complete system knowledge. The attackers partial knowledge is represented in the

observation matrix H, the choice of which determines the convergence of the residual value

ρ. Adjusting the ρ value to determine the impact of an attack is of principal importance

in limiting the scope of an attacker, as then the attacker will have to risk being detected

by increasing the severity of the attack. In the figure 4 we can see that with an increase

in the number of nodes captured from 20% to 35%, the rejection rate of good packets

comes down. This is because of the manner in which the pdf of the residual value is

calculated by our fusion algorithm. After 35% of node capture, we simulate the change

in the attacker behavior in such a manner that the corrupted residual still converges to the



74

accepted residual. As we can see, our algorithm even under such extremely hard detection

conditions performs much better than the other learning methods. This is attributed to

the fact that our algorithm takes the overall impact of the parameters and features rather

than just the pdf of the residual and the known system model. In our simulations, for the

stealthy data deception attack, n an average, the total number of packets was 1000 per hour.

In which, the average number of faulty packets during various attack strengths were 443

making the average number of good packets to be 557.
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Figure 4. Good packet rejection % in Data Deception attacks

Before we go on to analyze the other attacks, we would first like to describe how

for different initial conditions different τ values were chosen. Figure 7 is an illustration of

how under changing τ values, the control packet size is altered and how the packet drop %

varies. From theorem 1, for different values of λ of the protocols such as Round Robin (RR)

and Try-Once Discard (TOD), the values of initial conditions φ`, where, `= 0,1 are chosen

based on the number of nodes used in the simulation. For instance λTOD =
√

(n−1)/n,

where, n is the number of nodes. Based on this, for different initial conditions of the NCS,

we obtained different τ values. For each of those τ values, we altered the packet size of the

control messages as can be seen from figure 7. We use this information in the analysis of

other attacks.
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Denial of Service attacks: In a DoS attack, the service is thwarted by either infinitely

rerouting packets in the network or by disrupting the flow of traffic or by causing the net-

work timeouts etc. In our implementation, as we do not use TCP, network timeouts do not

occur. We used our F-TVDBN to output an appropriate network rescheduling policy which

reroutes the packets from malicious nodes. As we can see from the results of avg. packet

drop rate in figure 8, with an increase in the number of nodes, in F-TVDBN, the number of

packet drops is less as compared to the one which uses Hidden Markov Model (HMM) as

an inference algorithm. Both these are compared to the base case where no rescheduling

takes place. We observed that even after employing our scheme, in many cases the packet

drop rate is still relatively low even after the number of nodes captured is >50. The end-

to-end delay helps us determine the sampling rates and the sampling time intervals for the

next time instant.

In order to tackle the effect of DoS attack (jamming attack in this paper), our fu-

sion architecture recomputed the values of τmati and τmad to maintain operational stability.

Figure 9 shows the delay in seconds for the number of packets transmitted over different

time slices. We introduced the attack in the system during our simulation and two different

time instants. If no delay compensation technique is employed, the controller must receive

an ith sample from the plant before computation of i+ 1th control signal to ensure stable

operation. Hence, total delay must satisfy the condition that τdelay < τmad . This decision

allows us to make appropriate conclusions about the operational stability of the plant and

subsequently modify the hypotheses to better suit the WNCS requirements. Sampling rate

can also be reduced at the cost of a slight loss in the data fidelity. This can be done to

save energy on the nodes under no attack. Once the attack is detected and mitigated, the

sampling rates are adjusted to suit the needs.

Wormhole attacks: As we can see from the figure 11, the % of packet drops is almost

same as for a denial of service attack. The number of nodes captured governs the packet

loss. The end-to-end delay in a wormhole attack is more pronounced as the nodes forward
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the packets to destinations that are not meant to be, so an increase in the number of nodes

captured will also affect the end-to-end delay. The packet drop % was compared against

the use of a HMM. As we can see from figures 12 and 13, during the second attack, our

scheme attempted to reduce the network delay significantly by upholding the condition

τdelay < τmati < τmad thereby ensuring operational stability of the plant. However, the values

of τmati and τmad were updated to suit the longer delays in the network. This operation

acts as the gradual degradation of the network rather than the network suddenly disrupting
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thereby causing the system to fail.
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Collaborative attacks: Figure 14 is a graphical representation of how the number of nodes

captured affects the packet drop % in our scheme vs HMM vs in actual attack. We can

see that by the time 50% of the nodes are captured, in collaborative attacks, the number of

packet drops goes as high as 88% in our F-TVDBN scheme and 94% in the HMM scheme.
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In the collaborative Replay and Data deception attacks, there was barely any difference in

terms of graphical representation as both of them fall under stealthy attacks and perform

similarly in the study of packet reject%.

B. LEVEL 2 OF INFORMATION FUSION: BAYESIAN NETWORK FOR
HYPOTHESES GENERATION

With the information obtained from the simulations, we computed the conditional proba-

bilities to determine the presence of a standalone, or, a collaborative attack. These proba-

bilities are continuously computed during run time and the updates are sent as input to the

TVDBN. A set of hypotheses was initially generated according to a priori experiments that

were run offline. This was done in order to enable us to choose from a preset hypothesis

and take necessary measures upon the detection of an event. As and when the TVDBN was

updated, we had a more defined and clear idea about the system behavior. This information

was incorporated into the determination of new hypotheses. Sometimes, it is possible for

the attacker to perform collaborative attacks. By doing so, the attacker can confuse the

system administrator and get away with without being detected. We considered such cases

also as listed in the joint probability values in the Table 2. To build such causal relations

among values, we used BayesiaLab (Bayes network tool). Table 1 provides us with the

concerned probabilities with respect to different parameters. This table indicates the effect

of (probabilistically) the various network parameters on the system. The probability of an

attack was computed according to this. According to this information, and by including the

effect of unknown parameters, we derived the conditional probability values.

Attack 1 (A1) - Replay Attack

Attack 2 (A2) - Deception Attack

Attack 3 (A3) - DoS Attack

Attack 4 (A4) - Wormhole Attack

Parameter (P1) - Packet Drops
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Table 1. Parameters and Probabilities of Attacks
Parameters Wormhole

attack
DoS
at-
tack

Deception
attack

Replay
at-
tack

Packet
Drops

0.89 0.93 0.42 0.37

System De-
lay

0.94 0.96 0.33 0.31

Communication
Delay

0.95 0.96 0.29 0.21

Inter-
arrival time
delay

0.92 0.92 0.18 0.22

Quantization
Error

0.46 0.32 0.93 0.92

Inconsistent
data

0.41 0.56 0.91 0.82

Repeated
data

0.13 0.18 0.89 0.94

Parameter (P2) - System Delay

Parameter (P3) - Communication Delay

Parameter (P4) - Inter-arrival time delay

Parameter (P5) - Quantization Error

Parameter (P6) - Inconsistent data

Parameter (P7) - Repeated data

Other factors and Unknowns (U) - Probability = 0.1 (assumed that there is a 10%

chance of deviation from normal behavior). Now, from the experimental observations,

we calculated the conditional probability values as shown in Table 2, where ∗ indicates

collaborative attacks.

Hence, according to these probability values, the Bayesian network is generated. We

define preset hypotheses viz.
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Table 2. Parameters and Conditional Probabilities
Attack/parameters P1 P2 P3 P4 P5 P6 P7 Total Probability
A1 0.37 0.31 0.21 0.22 0.92 0.82 0.94 0.94
A2 0.42 0.33 0.29 0.18 0.93 0.91 0.89 0.93
A3 0.93 0.96 0.96 0.95 0.32 0.56 0.18 0.96
A4 0.89 0.94 0.95 0.92 0.46 0.41 0.13 0.95
A1 ∩ A2 ∗ 0.37 0.32 0.24 0.21 0.96 0.93 0.91 0.94
A2 ∩ A3 ∗ 0.94 0.95 0.89 0.91 0.58 0.49 0.17 0.96
A3 | A2 ∩ A4 ∗ 0.87 0.88 0.92 0.89 0.30 0.33 0.29 0.89
A4 | A2 ∩ A3 ∗ 0.85 0.81 0.87 0.84 0.10 0.19 0.12 0.88

H0 = Attack 1 is accepted as it is; increase the number of function based value requests and

reroute traffic

H1 = Attack 2 is accepted as it is; tighten the error tolerance

H2 = Attack 3 is accepted as it is; change the network scheduling and routing and increase

the sampling rate

H3 = Attack 4 is accepted as it is; change the network scheduling and routing and increase

the sampling rate

H4 = Attack 1 & Attack 2 could take place; repeat measures from hypotheses 1 and 2

H5 = Attack 3 & Attack 4 could take place; repeat measures from hypotheses 3 and 4

H6 = No attack took place; the disruption could be a false alarm, reschedule the network
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and run Kalman filtering to reset the network

According to the experimental results from 500 simulation runs, hypothesis H0 was

selected 88.4% of the time when there was a replay attack actually took place. H1 was

selected 88.7% of the time when a deception attack took place. H2 was selected 96.5% of

the time when a DoS attack took place and H3 was selected 92.13% of the time when the

network was subjected to wormhole attacks. H4 was selected 94.3% of the time when ei-

ther attack took place which shows the efficiency of our approach. H5 was selected 97.2%

of the time when either DoS or wormhole attacks took place. However, in 9.8% of the

simulations, we were unable to differentiate between the two attacks. Inspite of this set-

back, we were able to uphold the system stability. The inaccurate determination (9.8%)

was observed owing to both the system noise and lack of information. False positives were

recorded in 2.2% of the total simulation runs i.e., in 11 out of 500 runs when our system

reported an attack when no attack existed. False negatives were recorded during 5.4% of

the time i.e. in 27 of the total 500 runs. Of the 27 runs, in 14 runs when we simulated

the deception attacks slightly over the accepted bound, our scheme could not detect any

attack. In the other 13 runs, upon altering the system noise (randomizing the noise input)

we could not detect the presence of an adversary. This throws light upon the effect noise

on the system stability and security.
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VII. RELATED WORK

Vast literature exists on both the performance and stability of NCS. Although, most of this

work is concentrated on scheduling and security algorithms for wired systems, research

about the use of wireless sensors has grown. The NCS systems which use the wireless

sensors to make them WNCS have many advantages, but with limitations. The information

sent out by them can be easily spoofed, read, rerouted indefinitely etc. This causes severe

damage to the control plant. Various studies [1, 2, 3, 1, 5] have dealt with the encryption

schemes in WNCS. One scheme [2] makes use of DES to encrypt the data messages and

thus, provides confidentiality. The study claims that use of such a technique gives enough

time before the attacker can actually read the message before the message becomes obso-

lete. Although this claim holds true, encryption techniques alone, however, cannot make a

control plant secure. Studies such as [17, 18] discuss both scheduling issues and stability

analysis and provide effective ways to tackle their scheduling. In [13] effective data rates

were sustained to maintain the stability of the system under different closed loop and open

loop conditions. This process is completed by feeding the control system with both preset

functional and control states that govern the stability of the system as required does this

process. The authors aim to reduce the need of excessive data rates as required by the

control plant.

So far, studies pertaining to security in WNCS focused on stand alone attacks. So-

lutions for the detection and prevention of collaborative attacks have not been proposed.

For instance, an attacker can employ both, an attack on the wireless sensors and the control

plant e.g. both DoS attack and Replay attack can take place simultaneously. This might

render the sensor/control messages to be in transit for a period long enough that a human

observer can overlook it as just an improper functioning or as just a schedule miss. This

can prove to be very costly for the smooth operation of a control system. In [1] deception
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and DoS attacks against an NCS are introduced, and, for the latter attack, a countermeasure

according to semi-definite programming is proposed. In [2, 3], false data injection attacks

against static state estimators are introduced ad studied. It is shown that undetectable false

data injection attacks can be designed even when the attacker has limited resources. In a

similar fashion, stealthy deception attacks against the SCADA systems are studied, among

others, in [4, 5]. In [6], the effect of covert attacks against networked control systems is in-

vestigated. Specifically, a parameterized decoupling structure allows a covert agent to alter

the behavior of the physical plant while remaining undetected from the original controller.

In [7], a resilient control problem is studied, in which control packets transmitted over a

network are corrupted by a human adversary. This kind of attack is an insider attack. A

receding-horizon Stackelberg control law is proposed to stabilize the control system despite

the attack. Recently, the problem of estimating the state of a linear system with corrupted

measurements has been studied [9]. More precisely, the maximum number of faulty sen-

sors that can be tolerated is characterized, and a decoding algorithm is proposed to detect

corrupted measurements. Finally, security issues of some specific cyber-physical systems

have received considerable attention, such as power networks, linear networks with misbe-

having components and water networks [3, 7].

Most recently authors in [26] proposed a distributed security framework for hetero-

geneous WSNs which is used largely for monitoring. This approach closely resembles

our proposed scheme in that their framework is also a security framework which takes into

consideration multiple attacks, but does not provide models used to detect individual or col-

laborative attacks. Additionally, our algorithm goes a step ahead and generates decisions

which are crucial in real-time applications like NCS. Our approach differs from them in

the sense that we do not just monitor, but also provide the backbone to build an automated

process to handle real-time applications.

