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ABSTRACT

The increasing frequency of explosive disasters throughout the world in recent

years have created a clear need for the systems to monitor for them continuously to

improve the post-disaster emergency events such as rescue and recovery operations.

Disasters both manmade and natural are unfortunate and not preferred, however

monitoring them may be a lifesaving phenomenon in emergency scenarios. Dedicated

sensors deployed in the public places and their associated networks to monitor such

events may be inadequate and must be complemented for making the monitoring

more pervasive and effective. In the recent past, modern smartphones with significant

processing, networking and storage capabilities have become a rich source of mobile

infrastructure empowering participatory sensing to address many problems in the

area of pervasive computing.

In the work presented in this dissertation, smartphone sensed data during dis-

astrous scenarios is extensively studied, analyzed and algorithms were built for par-

ticipatory sensing to address the problems, specifically in the context of Explosion−

Events which are of interest to the current study. This work presents description of

the systems for assisting people by detecting, ranging and estimating intensity of the

explosion events leveraging multi-modal smartphone sensors. This work also presents

various challenges and opportunities in utilizing the capabilities of the sensors in

smartphone for building such systems along with practical applications, limitations

and future directions.
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1. INTRODUCTION

As a society, we are increasingly being exposed to explosions that are both

man-made and naturally occurring. Unfortunately, they can are dangerous to our life

and property. In the recent past, a critical component of such dangers is the triggering

of explosives (like bombs) intended to harm society [1, 2, 3, 4]. As we are well aware,

the shock and blast waves arising as a result of an explosion being triggered, along with

the associated debris can cause significant societal scale damages. On the other hand,

triggering explosions without malicious intent like those in quarries and construction

sites also create vibrations that could cause damages to buildings in their vicinity

as has been demonstrated in a number of studies [5, 6], and also affects the human

body [7]. If we have systems that monitor explosion events, then they will assist

greatly in the scenarios of rescue and recovery operations. Needless to say, devices

that can monitor explosion events, along with superior technologies to analyze them

are important today.

Traditionally, the standard device that has been used to sense vibrations is

a seismometer. While the chief utility of seismometers so far has been primarily for

studying earthquakes, they have also been used to analyze the intensity of volcanic ac-

tivities, vibrations of civil engineering structures, and explosion events. Conventional

seismometers comprise of spring and weight and work on the principle of inertia,

wherein the motion of the weight is sensitive to the ground vibration causing the

motion. Modern seismometers on the other hand, sense ground vibrations using a

combination of electronic vibration sensors and amplifiers. They are now equipped

with sensors to sense ambient pressure also. This is useful to characterize explosions

since the ambient pressure in the vicinity of an explosion rises above the atmospheric
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pressure due to emanating over pressurization blast waves. Unfortunately though,

seismometers are bulky, expensive and not viable for ubiquitous usage.

Smartphones today are becoming both ubiquitous, as well as powerful with

significant processing, networking and storage capabilities. In parallel, a critical de-

velopment in modern smartphones come from the ability to embed multiple sensors

in them for fine grained sensing of several phenomena. The sampling rate of such

sensors also are very high considering their tiny form-factors as well.

1.1. THE ADVENT OF SMARTPHONES IN SENSING

With advances in MEMS technologies, modern smartphones come with signifi-

cant sensing power [8]. Most modern smartphones today like the Samsung GALAXY

series phone, the iPhone, Google Nexus phone and more, come packaged with various

sensors for measuring environmental and human activity parameters. For instance,

a Samsung GALAXY S4 smartphone today has built-in sensors that can measure

acceleration, ambient temperature, pressure, humidity, light intensity, magnetic in-

tensity, sound intensity, and much more with high sampling rates. The LIS344ALH

accelerometer sensor in the Samsung GALAXY S4 phone [9] can consistently sample

at the rate of 100 to 110 samples per second, and the sampling rate is programmable.

This phone is also equipped with pressure sensor (LPS331AP ) to measure atmo-

spheric pressure at its location, with a sampling rate of up to 10 samples per second.

Furthermore, numerous studies are being conducted today to optimize the perfor-

mance of smartphone sensors today from the perspective of accuracy, energy efficiency

and processing speed [10, 11, 12].

There is a clear and tangible reason for the continued innovation in sensing

capabilities of smartphones today, and that lies in numerous innovative and societally

useful applications leveraging smartphone sensors. While we discuss important ones
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in Section 2 in more detail, we find that smartphone accelerometers have been used

for monitoring vibrations emanating from earthquakes [13], and for activity tracking

of human users [14]. The pressure sensor in smartphones has found applications

in indoor localization [15, 16, 17]. Smartphone sensors like ambient temperature,

humidity and light intensity have found innovative applications in context-awareness,

and pervasive computing applications as well [18, 19, 20].

There is prior research in the areas of monitoring the earthquakes, and building

their corresponding alarm systems using smartphone sensing [13], [21]. On the other

hand, comparatively fewer studies have been found on monitoring explosive events.

There is a need for systems for detecting, ranging and identification of the explosives

(in terms of material and intensity) by continuous monitoring. In this context, we did

some prior work in [22] on studying temporal and frequency responses of smartphone

and seismometer data during explosion events.

The excitation induced by earth quakes and explosions show a significant dif-

ference in terms of resultant ground vibrations [23]. In case of explosion, the resulting

shock waves propagate through the medium (ground or atmosphere) from the source

of explosion to the subject. On the other hand, seismic waves that are result of an

earthquake or a volcano are waves of energy that travel through earths layers and

imparts low-frequency acoustic energy [24]. Another significant difference is the ex-

plosions result in blast wave which results in rise of ambient atmospheric pressure,

which is not observed during earthquakes. The spectral differences between the earth

quake and quarry explosion blast which is a form of an explosion were explored in

recent times to a great extent forming a solid base for classifiers which will uniquely

identify the explosions from all its counterparts [25], [26], [27].

In this dissertation, broadly we demonstrate the feasibility of smartphones

to detect, range and determine intensity of explosion events. To analyse the ex-

plosion events for addressing the problems, we have collected data using smartphone
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accelerometers and pressure sensors from real-explosion experiments conducted at Ex-

plosives Research Lab (ERL), an Experimental Mine located at Missouri University

of Science and Technology [28] in May 2014.

First, we attempt to demonstrate the feasibility of leveraging smartphone ac-

celerometer to detect the triggering of explosion events in [29]. To do this, during

the experiments we statically emplaced a Samsung Galaxy S4 smartphone at a care-

fully chosen location right next to a state-of-the-art seismometer, and extracted the

accelerometer readings from smartphone and ground truth Geophone data from seis-

mometer, before, during and after blasts. Subsequent processing and comparison

of the data, led us to make several insightful contributions. We demonstrate that

the temporal and frequency responses of the explosion event readings in the smart-

phone and the seismometer are highly correlated over multiple blasts. Specifically,

an average correlation value of 0.83 was observed for the temporal responses.

Further, we built a model for ranging and estimating the intensity of explo-

sions using a machine learning approach from accelerometer sensor data in [30]. For

this work, we have used 4 Samsung Galaxy S4 smartphones during 4 experiments

conducted. We emplaced smartphones at various distances from the source of the

explosion during each experiment, and collected the accelerometer readings corre-

sponding to explosion events. We then extracted a number of features from this

acceleration data including, mean, median, variance, minimum, and maximum of

signal amplitude along with duration of event, dominant frequency and histogram

properties. We have used a nonlinear polynomial regression model in our technique

and it yielded a high degree of accuracy in ranging the source of explosion events.

With the exception of one outlier, an average case error of 12.86% was observed for

ranging in our experiments. Subsequently, we also attempted to estimate the inten-

sity of the explosion event, and our results were again highly accurate with an average

case error of 11.26%.
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Then we tried to demonstrate the feasibility of leveraging multi-modal sensor

suites in smartphones for analyzing explosion events. Specifically, we demonstrate

how data sensed by the accelerometer (that senses ground vibrations associated with

an explosion) and pressure sensor (that senses changes in atmospheric pressure as a

result of emanating blast waves) in a state-of-the-art smartphone can be mined for

ranging (estimating the distance to an explosion source) and estimating the intensity

(in terms of charge-weight of the explosive material) with high accuracy and consis-

tency. The experiments conducted were similar to that of the previous work [30].

Essentially, this is an extension to our prior work in [30]. With multi modal sensors,

we could improve accuracies by achieving an average case error of 11.21% for ranging

and 9.4% for intensity estimation.

1.2. MOTIVATION

In the recent past, we have come across explosion blasts at Boston [4], Mum-

bai [31] and very recently in Paris [1], Nigeria [3] and Turkey [2]. The post-disaster

events during these disasters have seen a lot of difficulties for evacuation and also

investigation, due to lack of real-time systems monitoring explosion blast events. The

time lapse between the occurrence of explosions and the arrival of rescue teams is

so precious and become crucial for saving a victim, so the sensing capabilities of the

smartphone if better utilized to detect, range and find intensity of the explosions

may lead to the effective rescue scenario. This motivates us to study the capabilities

of smartphone to turn into a monitoring device during explosions and also similar

events like quarry blasts, demolitions of building etc. The signatures from the ex-

plosion events are ground vibrations and change in ambient atmospheric pressure, so

the building systems will be based on sensing these two primary parameters. A phe-

nomenon of detecting the explosions, ranging them and determining their intensity
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from participatory sensing may be a valuable input for emergency and rescue teams

to plan the evacuation better and can speed up the rescue services.

Modern smartphones are ubiquitously equipped with accelerometer, pressure

and microphone sensors. The presence of these sensor-rich-smartphones is most likely

in the scenarios of explosion and the sensing capabilities of the smartphone may be-

come a rich source of monitoring, during disastrous scenarios. To evaluate the capa-

bilities of the smartphone during vibration causing disasters, the vibration scenario’s

can be replicated in the laboratory using simulated testing procedures like ”Shake

table” [21]. In our work, we have used data-sets from real explosions blasted in a

controlled environment at Engineering Research Lab (ERL) [28].

1.3. CONTRIBUTIONS

The goal of this dissertation is to study the feasibility of the smartphone to

detect, range and measure the intensity of the explosive events. Explosion moni-

toring is performed every day in the mining and construction industries [32] using

commercial seismic recorders that are equipped with geophones and microphones.

With increasing instances of explosions (triggered with or without malicious intent)

affecting daily life, there is a clear and tangible need to move beyond seismometers to

sense explosions, and therein lies the significance of our contributions. This motivated

us to evaluate the capabilities of the smartphone using real data-sets collected from

the explosions in mining and other ground vibration causing activities. So we have

chosen to analyze the explosion events with data from real explosion experiments.

Our initial goal is to demonstrate the feasibility of smartphone accelerometer to de-

tect the triggering of explosion events. Then we used accelerometer in smartphone

to range and determine intensity of explosion. Further we demonstrated the feasi-

bility of leveraging multi-modal sensor suites in smartphones for analyzing explosion



7

events for ranging and determining intensity with high accuracy and consistency. In

particular, our contributions are below.

• Generating Real Explosion Data-sets: The principle roadblock to overcome for

our problem is the access to locations of real explosion events, while simulta-

neously having such locations controlled enough to obtain real-time data. The

Explosives Research Lab (ERL) at Missouri University of Science and Tech-

nology is one such environment where explosives are blasted in a controlled

underground mine environment for training students [28]. In May 2014, we

participated in multiple blasting experiments at ERL, and statically emplaced

multiple Samsung GALAXY S4 smartphones at carefully chosen locations in

the vicinity of the explosions. The explosive material blasted was Dynamite

with Ammonium Nitrate Fuel Oil at various intensities. We then collected the

data sensed by the accelerometer and pressure sensor from the smartphones

during the explosion events for subsequent post processing.

• Identifying Challenges in Processing Smartphone Sensor Data to Establish Sta-

bility of the Smartphone: Our approach to detect explosion events requires

that the smartphone to stay steady for certain amount of time to eliminate

the shakes by man-made external noises while collecting the data. Stability of

the phone is to be ensured and it is the important challenge identified. Fur-

ther, there are other artificial noises which may result in a false-trigger of the

system. This requires implementation of frequency filters on the smartphone

to eliminate the noise which is subject to the processing capability limitations.

To address this challenge, we design a mechanism that in real-time checks the

L2-norm of accelerometer readings across samples in all 3 directions, to ensure

that the smartphone is stable prior to processing accelerometer data to detect

explosions.
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• Demonstrating the Statistical Similarity of Vibration data from Smartphone

and Seismometer: To demonstrate statistical similarities between smartphone

and seismometer detected events, sampling rate of the smartphone sensor plays

a vital role. For statistical analysis on data-sets, the algorithms are applied on

similar number of samples in the data collected from them. But, the sampling

rate of the smartphone accelerometer sensor is lower than that of the seis-

mometer. Both of them were brought on to same scale and Pearson correlation

analysis is performed for similarity test.

• Algorithm Design to Detect Explosions from Smartphone Accelerometers: The

design algorithm is completely dependant on the processing capabilities of the

smartphone. The smartphone needs to perform all the processes of the algo-

rithm on a sample and should be completed within one sample period otherwise

the incoming sample information might be lost. So the algorithm must be de-

signed in an effective way suiting the smartphone processing capabilities. To

address this challenge we designed an algorithm which retains only explosion

related samples and filters out the rest. The rationale of the technique is to

identify appropriate thresholds for the ratio of sudden spikes in vibration dur-

ing an explosion to the long term dormant vibration readings in the absence of

an explosion.

