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ABSTRACT 

Argumentation is an important process in a collaborative decision making 

environment.  Argumentation from a large number of stakeholders often produces a large 

argumentation tree. It is challenging to comprehend such an argumentation tree without 

intelligent analysis tools. Also, limited decision support is provided for its analysis by the 

existing argumentation systems. In an argumentation process, stakeholders tend to 

polarize on their opinions, and form polarization groups. Each group is usually led by a 

group leader. Polarization groups often overlap and a stakeholder is a member of multiple 

polarization groups. Identifying polarization groups and quantifying a stakeholder’s 

degree of membership in multiple polarization groups helps the decision maker 

understand both the social dynamics and the post-decision effects on each group. 

Frameworks are developed in this dissertation to identify both polarization groups 

and quantify a stakeholder’s degree of membership in multiple polarization groups. These 

tasks are performed by quantifying opinions of stakeholders using argumentation 

reduction fuzzy inference system and further clustering opinions based on K-means and 

Fuzzy c-means algorithms. 

  Assessing the collective opinion of the group on individual arguments is also 

important. This helps stakeholders understand individual arguments from the collective 

perspective of the group. A framework is developed to derive the collective assessment 

score of individual arguments in a tree using the argumentation reduction inference 

system. Further, these arguments are clustered using argument strength and collective 

assessment score to identify clusters of arguments with collective support and collective 

attack. 
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Identifying outlier opinions in an argumentation tree helps in understanding 

opinions that are further away from the mean group opinion in the opinion space. Outlier 

opinions may exist from two perspectives in argumentation: individual viewpoint and 

collective viewpoint of the group. A framework is developed in this dissertation to 

address this challenge from both perspectives. 

Evaluation of the methods is also presented and it shows that the proposed 

methods are effective in identifying polarization groups and outlier opinions. The 

information produced by these methods help decision makers and stakeholders in making 

more informed decisions. 
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1. INTRODUCTION 

 

 

 

In a collaborative decision making environment, stakeholders exchange 

arguments and undergo a dialogue process while closely deliberating on solution 

alternatives of a decision making issue. The intelligent argumentation system allows 

stakeholders to post issues, solution alternatives, arguments, and evidences in an 

argumentation tree and enable intelligent analysis of argumentation networks for 

collaborative decision making. The intelligent argumentation system assists stakeholders 

in capturing their rationale through argumentation. 

Argumentation from a large number of stakeholders often produces a large 

argumentation tree. It is hard to comprehend such an argumentation tree without 

intelligent analysis tools. This dissertation presents new methods that employ clustering 

techniques and fuzzy logic to mine valuable information from huge argumentation trees.  

The valuable information provided by these methods could provide a solid support for 

collaborative decision making. 

Four research challenges in the area of intelligent argumentation analysis for 

collaborative decision support, which are not addressed in existing research works, are 

identified. According to research work in social science, stakeholders in decision making 

groups tend to polarize based on their opinions. They tend to form groups with or without 

the knowledge or intent of the stakeholders. Identifying these groups helps decision 

makers and other individuals in the group to analyze the impacts of polarization groups in 

a decision making process.  An innovative approach [1, 2] is developed to compute the 

aggregate thought of a stakeholder for each solution alternative by aggregating the 

argument strengths of each stakeholder after the argument inference.  The aggregate 

thought of every stakeholder for each solution alternative under a decision making issue 

is derived and represented in the opinion dimensionality.  K-means clustering algorithm 

[3] is employed to group the stakeholders in the argumentation process based on the 

similarity of their opinions [1]. Stakeholders who have similar aggregate thoughts are 

clustered into groups. Polarization groups are detected to support collaborative decision 

making.  The proposed method is evaluated using data sets from experiments that were 
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conducted.  A method was also developed to identify leaders in each polarization group, 

by capturing the interactions among the members in each polarization group. The 

detection and analysis method of polarization is based on an assumption that, a 

stakeholder belongs to only one polarization group. 

However, after investigating the experiments, it is realized that the polarization 

groups overlap and each stakeholder is a member of multiple polarization groups to a 

varied degree of membership. This issue is addressed [4] by employing the fuzzy c-

means clustering algorithm [5] instead of the K-means clustering algorithm. The new 

method identifies polarization groups in argumentation for collaborative decision making 

and is able to compute degree of each stakeholder’s membership in polarization groups. 

This additional information provided can further help decision makers in analyzing social 

dynamics that exist in the collaborative decision making. 

The third issue deals with analyzing and computing aggregate thoughts of 

arguments on individual arguments, which represent individual thoughts, in an 

argumentation tree and further classifying those arguments. Stakeholders present their 

viewpoints in the form of arguments; however it is crucial to know what other 

participants in the decision making group think about those arguments.  A novel approach 

[6] is developed to derive collective determination of an argument based on the total 

support and attack that an argument receives in the argumentation tree using fuzzy 

inference system [7]. The collective determination value and the strength of an argument 

are used to analyze the relationship between aggregate thought and individual thought of 

arguments.  The collective determination value is derived for all arguments in the 

argumentation tree. Arguments are then clustered based on their strength and collective 

determination using the K-means clustering algorithm [3]. The decision makers will be 

able to identify and analyze clusters of arguments with opposing and supporting 

collective thoughts versus their individual thoughts.  The proposed method was evaluated 

[6] using a data set [8] from experiments that were conducted earlier. 

The fourth research challenge deals with identifying outlier opinions from a 

discussion group based on their argumentation carried out under an argumentation tree. 

The process of outlier opinion detection is performed from two different perspectives: 

individual view-point and collective view-point. First, the framework [9] computes the 
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aggregate opinion of each stakeholder across all positions and an outlier detection 

algorithm is applied to generate top-k outlier opinions. This process is based on the 

individual view-points of stakeholders. In the second step, the aggregate collective 

determination score received by stakeholders through their arguments across multiple 

positions are computed. An outlier detection algorithm is applied to generate top-k outlier 

opinions. This process is based on the collective view-points of the group. The opinion 

which is farther away from the mean opinion of the group in the opinion dimensionality 

is considered as an outlier opinion. This framework is evaluated and validated by human 

subjects [9]. 

An empirical study [10] is conducted to evaluate the intelligent argumentation 

system by comparing it with email list-server for collaborative decision support. In 

addition, the application of intelligent argumentation system for collaborative decision 

support in the air traffic management [11] is investigated. 

This dissertation explains in detail each research challenge mentioned above and 

proposes unique approach to address each challenge including experiments and related 

case studies. 

Chapter 2 presents literature work on computer supported argumentation systems 

and the intelligent argumentation system.  Sections 2.1, 2.2, and 2.3 are the contribution 

of other researchers. Chapter 3 presents hard polarization assessment research, and 

Chapter 4 presents fuzzy polarization assessment framework. Chapter 5 presents research 

work on individual thoughts and collective thoughts of arguments. Chapter 6 presents 

research work on identifying outlier opinions in an argumentation tree. Chapter 7 

presents air-traffic management case study, and empirical evaluation of argumentation 

system and email system for collaborative decision support. Chapter 8 concludes the 

dissertation. Sections 3.3, 4.3, 5.3, 6.2, 7.1.2 and 7.1.3 discuss the literature work related 

to each research challenge presented. The datasets used in some experiments are from 

Satyavolu’s [8] empirical evaluation. 
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2. BACKGROUND 

 

 

 

2.1. COMPUTER SUPPORTED ARGUMENTATION SYSTEMS 

Argumentation is a central and essential element in human life for collaborative 

decision making. In the last forty years, several scientists have both proposed and 

developed various argumentation models and tools.  Several of these tools are still in use 

today to support argument mapping. These tools, however, provide limited decision 

support through arguments. 

An argumentation system that allows stakeholders to participate in the dialog 

process using a computer is known as a computer supported argumentation systems.  

Argumentation systems help stakeholders understand the rationale underlying a decision 

making issue. Argumentation systems support collaboration and it is preferable than other 

mass communication tools such as email, blogs for collaborative decision making [12, 

13]. Argumentation systems address some of the challenges that other mass 

communication tools cannot [12, 13].  Argumentation models have been widely accepted 

and used for multi-agent communication, negotiation models, user modeling, and more 

[14].  Various formal and informal argumentation models have been introduced. 

Argumentation models can be broadly classified into either formal or informal 

argumentation models. Formal argumentation models are logically sound though difficult 

in practice to use.  Informal argumentation models are more usable in practice.  The 

intelligent argumentation system follows Toulmin’s informal argumentation model.  

Philosopher Stephen Toulmin proposed an informal argumentation model [15].  Many 

systems today follow this influential model.  Additional models, such as Dung’s abstract 

argumentation model, have also been proposed and extended.  Many argumentation 

systems that have been introduced by researchers lately either follow the Toulmin’s 

argumentation model [15] or the Dung’s abstract argumentation model [16, 17].  The 

intelligent argumentation system follows the Toulmin’s model of argumentation and is an 

example of a weighted argumentation system, where the arguments carry strengths. 

Issue based information system (IBIS) [18, 19] supports several argumentation 

elements, such as topics, issues, questions, positions, arguments, and model problems.  
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IBIS supports a variety of navigation and linking support in the argument diagram.  

Various notations are provided in constructing the argument maps [18, 19, 20].  The 

graphical issue based information systems (gIBIS) [19, 21] has been extended from the 

IBIS.  The gIBIS system helps visualize issues and possible solutions to those issues over 

a local area network.  The participants can present their issues and possible alternative 

solutions along with the arguments, either attacking or supporting the alternatives through 

their arguments.  Both the IBIS and the gIBIS fail to provide efficient decision support to 

the group because they cannot directly assist in selecting the suitable position.  Because 

the Web had not yet been invented when these systems were created, spatially located 

participants cannot gain access to argumentation trees. 

SIBYL [22, 23] was proposed by Jintae Lee in 1990 for decision support.  Lee 

was inspired by gIBIS. Lee’s knowledge-based system was originally meant for 

managing group decision rationale through both arguments and support.  It uses a semi-

formal representation known as DRL (Decision Representation Language) [24] to 

represent the qualitative aspects in decision processes.  DRL consists of elements such as 

alternative, goal, decision problem, claim (support, deny), and more.  SIBYL constructs a 

decision matrix based on both the user’s goal and alternatives.  Cells in the table are 

initially set to ‘unevaluated’.  The decision matrix is updated as stakeholders participate 

in the argumentation process.  The SIBYL system supports various associations among 

the nodes in the argumentation map.  SIBYL also provides some special services, such as 

dependency management (monitoring decisions which depend on each other), plausibility 

management (the strength of supporting argumentation for an alternative), viewpoint 

management (arguments sharing common assumptions), and precedent management 

(other decisions sharing the same goal). 

Gordon and Karacapilidis [25] proposed the Zeno argumentation framework, a 

semi-formal model of argumentation based on both Toulmin’s informal model of 

argumentation and the IBIS model. The Zeno system both computes and produces 

information about the relative quality of the alternative positions of a decision issue given 

by a participant.  This information can be useful in making more appropriate decisions. 

Zeno is built upon dialectical graphs. It supports semantic labeling of the components in 

the dialectical graph, critical in argument inference [25, 26].   
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Karacapilidis [27] extended the Zeno argumentation framework, introducing 

HERMES. The HERMES system is a famous classic example of an argumentation 

system. HERMES [27] is a computer supported argumentation and collaborative decision 

making system which is an extended version of Zeno’s argumentation framework [25].  

