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ABSTRACT

With a growing number of real-world applications that are dependent on com-

putation, securing the information space has become a challenge. The security of

information in such applications is often jeopardized by software and hardware fail-

ures, intervention of human subjects such as attackers, incorrect design specification

and implementation, other social and natural causes. Since these applications are

very diverse, often cutting across disciplines a generic approach to detect and miti-

gate these issues is missing. This dissertation addresses the fundamental problem of

verifying information security in a class of real world applications of computation,

the Cyber-physical systems (CPSs).

One of the motivations for this work is the lack of a unified theory to specify and

verify the complex interactions among various cyber and physical processes within

a CPS. Security of a system is fundamentally characterized by the way information

flows within the system. Information flow within a CPS is dependent on the physi-

cal response of the system and associated cyber control. While formal techniques of

verifying cyber security exist, they are not directly applicable to CPSs due to their

inherent complexity and diversity. This Ph.D. research primarily focuses on devel-

oping a uniform framework using formal tools of process algebras to verify security

properties in CPSs. The merits in adopting such an approach for CPS analyses are

three fold- i) the physical and continuous aspects and the complex CPS interactions

can be modeled in a unified way, and ii) the problem of verifying security proper-

ties can be reduced to the problem of establishing suitable equivalences among the

processes, and iii) adversarial behavior and security properties can be developed us-

ing the features like compositionality and process equivalence offered by the process

algebras.



iv

ACKNOWLEDGMENTS

First of all, I would like to express my deep gratitude to my advisor, Dr. Bruce

McMillin. His constant encouragement right from the beginning, time and concern

for my research progress have been valuable to this work. He has provided me with

valuable opportunities to discuss and refine my thoughts in this area of research. I

will cherish the culture, thought process, critical thinking and professionalism that

he has imparted in me.

I thank all my advisory committee members for their valuable services in spite

of their busy schedules. Some of the ideas in this dissertation have been developed

during the course of research meetings with my labmates to whom I am grateful -

Thoshitha Gamage, Thomas Roth, Stephen Jackson, Li Feng and Derek Ditch. I

greatly acknowledge the Free Renewable Electric Energy Delivery and Management

(FREEDM) systems center for funding my work under the grant NSF EEC-0812121.

I do not want to miss this opportunity to thank the staff in the computer science

department and administrative offices at S&T who have spent their time and energy

for me in the background.

My life in the department and in Rolla has been greatly spiced up by the com-

pany of Brijesh Chejerla, Ravi Arvapally, Deepak Somayajula, Rakesh Gudavarthy

and a big list of friends from this wonderful community at S&T to whom I am

thankful. A very special thanks to this person who has been a great influence on

me- Neelanjana Dutta-for everything that you are! A very special mention goes to

my brother Raja Akella, Aruna Vadina, Ani and Honey for their love and concern.

Finally, I dedicate this dissertation to my Dad & Mom- love you!



v

TABLE OF CONTENTS

Page

ABSTRACT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF ACRONYMS .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SECTION

1. INTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. UNDERSTANDING SECURITY REQUIREMENTS FOR A CPS . . . 2

1.1.1. Cyber Information Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2. Physical Commodity Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3. Cyber-Physical Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. CONTRIBUTIONS OF THIS WORK.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. STATE OF THE ART IN CPS SECURITY.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1. STANDARDS FOR CPS SECURITY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. FOCUS ON CYBER SECURITY FOR SECURE OPERATIONS
OF THE PHYSICAL SYSTEM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. FOCUS ON PHYSICAL SYSTEM SECURITY FOR SECURE CY-
BER OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4. FOCUS ON CYBER-PHYSICAL INTERACTIONS FOR CPS SE-
CURITY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5. DIRECTION TAKEN IN THIS WORK.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. FORMAL SPECIFICATION AND VERIFICATION METHODS . . . . . . . . . 18

3.1. SECURITY PROCESS ALGEBRA (SPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2. THE π-CALCULUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4. INFORMATION FLOW MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



vi

4.1. NON-INTERFERENCE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2. NON-INFERENCE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3. NON-DEDUCIBILITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4. APPLICABILITY OF TRACE-BASED MODELS TO A CPS . . . . . . . 28

4.5. BISIMULATION-BASED NON-DEDUCIBILITY ON COMPOSI-
TION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6. GENERAL APPROACH TOVERIFY INFORMATION FLOWPROP-
ERTIES IN A CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6.1. Representation of Cyber and Physical Processes and Their
Interactions in a Computational Framework . . . . . . . . . . . . . . . . . . . . . 31

4.6.2. Adequacy of Bisimulation-Based Non-deducibility Properties
for CPS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6.3. Testing for Bisimulation Equivalence of Processes . . . . . . . . . . . . . . . 34

5. FREEDM: A TEST CPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1. DISTRIBUTED POWER MANAGEMENT SCHEME .. . . . . . . . . . . . . . . 36

5.2. NEED FOR INFORMATION FLOW ANALYSIS OF FREEDM .. . . . 37

6. INFORMATION FLOW ANALYSIS USING SPA .. . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1. MODELING OF FREEDM USING SPA.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2. VERIFICATION OF INFORMATION FLOW USING SPA .. . . . . . . . . 40

6.2.1. External Observer on the Physical System . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.2. Internal Observer on the Physical System. . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.3. Internal Observer Without DGI, on the Physical System Com-
posed With DGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.4. Internal Observer With DGI, on the System Composed With
DGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.5. Observer in Demand State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.6. Observer in Supply State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.7. Verification of a Single Node Involved in Power Migration Step 48

6.3. RESULTS WITH AUTOMATED VERIFICATION OF SBNDC ON
FREEDM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



vii

7. INFORMATION FLOW ANALYSIS USING π-CALCULUS . . . . . . . . . . . . . . . 55

7.1. MODELING OF FREEDM USING π-CALCULUS . . . . . . . . . . . . . . . . . . . . 56

7.2. INFORMATION FLOW PROPERTIES IN π-CALCULUS . . . . . . . . . . . 59

7.3. VERIFICATION OF INFORMATION FLOW USING π-CALCULUS 61

7.3.1. Observer (Context) in the System Without DGI . . . . . . . . . . . . . . . . 61

7.3.2. Observer (Context) in Supply State in the System With DGI. . 62

7.3.3. Observer (Context) in Demand State in the System With DGI 64

7.3.4. Making the FREEDM System π-ND-secure . . . . . . . . . . . . . . . . . . . . . 65

8. AUTOMATIC VERIFICATION USING π-CALCULUS TOOLS . . . . . . . . . . 67

8.1. MWB.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2. PROVERIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2.1. π-ND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2.2. Strong Secrecy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2.3. Weak Secrecy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

APPENDIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

BIBLIOGRAPHY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



viii

LIST OF FIGURES

Figure Page

1.1 Cyber-physical interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Operational semantics in SPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 π-calculus syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Non-interference for CPSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Non-inference for CPSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Non-deducibility for CPSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 FREEDM microgrid with three nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Different levels of confidentiality violation possible in a CPS . . . . . . . . . . . . . 38

6.1 FREEDM subsystem with no DGI, two nodes and two observers . . . . . . . . . 39

6.2 FREEDM subsystem with DGI, two nodes and two observers. . . . . . . . . . . . . 46

6.3 Events within the FREEDM system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 Relational coarsest partition formulation of FREEDM.. . . . . . . . . . . . . . . . . . . . 52

7.1 Need for scope extrusion in FREEDM.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 π-characterization of a cyber-physical process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 An observer process interacting with FREEDM .. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.4 An observer process interacting with the 5-node FREEDM system . . . . . . . 66

8.1 Defining variables and names to initialize the FREEDM Proverif script . . 69

8.2 Proverif process defining the physical invariant of flow . . . . . . . . . . . . . . . . . . . . . 69

8.3 Proverif process for a DGI node in supply state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.4 Proverif process for a DGI node in demand state . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.5 Proverif process defining FREEDM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.6 Using Proverif secrecy features on FREEDM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



ix

LIST OF TABLES

Table Page

2.1 Summary of existing work in CPS security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Load table maintained at each node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Model checking results for the micro grid consisting of a single node . . . . . 54

8.1 Basic π-ND results for observer in supply and demand states using MWB 68

8.2 Results of verification with Proverif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



x

LIST OF ACRONYMS

CPS Cyber-Physical System

SPA Security Process Algebra

FREEDM Free Renewable Electric Energy Delivery and Management

SST Solid State Transformer

DRER Distributed Renewable Energy Resource

DESD Distributed Energy Storage Device

LOAD House Load

DGI Distributed Grid Intelligence

IEM Intelligent Energy Management



1. INTRODUCTION

Critical infrastructure refers to a wide range of systems that deliver critical

services to the society in a reliable, safe, dependable and secure fashion. The com-

plexity of critical infrastructure is dramatically increasing. Electric power transmis-

sion and distribution, air traffic control, and cruise control for automobiles, among

many other systems, will soon become “smart grids” for managing electric power,

automated air traffic management for aircraft routing, and “smart” cruise control

for automobiles. Unlike their predecessors, these modern systems include not only

physical components, but also software. These integrated systems are examples of

Cyber-Physical Systems (CPSs). Formally, CPSs are integrations of computation

with physical processes [1]. Potential CPSs include high-confidence medical devices

and systems, traffic control and safety, advanced automotive systems, process con-

trol, energy conservation, environmental control, avionics and instrumentation.

The complexity of a CPS results from the highly networked and distributed

nature of the physical and cyber components within. Smart Grid systems poten-

tially include thousands of power lines, transformers, meters, power flow controllers,

and communicating embedded computers. Air traffic control is comprised of air-

planes with communicating embedded computers. Smart cruise control consists of

embedded computers in automobiles that potentially communicate with surrounding

automobiles on the highway. All these components interact with each other, some-

times in unpredictable ways. Reliance on the critical infrastructure means reliance

on the physical components and cyber components, and their interactions. A sig-

nificant concern is the increased number of places within a CPS that are vulnerable

to attack and/or failure. The vulnerability of critical infrastructure to cyber and

physical failures was apparent in the 2003 U.S. blackout [2] and the recent findings
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of cyber malware like the Stuxnet worm [3] [4] that compromise supervisory control

and data acquisition (SCADA) systems. New attack models that are infrastructure

dependent are discussed in literature, like the false data injection attacks in SCADA

systems [5].

1.1. UNDERSTANDING SECURITY REQUIREMENTS FOR A CPS

Security of a system is generally described in terms of availability, integrity, and

confidentiality. Availability refers to the ability to use the information or resource as

desired. Integrity refers to the prevention of unauthorized or unintended change of

data or resources. Confidentiality is the confinement of information or resources to

the trusted entities within a system [6]. All three aspects of security are necessary in

a CPS. Conventional concepts like authentication, access control and cryptographic

methods don’t always offer secure ways of dealing with information, especially when

computation involves physical entities as in CPSs. An attacker who is an insider or

who can compromise specific cyber components, has access to more information by

associating the received cyber information with his physical observability. Hence,

it is important to ensure the confidentiality within the system to prevent the at-

tacker from obtaining critical information, that could be used to perform availability

and integrity attacks. Understanding, modeling, and ensuring security in a CPS is

a significant challenge because any analysis must account for both the cyber and

physical components of a system and their interactions. There is an interdependence

of events within the cyber and physical domains often leading to more fundamental

security issues. The primary challenge, particularly when considering cyber-physical

interactions, is to find a uniform semantic basis for the analysis. Confidentiality, in

particular, has received lesser attention in the context of CPSs due to the lack of

a unified theory. Information flow policies provide an appealing semantic basis in
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quantifying CPS interactions since they define the way information moves through-

out a system [6]. The security analysis of a CPS, therefore, requires an analysis of the

cyber components, the physical components, and, most importantly, the interactions

among them. Typically, these components interact as shown in Figure 1.1.

Cyber Information Flow

Cyber 

Component 

1

Cyber 

Component 

2

Cyber 

Component 

n

Cyber 

Component 

3

Physical Information Flow

Physical 

Component 

1

Physical 

Component 

3

Physical 

Component 

2

Physical 

Component 

n

Coupling Cyber-Physical Interactions

Figure 1.1. Cyber-physical interactions

1.1.1. Cyber Information Flow. The purely cyber portion of a CPS

includes interconnected cyber components that exchange data to compute actions

or responses. Cyber systems are vulnerable to worms, viruses, denial-of-service at-

tacks, malware, phishing, and user errors that compromise integrity and availability.

Confidentiality is a prime aspect of many cyber systems. A great deal of analysis is

concerned with ensuring data confidentiality through well-known mechanisms such

as cryptography. Beyond this, information flow properties for a general class of deter-

ministic and non-deterministic systems have been addressed [7] [8]. These classical

models of information flow security are concerned with quantifying information that

is downgraded via covert channels to observers. The complexity of securing cyber

information space in CPSs lies in tying the cyber components to the physical system

and thereby, the cyber-physical interactions.
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1.1.2. Physical Commodity Flow. The purely physical portion of a CPS

includes interconnected physical components that perform or control certain physical

actions like monitoring physical commodity flow. Commodity refers to the main

resource that is transported over an infrastructure; for example, gas is the commodity

transported over a gas pipeline system and power is the commodity distributed

over an electric power grid. The infrastructures are usually controlled at specific

geographic locations and consist of several physical components such as power lines,

buses, pipes, and joints. Commodity flow changes due to usage or control settings

and are governed primarily by the laws of physics and the topology of the physical

system. Physical commodity flow is governed by the concept of invariant flow of a

physical entity. For example, the flow in a gas pipeline changes in accordance with

the laws of gas flow, and power flowing through every branch of a power grid varies

according to Kirchhoff’s laws. Physical systems have a separate set of vulnerabilities

that expose them to physical attacks that can affect both availability and integrity. A

CPS is inherently exposed to the outside world due to its physical nature; automobile

and aircraft movements can be observed, pipeline and electric power flow can be

measured. These observations yield information about the system and its underlying

control processes and settings. The interconnection topology of a system, coupled

with the observations from physical flow, provide information. In general, however, it

is difficult to prevent unauthorized or undesirable information flow within a physical

system.

1.1.3. Cyber-Physical Interactions. Cyber-physical interactions result

from the coupling of the information and commodity flows in a CPS (represented

by the center plane in Figure 1.1). In a CPS, cyber processes interact with physical

components by reading their physical states and actuating the controlled physical

components. Clearly, there is an interdependence of actions in the cyber and phys-

ical domains. Vulnerabilities are a natural consequence of this interdependence; an
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action in one part of the system is causally felt in other parts of the system, lead-

ing to information flow leakage at the cyber-physical boundary. In other words, an

observation about commodity flow could permit an observer to infer sensitive cyber

actions.

Security considerations for a CPS, therefore, depend on cyber information flow,

physically observable behavior, and the interactions among the cyber and physical

components of the system. Due to infrastructure interdependencies [9] [10], a com-

promise in the security of one system may threaten another system. For example, a

failure of security at a fuel plant that depends on a gas pipeline to generate power for

the electric power grid affects the security of the power grid. Timing, security [11]

and frequency [12] are key properties that have an impact on the confidentiality

of a system. Information flow analysis is a fundamental concept in theory, that is

generally used to reason about the security violations due to the way information

moves within the system. A theoretical basis for information flow analysis is based

on security models outlined by McClean [8] [13] [14] and Zakinthinos et al. [15]. The

complexity of CPS interactions however exceeds the ability of informal information

flow analysis methods.