• Designing a Model for ranging and intensity estimation: While there are some

existing works that address the problem of ranging and intensity estimation

using measurements from state of the art seismometer sensors [33], they are

not practically applicable to the case of smartphone sensors considering the dif-

ferences in sampling rates, deployment environments, sensing ranges and sen-

sitivities. We accomplished this task of ranging and intensity in two stages.

In the first stage, we used only accelerometer sensor data data collected from
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4 blasting experiments and built a model based on number of statistical and

frequency related features to address the problems namely ranging and inten-

sity estimation. This yielded an average case error of 12.86% for ranging and

11.26% for intensity estimation. In the second stage also, we employ a machine

learning approach to solve these problems using data collected from smartphone

accelerometer and pressure sensor, from 4 blasting experiments. The number of

features extracted in this approach for building model were 45 when compared

to 30 in first stage. With this, the accuracies were improved and the average

case error was observed to be 11.21% for ranging and 9.4% for estimating in-

tensity of explosion events. We also determine the overall consistency of our

model using a number of critical statistical parameters, and results are quite

favorable, as we demonstrate later.

• Discussions on practical perspectives: We provide critical perspectives on a

number of practical issues including the encoding our algorithms as a storage

and energy efficient smartphone apps to sense and analyze explosion events,

practical applications of our contributions in this work, and other important

issues and challenges when smartphones are leveraged to sense and analyze ex-

plosion events. We expect these discussions will help guide practical deployment

of our technologies in the near future.

To the best of our knowledge, this is the first work that attempts to leverage

smartphones to detect, range and measure the intensity of explosion events. We also

present critical perspectives on the practical value of our contributions, and critical

directions for future research.
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1.4. ORGANIZATION OF DISSERTATION

The rest of the dissertation is organized as follows. In Section 2, related work is

discussed. Further, Section 3 details the background of the Explosions along with the

underlying physics, seismometers and smartphone sensors. In Section 4, a description

of the addressed problems in this work is given along with the challenges. Section 5

presents a detailed description of the experimental setup. In Section 6, analysis on

capabilities of smartphone accelerometers to detect explosions is given and Section

7 gives detailed description of the model built to range the explosion and estimate

the intensity of explosion using accelerometer data. Section 8 describes about the

model built based on accelerometer and pressure sensor with an objective to improve

accuracies for ranging and estimating intensity. Further, Section 9 gives an overview

of practical relevance, applications, limitations and directions of future work along

with open issues and finally Section 10 concludes the work.
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2. LITERATURE REVIEW

In this section, we elaborate on important work related to our research in this

dissertation from the perspective of leveraging smartphone sensors for innovative so-

cietal applications. The field is certainly broad with research works attempting to

leverage a smartphone’s ability to sense ambient temperature, humidity, magnetic

field and light intensity, for innovative applications like sleep monitoring [34], human

activity recognition [35, 36, 37, 38], context recognition [39, 40, 41], determining wall

layout of a building [42] and much more. In this section we highlight important re-

lated work on leveraging smartphone accelerometers and pressure sensors for enabling

new applications. First we describe the applications of smartphones in the field of

pervasive computing and participatory sensing. Then we describe about leveraging

smartphone accelerometers for monitoring ground vibrations from earthquakes, im-

portantly we describe about two systems Community Sense and Response (CSR)

System [13] and i-Shake system [21] in this realm. Then we describe about applica-

tions leveraging pressure sensors in smartphones for indoor localization.

2.1. USAGE OF SMARTPHONE SENSORS FOR PERVASIVE COM-
PUTING AND PARTICIPATORY SENSING

There is a clear and tangible reason for the continued innovation in sensing

capabilities of smartphones today, and that lies in numerous innovative and societally

useful applications leveraging smartphone sensors. The most significant one is emerg-

ing in the domain of health-care and well-being. In [43], smartphone accelerometer is

leveraged to detect the gait of a subject with applications for fall detection in elder

care. The acoustic sensors in smartphones have been leveraged for self-localization of

smartphones in [44]. More recently, the pressure sensors in smartphones have been
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leveraged for context detection in the domain of urban transportation [45], and the

magnetometers also available in most smartphones today have been used to detect the

presence and shapes of metal pipes or bars embedded behind walls with applications

related to building maintenance [42].

While all of the above works focus on applications leveraging a single smart-

phone, there is another trend of leveraging sensory data from multiple smartphones for

societal scale applications. Of these the most significant one so far has been detecting

earthquakes from accelerometer readings from multiple smartphones are Community

Sense and Response (CSR) system proposed by Faulkner, et. al. [13] and iShake

project designed by Jack, et. al. [21] which will be discussed in next section. In other

similar work [46], accelerometers of smartphones were used to record the acceleration

in real time in order to detect earthquakes.

2.2. LEVERAGING SMARTPHONE ACCELEROMETERS FOR MON-
ITORING GROUND VIBRATIONS FROM EARTHQUAKES

This dissertation work shares similarity with the below discussed systems in

the aspect of working with the accelerometer sensors in smartphones to detect ground

vibrations, however the focus was on monitoring the earthquakes producing ground

vibrations and on sharing the data across the network. Our work differs from them in

the sense of analyzing explosive events by the smartphones using continuously sensed

accelerometer and pressure sensor data. We first study the feasibility of smartphone

for analyzing explosion events. Further a model was built to range the explosion event

and estimate its intensity.

There exists a test procedure called Shake-table devised to verify the quality

of the accelerometer recordings in the context of earthquake which is simulated in

the laboratory by the testing system. The systems discussed below uses this exper-

imental setup for the evaluation of the system while this dissertation deals with the
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data collected at the real explosive laboratory at Missouri University of Science and

Technology.

2.2.1. Community Sense and Response (CSR) System. Community

Sense and Response (CSR) system proposed by Faulkner, et. al. [13] leverages

accelerometer sensors in smartphones and consumer electronics for monitoring earth-

quakes. The authors have built a seismic network for the smartphone users to con-

tribute a significant amount of event data to a centralized server. To demonstrate

the effectiveness of the system, the authors have used real data-sets collected from

3000 low-cost accelerometers distributed freely in the Los Angeles area, where minor

earthquakes are a common phenomena. The CSR system demonstrated that around

50 phones should be enough to detect a nearby magnitude 5 or larger earthquake

event with high success rate. The algorithmic challenges of designing, building and

evaluating a scalable network for real-time awareness of earthquakes were also pre-

sented.

2.2.2. i-Shake Project. The iShake project designed by Jack, et. al. [21]

at the University of California, Berkeley resulted in the design of a mobile client

back-end server architecture that uses sensor-equipped mobile devices to measure

vibrations from earthquakes. iShake provides the general public with a service to

contribute a significant amount of data towards earthquake research by automating

the data collection and reporting mechanisms via the iShake mobile application. To

demonstrate the feasibility, a test procedure called “Shake-table” was devised to verify

the quality of the accelerometer recordings in the context of earthquake sensing.

The authors have simulated 150 historical ground motion replays for analysis. Two

types of mobile devices were used: four 3GS iPhones and three iPod Touches (third

generation). The devices were attached to a shaking table that orients the devices

at different directions in order to test for biases among axes of the accelerometers.

Along with the smart devices, high-quality accelerometers were also attached which
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served as the ground truth data-set. Results demonstrate the practical feasibility of

smartphone accelerometers to detect earthquake events in real-time.

In another work in [46], accelerometer readings from numerous smartphones

were collected over a continuous period of time in Berkeley (CA) area, during which

time multiple earthquakes affected the area of monitoring. Subsequently human ac-

tivities were also been recorded using these smartphones and using a classifier algo-

rithm based on neural networks, accelerometer readings associated with earthquakes

were distinguished from that associated with activities of human users with very high

accuracy.

2.3. LEVERAGING PRESSURE SENSORS IN SMARTPHONES FOR
INDOOR LOCALIZATION

In the recent past, pressure sensors in smartphones have been used for indoor

localization, which is an important problem. It is well known that atmospheric pres-

sure decreases when altitude increases. With this fact, models have been created to

relate altitude or height to pressure. In [15], using the atmospheric pressure deter-

mined by the smartphone pressure sensors, floor level of building is determined for

indoor positioning. In [47], an integrated framework was proposed to provide ubiq-

uitous and accurate elevation measurement using pressure sensors in smartphones.

Experiments were conducted in both indoor and outdoor with different geographical

characteristics and it was shown that the system could achieve an error less than 5

meters in estimating elevation in 90% of the cases.

In another work in [48], using pressure sensor values from smartphones, a

model was built that can detect floor changes and the mode (elevator, escalator, or

stairs) used to change floors. In [17], various characteristics of the pressure sensor data

due to door opening/closing events are studied to build a model for recognizing these

events. The model could achieve an accuracy of close to 99% based on data collected
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from smartphones carried by people while entering/exiting in 3 different building

environments. The authors claim that it is feasible to build a low-cost ubiquitous door

event detection system that enables many in-home monitoring applications without

any infrastructure integration which can also work as an augmentation to currently

expensive home security systems.
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3. BACKGROUND ON EXPLOSION EVENTS, SMARTPHONE
SENSORS, AND SEISMOMETERS

Considering the uniqueness of our work in analysing explosion events, this

section provides a brief background on explosions, and their underlying physics that

guides our work in this dissertation on leveraging smartphone sensors to analyze

them. Further a discussion on monitoring devices is given and then a description of

smartphone sensors used in our experiments.

3.1. EXPLOSION EVENTS

An explosion is an event that results in extremely high increases in volume and

release of energy. Explosions can be caused by cataclysmic nature inspired events like

volcanic eruptions, or man made ones like bomb blasts, electrical explosions and fire-

works [49, 50]. Man-made explosions of interest to our research can be classified into

two types. High-order explosives (HEs) and Low-order explosives (LEs) (discussed

in detail in next section). A Low-order explosive is a material that has an explosion

velocity∗ of less than 1000m/s and hence lacks the over-pressurization wave of HE. A

low order explosion describes an explosive event where the blast pressure wave moves

slowly, displacing objects in its path. Sources of LEs include pipe bombs, gunpowder,

and most pure petroleum-based incendiary bombs such as molotov cocktails.

The primary outcome of an explosion is a shock wave that rapidly propagates

through the medium creating the vibration impact to the subjects in the vicinity of

the explosion. Explosive detonations also create an incident high pressure blast wave,

∗Explosive velocity, also known as detonation velocity or velocity of detonation (VoD), is the
velocity at which the shock wave travels from a detonated explosive.
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characterized by a rise from atmospheric pressure to a peak overpressure [51]. The

pressure then decays back to ambient pressure as the intensity of blast wave degrades.

3.1.1. Sources of Explosion. High-order explosives (HE) are more pow-

erful than low-order explosives (LE). HE detonate to produce a defining supersonic

over-pressurization shock wave. Several sources of HE include Trinitrotoluene, C-

4, Semtex, nitroglycerin and ammonium nitrate fuel oil (ANFO). LE deflagrate to

create a subsonic explosion and lack HE’s over-pressurization wave. Sources of LE

include pipe bombs, gunpowder, and most pure petroleum-based incendiary bombs

such a Molotov cocktails or aircraft improvised a guided missiles. HE and LE induce

different injury patterns. Only HE produce true blast waves.

3.2. SEISMOMETER

Seismometers are instruments that measure motions of the ground, including

those of Seismic waves generated by earthquakes, volcanic eruptions and other seismic

sources. Records of seismic waves allow seismologists to map the interior of the earth,

locate, and measure the size of these different sources[52].

3.2.1. Conventional Seismometer. Conventional seismometer comprise of

spring and weight and it works on the principle of inertia, the weight is sensitive to

up-down motions of the earth as shown in Figure 3.1. The relative motion between the

weight and the earth provides a measure of the vertical ground motion. If a recording

system is installed such as a rotating drum with a paper attached to a frame and a

pen attached to the weight, then this relative motion between the weight and earth

can be recorded to produce a history of ground motion, called a “seismogram” [53].

3.2.2. Modern Seismometer. Modern Seismometers use electronic sen-

sors, amplifiers, and recording devices that make a record of ground vibrations caused

by an earthquake, explosion or other earth-shaking phenomenon. Seismic sensor is
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Figure 3.1. Conventional Seismometer With a spring attached to weight and pen for
writing the relative motion of the earth on a rotating drum

a part of seismometer that translates ground motion into electrical signal, which are

processed and recorded by the instrument based on analog or digital circuits [54].

The two important components contained in a modern seismometer are Geo-

phone and Microphone as shown the Figure 3.2, the Geophone is to measure the

voltage generated by the relative motion of the ground whereas microphone senses

the changes in atmospheric pressure resulted from the explosion. They use a “tri-

axial” design, in which three identical motion sensors are set at the same angle to

the vertical but 120 degrees apart on the horizontal. Vertical and horizontal motions

can be computed from the outputs of the three sensors. Seismometers unavoidably

introduce some distortion into the signals they measure; later the signal measured is

processed by data detection algorithms to trigger to an event. The selection of these

triggering algorithms depends upon the processing capability of the seismometer to

compute the algorithms in real-time.
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Figure 3.2. Modern Seismometer with Geophone and Microphone

Modern seismometer detects the triggering of an explosion event by sensing

the emanating ground vibrations using geophone sensors. The equipped microphone

sensors senses changes in atmospheric pressure resulted from explosions. In this dis-

sertation, we leverage the accelerometer and pressure sensors in modern smartphones

to sense explosion events, and subsequently estimate their range and intensity.