HERMES and Zeno are inspired from the informal model of IBIS.  The HERMES [27, 

28] argumentation system was supported by the World Wide Web.  Because HERMES 

runs on the Web, people from across the globe can participate in the argumentation 

discourse.  HERMES supports the multi-agent decision making process in which agents 

can participate in the argumentation process.  Stakeholders can build a discussion graph 

by exchanging arguments.  The discussion graph is in a hierarchical structure.  Each post 

in the forum corresponds to argumentation elements. Issues, alternatives, position 

(position in favor, position against), constraint, and alternative constraint are the elements 

of the discussion graph in HERMES. 

A position in this system is synonymous with an argument, can be either in favor 

of another argument or against an argument.  A position in favor signals that an argument 

supports other arguments. A position against signals that an argument attacks other 

argument.  Both the priority relationships and the preference orders between arguments in 

the discussion graph are described quantitatively. Hence, this system provides an 

opportunity to assess the alternatives and issues quantitatively. 

HERMES uses the constraints for analyzing the positions and alternatives in an 

argumentation tree. These constraints produce the preference relationships among the 

positions. The system provides two different labels for the positions: ‘active’ and 

‘inactive’. The labeling process assists in decision making by providing an inference of 

positions in the tree. The arguments’ weights are used to compute the alternatives’ 

weights.  The range for the argument components is between 0 and 10.  Any argument 

component is, by default, given a value of 5.  The alternative with the highest weight is 

the winning alternative among the provided alternatives.  Hence, the HERMES system 

provides collaborative decision support. HERMES system constantly looks for 

inconsistencies among arguments.  Each and every element has an activation label. Status 

on the activation label is changed based on different definition standards. Another version 

of the HERMES [28] system provides multi criteria decision making [29]. The major 
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problem with HERMES is its inability to support fuzzy associations between the 

positions.  In reality, these relationships are very fuzzy by nature. 

Klein [30, 31, 120, 122] presented some important challenges and serious 

limitations associated with Web-logs, discussion forums, Wikis, and more.  Disorganized 

content, low signal-to-noise ratio, quantity rather than depth, polarization in groups, and 

dysfunctional argumentation are just some of the challenges he described.  Klein [31] 

introduced Deliberatorium [31] for large scale deliberation to address some of these 

problems.  Deliberatorium is an argumentation system that supports a large number of 

stakeholders discussing wicked problems. 

Although the argument maps in the Deliberatorium are well structured and 

presented, the decision support received is limited.  Participants in this system can rate 

ideas.  These ratings can address redundancy to a fairly good extent.  Rating ideas is 

explicitly provided by participants.  It is more intuitive, however if the rating is provided 

by an argument associated with that particular idea in the argument map. 

Both Karousos and Karacapilidis [32, 33] developed CoPe_it, a Web-based 

argumentation system for collaborative learning. CoPe_it allows stakeholders to 

participate in the argumentation process and thereby support discourse for knowledge 

sharing.  Stakeholders using CoPe_it build knowledge graphs.  These graphs assist in 

both decision making and collaborative learning sessions.  CoPe_it allows multiple users 

to participate in the argumentation process.  CoPe_it may support either an alternative or 

an argument by quantifying the posts in a knowledge graph.  CoPe_it could consider 

several social parameters, stakeholder preferences numerically, position strengths and 

more to assist in collaborative decision support. 

The MIT Collaboratorium or Climate CoLab [30, 34, 35] and MIT 

Deliberatorium [30, 31] are the tools that support a group of stakeholders to present their 

issues and carry out discussions. The MIT Climate CoLab [36] is computer-based 

collaborative system that supports discussion forums, voting, and model-based 

simulation. Climate CoLab is one of the largest online communities to work 

collaboratively with other stakeholders. This system was introduced to the public to 

discuss climate change problem over the internet.  The stakeholders exchange their views 
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and opinions in the form of arguments.  They also participate in voting procedures.  This 

system provides limited decision support. 

Araucaria is argument diagramming software that supports stakeholders in 

building the argument tree, analyzing and representing the arguments [14].  The 

Araucaria argumentation system is built upon the rhetorical structure theory, supporting 

various argumentation schemes.  The user has the freedom to choose his argumentation 

scheme.  Because stakeholders should understand the argumentation system, they should 

know which scheme is more appropriately suitable for their situation. This tool provides 

good flexibility in both constructing and diagramming the arguments. 

Argumentative [37] is another argumentation system that allows stakeholders to 

post their issues.  Stakeholders can post their premises, reasons and objections.  Every 

node in the tree has a comment attached to it.  These comments describe the meta-data of 

that node, present the author of the element, date, and more.  Argumentative is open 

source software.  It follows the informal argumentation models with great visualization 

ability. 

Compendium [38] supports argument mapping inspired by the IBIS system.  It 

was developed for both policymakers and information management in general.  

Truthmapping [39], Idea [40], and Debategraph [41] are Web-based argumentation 

systems available for free on the World Wide Web.  These systems are built to support 

online debates.  They follow a tree structure for the representation of the information. 

Although they provide limited support in the context of both argument analysis and 

decision support, they are more advanced and organized than either blogs or forums for 

collaborative work.  

Over the past few years many researchers have introduced several models and 

systems in various application domains [25, 27, 42] for argumentation and carried out 

several experiments [30]. Existing argumentation systems support collaborative decision 

making. These systems, however, provide very limited decision support in a collaborative 

environment. Some systems provide support by constructing argumentation diagrams and 

visualizations. Many argumentation systems were built for understanding design 

rationale. Some systems are meant for students to assist them with critical thinking.  

Others provide quantitative information based on the arguments’ ratings and weights. 
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Some argumentation systems provide better navigation within the argumentation map.  

HERMES and the intelligent argumentation system can also provide support in the form 

of multi criteria decision making. The intelligent argumentation system provides 

additional decision support information on par with other existing argumentation 

systems. 

 

2.2. INTELLIGENT ARGUMENTATION SYSTEM 

Sub-section 2.2.1 presents an overview, 2.2.2 discusses the elements of an 

argumentation tree and sub-section 2.2.3 presents the argumentation reduction fuzzy 

inference system. 

2.2.1. Overview. This sub-section explains both the background of how the 

intelligent argumentation system was developed over the years and introduces the system. 

Liu et al. [7, 43, 44, 45, 121, 123] are building the intelligent argumentation 

system for collaborative decision support for a long time. Several students worked and 

contributed to this project. 

In 2003, Sigman [45] presented argumentation methodology for capturing and 

analyzing design rationale arising from multiple perspectives in collaborative 

environment.  Sigman then built argumentation reduction fuzzy inference system to carry 

out the reduction process of an argumentation tree.  In 2006, Raorane [7] worked on 

argumentation system for collaborative engineering design [7, 43] and resolution of 

conflicts.  Raorane et al. [43] developed web-based intelligent argumentation tool as a 

part of the web-based collaborative engineering design system.  Later in 2007, Zheng 

[44] developed methods for incorporating the priority of a stakeholder in the intelligent 

argumentation system.  The priority of a stakeholder was used to re-assess the strength of 

an argument using fuzzy logic based inference system. Zheng et al. [7, 44] also 

developed mechanism for detection of self-conflicting arguments. 

Khudkhudia [46], in the year 2008 incorporated evidences in the argumentation 

tree.  Stakeholders can post evidences supporting their arguments and evidences under an 

argument are aggregated using the Dempster Shafter’s combination rule.  Khudkhudia 

also developed a fuzzy based approach to reassess the strength of an argument based on 

the support it has from the evidence.  In 2009, Satyavolu [8] developed a novel fuzzy 
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based approach to assess the priority of a stakeholder in a group, based on his 

contribution towards the winning and non-winning positions in an argumentation 

network. Satyavolu [8] also conducted experiments using intelligent argumentation 

system in software engineering class to evaluate the mechanism she developed. 

Wanchoo [47] developed a computational argumentation model to support multi-

criteria decision making using the intelligent argumentation system. Wanchoo [48] 

conducted experiment in the software testing and quality assurance class in spring 2010. 

2.2.2. Elements of the Argumentation Tree. The intelligent argumentation 

system allows stakeholders to post a project, issues, and alternatives in the argumentation 

tree over which argumentation process is carried out.  Figure 2.1 presents an example of a 

position dialog graph. 

 

 

 

 
Figure 2.1. Position Dialog Graph 

 

 

 

Project - Project node (P) is the root node in an argumentation tree, where the 

project details and stakeholder details are posted.  Any stakeholder can post a project, and 

under the project node, any number of relevant decision making issues can be posted. 
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Issue - Issue node (I) is at the second level in the argumentation where a 

stakeholder can post concerned decision making issues.  These decision making issues 

are relevant to that project. A decision making group can participate in several decision 

making issues related to a project.  The decision issues we are discussing here are very 

strategic that have high importance to an organization. These issues are usually 

cognitively complex.  The results from these decisions affect several others financially 

and economically. Position or alternative solutions are posted under the node issue in the 

argumentation tree. 

Position - Positions are the alternative solutions that are posted under the issue in 

the tree, see Figure 2.2. Since the positions provide the stakeholders to explore the 

solution space through interactions, any number of positions can be posted under an 

issue.  Arguments are either directly or indirectly associated to a position node. 

Argument - Every argument carries a strength which expresses its association 

with its parent node. Stakeholders are also responsible for posting strength of an 

argument explicitly along with their argument.  The strength of an argument ranges from 

-1 and +1. A negative strength conveys that the argument is attacking its’ parent 

argument, an argument with positive strength conveys that the argument is supporting its 

parent node, and an argument with strength zero expresses its’ indecisiveness.  

Stakeholders can strengthen their arguments posting evidences supporting their 

arguments. A stakeholder can post any number of arguments supporting or attacking 

other arguments or positions already posted in a tree. Based on the strength of the 

argument, the system identifies labels such as medium support (MS), strong support (SS), 

Indecisive (I), medium attack (MA), and strong attack (SA).  The labels are linguistic 

terms whose semantics are captured by their membership functions.  The degree of 

strength of an argument posted by their owners will be used for fuzzy inference by the 

fuzzy inference engine based on fuzzy inference rules using the labels. 

In Figure 2.1, A, B, C, D, E and F are the arguments posted by stakeholders along 

with the degree of strength of the argument. The strength presents the association 

between an argument and its parent node. SS, SA, MA refer to strong support (SS), 

strong attack (SA), and medium attack (MA) respectively. More discussion is provided 

about these labels in the following sub-section. 
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Before the argumentation process, stakeholders initially have an idea and an 

opinion towards the decision problem.  As the argumentation process unfolds, they get to 

know the opinions and views of other stakeholders.  In the process, stakeholders also 

have the opportunity to express their arguments on other individual’s arguments.  

Contrasting opinions lead to conflicts and resolving conflicts leads to refining the 

opinions of stakeholders.  At the end of the process, consensus will be developed among 

stakeholders. This exchange of information in groups leads to collective decision making. 

 

 

 

              
                 Figure 2.2. A snapshot of Intelligent Argumentation System 
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2.2.3. Favorability Assessment through Intelligent Argumentation. The 

argumentation reduction fuzzy inference system is used to assess the impact of arguments 

in the argumentation tree on a position.  Arguments in the argumentation tree are reduced 

level by level in a tree based on the fuzzy inference heuristic rules. This process is carried 

out on all the arguments in a tree. These arguments are inferenced level by level such that 

all the arguments are directly associated to its position respectively. As all the arguments 

of a tree are directly associated to its respective position, the favorability factor of a 

position is computed by aggregating the strengths of the arguments associated with a 

position [7, 49]. 