In summary, our proposed approach is different from all the mentioned approaches

as none of the solutions proposed are comprehensive except [26], i.e. they can only be used
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in the detection of stand alone attacks. In the wake of growing need for an fully secure and

stable NCS, these solutions fall short. Our proposed fusion architecture performs admirably

by giving a unified solution to both stand alone and collaborative attacks. Furthermore,

we achieve this without using any encryption technique thereby reducing the overhead of

communication.
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VIII. CONCLUSIONS

Through this paper we have introduced an information acquisition and fusion scheme for

Wireless Networked Control System (WNCS), where, both feature extraction and decision

making are used in securing and stabilizing the system. We provided theoretical bounds of

time delays in order to ascertain system stability. In order to validate the efficacy of our

approach, we conducted several experiments using PiccSim and NS2. Through the analysis

of the results we obtained we understood that stabilizing a WNCS under security attacks

cannot be completely guaranteed. However, by using our approach we have shown that

we can mitigate the effects of security attacks and still provide the WNCS with operational

stability. Our approach improves on existing inference techniques as discussed in the anal-

ysis section. We showed using a Dynamic Bayesian Network, how changes in the network

behavior can be efficiently observed and decisions can be made. Based on these decisions,

the control messages had been altered to suit the requirements of WNCS.
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This paper addresses the problem of devising an effective task scheduling algorithm

which facilitates data processing of a Cyber Physical System (CPS) under bounded latency

under bursty or lossy traffic. Task scheduling traditionally caters to real-time systems where

a feedback loop does not exist allowing the serviced application to be independent of the

inputs from the server. However, owing to the nature of a near real-time CPS, such liberties

cannot be entertained. Additionally, the advent of big data in CPS has necessitated the

use of Cloud Computing as a scalable and cost effective alternative. Task scheduling in

such CPSs, where inputs from the Cloud complete the feedback loop is a major research

issue. Therefore, in this paper, we propose a multi-layered information fusion architecture

which provides for such a task scheduling mechanism by also accommodating both traffic

bursts and packet losses. Our scheduling algorithm ensures that the overall latency always

remains under an acceptable upper bound as required by the CPS application. We examine

the performance of our algorithm on an Amazon cloud using a real data set.
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I. INTRODUCTION

Cyber-physical systems (CPS) exhibit sophisticated system behavior that results from

coupling the physical components in classical engineering systems with the cyber compo-

nents that process information. The sophistication lies in the time-varying manner of the

role and existence of the number of sub-components that constitute a CPS. The research

challenge with such dynamic and complex systems is to tightly couple the physical and

cyber components through available physical attributes and acquired information. The so-

lution to this challenge is a decision support system which tracks, predicts and addresses

the needs of the system by outputting control decisions which closes the feedback loop

of a CPS. Such a decision support system cannot be made available through the on-board

processors on the physical components and requires a more scalable infrastructure such as

Cloud Computing [1].

Some applications such as transportation systems and smart grids are considered as

complex hybrid CPSs. These systems cannot always be converged into a finite and defined

set of initial configurations owing to constraints such as lack of absolute knowledge about

system behavior. To solve this problem, a feature extraction and selection mechanism that

draws implicit information from the limited knowledge is essential. It helps in understand-

ing the system behavior better and laying a strong basis for future decision making. Once

the features are extracted and the constraints delimited, the next challenge is to efficiently

process the information for quick dissemination over the entire network. This requires an

efficient prediction mechanism that determines the amount of processing power and buffer

space required for the tasks corresponding to incoming traffic stream.

CPS applications comprise a number of devices such as sensors and actuators dis-

tributed over a large geographical area. Increasingly, sensors in CPS applications are gen-

erating large volumes of data with varying processing requirements and highly variable
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traffic. Traditionally, the traffic model of a CPS is characterized by an ON/OFF behav-

ior [2]. An ON/OFF traffic model in itself is not self-similar and does not support bursty

traffic. However, an aggregated traffic trace that is a superposition of a large number of

independent ON/OFF traffic from different sources with heavy tail exhibits a second or-

der Self-similar behavior. The degree of self-similarity in the traffic is determined by the

Hurst parameter H and if 0.5 < H < 1 the traffic exhibits Long Range Dependence (LRD).

Self-similar traffic contains periods of bursty traffic which is hard to predict. Serving such

a traffic with low latency is another research challenge.

Scheduling of data generated by CPS has utmost priority. Conventional CPSs cannot

handle the growing requirements of big data because of constraints such as limited on board

processing, network and bandwidth constraints which are major bottlenecks for tasks such

as: data grouping, aggregation and inter-dependent processing. This problem becomes

more severe when the traffic and data are characterized by burstiness. Obtaining bounded

latency under such constraints is challenging. Several schemes exist [3, 4, 5, 6, 7, 8] for ap-

plications that distribute the incoming traffic onto the virtual machines on the cloud without

being required to close the feedback loop. However, they fall short when it comes to mini-

mizing latency that arises in time-critical CPS applications with a feedback loop. Also, task

scheduling is a decision problem which is NP-Hard and in some cases NP-Complete and

thus, has to be solved by approximating it to a known and polynomially solvable algorithm.

To address these research issues, we propose an Information Fusion Architecture

(IFA). We first devise an effective feature selection algorithm that chooses the features that

most appropriately describe the initial configuration of the CPS. This approach is iterative,

where, features are added and removed from a pool of features in O(nlogn) time. Next,

our IFA solves the above mentioned problems of obtaining bounded latency under bursti-

ness by using a causal graphical model. Inputs from the feature extraction and selection

algorithm are used to construct a causal graph, the output of which are multiple snapshots

that describe system behavior under varying network parameters. Finally, we propose a
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scheduling algorithm which uses the causal graph to schedule the tasks onto the virtual

machines on the cloud. We test the scalability of our approach by varying the data size of a

real CPS application. The results obtained showed us that under varying traffic burstiness,

different queue sizes and memory allocations on the VMs, our algorithm is effective in

keeping the latency requirements under bounds.
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II. PROBLEM STATEMENT

Formally, a set of sensors S = {s1,s2, ...sn} on a CPS record observations O =

{o1,o2, ...on} over a period of time {t1, tn}. These observations need to be processed in

a timely manner and send back the information about the subsequent events from the deci-

sions taken by an automated architecture. Upon obtaining sensor observations as grouped

data, the problem becomes two fold - (i) feature selection to determine the most useful fea-

tures that aid in decision making, and, (ii) Task prioritization based on QoS requirements of

the CPS. Next, to process these tasks, an effective scheduling algorithm has to be devised

that keeps the latency under bounds by determining the required number of virtual ma-

chines V M = {vm1,vm2, ...vmn}. The proposed algorithm should handle the complications

of dependent tasks which categorized it to be a NP Complete decision making problem.
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III. RELATED WORK

Most traffic models for vehicular and transportation systems, communication and

biological networks based on queuing theory [9, 10, 11, 12] rely on the assumption of

having a Poisson packet arrival process and a random service time that is independent of

the arrival process. Queuing models can be used to manage the load on servers based on

the incoming traffic streams by computing the average processing times, average waiting

times in queues etc. based on the traffic information like inter-arrival times. However, not

all queuing models are suitable to deal with the bursty arrival traffic. In [9, 10, 11, 12],

the traffic is self-similar and authors claim that the Hurst exponent is enough to capture the

characteristic of the traffic. As opposed to this view, authors in [2] claim that the fractal

nature of a traffic trace from heterogeneous source cannot be captured by just the Hurst

exponent. In [2], it is shown that the moments associated with various traffic processes

e.g. the packet arrival, average waiting times etc. follow a scaling behavior. In [13], query

processing is done using queuing theory to process the queries stacked in the buffers in

appropriate time. Buffer width is chosen based an optimization scheme to design the query

algorithm. The buffer optimization scheme does not consider bursty packet arrivals. The

solution provided in [13] deals with a different problem altogether as traffic that the buffers

are designed for, do not exhibit any self-similar behavior with long range dependence.

In order to better model the traffic exhibiting a self-similar behavior, many prediction

schemes have been proposed[14, 15, 16]. These schemes have their own short comings

as shown in terms of the accuracy and the latency with which they predict the incoming

traffic. Traffic modeling in CPS [17] and its related applications has not been studied

extensively. However, few studies that deal with smart grids have observed the traffic to

be long range dependent and have proposed solutions that use virtual queues with min-

max queuing [18] and the use of Mellin transforms [19] to show the effect of long-range
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dependence on the loss rate of energy tasks in a queued energy model. However, these

models do not provide an integrated solution that solves the NP-hard decision problem of

scheduling the most appropriate task into a queue for further processing. These papers use

on-site processing centers and thus, the latency requirements are met. Works that tackle

the problem of query processing in transportation systems, earthquake monitoring systems

etc. so far have not used the capabilities of cloud computing to solve the problem of low

elasticity and limited processing. In [20], the authors talk about need for the use of a Cloud

computing architecture in CPS applications. However, the use of Cloud computing poses

problems that pertain to latency in data dissemination.

In order to effectively solve this problem, an efficient load balancing mechanism built

around task scheduling is essential. In [3, 4, 5, 6, 7, 8], load balancing mechanisms have

been proposed based on scheduling. However, scheduling in these schemes tackles the

scheduling of the virtual machines to do the job/ task processing; not the scheduling of

incoming tasks. In works such as [21] authors propose an algorithm that tries to solve

the decision problem of task scheduling based on priority using ant colony optimization.

All the above mentioned algorithms provide solutions to individual problems in processing

information from an application. Our approach differs from them in that we provide a

unified solution that uses the concepts of prediction in self-similar traffic streams, a causal

graph structure for making decisions to solve the NP-complete problem of task scheduling

and load balancing in cloud computing. Using our fusion architecture, we provide a CPS

application with elastic processing capabilities with minimum latency.
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IV. PRELIMINARIES

A. SELF-SIMILARITY

The notion of self-similarity [22] in traffic traces can be simply explained as the

phenomenon where a property of a sample of a traffic trace is preserved with respect to

scaling in both space and/or time, i.e., if a traffic is self-similar, a part of it when magnified

will look similar to the shape of the whole.

Mathematically it is defined as follows:

Let X = (Xt : t = 0,1,2, ...) be a covariance stationary (wide-sense stationary) stochastic

process; i.e., a process with constant mean µ = E[Xt ], finite variance σ2 = E[(Xt−µ)2], and

an autocorrelation function

r(k) = E[(Xt−µ)(Xt+k−µ)]/E[(Xt−µ)2] (1)

where (k = 0,1,2, ...). In particular, X has an autocorrelation function of the form

r(k)∼ c1k−β,as k→ ∞ (2)

where, 0 < β < 1 and c1 denotes a finite positive constant. For each m = 1,2,3, ..., let

X(m) = (X (m)
k : k = 1,2,3, ...) denote a new time series obtained by averaging the original

series X over non-overlapping blocks of size m. That is, for each m = 1,2,3, ... , X(m) is

given as:

X (m)
k = 1/m(Xkm−m+1 + ...+Xkm),(k ≥ 1) (3)

For each m, if the aggregated time series X (m) defines a covariance stationary process,
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r(m) denotes the corresponding autocorrelation function. The process X is called exactly

second-order self-similar with self-similarity parameter H = 1−β/2 if the corresponding

aggregated processes X (m) have the same correlation structure as X , i.e., the autocorrelation

for the aggregated process r(m)(k) = r(k), ∀m= 1,2, ... and k = 1,2,3, .... In other words,

X is exactly self-similar if the aggregated processes X (m) are indistinguishable from X (in

general, with respect to the second order statistical properties), e.g. fractional Gaussian

noise (fGn) with parameter 1/2 < H < 1 [22]. A covariance stationary process X is called

asymptotically (second-order) self-similar with self-similarity parameter H = 1− β/2 if

r(m)(k) if it is in agreement asymptotically (as m,k→∞) with the correlation structure r(k)

of X as shown in equation 2. One can obtain the degree of self-similarity by employing the

methods as specified in [22].

B. QUEUING THEORY FOR SELF-SIMILAR TRAFFIC

Queuing theory has been extensively used in network analysis and consequently, in

modeling the self-similar and LRD nature of a traffic. Investigating queuing behavior with

LRD input traffic is important as it provides the theoretical boundaries which limit the

amount of traffic that can be served on a server. Information obtained from a queuing

model is useful in determining the load on the server at a given point of time. Among

the several queuing models used for network performance analysis [9, 10, 11, 12], the one

that services self-similar traffic appropriately is the MAP/G/M/k model. This is used in

modeling the burstiness in incoming traffic traces; best suited for modeling heavy tailed

distributions like the Pareto distribution.

For any queuing system, the utilization ρ is defined as ρ = λ

µ∗c , where, λ is the arrival

rate, µ is the mean and c is the number of servers (c≥ 1 ). Utilization is always required to

be ≤ 1 for system stability. The average time spent in the queue (Wq) for a MAP/G/M/k
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queuing system is

Wq =
δ

µ(1−δ)
(4)

where, δ is the unique root of δ = A∗(µ− µδ) in the range of 0 < δ < 1 and A∗(s) is

the Laplace transform of the probability density function for the inter-arrival time. This

information is used in the feature extraction and decision making process to determine the

waiting times in the queue for an incoming traffic trace. The waiting times are in turn

used in determining the latency of the system. As we mentioned earlier, the bounds on

the QoS latency are determined to keep the CPS stable. These bounds are application

dependent, thus depend on the incoming traffic stream, and the total service time on the

virtual machines on the cloud. Upon using any scheduling algorithm, there is a delay of

τd . This delay encompasses τcommunication and τprocessing. In other words, the CPS gets back

the control signals after τd time units. However, there is a bound on the total delay that

can be allowed for the system to be stable. Delay τd ≤ τmad where, τmad is the Maximally

Allowable Delay (MAD). To put both τmati and τmad into perspective, we can state the as

follows:

0≤ τd ≤min{τmad} (5)

Where, τmad is computed as τmad = Wq + 1
λ∗µ + τd . Here, τd is the network delay

in communication or possible packet drops over the network. Our aim is to recursively

compute τmad for the variable traffic streams depending on the long range dependence of

the traffic which governs the tail length and the queue size (queue length). The queue length

determines the number of incoming messages that can be processed, the number of packets

that are dropped owing to poor queuing and the number of servers to be allocated to serve

the information/ data sent over the network. In order to theoretically determine the upper
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and the lower bounds for the tail distributions, [23] determine them using a generalized

Schilder’s theorem, as are given by:

P(Q≥ x) = exp(
−1
2
−x+(n−m)tx

2

amtx2H +bntx2H
) (6)

P(Q≥ x)≥Φ(
−x+(n−m)tx√
amtx2H +bntx2H

) (7)

where, m is the mean traffic arrival rate E(λ), a is the variance coefficient which

determines the long range dependence and self-similarity, H is the Hurst parameter, n is

the required service capacity to serve the load and x is a random variable determining the

queue length. Based on these bounds, we calculate the queue length (queue size in terms

of memory occupied) and the latency achieved in serving a queue of such a size.
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V. INFORMATION FUSION ARCHITECTURE

A. OVERVIEW

We propose a multi-layered information fusion architecture as shown in Figure 1.