3.3. SMARTPHONE SENSORS

The sensors used in modern day smartphones are manufactured using MEMS

technology(Micro-Electro-Mechanical-Systems) making them miniaturized and pow-

erful. These sensors include sensing element and an IC interface able to take the

information from the sensing element and provide the data samples to external world.
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The modern-day smartphone is equipped with low-power three-axis linear accelerom-

eter which measures acceleration(in meters per second2) in Linear, Transversal and

Vertical directions. The maximum sampling rate that a smartphone accelerometer

could give is currently 200 samples per second. However it varies over various phone

platforms, 100 samples per second is observed to be consistent sampling rate which

is guaranteed in almost all the smartphones across the platforms. On the other hand

smartphones are also equipped with a pressure sensor which senses atmospheric pres-

sure in its location, which is a scalar value and its consistent sampling rate is observed

to be 10 samples per second across all the phones.

Most of the modern smartphones are observed to contain sensors manufac-

tured by ST Micro electronics with models LIS344ALH and LPS331AP are most

prominently used accelerometer and pressure sensors respectively.

Sensitivity is essentially ratiometric to supply voltage that is increasing or

decreasing the voltage supply will result in the increase or decrease linearly and the

calibration level is ±8% [55]. The readings outputted by the smartphone sensor

should be calibrated to obtain the actual acceleration and the calibration depends on

the sensitivity of the sensor.
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4. PROBLEMS ADDRESSED

Broadly, this dissertation addresses the problem of leveraging smartphones for

detecting, ranging and estimating intensity of explosion events. In this section, we

first define the formal problem statements, and critical assumptions we make, followed

by a brief description of the associated challenges.

4.1. PROBLEM STATEMENT

The primary goal of the dissertation is to demonstrate the feasibility of lever-

aging smartphone accelerometers (when the phones are static) to detect explosion

events. Within this context, there are two sub-problems that we address. The first

one is to statistically compare the similarity of accelerometer readings from the smart-

phone with the ground truth, which in this case comes from a state-of-the-art seis-

mometer when both devices are sensing the vibrations emanating as a result of an

explosion. Should the detected events from both devices demonstrate similarity, the

next problem is to design an algorithm that can be implemented on a smartphone (as

an app) to detect the triggering of an explosion in real-time, while also being efficient

in storage and energy consumption.

Further, we want to build a model that takes as the input raw accelerome-

ter readings from a stationary smartphone that senses an explosion, and estimates

the range (distance from smartphone to an explosion source). Secondly, we want to

intensity (in terms of charge-weight of explosive material) from the sensed accelerom-

eter readings.
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As a next step, we want to demonstrate the utility of multi-modal smartphone

sensing capabilities to analyze explosion events. Within this broad context, the spe-

cific goals are to determine the range (distance from smartphone to an explosion

source) and intensity (in terms of charge-weight of explosive material) of an explo-

sion event with an improvised accuracies when compared from the previous attempt.

4.2. ASSUMPTIONS WITHIN THE SCOPE OF THE RESEARCH

Considering the scope of the problems, we make certain assumptions. First,

we assume that the environment wherein we are collecting real experimental data is

actually an operational underground mine. We also assume that the explosive mate-

rial blasted is known in advance (in our experiments, it is Dynamite) ∗. However, we

do understand that for other types of blasting material, the parameters for detecting,

ranging and intensity estimation identified in this work may not directly apply, al-

though the overall methodology, sensing modalities, and algorithmic techniques will

still apply.

Another issue to point out is that the smartphones deployed are static. How-

ever, our ensuing contributions are still practically useful, since smartphones are not

mobile all the time, and they are actually static for a significant duration in real-time.

The issue of experimenting with mobile smartphones (emplaced in a mobile human)

requires much more careful planning to also ensure subjects safety, and is part of our

future work based on contributions of this dissertation.

Finally, we assume that there are no energy/storage issues affecting the sensing

and recording of associated vibrations. We also point out that there are many other

∗We point out that Dynamite (Unimax-TT) with Ammonium nitrate fuel oil (ANFO) is com-
monly used in real explosions [56], so it is a good blasting material to study for the context of our
work. The issue of detecting the type of explosion material, and investigating potential changes in
vibrations sensed as a result of multiple explosion material is out of the scope of the current work,
and is part of our ongoing work.
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issues emanating as a result of limited network bandwidth, trust, security and privacy

of data when numerous smartphones sense and transmit data in real-time for sensing

explosions at societal scales. However, these aspects are secondary to the problems

addressed, namely, detecting, ranging and estimating the intensity of an explosion

event, hence these ancillary issues are out of the scope of this work.

4.3. CHALLENGES

Processing of sensor readings from smartphones for analyzing explosion events

can be challenging. In this section, we highlight the most critical challenges in this

realm which are described below:

• Availability of real data-sets: Explosions are difficult to be studied for the fact

that, they are often inaccessible and difficult to be replicated in the physical

environment. Needless to say, it is challenging to gain access to environments

where blasts take place. Furthermore, it is even more challenging to have the

environment controlled enough to be able to place smartphones in and around

the vicinity of an explosion, and simultaneously obtain high quality ground

truth data for subsequent analysis of explosion events. Fortunately, we had

access to the Explosives Research Lab (ERL) at Missouri University of Science

and Technology (Missouri S&T) where explosions are blasted to train students

majoring in the Explosives Engineering Program offered there. Specifically, the

blasting experiments for the purposes of this research were conducted in an

underground experimental mine at Missouri University of Science and Technol-

ogy as part of experiments conducted by the Explosives Research Lab. The

experimental mine is actually a functional limestone mine that serves also as an

experimental facility for students training on mine constructions, operations,
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safety and rescue. Numerous other blasting experiments are conducted regu-

larly there. To the best of our knowledge, such a facility is unique in college

campus environments, and provided us with a controlled environment, wherein

we could place smartphones to derive an extremely rich source of data-sets to

devise techniques to address our problems.

• Stability of the smartphone: Smartphone accelerometers being highly sensitive,

generate noise (even when the phone is static) that needs filtering. To address

this challenge, we design a mechanism that in real-time checks the L2-norm of

accelerometer readings across samples, to ensure that the smartphone is stable

prior to processing accelerometer data to detect explosions. For the Samsung

Galaxy S4 phone we have used in our experiments, we have conducted a series of

experiments to determine the appropriate stability thresholds and time-window.

• Retaining only explosion related data in smartphones to save the storage: While

the energy consumed during sensing activities in modern smartphones is quite

minimal (less than 200mJ per second), the issue of continuously collected sen-

sory readings overloading the storage in the smartphone can become problem-

atic. In case of the smartphone accelerometer in Samsung galaxy S4 when

programmed to continuously sense at fastest sampling rate which is 200 sam-

ples per second could maintain a history of its observations by storing them in

memory produces 25 Gigabytes of raw data per month. This is a large volume of

data to store and analyze. The core challenge here is how to design techniques

that enable the smartphone to continuously sense the ambient environment for

vibrations, but retain only those readings within a time window that correspond

to an explosion, while filtering out the rest. So with much less storage the detec-

tion of events is made possible by implementing triggering algorithms like the

seismometers do [54, 57]. Based on this, we have designed algorithm in [29] to
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make this goal feasible. The rationale of the technique is to identify appropriate

thresholds for the ratio of sudden spikes in vibration during an explosion to the

long term dormant vibration readings in the absence of an explosion. Leverag-

ing our findings in [29], we implemented an algorithm and installed it as an app

on the smartphones to retain only those accelerometer readings corresponding

to an explosion, while filtering out the rest. This dramatically improves storage

efficiency.

• Lack of practical models to range explosion sources: As mentioned earlier, the

challenge in obtaining ground truth data during explosives blasting, has meant

that there is very little body of work in attempting to range explosion sources.

While there is some existing work in this realm in [33, 58], they all address this

problem using measurements from seismometer sensors only. However, there

are clear differences between sensors used in seismometers and smartphones in

terms of sampling rates, energy consumption, sensing ranges and sensitivities,

which necessitates new techniques for addressing the problems defined in this

dissertation. In this dissertation, we adopt a machine learning approach. In our

approach, we partitioned the data-sets into two categories: Training− set and

Testing− set. We then extracted a number of features that are distinct for the

accelerometer and pressure readings, and also novel features that integrate them

together. Using a technique based on nonlinear regression, we then attempt

to build a model to determine the range and intensity of explosion events by

learning from Training − set, and subsequently validating the model on the

Testing − set.

• Designing a smartphone app for ranging and estimating intensity of explosion

events: After demonstrating the feasibility of leveraging smartphone sensors to

estimate the range and intensity of explosions, the issue of designing smartphone
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apps becomes a practical one. However, this aspect is quite challenging from

numerous fronts including energy and storage efficiency. In our research, we

report our findings on designing smartphone apps to sense and analyze explosion

events, that we believe will provide critical guidelines for practical deployments

in the future.

• Other challenges outside the scope of this dissertation: We point out clearly

that there are many other challenges in the realm of network bandwidth, trust,

security and privacy of data when numerous smartphones in real-time sense

and transmit data for detecting explosions at societal scales. Other challenge

is identifying the type of explosive material which can be made possible by

embedding chemical sensors in smartphones for which the research is still on-

going and also explosion data-sets from several type of explosion materials.

Another challenge is sampling frequency differences encountered from diversity

of modern smartphones. Different smartphones come with different sampling

frequencies for sensors. For instance LG Nexus-3 has a sampling rate of 50Hz,

while the Samsung Galaxy Note-2 has a sampling rate 80Hz, and the the Sam-

sung Galaxy-S4 has a higher sampling rate of 100Hz for acceleration sensor.

However, typical seismometers has a much higher sampling rate of 500Hz, with

superior consistency in the sampling rate. To demonstrate correlations of data

generated between these two diverse sources requires down-scaling the data from

the seismometer for fair comparison. Note that in real-life scenarios where there

are numerous smartphones with numerous and possibly inconsistent sampling

rates, this challenge is further exacerbated, the addressing of which is out of the

scope of this work.
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5. EXPERIMENTAL SETUP AND DESCRIPTION OF
SMARTPHONES

In this section, we discuss the experimental set-up to address our problems

on detecting explosion events, ranging (estimating the distance to the source of an

explosion event), and estimating the intensity of the explosion (in terms of charge-

weight of explosive). First we discuss the experimental set-up from the perspective

of smartphone selection and blasting environment. We point out that the team as-

sembled to collect data went through numerous training procedures prior to visiting

the blasting site, in order to ensure safety of all participants in the experiments.

5.1. SMARTPHONE SELECTION

Accelerometer and pressure sensors used in the smartphones are manufactured

using MEMS (Micro-Electro-Mechanical Systems) technology making them minia-

turized and powerful. Smartphone accelerometers today are tri-axial sensors sensing

acceleration in linear, transversal and vertical axis corresponding to x, y, and z di-

rections in vector space in m
sec2

. The pressure sensor in smartphone outputs a scalar

value which is the atmospheric pressure sensed in hectaPascals (hPa).

For the purposes of our research, the chief criterion in choosing a smartphone

was clearly the performance of the accelerometer and pressure sensors, which is pri-

marily determined by the sampling rate of the sensor, the consistency and sensitivity.

After reading a number of research blogs, and performing limited experiments with

a number of smartphone models, we have chosen the Samsung GALAXY S4 phone

for our experiments, since its sensitivity, sampling rate, consistency and processing
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power were among the best ∗. Critical specifications of Samsung GALAXY S4 are

shown in Table 5.1.

Table 5.1. Details of smartphones used during the explosion experiments

Smartphone brand Samsung GALAXY-S4
Model no. Samsung-SGH-I337

Operating system Android-4.4(KitKat)
Accelerometer STMicroelectronics LIS344ALH
Pressure sensor STMicroelectronics LPS331AP

Sampling rate of Accelerometer sensor 100− 110Hz
Sampling rate of Pressure Sensor 10Hz

5.2. BLASTING TYPE AND ENVIRONMENT

Figure 5.1 depicts the experimental mine environment. The explosive material

used for each explosion was Dynamite (Unimax TT) with Ammonium Nitrate Fuel

Oil (ANFO). In each experiment, a different charge-weight (in lb) was used for the

ANFO material, which determines the intensity of explosion. The explosive material

was kept in holes drilled into the mine’s surface to trigger the blasts. The location of

the source of the blasts was 25ft underground. Table 5.2 presents more specs on the

explosive material blasted in our experiments †.

A total of four different blasting experiments were conducted for the purposes

of this research. We denote them as E1, E2, E3, E4. Also, four different smart-

phones we used in the experiments, denoted by P1, P2, P3, P4. A critical aspect

to note here is the number of blasts in each experiment (the third column in Table

5.3). Each blasting experiment typically occurs with a different charge weight and

a certain number of charges. The number of charges indicates the actual number of

∗Note that our techniques proposed in this dissertation are general, and are independent of the
type of smartphone.
†Some more details on the experimental design are presented in the Appendix also.
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Figure 5.1. Experimental setup

blasts during an experiment. Each blast typically lasts for 250ms with a delay of

1 second duration between each blast. In our experiments, the number of charges

set up were 8, 2, 5 and 2 for each experiment, and the corresponding intensities (in

lb of the charge weight) were 16.05, 8.05, 11.83 and 8.25 respectively. For each of

these experiments, the number of phones emplaced were 2, 4, 4 and 4 respectively to

collect data. The phones were all emplaced at multiple distances in each experiment

in the vicinity of an explosion event, as shown in Figure 5.2. The distances from the

smartphones to the explosion source were measured using a laser-distance-measurer

for superior accuracy. Critical details of the experiment are presented in Table 5.3.