Both the strength of an argument and the strength of its parent argument are 

provided as inputs to the fuzzy inference engine. Child argument and parent argument are 

put on the same level of an argumentation tree based on the inference.  The child 

argument is reduced by one level in the tree such that both arguments are siblings, 

providing a new strength value which is relative to its parent argument. Based on the 

fuzzy membership functions, these strength values undergo fuzzification process. The 

output from the fuzzification process is given as input to the fuzzy inference engine, and 

appropriate fuzzy rule is applied from the fuzzy rule base for inference. Based on the 

rule, a relative strength value is derived with respect to its parent argument. This new 

score undergoes the defuzzification process.  In the defuzzification process, the obtained 

inputs are converted to crisp outputs, see Figure 2.3. For further information on fuzzy 

argumentation inference system, please read our papers [7, 49]. 
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Figure 2.3. Fuzzy Inference System 

 

 

 

The reduction process is carried out based on the following general fuzzy 

heuristic rules which are further extended to twenty-five rules based on different 

membership functions. The following four fuzzy heuristic rules are used in the fuzzy 

knowledge base for the argument reduction [7, 49]: 

If argument B supports argument A and argument A supports position P, then 

argument B supports position P. 

If argument B attacks argument A and argument A supports position P, then 

argument B attacks position P. 

If argument B supports argument A and argument A attacks position P, then 

argument B attacks position P. 

If argument B attacks argument A and argument A attacks position P, then 

argument B supports position P. 

In the argumentation reduction process, the strength of arguments that were 

indirectly associated to a position are reassessed. This reassessed strength is relative to its 

new parent node. After the argumentation reduction process is completed, the favorability 

factor of each position is computed by aggregating the strengths. The favorability factor 

produced by the system for each position represents the favorability of the decision 

making group for that position.  The higher the favorability factor of a position is, the 

more favorable it is to the group.  Figure 2.4 presents an example of the fuzzy inference 

based argument reduction in an argumentation tree. For more information about the 

intelligent argumentation system, please refer to articles [43, 49]. 
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Figure 2.4. Fuzzy Inference based Argumentation Reduction Example 
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3. HARD POLARIZATION ASSESSMENT 

 

 

 

3.1. PROBLEM DESCRIPTION 

Complex issues within organizations require strategic decisions be made for a 

good cause. An argumentation process allows stakeholders to debate with peers for a 

given issue.  Stakeholders in a decision making group usually have their own choices of 

support for a given issue. As a result, stakeholders with similar opinions tend to become 

closer by both supporting one another and attacking others.  These groups then influence 

other stakeholders, encouraging them to change their opinions [50, 51]. 

A group of stakeholders may share similar opinions for a given issue, exchanging 

arguments with other stakeholders in a collaborative decision making process.  These 

stakeholders are part of a polarization group.  Typically, a group is headed by a leader 

who plays a crucial role.  In our case, we consider the stakeholder with the highest group 

support to be the leader.  Identification of polarization groups and leaders in 

argumentation becomes an important challenge which has not been addressed in the past.  

The polarization assessment in argumentation provides the decision maker with 

information about the groups and their opinions towards the given issue.  The process of 

identifying both groups and their leaders is new to argumentation systems and 

collaborative decision making paradigms. 

In this section, a method for identifying polarization groups and leaders in an 

argumentation process using the K-means clustering algorithm is presented. 

 

3.2. SIGNIFICANCE OF THE PROBLEM 

An argumentation process is a complex system involving many social agents 

exchanging arguments.  The social dynamics in an argumentation process are very 

complex as they involve both the stakeholders’ personal belief as well as their 

relationships with others.  A stakeholder’s opinions may evolve as they become 

influenced by others [48].  Identifying both polarization groups and their leaders helps 

decision makers understand the objectives of individual polarization groups.  Identifying 

polarization groups helps decision maker understand their impact on decision 
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alternatives. It also can help a decision maker judge the post-decision effects on both 

individual groups and their leaders. This information could assist decision makers in 

making a more in-depth analysis of the positions and taking more appropriate decisions. 

Consider a hypothetical situation in which an important, controversial bill must be 

passed in the senate.  This bill is of economic interest to the nation.  The senators and 

policymakers are the stakeholders in the argumentation system.  One of these political 

parties supports the bill and the other opposes it.  These stakeholders belong to either 

political party A or party B.  These stakeholders can use the argumentation system to 

resolve decision making issue.  Individual stakeholders honor the decision made by their 

respective parties on the bill.  However, they still have their own personal opinion.  This 

opinion may be in contrast with the opinion of the party.  Our proposed framework can 

identify both the polarization groups and leaders formed among the senators and 

policymakers.  We can also identify the senators with contrasting opinions, both within 

the party and the opposition party.  Finally, our framework provides flexibility for the 

decision maker in providing the number of polarization groups as an input. 

Although only two political parties are in our given example, one might try 

looking for four groups.  The decision maker can understand which political party is 

strong with their opinion.  If three groups are formed within party A with contrasting 

opinions and if stakeholders in party B are all together in one group, we can understand 

that party B is stronger as senators in this party stand united, behaving loyally.  In another 

case, we might think of stakeholders from party A as sharing their opinion with party B.  

In reality, many sub-groups may exist within a political party which might have 

contrasting opinions. 

The decision maker has the freedom to both analyze and understand the closeness 

of the polarization groups in terms of their opinion.  In another instance, we might think 

of party A’s opinion as very close to that of party B.  The leader of party A can analyze 

the interactions and social dynamics among the stakeholders in his party as well as those 

within the opposition’s party.  In even another case, some stakeholders from party A and 

some from party B might share the same opinion. 
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3.3. RELATED WORK 

In this section, we present literature on the polarization assessment from a social 

science perspective. In social science literature, several scientists have referred to 

polarization, where participants in group discussions tend to polarize on their opinion.  

Polarization [51] is a phenomenon where people tend to form groups based on the 

similarity of their opinion.  Sunstein [51] explained the phenomenon of polarization and 

its association with social cascades, and social influence. Klein [31] identified the 

existence of polarization in the social media systems and people with similar opinion or 

who share same opinion tend to form in to groups and they only see a subset of the issues 

and ideas.  Hence it is very important to identify the groups and the polarization group 

information is useful in decision making.  The dynamic social impact theory proposed by 

Latane is a highly influential theory which presents the effects of other stakeholders on an 

individual stakeholder in a group during their interactions [52].  Latane proposed three 

different principles in the dynamic social impact theory: (a) the social impact or influence 

received by a target stakeholder in a group is because of the social forces i.e., other 

stakeholders in the group, (b) as the strength of the social forces increases, the influence 

also increases and (c) when more stakeholders join the individual targeted stakeholder, 

the total influence received by this newly formed target group is diluted among the 

stakeholders in the group. Hence, the impact is reduced [52].  Dynamic social impact 

theory holds for a group of stakeholders in the debate process and the argumentation 

process where the influence is presented through the arguments and the arguments’ 

strength.  In his extended research work, Latane proposed that the groups formed are not 

static but they keep changing throughout the discussion process because the stakeholders 

change their opinions when exchanging arguments [48, 53].  As the arguments among the 

stakeholders are exchanged, the opinions of the stakeholders may change, and 

stakeholders with similar opinions form in to groups.  Harton et al. demonstrated group 

dynamics and presented four group-level phenomena whenever people in spatially 

distributed groups, such as residents of an apartment complex or people at a banquet 

table, influence one another [54]. Consolidation, clustering, correlation and continuing 

diversity are the four group-level phenomena [50, 53, 54] that a group holds. The 

dynamic social impact theory states that stakeholders form groups, and these groups tend 
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to polarize on issues based on their opinions. The stakeholders in these groups are the 

ones with similar opinions. 

 

3.4. DECISION SUPPORT THROUGH POLARIZATION ASSESSMENT 

FRAMEWORK 

We extended the intelligent argumentation system to support polarization assessment by 

capturing the stakeholders’ rationale in their arguments.  The argumentation system 

employs K-means clustering algorithm [3].  This algorithm is an unsupervised clustering 

algorithm for classifying stakeholders according to their favorability towards a position.  

The following sub-sections provide a detailed explanation on this system’s framework. 

3.4.1. Polarization Groups Assessment Framework. Argumentation tree is built 

as stakeholders exchange arguments.  The tree evolves as the argumentation process is 

conducted. After the argumentation process, the framework is applied to the 

argumentation tree. This framework uses the argumentation reduction fuzzy inference 

system to derive the favorability of each individual stakeholder on all the positions. 

Figure 3.1 illustrates the framework of the proposed idea.   

Inference system reduces the arguments to one level such that all arguments are 

directly associated with their respective position. Once all arguments are connected to the 

appropriate positions, the strength values of all arguments posted by a stakeholder under 

every position are accumulated.  A stakeholder’s favorability toward every position is 

then computed. This process is conducted for all stakeholders, for every position posted.  

After data is collected from the tree, it is normalized to retain consistency.  The opinion 

of a stakeholder is represented by a numerical value.  This value is the sum of the total 

support and the total attack of a stakeholder towards a position.  It is calculated as 

follows: 

Favorability factor of a stakeholder = (Total support for a position by the 

stakeholder) + (Total attack for a position by the stakeholder) 
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Figure 3.1. Framework of Polarization Assessment 

 

 

 

The following formula (Eq. 1) was used to normalize the data.  Normalization 

was conducted using the min-max normalization technique.  Min A, and max A are the 

minimum and the maximum values in the data collected from the argumentation tree.  

New_min A and new_max A are the new range for the data provided.  In our 

experiments, we used new_minA as -1 and new_maxA to 1.  The stakeholder’s opinion is 

represented with numerical values.  The new range of the data will be from -1 to +1. 

 

           

          (1) 

 

 

The decision making issue in the intelligent argumentation system is represented 

by Ii, where i (i > 0) represents the number of issues in the argumentation tree.  The 

stakeholders in the decision making group can add the positions in the tree under issue 
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node Ii.  The positions (alternatives) are represented by Al, where l represents the number 

of positions under the issue Ii and is either greater than or equal to 1.  Stakeholders in the 

decision making group are represented with S.  Sj signifies the number of stakeholders, 

where j ≥ 1.  The arguments in the argumentation tree are reduced to one level in order to 

find Fjl.  This value is the favorability value of stakeholder j for position l.  The value of 

Fjl may be either negative or positive.  Favorability factor depends upon the arguments 

posted by stakeholder Sj under position Al.  Based on the Fjl, one can understand a 

stakeholder’s opinion.  The following classification explains Fjl value better. 

 

Fjl = Negative.  Favorability factor signifies that stakeholder j is attacking position 

l. 

Fjl = Positive.  Favorability factor signifies that stakeholder j is supporting 

position l. 

Fjl = Zero.  Favorability factor signifies that stakeholder j has a neutral opinion 

regarding position l. 

Every stakeholder (j) has a value towards position l. We use the min-max 

normalization method to normalize both the values and the range [-1, 1].  The Fjl values 

of each stakeholder (S) are presented as a vector.  Vectors are provided as an input to the 

K-means clustering algorithm.  Each element in a stakeholder’s opinion vector refers to 

the favorability of a stakeholder towards a position.  The favorability vector of 

stakeholder Sj when there are ‘l’ positions is represented in a vector as (Fj,1, Fj,2, Fj,3, 

…..Fj, l).  For example, stakeholder S2 has a favorability vector represented as (F2,1, F2,2, 

F2,3, F2,4…… F2,l).  F2,1 presents the favorability of stakeholder 2 toward position 1.  F2,4 

presents the favorability of stakeholder 2 towards position 4. 