The decisions outputted from the architecture become the feedback loop which completes

the proposed cloud assisted CPS.

• Level 1: Lays emphasis on the information acquisition through Feature Selection

(FS).

Here, we run our feature selection and update process algorithm which corresponds to FS as

shown in Figure 1. Using FS we choose the most appropriate features such as the network

characteristics of the incoming traffic trace to establish a preliminary setting that models

the traffic. Features such as self-similarity and long Range Dependence (LRD) in the traffic

trace are also determined to complete the service requirements of the traffic. Additionally,

using a probabilistic traffic arrival determination method, we predict the burstiness of the

incoming traffic in order to determine the number of Virtual Machines (servers) that could

be needed. Such thorough profiling of the incoming traffic is done to determine the choice

of a queuing model.

In a dynamically changing CPS comprising of heterogeneous sub-systems, traffic

patterns and service requirements will not remain constant. Predicting such changes and

modeling such a traffic is a major challenge. For e.g, LRD cannot be serviced in the same

manner as a renewal process as LRD is not independent and identically distributed (IID).

Furthermore, renewal process cannot handle traffic burstiness which exists when the traffic

trace is self similar. Also, packet arrival times may not be represented accurately due to

packet drops and/or network delays. In order to tackle these issues efficiently, an appropri-

ate choice of the queuing model is of utmost importance. In our architecture, the values of
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the Kendall’s notation of the queuing model change with the feedback from the decision

maker D as shown in Figure 1. The choice of the queuing model determines the service

times and the overall latency which are used as inputs in choosing appropriate snapshots

(si,s j,sk,sl,sm) for Level 3 processing. The features of the traffic that are selected from the

Feature Selection algorithm are used to construct the causal graph in Level 2.

• Level 2: Consists of a causal graphical model to evaluate causal relationships among

several network parameters.

These causal relations are a result of correlations among various network parameters se-

lected from Level 1 such as Inter-Arrival Times (IAT), elements of LRD such as: self-

similarity (Hurst parameter H) and shape parameter α of the traffic distribution, burstiness

of the next incoming traffic stream over a time window (B.int) and traffic arrival rate λ (with

packet drops and delays included in this node of the graph). The causal relations are also

among parameters on the processing units such as queue sizes (Q Size), buffer occupancy

on the VMs (Buff. space), utilization etc. as depicted in level two of Figure 1. These causal

relations are represented as a Bayesian Network.

This causal graph is used to design a scheduler where the scheduling policy is de-

signed by taking into consideration the predicted burstiness in traffic and the priority of the

tasks. Task priority is partially determined by the output of the causal graph. Appropriate

scheduling policy is useful in avoiding the boot time of the virtual machines by starting

them prior to their requirement in real-time. This reduces the latency which is bound to

arise in the absence of such a prediction scheme for resource allocation, as it approxi-

mately takes several minutes to start a new instance on a VM on the cloud [20]. One may

argue that scheduler can schedule tasks on virtual machines that are already running, but

this would be constrained load balancing, thereby, defeating the purpose of using cloud’s

elasticity. However, care must be taken to reduce over-allocation of available resources ren-

dering them to be under-utilized. A feedback to the causal graph also exists from the cloud



102

to the causal graph to input how many more tasks a VM can handle. This information is

then determined by the causal graph based on available buffer space and memory and used

in outputting snapshots in Level 3. Based on the feedback from the cloud, the most appro-

priate queuing model that gives a locally optimum scheduling output is chosen to reduce

the wait times in the queue and the server, thus, keeping the latency always in the bounds.

The algorithms in Level 1 and 2 are iteratively run to obtain locally optimum latency values

over several time windows, as the globally optimum values cannot be achieved as latency

is dependent upon decision making process which is an NP-Complete problem.

• Level 3 pertains to the analysis and distribution of the information onto the cloud

servers and data dissemination back into the control loop.

In figure 1, the components of level 3 are the system snapshots (si,s j,sk,sl,sm), the decision

maker D and the cloud. Scheduling tasks on the cloud servers (VMs) is based on task

priority and QoS requirements of the CPS. Tasks in the CPS application used in this paper

basically correspond to the processing requirements based on the area of observation (see

sec. VI). Task prioritization refers to the importance of the processing of one set of data

over the other based on the impact it has on the overall stability and operability of the

CPS. Task/content distribution based on prioritization is done to maximize utilization for

efficient information processing. Efficient scheduling enables quick re-transfer of data back

to the control unit with locally optimal latency as it improves the processing on the VMs by

reducing the wait times. Re-transferred data also contains information in control messages

that is sent to the sensors, which governs the new set of sensor readings to be taken, for

better information processing at the next time instant. The decisions taken by the fusion

architecture with the aid of this new information improves the overall system behavior.

The information fed to the fusion architecture and control decision feedback forms the

communication loop and satisfies the control requirements of the physical component of

the CPS and closes the control loop.
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Figure 1. Information Fusion Architecture

B. DETAILED FUSION ARCHITECTURE

1. Level 1: Feature Selection.

Feature selection in the information fusion architecture is a method by which a sub-

set of predominantly discriminative features are selected among the entire set of features

characterizing CPS. This is an important pre-screening and filtering process which allows

the user to focus information processing on important and defining characteristics of the

traffic. In our fusion architecture, we use feature extraction in a manner which aids us with

determining the network characteristics of the traffic trace. Parametric information such as

the degree of self-similarity, arrival rates, service rates, network delays, system noise etc.

are extracted to help obtain multiple snapshots of the system representing system behav-

ior under changing parameters in the next level. After this, correlations among the chosen

parameters are computed. This is done in order to help build causal relations among the

parameters to update the decision pool with information about new network/system snap-

shots. Among the snapshots that are output using the features in the decision pool, the most

appropriate snapshot which satisfies the QoS requirements of the CPS is selected. Further-

more, parameters chosen from the feature selection algorithm are useful in determining the

probability of bursty intervals in the incoming traffic.

In the feature selection and update algorithm, let F be a pool of features to be se-



104

lected from. At the start of the fusion process, the pool is empty, as no features are selected

for analysis. Later on, upon adding new features fi and removing low impact features fk

(i.e. features whose extraction and use in further decision making process will not improve

overall QoS), we obtain a new feature pool Fnew. This is done by calculating the symmet-

ric uncertainty among the attributes of the features. The correlation co-efficient γ is used

as a threshold to determine the most appropriate features to be selected and input to the

next level in generating a causal graph. The correlation co-efficient determines the strength

and the overall effectiveness of the causal graph. It is empirically determined based on

QoS requirements under the constraint of keeping the latency under the maximally allow-

able delay τmad as given in sec. B. γ is application specific and could change and is not

necessarily preset. The algorithm is as follows:

Algorithm 4: LEVEL 1: Feature Selection and Update Process
Input: Incoming traffic stream, Information about feature dependence
Output: Inter-arrival time, Task segregation, Self-similarity, Queuing model, arrival rates
Initially F = Φ

while i < F do
∀ fi /∈ F
Perform fi

⋃
F

Update F → Fnew = F ∪ fi

Update Fnew− fk where, fk ∈ γ

∗remove low impact f eatures
return F = Fnew

end
determine task T ∀ fi ∈ F

Feature selection has a greedy approach and sometimes might not give the desired

output. In such a scenario, we propose to multiply the autocorrelations with random val-

ues in order to make the set of values more uniformly distributed. By doing so, we make

sure that new features can also get added into existing features (parameters) in the feature
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pool. This approach adds edge pruning to the fusion architecture and makes it more ac-

commodating and fair; thus, making it more accurate. It must be noted that the feature

selection algorithm chooses parameters that are network specific and not cloud specific and

they are still very much applicable to large scale cloud deployments such as is the case with

Amazon.

Time complexity analysis: Calculation of symmetric uncertainty can be done in linear

time depending on the number of features k used from the traffic trace. Since the feature

selection algorithm is iterative and at each instant at an average half of the features in the

pool are eliminated. This gives us a time complexity of O(NlogN). Hence, the overall time

complexity is O(kNlogN).

2. Probabilistic Burst Prediction and traffic analysis.

Traffic packets arrive at different times. They may arrive in a burst or after long

silence between bursts. For example, n number of packets may arrive in x seconds, or,

there is x seconds of silence between the arrival of two packets. This shows that when

packets come in bursts, it is very likely that arrival of the next packet will also be as part

of the burst. Also, the next packet that arrives following packets that arrive with long inter

arrival silence is more likely to come in a burst. The first step in computing whether the

next packet is bursty or non-bursty is to obtain information about the packets’ arrival time.

Network traffic input is obtained as Pareto Distribution with the restriction 1<α< 2, where

α is the shape of the distribution. This maintains the long-range dependence. τ is used to

control the size of bursty interval and non-bursty interval. To compute the total number of

packets in the interval (whether bursty or non-bursty), we calculated the probability of the

type of the incoming packet i.e. if it belongs to the bursty or non-bursty interval.

P[X ]non−bursty−packet = 1/(1+∑Tp bursty−interval),

when tarrival > τ

(8)
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P[X ]bursty−packet = 1/(1+∑Tp non−bursty−interval),

when tarrival ≤ τ

(9)

Paverage o f non−bursty−packet =

1/n∑P[X ]n non−bursty−packet ,

where n = 1,2,3, ...n

(10)

Paverage o f bursty−packet = 1/n∑P[X ]n bursty−packet ,

where n = 1,2,3, ...n
(11)

where, P[X ] is the probability that the next packet arrival time is greater or less than

τ and Tp is the total number of packets in the interval. Once we have achieved this, we

compute the probability of the transition of the entire transaction up to time t by computing

the average of the probability. Once these probability values are obtained, the time interval

over which the bursty packets are predicted is noted.

3. Level 2: Causal graphical model construction. In this level, we build a causal

graph by building causal relations among the parameters. Causal relations help us un-

derstand the effects of a change in one network parameter with respect to the other and are

built based on the correlations between the network parameters. The network is dynamic in

nature, i.e., causality changes over a period of time based on: changing QoS requirements,

number of dependent tasks, network behavior etc. In order to capture this dynamicity, ap-

propriate correlation co-efficient has to be chosen in a manner which gives locally optimum

values from the decisions output at this level, and, which satisfy QoS while ensuring CPS

stability through bounded latency. Thus, the choice of the threshold δ is of utmost impor-



107

tance and must be computed periodically over several time windows based on the predic-

tion and determination of the traffic arrival. The causal graph has nodes which are made up

of network parameters like the arrival rates, waiting times, queue lengths and queue sizes,

Hurst parameter values, shaping function α, service times etc. The most important criterion

to be satisfied in CPS is latency reduction while maintaining QoS, i.e. lower latency con-

dition which does not satisfy required QoS will not be chosen. Such a reduction in latency

will not show performance improvements. Thus, in order to determine the locally optimal

latency values, we propose the idea of outputting several network snapshots of the future

system state and choosing from among the most appropriate snapshots that reduces overall

latency and better represents the system behavior. This is a quicker way of pro actively

ascertaining decisions as opposed to reactive iterative algorithms used in decision making.

4. Level 3:Snapshots and decision making. Snapshots si ∈ {S} contain the cal-

culations of the service times in relation to the most important parameters that form the

feature pool. Service times reflect the wait times in the queues, delays over communica-

tions, task re-prioritization and resource re-allocation and task re-scheduling. This is done

over several time intervals by sliding the time window as new traffic arrives. Using the

snapshots, we can make decisions to preempt the Cloud to scale its resources accordingly.

C. TASK SCHEDULING ALGORITHM

We would now like to describe our task scheduling algorithm that takes into account

the above mentioned QoS constraints on task priority. Task scheduling on the VMs is

extremely critical as it determines the overall makespan. It is also instrumental in meeting

with the application specific delay constraints. Our Task Scheduling Algorithm (TSA)

starts by prioritizing the tasks based on the importance of their processing on the overall

system behavior. Our scheme, firstly prioritizes the tasks based on their importance and

time-criticality, then, calculates the mean service time on a virtual machine on the cloud,

the average waiting time in the queue and schedules the requests or the incoming traffic
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Algorithm 5: LEVEL 2: Information fusion architecture for scheduling under
variable loads

Input: Features F from level 1, parameter correlations
Output: System snapshots, Control Messages, Task scheduling, Task

prioritization, Dependence graph G
for ∀{ fi, f j} ∈ F do

generate dependence graph G
while G do

compute γ ∀ { fi, f j}
compute edge weights w f or dependence graph
{G}
w = taskpriority{ fi, f j}+ γ{ fi, f j}
generate snapshot{S}
compare {si,s j} ∈ {S}
{G′}= sorted {G}

end
update {G} with changed w
determine snapshot← current{G}
***SCHEDULING {Sc} ON VMs ***
determine available space on V Ms,Wq
calculate queue length(Q),memory requirement
on V M, τmati,τmad

update snapshot{S}
allocate tasks ti ∈ {T} to V Ms ;Schedule{Sc}
determine completed tasks tk
update Schedule{Sc′}= {Sc}− tk
generate control messages
return Snapshot, Control Messages, Sc
in f ormation, τmati,τmad,Task completion time
END

end

into the queues accordingly for each of the parameters. This ensures that resources are

provided to the tasks with high urgency.