Table 5.2. Details of the Explosive material used for Experiments at Explosives
Research Laboratory (ERL)

Type of explosive Dynamite with ANFO
Material blasted Dolomite Lime
Charge weight 8.05− 16.05 (in lb)
No of charges 2, 5, 8

Detonating cord 25− 50 grains/foot
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With the above settings, we were able to generate multiple data-sets to develop

a model for estimating the range and intensity of the explosion events. Specifically, the

number of blast event data-sets from Experiment-1 was 16 (8 charges and 2 phones),

Experiment-2 was 8 (2 charges and 4 phones), Experiment-3 was 20 (5 charges and 4

phones) and Experiment-4 was 8 (2 charges and 4 phones). This resulted in a total

of 52 blast event data-sets for all the experiments combined.

Table 5.3. Details of the Explosion Experiments at ERL

Experiment Intensity (lb) No of blasts Smartphone Distance (feet)

E1 16.50 8 P1 45
P2 35

E2 8.05 2 P1 35
P2 40
P3 43
P4 55

E3 11.83 5 P1 26
P2 50
P3 60
P4 61.5

E4 8.25 2 P1 26
P2 35
P3 48
P4 55

5.3. SENSING, FILTERING AND STORING OF EXPLOSION RELATED
DATA

In each phone, the acceleration and pressure readings were continuously sensed

and recorded by the phone before, during and after the explosion events. The output

file is stored in the SD card of the smartphone device in the form of raw-data. After the

blasts were completed, the team assembled subsequently collected all the phones for
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Figure 5.2. Layout of phones during various experiments

post processing. Subsequently, the values are tagged with the time-stamp information

and recorded to a Comma Separated Value (.csv) file. Critical specs of the GALAXY

S4 smartphone are shown in Table 5.1.
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6. CAPABILITY OF SMARTPHONE ACCELEROMETER TO
DETECT EXPLOSION EVENTS

In this section, we investigate the feasibility of leveraging the accelerometer in

modern smartphones to detect the triggering of explosion events [29]. By emplacing a

static smartphone and a state-of-the-art seismometer in the vicinity of real explosion

blasts (conducted at an Explosives Research Lab in a university setting), and com-

paring their detected event readings, we make several insightful contributions. We

find that readings from events in the smartphone and the seismometer are highly cor-

related in the temporal and frequency domain. We then demonstrate the feasibility

of designing an algorithm in the smartphone (executing as an app) to detect the trig-

gering of an explosion based on comparing short term sudden spikes in vibrations due

to an explosion event, and long-term dormancy in vibration readings (in the absence

of an explosion).

6.1. PROBLEM STATEMENT

Broadly speaking, the overall goal of this work is to demonstrate the feasibil-

ity of leveraging smartphone accelerometers (when the phones are static) to detect

explosion events. Within this context, there are two sub-problems that we address

in this work. The first one is to statistically compare the similarity of accelerometer

readings from the smartphone with the ground truth, which in this case comes from a

state-of-the-art seismometer when both devices are sensing the vibrations emanating

as a result of an explosion. Should the detected events from both devices demonstrate

similarity, the next problem is to design an algorithm that can be implemented on a

smartphone (as an app) to detect the triggering of an explosion in real-time, while

also being efficient in storage and energy consumption.
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6.2. COMPARISON RESULTS FROM STATISTICAL ANALYSIS

In this section, we present results from analyzing the ground vibration from the

blasts as measured by the accelerometer in the Galaxy S4 smartphone and geophone

in seismometer. The Geophone basically outputs the velocity of ground movement.

We converted these velocity readings to acceleration by finding the rate of change of

velocity (a = (v2 − v1)/t) to bring both the events on to same scale. We wish to

reiterate that the detonation consisted of five blasts, each lasting for 250ms with a

delay of 1 second duration between each blast as discussed in section 5.

6.2.1. Comparison of Temporal Responses. Figures 6.1 and 6.2 demon-

strate the accelerometer response for the five blasts, where the Y-axis denotes the

absolute resultant value of the linear accelerations in x, y, z directions and X-axis de-

notes the time. As can be seen visually, the accelerometer in the smartphone correctly

detects spikes in ground vibration due to blasts almost exactly when the seismometer

detects it. It also can be seen that the absolute values of the smartphone accelerom-

eter and the one in the seismometer are different, with the seismometer recording

higher amplitudes of ground vibration. While this can be explained as a result of

calibration issues, our investigations also revealed some insights into the calibration.

The output from the smartphone accelerometer is raw sensor data initially and it is

ratiometric with respect to the phone’s prefixed input voltage. As such, they need

to be calibrated to obtain the accurate acceleration reading. However, the results of

our work are directly applicable even if the phone is not calibrated. The calibration

effort is part of our on-going work.

To further quantify the fidelity of temporal responses between the accelerome-

ter readings from both instruments, we attempted to correlate them using statistical

measures. Unfortunately, doing this is not so straightforward. Most of the correlation

algorithms are applied on same number of samples of two given signals. But, we have
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Figure 6.1. Temporal response of smartphone

Figure 6.2. Temporal response of seismometer
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different sampling rates from smartphone (100Hz) and the seismometer(500Hz). So

we had two options to bring seismometer and smartphone on to same scale. One

approach is to up-sample the smartphone data and other being down-sampling the

seismometer data. If we up-sample the smartphone data by introducing fabricated

sample points into the existing signal, then the comparison would be between gen-

uine seismometer data and modified smartphone data which may not give a reliable

analysis of correlation. Considering this, we have chosen the latter approach of down-

sampling the seismometer data to make the comparison more viable. Recall that

duration of an explosion blast is 250ms, which needs to be captured. So even though

data from seismometer is down-sampled from 500Hz to 100Hz, we get a sample ev-

ery 10ms which ensures the capture of explosion trigger, which is of interest to this

work. The down-sampled temporal representation of events from smartphone and

seismometer are seen in Figure 6.3.

Figure 6.3. Temporal representation of smartphone and down-sampled seismometer
readings
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Correlation analysis was done on the down-sampled data of the seismometer

and the smartphone corresponding to the durations of recording of individual blasts.

We have used Pearson product-moment correlation method shown in Equation (6.1),

to determine the correlation coefficient,

r =

∑
(xt − x)(yt − y)√∑

(xt − x)2
∑

(yt − y)2
, where (6.1)

xt: smartphone sample at time t,

yt: seismometer sample at time t,

x: sample mean of the smartphone data,

y: sample mean of the seismometer data.

From the analysis of correlation for the duration of the explosion events, the

correlation coefficient was observed in the range 0.62 to 0.92 as shown in Figure 6.4

with the average correlation being 0.83. Furthermore, to study correlations when the

blasts are not taking place (i.e., when the smartphone and seismometer are sensing

background noisy vibrations), we also compared accelerometer readings from both

devices. We found that the correlations between the two devices when blasts are not

taking place is quite poor due to advanced noise filtering algorithms in the seismome-

ter unlike that in the smartphones. This itself does not change any results in our

work, but is nevertheless an interesting insight.

6.2.2. Comparison of Frequency Responses. To further derive insights

on fidelity of data between the smartphone and seismometer, we also compared their

frequency responses. Frequency-domain analysis also helps determine the spectral

capability of the smartphones (and the seismometer as well) to determine the sig-

nificant frequency component of the explosions. Time-domain data is converted to

frequency-domain using Fast Fourier transform (FFT) algorithm to analyze the data

from frequency perspective. It can be seen that vibrations corresponding to the peak
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Figure 6.4. Correlation of individual blasts

amplitudes in seismometer and smartphone events occurred at 83Hz and 74.6Hz re-

spectively as seen in Figures 6.5 and 6.6.

However, the quality of the data from the smartphone accelerometer has more

noise when they sense background vibrations, which is relatively easy to fix with

filtering algorithms, and is out of scope of the work.

6.3. DESIGN, DEPLOYMENT AND VALIDATION OF A SMARTPHONE
ALGORITHM TO DETECT EXPLOSIONS

Motivated by the positive results discussed in the earlier section, we now

present our contributions in the design, deployment and validation of a smartphone

algorithm that can execute in real-time to detect the triggering of explosion events.
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Figure 6.5. Frequency response of smartphone

Figure 6.6. Frequency response of seismometer
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We first present the motivation of the proposed algorithm. We then present some

design challenges, followed by the actual algorithm, its operation, and validation.

6.3.1. Overview of the Algorithm. An explosion is an event that results

in extremely high increases in volume and release of energy. Such an event typically

results in the ground vibrations generating high pressure waves, due to the deposition

of a large amount of energy in a very small localized volume. The proposed algorithm

we design to detect explosion events relies on this principle. Specifically, we take into

account, and integrate two critical characteristics of explosion events. The first one

is the long term dormancy in vibration readings sensed before and after an explosion

event, and the second is the sudden increase in vibrations during the brief explosion

event. There have been some prior works focused on this principle for detecting

earthquakes and volcanic events using seismometers [59, 60, 61]. However, we are

not aware of any work that tailors this methodology to be used in smartphones for

explosion detection. A significant challenge is to ensure that any algorithm designed

and implemented to be executed on smartphones for detecting explosions must do

so with minimal latency (i.e., in near real-time). Ideally, it should execute within

the time window between two accelerometer samples sensed by the sensor. This

ensures that any incoming data (all of which are critical) is not ignored. Critical

other challenges to overcome are ensuring the stability of the phone to prevent false

negatives and positives, determining right thresholds for triggering and de-triggering

of the event, and ensuring efficient processing of incoming data streams in the realm

of storage and energy efficiency, all of which are elaborated when we discuss our

proposed algorithm next.

6.3.2. Work-flow and Design of the Algorithm. Algorithm 1 shows the

pseudo code of our detection strategy. There are three phases of operation: Sensing,

Triggering and Event Recording. In the Sensing phase, the smartphone will execute

tasks related to sensing of ground vibrations, with the core challenge being ensuring
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the stability of the phone from ambient noise, prior to data processing. In the Trig-

gering phase, the algorithm will execute tasks related to detecting the triggering of an

explosion, based on set parameters explained below. Finally, in the Event Recording

phase, the phone will perform tasks related to recording of the explosion event, and

getting ready to sense again.

1. Sensing phase: When device starts running the detection algorithm, this is

the initial phase it enters into. In this phase, the incoming samples of the

accelerometer are processed to ensure the stability. Since the goal of this work

is to demonstrate the feasibility of leveraging static smartphones for detecting

explosions, it is reasonable to conclude that the accelerometer readings sensed

by the sensor in the phone will be stable (due to lack of motion). However,

our experiments revealed something different. Considering that the phones are

small in form factor and weight, they are quite easy to be displaced even with

minimal amount of external stimuli. Such movement, even though minor can

cause changes in accelerometer readings which can corrupt values sensed under

explosion events. As such, we have designed a simplistic model that ensures the

stability of the phone prior to executing our algorithm to make sure that any

values sensed as a result of ground vibrations during explosions are minimally

corrupted by noise.

As soon as the smartphone starts monitoring, for each sample the algorithm

determines the L2 − Norm of the difference of acceleration vector from its

previous known to its current sample value. We call it as sd and is shown in

Equation (6.2).

sd = (axt − axt−1)2 + (ayt − a
y
t−1)

2 + (azt − azt−1)2, where (6.2)
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t: time of arrival of current sample,

t− 1: time of arrival of previous sample,

at = (axt , a
y
t , a

z
t ): acceleration vector at time t.

Ideally sd = 0, if the device is absolutely stable, which happens when axt = axt−1,

ayt = ayt−1 and azt = azt−1. Unfortunately, the case of perfect stability cannot be

achieved in practice, and reaching acceptable stable levels also takes time. If sd

is found to be less than the threshold value for a pre-defined time interval, then

we declare the smartphone to be stable. Further, the current average values of

the tri-axial acceleration readings in their respective moving windows, denoted

as x, y, z are sent for processing in the next phase of algorithm operation. Figure

6.7 illustrates an instance of the phone reaching from an unstable to a stable

state after 6 seconds with a constant shaking further. Numerous experiments

for the Samsung Galaxy S4 phone were conducted and we set the threshold for

sd below which we considered the smartphone to be stable as 0.01. Note that

to demonstrate the feasibility and for the sake of simplicity, our algorithm does

not correct any stabilization errors, but rather ignores any ground vibrations

sensed in an unstable state.

2. Triggering phase: The algorithm will move into this phase after the device is

confirmed to be stable. This is phase in which the smartphone detects the

actual triggering of an explosion event if it meets the criteria for the explosion

as discussed below.

The algorithm processes each incoming signal in multiple steps. When an ac-

celerometer sample is received, each component of the measurement vector x, y,

and z are processed separately. In the first step, the samples x, y, z are corrected

as (x − x), (y − y), (z − z) respectively, using the correction factors evaluated

in the sensing phase to measure the absolute change in acceleration. Then, the
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Figure 6.7. Time taken for the smartphone to stabilize

next step is processing these acceleration values to detect the triggering of an

explosion event.