Figure 3.2 is an example argumentation tree built by three different stakeholders 

for issue 1.  The argumentation tree has three different positions namely position 1, 

position 2, and position 3.  Stakeholders have contributed to the decision making process 

by building an argumentation tree consisting of sixteen arguments.  The arguments 

posted are directly associated with either a position or an argument. 

Figure 3.2 presents the argumentation tree before the argumentation reduction 

process. Figure 3.3 presents the tree after the argumentation reduction process.  All 
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arguments posted by a stakeholder under a position are grouped together.  The 

summation process is then conducted to derive the total favorability of those stakeholders 

for the respective position.  When the arguments are reduced level by level, the strength 

of an argument is computed relative to the new parent argument.  Because an argument is 

now directly connected with the position and the impact changes.  Therefore, the strength 

of an argument is reassessed. 

 

 

 

 
Figure 3.2. Argumentation Tree before Argumentation Reduction Process 

 

 

 

This argumentation reduction process is carried out by the framework using the 

argumentation reduction fuzzy inference system. See section 2.2.3 for a detailed 

explanation about the argumentation reduction fuzzy inference system.  The summation 

process is adding up of the strengths of all the arguments under a position posted by an 

individual stakeholder and, thereby, computing the total favorability of a stakeholder for 

a position. 
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Figure 3.3. Argumentation Tree after Reduction Process 

 

 

 

3.4.1.1 K-means clustering algorithm. The favorability factor of each 

stakeholder for all positions is represented as a vector.  The Euclidean distance is used for 

similarity measurement between vectors. The K-means algorithm (Algorithm 1) 

randomly takes ‘K’ points as the initial centroids of the clusters. In each iteration, opinion 

vectors are compared with these ‘K’ centroids using the Euclidean distance. Each data 

point is assigned to a cluster, based on the distance between centroid and opinion vector. 

After each iteration, the centroid is updated by computing the mean of all vectors in that 

cluster. This process is carried out for all vectors for several iterations until convergence 

is achieved.  Convergence can be evaluated by the mean square error within the cluster or 

when the data instances stop moving from one cluster to another [3, 55]. 

Once convergence is achieved, the algorithm stops.  Algorithm then produces ‘K’ 

clusters, where each cluster has data points that are as close as possible to centroid.  Each 

cluster produced by this algorithm is treated as a polarization group.  They are clustered 

according to similar opinions.  The value of ‘K’ should be provided by the decision 

maker as input to the algorithm.  The decision maker must provide the ‘K’ value as how 

many groups he/she would like to see among the stakeholders. The value of ‘K’, 

however, is always less than or equal to N (i.e., the number of data instances). 

The Euclidean distance (Eq.2) formula was used to compute the similarity 

measurement among participants. Values X1, X2, and X3 represent the favorability 

factors for position 1, 2 and 3, respectively, by stakeholder X.  Values Y1, Y2, Y3 
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represent the favorability factors for position 1, 2 and 3, respectively, by stakeholder Y.  

This formula derives the similarity measurement among stakeholders X and Y. 

 

   (2) 

 

        

 

3.4.2. Polarization Leaders Assessment Framework. Identifying leaders in 

each polarization group is equally important.  Because, each leader is representing a 

polarization group and he has the support from his group. This sub-section presents the 

framework for identifying polarization leaders.  The framework produces ‘K’ 

polarization groups.  Interactions among the stakeholders are captured through their 

arguments. The sum of the strength of the arguments posted by a stakeholder to other 

stakeholder in the same polarization group is computed.  This provides the relationship 

among the stakeholders.  The total support and attack received by a stakeholder from the 

rest of the group is aggregated. Some stakeholders might support their own arguments 

with other arguments. These interactions are also considered for a polarization group 

leader assessment.  A stakeholder with the highest support from the rest of the group is 

acknowledged as the leader.  In some cases, a tie may occur.  When this happens, one 

stakeholder is randomly selected to break the tie.  Table 3.1 illustrates a sample 

interactions table.  Relationships among the stakeholders in a polarization group are 

presented. 

 

Algorithm 1. K-Means Clustering Algorithm 

1. Initialize a K-partition either randomly or based on 

some prior knowledge.  Calculate the cluster 

prototype matrix. 

2. Assign each object in the data set to the nearest 

cluster Cl. 

3. Recalculate the cluster prototype matrix based on 

the current partition. 

4. Repeat steps 2 and 3 until there is no change for 

each cluster. 
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Table 3.1. Polarization Group Relationship Table 

 S1 S2 S3 . . . Sj 

S1 X       

S2  X      

S3   X     

.    X    

.     X   

.      X  

Sj       X 

Total 

support 

Ts1 Ts2 Ts3    Tsj 

 

 

 

Total support (Ts) represents the total support a stakeholder receives from his 

group.  The stakeholder with the largest Ts value in a group is considered the leader.  In 

some instances, stakeholders might receive attack from the rest of the group.  When this 

occurs, the total support value could be negative. Although, stakeholders in a polarization 

group share similar opinion.  It is not necessary that a stakeholder receives support from 

his group. 

Stakeholders in a polarization group share a similar opinion.  The strength of 

either support or attack for a position, however, might vary.  For example, opinion vector 

of stakeholder A is (0.9, -0.3, 0.5).  Opinion vector of stakeholder B is (0.8, -0.2, 0.56).  

Stakeholders A and B share a similar opinion.  The strength of their support and attack 

for positions, however is different.  If two or more stakeholders within a group share the 

same value of support, we can randomly choose any stakeholder as the group leader.  If 

no interactions occur among the stakeholders in a group, we can, again randomly choose 

any stakeholder as the polarization leader. 
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3.4.3. Analyzing Polarization Groups and Leaders. The intelligent 

argumentation system uses the polarization assessment framework on the argumentation 

tree.  This system produces both ‘K’ polarization groups and ‘K’ polarization leaders.  It 

is important for a decision maker to understand the polarization information.  Each 

cluster produced by the framework represents a polarization group.  These groups are 

represented by centroids.  The centroid of a cluster is a vector.  This vector represents the 

opinion of the polarization group. 

As the decision maker knows the opinion of each polarization group, he can 

further identify the stakeholders associated with the polarization group, making rational 

decisions.  The decision maker can study and analyze the post-decision effects on both 

each polarization group and each stakeholder. Additionally the decision maker can, 

possibly, analyze and understand either the personal benefits or the incentives received 

by stakeholders in polarization groups based on their opinion.  This information helps in 

taking more informed decisions.  By identifying a polarization leader in each group, the 

decision maker would know which stakeholder is the leader. 

Since we know the opinion of each polarization group, we can check the 

dissimilarity measurement between polarization groups using the Euclidean distance 

metric. 

 

3.5. EVALUATION 

This section presents two different small scale studies carried out at Missouri 

University of Science and Technology.  Results in the first study are validated by the 

participants.  The second study summarizes three different experiments conducted based 

on a case study. 
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3.5.1. Empirical Study 1. In this experiment fourteen students from the e-

commerce business class were recruited to participate in our study.  Fourteen students 

played the role of stakeholders and participated by posting arguments in the 

argumentation tree. The team of fourteen stakeholders were provided with the 

background case study and the decision making issue to be resolved. After participating 

for around ten days, an argumentation tree was constructed which consisted of thirty five 

arguments. 

3.5.1.1 Case study. The issue was about the death of Aaron Swartz [56, 57].  

Aaron Swartz was an American computer programmer, writer, political organizer and 

internet activist.  He founded the online group demand progress, known for its campaign 

against the stop online piracy act.  Aaron was charged for downloading thousands and 

millions of articles illegally from JSTOR archive using MIT’s open network.  If proven 

to be guilty Aaron would face up to thirty five years of prison and a fine up to $1 million.  

On January 11
th

, 2013 two years after his arrest, Aaron hanged himself in his apartment. 

Issue – What happened with Aaron Swartz? Who is at fault for Aaron Swartz killing 

himself? 

Position 1 – The laws, attorneys and MIT who pushed the case? 

Position 2 – Not anybody’s fault.  It’s not the Government’s or MIT’s fault in anyway.  

The rules have to be followed in any means. 

 

3.5.1.2 Objective and framework. The objective of this experiment is to 

evaluate the polarization assessment framework with a real world issue.  The 

participating stakeholders are provided with a detailed background about the case and 

how to use the system. Each stakeholder is provided with a unique username and 

password to log-on to our intelligent argumentation system to participate in the 

discussion. Ten days of time was given to the stakeholders to participate in the dialog 

process. After the discussion process, the polarization assessment framework is employed 

on the discussion tree to identify the polarization groups.  The results generated by the 

polarization assessment framework are given to the stakeholders to validate. 
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3.5.1.3 Process and observations. Fourteen stakeholders participated in the 

discussion process using the intelligent argumentation system which was followed by the 

application of polarization framework on the discussion.  K value was provided as two 

when the framework was used on the argumentation tree.  The framework identified two 

opinions and the polarization groups associated with those opinions. 

Table 3.2 presents the polarization groups, opinions of each polarization group 

and stakeholders in each group.  Stakeholders in polarization group 1 strongly supported 

position 1 and attacked position 2.  Stakeholders in polarization group 2 supported 

position 2 and attacked position 1.  Group 1 consists of ten stakeholders and group 2 

consists of four stakeholders. The opinions of polarization groups 1 and 2 are contrasting, 

since they have opposing views on the decision making issue. 

 

 

 

Table 3.2. Polarization Assessment Results 

Polarization group Position 1 Position 2 Stakeholders 

Polarization group 1 0.890 -0.009 S1, S2, S4, S5, S6, S7, 

S8, S9, S11, S14 

Polarization group 2 -0.250 0.075 S3, S10, S12, S13 

 

 

 

The results produced by the framework are presented in Table 3.2.  Table 3.2 was 

presented to the stakeholders and questions were asked to validate the results.  The 

stakeholders were asked to give their opinion on the results produced by the system.  Out 

of fourteen stakeholders eleven have agreed with the classification (polarization) 

information produced by the system.  One stakeholder was neutral about the result and 

two disagreed with the result.  The plot in Figure 3.4 explains the validation of the 

results. 
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Figure 3.4. Participant's Opinion on the Polarization Assessment Results 

 

 

 

3.5.2. Empirical Study 2 

3.5.2.1 Objective. The objective of this experiment is to identify polarization 

groups and polarization group leaders in a decision making group to evaluate the 

effectiveness of the proposed framework. Earlier, Satyavolu [8] conducted an experiment 

by recruiting twenty four graduate students from a Software Engineering class at 

Missouri University of Science and Technology.  These twenty four students played the 

role of stakeholders.  The framework is applied on the argumentation trees built by those 

twenty four stakeholders. 

Three experiments were conducted.  All three experiments are related to the case 

study.  Each experiment dealt with a decision making issue.  The decision making issue 

was about the selection of software metrics program in an organization.  This case study 

had three different scenarios.  A software development project was given to a large scale, 

medium scale and small scale organization. Selecting appropriate software metrics 

program by each organization for the given project was the issue. The framework was 

employed on the three decision making issue trees constructed by the stakeholders.  A 

detailed explanation on both the experiments and the results is presented in the following 

sections. 