1.2. CONTRIBUTIONS OF THIS WORK

Automating the process of verifying information flow properties in CPSs re-

quires specification of the system behavior within a formal framework. Process

algebras [16] provide both a rigorous system specification and associated verification

(model checking) procedures, but have been rarely used because of their complexity.

However, formal methods researchers have made automated theorem proving and

model checking techniques more capable and efficient in the recent years, to formally

verify many properties of distributed and real systems. The significant contribution

of this work is to develop a formal framework that satisfies the following objectives:



6

• It should provide a robust specification of a real system that captures the

distributed, concurrent, asynchronous and mobile nature of interactions among

various processes.

• It should provide a semantically uniform way of bridging the diverse cyber and

physical spaces.

• It should facilitate the automatic verification of information flow security prop-

erties.

This work primarily adopts the process algebraic approach to accomplish the

above objectives. The main findings discussed in this dissertation have been reported

in the following publications:

1. In [17], the specification of a CPS was presented in a basic process algebra, the

Security Process Algebra (SPA). Process algebraic techniques like bisimulation

were used to define information flow security properties in SPA. Manual proofs

were presented to verify non-deducibility properties for different cases of an

attacker who can break the confidentiality within the system.

2. In [18], a general approach was laid out to automate the verification of infor-

mation flow properties for any CPS. A test CPS was used to demonstrate the

process and the results of automatic verification of non-deducibility on the test

CPS was presented.

3. In [19], information flow properties were developed and verified in an advanced

process algebra, the π-calculus. It was shown that the verification using π-

calculus was more robust because of its rich features to model complex aspects

of distributed computation, and the ability to define a wide variants of basic

information flow properties.
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4. The process algebraic verification of security properties in CPSs was demon-

strated in this dissertation with the help an advanced smart grid architecture

that was published in [20] [21].

5. Prior work that formed the basis of this Ph.D research can be found in [22], [23],

and [24].

The remainder of this dissertation is organized as follows. In Section 2, a

study of existing CPS security methods is presented and the case for information

flow analysis is established. Section 3 includes a discussion of formal specification

and verification techniques that could be adopted for CPS analyses. In Section 4,

information flow properties that are attractive to CPS architectures are described.

The essence of this work is explained with the help of a running example of a dis-

tributed CPS introduced in Section 5. Section 6 illustrates the approach involved in

specification and verification of information flow properties in CPSs. In Section 7,

an advanced process algebra, the π-calculus, is adopted to address some of the chal-

lenges encountered using conventional process algebras for CPS analyses. It will be

shown that the π-calculus facilitates a better reasoning of security in CPSs due to

its rich features and tool support for automatic verification illustrated in Section 8.

Finally, the key findings of research performed towards this dissertation are discussed

in Section 9.
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2. STATE OF THE ART IN CPS SECURITY

The existing work on CPS security can be classified into the following categories

based on what they address- i) standards for CPS security, ii) impact of cyber security

on the secure operations of the physical system, iii) impact of physical system security

on secure cyber operations, and iv) impact of cyber-physical interactions on CPS

security.

2.1. STANDARDS FOR CPS SECURITY

The National Institute of Standards and Technology (NIST) has released guide-

lines to address the growing concerns of smart grid security [25]. The report presents

recommendations on architectures, requirements and strategies that lead to improved

security, privacy and reliability of smart grid. Some of the reasons that pose addi-

tional risk to the grid include increased complexity of the grid due to interconnected

networks leading to increased entry points for potential adversaries and the impact of

coordinated cyber-physical attacks. Confidentiality is an increasing concern to pro-

tect i) the privacy of the consumer, ii) the electric market information and iii) the

power company. Detection of covert channels and eliminating them during runtime

is extremely necessary. The use of formal methods-based techniques like information

flow analysis is suggested.

The North American Electric Regulatory Commission (NERC) has defined cy-

ber security standards [26] for electric energy infrastructure. These standards are

intended to provide a cyber security framework to identify risks, help secure critical

cyber assets, and ensure that the electric power grid operates reliably. In particular,

Standards CIP-001-2 through CIP-009-4 address security issues in the bulk electric
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system such as the identification of critical cyber assets and their physical protec-

tion, reporting of sabotaged behavior, incident reporting and recovery plans, security

management control, etc.

A Department of Energy (DOE) publication [27] discussed existing cyber secu-

rity standards, focusing specifically on control systems used in critical infrastructures.

The standards help identify requirements for secure communication protocols and

systems. Philips et al. [28] have conducted a broad investigation of the operational

and security challenges of an advanced power grid involving Unified Power Flow

Controller (UPFC) devices. Unlike SCADA systems, however, coordinated UPFC

devices manipulate a smart power grid in a decentralized manner so that new security

issues emerge. The authors discussed best practices, policies and risk assessment at

the control level to achieve confidentiality, integrity, and availability in a cooperative

UPFC power network.

The standards in place are insufficient to ensure the security of CPSs given the

evolution of a wide range of threats exploiting the vulnerabilities of these systems.

The Department of Homeland Security (DHS) conducted a broad investigation of

different critical infrastructures to assess the current state of the art and identify

challenges for cyber-physical systems security [29]. The report includes best prac-

tices, vulnerabilities and major factors affecting the system security of six critical

infrastructures- electric energy, chemical, transportation, water, healthcare and com-

mercial facilities. Two key challenges were identified to be essential for protecting

cyber infrastructures - i) appropriate integration, protection, detection, and response

mechanisms to construct CPSs that are resilient to both accidental failures, malicious

attacks or manipulations, and surreptitious monitoring, and ii) verification and val-

idation of interconnected and interacting control system components for the overall

process by developing models, theories, and tools that account for a system’s cyber

and physical components in an integrated, unified way. “The unique security needs
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of cyber-physical systems must be documented by formal requirements capture tools

that can track both the discrete and continuous aspects of cyber-physical systems.

In essence, what is not understood well cannot be built and verified correctly.” A

generalized theory is needed to address the security challenges emerging from the

increasing complexity of CPSs.

2.2. FOCUS ON CYBER SECURITY FOR SECURE OPERATIONS
OF THE PHYSICAL SYSTEM

Compromised cyber components can be used to send undesirable control com-

mand or data to the physical system, thereby compromising the desired operation of

the physical system. The Stuxnet worm (W32.Stuxnet) [3] [4] serves as an extreme

case of such attacks. The Stuxnet is a rootkit that divulges information and subverts

industrial systems by targeting Siemens programmable logic controllers. The attack

was undetectable since the worm fakes the control signals so that no false alarms

are raised when a system is infected. Therefore, protection of the cyber domain and

analysis of impact on the physical system due to compromised cyber component(s)

are both necessary to secure operations of the physical system.

Holstein et al. [30] discussed SCADA cyber security to mitigate known vulner-

abilities to attacks like the replay attack and the known-key attack etc. The goal

was to protect communication packets, and to provide authorization and role-based

access controls for interfacing control operations with energy management and dis-

tribution systems. They developed schemes for the protection of data based on the

Advanced Encryption Standard (AES) to provide encryption and authentication,

and cryptographic key management. While it is critical to adopt these practices, the

possibility that information flows from the protected cyber domain to the observable

physical network still remains.
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McDonald et al. [31] have investigated control vulnerabilities associated with

the energy sector. Their approach engages the Virtual Control System Environment

(VCSE) that simulates and emulates the various elements of a control system de-

pendent infrastructure like the cyber and physical components, human interfaces,

etc. The VCSE tool set allows users to model any large infrastructure and assess its

vulnerabilities. Different cyber attacks like the man-in-the-middle attack, rogue soft-

ware attack, presence of unencrypted channels, etc. were simulated in this framework

to validate the security of a given infrastructure. However, their approach requires

a very detailed model of the infrastructure being analyzed.

Liu et al. [5] discuss the impact of false data injection attacks against state

estimation in electric power grids. In power grids, state estimation is generally used

to monitor the power system state by estimating unknown state variables based on

the readings of meters placed at specific locations on the grid. The output of state

estimation enables the system operators to identify potential operational problems in

the grid and take decisions accordingly. During this process, bad data measurements

are detected and removed to protect state estimation [32]. The authors show that

it is possible to perform a false data injection attack in which the attacker injects

malicious measurements that will bypass the existing bad data detection techniques

and thereby, interferes with the state estimation process. It was assumed that the

attacker can access the current power system configuration and manipulate the mea-

surements of meters at physically protected locations such as substations. The at-

tacker constructs an attack vector comprised of arbitrary measurements introduced

at the meters he has access to. An efficient construction of such an attack vector was

shown to be possible, given that the attacker has access to a matrix of measurements

and state variables. It was shown that even if the attacker was constrained to specific

meters or limited in the resources required to compromise the meters, construction

of such attack vectors change the results of state estimation in arbitrary ways.
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In a similar work by Sastry et al. [33], the attacker is assumed to obtain per-

turbed data (and not necessarily, the complete configuration as in [5]) to perform a

deception attack on state estimator in SCADA for electric power systems. Control

theoretic methods were applied to compute the attack vector for two widely used

bad data detection schemes. The discussion on these bad data detection schemes

is beyond the scope of this work. It was shown that it is possible to compute and

stealthily inject false data into the SCADA system to alter the state estimation,

considering the uncertainity associated with the partial or out-dated model available

to the attacker.

2.3. FOCUS ON PHYSICAL SYSTEM SECURITY FOR SECURE
CYBER OPERATIONS

A deviation from the expected behavior of the physical system indicates a

malfunction or security violation at the physical system (considering an application

dependent error). The expected behavior of the physical system is calculated based

on real-time guarantees of the embedded systems within or with the control signal

estimates. So, it is possible to detect specific cyber attacks that considerably change

the expected behavior of the physical system.

In [34], Mueller et al. detect the execution of unauthorized instructions in

CPS-based real-time embedded systems by utilizing information obtained from static

timing analysis. Timing analysis in hard real-time systems is a strict requirement to

verify that all tasks meet their deadlines, failing which the application is considered

incorrect. During static timing analysis, the aggregated cost of instruction blocks

and architectural timing effects are considered, to calculate the bounds on execution

times. Unauthorized code potentially takes an unusual amount of time to execute.

The assumption is that during an attack, hardware parameters like memory latencies

and processor frequencies remain unmodified and the time bounds on code sections
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are determined prior to the schedule. They propose Worst Case Execution Times

(WCETs) for specific code sections that safely bound the upper execution time;

execution times above these bounds provide indications of a system compromise.

Based on the granularity of time bounds on the application code, three techniques of

intrusion detection are designed; Timed Return Execution that is used to monitor the

execution of selected code sections at application-level checkpoints, Timed Progress

Tracking that makes synchronous calls to the operating system scheduler at security

checkpoints and assesses time bounds for longer code sections and Timed Address

Execution Tracking that utilizes the asynchronous scheduler calls to validate time

bounds for approximated code sections. These techniques can be employed to detect

intrusions based on code injection attacks on the cyber control layer of a CPS. While

such detection is necessary, the ability of an attacker to change the physical system

behavior by injecting false data was not addressed.

In [35], Sastry et al. proposed a method to detect the cyber attacks that

change the behavior of the underlying physical system in a process control system.

In such systems, the state of the physical system is monitored by a network of

sensors placed at specific locations on the physical system. The physical system is

modeled as a composition of control input sequences, output sequences and output

estimates calculated from the sensor data. Their argument is that “if it is known

how the output sequence, y(k) of the physical system at a time instance, k, should

react to the control input sequence, u(k), then any attack to the sensor data can

be potentially detected by comparing the expected output y(k) with the received

(possibly compromised) signal ˜y(k).” Depending on the quality of the estimate y(k),

there could be false alarms indicating something wrong with the state of the system.

It was assumed that since the signal sent by the sensors to the control center lies

within specific bounds of measurement, at any specific time the signal coming from

the attack sensors can be made to fall within the same range. These attack models
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also assume that the attacker has a knowledge of: (1) the exact linear control model

of the physical system, (2) the time to detect an attack and the probability of a false

alarm, and (3) the control command signals (range of y(k)).

2.4. FOCUS ON CYBER-PHYSICAL INTERACTIONS FOR CPS
SECURITY

Cyber-physical events often reveal information about the physical system through

interactions that make the physical actions observable. Such information can be used

by an intelligent attacker to violate the confidentiality of the CPS.

In ubiquitous computing systems that are deployed in residential environments,

privacy leaks exist even when all the sensor transmissions are encrypted. Srinivasan

et al. [36] propose fingerprint and timing based snooping attack model under which

the attacker needs only the timestamp and the unique RF waveform pattern (finger-

print) of each radio message. The temporal distance of the transmission patterns of

each pair of sensors is calculated to cluster the sensors with minimum distance be-

tween them. Such a calculation will group the sensors belonging to each room of the

house into a cluster, whose activity can then be monitored. They also suggest that

use of attenuators and introduction of random delays on transmissions can protect

against these fingerprint and timing based snooping attacks. Inference attacks based

on the physical observability of events like turning on/off of a light, along with the

proposed snooping attacks can significantly compromise the privacy of the residents.

Security analysis of CPSs based on unified cyber and physical behaviors of the

system was performed in Sastry et al. in [37]. The authors investigated the vulnera-

bilities of the SCADA for the Gignac water canal system, brought by compromising

the sensors and actuators. The authors developed a partial differential equation

(PDE) system representing the SCADA control and the water flow in this network

of canal pools. This PDE system is extended to include the physical behavior of the
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system under specific attack models. The primary attack model is comprised of an

adversary sending incorrect data from the sensors to affect the intended objective of

automatic control methods. It was observed that the possibility of an adversary to

withdraw water from the canal stealthily exists. The stealthy deception attack in-

volves modifying the water level sensors to send false measurements to the SCADA

controller such that the SCADA system does not respond to counter adversarial

action of withdrawing water from the off-take. This can happen in the system, if

the injected false data is close to the current actual reading and so the deviation is

negligible to the controller. The authors showed how the stealthy water withdrawal

by the attacker through sensor deception can be included in the PDE system, as a

combination of switching signals to discretely open/close the off-take gates. False

data can be injected accordingly for upstream and downstream flows of water in the

canal pools. Such an attack can be extended to multiple pools by approximating the

effect of water withdrawal at upstream/downstream canal pools and manipulating

the upstream/downstream sensors to send false data to the SCADA controller.