Scheduling strategies proposed in [24], pertain to scheduling a VM to perform a task;

bringing up new instances based on the needs of incoming tasks has not been handled

effectively. Also, in schemes such as [24], scheduling corresponds to the load balancing

of files on the VMs; instead of prioritizing tasks and performing resource allocation for a
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real-time task-critical application. Our queuing based fusion architecture takes appropriate

decisions to overcome this task scheduling issue. Cloud platforms using EUCALYPTUS

use regular scheduling schemes such as Rand or Qlen are used. Our proposed scheme

improves on them in scheduling tasks based on the QoS requirements. Using the concepts

of queuing theory, the scheduler calculates the mean service time on a VM on the cloud, the

average waiting time for a schedule to be cleared off the queue (waiting time on the queue

Wq) and schedules the incoming tasks accordingly. The tasks are prioritized based on γ and

its out/in degree (dependency on other tasks). This ensures that resources are provided to

the tasks with high urgency. However, there is a down side to this approach. There could

be tasks that might never meet the emergency criteria and remain in the queue forever. In

order to break such a deadlock, we define a preset maximum allowable time threshold ψ

beyond which it has to be allotted a computing resource. ψ is determined using τmati -

the maximally allowable time interval before another task on the queue is processed and

τmad is the maximally allowable delay before which QoS requirements for the CPS have to

be serviced. This threshold value is obtained by taking as reference, the largest allowable

waiting time on a task based on previous experiences. Algorithm 2 describes our Task

Scheduling Algorithm in its completeness.

1. Algorithmic Complexity. We now determine the time complexity of our

scheduling algorithm which is based on a DAG. The complexity is computed based on

the number of tasks t, number of edges e, and number of nodes n.

1. There are t tasks in the DAG for parallel computing. For each task ti, the computation

of task priority can be done in O(n + deg), where deg is the maximum in degree or

out degree of the task. Therefore, the overall time taken to compute the task priority

is O(t(n + deg)).

2. After computing the task priority, a efficient sorting algorithm can be used to sort the

tasks in logarithmic time O(tlogt).
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3. To determine the task completion time for all the tasks for all the nodes based on the

QoS requirements, the complexity is O(n∗deg).

4. To allocate the tasks to all the resources, in the worst case scenario, the execution

time is O(n). In order to determine the overall scheduling time we have to consider

the completion time and the allocation time together. Hence, the time complexity is

Ot(n∗deg+n).

5. The overall time complexity of the entire algorithm is O(t(n∗deg+n)+tlogt+t(n+

deg)).
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VI. EXPERIMENTAL SETUP AND PERFORMANCE ANALYSIS

We performed experiments on real data from a CPS application called the ICE-L

experiment [25] which captured the Cloud Condensation Nuclei (CCN). CCN is useful

in predicting the rainfall and is in turn used in weather predictions. The data contained

supersaturation values below which the particle concentrations would activate into cloud

droplets. The total data set has 1.5 million data points from different data sets of the same

experiment. We then used slice interpolation on the real data twice to generate 30 and

100 million data points. Additional synthetic data was generated owing to lack of readily

available real big data in CPS. We can assure that interpolated values were statistically

consistent with the real data. We used Amazon’s EC2 instances to run our experiments. We

used 4 small instances 3 medium instances and 2 large instance with RAM sizes 4Gbytes,

8Gbytes and 16Gbytes and with 4 cores, 8 cores and 16 cores. We compared our results

to two standard schedulers as provided by Amazon, a Hybrid scheduler as devised in [4],

Critical Path Genetic Algorithm (CPGA) [14] and the Duplication Scheduling Heuristic

Algorithm (DSH) [27]. From our experiments on Amazon, we largely observed that very

large network delay is rare. However at times, the delay was larger than desired and the

unexpected delay is incorporated into the determination of upper bound of latency in our

architecture.

A. SELF-SIMILARITY PREDICTION

We ran our probabilistic burst prediction algorithm to predict the burstiness of the

self-similar CPS traffic (CCN traffic) and the CCN dataset. As we can see from Figure

2, the faint blue bursts is the actual CCN data and the red data is our estimation. Self-

similarity can be seen in both data and the traffic. In order to study the effects of long range

dependence and self-similarity, traffic with varying self-similarity and traffic burstiness
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was used and the effects of varying queue sizes and buffer spaces in the VMs’ memory

was studied. By implementing our algorithm, we captured the self-similar behavior of the

traffic and predicted the traffic behavior. From Figure 2, in instances where the spikes

(bursts) were larger than the predicted amount of traffic, we noticed a negligible change in

the performance of our algorithm. This is because our fusion architecture selects the queue

size based on the expected incoming traffic and sets the queue limit to a little more than

the expected value. This queue size adjustment is done to ensure that any unexpected burst

is accounted for and served appropriately. Accuracy in predicting the traffic traces were

effective in determining the LRD of the traffic and estimating it. It helped us in choosing our

decisions about the queue lengths and the appropriate load distribution solution accurately

over different time windows. Figure 3 shows a sample of the bursty packets in the traffic

trace. It gives us an understanding of the peak bursts and average bursts that is being

processed by our scheduling algorithm.
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Figure 2. Self-similarity in the CPS data

B. EFFECTS OF QUEUE LENGTH ON THE TAIL AND VICE VERSA

We studied the effect of queue lengths on the tail distribution to study the effects of
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Figure 3. Bursty workload of the CPS traffic

LRD on the decisions taken by our architecture. Our simulation results both indicate that

given a very small queue size Q, as Hurst parameter H increases from 0.59 to 0.78, tail dis-

tribution (probability of possible long range dependence) decreases, but not by much. This

happens because if there are small buffer spaces, then resetting and truncating effects are

bound to show up. When the queue is reset or emptied in a small buffer size, the correlation

degree of adjacent-input traffic becomes weak and effect of LRD can be studied only when

traffic streams accumulate in buffer in comparable quantity. Meanwhile, messages will be

discarded if there is a buffer overflow, which further weakens the effects of LRD traffic.

Figure 4 displays a trend where, the tail distribution as well as the queue size are inversely

proportional to an increase in the self-similar nature of the traffic as indicated by an increase

in the Hurst parameter. This trend is observed as our Information Fusion Architecture (IFA)

increases the buffer space to hold more packets thereby, reducing the probability of long-

range dependent data outside the queue. This is done in order to efficiently re-schedule the

tasks on the VMs.

This trend is observed because there is no resetting and truncating with a large buffer

size and therefore, the level of relevance of long range dependent traffic becomes more

significant. As a consequence, with an increase in the Hurst parameter, larger buffer sizes
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are chosen so as to smooth traffic flows in the queuing system. As the effects of LRD

traffic become more obvious, longer queue length (thereby, bigger queue size) and poorer

queuing performance is observed. A poorer queuing performance can be related to an under

utilization of the queue when there are only intermittent bursts, not continuous. Thus,

knowledge about the effects of Hurst parameter on queue size is of high significance in

choosing the queue lengths. Assuming we have an infinite queue, study of the effect of

queue length vs Hurst parameter is not of any great significance. But, even with the use

of cloud computing, where a server can be dedicated to holding and maintaining queues,

in most practical applications, an infinite queue length is still a far fetched assumption.

Hence, using queuing theories based on an infinite queue length has its limitations in real-

time scenarios. However, in the case of a CPS applications, because of the nature of the

traffic and the traffic arrival rates, a finitely infinite buffer on a cloud platform is a safe

assumption. The information obtained from these results is fed into the decision making

process as described in section 3 to enable greater efficiency in coming up with a decision

that could predict the snapshot at a future time with respect to the choice of the queue size,

wait times and buffer space available (which is used in determining the VM allocation).
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C. UTILIZATION AND SPEEDUP

Utilization is defined as the ratio of the capacity of the VM that is in use at a given

instant of time over the total VM processing capacity. It can also be interpreted as the

time for which a VM is busy over a given time period. Utilization ρ = λ

µ∗C is a measure

of how effectively the scheduling algorithm performs. We conducted experiments to de-

termine utilization with respect to the queue sizes and the total load on an instance over a

time period. Figure 5 shows how the percentage utilization varies for different instances of

VMS. Figure 5 represents the utilization of each of the small, medium and large instances

for the three different data sets with varying burstiness. We can observe that the utilization

of large instances in the real data set containing 1.5 million nodes is low. This is because

our algorithm determined that usage of small and medium instances was sufficient to pro-

cess tasks. As we can see, the large instance was only used for 38% of the time, thereby

reducing unnecessary resource provision. Large instances were only used for tasks with

higher priority and in cases where the wait times in the queues would result in long latency

values. Similarly, in figure 5, we can see that in the cases of 30 million and 100 million

data points, the utilization of medium and large instances was high. This is determined by

our algorithm based on the size of data to be processed, the increase in task dependency

and the corresponding maximally allowable delay that is computed. We see a reverse in

the utilization trend for the larger data sizes because our algorithm now uses the small in-

stances to solve processing contention and congestion in the queue and additional parallel

processing required to obtain quicker latency values.

We considered speedup as another performance metric to study the effectiveness of

our scheduler in task prioritization and resource allocation. Speedup is estimated as S =

T (1)/T (C) i.e. the time taken to execute a set of tasks on a uni-processing unit vs the

time taken to perform same set of tasks using C processing units (VMs). We compared our
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results with Critical Path Genetic Algorithm (CPGA) [14] and the Duplication Scheduling

Heuristic Algorithm (DSH) [27]. As we can see from figure 2, our algorithm outperformed

the other two algorithms except in the case of 4VMs for CPGA. This is because of the

availability of extra processing which aids the genetic algorithm in [14] at that particular

time instant. However, this makes [14] static as any reduction in the VMs will affect their

performance as opposed to our algorithm which can adjust to fluctuations in the incoming

data to be processed. Hence, our algorithm scales smoothly over variable number of VMs.

Our algorithm showed a linear increase in speedup despite bottlenecks such as bandwidth

constraints, whereas, the other two algorithms performed sub-linearly. This shows that

the snapshots generated by our scheduler outputs decisions upon considering the over all

performance increase, instead of just considering latency reduction.
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D. EFFECT OF QUEUE LENGTH ON BUFFER SIZE IN MEMORY AND
PACKET LOSS

In our analysis of the throughput and packet loss rate, the improvement in perfor-

mance for large buffer sizes was gradual. Figure 7 shows that the qualitative dependence
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of mean queue length for large buffer sizes under packet loss is determined by the degree

of self-similarity. For H close to 0.5, the functional dependence of mean queue length on

buffer capacity is clearly sub-linear (roughly logarithmic) whereas for H close to 1, the

dependence becomes linear. For very large values of the buffer size we expect the delay

curve to saturate even when α (shaping parameter of the distribution) is close to 1 although

the practical significance of the difference in the magnitude of their queuing delay will be

preserved; because, when the shape parameter is close to 1, the distribution has infinite

variance and finite mean and the queue size decays slowly in a hyperbolic fashion indicat-

ing the presence of long-range dependence. The proportional increase in buffer occupancy

for H close to 1 indicates that even for large buffer sizes, packet drops included in traffic

burstiness is high enough to cause constant utilization to meet the requirements of unser-

viced tasks. Figure 7 represents a difference in the growth of the queue size upon using

IFA as compared to using Amazon’s inbuilt scheduler for various H values. As we can

see, even with an increase in packet loss %, our architecture performs well as snapshots are

generated by varying the parameters which is representative of the network performance

and CPSs QoS requirements. A further increase in packet loss will only see our algorithm

showing a sublinear increase due to its nature of dynamically adapting to longer task exe-
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cution times by resource allocation and queue management. However, our algorithm will

still be excuted in superlinear time despite the sub-linear increase in queue size. Otherwise,

a linear increase of queue size can manifest an exponential growth in the time complexity

due to inaccurate algorithmic approximation.

0

50

100

150

200

250

0 4 8 12 16 20

In
c
re

a
se

 in
 M

e
a
n
 Q

u
e
u
e
 S

iz
e
 

(M
B

)

Packet Loss %

H=0.59

H=0.78

H=0.89

h=0.89 (IFA)

Figure 7. Effect of queue length on packet loss percentage

E. LATENCY

As stated in the section II, the main aim of this paper is to have bounded latency

at all times to enable fast data dissemination back from the cloud. Our results in Table 1

prove the efficiency and the effectiveness of our approach in bounding latency as compared

to other scheduling approaches. Our experimental data comprises of multiple data sets

with differing QoS and task processing requirements, which refutes any claim that partial

heuristic nature of our algorithm conforms to a certain type of data. From the complexity

analysis in sec. 1, we can see that the overall processing latency is bounded by the number

of features f , number of tasks t, the number of nodes n and their degree deg. Based on

that, the worst case complexity was seen as task dependency grew with the number of

tasks t. However, since independent tasks also existed, we observed a reduction in the time
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complexity to finish a batch of tasks. Our IFA makes decisions about bringing up new

resources dynamically based on both the completion time of the service and the wait times

in the queues. Hence, our entire IFA works seamlessly under variable traffic conditions

based on the feedback from each level of its implementation.