Our idea again here is to leverage the long term dormancy in vibration readings

sensed before and after an explosion event, and the second is the sudden increase

in vibration readings during an explosion event. To implement this strategy, the

acceleration readings from the phone are stored in two separate and sliding time

windows in our design. The first window is called the Short Term Averaging

(STA) window, and the second one is called the Long Term Averaging (LTA)

window. Essentially, these parameters quantify the durations in which the the

rapid increase ground vibrations are sensed during an explosion event, and for

how long the increased spikes last until they go down. Let us denote Sa and

La as the average of the acceleration readings computed in the STA and LTA

windows, and Ra as the ratio of their values, i.e., Ra = Sa

La
.
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The algorithm computes the ratio upon every sample received, while sliding the

windows. If Ra exceeds a pre-set threshold (TRth), then the algorithm triggers

an explosion event. Also the end of event is declared when Ra falls below a

de-trigger threshold (DTRth). We point out that in practice, these parameters

are sensitive to a number of characteristics of an explosion event, including

the chemical composition, duration and intensity of an explosion. As such,

setting these parameters in a generalized sense is very challenging and requires

significantly more experiments and data sets. To demonstrate the feasibility,

and within the context of this work, we tailor these parameters specifically to

the context of explosion event whose properties are listed in Table 5.2.

Our experiments revealed that an STA window of 0.1 seconds, an LTA window

of 10 seconds, TRth = 1.75 and DTRth = 1.5 provides the best discriminator

for triggering and de-triggering of an explosion event and can be seen in Figure

6.8.

Figure 6.8. STA/LTA ratios for various combinations of STA and LTA values chosen
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3. Event recording phase: The final phase of the operation of the algorithm is the

Event Recording Phase. This phase is executed when the phone detects the

triggering of an explosion event, and its subsequent de-triggering. When that

happens, the accelerometer samples are recorded on to the phone along with

the pre-event memory as an Event (E). Note that all readings are recorded

until the de-triggering condition is met. The phone then returns to the sensing

phase and the cycle repeats.

All the phases discussed above are summarized in the algorithm shown below:

Algorithm 1 Pseudocode to Detect Triggering of Explosions

Input: STA Window(STA), LTA Window (LTA), ax, ay, az
Output: Triggering status of the accelerometer samples processed

1: Sensing Phase:
2: while True do
3: Compute sd (as in Equation (6.2))
4: if sd < 0.01 then
5: goto TriggeringPhase
6: end if
7: end while
8:

9: Triggering Phase:
10: x = (x− x), y = (y − y), z = (z − z)
11: Compute Sa, La for time windows STA, LTA

12: if Sa

La
> TRth then

13: goto EventRecordingPhase
14: else
15: Return to TriggeringPhase
16: end if
17:

18: Event Recording Phase:
19: while Sa

La
< DTRth do

20: Add x, y and z into E
21: end while
22: Store E on Phone
23: Return to SensingPhase
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6.3.3. Deployment and Validation of the Algorithm on a Smart-

phone. To validate feasibility, we created an Android application (app) that exe-

cutes our algorithm in real time and it was deployed during another round of blasting

experiments (same parameters as Table 5.2). The phone was placed at a location sim-

ilar to the one placed earlier for the training phase, and it successfully triggered to the

explosion event. The application consumes 331KB of memory, 0.173 joules of energy

per second and a typical sample processing time of 4ms which is quite minimal.
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7. RANGING OF EXPLOSIONS AND INTENSITY ESTIMATION
LEVERAGING SMARTPHONE ACCELEROMETERS

In this section, we address the problem of ranging explosion events from sens-

ing corresponding accelerometer readings from stationary smartphones [30]. First,

we statically emplaced a number of smartphones with built-in accelerometers at var-

ious locations in the vicinity of real explosions (conducted at a university training

facility). An app was installed in 4 off-the-shelf smartphones to collect accelerometer

readings continuously, and effectively retaining only those readings that correspond

to an explosion event (while filtering out the rest). As a result, a total of 52 data-sets

from 4 individual explosion blast-experiments (with Dynamite acting as the explosive

charge) were collected. Using these data-sets, we developed a non linear regression

model to estimate the distance of the source of an explosion event, and the intensity

of the explosion (measured in terms of charge weight of the explosive material) based

on extracting a number of statistical features from the accelerometer sensor readings

in three dimensions (lateral (x), longitudinal (y), and vertical (z) directions) from

smartphones. We are able to range the explosion event, with an average case error

of 12.86% in our experiments. We were also able to estimate the intensity of the

explosion event with a high accuracy, with an average case error of 11.26%.

7.1. PROBLEM STATEMENT

The problem statement is two fold. First, we want to build a model that takes

as the input raw accelerometer readings from a stationary smartphone that senses an

explosion, and estimates the distance to the source of the explosion event. Secondly,

we want to estimate the intensity of the explosion (as a notion of charge weight of

the explosive material) from the sensed accelerometer readings.
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Considering the scope of the problem, we make certain assumptions. First, we

assume that the arrangement where the explosion happens is a controlled underground

mine environment. We also assume that the explosive material blasted is known

(in our experiments, it is Dynamite) ∗. Finally, we assume that the smartphones

are all stationary, and there are no energy/storage issues affecting the sensing and

recording of associated vibrations. We also point out that there are many other issues

emanating as a result of limited network bandwidth, trust, security and privacy of

data when numerous smartphones sense and transmit data in real-time for sensing

explosions at societal scales. However, these aspects are secondary to the problem in

this work, namely, estimating the distance and intensity of an explosion event, hence

these ancillary issues are out of the scope of the work.

7.2. OUR TECHNIQUE FOR ESTIMATING THE DISTANCE AND IN-
TENSITY OF EXPLOSIONS

In this section, we describe the design of a model for estimating the distance

and intensity of an explosion event. Subsequently, the model is validated and results

are presented.

As pointed out earlier in Section 4.3, the lack of practically applicable models

in the literature related to explosion events mean that we employ a machine learning

approach, wherein we leverage a portion of the real experimental data that we col-

lected to train the system to design a model, while using the remaining collected data

for testing. For ease of reading, we point out that the parameters we want to estimate

are the distance (d) and intensity (i) of an explosion event, and these two are called

∗We point out that Dynamite (Unimax-TT) with Ammonium nitrate fuel oil is commonly used
in real explosions, so it is a good blasting material to study for the context of our work. The issue
of detecting the type of explosion material, and investigating potential changes in vibrations sensed
as a result of multiple explosion material is out of the scope of the current work, and is part of our
future work.
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world-states. The inputs we have are the raw measurements from the smartphone

accelerometers in lateral (x), longitudinal (y), and vertical (z) directions.

In this work, our efforts on building a model, and validating its efficacy in

the context of estimating the distance (ranging) and intensity of an explosion event

comprise of following steps as illustrated in Figure 7.1:

Figure 7.1. Flow of the designed estimation technique

1. Event separation: This is a pre-processing step of training. Recall that if a

smartphone continuously senses ambient vibrations and stores all readings, then

the storage overhead will be significant. As such, in real-life scenarios, we need

a technique that will allow the phone to retain only those vibration readings

that correspond to an explosion while filtering out the rest. We implemented
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a technique that runs in real-time on the phone as an app. The core rationale

of our technique is to compute in run-time, the ratio of averages of vibration

readings within a short-term sliding window (denoted as STA) to the long term

sliding window (denoted as LTA). In our prior work in [29], we have identified

the triggering threshold (denoted by TRth) and de-triggering threshold (denoted

by DTRth) for this ratio that provide the best discriminatory power as TRth =

1.75 and DTRth = 1.5 and with window sizes of STA = 0.1 second and LTA = 10

seconds for the explosion parameters.

In our experiments, the phone will only retain accelerometer readings that meet

the above criteria, while deleting all other readings †. Only the retained ac-

celerometer readings are leveraged for post-processing to develop the model

which will be discussed in the next step. A total of 52 individual blast event

data-sets were obtained as a result of this step (following the above procedure),

and the corresponding distances and intensities (ground-truth values) from the

experiments were also recorded for subsequent training and testing.

2. Labeling: With experimental data-sets obtained, we are ready to proceed with

designing the model. Clearly, the first step to do in this regard is labeling the

data-sets appropriately based on ground truth. The distance and intensity are

denoted as world-states, which we aim to estimate. Formally,

The world-states are:

• d - distance of a smartphone from the explosion source.

• i - intensity of the explosive material blasted.

The inputs available for a detected event are:

† Note that our app consumed 331KB of memory, and power consumed was 0.173 joules per
second, both of which are quite minimal.
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• ax - ground acceleration in lateral (x) direction.

• ay - ground acceleration in longitudinal (y) direction.

• az - ground acceleration in vertical (z) direction.

3. Feature extraction: After labelling each event with ground-truth data, the next

step of training is feature-extraction. Note that we have the accelerometer

readings from the smartphones in lateral (x), longitudinal (y), and vertical (z)

directions, and we could attempt to build a model between these values and

the world-states. However, such a model will be limited to only three sources

of readings. In order to make the model more accurate, we attempt to extract

several statistical features in the temporal domain, and also features in the

frequency domain from the input readings. The features extracted are

(a) mean

(b) median

(c) variance

(d) minimum

(e) maximum

(f) duration of event

(g) dominant frequency

(h) time-domain histogram properties: a) The first highest, b) The second

highest, c) The third highest occurrences of the samples in a bin.

Now we have these 10 features evaluated for each dimension resulting in a

feature-vector (f = [f1, f2, ..., f30]) containing 30 features for three dimensions

of accelerometer readings. The next thing to do is deciding on a regression

technique for estimation (of distance and intensity) which takes the extracted



51

feature-vector as the input. We did a preliminary relationship study to select

a suitable regression model. Figures 7.2 and 7.3 illustrates the plot of distance

and intensity with respect to resultant of ground acceleration values in 3 di-

mensions for a single phone respectively. Our observation (also true across all

phones) is that the relationship is nonlinear. As such, instead of attempting

linear regression techniques that suffer from fitting problems, we employ a non-

linear regression approach.

Figure 7.2. Relationship between resultant of ground acceleration (input-state) and
distance (world-state)

4. Learning: As discussed above we have 52 individual blast-event data-sets recorded

from up to four smartphones across four separate experiments. As is standard

in machine learning, we split the data-sets into Training-Set and Testing-Set.

The data-sets in the Training-Set is used to build a model between the world-

states (i.e., distance and intensity) and the input features extracted, and the

model is validated on the Testing-Set. We have employed the standard Leave

One Out Strategy for the validation. In this approach, a Testing-Set will in-

clude the data-sets from one phone during an experiment, and data-sets from
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Figure 7.3. Relationship between resultant of ground acceleration (input-state) and
intensity (world-state)

all the others form Training-Set, and we repeat the process for each phone. For

instance, the 8 blast event data-sets sensed by Phone P1 during Experiment E1

will form a Testing-Set-1 (as seen in Table 7.1), while the 8 blast event data-sets

sensed by Phone P2 from the same experiment (E1) along with data-sets from

all the phones in E2, E3 and E4 results in a total of 44 data-sets which will

form a Training-Set. This process is repeated for all phones, and as such, we

have a total of 14 Testing-Sets to build and test the model as shown in Table

7.1.

We have implemented a nonlinear polynomial regression model on the Training−

set to extract a parameter φ that will be a result of the learning step. We will

use this parameter for estimation which will be discussed in the next step. A

nonlinear polynomial regressor can have a degree 2 or higher. Initially, we have

tried implementing with degree-2. Further to better-fit the data, we checked

with higher order degrees. Note that the increase in the degree of nonlinearity

will increase the size of feature-vector and hence the computational complexity.
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We have found that after a degree 3, a negligible increase in estimation accuracy

was observed. Hence we have set a degree of nonlinearity of 3 for our model.

This resulted in the final feature-vector size growing to 90 for 30 features ex-

tracted. For each data-set, a 90 dimensional feature-vector x is extracted along

with a 2 dimensional world-state vector w (ground-truth distance and intensity)

as shown in Equation (7.1).

x = [f1, f
2
1 , f

3
1 , ..., f30, f

2
30, f

3
30]

T ;w = [d, i] (7.1)

If a Training − set has N data-sets in it, then at the end of training, we have

X = [x1, x2, ...xN ] and W = [w1, w2, ...wN ]T

where N is the size of Training − set, each x is a 90 dimensional vector and

each w is a 2 dimensional vector. We define the cost function as

O(φ) = ||XTφ−W ||2 (7.2)

Solving the cost function shown in Equation (7.2) leads to the estimated pa-

rameter φ as shown in Equation (7.3).

φ = (XXT )−1XW (7.3)

The parameter φ is a vector of size 90 × 2, where each column corresponds to

a world-state. This parameter will be used for estimating the world-states for

a Testing − set which will be shown in the next step.
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5. Inference: Recall from the previous step that individual blast data-sets corre-

sponding to a single phone during each blast experiment form a Testing − set

and data-sets from the rest of the phones form a Training − set. The number

of blasts in a blast-experiment typically determine the size of the Testing−set.

For each data-set in a Testing − set, we do ‘Event-separation’ and ‘Feature-

extraction’ steps similar to the training (as seen in Figure 7.1), further apply the

nonlinear transformation. From this we have a 90 dimensional feature-vector

X∗ and our aim is to estimate a 2 dimensional world-state vector wpred using

parameter φ. Formally,

wpred = φTX∗ (7.4)

By plugging in X∗ in the Equation (7.4), we get wpred as a result. wpred =

[d
′

i
′
]T , where d

′
and i

′
are estimated distance and intensity, respectively. After

estimating these values for all the data-sets in a Testing − set, we took mean of

the estimated values (mean of distance values, mean of intensity values) within each

Testing− set. This completes estimation of world-state values for one Testing− set.