This dissertation addresses a similar problem with special focus on analyzing

the confidentiality violation due to the nature of cyber-physical interactions within

the system. It is possible to obfuscate the critical operations with respect to the

observer by injecting events, called compensating events, that nullify the causal effect

of the critical operations [23]. A taxonomy composed of the security properties of the

sensor network, the threat model, and the security design space for SCADA systems

is discussed in [38]. Control theoretic analysis coupled with information security for

secure control of CPSs was investigated in [39]. In [40], a unified critical systems

ontology was developed that aids in the assessment and modeling of reliability, safety,

liveness, fault tolerance, security, and human aspects of CPSs. A summary of the

above literature is presented in Table 2.1.
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Table 2.1. Summary of existing work in CPS security
Study of Approach Comments

Standards for CPS se-
curity [26] [27] [28] [29]

Identifies best practices and
guidelines that suit different
CPS architectures

Broader scope for fur-
ther research exists

Impact of cyber secu-
rity on the secure op-
erations of the physical
system [30] [31] [5] [33]

Suggests cryptographic, ac-
cess control and other cyber
security mechanisms to pre-
vent attacks on physical sys-
tem

False data injection at-
tacks can be performed
on the physical system
due to compromised
cyber component(s)

Impact of physical sys-
tem security on se-
cure cyber operations
[34] [35]

Cyber attacks are detected
based on deviation from se-
cure and expected behavior
of physical system

Relies on the physical
system guarantees

Impact of cyber-
physical interactions
on CPS security
[36] [37]

Showed how attacks can
be performed exploiting the
nature of CPS interactions

Information flow mod-
els can provide a better
reasoning

2.5. DIRECTION TAKEN IN THIS WORK

Information flow policies provide an appealing semantic basis in analyzing CPS

interactions, since they define the way information moves throughout a system. Infor-

mation flow security guarantees that no information flows from a high-level security

domain to a low-level security domain. Modeling of the CPS is necessary in order to

verify if a given CPS satisfies an information flow model. A discussion of information

flow models that are attractive to CPSs, is presented in Section 4. However, two

shortcomings exist:

1) representation of the concurrent and distributed interactions within a CPS

while capturing the discrete and continuous aspects is complex,
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2) a generalized approach to verify information flow security is lacking primarily

because information flow within CPSs is less studied.

This work addresses those shortcomings by proposing a novel direction using process

algebras to model and verify security properties within a CPS.
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3. FORMAL SPECIFICATION AND VERIFICATION METHODS

Specification of a system is a formal description of its expected behavior. A

system specification can be used to check whether the real implementation of the

system is behaviorally equivalent to its specification. For this reason, the specification

should embrace the features and logic of the system as closely as possible to the

real system. The specification is then verified for a particular property or policy.

This area of formal methods is very well studied over decades to verify software as

well as hardware for correct design, reliability and functionality. The advantage of

undertaking such mathematical and computational rigor lies in enhanced reliability

and assurance. Modeling and verification of systems is an emerging research aspect

in the CPS community to verify that a given a CPS satisfies functional correctness

and meets the expected criteria. However, representation of the concurrent and

distributed interactions within a CPS while capturing the discrete and continuous

aspects is complex.

Different approaches to model and formally analyze CPSs exist. A common

approach to model CPSs is a treatment similar to hybrid systems. The behavior of

a hybrid system is characterized by the continuous dynamics of the physical system

and the discrete nature of the embedded control. The hybrid system behavior can be

defined in terms of hybrid automata [41]. Hybrid automata abstract the continuous

evolution of the physical system defined in terms of ordinary differential equations,

and the discrete transitions which characterize the change of automaton state. The

continuous change is defined in terms of flows that characterize the control mode

represented as differential equations. The discrete changes are represented using

jumps that define the control switch leading to a value at the conclusion of a dis-

crete change. The automata consists of states that abstract the flows and transition
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on conditions defined by jumps. The composition of hybrid automata was defined

as the time synchronization of two automata over common events. The hybrid au-

tomata can be model checked to determine if any of the reachable states violated

the defined correctness or security property [42]. Work in these lines has been re-

cently performed in [43] and [44]. However, modeling communication among various

distributed components of a CPS is difficult using hybrid automata. Moreover, the

complexity of verification on the enormous state space exist. Modeling of communi-

cation and concurrency among various cyber and physical processes also remains a

challenge.

A unified approach to deal with CPSs is necessary that can encompass the

non-deterministic and concurrent nature and develop uniform semantics of cyber and

physical processes of a CPS. Hybrid systems do not model all aspects of CPSs since

the distributed nature of CPSs is ignored. Process algebras, by contrast provide at-

tractive framework to define the concurrency, communication and non-deterministic

nature in systems. Platzer [45] advocated that logical analysis of CPSs combines the

logical verification approach of hybrid systems and of distributed hybrid systems.

To this end, the use of process algebraic theory coupled with hybrid systems theory

provides a unified framework to model and verify distributed CPSs.

Traditional process algebras like the Calculus of Communicating Systems (CCS)

[16] and Communicating Sequential Processes (CSP) [46] capture non-determinism,

communication, recursion, process abstraction and process divergence, but their

treatment is different. For example, CSP provides different operators for communi-

cation and interleaving of events while CCS offers a single operator to perform both.

However, communication happens in CCS semantics when the interleaved events

are complementary, leading to an internal event. Such semantic differences coupled

with different notions of equivalences that process algebras offer, help understand

the behavior of systems.
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Unfortunately, in some CPSs, process interactions could be dynamic meaning

that processes might establish connections arbitrarily with other processes; thus the

structure of communication is dynamic. In Section 3.1, a process algebra based on

CCS, called the SPA is presented. SPA is useful to specify the behavior of distributed

systems and to verify the security properties within. Due to the limitations discussed

later, SPA cannot model all aspects of CPS interactions and hence, the π-calculus

introduced in Section 3.2 is adopted.

3.1. SECURITY PROCESS ALGEBRA (SPA)

SPA [47] [48] is an extension of CCS - a language for specifying concurrent

systems. It provides an algebra for defining larger systems from smaller subsystems

in a bottom-up fashion. The basic building blocks are atomic activities called ac-

tions. Unlike in CCS, SPA actions belong to two different levels of confidentiality,

permitting the specification of multilevel (actually, two-level) systems. The syntax

for describing a system using SPA is:

E ::= 0 | µ.E | E1 + E2 | E1|E2 | E\L | E\IL | E/L | E[f ] | Z.

In the above syntax, 0 is the empty process that cannot perform any action (specifi-

cally defines termination of a process ); µ.E performs action µ and then behaves like

E; E1 + E2 can alternatively choose to behave like E1 or E2; E1|E2 is the parallel

composition of E1 and E2, where the executions of the two systems are interleaved;

E\L executes all the actions that can be performed by E, provided that they do not

belong to L ∪ L̄ (where L̄ refers to the output); E\IL requires that the actions of

E do not belong to L ∩ I; E/L transforms all the actions in L into internal actions;

if E can execute action µ, then E[f ] performs f(µ); and finally, Z performs the

actions that E performs if Z ≡ E. Following the customary notation, τ ∈ Tr is a

system trace, τ\x is a trace purged of all events in the domain of x, τ |x is a trace

restricted to all events in the domain of x, and E1|E2 is the parallel composition
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of events E1 and E2. Additionally, High and Low are used to represent H and L

security domains containing H and L users, respectively. Also, the symbols I and

O represent inputs and outputs, respectively. The operational semantics of the key

operators in SPA are presented in Figure 3.1.

Prefix −
a.E

a−→E
Communication

E1
a−→E′1 E2

a−→E′2
E1|E2

τ−→E′1|E
′
2

Parallel
E1

a−→E′1
E1|E2

a−→E′1
E2

a−→E′2
E1|E2

a−→E′2

Sum
E1

a−→E′1
E1+E2

a−→E′1
E2

a−→E′2
E1+E2

a−→E′2

Restriction E
a−→E′

E\L
a−→E′\L

if a /∈ L∪L

Figure 3.1. Operational semantics in SPA

SPA is used in the analysis presented in Section 6 to demonstrate the capability

of process algebras in modeling CPSs. However, modeling the interaction among

symmetric cyber processes that exhibit different behaviors was difficult. Additionally,

using SPA, it was difficult to capture the dynamism involved in interactions between

specific cyber processes that communicate to perform specific actions on the physical

system. An advanced mechanism is required that will distinguish messages from

symmetric processes based on the channels of communication. The case of multiple

observers interacting to downgrade information from the system can be analyzed

with this new mechanism. Hence the development of a π-calculus based information

flow theory will be the next step.
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3.2. THE π-CALCULUS

The π-calculus [49] is an enhanced version of CCS [16], that offers attractive

formalism of processes establishing communication with other processes over dy-

namic channels. Such a dynamic communication can be represented using semantic

operators like restriction (of a message to a channel), and scope extrusion through

which the dynamically changing scope of the communication domain is abstracted

through sending of channel names as messages to processes that did not have access

to those channels before. Among the other novel features of π-calculus, notable are

the ability to model communication among processes over dynamic links, and the

notion of equality testing based on bisimulation. In π-calculus, an infinite set of

names (m, n, p, q, r, etc.) are used for communication channels, and an infinite

set of variables (x, y, z, etc. ) are used to define the terms. The set of processes

is defined by the grammar shown in Figure 3.2. The null process 0 does nothing.

A composition P|Q behaves as processes P and Q running in parallel. Processes

operate on channels to communicate with each other and with the outside world.

The basic interaction is defined using x̄ < N >.P that defines an output process

that is ready to output on channel x, or x(m).P that defines an input process that

is ready to receive a value over channel x. The replication !P behaves as an infinite

number of copies of P running in parallel. The name restriction operator (νn.P) is

a process that makes a new, private name n, and then behaves as P.

0 Null Process
P|Q Parallel Composition
!P Replication
νn.P Name Restriction
x(m).P Message Input
x̄ < N >.P Message Output

Figure 3.2. π-calculus syntax
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A novel contribution of process algebraic theory is the ability to verify the equiv-

alence of two systems. Different process algebras offer different notions of equiva-

lence based on their structural operational semantics. Two processes are bisimulation

equivalent if there exists a bisimulation relation including both the processes as a pair

(formally introduced in Section 4.5). Verification of such equivalence among systems

was studied independently by Paige et al. [50] and Kanellakis et al. [51]. However,

to verify the equivalence of systems based on security, specification semantics to

represent private communication among processes are required.

An extension of the π-calculus, the spi calculus, was introduced by Abadi and

Gordon to specify and analyze cryptographic protocols [52]. Spi calculus extends

the regular implication of restriction and scope extrusion using channels in the π-

calculus, by providing operators using which messages transmitted over the channel

can be encrypted/decrypted. The receiver of the encrypted message on the channel

can perform a function on the received message can be decrypted using the shared

key. Spi calculus can be used to analyze a variety of cryptographic protocols by

defining the cryptographic operations using the channels in systems for distributed

security. In spite of all the features the process algebras (CCS, CSP, π-calculus)

and their variants offer, they cannot still be directly applied to CPS environments

because of the inability to capture the continuous dynamics of a CPS.

The φ-calculus proposed by Rounds and Song [53] is an extension of the π-

calculus to hybrid systems. A hybrid system can be defined using the φ-calculus

as the communication among concurrent hybrid automata defining the CPS envi-

ronment. In [54], Jifeng proposed a formal description language for hybrid systems

based on CSP by developing trace semantics for the differential equations guiding

the continuous system. A theory that bridges the process algebraic approach and

hybrid systems theory for the purpose of security verification in CPSs is missing and
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this work is an attempt in that direction. Recently, Wolfthusen et al. [55], models

process control systems with adversarial behavior characterized as π-processes.

The CPS specification should entail the cyber and physical components and

the interactions among them. Most importantly, the continuous nature (like flow

invariance) of the physical network should be discretized to be represented as an

interacting process with the cyber processes. Information flow models that are of in-

terest to CPS security and their applicability within the process algebraic framework

are discussed in Section 4.
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4. INFORMATION FLOW MODELS

Information flow security guarantees that no information flows from a high-level

security domain to a low-level security domain within a system. Information flow

has been studied primarily for program and language security [56]. Various security

models that analyze system security from the perspective of access control or execu-

tion sequence have been discussed for decades [13] [15]. However, this work has not

been directly applied to CPSs. In a CPS, information flows between and within the

cyber and physical components. Unfortunately, access control policies like the Bell-

La Padula model [57] do not prevent information propagation because they do not

control how information will be used. The possibility that confidential information

may be inferred from the observable information flow represents a potential source

of critical information leakage. Information flow models aid in understanding how

information is leaked across the cyber-physical boundary and how this information

may be downgraded by an observer within the system.

In the following sections, τ ∈ Tr is a system trace, τ\x is a trace purged of

all events in the domain of x, τ |x is a trace restricted to events in the domain of

x, E1|E2 is the parallel composition of events E1 and E2, H and L are high-level

and low-level security domains, respectively, and I and O are inputs and outputs. A

legal or valid trace of a system is defined as an event trace, the order of which is such

that the output events are always preceded by their corresponding input events. A

H (L) event is one that occurs within the H(L) domain. A L observation is a special

case of a L event.
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4.1. NON-INTERFERENCE

Non-interference [7] seems to be the natural way of defining the information

flow behavior which states that the high level interactions does not interfere with the

low level observability. In other words, information does not flow from H domain to

L domain if the H behavior has no effect on what L observer can observe.

Let S be a set of subjects, Σ be a set of system states, O: a set of outputs,

Z: a set of commands and C = S × Z: a set of subject, command pairs indicating

which subject executed which command. A state transition function T : C×Σ→ Σ

specifies to which state the system transitions to when some command c is executed

in a state σ, and an output function P : C×Σ→ O describes the output of executing

c in state σ. Two functions, proj (projecton) and π (purge) are defined to formalize

non-interference. The projection function is used to see the outputs that a subject

can see for a given state of a system, e.g. proj(S,Cs, σi) would result in the outputs

from the command sequence Cs that subject S can see given state σi. The purge

function has three forms:

• πG(Cs): This function will remove all elements in the command sequence Cs

which involve subject S, for S ∈ G where G is some subset of subjects.

• πA(Cs): This function will remove all elements in the command sequence Cs

which involve action Z, for Z ∈ A where A is some subset of actions.

• πG,A(Cs): This is a combination of πG and πA where the conditions of both

functions must hold for an element to be removed.

TheG users are non-interfering withG′ users if for all valid command sequences,

proj(S,Cs, σi) = proj(S, πG,A(Cs), σi) for S ∈ G′. For a simple system with two

groups, a H domain and an L domain,

NInt(ES) ≡ ∀τ ∈ Tr, τ\H = τ |L (1)
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This can be interpreted as follows: for all possible command sequences, all L

projections are the same regardless if the H actions are purged out of the command

sequence.

4.2. NON-INFERENCE

Conceptually, in a system that is non-inference secure, any observation is con-

sistent either with H and L events, or with L events only. Thus, an observer cannot

infer that any information is flowing from an H domain to an L domain. A system

is considered secure if and only if for any legal trace of system events, the trace

that results from the legal trace purged of all H events is still a legal trace of the

system [13]. Formally, a system ES is said to be non-inference secure if

NInf(ES) ≡ ∀τ ∈ Tr, (τ |L∈ Tr) |H= φ (2)

This imposes two conditions on the system. First, for any system trace, the

restriction of the trace to L events alone is also a valid system trace. That is, just by

observing L events, one cannot infer with certainty if a H event occurred. Second,

purging H events from any system trace should yield a valid trace comprising of the

L events.