Table 1 shows the minimum and maximum latency values for each of the three dif-

ferent data sizes with varying burstiness from low to high. The delay τmad before which

cloud should be able to send back decisions for 1.5 million and 30 million data sizes was

5 seconds, whereas, for 100 million points the allowable delay was 10 seconds. This delay

is calculated based on how data is pooled from the sensors. We observed that the total

latency time even under bursts is always bounded in our Information Fusion Architecture

(IFA) as compared to the Hybrid 1 scheduling algorithm in [4] and the RoundRobin(RR)

and Qlen scheduling used by Amazon. The latency times as shown in Table 1 are repre-

sentative of the minimum and maximum of the sub-optimal latency times over different

time periods. We say latency is sub-optimal because under variable traffic, obtaining the

optimal solution is not possible. Latency includes the network delays as observed upon

migrating the data to the cloud. Amazon’s Elastic Load Balancer dedicates the VMs prior

to running any experiment and uses EUCALYPTUS’s inbuilt scheduler which is static and

cannot handle burstiness effectively. However, upon use of our architecture on Amazon

cloud, we have seen a significant reduction in the latency as compared to other schemes.

Hybrid 1 scheduling algorithm in the table is a decentralized scheme which is used to pro-

cess varying bursty loads, was run under the same constraints as our algorithm for fairness

of comparison. However, Hybrid 1 does not take into consideration dynamically changing

traffic burstiness and the scheduling is preset based on burstiness predicted at the start of

the simulation. RR and QLen are the more common schemes used in EUCALYPTUS cloud

and are not suited to dynamic changes in traffic traces and hence cannot perform well un-

der bursty traffic conditions. The latency times shown in the table also reflect the decision

making efficiency of the algorithm at several time instants. The results are representative
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of how the scheduler makes use of the resources that are both available and in reserve. As

we can see, latency values for varying burstiness for three different data sizes in IFA are

lower and always bounded owing to the nature of our algorithm which is both iterative and

dynamic in determining the queue sizes, buffer spaces and in determining the arrival of

incoming traffic stream.

Table 1. Overall latency for CPS data processing
Data IFA Hybrid

1
RR Qlen

1.5 Mil-
lion

.52 -
2.10sec

.61 -
4.81sec

3.47 -
8.36sec

3.78 -
14.23sec

30 Million 1.20 -
3.89sec

2.91 -
5.89sec

5.48 -
15.57sec

7.34 -
14.21sec

100 Mil-
lion

1.6 -
6.3sec

3.85 -
11.45sec

7.89 -
34.36sec

6.57 -
41.23sec
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VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a causality based information fusion architecture

to bridge the gap that exists between scalable processing with minimal latency for time-

critical information dissemination in a CPS. We have studied the effects of self-similarity

and long range dependence in predicting the traffic bursts over time intervals. We have

then devised an information fusion architecture that effectively manages task scheduling

using load balancing on the cloud. We learned that even with an adaptive scheme, it is

difficult to achieve near 100% utilization on instances under bursty and non-deterministic

traffic. We determined that latency is lower bounded by network and traffic characteristics,

and, over any time period if the latency is below the theoretical upper bound under those

constraints, incremental reduction in latency does not improve the overall performance.

The extensive simulations we conducted and results and analysis from them validate this

claim by observing how different network analysis parameters like tail probability, queue

length etc. affect scheduling on the cloud. In future, we would like to extend our work

to see how inclusion of security breaches in the cyber and/or physical sub-system(s) will

affect scheduling under variable loads and bursts for a cloud-assisted CPS.
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In this paper, we propose a new approach to the semi-network form game theory to

obtain a robust and attack resilient scheduling mechanism for a Cyber Physical System

(CPS) connected to a cloud computing platform. The need for a cloud computing plat-

form arises owing to the ever increasing processing demands of CPS applications, which

are becoming increasingly heterogeneous. In future, this heterogeneity will demand big

data processing of CPS applications. However, in time and mission critical CPS applica-

tions, big data processing has to satisfy stringent Quality of Service (QoS) requirements to

seamlessly close the control and decision feedback loop. Such QoS requirements will need

a scheduling mechanism to efficiently utilize the scalable processing components as pro-

vided by a cloud computing platform. However, owing to the increase in the attack space of

an attacker with an increase in access points, the scheduling mechanism needs to be robust

even under security attacks. To address this issue, we develop an extension of the semi-

network form game to aid the scheduling algorithm proposed in the paper. We conducted

experiments on Amazon EC2 cloud and analyzed the results of our work in comparison

with other existing scheduling mechanisms.
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I. INTRODUCTION

Real world applications of Cyber Physical Systems (CPS) extend to various domains

such as but not limited to Transportation CPS and Supervisory Control and Data Acqui-

sition (SCADA) systems such as Smart Grids. The requirements and Quality of Service

(QoS) parameters for each of the applications vary in nature (static or dynamic) based on

the topological setting and the communication environment. The primary aim of the cyber

component aiding such CPSs should be to maintain system operational stability and also

to ensure security. In Transportation CPS, the job of the cyber component also extends

to dynamically updating the overall system in lieu of new sub-systems and components

being added on-the-fly, thus making it more complex. Therefore, in such dynamic hybrid

systems, QoS requirements such as latency constraints of accurate processing and commu-

nication and feedback of control and decision are very stringent owing to stability concerns.

Satisfying the varying QoS requirements of connected components while keeping the la-

tency low to run the CPS smoothly is a non-trivial task and cannot be efficiently performed

using only the existing infrastructure of processing components on the various CPSs men-

tioned.

Providing CPS security is very important in maintaining the stability of the system by

satisfying the QoS requirements of the components. An attacker can cripple the system by

attacking either the cyber or the physical component and cripple either one or both of them.

In our paper, we discuss a game theoretic solution which considers the effects of attacks

on either components that propagate to the other component. This task of keeping a hybrid

CPS stable under various dynamism and security attacks necessitates the use of a Cloud

Computing (CC) platform as the cyber component. CC creates more processing resources

to cater to the increased computational needs of an unsecured CPS. In contrast to a cen-

tralized architecture of traditional CPS, cloud platforms provide a scalable and distributed
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and heterogeneous platform with lower operational and setup costs. However, integrating

cloud with a CPS comes with some design challenges, e.g. migrating computations onto

the cloud could result in QoS constraints such as an increase in the overall information

processing latency. Also, additional bottlenecks such as bandwidth constraints, resource

unavailability etc. could arise because of the poor co-design of the cyber (CC) and the

physical components.

Game theoretic principles pit multiple players with varying objectives against each

other. In contrast to a pure optimization technique, game theory allows behavioral modeling

of the attacker and defender over progressing time intervals. Each player has a set of tuples

that govern the strength of his decision making abilities. The tuples consist of information

about players’ QoS requirements, players’ observable system state and access points to the

system. As games are played iteratively, employing a solution scheme that unrolls over

multiple time slices reflects the system state at each iteration as accurate as possible. In

order to deal with this problem, we delved into the domain of dependency graphs. Dynamic

Bayesian Networks (DBNs) are a subset of dependency graphs that we have used in unison

with the game theoretic framework. A similar concept was developed by authors in [11]

using bayes-net and is called as Semi Network-form Game (SNFG) of human strategic

behavior. However, our approach is different from existing work in that we use a time-

varying DBN where causality among the random variables over multiple time slices exists

inherently. This is more suited to a game theoretic framework, where decisions could be

made with partial or incomplete knowledge of the opponents’ strategy. Our DBN aided

game theoretic framework produces control decisions and information that is useful for

scheduling on the resources

Based on the outcome of the game over several time slice, decisions are taken which

provide inputs to the scheduler. Task scheduling for a hybrid and possibly dynamic cyber

physical system is a very complex process. Owing to the real-time latency constraints im-

posed on hybrid CPS by security attacks, this problem becomes more complicated as given
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tasks have to be re-prioritized and rescheduled under the influence of an attack. Therefore,

in this paper, we device a scheduling algorithm that builds on the information about the

system state as output by the game theoretic approach. The task scheduling algorithm pro-

posed in this paper is an effective solution for dependent / precedence-constrained tasks.

Task dependency has to be taken into consideration as dependent tasks determine the on-

time fulfillment of QoS requirements.

Our main contribution of this paper is to couple the cloud platform and the physical

system by eliminating the various coupling constraints mentioned so far. Therefore, in

order to eliminate coupling constraints and provide robustness, an extension of the semi-

network form game and a QoS satisfying scheduling algorithm made robust by the semi-

network form game have been proposed in this paper. This multi-layered solution is to

provide a security-driven scheduler which can provide the required robustness. Such a

framework should address the issues of attack modeling, response and action optimization

and subsequently allocate resources to provide appropriate defense against security attacks.

In this paper, we provide details on the use of a SNFG and how we use a time varying

DBN to capture the interactions of the game over multiple time slices. Next, we describe

the security considerations upon which our scheduling algorithm is based. Finally, in our

experimental evaluation, we will discuss how we used metrics such as makespan, speedup,

resource allocation and reliability to determine the effectiveness of our proposed solutions

in comparison with other techniques.
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II. RELATED WORK

Scheduling algorithms are very crucial in obtaining high performances in hetero-

geneous computing systems such as cloud. The basic objective is to reduce the overall

makespan. Directed Acyclic Graphs (DAGs) are used to represent the parallel computation

problem and task scheduling, where nodes represent the tasks and edges represent the de-

pendencies with other tasks. It has been shown that the problem of finding optimal schedule

is NP-complete. The most common heuristic DAG scheduling is the traditional list schedul-

ing algorithm. However, most list scheduling algorithms are designed for homogeneous

systems [3, 2]. Several list scheduling algorithms have been proposed for heterogeneous

systems, such as, mapping heuristic (MH) [16], dynamic-level scheduling (DLS) [21], Dy-

namic Critical Path (DCP) [1] and heterogeneous earliest-finish-time (HEFT) algorithm

[3]. There is very little previous work in the field of security driven scheduling algorithms

as most researches do not focus on that problem. Of the existing works on security driven

scheduling, the QSMTS-IP [5] algorithm is capable of meeting diverse QoS requirements

which includes security for multiple users, It focuses on minimizing the number of users

whose tasks cannot be completed due to resource limitations. In [19], authors studied dy-

namic security-aware scheduling algorithms for single machine, homogeneous cluster, and

heterogeneous distributed system. Their work can provide overall system schedulability

under security. The closest work to this research is by [7, 18]. They developed three risk-

resilient strategies and a genetic algorithm-based scheme, that is, the Space Time Genetic

Algorithm (STGA), to provide security assurance in grid job scheduling. However, their

algorithms cannot be applied in heterogeneous systems such as cloud. Unfortunately, these

algorithms are applicable only on the cyber component and not in a bi-directional security

scenario such as a cloud-assisted CPS.

For scheduling workflows, researchers have focused on a single QoS parameter -
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makespan which makes them inefficient for CPS with many QoS parameters that affect

the performance such as cost, reliability, and latency. The most popular approaches for

scheduling are the static or dynamic list scheduling algorithms based on different heuristics

such as opportunistic load balancing (OLB), minimum execution time (MET)[6], minimum

completion time (MCT) [12], min-min, max-min [8] and heterogeneous earliest finish time

(HEFT) [3]. Their basic idea is to determine an order of tasks based on heuristics and

schedule the tasks accordingly. In addition to these heuristic techniques, there are also some

meta-heuristic approaches such as genetic algorithms (GAs) [14], simulated annealing (SA)

[9] and genetic simulated annealing (GSA) [25]. In general, meta-heuristic approaches

manage to obtain much better performance, but take a longer execution time which can

violate the basic condition of lower latency QoS requirement for a CPS application. In

order to achieve this, we must make sure that the scheduler considers the trade-offs between

different QoS parameters in order to satisfy the QoS requirements from both CPS and users

and optimize the performance of the whole application. Buyya and Tham [24] proposed a

workflow scheduling algorithm for economy-driven or market-driven computing platforms

to minimize cost under the deadline constraint.
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III. PROBLEM FORMULATION

In this paper, we address two specific problems that arise as a result of the coupling

of a cloud platform to the physical system. The first problem is that of security and the

second problem is that of task scheduling or more specifically workflow modeling under

dependent tasks. Security is highly critical and difficult to achieve owing to the multiple

access points for the attacker into the system. Thus, the security problem can be modeled

as a game between the attacker and defender who have partial or no information about

each others’ strategy. In lieu of this complexity, we mathematically define the problem as

follows :

A player of the game has to maximize his/her utility function U , while taking into ac-

count the costs of playing the game and opponents strategy. For a defender, the observation

space Ω for his strategy reflects his knowledge about the system behavior as an operator.

However, the defender will either have noisy or partial information about the system state

under the possible presence of an attack. Similarly, an attacker will have incomplete infor-

mation about the global system state. An attacker’s control will be limited reflecting the

part of the system which falls under his attack scope. Therefore, for both the defender and

the attacker, the objective is:

maxUD(xdi,cd,Sc,Ωnd) = E[UD
+(xdi,cd,Sc,n)]−CD(xdi) (1)

maxUA(xai,ca,Ωna) = E[UA
+(xai,ca,Ωna)]−CA(xai)

where, UD,UA is the utility function of defender and attacker, xdi,cd,Sc,Ωnd are the

best strategy for the system state of the defender at time slice i, cost of selecting the strategy,

the scheduling function to be generated, and the observed space over a part of or all the

nodes in the system. Similarly, xai,ca,Ωna corresponds to the attacker’s tuples. E(•) is the
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expected utility of the attacker or the defender, where the players evaluate their strategy

against the overall cost function Cx = {CD,CA}. Cost for a defender is computed from

the increase in the number of resources required to maintain the reliability of the CPS.

Similarly, an attacker’s cost accounts to the requirements for an attack perpetuation with

considerable gains.