3.5.2.2 Case study. Adoption of software metrics program is a crucial aspect, and 

its’ application to the software project development depends on various factors such as 

size of the organization, size of software project and many more. The decision issue in 



 

 

30 

the first experiment dealt with the selection of a software metrics program for a large 

scale organization.  The decision issue in the second experiment dealt with the selection 

of a software metrics program for a medium scale organization.  The third experiment 

was about the selection of software metrics program in a small scale organization 

environment. No metrics program, light weight metrics program, and comprehensive 

metrics program are the three different positions provided for all three issues.  In the ‘no 

metrics’ program, organizations do not adopt any software metrics program.  Fewer than 

35% of the artifacts are measured using a light weight metrics program.  Between 35% 

and 60% of the artifacts are measured in the comprehensive metrics program.  Because 

the three decisions issues were built upon a common case study, these three positions 

were the same for all three decision issues. 

Position 1 – No metrics program 

Position 2 – Light weight metrics program 

Position 3 – Comprehensive metrics program 

3.5.2.3 Experiment I. The first decision making issue was about the selection of 

a software metrics program in a large scale organization.  The twenty-four stakeholders 

exchanged 220 arguments over a period of one week.  After the argumentation process, 

the framework was applied to the argumentation tree.  The stakeholders’ opinions were 

computed for the three positions. The accumulated data was normalized using the min-

max normalization method. The K-means clustering algorithm was run on the data for 

four clusters.  The framework produced four polarization groups, which are presented in 

Table 3.3. 

3.5.2.3.1 Polarization groups. The clusters produced by the framework represent 

polarization groups. The centroid of a cluster represents the opinion of polarization 

group.  Positive values in vector signify the support and negative value represents attack 

for a position.  Figure 3.5a presents the data instances plotted in 3-dimensioinal space.  

These data instances are the opinion vectors of the stakeholders from the first decision 

making issue.  Figure 3.5b illustrates the four groups produced by the framework.  Each 

polarization group is represented by a different color and a symbol.  As there are three 

positions for the given decision making issue, the vector consists of three elements.  
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Hence, the framework produced a three dimensional figure.  Each axis refers to a 

position. 

Group 1 consisted of two stakeholders.  The opinion of group 1 is represented by 

the vector (0.246, -0.496, -0.941).  This signifies that the stakeholders in this group 

weakly supported position 1 and attacked position 2 and position 3.  Group 1 

stakeholders strongly attacked position 3. Group 2 consisted of three stakeholders.  Group 

2 stakeholders not supported any position.  Group 3 consisted of four stakeholders who 

attacked position 1 but they were in favor of position 2 and position 3.  Group 4 consisted 

of fifteen stakeholders who supported position 1 but attacked position 2 and 3. 

 

 

 

Table 3.3. Polarization Groups in Experiment I 

Polarization 

groups 

Position 1 Position 2 Position 3 Stakeholders 

Group 1 0.246 -0.496 -0.941 S8, S9 

Group 2 -0.459 -0.605 -0.129 S17, S19, S20 

Group 3 -0.349 0.688 0.373 S4, S18, S21, S23 

Group 4 0.669 -0.002 -0.402 S1, S2, S3, S5, S6, S7, 

S10, S11, S12, S13, S14, 

S15, S16, S22, S24 
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3.5a. Opinion Vectors before Polarization Assessment, 3.5b.  Polarization Groups 

Produced after Polarization Assessment 

 

 

 

3.5.2.3.2 Group leaders. Based on the interactions among the stakeholders in 

polarization groups the relationships among them were derived.  There was a tie among 

the stakeholders in the group 1.  Stakeholders S8 and S9 did not interact in their group, 

and hence one of them was randomly selected as a leader.  S19 was the leader of group 2.  

Because, S19 received highest support from group 2.  In polarization group 3, stakeholder 

S4 or S23 can be selected as a leader.  Because, the stakeholders have received negative 

support from group 3.  Table 3.4 presents the relationships of stakeholders in polarization 

group 4.  S2 was the leader in group 4 since S2 received the highest support from his 

group. 
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Table 3.4. Stakeholder Relationship Table of Polarization Group 4 

Stakeholders S1 S2 S3 S5 S6 S7 S10 S11 S12 S13 S14 S15 S16 S22 S24 

S1 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 

S2 0 1 0 -1 0 0 0 0 0 -0.9 0 0 0 0 0 

S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S5 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 

S6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S10 -0.3 0 0 0 0 0 0 0 0 0 0 0 0 -1.6 0 

S11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.6 

S14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S24 0 0 0 0 -0.4 0 -0.7 0 0 -0.7 0 0 -1.2 0.8 0 

Total support 

received 

-0.3 2 0 1 0.5 0 -0.7 0 0 -1.5 0 0 -1.2 -0.8 -0.6 

 

 

 

3.5.2.3.3 Discussions. Table 3.5 presents the dissimilarity measurement among 

the four groups based on their opinion.  The opinion of a group and the Euclidean 

distance (Eq.2) are used to compute the dissimilarity.  The information provided by the 

framework allows decision makers to assess the dissimilarity between the groups.  The 

lower the value between the two groups, the closer they are based on their opinion.  As 

the value between two groups increases they are more likely to be dissimilar.  

Polarization groups 1 and 4 are close in their opinion but whereas the score between 

group 1 and 3 is high which signifies that their opinions are dissimilar to a greater extent. 

Groups 1 and 3 had contrasting opinions.  Because, group 1 was in favor of position 1 

and they attacked position 2 and position 3.  Group 3 however, attacked position 1 but 

they were in the favor of position 2 and 3. 
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Table 3.5. Dissimilarity among the Polarization Groups 

 Group 1 Group 2 Group 3 Group 4 

Group 1 0 1.0808 1.8661 0.8446 

Group 2 1.0808 0 1.3913 1.3078 

Group 3 1.8661 1.3913 0 1.4536 

Group 4 0.8446 1.3078 1.4536 0 

 

 

 

Groups 1 and 3 tend to be two different factions in a decision making group.  

Group 4 was the largest group with 15 stakeholders and they were very close in their 

opinion with group 1.  Group 1 strongly attacked position 3.  The decision maker might 

choose the opinion of group 4 by choosing position 1 as their final decision.  Because, 

this group is largest in terms of number of stakeholders.  The decision maker might not 

consider the opinion of group 2 since they do not support any of the position.  He might 

ask them to come up with a new and appropriate position relevant to the decision making 

issue.  There are several different ways on how the decision maker can use this 

information. In many cases, when huge participation is taking part in the argumentation 

system, it would be very difficult to study and analyze each stakeholder’s view.  

Additionally, it is important to know the opinion of every stakeholder. 

3.5.2.4 Experiment II. Same set of stakeholders participated in experiment II and 

exchanged 314 arguments.  Stakeholders exchanged arguments for a period of 1 week on 

the second decision making issue. This experiment dealt with the selection of software 

metrics program in a medium scale software organization.  After the argumentation 

process, the framework was applied on the tree with K = 4 as input. 

3.5.2.4.1 Polarization groups. Figure 3.5a presents the four polarization groups 

produced by the framework. Group 1 contained fifteen stakeholders.  The centroid of the 

cluster is (0.660, -0.270, 0.564), which signifies that the stakeholders in this group 

supported position 1 and position 3, and they were not in the favor of position 2.  Group 1 

and 3 had contrasting opinions.  Group 3 consisted of three stakeholders who supported 

position 2 but attacked position 1 and 3.  Group 2 was very close to group 1 in terms of 

similarity of their opinion.  Group 2 however, strongly supported position 1, position 3 
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and strongly attacked position 2, which is not the case with group 1.  The stakeholders in 

group 4 supported all the three positions, and they strongly supported position 1.  Table 

3.6 illustrates the polarization group information of experiment II. 

 

 

 

Table 3.6. Polarization Groups in Experiment II 

Polarization 

groups 

Position 1 Position 2 Position 3 Stakeholders 

Group 1 0.660 -0.270 0.564 S1, S2, S3, S5, S6, S7, S10, 

S11, S12, S13, S14, S15, S22, 

S23, S24 

Group 2 0.853 -0.819 0.939 S9, S16 

Group 3 -0.407 0.287 -0.366 S4, S18, S19 

Group 4 0.772 0.396 0.302 S8, S17, S20, S21 

 

 

 

 
 

 Figure 3.6a. Opinion Vectors before Polarization Assessment, Figure 3.6b.    Polarization 

Groups Produced after Polarization Assessment 
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3.5.2.4.2 Group leaders. There was a tie among S10 and S14 for the position of 

group leader in polarization group 1.  Because both the stakeholders had received the 

same strength of support from their own group.  Although, the two stakeholders in group 

2 shared same opinion they never exchanged any arguments in the argumentation 

process.  We can randomly select either S9 or S16 to be the leader of group.  S19 was the 

leader in polarization group 3, and S21 was the leader in group 4.  Table 3.7 presents the 

relationships of stakeholders in polarization group 4. 

 

 

 

Table 3.7. Stakeholder Relationship Table of Polarization Group 4 

 

 

 

 

 

 

 

 

 

 

 

3.5.2.4.3 Discussions. Table 3.8 illustrates the dissimilarity among the 

polarization groups. Groups 1 and 2 were close in their opinion. Groups 2 and 3 however, 

were very dissimilar.  This valuable information is provided by the framework. 

 

 

 

Table 3.8. Dissimilarity among the Polarization Groups 

 Group 1 Group 2 Group 3 Group 4 

Group 1 0 0.6922 1.5210 0.7243 

Group 2 0.6922 0 2.1245 1.3742 

Group 3 1.5210 2.1245 0 1.3594 

Group 4 0.7243 1.3742 1.3594 0 

 

 S8 S17 S20 S21 

S8 -0.7 0 0 0 

S17 0 0 0 0 

S20 0 -0.1 0.8 0.7 

S21 0 0 0 5.2 

Total support received -0.7 -0.1 0.8 5.9 
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These tables provide very useful information.  This information can be used to 

understand the social dynamics within the groups.  All the tables and figures produced 

from the polarization assessment give the stakeholders and decision makers an insight 

into the dynamics.  Groups 1 and 2 were close in terms of their opinion and this is clearly 

evident from Figure 3.6.  Group 1 had medium support for position 1 and position 3, 

group 2 however, had strong support for position 1 and position 3.  Group 1 was the 

largest group with 15 stakeholders.  The decision maker might choose the opinion of 

group 1 as the decision.  Because, this was the largest group.  As group 1 had contrasting 

opinion with group 3, the decision maker now has the opportunity to closely deliberate 

the arguments posted by the group 3 stakeholders.  Decision maker can understand why 

group 3 had contrasting opinion from the largest polarization group. 

 

3.5.2.5 Experiment III. In the last week of our experiment, stakeholders 

exchanged arguments over the third decision making issue. Stakeholders built an 

argumentation tree of size 176 arguments over a period of one week. The decision issue 

in this experiment was about the selection of software metrics program in a small scale 

organization. After the data was collected, the K-means clustering algorithm has 

produced four polarization groups.  The centroids of groups are presented in Table 3.9. 

3.5.2.5.1 Polarization groups. Figure 3.7b presents the four groups produced by 

the framework. The ten stakeholders in group 1, supported position l, and attacked 

position 2 and 3.  Group 3 was close to group 1 in terms of their opinion.  Stakeholders in 

group 3 however, strongly attacked position 3, but group 1 weakly attacked position 3 

and supported position 1 but for the same position group 3 weakly supported.  Although 

their support and attack opinions were similar, the strength of support or attack is varied.  