4.3. NON-DEDUCIBILITY

Non-deducibility ensures that the low-level observability does not deduce the

specific high-level inputs to the system [58]. Formally, a system ES is said to be

non-deducible secure if

ND(ES) ≡ ∀τL, τH ∈ Tr : ∃τ ∈ Tr : τ |L= τL ∧ τ |H∩I= τH . (3)



28

A system is considered non-deducible secure if nothing can be deduced about the

sequence of input events, I, in the H domain based only on observation of events in

the L domain. In other words, a system is non-deducible secure if a L observation

is compatible with any H input event [14].

4.4. APPLICABILITY OF TRACE-BASED MODELS TO A CPS

Non-interference, non-inference and non-deducibility are trace based models

in which one verifies the trace equivalence of system’s execution with respect to a

L observer on the same finite sequences. As the complexity of CPS increases, the

possible sequence of events that needs to be verified for trace equivalence grows,

increasing the complexity of confidentiality verification dramatically.

For CPS models, non-interference could be very restrictive since CPSs inher-

ently involve the cyber or physical subjects in the H domain writing to the physical

subjects in the H or L domain. For example, a cyber component issuing a High-level

command to a physical component may result in an observable L event at the neigh-

boring physical component due to physical flow invariant as shown in Figure 4.1. In

this case, non-interference is violated.
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Non-inference may be too strong in some cases, such as when a system cannot

operate without a H event or where the L inputs result in H outputs. However, for

the case shown in Figure 4.2, if the L events always occur even in the absence of the

H event, then non-inference is satisfied.
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Non-deducibility security models are used to analyze a system in which H out-

puts are observable. According to McLean [8], if an entire system is non-deducibile

secure, then no L observation of the system will ever acquire any H information

through the system. In Figure 4.3, due to the occurrence of two H input events

simultaneously, an observer cannot deduce any information regarding the high level

inputs from his low level observation.

While non-inference and non-deducibility seem to be attractive models to ana-

lyze the information flow within a CPS, their limitation to trace based systems can

be overcome by applying them to different behaviors of a CPS. Verifying that a CPS

preserves a specific information flow property, requires a formal description of the

system.

To perform security analysis of a CPS, a specification system similar to SPA

is necessary to specify the CPS while analyzing the interactions between different
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security domains within, to determine potential violation of information flow prop-

erties. Different information flow properties were discussed in literature, that define

how information may not flow between different security domains to preserve confi-

dentiality. In SPA (CCS) and π-calculus, however, these properties are defined by

exploiting the behavioral equivalence between processes as observed by the low-level

observer. The bisimulation-based non-deducibility on composition (BNDC) property

defined in Section 4.5 ensures that every state (characterized by different system be-

haviors) reachable by the system satisfies the basic non-deducibility property.

4.5. BISIMULATION-BASED NON-DEDUCIBILITY ON
COMPOSITION

Checking confidentiality in a CPS requires an exhaustive verification of all pos-

sible system behaviors to detect the interactions that do not satisfy the desired secu-

rity properties. A system is considered to satisfy bisimulation-based non-deducibility

on composition (BNDC) if it can preserve its security after composition with other

processes [47] [48] [59]. BNDC property uses weak bisimulation equivalence defined

in Definition 1, to detect the behaviors that are not non-deducible secure on compo-

sition with a high level process.
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Definition 1 (Weak Bisimulation). A binary relation R ⊆ EXE is a weak bisimu-

lation if (P,Q) ∈ R implies, for all a ∈ Act,

• if P a−→ P’, then there exists Q’ such that Q a−→ Q’ and (P’, Q’) ∈ R

• if Q a−→ Q’, then there exists P’ such that P a−→ P’ and (P’, Q’) ∈ R

Two processes P, Q ∈ E are weakly bisimilar, denoted by P ≈ Q, if there exists a

weak bisimulation relation R containing the pair (P, Q).

A system ES is BNDC if, for every H process, Π, a L observation cannot

distinguish ES from the process ES composed with any other process, Π. In other

words, a system ES is BNDC if a L observation is not modified by composing any

H process, Π with ES. Formally,

BNDC(ES) ≡ ∀Π ∈ EH , ES\H ≈B (ES|Π)\H (4)

where ES\H changes all the H events in ES into internal silent actions and ≈B is

a weak bisimulation relation. A system is BNDC-preserving if the above property

holds for all possible system behaviors. A broad study of BNDC and its variants is

presented in [60]. Verification of BNDC in a test CPS is presented in Section 6.

4.6. GENERAL APPROACH TO VERIFY INFORMATION FLOW
PROPERTIES IN A CPS

A formal methodology to automate the process of verifying confidentiality of

information flow within a CPS involves addressing three main issues below:

4.6.1. Representation of Cyber and Physical Processes and Their

Interactions in a Computational Framework. A process algebra can be used

to model the CPS as a composition of cyber and physical processes that communi-

cate concurrently, if possible, in a synchronized manner. Each process is defined as
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a sequence of events within the system which determine different states the system

could transition into. In [22], SPA has been used to represent the physical actions

interacting with the computational elements in a gas pipeline network. A similar

approach has been taken in [17], to analyze information flow within a more com-

plex smart grid that uses advanced distributed algorithms to manage the underlying

physical resources like renewable energy sources, house loads, power storage, etc.

The physical network in a CPS forms a continuous time subsystem and the com-

putational part forms a discrete event subsystem. Process algebras are not equipped

to model the continuous-time nature of physical processes in a CPS. To capture the

information flow of the combined system thereby forces the modeling of the con-

tinuous physical subsystem to be event-based, so that the physical events can be

captured using process algebra. Physical events include 1) a local state change of

the physical subsystem resulting from a cyber component controlling it (for example,

a power flow controller increases/decreases voltage on the power line causing a flow

change) or 2) a local physical state change brought by the dynamics of the physi-

cal network (for example, load on a power line increases/decreases as a stochastic

process to which the power electronics react by making a setting). Invariance on

physical flow can be modeled such that events that change the flow at various phys-

ical components are reflected in an aggregate flow that satisfies the invariant. The

impact of physically observable behavior cannot be ignored to study information flow

in CPSs. This forces the observable actions to be considered as events that are used

as building blocks of process specification.

Cyber events within a CPS involve in distributed computation based on 1)

communication with other cyber components or 2) communication with the physical

component that it controls. Composition of cyber processes result in the transfor-

mation of complementary actions of the processes into internal silent actions in the

composed process, defined by the SPA Communication operator in Figure 3.1.
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The communication between physical processes is different from that between

cyber processes; in the former case, the pair of processes make a synchronized phys-

ical change on the shared network (such as power transfer on the shared power bus

from a component with high potential to a component with lower potential) and in

the latter case, the pair of processes synchronize on complementary request/response

type messages. Methods to counter interception of messages on the communica-

tion channel exist, validating the assumption that cyber processes can be securely

composable as long as they perform complementary actions. By contrast, physical

change between two physical processes is observable by an intermediary in the path of

their direct communication, making it difficult to securely model such composition.

Using the proposed approach, CPSs can be modeled in terms of SPA followed by

bisimulation-based equivalence testing of the processes as outlined in Section 4.6.2.

4.6.2. Adequacy of Bisimulation-Based Non-deducibility Properties

for CPS Models. According to the definition of BNDC (in Equation 4), the SPA

specification of the system has to be composed with all the high-level processes

(Π) that can be modeled using the high-level actions of the system. However, this

would significantly increase the complexity of verification of BNDC property since

it should be verified that E\H ≈B (E|Π)\H, for all Π (Π could be defined as some

combination of events from {H ∪ H̄} reaching possibly any state E ′ ∈ ξ, where ξ is

the set of all the states of the system). To avoid such universal quantification on Π,

a strong form of BNDC called strong BNDC (or SBNDC) has been proposed in [60].

SBNDC states that iff for all E ′ reachable from E, if E ′ h∈H−−→ E ′′, then E ′\H ≈B

E ′′\H. This definition of SBNDC implies that the system before and after executing

a high-level action remains indistinguishable.

Such a definition avoids the fact that the property should hold for all possible

high-level processes within the system, transforming the bisimulation relation be-

tween E and E|Π into a bisimulation up to H relation on E and E\H i.e., it will
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be verified if E ≈\H E\H with the high actions replaced with silent internal action,

τ . The bisimulation up to H relation for SBNDC (≈0
\H) transforms the high-level

events in E ′ into a sequence of (
τ−→)0 or zero actions. An exhaustive study of BNDC

and its variants is presented in [60]. The impact of silent internal actions on weak

bisimulation relation is equivalent to that defined in CCS [16].

4.6.3. Testing for Bisimulation Equivalence of Processes. Two

processes are bisimulation equivalent if there exists a bisimulation relation including

both the processes as a pair. This problem of equivalence testing has been well

studied in literature [50] [51] as a relational coarsest partition (RCP) problem: given

a relation, R (in this case, bisimulation up to H ) and an initial state, E over a global

set of states ξ, find the coarsest stable refinement such that either E ⊆ R−1(E\H) or

E∩R−1(E\H) = φ; if such a stable partition cannot be found, then such a partition

does not exist implying that bisimulation up to H relation does not exist between E

and E\H.

The remainder of this work demonstrates the specification and information flow

verification challenges within CPS infrastructures by applying them to an example

CPS (of Section 5) in Sections 6 and 7.
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5. FREEDM: A TEST CPS

The Free Renewable Electric Energy Delivery and Management (FREEDM) [61]

microgrid is a smart power grid architecture with advanced technologies of the

Solid State Transformer (SST), Distributed Renewable Energy Resource (DRER),

Distributed Energy Storage Device (DESD), and House Load (LOAD) powered with

Distributed Grid Intelligence (DGI) to meet the goals of optimal energy manage-

ment and reliability enhancement. FREEDM is a perfect example of a CPS, since it

includes distributed physical and cyber components that communicate among them-

selves to control the system. The SST and power electronics that embed the DGI

are referred to as an Intelligent Energy Management (IEM) (See Figure 5.1).

Figure 5.1. FREEDM microgrid with three nodes

Among various algorithms adopted by the DGI is a Power Management

scheme [20], to efficiently balance power flow for optimal distribution of energy within

the system.
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5.1. DISTRIBUTED POWER MANAGEMENT SCHEME

The power management algorithm in the FREEDM system draws its origins

from distributed load balancing schemes [62] in computer science, that are designed

to normalize the loads of process execution among the peers of a distributed system.

Intuitively, the nodes participating in a load balancing algorithm communicate their

load changes with each other in an attempt to migrate the process execution task

from a node with Demand to a node with Supply. The result of such a migration

is that the nodes normalize their loads, thereby achieving a roughly balanced load

computation. Every IEM computes the SST’s actual load on the distribution grid

and decides the state of a node as having Supply or Demand or Normal state

of load. The algorithm consists of concurrent sub-processes with message passing

communication among the IEMs on critical load changes. Each DGI maintains a

(potentially out-of-date) Load table as shown in Table 5.1, to store information it

receives about other nodes in the system. Load table updating strategies are adopted

Table 5.1. Load table maintained at each node

Node State Node State . . Node State
1 Supply 1 Supply . . 1 Normal
2 Demand 2 Demand . . 2 Demand
. . . . . . . .
. . . . . . . .
n Supply n Supply . . n Normal

At IEM 1 At IEM 2 . . At IEM n

to minimize cyber message traffic during frequent load changes. An IEM node, on

entering into a Supply state, advertises a Draft Request message to the nodes in

its load table that are in Demand state and waits for response. A Demand node, on
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receiving a Draft Request message, responds to the sender by sending its demand

cost with a special message called Draft Age. The Supply node, on receiving Draft

ages from different Demand nodes, will compute a Draft Standard which is an

optimized selection of the node it is going to supply power to by evaluation of factors

like its own predicted need, economics and other optimization metrics. The Supply

node, on computation of draft standard, sends a unique Draft Select message and

initiates the power migration by making a set point on the Gateway power which

is the local SST’s individual contribution on to the shared power bus. On receiving

the Draft Select message from the Supply node, the IEM which was in demand

receives this power from the shared bus. The migration takes place in unit step size

until the time the Supply node can supply to the Demand node or the Demand

node meets its sufficient demand, or there is a change of load state in either of the

nodes. The algorithm continues until all the nodes are in Normal state. A sample

DGI trace involving a drafting node (which can Supply) and the source (which is in

Demand) is shown below:

DGI_Source: Respond to bid request

if loaded

DGI_Source: Responds to select message

and commands local SST

DGI_Draft: Request bid from known loaded DGIs

DGI_Draft: Order the response messages arbitrarily

DGI_Draft: Selects power to migrate based on cost

DGI_Draft: Sends select message and commands

local SST

5.2. NEED FOR INFORMATION FLOW ANALYSIS OF FREEDM

The National Institute of Standards and Technology (NIST) identifies that con-

fidentiality is an increasing concern in smart grids to protect i) the privacy of the

consumer, ii) the electric market information and iii) the power company [25]. Rea-

sons that pose additional risk include increased entry points for potential adversaries

with increased complexity of the grid, and the impact of coordinated cyber-physical
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attacks. Unrestricted information flow can potentially be used against the system for

economic gains; for example, generators of renewable energy may withhold power to

sell at a premium. The physical components that are exposed to any observer out-

side the CPS divulge some information regarding the system (physically observable

behavior). For example, the operation of a wind turbine in a smart grid depends on

its physical size, velocity of wind, etc., that are observable. Definitions of H and L

domains change according to the physical location of the observer on the CPS; for

example, an observer controlling a physical component knows more about the system

than an external observer (with only physical observability). If a user has access to

the Load table of his DGI, then he knows the demand states of his peers. Such a user

can obtain critical information pertaining to the rest of the system by observing the

cyber-physical interactions or faking his demand state, thereby violating confiden-

tiality. To completely analyze the information flow, various cases of such observers

should be accounted for, that reveal the extent of confidentiality violation within

the system [17] as in Figure 5.2. Such models of information flow are discussed in

Section 6.2.

Figure 5.2. Different levels of confidentiality violation possible in a CPS
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6. INFORMATION FLOW ANALYSIS USING SPA

A subnetwork of the FREEDM system with three nodes is depicted in Fig-

ure 6.1. The events in the system are DRER, DESD, Load, Bus, XSST , Gateway

and Utility which are the actions associated with DRER, state of DESD, house

load, the total power on the shared power bus, strategy of the SST for local man-

agement at the node level and activity on utility grid respectively. For notational

convenience, the events are italicized to distinguish them from their respective phys-

ical components (for example, DRER is the physical component while DRER is a

corresponding event). Event classification into H and L security domains differ in

different scenarios.

‘High’ domain

Observer node

3

DRER

DESD

LOAD SST 1

DRER

DESD

LOAD SST 3

3
DRER

DESD

LOADSST 2

Shared Power bus

Utility Grid
∑

External Observer

1Gateway

2Gateway

3Gateway

Figure 6.1. FREEDM subsystem with no DGI, two nodes and two observers

Lemma 1. Power flow in the shared power bus is an invariant function of individual

gateway loads of the participating nodes and the draw from, or contribution to, the

utility grid.
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Proof. Assuming the utility grid to be an infinite source and sink of power, the power

flow in the shared power bus of local grid can be expressed by Equation 5.

PBus =
n∑
i=1

PGateway + PUtility (5)

where n is the number of nodes and PUtility is the total power draw from or contribu-

tion to the utility grid. This is obvious since the flow in the subnetwork is preserved

due to Kirchoff’s current laws. The net demand or supply on the bus is compensated

as a net draw from or contribution to the utility grid, respectively.