Based on this understanding, we have proposed a solution to maximize the defender’s

utility function and force the minimization of the utility of the attacker to safeguard the

system against security attacks.

The second problem that we solve in this paper is the selection of a scheduling design

Sc for workflow among dependent tasks based on the input about QoS requirements and

constraints from the solution to the afore mentioned first problem. The challenge is then

to design a scheduler which effectively incorporates the requirements of the changing QoS

such as latency, reliability and cost under security attacks.
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IV. SECURITY USING GAME THEORETIC PRINCIPLES

A. SEMI NET-FORM GAME (SNGF)

In order to detect an attack and maximize the defender’s utility function, we propose

an extension of a Semi-Network form Game [11]. Semi-Network form games are a specific

class of the network form games. It uses a Bayes Network consequently representing the

underlying application as a probabilistic framework with random variables that are both

observable and unknown. It combines the principles of game theory with time varying

graphical structure to take actions even under no/partial information. In a semi-network

game, the player can only control one decision node which captures his representation of

the system state; whereas, in the normal game, players can control multiple decision nodes

at the same time. Our work builds upon previous game-theoretic models of human-in-the-

loop aircraft collision avoidance systems [11]. In this paper, we focus on developing the

computational model for predicting the outcome of an attack on CPS where the operator is

uncertain about the presence of an attacker. Further, we make extensions to the assumptions

about limiting the operators’ certainty that an attacker is present forcing the operator to

perform well under both normal and attack conditions. We pro-actively predict the steps of

further attack scenarios, thereby enabling us to design the physical and control system more

effectively as opposed to a reactive approach. Thirdly, the extension to design requires

numerical evaluation of many more scenarios, and in most scenarios, information about

system state is not always available, either due to the presence of an attack or due to system

faults. In order to counter this unavailability of information, we propose an architecture

that fuses the principles of game theory and a time-varying DBN.

To summarize, we model and simulate the behavior of the defender and the cyber-

physical attacker by developing reward functions and solution concepts using DBN that
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closely represent the decision making processes of a human attacker or a machine. This

differentiation is important, as the inferences a human can make about the system state

with limited information and the subsequent decisions he makes is significantly different

from those output by the utility function of an automated system/ machine that is used in

an attack. Therefore, non-co-operative game models are embedded into the decision nodes

of an SNFG that represents the evolution of the physical state and information available

to both human decision nodes and the automation nodes. Choosing an accurate model

allows the player to predict the outcomes of different system and parametric designs and

consequently, maximize his own utility function. Such a design process finds similarities

in the economic theory of mechanism design [24] where an external player designs a game

under equilibrium conditions. The key difference between our approach and [24] design is

that we do not assume equilibrium behavior which allows us to not settle to a solution for

the control theoretic operations, but to explore all possibilities.

To predict how system design choices affect the outcome of attacker-defender inter-

actions, we need a description of when player decisions are made and how these decisions

affect the system state, i.e. a game definition. Sophisticated attacker strategies may be

carried out over multiple time steps (i.e. many sequential and causal decisions), therefore,

SNFG has to be expanded to fit such dynamicity. In order to satisfy this condition, a DBN is

unrolled over sequential time slices to mimic the attacker-defender interaction. Each DBN

is a causal graph G= {V,E}with V nodes and E causal edges connecting time, and, has the

structure of a distinct SNFG played out at time step i. These SNFGs are combined together

to form an iterated SNFG by passing the system state si, the players’ moves/decisions DDi

and DAi , and the players’ memories MDi and MAi from the SNFG at time step i to the SNFG

at time step i+ 1. Since an SNFG has its components in both the cyber and the physical

domain, we define the nodes that pertain to human behavior (attacker or defender) as de-

cision nodes; and the nodes that are observed by the players in the game as chance nodes

(the physical process). If a player plays SNFG against an automated machine with no in-
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ferential capabilities, the strategies from such a node is still embedded as a decision node

and not a chance node.

Formally, we define the SNFG as follows

Definition 1. An N-player semi-network form game is a quintuple (G,Y,U,R,π) where,

1. G is a directed acyclic graph {V,E} with V vertices and E causal edges. The parent

of a node is written as par(v) and the child node is denoted as chi(v), v ∈V .

2. Y is the Cartesian product of ‖V‖ with at least two elements.

3. U is a set of N utility functions X → RN . Each player has his/her utility function

which he/she looks to maximize.

4. R is a partition of the vertex set V into at least one chance node (physical system) and

N player nodes or decision nodes.

5. π is the conditional probability distribution of each v ∈V that is conditioned upon its

parent nodes.

In an SNFG, each player takes the best response action based on the observed infor-

mation which is inferred from the system state. The statistical inference is performed by

treating G, aided by conditional probability functions in π, as a Bayesian graphical model.

It is difficult to derive a closed form of posterior probability distributions for a Bayesian

network conditioned on some observed information. In order to alleviate this drawback,

sampling techniques such as forward sampling, importance sampling or rejection sampling

are widely used for approximating the posterior probability distributions. However, in

SNFG, the major challenge is to sample from a decision node for which the conditional

probability distributions are not specified. This is because π is only defined for chance

nodes in the model.

We now describe the different nodes in the game. These nodes have causal inter-

connections based on which decisions are made by the player to maximize his/her utility
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functions. At each time epoch, the nodes are causally interconnected and then unrolled into

the next time step. Transition from one time instant to another time instant is based on the

time-varying DBN.

1) Attacker existence: The decision to play a game against an attacker has to be made in

order to ensure that optimal strategies are selected and the cost of selecting those strategies

is minimized. Hence, there are two type of attacks that a game can be played against. One

in which the presence of an attacker is detected and one in which there is unsurity about

the presence of an attacker. With this in mind we define undetectable and unknown attacks

as follows [15]:

Definition 2. An undetectable attack is defined as an attack, where, given initial conditions

y(x1,u, t) = y(x2,0, t), where, ẋ = {x1,x2}, u̇ = {u1,u2}, t are the observed state variable of

a measurement, the input to the system and the time instant, are input using an algorithm

which is static; the observable output converges to the same value as is the case without

any attack. It becomes completely undetectable if t >attack signal that starts after time 0.

Definition 3. An unidentifiable attack is defined as an attack where given initial conditions

y(x1,u1, t) = y(x2,u2, t) using an algorithm which is static, the observable output converges

to the same value as is the case without any attack. The attack ai ⊂ A, where, A is a set of

stand-alone or collaborative attacks, becomes completely undetectable if t >attack signal

that starts after time 0. An attack is unidentifiable if it cannot be distinguished from among

an established set of attacks S.

Based on this, the probability of the presence of an attacker is given by p and this

probability is used in obtaining the maximization of the utility function which selects the

overall strategy. Varying values of p will determine the way the game is played, i.e. the

defender strategies are changed and varied based on the attack probabilities.

2) System state: The nodes si represent the actual physical state of the cyber-physical sys-

tem at the beginning of the time step i. In such cases, the defender’s memory MDi and
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the attackers memory MAi are held separately from the knowledge about the true physical

state in order to incorporate the cases when either strategy or information about the players’

observable space is unknown.

3) Observation Spaces: Observation spaces correspond to the information each player has

about the system behavior and his/her control over the physical or cyber components given

as Ωnd or Ωna for the defender and attacker respectively. These observations are not com-

plete (the players do not get full state information), they may be binned (indicating only

the range of a variable, not the precise value), and also, they may be noisy. Here, Ωnd

represents the visibility of the system as observed by the defender and can be assumed to

be more consistent and informed owing to the nature of the defender being the CPS op-

erator. However, it does not include information about the attack signal injected through

the compromised node that has been taken over by the attacker. In contrast, Ωna mostly

provides information about the node captured from which, inferences can be made about

the overall system state. Information from both Ωnd and Ωna consists of the CPS’ control

state and design variables and would be inter-dependent on each other which further define

the interactions among the defended and attacker in the game.

4) Player Memories: The content and evolution of player memories should be constructed

using a DBN based on application specific information or experiments whose outcomes

are decisions made by humans. This is important because decision bias incorporated by

distinct humans gives a better understanding of the pseudo-optimal decision strategies that

will arise while playing the SNFG.

The defender and the attacker memories are represented as MDi,MAi ∈Mi and consist

of the observation space Ωn, the players’ moves/decisions DDi−1 and DAi−1 in the previous

time instant and in the case of a defender knowledge of the presence of an attacker and

system noise η. Therefore, MDi = {Ωnd ,DDi−1, p,η}. Similarly, MAi = {Ωna,DAi−1}. The

memory of both the players is an exponentially decaying memory function of the form

Mi
Di

= (1−1/n)Mi−1
Di

+DDi for the defender and Mi
Ai
= (1−1/n)Mi−1

Ai
+DAi . This means
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that the memory of a player will heavily be dependent on the number of time steps com-

pleted before a change in the decision is recorded.

4) Decisions and players’ moves: The players decisions and moves are made by solution

concepts such as Level-K reasoning as described in [11]. In this type of thinking model,

the player makes the decisions based on the assumption that the opponent is at level k-1,

which puts him perceivably at a better position.

B. TIME VARYING DYNAMIC BAYESIAN NETWORKS

In order to model the transitions among the iterative SNFG being played, we propose

the use of a time varying dynamic bayesian network. Among several methods used for

temporal and sequential analysis, dynamic Bayesian networks (DBNs) have been the most

successful. A DBN is the extension of a Bayesian network (BN) in temporal domain in

which conditional dependencies are modeled between random variables both within and

across time slices. The conditional distributions are assumed to be homogeneous in DBN;

that is, the structure G[t] and parameter Θ[t] of DBN are fixed throughout the time. Under

this assumption, a DBN is effectively constructed by unrolling a DBN in time axis, and

the model learning procedure can be greatly simplified. However, this bold assumption

limits the power of DBN in modeling many non-stationary sequences where the intrinsic

relationships among variables change from time to time.

In this paper, we use a novel time varying dynamic Bayesian network (TVDBN)

model for online inference. We extend the basic DBN model so that both the structure G

and parameter Θ of network such as attacks, delays etc. become random variables that can

change through time. These random variables G[t] and Θ[t] are treated as additional hidden

nodes in our graph model because they cannot be observed directly. Contrary to most

off-line learning methods, we employ our feature extraction mechanism to dynamically

infer the hidden states of network as well as missing data. Our framework is proposed

in such a manner that any distribution, i.e. either multinomial or Gaussian is dealt with
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effectively. A smooth transition prior probability is obtained which eases the problem of

data scarcity. This novel representation of changing network allows a unified modeling

of both data and network itself under the same dynamic Bayesian framework. In order to

solve the problem of limited information to accurately obtain the conditional probabilities,

we employ a feature extraction and selection method such as the particle filter. A particle

filter (or Sequential Monte Carlo) is used to determine the state posteriori because it can

handle arbitrary system and observation models. The posterior distribution is approximated

by a finite set of state samples {si
t} and its associated weights {wi

t}.

p(st |o1:t ≈
Ns

∑
i=1

wi
tδ(st− si

t)) (2)

where o1:t are the observed values up to time t. When Ns, the number of state sam-

ples (particles) approaches infinity, the approximation can be close to the true distribution.

At each time epoch, filtering is done with the sample {si
t−1,w

i
t−1} of the previous time.

New samples are drawn from a proposal distribution q(•). With this, inference of the hid-

den states can be performed for different network structures and parameters with different

dimensions.

We would like to mention the notable differences in our model and the ones that are

comparable to it. A hidden variable is used to represent the change of network in [20],

but it only serves as an auxiliary variable to facilitate implementation. The structure and

parameter nodes in our TVDBN are principal components of the whole model, and they

represent the statistical attributes of current network. The online adaptation methods in

[13] can only model piecewise constant variation of network; while our method deals with

both continuous change in parameter and discrete change in structure. Smooth change of

network is ensured in [17] with a kernel window applied on data sequences; we achieve

similar goal via a smooth transition model with the aid of feature extraction and parameter
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selection for the generation of conditional probability, which is a more favorable solution

from a Bayesian perspective. In the Gaussian graphical model [23], network parameter is

marginalized out and network structure is the only thing that is investigated. This does not

yield complete and accurate results as it cannot comprehensively determinate the causal

relations. In our approach, the states of both structure G and parameter Θ are inferred to

give a full description of current network.

As we deal with probability values, we can also use predictive mechanisms to deter-

mine the effect of one parameter on the entire network. The generation is done according

to the knowledge of the network behavior. The hypothesis that is chosen is then sent to

the Bayes output generator. This generator then computes the best possible data rates,

sampling, re-scheduling information for optimal performance and stability. The cause and

effect of parameters chosen for the next time slice is determined and the control commands

to the actuators are preset accordingly. The commands will eventually be updated accord-

ing to network’s performance and behavior. This entire process is possible because of the

information acquisition and fusion. Our method also incorporates the possibility of an non-

Gaussian input to the BN. We employ the Gaussian Mixture Model, which is a probability

density function represented as the weighted sum of the Gaussian component densities. It

is given by

p(x|λ) =
M

∑
i=1

wig(x|µi,σi) (3)

where x is the D-dimensional data vector of measurements or features, wi is the mix-

ture weights and g(x|µi,σi) ∀i = 1,2, ...M are the sub-densities (components of the non-

Gaussian input), µi and σi are the mean and covariance respectively. By splitting the in-

coming probability density functions in this manner of sub-components, our information

fusion scheme can tackle non-Gaussian distributed data.