We have 14 such Testing−set’s from 52 data-sets as seen in Table 7.1. For all the 14

Testing− set’s, the estimated world-state values are compared against ground-truth

values and a detailed analysis of results are given in the results section.

Table 7.1 details the summary of evaluations of the model. Each row de-

scribes a Testing − set with attributes such as its training-size, testing-size along

with estimated, actual (ground-truth) and error percentage values for distance and

intensity. As can be seen in Table 7.1, we have 14 Testing − set’s for which the

estimated world-states are compared against ground-truth values. Figures 7.4 and

7.5 shows a comparison of actual (ground-truth) to estimated world-state values of

distance (d
′
) and intensity (i

′
) respectively. The error in estimating the distance is
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Table 7.1. Evaluation: validation with test data-sets
Note: Train: training size — Test: testing size — Estim: estimated

set Train Test
Distance (in feet) Intensity (in lb)

Actual Estim Error
(%)

Actual Estim Error
(%)

1 44 8 45 47.572 5.71 16.5 15.592 5.5
2 44 8 35 33.391 4.59 16.5 16.555 0.33
3 50 2 35 27.372 21.79 8.05 10.178 26.44
4 50 2 40 47.036 17.59 8.05 8.014 0.44
5 50 2 43 37.920 11.81 8.05 9.565 18.82
6 50 2 55 41.909 23.80 8.05 7.803 3.06
7 47 5 26 31.709 21.95 11.83 8.590 27.38
8 47 5 50 53.978 7.95 11.83 9.770 17.41
9 47 5 60 56.608 5.65 11.83 12.664 7.05
10 47 5 61.5 57.511 6.48 11.83 13.251 12.01
11 50 2 26 43.706 68.10 8.25 8.457 2.51
12 50 2 35 32.632 6.76 8.25 6.991 15.26
13 50 2 48 38.701 19.37 8.25 8.791 6.56
14 50 2 55 47.414 13.79 8.25 7.022 14.88

quite low, in fact it is less than 15% in a majority of instances. With the exception

of one outlier (data-set 11) that has got an error of 68.1%, an average case error

of 12.86% was observed for ranging in our experiments. The intensity on the other

hand is quite accurate in our estimation with error less than 10% in a large num-

ber of instances and with an average case error of 11.26%. To further quantify the

estimation performance of the model, statistical parameters including training-error,

root-mean-square-deviation (rmsd) and normalized-rmsd (nrmsd) are evaluated from

the testing. The statistical analysis of the evaluation are summarized in Table 7.2,

and again results are quite favorable.

These results being the first of their kind in the realm of estimating the range

and intensity of an explosion event from statically emplaced smartphones, are quite
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Figure 7.4. Distance estimation

Figure 7.5. Intensity estimation
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Table 7.2. Result statistics

Distance Intensity
Minimum 26 feet 8.05 lb.
Maximum 61.5 feet 16.50 lb.

Range 35.5 feet 8.45 lb.
RMS-deviation (rmsd) 7.805 1.429

Normalised-rmsd (nrmsd) 0.219 0.169
Training error 2.086 0.381

favorable, and demonstrate the clear feasibility for improvement with more experi-

ments. Fusing multiple sensor phenomena like acoustic and pressure sensors, along

with vibration sensing, is a part of our future work.

As discussed earlier, we have used a feature-vector of size 90 in our nonlinear

regression model. With this feature-vector, the total training took 8.8 seconds on

a Windows machine with 32 Gigabytes of RAM and CPU clock speed of 4.6 GHz.

A memory footprint of as little as 90 KB was taken for training data since only

accelerometer readings corresponding to explosion events were used for processing.
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8. LEVERAGING MULTI-MODAL SMARTPHONE SENSORS FOR
RANGING OF EXPLOSIONS AND INTENSITY ESTIMATION

In this section, we specifically address the problem of ranging and estimating

the intensity of an explosion by leveraging the accelerometer and pressure sensors in

the smartphone. To do so, we emplaced a number of (static) smartphones in the

vicinity of real explosion blasts conducted at a university mining laboratory, where

the material blasted was Dynamite with Ammonium Nitrate Fuel Oil (ANFO). We

then collected the corresponding accelerometer and pressure readings sensed by the

phone. After appropriately segregating the data into training and testing classes, we

extracted a number of novel features, and designed a machine learning algorithmic

framework for ranging and estimating the intensity of the explosion event. After

extensive validation, we find that our algorithm performs with high accuracy and a

high degree of consistency. In fact, the average error in ranging (i.e., estimating the

distance to the source of the explosion event) and estimating the intensity of explosive

material (in terms of its charge weight) was determined to be 11.21% and 9.4% respec-

tively. We also present perspectives on encoding our algorithm as a smartphone app,

identify several critical challenges in processing data from smartphone accelerometers

and pressure sensors in the context of explosions, and also identify other practical

issues. To the best of our knowledge, our work is pioneering in demonstrating the

feasibility of smartphones to analyze explosion events. We believe there are significant

societal benefits emanating from our work.

8.1. PROBLEMS ADDRESSED AND ASSOCIATED CHALLENGES

In this section, we give a brief overview of the problems we address in this

work. We then identify the critical challenges that need to be resolved.
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8.1.1. Problems Addressed and Preliminaries. Broadly speaking, we

want to demonstrate the utility of smartphone sensing capabilities to analyze explo-

sion events. Within this broad context, the specific goals of this work are to determine

the range (distance from smartphone to an explosion source) and intensity (in terms

of charge-weight of explosive material) of an explosion event with an improved accura-

cies from proposed model in our previous work [30]. The environment wherein which

we are collecting real experimental data is actually an operational underground mine.

In this work, to retain scope, we assume that the explosive material blasted is known

in advance. For this work, the material is Dynamite with Ammonium Nitrate Fuel

Oil. We point out that Dynamite is very commonly used in real explosions [56], and

as such it is a very representative material to consider for our problem in this work.

However, we do understand that for other types of blasting material, the parameters

for ranging and intensity estimation identified in this work may not directly apply,

although the overall methodology, sensing modalities, and algorithmic techniques will

still apply ∗.

Another issue to point out is that the smartphones deployed are static. How-

ever, our ensuing contributions are still practically useful, since smartphones are not

mobile all the time, and they are actually static for a significant portion of time.

The issue of experimenting with mobile smartphones (emplaced in a mobile human)

requires much more careful planning to also ensure subjects safety, and is part of our

future work based on contributions of this work.

8.1.2. Challenges. We now highlight some of the critical challenges in ad-

dressing our problem stated above.

• Availability of real data-sets: Explosions are difficult to be studied for the fact

that, they are often inaccessible and difficult to be replicated in the physical

∗Identifying the type of material blasted is out of scope of the current work.
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environment. Needless to say, it is challenging to gain access to environments

where blasts take place. Furthermore, it is even more challenging to have the

environment controlled enough to be able to place smartphones in and around

the vicinity of an explosion, and simultaneously obtain high quality ground

truth data for subsequent analysis of explosion events.

Fortunately, we had access to the Explosives Research Lab (ERL) at Mis-

souri University of Science and Technology (Missouri S&T) where explosions

are blasted to train students majoring in the Explosives Engineering Program

offered there. Specifically, the blasting experiments for the purposes of this work

were conducted in an underground experimental mine at Missouri University

of Science and Technology as part of experiments conducted by the Explosives

Research Lab. The experimental mine is actually a functional limestone mine

that serves also as an experimental facility for students training on mine con-

structions, operations, safety and rescue. Numerous other blasting experiments

are conducted regularly there. To the best of our knowledge, such a facility

is unique in college campus environments, and provided us with a controlled

environment, wherein we could place smartphones to derive an extremely rich

source of data-sets to devise techniques to address our problems.

• Lack of practical models to range explosion sources: As mentioned earlier, the

challenge in obtaining ground truth data during explosives blasting, has meant

that there is very little body of work in attempting to range explosion sources.

While there is some existing work in this realm in [33, 58], they all address this

problem using measurements from seismometer sensors only. However, there

are clear differences between sensors used in seismometers and smartphones in

terms of sampling rates, energy consumption, sensing ranges and sensitivities,

which necessitates new techniques for addressing the problems defined in this
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work. In this work, we adopt a machine learning approach. In our approach, we

partitioned the data-sets into two categories: Training−set and Testing−set.

We then extracted a number of features that are distinct for the accelerometer

and pressure readings, and also novel features that integrate them together.

Using a technique based on nonlinear regression, we then attempt to build a

model to determine the range and intensity of explosion events by learning from

Training − set, and subsequently validating the model on the Testing − set.

• Designing a smartphone app: After demonstrating the feasibility of leveraging

smartphone sensors to estimate the range and intensity of explosions, the issue

of designing smartphone apps becomes a practical one. However, this aspect is

quite challenging from numerous fronts including energy and storage efficiency.

In this work, we report our findings on designing smartphone apps to sense

and analyze explosion events, that we believe will provide critical guidelines for

practical deployments in the future.

• Other challenges outside the scope of the current work: We point out clearly

that there are many other challenges in the realm of network bandwidth, trust,

security and privacy of data when numerous smartphones in real-time sense

and transmit data for detecting explosions at societal scales. However, these

challenges are currently outside the scope of the current work, and is part of

our future work.

8.2. TECHNIQUE FOR ESTIMATING THE DISTANCE AND INTEN-
SITY OF EXPLOSIONS USING ACCELEROMETER AND PRES-
SURE SENSOR DATA

In this section, we detail out the design and validation of a model and algo-

rithmic framework to estimate the range and intensity of an explosion event from
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smartphone sensor data. We start with some preliminaries first on smartphone sen-

sitivities, followed by the actual model design and validation.

8.2.1. Preliminaries on the Sensitivity of Smartphone Sensors to Ex-

plosion Events. As discussed earlier in Section 2, we have done prior work com-

paring the statistical similarity of accelerometer readings from a smartphone to that

of a state-of-art seismometer. Our results in [29] indicate that there is a high degree

of statistical similarity in the temporal and frequency responses of the accelerometer

readings in both the smartphone and the seismometer.

To illustrate a bit further, we show show a comparison of the sample explo-

sion events from both smartphone and seismometer during one explosion experiment

which consisted of 5 charges (i.e., Experiment 3 in Table 5.3). Figure 8.1 shows the

temporal responses of acceleration in lateral (ax), longitudinal (ay), and vertical (az)

directions, along with the pressure readings (p) sensed by one Samsung GALAXY S4

phone for five explosive blasts. Figure 8.2 shows the temporal responses of velocity

in lateral (vx), longitudinal (vy), and vertical (vz) directions sensed from its geophone

sensor, along with pressure readings (s) sensed from its microphone sensor. The per-

pendicular dotted lines in the figure indicate the time-stamp of individual blast. As

seen from the Figures 8.1 and 8.2, the smartphone accelerometer is clearly sensitive to

the blasts correlating with the seismometer during each blast relatively independent

of the others.

Recall from Section 3, the atmospheric pressure in the vicinity of an explosion

event is sensitive to the emanating blast waves. Specifically, the blast wave causes

a rise in the atmospheric pressure to a peak overpressure. As the intensity of blast

wave degrades, atmospheric pressure decays back to ambient pressure, and a negative

pressure phase occurs that is usually longer in duration than the positive phase. The

pressure sensor on the smartphone captures this phenomenon, as we see in Figure 8.1.

It can also be observed that, the pressure excitation is delayed when compared to that
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Figure 8.1. Sample explosion event detected by a smartphone from accelerometer
and pressure sensor data

Figure 8.2. Sample explosion event detected by a seismometer from geophone and
microphone sensor data
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of both acceleration (in Figure 8.1) and velocity (in Figure 8.2) excitations. This is

because, the blast waves induced by explosions (that affect the ambient pressure)

travels slower than the shock waves (that cause ambient vibrations). Similar trends

of sensitivity were demonstrated for all other phones as well. These trends serve

as our foundation in leveraging smartphone accelerometers and pressure sensors for

designing our model.

8.2.2. Design of a Model for Ranging and Intensity Estimation of an

Explosion. As pointed out earlier in Section 8.1, the lack of practically applicable

models in the literature related to explosion events means that we employ a machine

learning approach, wherein we leverage a portion of the real experimental data that we

collected to train the system to design a model, while using the remaining collected

data for testing. Recall that the parameters we want to estimate are the distance

(d) and intensity (i) of an explosion event, and these two are called world-states.

The inputs we have are the raw measurements from the smartphone accelerometers

in lateral (x), longitudinal (y), and vertical (z) directions along with the pressure

sensed (p). There following are the steps involved in designing the model as detailed

below, and illustrated in Figure 8.3.

1. Event separation: This is a pre-processing step during training. As we know the

duration of explosion events is very small. But in our blasting experiments, the

phones were sensing the readings for an average time of about 65 minutes from

the time they were placed statically (before the start of the experiment) to the

time they were collected (after the blasting experiments). This is due to safety

standards at the laboratory, wherein we are required to place smartphones well

before the experiment and allowed to collect them only after confirmation that

blast impacts are no longer present. The smartphones are pre-programmed to

sense the ambient vibrations and atmospheric pressure readings. This itself
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Figure 8.3. Flow of the designed estimation model

consumes very limited energy, and we found it to be 0.26 Joules per second.

But because of high sampling rates, the storage overhead grows dramatically.

In real-life scenarios, we hence need a technique that will enable a smartphone

to continuously perform sensing activities, while being smart enough to filter

unnecessary readings, but retain only those that pertain to an explosion event

to save storage.