6.1. MODELING OF FREEDM USING SPA

Each node without the DGI process is modeled as in Equation 6. The invariant

on the bus shown in Equation 5 can be modeled as in Equation 7. The microgrid

consisting of n such nodes can be modeled as in Equation 8.

NodenoDGI ∼= (DRER.DRER.NodenoDGI +DESD.NodenoDGI

+ Load.NodenoDGI).XSST .(DESD.NodenoDGI

+ Load.NodenoDGI).Gateway.NodenoDGI

(6)

Bus ∼= (GatewayNode 1.Bus+GatewayNode 2.Bus+ ....

GatewayNode n.Bus) + Utility.Bus

(7)

E ∼= (Node 1noDGI |Node 2noDGI |...|Node nnoDGI)|Bus (8)

6.2. VERIFICATION OF INFORMATION FLOW USING SPA

Information flows in different ways depending on the observer’s level of inter-

action with the system as shown below.

6.2.1. External Observer on the Physical System. The external

observer can know visible information about the DRER like the size of the facility,
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weather factors impacting the DRER output (represented by DRER), but not the

output energy generated at any given instance of time (DRER). As in Figure 6.1,

the external observer could use an inductive pickup to obtain the reading on the

shared power bus or the gateway at each node, since the power lines are physically

visible and open. The following conclusions can be made on the information flow in

the case of such an observer.

Lemma 2. A single node in the system without DGI is BNDC-secure with respect

to a low-level external observer with limited physical observability.

Proof. Assuming that the low-level observer can only observe the visible DRER

sources, the classification of events at any node as defined in Equation 6 is Low =

{DRER}, High = {DRER, DESD, Load, XSST , DESD, Load, Gateway}. Re-

stricting all the high level events within the node yields, NodenoDGI\H ∼= DRER.

NodenoDGI . For any high level process Π, say Bus, the restriction on the composed

system, (NodenoDGI |Π)\H ∼= DRER.NodenoDGI . Therefore, NodenoDGI\H ≈B

(NodenoDGI |Π)\H.

Lemma 3. A single node in the system without DGI is NOT BNDC-secure with

respect to a low-level external observer that can read the gateway at the node.

Proof. Assuming that the low-level observer can observe the visible DRER sources as

well as the Gateway, the classification of events at any node as defined in Equation 6

is Low = {DRER, Gateway}, High = {DRER, DESD, Load, XSST , DESD,

Load}. Restricting all the high level events within the node yields, NodenoDGI\H ∼=

{DRER}. For any high level process, Π ≡ Bus, the restriction of the composed

system, (NodenoDGI |Π)\H ∼= {DRER,Gateway}. Therefore, NodenoDGI\H ≈B

(NodenoDGI |Π)\H.

An interesting observation in addition to Lemma 3 is that the process satisfies

non-deducibility property. The observer might see a different output of gateway
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(Gateway) every time a high level process, Π ≡ Bus takes place within the system.

However, the observer cannot deduce anything about the high level inputs to the

system since a gateway change might be because of any of the high level inputs

{DRER, DESD, Load} or a combination of them.

Theorem 1. The physical system in FREEDM is BNDC-secure with respect to a

low-level external observer as shown in Figure 6.1.

Proof. From Lemmas 2 and 3, it follows that low-level observation on DRER is

BNDC-secure while an additional observation on gateway at an individual node is

not. However, when composed with the bus as in Equation 8, the system satisfies the

BNDC property. Assuming that the low-level observer can observe the visible DRER

sources as well as the Bus, the classification of events within the system as defined

in Equation 8 is Low = {DRERn
i=1, Bus}, High = {Node 1noDGI , Node 2noDGI ...

Node nnoDGI , Utility}. Restricting all the high level events within the system yields,

E\H ∼= {DRERn
i=1, Bus}. For any high level process Π, say, Gateway1.Gateway2,

the high-level restriction on the composed system, (NodenoDGI |Π) \H ∼= {DRERn
i=1,

Bus′}. Due to Lemma 1, observation ofBus is always consistent since
∑n

i=1 Gateway+

Utility =
∑n

i=1Gateway
′ + Utility′. Therefore, E\H ≈B (E|Π)\H.

Given that the observer can observe all the gateway loads, the observer can

match every unique Gateway event with a corresponding Bus event, thereby di-

vulging the confidentiality of the system. In that case, restricting all the high level

events within the system yields, E\H ∼= {DRERn
i=1, Gateway

n

i=1, Bus}. For Π ≡

Utility implying the case when a node draws from or sheds excess power to the

utility, (NodenoDGI |Π)\H ∼= DRERn
i=1, Gateway

′
i, Bus′} where Bus′ is inconsistent

with the event, Bus. In that case, the system is not BNDC-secure.

6.2.2. Internal Observer on the Physical System. If the nodes are

not involved in the DGI power balancing process, the low-level internal observer as
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shown in Figure 6.1, who is a part of the physical grid, can observe a change on

the shared power bus, whenever a Supply node renders its excess generation to the

utility grid or a Demand node ‘absorbs’ power from the utility grid. However, the

observer cannot exactly know who performed the change. Therefore, it can be said

that the system without the DGI process is non-deducible secure. This leads to the

following Lemma 4.

Lemma 4. The system without the DGI process is non-deducible secure.

Proof. The change observed by the low-level observer on the shared power bus, Bus′

could be due to any of the other nodes that are in Demand or Supply. The observer

would be in doubt as to who performed the event or if more than one of the nodes

performed it. The observer could not deduce the high level inputs to the system

from the low level observation. This makes the system non-deducible secure.

Theorem 2. The physical system in FREEDM is BNDC-secure with respect to a

low-level internal observer as shown in Figure 6.1.

Proof. Assuming that the low-level internal observer, IO can observe the visible

DRER sources as well as the Bus, the classification of events within the system as

defined in Equation 8 is Low = {DRERn
i=1, Node IOnoDGI , Bus, GatewayNode IO},

High = {Node 1noDGI , Node 2noDGI ... Node nnoDGI}. Restricting all the high

level events within the system yields, E\H ∼= {DRERn
i=1, Node IOnoDGI , Bus,

GatewayNode IO}. For any high level process Π, say, Gatewayi.Gatewayj where

i, j 6= IO the high-level restriction on the composed system, E|Π)\H ∼= {DRERn
i=1,

Node IOnoDGI , Bus, GatewayNode IO}. As with the case with external observer in

Theorem 1, following the Lemma 1, observation of Bus is always consistent since∑n
i=1Gateway+Utility =

∑n
i=1 Gateway

′+Utility′. Therefore, E\H ≈B (E|Π)\H.
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6.2.3. Internal Observer Without DGI, on the Physical System

Composed With DGI. The system composed with power balancing process pre-

serves non-deducibility. Intuitively, this is possible due to the invariance of physical

flow (Equation 5). The nodes participating in power management process make their

changes in such a way that the net power flow at the bus remains constant. This

case was proved in an earlier work [24] using a gas pipeline system as test case. The

nodes running the power management process, LB (defined in Equation 9) can be

represented as in Equation 10.

LB ∼= LBS + LBD (9)

LBS ∼= SendDraftRequest.LBS +ReceiveDraftAge.LBS+

ComputeDraftStandard.DraftSelect.LBS.τ.XSST .LB

LBD ∼= ReceiveDraftRequest.LBD + SendDraftAge.LBD+

AcceptDraft.LBD.τ.XSST .LB

IEM ∼= (DRER.DRER.IEM +DESD.IEM + Load.IEM).τ.LB.

(DESD.IEM + Load.IEM +Gateway.IEM)

(10)

E = (IEM 1|IEM 2|..|IEM n)|Node IOnoDGI |Bus (11)

The system composed with the DGI process, E can be defined as in Equa-

tion 11. Assuming that the low-level internal observer, IO can observe the visible

DRER sources, the classification of events within the system as defined in Equa-

tion 11 is Low = {DRERn
i=1, Node IOnoDGI , GatewayNode IO}, High = {IEM 1,

IEM 2 ... IEM n}.

Theorem 3. The system composed with the DGI process, as modeled in Equation 11

satisfies the BNDC property with respect to an internal observer without DGI.
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Proof. An internal observer without DGI cannot see the high-level message ex-

changes associated with the DGI processes. Given this, it is unaware of any power

migration due to the power management algorithm. The high-level restriction on

the system is E\H ∼= {DRERn
i=1, Node IOnoDGI , Bus, GatewayNode IO}. The DGI

power migration step between a Supply node, i and a Demand node, j is represented

as Π ≡ LBS
i ||︸︷︷︸
Migrate

LBD
j . The high-level restriction on the system composed with

DGI, (E|Π)\H ∼= {DRERn
i=1, Node IOnoDGI , Bus′, GatewayNode IO}. However,

Bus is consistent with Bus′ due to the invariant defined in Equation 5. The total

power on the bus connecting the three nodes (1, 2, IO) shown in Figure 6.2 is given

by PBus = PGateway1 + PGateway2 + PGatewayIO. As a result of load balancing, if the

migrated power from Node 1 to Node 2 is ζ units (such as watts), then P ′Bus =

(PGateway1 − ζ) + (PGateway2 + ζ) + PGatewayIO. Power losses during migration are

ignored for the sake of simplicity, leading to PBus = P ′Bus. The event Bus
′ could also

be due to any process, (for instance Gatewayi.Gatewayj as in Theorem 2) where

i, j 6= IO. Therefore E\H ≈B (E|Π)\H, making the system BNDC-secure.

6.2.4. Internal Observer With DGI, on the System Composed With

DGI. For an internal observer with DGI (Node 3) as shown in Figure 6.2, if Node

1 is in Supply state, it could be either supplying to Node 2 or selling power to the

utility grid. On the other hand, if Node 2 is in Demand state, it is either receiving

power from Node 1 or receiving from utility grid. Such an observer can infer about

the global state of the system by analyzing the load table traces that are updated

within its DGI process. A load table trace at every node (as shown in Table 5.1), can

be represented in the trace model as a sequence of time varying tuples containing the

state information. For example, =∆t = { (State(Node 1) at time t1,... State(Node

n) at time t1), (State(Node 1) at time t2, .. State(Node n) at time t2), ..}. The
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Figure 6.2. FREEDM subsystem with DGI, two nodes and two observers

observer’s view of the system changes depending on the current demand state of the

node, leading to different cases of information flow as below.

6.2.5. Observer in Demand State. From its load table trace, an observer

can see the nodes that are in Demand state and Supply state. The quantity of

information that is observable is more in this case, since it receives draft requests

from all the nodes that are in Supply state. The observer in Demand state responds

to the draft requests by sending its demand cost (Draft Age). If it receives a

Refusal, it could be because the Supply node it responded to, has an inadequate

matching cost to satisfy its requirement, or the Supply node has selected to draft

with another Demand node which has a higher demand cost. In the case with only

three IEMs, this doubt can be resolved as follows: If there is no other Demand node

that the observer can see, then the Supply node does not have enough power to

match its requirement. In this case, it can advertise a lesser cost until the time it

succeeds. However, at the time it succeeds, it now has an estimate of the excess

power the Supply node has, with which it can infer its Load.
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Theorem 4. The DGI power management process is not BNDC-secure with respect

to an internal observer in Demand state.

Proof. Let Π be a power migration step between IEM1 and IEM2 as shown in Equa-

tion 9. From its load table trace =t ={(Supply,Demand)t}, IEM3 initiates the

high-level power balancing process Π′ with IEM1. It advertises a cost, ˆCost3 and

experiences a refusal, R that is a function of the advertised cost. Within the system

defined in Equation 11, E, the following takes place:

IEM 1|IEM 2|IEM 3 ∼= ([=t.LBS]IEM1 ||︸︷︷︸
Migrate

[=t. ˆCost2.LB
D]IEM2)|

([=t.LB′S]IEM1 ||︸︷︷︸
Migrate

[=t. ˆCost3.LB
′D]IEM3)

(IEM 1|IEM 2|IEM 3|Π)\H ∼= {=t, Bus′, Gateway3}

(IEM 1|IEM 2|IEM 3|Π|Π′)\H ∼= {=t, Bus′, Gateway3, ˆCost3,R}

The proof can easily be extended to n IEMs in the system to prove that

(E|Π)\H 6≈B (E|Π|Π′)\H. Hence the system is not BNDC-secure with respect to

an internal observer in Demand state.

Alternatively, the observer, on experiencing a Refusal of its Draft Age, can

bid a higher cost until the time it receives a Draft Select, meaning that it is selected

by the Supply node to draft. In this case, cost of the other Demand node is divulged,

along with interference of high level activity between the Demand node and the

Supply node.

6.2.6. Observer in Supply State. The observer in Supply state can have

information on the nodes that are in Demand state, with certainty. It initiates the

Draft Request to obtain the Draft ages from the Demand nodes which include

their respective demands. It is possible that the Demand nodes experience a refusal,



48

R since the observer is not actually ready for migration. The observer can continue

this process of issuing fake draft requests resulting in the Demand node, not satis-

fying its request from any other IEMs in supply state. However, this case can be

handled by not accepting any draft requests from the presumably supplying node

after a certain number of refusals. Along with the low level physical observation

and the demands advertised by the Demand nodes, the observer can infer critical

information about DESD, Loads and strategy of SST at the Demand node.

Theorem 5. The DGI power management process is not BNDC-secure with respect

to an internal observer with DGI in Supply state.

Proof. Based on its load table trace =t ={(Demand,Demand)t}, IEM3 initiates

the load balancing process Π′ with IEM1 and 2. Both the IEMs in Demand state

respond with costs ˆCost1 and ˆCost2 respectively, revealing their demand. The proof

is similar to Theorem 4.

(IEM 1|IEM 2|IEM 3)\H ∼= {=t, Bus′, Gateway3}

(IEM 1|IEM 2|IEM 3|Π′)\H ∼= {=t, Bus′, Gateway3, ˆCost1, ˆCost2}

The proof can be extended to n nodes in the micro grid leading to the conclusion

that E\H 6∼= (E|Π′)\H. This proves that the system does not satisfy BNDC property

with respect to an internal observer in Supply state.

6.2.7. Verification of a Single Node Involved in Power Migration

Step. The system shown in Figure 6.3 is composed of three residential nodes

(that include SST, DRER and DESD) with each running DGI and tied to the utility

grid. However, the information flow analysis presented in the rest of this section is

for a primitive FREEDM system that includes a single residential node running DGI

and connected to the utility. It is verified whether this primitive system satisfies the

SBNDC property with respect to a low-level observer. The events that take place
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in FREEDM system (shown in Figure 6.3) can be classified for simplicity, into the

following classes:

Events at a given cyber process (DGI, represented as Cyber):

RS: Read local physical state, CO: Compute,

IC: Issue command to a local physical controller (SST),

Send: Send message to peer cyber components,

Recv: Receive message from peer cyber components.

Events at a given physical process (represented as Physical):

IN : Flow change preserving the invariant on the bus,

PO: Physical Observability,

SC: Local state change (due to stochastic usage of resources involving DRERs,

DESDs, LOADs),

EC: Execute command from cyber component (DGI).