In order to further help in accurately approximating the true distribution, we use a
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feature selection algorithm which selects the most relevant features to be used in determin-

ing the posterior distribution. In the feature selection and update algorithm, let F be a pool

of features to be selected from. The features are specific to the CPS application and can

be obtained from the traffic information, system behavior, observed noise etc. At the start

of the selection process, the pool is empty as no features are selected for analysis. Later,

upon adding new features fi and removing low impact features fk i.e. features whose ex-

traction and use in further information polling process will not yield a better cost benefit

for the strategy selection, we obtain a new feature pool Fnew. Γ is the causation co-efficient

that determines the features to be selected and input to the next level in generating causal

graphs. The causation co-efficient determines the strength or the impact among a set of

features. It is empirically determined under the constraint of maximizing the utility func-

tion and has an application specific lower bound l.bound. Feature selection is described in

Algorithm 6.

Algorithm 6: Feature Selection and Update Process
Input: Incoming traffic stream, Observed system state, system noise
Output: System and network features, Task prioritization, profiling task

dependency
Initially F = Φ

while i < F do
∀ fi /∈ F
Perform fi

⋃
F

Update F → Fnew = F ∪ fi
Update Fnew− fk where, fk ∈ Γ < l.bound
∗remove low impact f eatures

end
return F = Fnew
determine task T ∀ fi ∈ F

Feature selection has a greedy approach and sometimes might not give the desired

output. In other words, the feature selection algorithm may reach an equilibrium thereby,
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being unable to detect undetectable and unidentifiable attacks. In such cases, a simple

solution is to multiply the causation among the variables with random values in order to

make the set of values more uniformly distributed. By doing so, we make sure that new

features can also get added into existing features (parameters) in the feature pool. This

approach adds pruning to the fusion architecture and makes it more accommodating and

fair; thus, making it more accurate. It must be noted that the feature selection algorithm

chooses parameters that are network specific and not cloud specific and they are still very

much applicable to large scale cloud deployments such as is the case with Amazon cloud

services.

Time complexity analysis: Calculation of symmetric uncertainty can be done in linear

time depending on the number of features k used from the traffic trace. Since the feature

selection algorithm is iterative and at each instant at an average half of the features in the

pool are eliminated. This gives us a time complexity of O(NlogN). Hence, the overall time

complexity is O(kNlogN).
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V. WORKFLOW MODELING - QOS BASED ROBUST TASK SCHEDULING

Task scheduling based on QoS requirements is an important factor that goes into

determining the overall utility metric of the player. In this paper, we describe the important

metrics from an defenders perspective in providing secure and reliable QoS.

Upon profiling, prioritizing, and determining the tradeoffs of performing some tasks

over others, we need to determine an appropriate makespan (scheduling length) to reduce

the overall latency. Since decisions about the order of task completion are made based on

the QoS requirements of both the user and CPS application, we generically use three basic

QoS requirements cost, latency and reliability upon which we determine the effectiveness

of the performance. The overall latency is affected by the delays in task completion, cost

is determined by the number of service instances (Virtual Machines) on the cloud used for

information processing, the migration of information among Virtual Machines (VMs) and

other costs specified in Service Level Agreements (SLAs). Finally, reliability is the overall

availability of the CC platform to serve the QoS requirements of the user or the CPS appli-

cation. Of the three QoS requirements, cost is the most volatile and sensitive factor that is

easily affected by the other two QoS requirements. Hence, cost as a determinant of effective

workflow modeling under delays is discussed in detail under latency and reliability.

The function of the workflow scheduler is to allocate all tasks in the workflow to

available resources (VMs) to generate a concrete workflow that minimizes latency and cost

and maximizes the reliability. The scheduling model also incorporates user-defined thresh-

olds for QoS parameters, i.e., task completion deadlines, budget for application processing,

and the lower bound on reliability expected from the CC platform. Hence, the objective

of the scheduler is to find a schedule that optimizes the user-preferred QoS parameters and

satisfies all the user-placed QoS restrictions.

Because of the presence of precedence relations among the tasks, we model the work-
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flow as a Directed Acyclic Graph (DAG) G = (V,E). Let n be the number of tasks in the

workflow. The set of nodes V = {T1,T2, ...,Tn} corresponds to the tasks of the workflow.

The set of edges E represents precedence relations between tasks. An arc is in the form

of (Ti,Tj) where Ti is called the parent task of Tj and Tj is the child task of Ti with each

task having an execution time eti . A child task can only be executed until all of its parent

tasks have been completed. The set of parent tasks of Ti is denoted by par(Ti), and the set

of child tasks by chi(Ti). Each task Ti, where 1 ≤ i ≤ n, has a computational domain

Si = {si
1,si

2, ...,si
mi} where, si

j represents a service instance (VM) provided by the cloud

service provider and mi is the total number of available service instances for Ti. The prop-

erties of a service instance can be denoted as a tuple (si
j.r,si

j.l,si
j.c) where the terms in

the tuple correspond to the reliability, latency and cost of the chosen service instance. Task

precedence specifies the execution order of tasks that a feasible solution must/can satisfy.

We now define the three QoS constraints based on which the DAG is constructed.

Reliability constraints: The reliability of the generated concrete workflow must not be

smaller than a user-defined variable reliability constraint. In other words, given a schedule

Sc ∈ (Sc1, ...,Scn) which implies Ti is executed by si
Sci , if Sc.reliability is the reliability of

a schedule Sc then Sc satisfies the user defined Reliability only if

min si
Sci. r ≥ Reliability (4)

Latency constraints: Total execution time of the workflow must not be larger than the

application specific Deadline.

Sc.Latency = max si
Sci. l ≤ Deadline (5)

Cost constraints: Given a schedule Sc ∈ (Sc1, ...,Scn), the total cost of Sc.cost must not be

larger than the variable cost as given by the user.
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Sc.Cost = ∑si
Sci. c≤ Cost (6)

We solved the problem of scheduling by a heuristics aided schedule selection method.

Since there are multiple QoS parameters that affect and determine the stability of a CPS,

heuristically providing insights into their requirements will yield different solutions at dif-

ferent time instants. Employing this solution instead of a singly selected scheduling mech-

anism at the start of the process will naturally yield accurate estimation results and help us

in providing security, reliability and optimized cost. Since this scheduling method is aided

by the decision output from our SNFG, employing a heuristic method is almost equivalent

to an exhaustive approach as decisions taken by players are based on incomplete informa-

tion which requires considering multiple input parameters. The following are a few of the

heuristics.

Reliability heuristic: This heuristic promotes the scheduler to select a scheduling policy

that ensures reliability. The reliability requirements are determined by the most critical

system in the hybrid system or by the system that causes communication bottlenecks by

using most of the bandwidth. A drop in the communication packets can render the system

unstable, thereby, heavily affecting the reliability of the system. Hence, to determine the

level of importance to be given to a scheduling policy, we have to determine the reliability

criticality (RCi, j) by (7).

Time heuristic: The Time heuristic biases the selection of the service instances with shorter

execution time. Denoted by (TCi, j), it can be determined by (8).

Cost heuristic: The Cost heuristic biases the selection of the service instances with lowest

overall cost. Denoted by (CoCi, j), it can be determined by (9).

RCi, j =
si

j.r−min.reli + 1
max.reli−min.reli +1

(7)
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TCi, j =
max.timei− si

j.l +1
max.timei−min.timei +1

(8)

CoCi, j =
max.costi− si

j.l +1
max.costi−min.costi +1

(9)

where min.rel is the lowest reliability value of the service instant for a particular node

(schedule) and max.rel is the maximum of the values in (7); min.time is the lowest latency

value of the service instant for a particular node (schedule) and max.time is the maximum

of the values in (8); min.cost is the lowest cost incurred in using the service instant for a

particular node (schedule) and max.cost is the maximum of the values in (9).

A. TASK SCHEDULING ALGORITHM

We would now like to describe our task scheduling algorithm that takes into account

the above mentioned QoS constraints. Task scheduling on the VMs is extremely critical as

it determines the overall makespan. It is also instrumental in meeting with the application

specific delay constraints. It must be noted that Scheduling and Load Balancing on the

available resources are two distinct concepts of heterogeneous computing. Our Secure

Task Scheduling Algorithm (STSA) starts by prioritizing the tasks based on the importance

of their processing on the overall system behavior. This is done by determining the risk

associated with the on-time task completion in addition to an attack detection by the SNFG.

The attack risk probability γa is modeled as a negative exponential given by

γa = 1− eλ(UA−UD) (10)

where, UD and UA are the defense and attack strategies of the defender and attacker.

Equation (10) implies that the risk probability grows as the difference between the two util-

ities grows. Then, using the concepts of queuing theory, the scheduler calculates the mean
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service time on a VM on the cloud, the average waiting time for a schedule to be cleared off

the queue (waiting time on the queue Wq) and schedules the incoming tasks accordingly.

The tasks are prioritized based on γa and its out/in degree (dependency on other tasks).

This ensures that resources are provided to the tasks with high urgency. However, there is

a down side to this approach. There could be tasks that might never meet the emergency

criteria and remain in the queue forever. In order to break such a deadlock, we define a

preset maximum allowable time threshold ψ beyond which it has to be allotted a comput-

ing resource. ψ is determined using τmad which is the maximally allowable delay before

which QoS requirements for the CPS have to be serviced. This τmad is the Deadline men-

tioned previously in equation (5).This threshold value is obtained by taking as reference,

the largest allowable waiting time on a task based on previous experiences. Algorithm 7 is

our Secure Task Scheduling Algorithm (STSA) under the QoS constraints.

B. ALGORITHMIC COMPLEXITY

We now determine the time complexity of our scheduling algorithm which is based

on a DAG. The complexity is computed based on the number of tasks t, number of edges

e, and number of nodes n.

1. There are t tasks in the DAG for parallel computing. For each task ti, the computation

of task priority can be done in O(n + deg), where deg is the maximum in degree or

out degree of the task. Therefore, the overall time taken to compute the task priority

is O(t(n + deg)).

2. After computing the task priority, a efficient sorting algorithm can be used to sort the

tasks in logarithmic time O(tlogt).

3. To determine the task completion time for all the tasks for all the nodes based on the

QoS requirements, the complexity is O(n∗deg).
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Algorithm 7: QoS satisfying Secure Task Scheduling Algorithm (STSA)
Input: Attack information from SNFG, incoming set of tasks (T)
Output: Task scheduling, Task prioritization, DAG
for ∀{ti} ∈ T do

*TASK PRIORITY TO GENERATE SCHEDULE {Sc} *
generate DAG {G}
while G do

compute attack risk probability γa ∀ {T}
compute edge weights w f or DAG {G}
w = taskpriority{ti, t j}+ γa(T )
{G′}= sorted {G}

end
update {G}= {G′}
***SCHEDULING {Sc} ON VMs ***
determine available space on V Ms,Wq
calculate makespan,speedup, memory requirement
o f task on V M,τmad

allocate V Ms to tasks ti ∈ {T} ;Schedule{Sc}
determine completed tasks tk
update Schedule{Sc′}= {Sc}− tk
return Task completion time,Sc
END

end

4. To allocate the tasks to all the resources, in the worst case scenario, the execution

time is O(n). In order to determine the overall scheduling time we have to consider

the completion time and the allocation time together. Hence, the time complexity is

O(t(n∗deg+n)).

5. The overall time complexity of the entire algorithm is O(t(n∗deg+n)+tlogt+t(n+

deg)).
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VI. RESULTS AND ANALYSIS

To evaluate our algorithm with other existing algorithms, we conducted the experi-

ments on a wireless networked control system (WNCS) plant. We made use of both Picc-

Sim [4] and NS2 to simulate WNCS. PiccSim is a simulation software that models the

control plant. This model is the input to the simulator. The sensor network of 100 nodes

is simulated using NS2. PiccSim is MATLAB based with a feature that can link the con-

trol model in MATLAB to the network model in NS2. A simulator was used to generate

attack traffic owing to the unavailability of real CPS data under security attacks. We used

Amazon’s EC2 instances to run our experiments. We used 4 small instances 3 medium

instances and 2 large instance with RAM sizes 4Gbytes, 8Gbytes and 16Gbytes and with 4

cores, 8 cores and 16 cores. The number of tasks that were generated for the performance

analysis was 800, 1600 and 2400, 3200 and 4800 for each run of experiments with variable

dependencies of 40%, 60% and 80% of the tasks as dependent tasks. The tasks corre-

sponded to secure aggregation of the data, state estimation, attack detection, resource allo-

cation, scheduling, decision dissemination etc. We compared our algorithm’s performance

with that of two very well known and highly used scheduling algorithms in heterogeneous

systems - Heterogeneous Earliest Finish Time algorithm HEFT [3] and Dynamic-Level

Scheduling DLS [21] algorithms and one Security Driven List Scheduling (SDS) [22] al-

gorithm. In addition to these algorithms, we also compare the speedup of our approach

with two other works, Critical Path Genetic Algorithm (CPGA) [14] and the Duplication

Scheduling Heuristic Algorithm (DSH)[19]. Since both these works are heuristic algo-

rithms, we wanted to compare our work to see the overall speedup. We used a modified

version of the HEFT and DLS algorithms to allow them to deal with security. Although

these algorithms are intended to schedule tasks with security requirements, they make no

effort to optimize the quality of security.
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The performance metrics chosen for the comparison are the makespan, resource uti-

lization, speedup - computed by dividing the sequential execution time which is the sum

of the computational costs and security requirements of the tasks by the parallel execution

time (makespan), total costs and overall reliability. Sequential execution time is computed

on a uni-processor where the speed up does not show improvement beyond a point. The

parallel execution time is computed by assigning multiple computational resources to the

dependent tasks where speedup is determined by algorithm’s effectiveness. The entire com-

parison will be done in order to obtain a qualitative understanding of the performance and

drawbacks of the proposed scheduling algorithm.