Hence they had varied opinion.  Groups 2 and 4 had contrasting opinions.  The 5 

stakeholders in group 2 supported position 2 and attacked other positions.  While in the 

case of group 4, it was the other way round.  Group 4 attacked position 2 and supported 

positions 1 and 3.  Group 2 strongly supported position 2 whereas polarization group 4 

attacked position 2.  As the decision maker knows each and every stakeholder in group 2 

and 4, the decision maker can go through the arguments posted by these stakeholders 

under position 2.  After studying those arguments, decision maker can possibly eliminate 



 

 

38 

position 2 from their choice or make appropriate judgment in the context of decision 

making. 

 

 

 

Table 3.9. Polarization Groups in Experiment III 

Polarization 

groups 

Position 

1 

Position 

2 

Position 

3 

Stakeholders 

Group 1 0.508 -0.380 -0.392 S4, S6, S7, S10, S12, S15, S17, 

S21, S22, S24 

Group 2 -0.266 0.747 -0.663 S8, S14, S18, S19, S20 

Group 3 0.088 -0.417 -0.723 S1, S2, S3, S5, S9, S11 

Group 4 0.111 -0.627 0.446 S13, S16, S23 

 

 

 

 
Figure 3.7a. Opinion Vectors before Polarization Assessment, Figure 3.7b.  Polarization 

Groups Produced after Polarization Assessment 

 

 

 

3.5.2.5.2 Group leaders. Surprisingly, there were very few interactions among 

the 10 stakeholders in polarization group 1.  Although they all have similar opinion, they 

exchanged very few arguments.  Since there were very few interactions among them, not 

every stakeholder had received support or attack from the rest of the group.  There were 8 

stakeholders who had not received any argument from the rest of the group.  While, the 
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other two stakeholders had received attack from the group.  Hence the system randomly 

picked one among the 8 stakeholders as the leader for that group.  Stakeholder S19 was 

the leader for group 2, S3 was the leader for group 3.  The total support received by S13 

and S16 were same in group 4.  The system randomly selected one of them to be the 

leader.  See Table 3.10 for the stakeholder relationships among the group 2. 

 

 

 

Table 3.10. Stakeholder Relationship Table of Group 2 

Stakeholders S8 S14 S18 S19 S20 

S8 0 0 0 0 0 

S14 0 0.7 0 0.8 0 

S18 0 0 0 0 0 

S19 0 0 0 0 -0.7 

S20 0 0 0 0 -0.9 

Total support received 0 0.7 0 0.8 -1.6 

 

 

 

3.5.2.5.3 Discussions. Table 3.11 presents the dissimilarity among the 

polarization groups.  Polarization groups 1 and 3 were close in terms of their opinion.  

See Figure 3.7b and Table 3.11 for more information on dissimilarity between groups.  

Polarization groups have differences in their opinion.  Because, favorability of each 

group was different for different positions. 

 

 

 

Table 3.11. Dissimilarity among the Polarization Groups 

 Group 1 Group 2 Group 3 Group 4 

Group 1 0 1.3937 0.5360 0.9596 

Group 2 1.3937 0 1.2181 1.8055 

Group 3 0.5360 1.2181 0 1.1879 

Group 4 0.9596 1.8055 1.1879 0 
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Group 1 is the largest group, three other groups had contrasting opinion with 

group 1.  The decision maker has the opportunity to understand the social dynamics 

among the groups.  All of this information was not available earlier.  But, now the 

decision maker can make more informed decisions using the framework in an 

argumentation tree. 

3.5.3. Decision Support Discussion. The figures, and tables produced by the 

framework as output are the polarization assessment information.  The information 

provided by this framework is very insightful.  It is up to the decision maker on how this 

information is used.  Figures 3.5a, 3.6a, and 3.7a are the machine generated figures 

before the clustering process.  Figures 3.5b, 3.6b, and 3.7b are the machine generated 

figures after the clustering process is carried out. 

Three different experiments were conducted successfully. We realized that the 

proposed framework for polarization assessment in the argumentation system was 

effective in identifying the polarization groups and leaders.  During the argumentation 

process, in a few cases, there were few stakeholders who were not in favor of any 

position.   They tend to dislike all of the positions and attack the positions. It is crucial to 

identify those set of people and help them sort out the problem and satisfy them by either 

providing new positions or closely deliberating their arguments and interactions.  This 

information would help other users or stakeholders in other groups to share their opinion 

and understand their goals.  In experiment I, polarization group 2 had three stakeholders 

who did not support any positions.  The decision maker might suggest those stakeholders 

to come up with a new position that might be more appropriate than the three posted 

positions. 

Although stakeholders in a polarization group share similar opinion, some 

stakeholders might receive attack from rest of the group.  This signifies the existence of 

groups within a polarization group.  In many real situations it is important to recognize 

these sub-groups as well.  In the context of this research problem, consider political party 

A as a group and within a political party there will be several large polarization groups 

and within those large groups there could be several small polarization groups.  This has 

been observed in several political parties in various countries. 



 

 

41 

In one of the experiments, stakeholders in a polarization group have not interacted 

and in this case, the system randomly picks a stakeholder and assigns as polarization 

group leader.  Every stakeholder has an opinion towards a position with varied level of 

support and attack.  This variation in their support might be because of their varied level 

of expertise for the given problem. 

During the analysis of our experimental results, we realized that every stakeholder 

belongs to every other group with varied level of membership.  Polarization groups 

overlap to a certain degree.  The fuzzy based clustering algorithms also seem to be very 

interesting since these algorithms output the membership of a stakeholder in all the 

groups.  We came across some groups who only share similar opinion and there were no 

interactions identified among them.  Stakeholders S6, S7, S10, S12, S15, S22 and S24 

have shared the same opinion across all three experiments in the second empirical 

evaluation.  This is another interesting observation that was recorded in the experimental 

results.  This kind of information was not available earlier. 

Earlier some researchers have claimed that, some stakeholders do not present their 

opinion in the group discussions and argumentation.  Because, those stakeholders do not 

want to give their opinion in public.  Due to these reasons some researchers have 

proposed frameworks that allow stakeholders to participate anonymously. Some 

researchers have also claimed that if the stakeholders are anonymous in the group 

discussions, stakeholders seem to be more productive. 

There is a wide scope in the selection of a leader from a polarization group.  

Several leader-selection and leader-election algorithms have been proposed earlier in the 

area of distributed systems.  In case of a tie between two or more stakeholders for the 

position of group leaders, then we would randomly choose a stakeholder. However, 

several researchers in the area of distributed systems and others have proposed several 

different ways to break the symmetry between two agents. 

 

3.6. FINAL REMARKS 

Identification of polarization groups and leaders in a Web-based intelligent 

argumentation system helps in collaborative decision support.  The framework presented 

in this chapter provides polarization assessment information to the decision maker which 
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helps in taking more informed decisions.  In addition it also provides feedback to the 

stakeholders in an argumentation process. We have successfully carried out three 

different experiments. The experimental results show that the framework is effective in 

polarization assessment. 
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4. FUZZY POLARIZATION ASSESSMENT 

 

 

 

4.1. PROBLEM DESCRIPTION 

In chapter 3, the hard polarization assessment framework was presented.  The 

hard polarization assessment framework assumes that, stakeholders are strictly part of a 

polarization group. Stakeholders however might share opinions with multiple polarization 

groups to varied degrees.  Hence polarization groups may overlap to a certain degree. 

Quantifying stakeholders’ membership in multiple polarization groups is a crucial issue 

in the argumentation for collaborative decision making, which is not addressed earlier.  A 

novel approach using fuzzy clustering algorithm to address this issue is presented in this 

chapter [58]. The method is evaluated using data sets produced from the discussions of 

twenty four stakeholders. 

 

4.2. SIGNIFICANCE OF THE PROBLEM 

The method presented in this section is implemented in the intelligent 

argumentation system to identify both polarization groups and stakeholders’ 

memberships in multiple polarization groups.  This proposed method computes the 

aggregate opinion of a stakeholder over an issue across all alternatives.  This method 

employs the fuzzy c-means clustering algorithm [5] to compare similarities between the 

opinions of stakeholders using Euclidean distance metric.  A decision maker would know 

to what extent a stakeholder is sharing his/her opinion with all the polarization groups.  

This information allows a decision maker to better understand the social dynamics among 

stakeholders.  And, thus make much more informed decisions. 

The following example explains how the framework works in an intelligent 

argumentation system.  Suppose a financial policy is under discussion in the senate.  The 

policy is of national economic interest.  Both senators and policymakers use the 

intelligent argumentation system for collaborative decision support.  These men and 

women belong to either political party A or political party B.  These parties have 

contrasting opinions when selecting an alternative for the financial policy.  Stakeholders 

in both party A and B honor the decision taken by their respective party leaders on the 

policy.  The stakeholders themselves however, have their own opinions on the policy.  
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These opinions may be in contrast to the party’s interest.  Our method can identify these 

polarization groups, the aggregate opinion of each polarization group in the senate, and 

the membership of each stakeholder in the identified polarization groups. 

Each polarization group has an aggregate opinion.  Political party leaders can 

assess each senator’s degree of membership based on his/her opinions.  They can also 

assess the policymakers in the same manner.  The decision maker can both analyze and 

understand the differences between polarization groups in terms of their opinions. 

Decision makers can also identify the senator with the highest degree of membership in 

each polarization group.  Our method enables the leaders of both party A and party B to 

analyze not only the social dynamics among the stakeholders in their party but also 

within the opposition party. 

 

4.3. RELATED WORK 

4.3.1. Polarization Research Work. Polarization is a phenomenon in which 

people tend to form groups based on the similarity of the members’ opinions. Sunstein 

[51] explained the phenomenon of polarization as well as its association with both social 

cascades and social influence.  Flache and Macy [59], present polarization as: 

“A population that divides into a small number of factions with high internal 

consensus and sharp disagreement between them. A perfectly polarized population 

contains two opposing factions whose members agree on everything with each other and 

fully disagree on everything with the out-group.” 

Social influence is one of the reasons stakeholders in a decision making group 

both polarize and support one another.  In his extended research, Latane identified 

polarization groups as dynamic. They change throughout the discussion process as 

stakeholders change their opinions that quantify [54].  This dynamic quality was an 

additional motivation to develop a method that quantifies a stakeholder’s membership 

degree within each polarization group.  The dynamic social impact theory states that 

stakeholders form groups.  These groups tend to polarize the stakeholders’ opinions. 

The strength between social agents in a network also impacts social influence. 

Flache and Macy [59] have conducted research based on the Granovetter’s theory of the 

strength of weak ties [60].  The strength between social agents plays an important role in 
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the formation of polarization groups.  Centola and Macy presented both the strengths and 

the weaknesses of long ties [61].  Macy et al. [62] investigated the affect of polarization 

in dynamic networks.  They also investigated both the dynamics of influence and the 

attraction between agents.  Macy et al. [62] discovered that the population self-organizes 

into antagonistic groups in a social group.  They claim that social agents are attracted to 

others within the same group.  These agents become influenced by others with similar 

opinions.  They are conditioned by both the strength and the valence of social ties.  Social 

agents within the social network can self-organize into antagonistic factions without 

either the knowledge or intent of the social agents.  Takacs [63] analyzed both the 

network segregation and the intergroup conflicts in a social group.  Dense in-group and 

scarce out-group relations are known as segregation.  Segregation in a social group 

supports the emergence of conflicts between polarization groups [63].  Simpson et al. 

[124] focused on the effects of social identity on the formation of coalitions in a social 

group.  From a social science aspect, the importance of this challenge is understood 

[124]. We are not, however aware of any other existing solutions for computing the 

degree of stakeholders membership within a polarization group. 