Figure 6.3. Events within the FREEDM system



50

IC, EC are complementary Input/Output pair. Similarly, SC and RS form a

complementary I/O pair. For an observer internal to the system, the events can be

classified as, High = { RS, CO, IC, EC, SC, Send} and Low = {PO, IN , Recv}.

The system can be built up in a bottom-up fashion as a composition of processes

performing these events, as shown in Equations 12 through 16.

Cyber ∼= RS.CO.IC.Cyber +RS.CO.Send.Cyber +Recv.CO.IC.Cyber (12)

Physical ∼= PO.SC.IN.Physical + PO.EC.Physical (13)

Node ∼= Cyber|Physical (14)

Invariant ∼= (IN1.Invariant+ IN2.Invariant...) + τ.Invariant (15)

System,E ∼= (Node1|Node2...)|Invariant (16)

The procedure to verify whether this system satisfies SBNDC is as follows:

Unwinding E in terms of the events that define it and using the definition of com-

position, a possible state E ′ (such that E → E ′) can be defined as:

E ′ ∼= PO.τ.IC.Node+ τ.CO.IC.Node+ EC.τ.τ.PO.CO.IC.Node+

PO.τ.CO.Send.Node+ τ.CO.Send.Node+

EC.τ.CO.Send.τ.PO.Node+Recv.τ.SC.τ.PO.Node

(17)

E ′\H ∼=PO.τ.Node+Recv.τ.Node (18)

E ′ ≈0
\HPO.τ.Node+Recv.τ.τ.τ.PO.Node (19)
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The bisimulation up to H on E ′ yields the relation shown in Equation 19. From

Equations 18 and 19, E ′ 6≈0
\H E ′\H. This proves that the generic CPS defined above

does not satisfy SBNDC. This verification process can be automated by encoding

the SPA formalism of the system into a model checking framework that is capable

of verifying BNDC properties (E.g: CoPS [63]).

The trace that resulted in the failure of SBNDC is Recv.τ.SC.τ.PO.Node

implying that on receiving a message, the Node performs an internal action, a

State Change event, followed by an internal action to maintain the Invariant which

is physically observable (for example, due to the voltage drop at a node on the power

line, a small change is observed by a neighboring node sharing the physical line). In

practice, such a physical change can be hidden through coordination with other nodes

in which the following takes place: if one node makes a change, the other node(s)

perform(s) a compensating event [24] [64]. This process E ′ can now be made SB-

NDC by adding a complementary PO event such that the effect of the PO event

is nullified. Therefore, the system trace Recv.τ.SC.τ.PO.Node in Equation 17 can

be modified as Recv.τ.SC.τ.PO.PO.Node ∼= Recv.τ.SC.τ.τ.Node. The modified E ′

will have the following characteristics.

E ′Modified\H ∼= PO.τ.Node+Recv.τ.Node (20)

E ′Modified ≈0
\HPO.τ.Node+Recv.τ.Node (21)

Thus, E ′Modified satisfies the SBNDC property. Similarly, it is verified for every

E ′ reachable from E whether E ′ and E ′\H belong to the bisimulation up to H

relation. The possibility of multiple observers coordinating in an effort to deduce

more information pertaining to the system is a challenging task that needs to be

well addressed. Thus, the SBNDC property and its weak forms are sufficient for CPS

verification (in many cases). This process reduces the problem of verifying the BNDC

property on the SPA model of the CPS into verifying a bisimulation relation between
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all the reachable states of the system. The problem of verifying the bisimulation

equivalence between E and E\H is the next logical step to perform complete system

evaluation. In Figure 6.4, part(a) demonstrates the RCP formulation of the primitive

FREEDM system in Equations 17 to 19; part(b) demonstrates the RCP formulation

of the modified FREEDM system in Equations 20 and 21.

Figure 6.4. Relational coarsest partition formulation of FREEDM

In Figure 6.4(a), the partition including the state E ′\H is unstable with respect

to the partition containing E ′ (neither E ′ ⊆ R−1(E ′\H) nor E ′∩R−1(E ′\H) = φ) due

to the transitions including PO event. This implies that there are some states of the

system (brought about by high-level transitions) that are distinguishable with respect

to the low-level observer‘s view (E ′\H). However, in the modified FREEDM system,

as demonstrated in Figure 6.4(b), the partition including the state E ′Mod\H is stable

with respect to the partition containing E ′Mod. This follows from the fact that the

observer can only see either the states of the system brought about by the low-level
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transitions or those states with high-level transitions transformed into internal τs (by

the relation ≈0
\H). Thus this captures the idea that the low-level observer cannot

distinguish between E ′mod and E ′mod\H. Such a verification for coarsest partition

over bisimulation up to H is performed for all the states E ′ ∈ ξ : E → E ′, with

respect to E ′\H.

6.3. RESULTS WITH AUTOMATED VERIFICATION OF SBNDC
ON FREEDM

Using the automated BNDC verifier, Checker of Persistent Security (CoPS) [63],

the results obtained for the FREEDM system are tabulated in Table 6.1. The table

shows whether each process of the FREEDM system satisfies SBNDC property or

not. For each process, the graph generated indicates the state transitions of that

process. Intuitively, these results suggest that DGI satisfies SBNDC properties as-

suming secure communications between various interacting processes. However, the

components on the physical network that are inherently exposed fail to satisfy SB-

NDC and so is their composition with DGI. The modified microgrid in the example

presented in Section 6.2.7 satisfies SBNDC due to the compensating event hiding

the observable physical events.

The graph generated for each process in Table 6.1 suggests the complexity

involved in exploring a large number of states (every E ′) to verify SBNDC. The

verification of equivalence between E ′ and E ′\H, adds to the existing complexity.

The states explored to verify the bisimulation equivalence using the Paige-Tarjan

algorithm for equivalence testing [50] on the FREEDM system is 1339888. These

results were generated using a computer with Intel Core 2 Duo processor having

2.4 GHz and 2GB memory running Mac OS X 10.5. The time taken was around 15

minutes and 30 seconds. The efficiency of equivalence testing can be improved by the
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Table 6.1. Model checking results for the micro grid consisting of a single node

Process SBNDC Generated
Graph Complexity

MicroGrid: Node | DGI | Bus No V:3616,
E:26543 15.5 Mins

MicroGrid (Modified) Yes V:5416,
E:38641 13.9 Mins

Node: SST | DRER | DRES | Load No V:241,
E:1120 -

DGI Yes V:5, E:8 -
Bus (Invariant) No V:3, E:3 -

development of algorithms that minimize the state space using advanced techniques

of bisimulation and partial order reduction, as in [65].

The analysis using SPA has been a preliminary step in identifying a generic

approach to model and verify CPSs. However, some limitations exist, particularly in

modeling distributed message passing. In some CPSs like FREEDM, the communi-

cation links are dynamic in nature given the state-driven message passing initiated

by the nodes. In SPA, there is no means to distinguish messages with same names

originating from different nodes. To this end, the π-calculus has been adopted to

overcome these limitations to model distributed communication.



55

7. INFORMATION FLOW ANALYSIS USING π-CALCULUS

In this section, the FREEDM system running DGI is modeled in the π-calculus

framework to overcome the limitations incurred using SPA. Primarily, two aspects

were ignored in the previous section- i) the private communication among peers

based on demand state, and ii) distinguishing messages with same name originating

from different peers based on channels of communication. In Figure 7.1, IEM3

which was in Supply initially involves in private communication with the Demand

node, IEM1. However, IEM3 transitions from a Supply state to a Demand state,

thereby establishing communication with a new Supply node, IEM2. Likewise, the

communication structure changes based on the demand status of the nodes. This

needs to be taken into account in the process specification of the system.

Supply Demand 

Demand 

Supply 

Figure 7.1. Need for scope extrusion in FREEDM

In π-calculus, the communication structure among existing processes can change

over time. Dynamic communication (link mobility) among the peers can be repre-

sented using two features - i) restriction of a message to be sent or received over a
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communication channel, and ii) scope extrusion. Scope extrusion allows the abstrac-

tion of the dynamically changing scope of the communication domain, by sending

channel names as messages to processes that did not have access to those channels

before. The π-calculus offers other useful features such as abstractions to model

adversarial behavior, different notions of process equivalences to define different no-

tions of security. These features are applied in the FREEDM system specification

presented in this section.

7.1. MODELING OF FREEDM USING π-CALCULUS

Algorithm 1 presents the DGI power management algorithm that will be veri-

fied in composition with the system. In this section, an approach similar to [66] is

considered, in which peer to peer algorithms were modeled using the π-calculus to

verify their functional correctness.

Algorithm 1: DGI power management algorithm
{Variables: R:Renewable, L:Load, S:Storage}
Get Values: R/L/S/gateway
Compute Supply/Demand/Normal
if Demand then

Broadcast (“Demand”)
if Recv (“Draft Request”) then

Send (“Draft Response”)
end if
if Recv (“Draft Select”) then

Send (“Accept”)
Set R/L/S/gateway

end if
end if
if Supply then

Broadcast to Demand nodes (“Draft Request”)
if Recv(“Draft Response”) then

Send (“Draft Select”)
end if
if Recv (“Accept”) then

Set R/L/S/gateway
end if

end if
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In Figure 7.2, the modeling of a node running DGI is depicted as a composition

of π processes. To facilitate modeling of distributed communication among various

components within a node and with peer nodes, a number of channels are assumed

to terminate/start from their respective ports. The ports e1, e2, e3 represent the ter-

minals of the dedicated channels used to communicate the demand states (Normal,

Supply, Demand respectively) of each node as messages sent or received by the DGI

process. Similarly, m1,m2,m3,m4 serve as the terminal ports of the channels ded-

icated for the four kinds of power management messages. The sl, sg, sr, ss are the

ports to communicate with the local devices (LOAD, SST, Renewable and Storage

respectively). Unique identifiers (UUIDs) are assumed to be in place to label the

message with the identifier.
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Figure 7.2. π-characterization of a cyber-physical process

The physical system can be similarly defined as a network of components that

interact over channels. Equations 22 to 28 represent the formal specifications of the
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FREEDM system. Equation 22 represents the modeling of the DGI power manage-

ment algorithm of Algorithm 1. In Equation 23, Ω represents a power migration

step between a pair of nodes (in supply and demand states respectively), initiated

after successful DGI negotiations. The operation of physical components at each

node (including SST, DRER, DESD and LOAD) is abstracted to that of sending

and receiving a vector of corresponding power settings, as in Equation 24. The in-

variant acting on the bus can be developed inductively for n nodes in the system as

in Equation 25. This invariant captures the invariance of power flow acting on the

bus, following Kirchoff’s current laws.

DGI(idx, ~m,~e, ~sx, ~statex) ,

sx(~sx).τ. ¯statex < ~state > .DGI(idx, ~m,~e, ~sx, ~statex) + ex(e~y).τ.

DGI(idx, ~m,~e, ~sx, ~statex) + statex(SND).if SND = Supply

then {SND/Supply}.m̄d
1 < mx

1 > .Ω(idx, idd) + statex(SND).

if SND = Demand then {SND/Demand}.ēx < e~y3 > .DGI(idx, ~m,

~e, ~sx, ~statex) + statex(Demand).mx
1(ms

1).m̄s
2 < mx

2 > .Ω(idx, ids)

(22)

Ω(idx, idy) ,

statex(SND).if SND = Supply then νCxy(m
x
2(my

2).m̄y
3 < mx

3 > .

mx
4(my

4)).τ.s̄x < ~sx > .0 + statex(SND).

if SND = Demand then νCxy(m
x
3(my

3).m̄x
4 < my

4 >).τ.s̄x < ~sx > .0

(23)

PHY (idx, ~sx) ,

τ.sx(~sx). ¯bus < sxg > .PHY (idx, ~sx) + s̄x < ~sx > .τ.PHY (idx, ~sx)

(24)
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INV (~δ, n) ,∏
i∈n

bus(sig).grid(u).INV (~δ, n) + ¯grid < u > .
∏
i∈n

¯bus(sig + δi).

INV (~δ, n), where |n| = #Nodes.

(25)

INV (~δ, 3) ,

bus(s1
g).bus(s

2
g).bus(s

3
g).grid(u).INV (~δ, 3) + ¯grid < u > .

¯bus < s1
g + δ1 > . ¯bus < s2

g + δ2 > . ¯bus < s3
g + δ3 > .INV (~δ, 3)

(26)

Node(idx, ~m,~e, ~sx, ~statex) ,

DGI(idx, ~m,~e, ~sx, ~statex)|PHY (idx, ~sx)

(27)

System, S ,

Node(id1, ~m,~e, ~s1, ~state1)|Node(id2, ~m,~e, ~s2, ~state2)|......|

Node(idn, ~m,~e, ~sn, ~staten)|INV (~δ, n)

(28)

7.2. INFORMATION FLOW PROPERTIES IN π-CALCULUS

Non-interference was previously studied in terms of bisimulation semantics, in

the typed π-calculus framework in [67] and [68]. In this work, the non-deducibility

property presented in π-calculus is based on the behavioral equivalence, the reduc-

tion closed barbed congruence [69]. The security requirement is to preserve the

non-deducibility of cyber-physical activity involving the power migrations between

various supply and demand nodes, with respect to an observer process that could be

a legitimate node in the system as shown in Figure 7.3. The proofs presented rely on

the idea of context which is fundamental in abstracting the environment with which

the observer interacts. These concepts are formally defined in Definitions 2 and 4.
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Figure 7.3. An observer process interacting with FREEDM

Definition 2 (Context). A context, C is a subprocess given by the grammar in π-

calculus, that defines the environment of the system in which the hole or place holder

can be replaced with an observer process.

C :: [.] | π.C[.]+M | νaC[.] | C[.]|P | !C[.], where P is a process within the system.

Definition 3 (Barbed Bisimilarity). Two processes, P and Q are barbed bisimilar,

(P ≈̇Q), if

1) P ↓µ implies Q ⇓µ and vice-versa.

2) P τ−→ P ′ implies Q τ−→ Q′ and vice-versa.

In Definition 3, P ↓µ implies that P can perform any input action with subject

µ. Q ⇓µ implies that Q performs the actions with subject µ with prefixed and suffixed

number of τ actions (Q τ∗−→ µ−→ τ∗−→).

Definition 4 (Reduction Closed Barbed Congruence). Two processes, P and Q are

reduction closed barbed congruent, (P '̇cQ), if

1) they are barbed bisimilar i.e., P ≈̇ Q and

2) C[P] ≈̇C[Q], for every context C.
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The definition 5 suggests that the system satisfies Basic π-ND if the observer

cannot distinguish the system when composed with any high level process, for all

contexts of the system.

Definition 5 (Basic π-non-deducibility (Basic π-ND)). A process, P satisfies Basic

π-ND if P '̇c P |H, where H is a high-level process composed of the names ∈ H.

7.3. VERIFICATION OF INFORMATION FLOW USING
π-CALCULUS

In Figure 7.3, a simple three node FREEDM system is shown. In order to

verify if information flows from one node to the other during critical operations, an

observer process that is a valid node within the system is considered. Intuitively,

the observer should not be able to distinguish between the contexts that have and

haven’t performed the high-level power migration step. It needs to be established

that Node3 '̇c Node3|H to prove that the system satisfies Basic π-ND (Definition 5)

with respect to the observer.