We first start the discussion of our results with the performance of our modified SNFG

that has its gluing functions based on the state transitions as observed using a time-varying

DBN.

A. SEMI NETWORK-FORM GAME

Figure 1 shows the incentive of an attacker (utility function) versus the number of

nodes of the network he/she has captured. This analysis is useful in determining the

strength of the algorithm when the attacker’s access to the system is considerably large.

The game played by the defender now is dependent on the QoS requirements of the WNCS

and the system operator (defender). As shown in the figure, p is the probability of the

presence of the attacker in the system. The probability is varied to give weight to the con-

sideration of an attackers presence vs system faults. It is then compared to the SNFG game

played when the presence of an attacker has a probability value of 0.85. This was done in

order to test the effectiveness of our algorithm in determining the presence of an attacker

and choosing appropriate strategies. As we can see from the graph, in comparison with the

case where p= 0.85 where there is no game theoretic attack solution being applied because

of lack of information about system state, an attacker goes undetected until he captures 50%

of the nodes. As opposed to that, our scheme works exceedingly well even when half of
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the networks nodes are compromised. Even when 50% of nodes are captured, the incentive

of the attack is kept below 0.2, which reflects that the cost involved to perform this attack

is very high. We assume a reasonable attacker would not conduct an attack causing losses

to himself.
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Figure 1. Mitigating attack by reducing attack incentive

B. SPEEDUP

We considered speedup as another performance metric to study the effectiveness of

our scheduler in task prioritization and resource allocation. Speedup is estimated as S =

T (1)/T (C). i.e. the time taken to execute a set of tasks on a uni-processing unit vs the

time taken to perform same set of tasks using C processing units (VMs). We compared our

results with Critical Path Genetic Algorithm (CPGA) [14] and the Duplication Scheduling

Heuristic Algorithm (DSH). As we can see from the figure 2, our algorithm outperformed

the other two algorithms except in the case of 4VMs for CPGA. This is because of the

availability of extra processing which aids the genetic algorithm in [14].

However, this makes [14] static as any reduction in the VMs will affect their perfor-

mance. Hence, our algorithm scales smoothly over variable number of VMs. Our algorithm
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Figure 2. Speed up comparison with heuristic scheduling algorithms

Figure 3. Speedup with security driven scheduling algorithms

showed a linear increase in speedup despite bottlenecks such as bandwidth constraints,

whereas the other two algorithms performed sub-linearly. Hence, our scheduler outputs

decisions upon considering the overall performance increase, instead of just considering

latency reduction. This shows that our scheduling heuristic algorithm is robust to attack in-

duced constraints as it is aided by our SNFG. We will now discuss the performance of our

approach in comparison to the approaches that have security considerations. As we can see

from figure 3, our approach outperforms the other approaches for all different sets of tasks.
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Figure 4. Makespan of the algorithms for different sets of tasks

As speedup determines the effectiveness of an algorithm’s ability to make decisions about

resource allocation under both computational and task priority contention, higher speedup

implies better performance capabilities.

C. MAKESPAN

Experiments about makespan were conducted in comparison to the scheduling algo-

rithms that incorporated security. Each task arriving on the cloud has security requirements

as per its priority which is based on the impact its completion has on the overall system reli-

ability. In order to determine such an impact, based on our SNFG, we varied the probability

of the presence of an attacker to find out the overall system risk.

Figure 4 shows the simulation results of our approach in comparison with the three

algorithms SDS, modified HEFT, and modified DLS on the cloud. We can observe from fig-

ure 4 that our algorithm significantly outperforms the rest in terms of the overall makespan.

We see an improvement in the performance of our algorithm because of the added op-

timization in parametric selection before the scheduling algorithm is used. Our SNFG

chooses strategies which help the scheduler to understand the system requirements and be-

havior better. The total makespan is given in seconds and shows the total time taken for the
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scheduler to allocate the tasks to the VMs for their processing (completion).

This does not mean that decisions will be taken only after all the tasks have been

finished. Based on the DAG, dependent tasks will be finished (based on their security

priority) and corresponding control decisions will be output and sent back to the actuators.

We performed the experiments for tasks ranging from 800 to 2400 with a maximum of 80%

of dependent tasks. However, the makespan reduces as the dependency among the tasks

reduces. Also, we observed that for a task dependency of about 75 - 80%, the makespan

was optimal as sequential task completion allowed for easier decision making in resource

allocation. Also, the other algorithms require some amount of security overhead which

improves the makespan. As our algorithm does not require such an additional security

overhead, makespan can be further reduced.

We now provide an in depth analysis of the effectiveness of our algorithm in limiting

the increase in makespan with respect to number of nodes captured by the attacker, the

probability of the presence of an attacker p, and the false positive percentage. As we can

see from figure 5, varying the values of p from 0.1 to 0.85 which indicate the confidence in

a defender’s inference about the presence of an attacker and consequently the strength of

the attack, results in a gradual increase in the total. The reason we do not choose values of

p < 0.1 is because; using the sampling a considerable number of states for lower p values

go unnoticed or are not frequented, thereby, failing in the detection of the attacker. This

unfortunately is a drawback of choosing any sampling algorithm. To test the strength of

the SNFG implementation, we chose the value of p a 0.6. This was done in order to make

sure that the defender strategies are not biased completely on the presence of an attacker.

We intended to include a certain degree of uncertainty to better mimic the lack of complete

system knowledge for the defender. In addition to that, false positives will be present and

an intelligent and tactful attacker will utilize such discrepancies arising from system noise,

packet drops, network delays etc. as we can see from the figure 5, our scheme is effective

in determining the defender move spaces even though the attacker is assumed to be in level
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Figure 5. Increase in makespan vs p vs % false positives

k−1. This goes on to show the effectiveness of our overall STSA in reducing the makespan

which in turn reduces the overall latency.

A. Makespan based on task priority.

As another metric to determine the efficiency of our algorithm, we study the effect of

task dependency while prioritizing the tasks based on their criticality. From figures 6 and

7, for different task sets with variable dependencies, we see that the use of our STSA out

performs the cases of regular scheduling such as round robin or earliest deadline first as im-

plementable in Amazon cloud. A reduction in makespan is a result of the manner in which

our algorithm alters the schedule length and the scheduling policy based on the defender

move spaces, which in turn considers the attacker’s perceived move space at level k−1. A

reduction in the overall makespan corresponds to the reduction in the processing latency.

From figures 6 and 7 and 8, we can infer that our algorithm services the high priority tasks

on the more powerful VMs by allocating more number of cores for the task completion.

This results in higher resource utilization while keeping the utility function optimal at each

stage of the game over multiple such stages. This results in an overall reduction in the cost

required to maintain the QoS requirements of the CPS and consequently its stability and

reliability even under security attacks.
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D. RESOURCE UTILIZATION

In order to determine the scheduling efficiency of our proposed algorithm in com-

parison with the other algorithms, we determined the overall utilization of the resources

(VMs) that were employed. This study is important as when using a cloud platform, the re-

sources become pay-per-use. Hence, assumptions about abundant computational resources

cannot be assumed. Also, it is imperative from the users’ perspective to utilize the avail-
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able resources that are already being paid for. Figure 8 shows the comparison of resource

utilization by our algorithm with the other algorithms for 800, 1600 and 2400 tasks. We

see an improvement in the performance of our SNFG aided scheduling algorithm because

it takes as inputs the decisions from a game theoretic approach which looks to maximize

the utility factor of the defender. Maximizing the utility factor is conditioned upon the

defender’s observability of the cyber component as well, i.e. the defender is able to thwart

any DoS attack on the VMs. This gives more flexibility to choose the VMs for resource

allocation. It also eliminates the need for inter VM migration of the information upon the

detection of an attack.

Figure 8. Utilization on VMs

A. Ductility.

We now study the effectiveness of our algorithm based on the ductility as described

in [10]. We service the tasks in our scheduling algorithm based on their priorities, which is

reflective of their criticality. Critical tasks correspond to the ones where QoS determining

computational latency must be low. Other than such tasks, information pooling from sen-

sors upon the detection of an attacker and the inference of his attack space which includes
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Figure 9. Ductility of the scheduling algorithm

both control theoretic state estimate disturbances and denial of service attacks; fall under

high criticality/ priority tasks. As discussed before, we service the low, medium and high

priority tasks. Their criticalities can be assignment as < 0, 1, 2 > to ensure a sense of order

for queuing in the server queue. We studied the effects of task disorder to test the efficiency

of our algorithm in reverting back to satisfying the QoS requirements of the CPS applica-

tion. Figure 9 shows that our STSA algorithm achieves significantly better performance

compared to the cases of p = 0.5,0.85 for the HEFT and DLS algorithms, even when a

small number of cores are made available (about 1.5 and 4.5 times better performance).

With an increase in the number of cores, we can see that the performance difference be-

tween the three algorithms in comparison decreases. This is because when the number

of cores reaches a large enough value sufficient to schedule the different task sets, all the

tasks are ably and appropriately serviced by the virtual machines. This is largely due to

the approximate nature of our heuristics algorithm. for different task sets with different

dependencies among them, HEFT and DLS can perform worser than our algorithm owing

to the fact that they do not consider the complications that arise in dependent tasks.
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E. RELIABILITY

Reliability is calculated based on the total number of times a service request is ful-

filled to the total number of times the service is issued over the entire run time of the

algorithm. This is used to determine how effective our scheduling algorithm is in resource

allocation based on task prioritization which affects the task execution time. As reliability

metric can be calculated in many ways, in our paper, we calculate it based on the number

of times correct state estimate was sent back to the actuator, and the number of times an

attack was countered correctly after detection under delay constraint τmad . As we can see

from table 1, our STSA out performs the other three algorithms in terms of reliability guar-

anteed. We attribute this to the fact that our scheduling algorithm is backed by an effective

game theoretic approach which works even under an attack. Although SDS is a security

driven approach, it considers the use of trust and security approaches such as authentica-

tion confidentiality and integrity. Their scheduler is based on the determination of the trust

level of only the service provider. However, in a real time application like CPS, an attack

could take place in both the physical and the cyber domain. The column corresponding to

> τmad in table 1 shows the ineffectiveness of other schedulers to provide robustness when

an attack cannot be detected or cannot be mitigated. As compared to them, our scheme per-

forms admirably well even when the delay is large, thus providing robust QoS constrained

scheduling for CPS.

Table 1. Reliability Percentage
Algorithm ≤ τmad > τmad

STSA 99.6 98.7
SDS 98.3 86.3

HEFT 93.4 84.2
DLS 93.2 85.1
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VII. CONCLUSIONS

In this paper, we have provided an extension to the semi-network form game using

a time-varying DBN (TVDBN) which allows us to play multi-player games against an at-

tacker with minimum or zero knowledge about the system state. Computational load of

the TVDBN was solved by using our proposed feature selection mechanism to give on-line

conditional probabilities which are otherwise very difficult to obtain. We conducted our

experiments to validate the effectiveness of our approach and found out that even under

constraints our approach performed linearly or better where other methods had a sub-linear

performance indicating the robustness of our algorithm. In future, we will conduct more

extensive experiments on a larger data set while taking more complex and detailed QoS

requirements into consideration. We would also test the efficiency of our algorithm on

multiple CPS applications. Based on results obtained, and the scalable nature of our al-

gorithm, we are confident in reproducing similar results under extensive and scaled out

testing.
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SECTION

4. CONCLUSION

This dissertation presents information fusion algorithms for Wireless Sensor Net-

works and Cyber Physical Systems. First, an algorithm for data aggregation in an under-

ground mine application was proposed. Next, a multi-layered information fusion archi-

tecture to detect security attacks in a wireless networked control system was presented.

Thereafter, an information fusion architecture to schedule variable loads of information

from a cyber physical system was proposed. Finally, the dissertation was concluded by

presenting an extension to a game theoretic approach which was coupled with a robust

scheduling mechanism to guarantee QoS in cyber physical systems.

The fusion architecture proposed in Paper I estimates the unknown noise parameters

in the sensor network. An efficient method for calculating these values on power con-

strained sensor motes was developed as the computations do not consider any matrices and

inverses. The efficiency of the scheme lies in the multiple levels of aggregation performed

on the sensor motes. The novelty of the architecture lies in its ability to predict accurate

state estimates even under varying noise parameters. An n-step Kalman filter was presented

along with the methodology to model changes in system and observation noise.

The proposed approach in Paper II introduced an information acquisition and fusion

scheme for Wireless Networked Control System (WNCS), where, both feature extraction

and decision making are used in securing and stabilizing the system. Theoretical bounds

of time delays were provided in order to ascertain system stability. It was shown that we

can mitigate the effects of security attacks and still provide the WNCS with operational

stability. A novel time-varying Dynamic Bayesian Network was proposed to show how

changes in the network behavior can be efficiently observed and decisions made. Based on
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these decisions, the control messages had been altered to suit the requirements of WNCS.

In Paper III a causality based information fusion architecture to bridge the gap that ex-

ists between scalable processing with minimal latency for time-critical information dissem-

ination in a CPS was proposed. The effects of self-similarity and long range dependence

in predicting the traffic bursts over time intervals was thoroughly studied. An information

fusion architecture that effectively manages task scheduling using load balancing on the

cloud was proposed.

In Paper IV an extension to the semi-network form game using a time-varying DBN

(TVDBN) which allows us to play multi-player games against an attacker with minimum or

zero knowledge about the system state was presented. Computational load of the TVDBN

was solved by using the proposed feature selection mechanism to give on-line conditional

probabilities which are otherwise very difficult to obtain. An in-depth study of the manner

of human interactions in the semi-network for game was presented. Extensive simulation

results were presented to cover as many test cases as possible to eliminate the drawbacks

of the heuristic nature of the scheduling algorithm.
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