Balkanization and dysfunctional argumentation addressed in [64, 65] are related 

to polarization.  We presented a method and implement it to identify polarization groups 

and compute each stakeholder’s degree of membership in all polarization groups 

automatically.  While Klein identifies the importance of polarization problem, his article 

[65] does not discuss any method of detection of polarization groups and how they are 

implemented in the Deliberatorium. 

The results produced by the proposed method help decision makers and 

stakeholders as well.  Stakeholders would be benefited by finding others who share 

similar interests and this helps them connect with others.  This is often referred to as 

“Finding their tribes” in the literature [65]. Our framework helps stakeholders in finding 

their tribes by providing the polarization group information. 
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4.3.2. Community Detection in Social Networks. Since the advent of social 

networking sites [66, 67] in early 2000, many researchers have focused on different 

aspects of social networks. Several scientists have focused on problems such as 

community detection, information diffusion and more. The research however, on 

polarization assessment in social networks is inadequate.  The community detection 

problem [68, 69] differs from the polarization assessment problem.  Polarization 

assessment focuses on how agents with similar opinions come together as a faction.  

Community is essentially, an association between agents. 

A group of agents within a network does not need to either share or polarize their 

opinions to form a community. Zhang et al. [69] presented methods for identifying 

communities using both the K-means clustering algorithm [3, 70] and the fuzzy c-means 

clustering algorithm [5].  This approach developed the use of the K-means clustering 

algorithm to discover the communities on a social network.  It also developed the use of 

the fuzzy c-means clustering algorithm to present each social agent’s membership degree 

in each community that is discovered.  Zhang et al. [69] applied their methods on both 

Zachary’s karate club data [71] and the American football team data [72] to identify the 

communities that were formed in each.  Du et al. [73] presented a novel algorithm [73] on 

the detection of communities in large-scale social networks.  Because large-scale social 

networks have a huge number of social agents, each social agent is associated with 

several other social agents. Community detection problem is well explained and 

investigated in social networks.  The polarization assessment problem however, is new in 

the domain of argumentation systems and social networks. 
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4.3.3. Clustering Algorithms. Because we are unaware of a polarization group’s 

data, we cannot provide any labels for training the data.  Hence, classification techniques, 

such as decision trees and classifiers, used for grouping the given data cannot be used.  In 

this environment, clustering algorithms are more suitable than classification techniques.  

The K-means clustering algorithm was used earlier [1] to identify polarization groups.  

However, K-means carries out hard clustering.  Because we want to identify polarization 

groups and also the degree of membership of stakeholders in each polarization group, soft 

clustering algorithms are more suitable and outputs more information than hard clustering 

algorithms. Because, the stakeholders in polarization groups overlap, the fuzzy 

algorithms are more appropriate. 

The fuzzy c-means clustering algorithm is employed here to perform clustering. 

The decision maker is responsible to provide the ‘c’ value as an input to the algorithm.  

Decision makers, given the capability in deciding the number of clusters, would have 

flexibility in looking at multiple scenarios of polarization formation and relationships 

among polarization groups by running the algorithm on the argumentation tree several 

times with different ‘c’ values.  For example, if the decision maker thinks, there are 

tentatively four polarization groups, he can run the framework and analyze the results, at 

the same time, the decision maker can also see what happens if ‘c’ is provided as two.  

Which stakeholders might form in to two groups?  Which polarization groups might 

converge? The flexibility in choosing the ‘c’ value can help here in this application 

environment. However, there are several ways of selecting ‘c’ value in the fuzzy c-means 

clustering algorithm and K-means clustering algorithm [74].  We believe that the decision 

maker should use the prior knowledge about his/her decision making group and select ‘c’ 

appropriately. 

Vimal et al. [75, 76] from their experiments have learnt that Euclidean distance 

metric exhibits high accuracy when used in K-means or fuzzy c-means clustering 

algorithm [75, 76]. The datasets in their experiments was generated using the Syndeca 

software [77]. Also, Euclidean metric is very often used in detecting communities in 

social networks [78]. Other similarity measurements, such as Pearson Correlation, can 

also be used for similarity measurement in this research. But they may lead to more 

complicated clustering algorithms in argumentation polarization analysis. 
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Clustering algorithms can be broadly classified as exclusive clustering, 

overlapping clustering, hierarchical clustering and probabilistic clustering algorithms.  

Exclusive clustering algorithms such as K-means can be used, but they perform hard 

clustering.  Hierarchical clustering would be more appropriate if we wanted to analyze 

the intra-group polarization assessment.  Overlapping clustering techniques based on 

fuzzy concepts are more appropriate here, since polarization groups overlap by nature. 

The probabilistic clustering methods such as Gaussian mixture model, if used for 

argumentation polarization analysis in our system, would identify membership of 

stakeholders in polarization groups with probability. However, degree of membership of 

stakeholders in polarization groups is more desirable in assessing their memberships in 

argumentation polarization analysis. We would like to see a stakeholders’ degree of 

membership in a polarization group, not the probability of being in a group.  Hence, 

fuzzy based clustering algorithms seem to be more appropriate.  Models such as Latent 

semantic analysis [79], probabilistic latent semantic analysis [80] or the Latent Dirichlet 

allocation [81] are more appropriate if used in clustering the argument text. 

 

4.4. FRAMEWORK 

Stakeholders in a decision making group participate in the argumentation process 

using the intelligent argumentation system.  They build an argumentation tree by 

exchanging arguments.  The argumentation reduction fuzzy inference engine derives each 

stakeholder’s favorability toward a solution alternative. The obtained data is normalized 

using the min-max normalization technique.  This data is represented as a vector and 

provided as input to the fuzzy c- means clustering algorithm. This algorithm outputs, ‘c’ 

polarization groups.  The method presented in this section uses clustering algorithms to 

provide valuable information for decision support. This method is illustrated in Figure 

4.2.  The following sub-section presents each step in detail. 
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Figure 4.1. Snapshot of Intelligent Argumentation System 

 

 

 

4.4.1. Argumentation Process. The exchange of arguments within a decision 

making group builds an argumentation tree (see Figure 1).  Figure 4.3 presents a sample 

argumentation tree.  Figure 4.3 illustrates both a decision making issue (root node) and 

three positions i.e., alternatives posted under the issue node.  Sixteen arguments posted 

by three different stakeholders are listed under position 1, position 2, and position 3.   S1, 

S2, S3 represent the three participating stakeholders.  Arg1, Arg2, Arg3 are the 

arguments in the sample argumentation tree.  Each stakeholder’s arguments are 

represented in a different color. 

4.4.2. Data Collection. Our method uses an argumentation reduction fuzzy 

inference engine to compute a stakeholder’s favorability for an alternative.  In Figure 4.3, 

stakeholder S2 has contributed three arguments under position 1.  While one argument is 

directly associated with position 1, and the other two are associated with the arguments 

posted by stakeholder S1. 

The fuzzy inference rules presented in section 2.2.3 are used for argumentation 

reduction process. The association between (Arg1, position 1) and (Arg4, Arg1) are 

considered for using the appropriate fuzzy inference rules.  Based on the suitable fuzzy 

rule, the Arg4 is reduced level by level such that it is directly associated to Position 1.  
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The same procedure was conducted for Arg6.  The system ensures that all arguments 

posted by a stakeholder are directly associated to an argument. The argument based fuzzy 

inference system reassesses the strengths of the arguments based on the inference rules.  

The new strength that an argument is assigned is relative to the solution alternative. 

Once all arguments are directly associated to the alternatives, the strengths of the 

arguments posted by a stakeholder under every alternative are aggregated.  Hence, the 

favorability of a stakeholder towards every alternative is derived. This process is 

conducted for all stakeholders at every position posted in the tree.  The favorability of a 

stakeholder is represented by a numerical value.  This value is the sum of the arguments 

strengths of a stakeholder for a position. 

See Figure 4.4 for the argumentation tree after the fuzzy inference process.  The 

favorability of stakeholder S2 for position 1 is the aggregate of the argument’s strength: 

Arg4, Arg2, and Arg6 (see Figure 4.4).  Similarly, the favorability of stakeholder S2 for 

positions 2 and 3 are derived.  If the favorability value of a stakeholder for a position is 

negative, the stakeholder has more attack than support for his/her arguments for that 

position.  If the favorability of a stakeholder for a position is positive, the stakeholder has 

more support than attack through his arguments. 

If the favorability factor of a stakeholder for a position is zero, the stakeholder is 

neutral in opinion about the position.  Because the aggregate of both support and attack of 

the argument’s strengths are neutralized.  In another case, stakeholders may not have 

posted any arguments under that position in the tree.  Following the argumentation 

process, the intelligent argumentation system computes the favorability of each 

stakeholder for all the positions in argumentation tree. 
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Figure 4.2. Fuzzy Based Polarization Assessment 

 

 

 

 
Figure 4.3. Sample Argumentation Tree before Argumentation Inference 
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All stakeholders are encouraged to participate in the dialog process, but if 

stakeholders do not present his/her complete opinions on given issues, argumentation 

polarization analysis might help detect missing opinions since degree of stakeholders in 

polarization groups from the clustering analysis might be different from their 

expectations, and prompt stakeholders to address the issue by adding their opinions. Of 

course, polarization analysis itself cannot solve the problem of missing opinions 

completely since it is not a problem of argumentation polarization analysis. 

4.4.3. Data Preparation. The opinion of a stakeholder is represented as a vector 

after the favorability of a stakeholder for each alternative is derived.  Each element in the 

vector represents the favorability for a position.  The number of positions under an issue 

in an argumentation tree represents the size of the vector.  The vectors are normalized to 

retain consistency in the data. 

 

 

 

 
Figure 4.4. Argumentation Tree after Argumentation Inference 

 

 

 

The min-max normalization technique (Eq.3) is used to normalize the elements in 

the vector.  We refer to these vectors as opinion vectors. Min A, and max A represent the 

minimum and the maximum values in the original data respectively.  New_min A, 

new_max A represent the new ranges for the data provided.  In our experiments we have 

assigned new_minA as -1 and new_maxA to +1 as the new ranges.  The stakeholder’s 
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favorability for an alternative is represented with numerical values ranging from -1 to +1.  

An element in the opinion vector between -0.1 to -1.0 signifies that the stakeholder 

attacks an alternative.  Values between +0.1 to +1.0 signify that the stakeholder supports 

an alternative.  After the data is normalized, the fuzzy c-means clustering algorithm is 

used on the opinion vectors. 

 
           
           (3) 

 

4.4.4. Fuzzy c-Means Clustering Algorithm. This sub-section briefly presents 

on how the fuzzy c-means clustering algorithm is used in our approach.  After the system 

computes the favorability of each stakeholder across all the positions, the fuzzy c-means 

algorithm is applied on those favorability vectors.  Because each stakeholder’s opinion is 

represented as a vector, we have the opportunity to both compare and assess how close 

stakeholders’ opinions are.  Let us suppose stakeholder S3 is one among the decision 

making group, and there are three different positions for the decision making issue in the 

argumentation tree.  S3 has presented his opinion across all three positions.  The 

favorability factor of S3 is represented as (0.9, -0.2, 0.5).  This signals that S3 is 

supporting position 1 and position 3 and attacking position 2. 

The fuzzy based clustering algorithm outputs the clusters, providing each 

stakeholder’s membership in ‘c’ clusters.  The fuzzy c – means clustering algorithm 

produces ‘c’ number of clusters from the given data.  The algorithm tries to minimize the 

objective function over several iterations.  When the objective function value remains 

unchanged, it produces the clusters.  The algorithm provides the centroid of each cluster. 