7.3.1. Observer (Context) in the System Without DGI. An observer

with no DGI cannot send or receive cyber messages within the system. Conceptually,

Theorem 6 establishes that such an observer in a basic power system cannot deduce

individual power settings.

Theorem 6. The system without DGI is inherently secure with respect to a low-level

observer.

Proof. To prove that Node3 '̇c Node3|H, it is required to establish the following as

defined in Definition 4.

• Node3 ≈̇ Node3|H

• C[Node3] ≈̇ C[Node3|H], for the context C, defined in Equation 29.
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C :: [.]|S (29)

The high-level process in this case is the sequence of settings on the bus, made

by nodes other than the observer. Without DGI, the system with two nodes functions

as:

S ′ , Node(id1, ~s1)|Node(id2, ~s2)|INV (~δ, 3) := (τ. ¯bus < s1
g > .S ′ + τ.

bus(s1
g).S

′)|(τ. ¯bus < s2
g > .S ′ + τ.bus(s2

g).S
′)|INV (~δ, 3)

(30)

For S ′
¯bus<s1g+δ1>
−−−−−−−→

¯bus<s2g+δ2>
−−−−−−−→ Ŝ ′, and Node3 ↓ ¯bus<s1g>,

¯bus<s2g>
is Null. Simi-

larly, Node3|H := Node3|( ¯bus < s1
g + δ1 > | ¯bus < s2

g + δ2 >) ⇓ ¯bus<s1g>,
¯bus<s2g>

is

Null. Inserting the observer node in the context of Equation 29, the following are

indistinguishable:

C[Node3] := Node3|(τ.τ.grid(u).S ′ + τ.bus(s1
g).S

′)|(τ.τ.grid(u).S ′ + τ.

bus(s2
g).S

′)|τ.τ.bus(s3
g).grid(u).INV (~δ, 3)

C[Node3|H] := Node3|(τ.τ.grid(u).S ′ + τ.bus(s1
g + δ1).S ′)|(τ.τ.grid(u).S ′ +

τ.bus(s2
g + δ2).S ′)|τ.τ.bus(s3

g).grid(u′).INV (~δ, 3)

Therefore, C[Node3] ↓ ¯bus<s1g>,
¯bus<s2g>

≈̇ C[Node3|H] ⇓ ¯bus<s1g+δ1>, ¯bus<s2g+δ2> and

hence the conclusion, Node3 '̇c Node3|H. Node3 does not observe a change in

gateway value, s3
g due to the maintenance of the invariant on the bus, such that

s1
g + s2

g + s3
g + u = (s1

g + δ1) + (s2
g + δ2) + s3

g + u′.

Assuming nodes 1 and 2 are in supply and demand respectively, the following

conclusions can be made regarding the observability of power migration between

them. Different observations can be drawn depending on the demand state of the

observer.

7.3.2. Observer (Context) in Supply State in the SystemWith DGI.

The observer in supply state, Node3s is first defined in Equation 31, and the context

including this observer is then verified in Theorem 7.
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Node3s , Node(id3, ~m,~e, ~s3, ~state3) := τ.τ. ¯bus < s3
g > .τ. ¯state3

< ~state3 > .Node3s + e3(e
~2).τ.Node3s + state3(SND).

{SND/Supply}.m̄2
1 < m3

1 > .Node3s + state3(Supply).m3
2

(m2
2).Node3s

(31)

Theorem 7. The system is not secure with respect to a low-level observer in supply

state.

Proof.

S ′′ , Node(id1, ~m,~e, ~s1, ~state1)|Node(id2, ~m,~e, ~s2, ~state2)|INV (~δ, 3)

:= τ.τ. ¯bus < s1
g > .τ. ¯state1 < ~state1 > .S ′′ + τ.τ. ¯bus < s2

g > .τ.

¯state2 < ~state2 > .S ′′ + e1(e
~2).τ.S ′′ + state1(Supply).state2

(Demand).τ.τ.S ′′ + state2(Demand).ē2 < e
~1
3 > .S ′′ + e2(e

~1).τ.

S ′′|INV (~δ, 3)

(32)

S ′′|Ω(id1, id2) , Node(id1, ~m,~e, ~s1, ~state1)|Node(id2, ~m,~e, ~s2, ~state2)|

Ω(id1, id2)|INV (~δ, 3) := τ.τ. ¯bus < s1
g > .τ. ¯state1 < ~state1 > .S ′′

+ τ.τ. ¯bus < s2
g > .τ. ¯state2 < ~state2 > .S ′′ + e1(e

~2).τ.S ′′ +

state1(Supply).state2(Demand).τ.τ.S ′′ + state2(Demand).

ē2 < e
~1
3 > .S ′′ + e2(e

~1).τ.S ′′ + νC12(τ.τ.τ.τ.τ.τ.τ.τ).

(τ.τ. ¯bus < s1
g > +τ.τ. ¯bus < s2

g >).S ′′

(33)

To verify whether Node3s '̇c Node3s|Ω(id1, id2) 1, it is required to establish

the following as defined in Definition 4.

1) Node3s ≈̇ Node3s|Ω12

2) C[Node3s] ≈̇ C[Node3s|Ω12], for the context C, defined in Equation 29.

Trivially, Node3s ≈̇ Node3s|Ω12, because Node3s does not interact with the

process, Ω12. Intuitively, Ω12 involves private communication among nodes 1 and
1Ω(id1, id2) will be used as Ω12 for simplicity.
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2 and issue of commands to their respective physical subsystems, all of which are

invisible to an external observer (Node3s). However, in the context of the whole

system the result is different as shown below in Equations 34 and 35. In Equa-

tion 34, C[Node3s] ↓Ω12 is {e2(e
~3)} while C[Node3s|Ω12] ⇓Ω12 (in Equation 35,) is

{e2(e
~3), bus(s3

g′)}. C[Node3s|Ω12] captures the notion that bus(s1
g). bus(s2

g). bus(s3
g)

takes place on the bus leading to an observable event bus(s3
g′).

C[Node3s] , S ′′|Node3s := τ.τ. ¯bus < s1
g > .τ. ¯state1 < ~state1 > .C +

τ.τ. ¯bus < s2
g > .τ. ¯state2 < ~state2 > .C + e1(e

~2).τ.C + state1

(Supply).state2(Demand).τ.τ.C + state2(Demand).ē2 < e
~1
3, e

~3
3 >

.C + e2(e
~1).τ.C + τ.τ. ¯bus < s3

g > .τ. ¯state3 < ~state3 > .C +

e3(e
~2).τ.C

(34)

C[Node3s|Ω12] , S ′′|Node3s|Ω12 := τ.τ.τ.τ.C + e1(e
~2).τ.C + state2

(Demand).ē2 < e
~1
3, e

~3
3 > .C + τ.τ. ¯bus < s3

g′ > .τ. ¯state3

< ~state3 > .C + e3(e
~2).τ.C

(35)

Intuitively, this implies that the observer is able to distinguish the case of a

power migration between nodes 1 and 2 and non-occurence of power migration, by de-

termining that node 2 has recently been in Demand state. Hence Node3s ˙6'c Node3s

|Ω(id1, id2).

7.3.3. Observer (Context) in Demand State in the System With

DGI. The case in which the observer is in Demand state is similar to the case in

which the observer is in Supply state. However, the evaluation context consists of

the observer node in demand state, Node3d.
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Node3d , Node(id3, ~m,~e, ~s3, ~state3) := τ.τ. ¯bus < s3
g > .τ. ¯state3

< ~state3 > .Node3d + e3(e
~2).τ.Node3d + state3(SND).

{SND/Demand}.ē3 < e
~1
3 > .Node3d + state3(Demand).

m3
1(m1

1).m̄1
2 < m3

2 > .Node3d

(36)

Theorem 8. The system is not secure with respect to a low-level observer in demand

state.

Proof. For the same reason as mentioned in Theorem 7, provingNode3d ≈̇Node3d|Ω12

is trivial, because Node3d does not interact with the process, Ω12.

C[Node3d] , S ′′|Node3d := τ.τ. ¯bus < s1
g > .τ. ¯state1 < ~state1 > .C +

τ.τ. ¯bus < s2
g > .τ. ¯state2 < ~state2 > .C + e1(e

~2).τ.C + state1

(Supply).state2(Demand).τ.τ.C + state2(Demand).ē2 < e
~1
3, e

~3
3 >

.C + e2(e
~1).τ.C + τ.τ. ¯bus < s3

g > .τ. ¯state3 < ~state3 > .C +

e3(e
~2).τ.C

(37)

C[Node3d|Ω12] , S ′′|Node3d|Ω12 := τ.τ.τ.τ.C + e1(e
~2).τ.C + state2

(Demand).ē2 < e
~1
3, e

~3
3 > .C + τ.τ. ¯bus < s3

g′ > .τ. ¯state3

< ~state3 > .C + e3(e
~2).τ.C

(38)

C[Node3d] ↓Ω12 is { e2(e
~3), m3

1(m1
1)} while C[Node3d|Ω12] ⇓Ω12 is { e2(e

~3),

m3
1(m1

1), bus(s3
g′)}. The context C[Node3d|Ω12] ⇓Ω12 captures the notion that bus(s1

g).

bus(s2
g).bus(s

3
g) takes place on the bus leading to an observable event bus(s3

g′). The

observer is able to distinguish the case of a power migration between nodes 1 and

2 and non-occurence of power migration, by determining that node 1 is in Supply

state and node 2 is in Demand state. Clearly, Node3d ˙6'c Node3d|Ω(id1, id2).

7.3.4. Making the FREEDM System π-ND-secure. In the previous

sections, it was proved that the FREEDM system is not π-ND when there are three
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nodes in the system. However, if two other nodes (4 and 5) participate as in Figure 7.4

so that there are two Supply and two Demand nodes, the power migration between

any pair of Supply and Demand nodes can be hidden as shown in Theorem 9.

PHY 3!

PHY 1!

DGI 1!

PHY 2!

DGI 2!

s
g
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s
g

1
s
g

2

Observer process!

PHY 5!

DGI 5!

PHY 4!

DGI 4!

s
g

4

s
g

5

Supply Supply Demand Demand 

Figure 7.4. An observer process interacting with the 5-node FREEDM system

Theorem 9. The system with five nodes is secure with respect to a low-level observer

in supply state, when more than one power migrations occur in parallel.

Proof. This proof shows that it holds true for the case of five nodes with two power

migrations occurring in parallel since this is a base case. Since five nodes exist,

Equation 32 would now include the invariant for five nodes, i.e., INV (~δ, 5) instead

of INV (~δ, 3). In this case, C[Node3s] ↓Ω12 is {e2(e
~1), e2(e

~4), e3(e
~2), e3(e

~5)} and C

[Node3s|Ω12] ⇓Ω12 is {e2(e
~1), e2(e

~4), e3(e
~2), e3(e

~5), bus(s3
g′)}. The observer at Node3s

cannot deduce from the observation on the bus, bus(s3
g′) if a power migration occurred

between the pair of nodes (1, 2) or (4, 5) or both. In this case, Node3s '̇c Node3s

|Ω12. The same conclusion holds for the power migration between nodes 4 and 5, i.e.,

Node3s '̇c Node3s|Ω45. The proof can be extended to the case of more than two

power migrations occurring in the system consisting of more than five nodes.

In the next section, the above results will be verified using automatic equiva-

lence checkers.
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8. AUTOMATIC VERIFICATION USING π-CALCULUS TOOLS

In this section, the validity of the manual proofs used in the non-deducibility

analysis of the FREEDM system in the π-calculus framework is verified. Process

algebraic equivalence checkers like Mobility WorkBench [70] and Proverif [71] are

employed to automate the verification process. These tools accept the system speci-

fication in terms of π-calculus syntax and verifies certain equivalence properties. The

MWB is a tool developed for polyadic π-calculus and verifies observational equiva-

lence between processes. The π-ND property used in this analysis however uses a

finer refinement of observational equivalence, the reduction closed barbed congruence

(RCBC) and hence the capability of this tool is limited. However, it can be proved

if the RCBC relation does not apply to two processes by proving that two processes

are not weak observational equivalent. Proverif, on the other hand is more robust

because it accepts the applied π-calculus specification of the system and provides

in-built commands to verify a number of secrecy properties that are of interest to

CPS analyses. Various analyses of the FREEDM specification is carried out using

each of these tools. It is to be noted that the FREEDM system only serves as a test

example of a complex distributed CPS and the modeling shown below provides the

reader with how this analysis approach can be extended to other CPSs.

8.1. MWB

The Mobility Workbench (MWB) is an automated tool for manipulating and

analyzing mobile concurrent systems specified in π-calculus. MWB proves that some-

thing is Barbed Bisimilar (BB, ≈̇) but not Reduction Closed Barbed Congruent

(RCBC, '̇c). That is, if two processes P, Q are such that P ≈̇Q , they need not be P

'̇cQ. However, the vice-versa is true. Therefore RCBC is a finer refinement of BB.
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To verify the weak or observational equivalence, MWB is used as follows:

weq Process1 Process2

The MWB encoding for the FREEDM system is presented in Appendix. The

results obtained for a 3-node and 5-node system are summarized in Table 8.1.

Table 8.1. Basic π-ND results for observer in supply and demand states using MWB
Process 1 Process 2 Comment MWB

≈̇ Complexity

S: Node1 |
Node2

S|Ω12

|Node3S

Power migration between
two nodes with respect to an
observer in supply state

x 28.48 mins

S: Node1 |
Node2

S|Ω12

|Node3D

Power migration between
two nodes with respect to an
observer in demand state

x 29.12 mins

S’: Node1
|..| Node5

S’|Ω12|Ω45

|Node3S

Two consecutive power mi-
grations in a 5-node system
with respect to an observer
in supply state

X 49.3 mins

S’: Node1
|..| Node5

S’|Ω12|Ω45

|Node3D

Two consecutive power mi-
grations in a 5-node system
with respect to an observer
in demand state

X 50.1 mins

8.2. PROVERIF

Proverif [72] is a tool, primarily intended to verify cryptographic protocols. It

accepts as input, the protocol specification in applied π-calculus [73] and verifies

claimed security properties. The tool helps uncover potential security violations in

the implementation of cryptographic protocols in the presence of an attacker who

may have complete control over the communication channels. An attacker with such

capability, often referred to as a “Dolev-Yao” [74] attacker, can read, modify and

inject messages into the system. In this work, this tool was used in a different way

to reveal information flow violations in CPS environments by abstracting away, the
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cryptographic primitives defined in the tool language. The verification of π-ND using

Proverif is inspired from the privacy verification of electronic voting protocol, FOO92

in [75].

8.2.1. π-ND. The encoding of the FREEDM system in Proverif is shown

in Figures 8.1 to 8.5. The observer is able to break the confidentiality of power

migration among the nodes by distinguishing observer contexts in supply and demand

states above. Additional properties that can be verified using Proverif are given in

Figure 8.6.

free Set:bitstring [private].
free g1,g2:G [private].
free g3:G.
free delta1, delta2:netValue [private].