We implemented a technique that can run in real-time on the phone towards the

above objective. The core rationale of our technique leverages the fact that when

an explosion event happens, there is a sudden spike in the sensed vibrations,

compared to the long-term dormancy in vibrations sensed by the smartphone

in the absence of any explosion event. Leveraging the above insight we compute

on the smartphone in run-time, the ratio of averages of accelerometer readings
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within a short-term sliding window (denoted as STQ) to the long term sliding

window (denoted as LTQ). In our prior work in [29], we have identified the

triggering threshold (denoted by TRth) and de-triggering threshold (denoted by

DTRth) for this ratio that provide the best discriminatory power to isolate an

explosion event as TRth = 1.75 and DTRth = 1.5 and with window sizes of 0.1

second for STQ and 10 seconds for LTQ. This ratio provides perfect discrimi-

natory power to detect the triggering of an explosion. In our experiments, the

smartphone senses the ambient vibration using its accelerometer continually,

but only stores those accelerometer and pressure readings that are sensed be-

tween the triggering and de-triggering of the explosion event (as identified using

the thresholds), while deleting the rest. Only the retained individual blast event

data-sets are leveraged for post-processing to develop the model which will be

discussed in the next step.

2. Labeling: With our experimental data-sets obtained from explosion events (pre-

sented in Table 5.3), we are ready to proceed with designing the model. Clearly,

the first step to do in this regard is labeling the data-sets appropriately based

on ground-truth. The distance and intensity are denoted as world-states, which

we aim to estimate. Formally,

The world-states are:

• d - distance of a smartphone from the explosion source.

• i - intensity of the explosive material blasted.

The inputs available for a detected event are:

• ax - ground acceleration in lateral (x) direction in m
sec2

.

• ay - ground acceleration in longitudinal (y) direction in m
sec2

.
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• az - ground acceleration in vertical (z) direction in m
sec2

.

• p - pressure sensed by the pressure sensor as scalar value in hectaPascals

(hPa).

Note that we have recorded the ground-truth values distance (from a smart-

phone to explosion source) and intensity (measured in terms of lb of charge

weight of explosive material) during each experiment conducted, as described

in Section 5. Now, we identify the ground-truth values associated to each data-

set and tag them with corresponding labels. To identify them, we have taken

into consideration, the fact that each data-set belongs to a smartphone which

is placed at a certain distance from the explosion source and also corresponds

to a specific intensity (charge-weight) of the explosion blast. With knowledge

of the attributes distance and intensity for each data-set, we subsequently tag

the attributes as labels to them.

3. Feature Extraction: After labelling each event with ground-truth data, the next

step is feature-extraction. Note that we have the accelerometer readings from

the smartphones in lateral (x), longitudinal (y), and vertical (z) directions,

along with pressure (p), and we could attempt to build a model between these

values and the world-states. However, such a model will be limited to only these

sources of readings. In order to make the model more accurate, we attempt to

extract several statistical features in the temporal domain, and also features

in the frequency domain from the input readings. We first extract features for

individual inputs (for both sensors), and also combine them to identify new

features in the feature vector. Upon consideration of the explosion impacts to

ambient vibrations, and how they impact corresponding accelerometer readings,

the following intuitive features were identified in our study for each dimension:
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(a) mean

(b) median

(c) variance

(d) minimum

(e) maximum

(f) duration of event

(g) dominant frequency

(h) histogram properties: a) The highest, b) The second highest, c) The third

highest occurrences of the samples in a bin.

Now we have these 10 features identified for each dimension resulting in 30

features for three dimensions of accelerometer readings.

The next issue is extraction of relevant features from pressure readings sensed

by the smartphone. Before we discuss feature extraction from pressure readings,

let us briefly explain the physics relating changes in atmospheric pressure as a

result of an explosion. Pressure waves emanating from an explosion propagates

much slower than that of ground vibration [51, 62]. The blast pressure wave

in air typically travels at 330 meters per second while shock waves carrying

vibrations travels in the order of 10, 000 meters per second in solid medium

†. These studies coupled with our analysis of the experimental data sensed for

both sensing modalities, helped us make three key observations:

• The arrival times of the excitations caused due to the pressure and accel-

eration are different, from the perspective of the smartphone.

†Note though that there are some variations based on properties of the medium through which
they propagate.
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• The smartphone senses the acceleration excitation caused due to blast

earlier when compared to when it senses pressure excitation.

• The delay between the arrival times of acceleration and pressure excitation

due to explosion blast increases with the distance between the smartphone

and explosion blast as shown in Figure 8.4.

Figure 8.4. Delay vs. Distance

Using the insights from the above observations, we extracted a total of 6 in-

tuitive features from pressure readings towards building our model. Note that

the pressure sensor outputs the samples only in one dimension unlike the ac-

celerometer sensor. The features we extracted are:

(a) Delay between arrival times of acceleration and pressure excitation due to

explosion blast

(b) maximum

(c) mean

(d) variance
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(e) time-domain histogram properties: a) The highest, b) The second highest

occurrences of the samples in a bin.

To enhance the feature vector, we then worked on extracting more meaning-

ful features with an objective of improving accuracy by combining both sensing

modalities. The most intuitive feature in this realm is the product of accelerom-

eter readings and pressure sensor readings. In this work, we identify a total of 9

additional features as a result of combining features these two sensing modalities

which are identified below:

(a) product of acceleration maximum in x dimension and pressure maximum.

(b) product of acceleration maximum in y dimension and pressure maximum.

(c) product of acceleration maximum in z dimension and pressure maximum.

(d) product of highest occurrence in time-domain histogram for accelerometer

in x dimension and pressure.

(e) product of highest occurrence in time-domain histogram for accelerometer

in y dimension and pressure.

(f) product of highest occurrence in time-domain histogram for accelerometer

in z dimension and pressure.

(g) product of second highest occurrence in time-domain histogram for ac-

celerometer in x dimension and pressure.

(h) product of second highest occurrence in time-domain histogram for ac-

celerometer in y dimension and pressure.

(i) product of second highest occurrence in time-domain histogram for ac-

celerometer in z dimension and pressure.
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From the above, we can see that for any given data-set with accelerometer and

pressure readings from the smartphone, we now have 45 features in total result-

ing in a feature-vector of size 45 (f = [f1, f2, ..., f45]). The next thing to do

is deciding on a regression technique for estimation (of distance and intensity

of the explosion event) which takes the extracted feature-vector as the input.

We did a preliminary relationship study to select a suitable regression model.

Our observation is that a change of acceleration and pressure measured by a

smartphone during an explosion has a nonlinear relationship to the measured

distance from the smartphone to the source of an explosion and also to its inten-

sity (which is also true across all phones). As such, instead of attempting linear

regression techniques that suffer from fitting problems, we employ a nonlinear

regression approach.

4. Learning: Recall that have 52 individual blast-event data-sets recorded from

multiple smartphones across four separate experiments. We have have a total

of 45 features extracted from the acceleration and pressure readings from each

phone. As is standard in machine learning, we split the data-sets into Training-

Set and Testing-Set. The data-sets in the Training-Set is used to build a model

between the world-states (i.e., distance and intensity) and the input features

extracted, and the model is validated on the Testing-Set. We have employed the

standard Leave-K-Out-Strategy for the validation and the value of K is decided

by the size of the Testing-set (K = size of Testing-set). In this approach, a

Testing-Set will include the data-sets from one phone during an experiment,

and data-sets from all the others form the Training-Set, and we repeat the

process for each phone. For instance, if we see in Table 8.1, the 8 blast event

data-sets sensed by Phone P1 during Experiment E1 will form the Testing-Set-1,

while the 8 blast event data-sets sensed by Phone P2 from the same experiment
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(E1), along with data-sets from all the phones in E2, E3 and E4 (a total of

44 data-sets) will form the Training-Set. Note that the value of K is 8 in this

case. This process is repeated for all phones, and as such, we have a total of 14

Testing-Sets to build and test the model.

We implemented a nonlinear polynomial regression model on the Training−set

to extract a parameter φ that will be a result of the learning step. We will

use this parameter for estimation which will be discussed in the next step. A

nonlinear polynomial regressor can have a degree 2 or higher. Initially, we tried

implementing with degree-2. Further to better-fit the data, we checked with

higher order degrees. Note that the increase in the degree of nonlinearity will

increase the size of feature-vector and hence the computational complexity. We

have found that after degree 3, the increase in estimation accuracy is negligible.

Hence, we set the nonlinearity degree as 3 for our model. This resulted in the

final feature-vector size growing to 135 for 45 features extracted. For each data-

set, a 135 dimensional feature-vector x is extracted along with a 2 dimensional

world-state vector w (ground-truth distance and intensity) as shown in Equation

(8.1) below

x = [f1, f
2
1 , f

3
1 , ..., f45, f

2
45, f

3
45]

T ;w = [d, i]. (8.1)

If a Training − set has N data-sets in it, then at the end of training, we have

X = [x1, x2, ...xN ] and W = [w1, w2, ...wN ]T .

where N is the size of Training − set, each x is a 135 dimensional vector, and

each w is a 2 dimensional vector. We define the cost function as



73

O(φ) = ||XTφ−W ||2. (8.2)

Solving the cost function shown in Equation (8.2) leads to the estimated pa-

rameter φ as shown in Equation (8.3) below

φ = (XXT )−1XW. (8.3)

The parameter φ is a vector of size 135 × 2, where each column corresponds to

a world-state. This parameter will be used for estimating the world-states for

a Testing − set which will be shown in the next step.

5. Inference: Recall from the previous step that individual blast data-sets corre-

sponding to a single phone during each blast experiment form a Testing − set

and data-sets from the rest of the phones form a Training − set. The number

of blasts in a blast-experiment typically determine the size of the Testing−set.

For each data-set in a Testing − set, we do ‘Event-separation’ and ‘Feature-

extraction’ steps similar to the training (as seen in Figure 8.3), and further apply

the nonlinear transformation. From this, we have a 135 dimensional feature-

vector X∗, and our aim is to estimate a 2 dimensional world-state vector wpred

using parameter φ. Formally,

wpred = φTX∗. (8.4)

By plugging in X∗ in the Equation (8.4), we get wpred = [d
′

i
′
]T , where d

′
and

i
′

are estimated distance and intensity, respectively. After estimating these val-

ues for all the data-sets in a Testing−set, we took mean of the estimated values

(mean of distance values, mean of intensity values) within each Testing − set.
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This completes estimation of world-state values for one Testing− set. We have

14 such Testing − sets from 52 data-sets as seen in Table 8.1. For all the 14

Testing − sets, the estimated world-state values are compared against ground-

truth values and a detailed analysis of results are given next.

Table 8.1. Evaluation: validation with test data-sets
Note: Train: training size — Test: testing size — Estim: estimated

set Train Test
Distance (in feet) Intensity (in lb)

Actual Estim Error
(%)

Actual Estim Error
(%)

1 44 8 45 48.21 7.13 16.5 16.32 1.09
2 44 8 35 34.12 2.51 16.5 15.55 5.75
3 50 2 35 29.23 16.48 8.05 8.91 10.68
4 50 2 40 44.23 10.57 8.05 8.78 9.06
5 50 2 43 40.36 6.13 8.05 10.03 24.59
6 50 2 55 43.22 21.41 8.05 7.12 11.55
7 47 5 26 24.22 6.84 11.83 9.63 18.59
8 47 5 50 54.22 8.44 11.83 10.64 10.05
9 47 5 60 55.35 7.75 11.83 12.22 3.29
10 47 5 61.5 58.34 5.13 11.83 12.37 4.56
11 50 2 26 38.73 48.96 8.25 7.93 3.87
12 50 2 35 33.78 3.48 8.25 7.06 14.42
13 50 2 48 52.27 8.89 8.25 9.12 10.54
14 50 2 55 53.26 3.16 8.25 7.96 3.51

Training Time of Our Model: Recall that our feature-vector was of size 135

in our nonlinear regression (degree-3) model. We implemented our model in Matlab

environment. With this feature-vector, the total training took 11.2 seconds on a

Windows machine with 32 Gigabytes of RAM, and CPU clock speed of 4.6 GHz.

8.3. RESULTS AND ANALYSIS

In this section, we present evaluations of the model by comparing estimated

world-state values with ground-truth values, and we also quantify the performance
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of the model using well established statistical metrics. We also compare our results

in this work using multi-modal sensors with our prior work in [30] that leverages

accelerometer sensors only. We also present some critical specs on the complexity of

model training. Finally, we present detailed analysis on designing a smartphone app

to estimate the range and intensity of an explosion event, and also present important

performance specs.

8.3.1. Performance of Our Model. Table 8.1 details the summary of their

performance of our model. Each row describes a Testing − set with attributes such

as its training-size, testing-size along with estimated, actual (ground-truth) and er-

ror percentage values for distance and intensity. As can be seen in Table 8.1, we

have 14 Testing − sets for which the estimated world-states are compared against

ground-truth values. Figures 8.5 and 8.6 show a comparison of actual (ground-truth)

to estimated world-state values of distance (d
′
) and intensity (i

′
) for better visualiza-

tion.

Figure 8.5. Distance estimation
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Figure 8.6. Intensity estimation

We observe that the error in estimating the distance is quite low, in fact it

is less than 10% in a majority of instances. An average case error of 11.21% was

observed for ranging in our experiments. The intensity on the other hand is quite

accurate in our estimation with an average case error of 9.4%. These results being the

first of their kind in the realm of estimating the range and intensity of an explosion

event from statically emplaced smartphones, are quite favorable, and demonstrate

clear feasibility for improvement with more experiments.