Figure 8.1. Defining variables and names to initialize the FREEDM Proverif script

(* Invariant process*)
fun Inv(G):netValue.
reduc forall g:G, value:netValue; sum(Inv(g), value)= value.

Figure 8.2. Proverif process defining the physical invariant of flow

8.2.2. Strong Secrecy. Strong secrecy is preserved when the attacker is

unable to distinguish when the secret changes. With respect to the FREEDM system,

the attacker should not distinguish between the cases when a supply node migrates a

units of power in a single power migration step and b units of power. To perform such
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(* DGI process1 in Supply state *)
let DGI_Supply =

out(c, Status); (*Request sent to only demand nodes*)
out(c, Request);
in(ch, x_Response:bitstring);
if x_Response = Response then
out(ch, choice[Select, Reject]);
in(ch, x_Accept:bitstring);
if x_Accept = Accept then
out(c_phy, Inv(g1));
let y=sum(Inv(g1), delta1) in
out(ch, Set).

Figure 8.3. Proverif process for a DGI node in supply state

(* DGI process2 in Demand state *)
let DGI_Demand =

out(c,Status);
in(c,x_Request:bitstring);
if x_Request=Request then
out(ch, Response);
in(ch, x_Select:bitstring);
if x_Select=Select then
out(ch, Accept);
out(c_phy, Inv(g2));
let y=sum(Inv(g2), delta2) in
out(ch, Set).

Figure 8.4. Proverif process for a DGI node in demand state

an attack, the attacker is assumed to detect power withdrawal from the utility and

read the event of a spike in the power on the shared power bus. Strong secrecy can

be verified in Proverif using the noninterf keyword as shown in Figure 8.6. It can be

argued that strong secrecy is preserved in the FREEDM system since the migrations

currently take place in fixed quantum of power. This property is particularly useful
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to analyze the effect of partial information revealed to the attacker. For example,

in the case of a series of power migrations between a supply-demand pair involving

migratable quantum of non-uniform magnitude, the adversary can distinguish each

of the series indicating that he obtains partial information. However, in a FREEDM

system with 5 or more nodes, strong secrecy is always preserved unless there is a

unique pair of nodes in Supply and Demand states, respectively.

(* The main process defining the system *)
process

(!(DGI_Supply) | !(DGI_Demand) )

Figure 8.5. Proverif process defining FREEDM

8.2.3. Weak Secrecy. Weak secret refers to the information that the

attacker may guess through passive or active observation of the system. A common

example of weak secrets are human memorable passwords used in some protocols

which are often values with low information entropy. The attacker may enumerate

all the possible values and end up with the exact value though repeated trial. In

Proverif, any name can be verified to determine if it is a weak secret, using the

weaksecret keyword as shown in Figure 8.6.

query attacker(delta1).
query attacker(delta2).
weaksecret delta1.
noninterf g1, g2.

Figure 8.6. Using Proverif secrecy features on FREEDM
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The time taken for the verification of all the properties is about 1.14 seconds

and about 1.45 seconds for weak equivalence on a computer with Intel Core 2 Duo

processor having 2.4 GHz and 2GBmemory running Mac OS X 10.5. This proves that

Proverif is far efficient compared to MWB. The results with Proverif are summarized

in Table 8.2.

Table 8.2. Results of verification with Proverif
Property
Verified Process/Name 3-node system 5-node system

Result Complexity Result Complexity
Basic π-
ND

DGI_Supply,
DGI_Demand x 1.28 secs X 1.45 secs

Strong
Secret g1, g2 X 1.14 secs X 1.14 secs

Weak
Secret delta1, delta2 X 1.14 secs X 1.14 secs
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9. CONCLUSIONS

This dissertation investigates the confidentiality properties in cyber-physical

systems using formal methods. Modeling and verification of information flow proper-

ties for CPSs was discussed. First, the need for information flow analysis in CPSs has

been established. Several information flow properties exist, of which non-inference

and non-deducibility are appealing to distributed CPSs. Intuitively, an observer

who is able to distinguish the states of the system before and after the execution

of a critical event has more information about the system. The notion of bisimu-

lation provides a way to check whether two processes are behaviorally equivalent.

This property is instrumental in defining non-deducibility based properties using

process algebras. However, specification of the system and its attributes precede the

verification process. Modeling requires representation of the CPS and its diverse

components to be represented under a uniform framework. The use of process al-

gebras was demonstrated as a way of unifying the continuous and discrete aspects

of CPS. Process algebras were applied to a test CPS, to illustrate the proposed

modeling approach through which the behavior of a CPS, including the discrete dis-

tributed communication involving computation and the continuous flow dynamics of

the underlying physical system can be represented in a unified semantic framework.

The uniform representation of the CPS was later verified for known information flow

properties. The analysis includes undesirable cases of information flow to an attacker

in different contexts of the system operation.

The approach presented to analyze information flow in CPSs has three key

steps outlined below.

1) Specification of the system with the cyber and physical components

developed as communicating processes : The CPS was first represented
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as a composition of Security Process Algebra processes. Aspects of process

behavior such as concurrency, non-determinism, event transitions and commu-

nication had to be taken into account. Additionally, the events comprising the

processes can be classified into H or L security domains using SPA. Due to

the modeling limitations of SPA, π-calculus was later studied to specify the

behavior of CPSs that involve link mobility and advanced distributed features

such as sending messages over communication channels.

2) Develop the continuous aspect as an interactive process that abstracts

away the continuous nature through discretization of physical flow

guided by an invariant : In SPA as well as in the π-calculus, the continuous

environment (power flow in the test CPS) was developed as a process composed

of discrete events of change in value of flow that follows a physical invariant

(Kirchoff’s law in the test CPS). Such a process can interact with the rest of the

processes that comprise the system, as a cyber process. This was sufficient in

order to verify security properties instead of a more rigorous partial differential

equation system since the events of change that cause an observable event are

of the main concern.

3) Represent the information flow model in terms of the equivalence ver-

ification capability offered by the chosen process algebra : Using

SPA, non-deducibility was verified on the test CPS by representing in terms of

weak bisimulation equivalence (BNDC). This analysis revealed the events that

caused non-deducibility to fail and the design was fixed by allowing this failure

event to occur only when a compensating event takes place, thereby making it

BNDC. Using π-calculus, non-deducibility was realized as a reduction closed

barbed congruence relation, that was verified for the FREEDM system with

three nodes and five nodes. The observer was able to distinguish between the
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case of power migration between a pair of supply-demand nodes from the nor-

mal operation, causing basic π-ND to fail. However, it was verified that for

the system with five nodes, basic π-ND is preserved.

Manual proofs were presented for all the cases studied using SPA and π-

calculus. Automated tools were employed to verify the theorems presented, wherever

applicable. The results obtained using the manual and automated approaches were

the same, thereby justifying the correctness of the approach. Different notions of ob-

servational equivalence in π-calculus offer diverse variants of information flow models

like the π-non-deducibility that are important to certain CPS infrastructures. The

proposed approach makes it feasible to analyze new adversarial models and attack

behaviors.

Using probabilistic and temporal reasoning, the attacker can deduce more in-

formation like the time of occurrence of the operation, duration of the operation [22],

the frequency of occurrence, etc. This thought can be extended to the case where

an attacker uses event history, or collaborates with other attackers to deduce critical

information pertaining to the system. New mechanisms could be developed to find

compensating events within the system, and schedule them, to nullify the effect of

observable physical system responses such that the system preserves non-deducibility.

More work is required to apply formal techniques to specify the behavior and ver-

ify information flow properties in CPSs. These aspects also present a challenge for

future work in applying distributed system concepts to real systems and for the

development of new paradigms for increased efficiency and reduced complexity of

verification.
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APPENDIX

A. MWB Encoding for a 3-node FREEDM System

agent DGI1(s1, s1g, state1, supply, e1) = s1(s1).t.’state1<state1>.t.’e1<supply>.

DGI1(s1, s1g, state1, supply, e1)

2

agent DGI2(s2, s2g, state2, demand, e2) = s2(s2).t.’state2<state2>.t.’e2<demand>.

DGI2(s2, s2g, state2, demand, e2)

4

agent PM(s1, s1g, s2, s2g) = (^z)t.’s1<s1g>.’s2<s2g>.PM(s1, s1g, s2, s2g)

6

agent DGI3(s3, state3, e1, e2, supply, demand) = s3(s3).t.’state3<state3>.DGI3(s3

, state3, e1, e2, supply, demand) + e1(supply).e2(demand).DGI3(s3, state3, e1

, e2, supply, demand)

8

agent PHY1(s1,s1g,bus) = t.s1(s1).’bus<s1g>.PHY1(s1,s1g,bus) + ’s1<s1>.t.PHY1(s1,

s1g,bus)

10

agent PHY2(s2,s2g,bus) = t.s2(s2).’bus<s2g>.PHY2(s2,s2g,bus) + ’s2<s2>.t.PHY2(s2,

s2g,bus)

12

agent PHY3(s3,s3g,bus) = t.s3(s3).’bus<s3g>.PHY3(s3,s3g,bus) + ’s3<s3>.t.PHY3(s3,

s3g,bus)

14

agent INV(s1g,s2g,s3g,bus) = ’bus<s1g>.’bus<s2g>.’bus<s3g>.INV(s1g,s2g,s3g,bus)

16

agent Node1(s1, state1, s1g, bus, supply, e1) = DGI1(s1, s1g, state1, supply, e1)

| PHY1(s1,s1g,bus)

18

agent Node2(s2, state2, s2g, bus, demand, e2) = DGI2(s2, s2g, state2, demand, e2)

| PHY2(s2,s2g,bus)

20
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agent Node3(s3, state3, s3g, bus, e1, e2, supply, demand) = DGI3(s3, state3, e1,

e2, supply, demand) | PHY3(s3,s3g,bus)

22

agent System(s1, state1, s2, state2, s3, state3, s1g,s2g,s3g,bus, e1, supply, e2,

demand) = Node1(s1, state1, s1g, bus, supply, e1) | Node2(s2, state2, s2g,

bus, demand, e2) | Node3(s3, state3, s3g, bus, e1, e2, supply, demand)| INV (

s1g,s2g,s3g,bus)

24

agent System2(s1, state1, s2, state2, s3, state3, s1g,s2g,s3g,bus, e1, supply, e2

, demand) = Node1(s1, state1, s1g, bus, supply, e1) | Node2(s2, state2, s2g,

bus, demand, e2) | Node3(s3, state3, s3g, bus, e1, e2, supply, demand)| INV (

s1g,s2g,s3g,bus) | PM(s1, s1g, s2, s2g)

B. MWB Encoding for a 5-node FREEDM System

1 agent DGI1(s1, s1g, state1, supply, e1) = s1(s1).t.’state1<state1>.t.’e1<supply>.

DGI1(s1, s1g, state1, supply, e1)

3 agent DGI2(s2, s2g, state2, demand, e2) = s2(s2).t.’state2<state2>.t.’e2<demand>.

DGI2(s2, s2g, state2, demand, e2)

5 agent DGI4(s4, s4g, state4, demand, e4) = s4(s4).t.’state2<state2>.t.’e4<demand>.

DGI4(s4, s4g, state4, demand, e4)

7 agent PM(s1, s1g, s2, s2g) = (^z)t.’s1<s1g>.’s2<s2g>.PM(s1, s1g, s2, s2g)

9 agent PM(s4, s4g, s5, s5g) = (^z)t.’s4<s4g>.’s5<s5g>.PM(s4, s4g, s5, s5g)

11 agent DGI3(s3, state3, e1, e2, supply, demand) = s3(s3).t.’state3<state3>.DGI3(s3

, state3, e1, e2, supply, demand) + e1(supply).e2(demand).DGI3(s3, state3, e1

, e2, supply, demand)
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13 agent DGI5(s5, state5, e1, e2, supply, demand) = s5(s5).t.’state5<state5>.DGI5(s5

, state5, e1, e2, supply, demand) + e1(supply).e2(demand).DGI5(s5, state5, e1

, e2, supply, demand)

15 agent PHY1(s1,s1g,bus) = t.s1(s1).’bus<s1g>.PHY1(s1,s1g,bus) + ’s1<s1>.t.PHY1(s1,

s1g,bus)

17 agent PHY2(s2,s2g,bus) = t.s2(s2).’bus<s2g>.PHY2(s2,s2g,bus) + ’s2<s2>.t.PHY2(s2,

s2g,bus)

19 agent PHY3(s3,s3g,bus) = t.s3(s3).’bus<s3g>.PHY3(s3,s3g,bus) + ’s3<s3>.t.PHY3(s3,

s3g,bus)

21 agent PHY4(s4,s4g,bus) = t.s4(s4).’bus<s4g>.PHY4(s4,s4g,bus) + ’s4<s4>.t.PHY4(s4,

s4g,bus)

23 agent PHY5(s5,s5g,bus) = t.s5(s5).’bus<s5g>.PHY5(s5,s5g,bus) + ’s5<s5>.t.PHY5(s5,

s5g,bus)

25 agent INV(s1g,s2g,s3g,s4g, s5g, bus) = ’bus<s1g>.’bus<s2g>.’bus<s3g>.INV(s1g,s2g,

s3g,s4g, s5g, bus)

27 agent Node1(s1, state1, s1g, bus, supply, e1) = DGI1(s1, s1g, state1, supply, e1)

| PHY1(s1,s1g,bus)

29 agent Node2(s2, state2, s2g, bus, demand, e2) = DGI2(s2, s2g, state2, demand, e2)

| PHY2(s2,s2g,bus)

31 agent Node3(s3, state3, s3g, bus, e1, e2, supply, demand) = DGI3(s3, state3, e1,

e2, supply, demand) | PHY3(s3,s3g,bus)
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33 agent Node4(s4, state4, s4g, bus, e1, e2, supply, demand) = DGI4(s4, state4, e1,

e2, supply, demand) | PHY4(s4,s4g,bus)

35 agent Node5(s5, state5, s5g, bus, e1, e2, supply, demand) = DGI5(s5, state5, e1,

e2, supply, demand) | PHY5(s5,s5g,bus)

37 agent System(s1, state1, s2, state2, s3, state3, s1g,s2g,s3g,bus, e1, supply, e2,

demand) = Node1(s1, state1, s1g, bus, supply, e1) | Node2(s2, state2, s2g,

bus, demand, e2) | Node3(s3, state3, s3g, bus, e1, e2, supply, demand)|

Node4(s4, state4, s4g, bus, e1, e2, supply, demand) | Node5(s5, state5, s5g, bus,

e1, e2, supply, demand)|

39 INV (s1g,s2g,s3g,s4g, s5g, bus)

41 agent System2(s1, state1, s2, state2, s3, state3, s1g,s2g,s3g,bus, e1, supply, e2

, demand) = Node1(s1, state1, s1g, bus, supply, e1) | Node2(s2, state2, s2g,

bus, demand, e2) | Node3(s3, state3, s3g, bus, e1, e2, supply, demand)|

Node4(s4, state4, s4g, bus, e1, e2, supply, demand) | Node5(s5, state5, s5g, bus,

e1, e2, supply, demand)|

43 INV (s1g,s2g,s3g,s4g, s5g, bus) | PM(s1, s1g, s2, s2g) | PM(s4, s4g, s5, s5g)
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