To further quantify the estimation performance of the model, statistical param-

eters including training-error, root-mean-square-deviation (rmsd) and normalized-

rmsd (nrmsd) are evaluated from the testing. The statistical analysis of the evalua-

tion are summarized appropriately in Table 8.2, and again results demonstrate good

consistency, hence validating our model.

As we pointed earlier, in a prior work in [30], we attempted to build a model to

estimate range and intensity of an explosion event with only the accelerometer from

smartphones. Due to space limitations, we do not discuss too many details on the
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improvements, but rather show a summary of performance improvements obtained

by our model in this work when compared with our prior work in [30]. We do so by

comparing the statistical properties of both models in Table 8.2. As we can see the

model in the current work that integrates multiple sensors (i.e., accelerometer and

pressure), consistently outperforms the model in [30] that leverages data from only

one sensor (i.e., accelerometer). This provides us further impetus that the techniques

we develop in this work fusing multiple sensing modalities enables our model to learn

much better for characterizing explosions.

Table 8.2. Statistical comparison with prior work

Estimated
parameter

Statistical metric Model using
both accelerome-
ter and pressure
data in this work

Model using
only accelerom-
eter data in
[30]

Distance

Average-case error (in %) 11.21 12.86
RMS-deviation (rmsd) 5.640 7.805

Normalised-rmsd (nrmsd) 0.158 0.219
Training error 1.507 2.086

Intensity

Average-case error (in %) 9.4 11.26
RMS-deviation (rmsd) 1.070 1.429

Normalised-rmsd (nrmsd) 0.126 0.169
Training error 0.286 0.381

8.3.2. Designing a Smartphone App. We now report our findings on the

feasibility of designing a smartphone app based on our model in this work to estimate

the range and intensity of an explosion event. We implemented the application as a

two module architecture, as shown in Figure 8.7. The functionality of first module

is to detect the triggering of the explosion event and handover the detected event to

the second module which estimates the distance and intensity of the explosion. The

detailed functionality is described in the following:
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Figure 8.7. Work-flow of our smartphone app
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• Functionality of module-1: This module is an implementation of the algorithm

proposed in our previous work [29] to sense and retain only explosion events.

Note that, in the current implementation we have used time-window values,

threshold constants determined in our prior work in [29].

While the app runs continuously in the background, the smartphone senses and

processes the acceleration samples in two moving time windows of different sizes.

The sample ‘Sa’ consists of accelerometer readings available in x, y, z directions.

The readings in sample ‘Sa’ are added to two moving time windows, namely

a ‘short-time-queue’ (STQ) of size 0.1 second and ‘long-time-queue’ (LTQ) of

size 10 seconds (simultaneously for all the 3 directions). Further, averages are

calculated in the moving time windows, and their ratio is computed as : short-

time-queue-average/long-time-que-average (STA/LTA). This ratio is compared

against the trigger-threshold TRth (whose value is 1.75). If the ratio founds to

exceed the threshold in all 3 directions, then the algorithm triggers the detection

of explosion event and starts recording the explosion event as ‘E’, by adding

accelerometer and pressure sensor readings to it (i.e., ‘E’ contains readings ax,

ay, az, p). The event is recorded until the ratio value falls below the de-trigger-

threshold DTRth (whose value is 1.5), in all 3 directions. This completes the

functionality of module-1 resulting in the output ‘E’ = [ax, ay, az, p], which are

the sensor readings corresponding to the detected explosion event.

• Functionality of module-2: This module is an implementation of the model

proposed in the current work for ranging and estimating intensity of explosion

event detected.

As soon as the module receives the event ‘E’= [ax, ay, az, p] from the previ-

ous module, the feature-vector f = [f1, f2, ..., f45], is extracted for the event.

The feature vector is then fed to a nonlinear polynomial regressor of degree-3,
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which results in a test vector x∗ = [f1, f
2
1 , f

3
1 , ..., f45, f

2
45, f

3
45]

T . The next step is

estimation, where world parameters distance and intensity are estimated for

x∗ based on the previous learning. As described in Section 8.2.2, the learning

from the training data-sets results in a parameter φ. This learnt parameter is

a static vector resulted from training process and will be stored in the appli-

cation, which will be used for estimation of distance and intensity parameters

for a new test vector. The estimation is done as wpred = φT x∗, resulting in a

vector containing estimated distance and intensity. These parameters are the

outputs of the module which are displayed as final output of the application.

• Critical specs of smartphone application: The overall app that contains the al-

gorithms to sense and store only accelerometer/pressure readings pertaining to

an explosion, and the algorithm to estimate the range and intensity of an explo-

sion event is of size 4MB. This is well within the limits set by smartphones for

apps design. The explosion event is detected and triggered by the smartphone

almost instantaneously. The energy consumed by the entire application is 0.350

Joules per second on the average. The average RAM memory in the smartphone

consumed by the application for processing accelerometer and pressure readings

is 2.4MB which is quite low as well.
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9. PRACTICAL RELEVANCE, APPLICATIONS, LIMITATIONS AND
FUTURE WORK

In this section, we first describe about practical relevance of our contributions

and then briefly highlight some additional perspectives of our work on the feasibility

of leveraging smartphones for detecting, ranging and estimate intensity of explosion

events. We then describe about limitations and future directions followed by discus-

sion on other open issues.

• Practical relevance of our contributions: We believe that the work presented in

this dissertation has practical value to the society. Needless to say, explosion

events pose a constant threat to civilian life across the globe, and we believe

that participatory sensing based approaches are effective in mitigating ensuing

disasters. We also believe that our work makes a critical positive step in this

regard by demonstrating the feasibility of detecting, estimating the ranges and

intensities of explosion events using stationary smartphones. Our work in its

current form is still practical. Note that for a majority of time, a smartphone

typically stays static, and hence our results in this dissertation are directly

applicable in such cases.

However, it is also feasible to extend our work to the case of mobile smartphones

if appropriate filtering algorithms can be designed to filter out acceleration read-

ings generated as a result of humans moving with the phones. Such algorithms

are relatively easy to design with proper training. There are works like [46]

that attempt similar objectives. Also, with major initiatives these days across

the world on instrumenting buildings and living spaces with “smart sensors”,

we believe that our work is very timely when our algorithms can be integrated
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with these smart devices (most of which are static) for explosions detection and

analysis also.

• Practical perspectives on app design: Recall that in Sections 6 and 8, we demon-

strate the feasibility of designing smartphone apps for detecting and analyzing

explosion events for ranging and estimating intensity. While we demonstrated

critical specs of the app and its performance, there are some additional issues

in practice. In any smartphone today, there are a number of ancillary services

like GPS services, application updates, and notification services running in the

background in a phone at all times. However, most of these services are pushed

in the background depending on priorities and processing costs of more impor-

tant applications like calling/ messaging. While more experiments are certainly

needed from the context of our research, we believe that our application in this

work for explosion sensing and analyzing incurs very little processing costs, and

hence we expect minimal impact to the execution of its services when more

important services are processed by the smartphone.

Furthermore, as we showed, designing filtering techniques to retain only such

kinds of abnormal vibrations are feasible, and also consume minimal overhead.

When a number of smartphones send corresponding data to a central server,

we believe that significant benefits can result for first responders attempting

to range the explosion, and determine intensities. Furthermore, our techniques

can also apply to statically emplaced sensors in infrastructures like buildings,

bridges, roads etc., with a new application related to ranging explosions.

• Limitations and future directions: Nevertheless, there are some limitations of

our work, which naturally leads to the future research directions. Our work

in the current form cannot directly apply to the case of mobile phones, since

the acceleration sensed as a result of mobility needs to be filtered out from
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those vibrations related to an explosion. This is part of our on-going work

that also relates to activity sensing using smartphones, which is an area of

active study today. We are also looking to fuse other sensing modalities like

acoustic and magnetometer sensor data for superior accuracies and address

problems like detecting type of explosive material. We are also experimenting

with heterogeneous smartphones to see how our techniques need to adapt to

enhance practical applicability, along with attempts to collect smartphone data

arising from blasting other kinds of explosive materials, in other environments.

In this dissertation, we do not address the issue of detecting the type of explo-

sives blasted. In all our experiments, it was Dynamite with Ammonium Nitrate

Fuel Oil, and this assumed to be known. However, in practice, we may need

techniques to identify the material blasted as well. We believe that is doable

today with many prototypes on integrating chemical sensors with smartphones

[63, 64, 65]. Such integrations can dramatically enhance the sensing capabili-

ties of smartphones, and they can now perform initial detection of explosives

material blasted, following which our algorithms can adaptively attempt to an-

alyze them based on type of material blasted. This will significantly expand the

practicality of our proposed techniques, and is part of our future work as well.

Future works of the project include designing algorithms for mobile smart-

phones, detection of type of explosive material, and to localize explosive events

based on multi-modal data sensed from multiple phones. Further testing the

design for false triggers in the real-time and further evaluating the full char-

acteristics of the blast using the algorithms designed, also implementing the

design in diverse mobile platforms to evaluate the efficiency of the design across

the smartphone platforms.
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• Other issues: We point out that there are a number of critical open issues that

we are addressing currently. These include a) considering readings from acoustic

sensors also with accelerometer and pressure sensors for improving the model;

b) networking of multiple smartphones in real time to report data to the Cloud;

c) understanding diversity in sensor capabilities among multiple smartphones

for improved detection at societal scales; d) eliminating false-positives and false-

negatives; and finally e) issues related to trust, privacy and integrity of data

sensed and shared.
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10. CONCLUSIONS

We demonstrate the feasibility of leveraging smartphones to detect the trigger-

ing of explosion events. Specifically, we demonstrated the similarity of accelerometer

readings from smartphones and ground-truth seismometer readings in the temporal

and frequency domains. We also designed an app that can detect explosion events in

real-time, and also identified critical performance metrics like energy, storage and ex-

ecution times. The data-sets collected from the smartphone accelerometers using the

application built on it are reliable to be efficient for the detection of explosive event by

processing the data using the algorithm design. The design proposed for smartphone

based seismometer shows the capability of triggering to the strong motion explosive

blasts. By allowing the user to set the parameters based on the blast site conditions,

triggering to the typical explosion events was shown possible. The evaluations of fre-

quency and the time-domain responses of the detected events were encouraging and

demonstrated the smartphone capable of responding to the explosions by showing the

signatures of the explosive events.

Further, we have addressed the problem of estimating the range and intensity

of an explosion event using stationary smartphones. Our technique employed a non

linear polynomial regression model using data and features extracted from accelerom-

eter sensors in smartphones. Our results are quite favorable, and demonstrate the

clear benefit of designing smartphone based participatory sensing networks for the

problem of ranging explosion events, and determining their intensities.

Motivated by this, further we designed a model to range and estimate intensity

of explosion events leveraging multi-modal smartphone sensors. Our technique em-

ployed a non linear polynomial regression model using data, and numerous features

extracted from accelerometer and pressure sensors in smartphones. Our estimating
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results of the model for ranging and estimating intensity using multi-modal sensors

have shown an improvement for accuracies from the previous model which was built

only on accelerometer data.

To the best of our knowledge, this work is pioneering. Our results are quite

favorable, and demonstrate the clear benefit of designing smartphone based partici-

patory sensing networks for the problem of detecting, ranging, and determining the

intensities of explosion events. We subsequently provided details and specs of our

smartphone app to sense and analyze explosion events. We also provided important

discussions that will guide future practical deployments of our technologies proposed

in this dissertation.
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APPENDIX

In this section, we attempt to give a description of blasting experiments at the

experimental mine where we emplaced our smartphones. We expect these discussions

to assist future experiments by various stakeholders in this realm.

• Explosion material: The initial step is choosing the type of explosive material.

In all our experiments it was Dynamite (Unimax TT) with Ammonium Nitrate

Fuel Oil (ANFO). Figure A.1 shows how it looks like. The total explosive ma-

terial are of different weights, and also have a varied number of charges fixed to

it. As mentioned in Section 5.2, the amount of explosive material used deter-

mines the intensity of the explosion, and the number of charges determines the

number of individual blasts in an experiment.

Figure A.1. Explosive material- Dynamite
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• Fixing detonating cords to explosive: After choosing the explosive material, the

next step is to connect detonating cords to it. Figure A.2 shows a detonating

cord being attached.

Figure A.2. Fixing a detonating cord to explosive material

• Mounting the explosive material: The material to be blasted in the explosion

is selected and holes are drilled on the material to exactly fit the explosive

material. In our case, the explosion environment is an underground mine, so

holes are drilled and explosive material is fixed as shown in Figure A.3.

• Connecting the detonating cords: All the detonating cords are later connected

to a single point as shown in Figure A.4. An explosion is detonated from a

distance through a long detonating cord which is connected to the junction of

cords associated to individual explosive material.
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Figure A.3. Mounting the explosive material in to the mines surface

Figure A.4. Connecting individual detonating cords together
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• Installing smartphones on the ground: We emplaced a number of smartphones

at various distances from the source of the explosion. The smartphones were

placed well in advance of detonation, and we were allowed to pick them up only

after experts assured us that there were no remnants of the blast. A snapshot

of the phone after the blast is shown in Figure A.5. All data stored was fully

recoverable for all phones.

Figure A.5. Smartphone emplaced (on the ground) near the explosion site
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