Fuzzy c-means clustering algorithm works by assigning each data point to each 

cluster based on the distance between the cluster center and the data point.  The closer the 

data point is to the cluster center, the higher is its’ membership in that cluster.  The fuzzy 

c-means clustering algorithm is based on minimizing its following objective function (Eq. 

4). 

  (4) 

‘S’ is the number of data instances, ‘Cj’ is the centroid of j
th 

cluster, ‘F’ is the 

fuzzy membership matrix, ‘m’ is the weighting factor, ‘c’ represents the number of 
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clusters, µij presents the degree of membership of i
th 

data to j
th 

cluster, Dij is the Euclidean 

distance between i
th 

data and j
th 

cluster center. 

 ‘S’ and ‘c’ are provided as inputs to the algorithm and the algorithm produces 

membership of each data point in multiple clusters as output. 

 

 

Algorithm 2. Fuzzy c-Means Clustering Algorithm 

   Step 1 The algorithm randomly selects ‘c’ vectors as cluster centers. 

 Step 2 Calculate the fuzzy membership. 

µij = 1/  

Step 3 Calculate the centroids of the ‘c’ clusters. 

Cj = ( µij)
m

 ) / ( µij)
m

) 

Step 4 Repeat steps 2 and 3 until the convergence is achieved 

 (The objective function value is minimized). 

 

We used the Euclidean distance metric (Eq. 5) to assess the similarity 

measurement among stakeholders’ opinions in the fuzzy c-means clustering algorithm. 
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4.4.5. Cluster Analysis of Polarization Groups. The centroid of a cluster is a 

vector.  This vector represents the aggregate opinion of a polarization group.  The 

centroid of each polarization group can be further used to analyze the dissimilarity 

between polarization groups using the Euclidean distance as a metric.  When analyzing 

polarization groups, we may encounter groups with completely contrasting opinions.  In 

some cases, we might also see groups with similar opinions.  Some groups might share 

similar opinion or contrasting opinion with respect to a particular alternative.  These 

polarization groups tend to form factions, supporting stakeholders within their group.  

They tend to attack stakeholders in the opposing group, using both their arguments and 

evidences supporting their arguments.  Stakeholders might even use arguments to support 

their arguments.  The advantage of using the fuzzy c-means algorithm is that it provides 

the membership of a stakeholder in each polarization group.  The degree of membership 

of a stakeholder in a group can help both the decision maker and group leaders 

understand the loyal stakeholders/followers within his/her polarization group.  It also 

allows for further investigation on new approaches to identify leaders in each polarization 

group.  A stakeholder from each polarization group with highest degree of membership 

can be acknowledged as the group leader. 

In some cases, a stakeholder might absolutely belong to a polarization group.  In 

another instance a stakeholder might have an equal degree of membership in two 

different polarization groups.  This information might help polarization leaders in 

pursuing each stakeholder based on stakeholders’ interest and thereby providing 

incentives to them. One can also arrange stakeholders in ascending or descending order 

based on the stakeholders’ degree of membership and generate a ranked list.  So, each 

polarization group has a ranked list of stakeholders based on the membership value.  The 

decision maker can also generate top-k list from the ranked list.  One could further 

investigate the overlapping of the ranks of a stakeholder in the multiple polarization 

groups.  A stakeholder might have same rank in two or more polarization groups. 

A group of stakeholders participate in the argumentation process using the 

intelligent argumentation system.  After the argumentation process the decision maker or 

any stakeholder can apply the framework on the argumentation tree for decision support. 
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4.5. PROCESS OF FUZZY POLARIZATION ASSESSMENT 

This section explains the process of the polarization analysis method in the 

argumentation.  Initially a decision maker in an organization posts a decision making 

issue in the intelligent argumentation system. The decision making stakeholders 

participate in the argumentation process. Stakeholders exchange arguments over different 

positions by supporting and attacking different arguments with their own arguments.  A 

stakeholder selects an argument or a position in the argumentation tree and then posts his 

own argument under the selected argument. Stakeholders are responsible to post the 

strength of the argument along with their arguments. 

Using the intelligent argumentation system, stakeholders build an argumentation 

tree.  Once an argumentation tree is built, the decision maker applies the framework on 

that argumentation tree by providing the ‘c’ value as an input.  The argumentation 

reduction fuzzy inference system in the framework derives the opinions of the 

stakeholders. The opinions of stakeholders are generated from the argumentation process.  

After deriving the opinions, the framework runs the fuzzy c-means clustering algorithm 

on the opinions using the ‘c’ value provided by the decision maker.  The framework then 

produces ‘c’ polarization groups, and each stakeholder’s degree of membership in all ‘c’ 

polarization groups. 

The decision maker now has the results using which he can know the opinion of 

each and every stakeholder and their degree of membership in all polarization groups.  

With the help of the results, stakeholders can now find their tribes and get more 

connected with them. Figure 4.5 presents an overview of the process of the 

argumentation polarization analysis and Figure 4.6 presents an interface of the fuzzy c-

means clustering algorithm. 

Let us suppose we have 35 stakeholders including a decision maker in the 

decision making group. The decision maker posts a decision making issue and positions 

pertaining to that issue. These 35 stakeholders participate in the argumentation process 

using the intelligent argumentation system.  After the argumentation process the decision 

maker runs the framework over the argumentation tree built by these 35 stakeholders by 

providing the ‘c’ value as an input.  The decision maker then analyses the output of the 

framework (polarization assessment information). The decision maker has the 
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opportunity to study and investigate the results produced by the framework and make 

more informed decisions. 

 

 

 

 
Figure 4.5. Process of Argumentation Polarization Analysis 

 

 

 

 
Figure 4.6. A Fuzzy c-Means Clustering Algorithm Interface from Matlab 
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4.6. EVALUATION 

This section presents two different small scale studies carried out at Missouri 

University of Science and Technology.  Results in the first study are validated by the 

participants.  The second study presents three different experiments conducted based on a 

case study. 

4.6.1. Empirical Study 1. In this experiment fourteen students from the e-

commerce business class were recruited to participate in our study.  The fourteen students 

played the role of stakeholders and participated by posting arguments in the 

argumentation tree.  The team of fourteen stakeholders were provided with the 

background case study and the decision making issue to be resolved. After participating 

for around ten days, an argumentation tree was constructed which consisted of thirty five 

arguments. 

4.6.1.1 Case study. The issue was about the death of Aaron Swartz [56, 57]. 

Aaron Swartz was an American computer programmer, writer, political organizer and 

internet activist.  He founded the online group demand progress, known for its campaign 

against the stop online piracy act.  Aaron was charged for downloading thousands and 

millions of articles illegally from JSTOR archive using MIT’s open network.  If proven 

guilty, Aaron would face up to thirty five years of prison and a fine up to $1 million.  On 

January 11
th

, 2013 two years after his arrest, Aaron hanged himself in his apartment. 

Issue – What happened with Aaron Swartz? Who is at fault for Aaron Swartz 

killing himself? 

Position 1 – The laws, attorneys and MIT who pushed the case? 

Position 2 – Not anybody’s fault.  It’s not the Government’s or MIT’s fault in 

anyway.  The rules have to be followed in any means. 

4.6.1.2 Objective and framework. The objective of this experiment is to 

evaluate the fuzzy polarization assessment framework with a real world issue.  The 

participating stakeholders were provided with a detailed background about the case and 

how to use the system. Each stakeholder was provided with a unique username and 

password to log-on to the intelligent argumentation system to participate in the 

discussion.  Ten days of time was given to the stakeholders to participate in the dialog 

process. After the discussion process, the fuzzy polarization assessment framework was 
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run on the discussion tree to identify the polarization groups and the membership degree 

of stakeholders in polarization groups. The results generated by the fuzzy polarization 

assessment framework were given to the stakeholders to validate. 

 

4.6.1.3 Process and observations. The fourteen stakeholders participated in the 

discussion process using the intelligent argumentation system which was followed by the 

application of soft polarization framework on the discussion.  C value is provided as two 

when the framework is used on the argumentation tree. The framework identified two 

polarization groups and the membership degree of stakeholders in polarization groups 

after running clustering algorithm for seventeen iterations. Figure 4.7 presents the 

polarization groups identified by the soft polarization assessment framework. 

 

 

 

 
Figure 4.7. Polarization Groups Identified by the Soft Polarization Framework 

 

 

 

Table 4.1. Fuzzy Polarization Assessment Results 

Polarization 

group 

Position 1 Position 2 Stakeholders 

Polarization 

group 1 

0.937 -0.022 S1, S2, S4, S5, S6, S7, S8, 

S11, S14 

Polarization 

group 2 

-0.044 0.096 S3, S9, S10, S12, S13 
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Table 4.1 presents the polarization groups, opinions of each polarization group 

and stakeholders in each group.  Stakeholders in polarization group 1 strongly supported 

position 1 and attacked position 2. Stakeholders in polarization group 2 supported 

position 2 and attacked position 1.  Group 1 consists of nine stakeholders and group 2 

consists of five stakeholders. The opinions of polarization groups 1 and 2 are contrasting, 

since they have opposing views on the decision making issue. 

The results produced by the framework are presented in Table 4.1. Table 4.2 

presents the degree of membership of all participants in the two polarization groups.  For 

example, stakeholder S1 is part of group 1 with a degree of 0.566 and 0.433 with group 2. 

 

 

 

Table 4.2. Membership Degrees of Participants in the two Polarization Groups 

Stakeholders Polarization 

group 1 

Polarization 

group 2 

S1 0.566 0.433 

S2 0.997 0.002 

S3 0.286 0.713 

S4 0.614 0.385 

S5 0.996 0.003 

S6 0.614 0.385 

S7 0.827 0.172 

S8 0.996 0.003 

S9 0.497 0.502 

S10 0.158 0.841 

S11 0.696 0.303 

S12 0.012 0.987 

S13 0.102 0.897 

S14 0.996 0.003 

 

Table 4.1 and 4.2 were presented to the stakeholders and questions were asked to 

validate the results.  The stakeholders were asked to give their opinion on the results 
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produced by the system. Out of fourteen stakeholders nine have agreed with the 

classification (polarization) and degree of membership information produced by the 

system.  Three stakeholders were neutral about the result and two of them disagreed with 

the result.  The plot in Figure 4.8 explains the validation of the results. 

 

 

 

 
Figure 4.8. Participant's Opinion on the Polarization Assessment Results 
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4.6.2. Empirical Study 2 

4.6.2.1 Background. To evaluate the effectiveness of our proposed framework, 

we conducted three experiments.  Satyavolu [8] conducted an experiment by recruiting 

twenty-four graduate students from a Software Engineering class at Missouri University 

of Science and Technology.  The dataset in our experiments is from Satyavolu [8]. 

4.6.2.2 Case study. The decision making issue in the first experiment is about 

selecting the suitable software metrics program for software development in a large scale 

organization.  The issue in the second experiment is selecting suitable software metrics 

program for a medium scale organization and for a small scale organization is the third 

decision issue. Please see article [8] for more information on the case study.  The 

following two examples are the sample arguments from the dataset posted by 

stakeholders under the first decision making issue.  These arguments were posted under 

the comprehensive metrics program and light weight metrics respectively. 

“Since the organization develops mission critical software and software assurance 

is a major criterion, the most suitable and efficient metrics program would be the 

comprehensive metrics program as it leads to developing a product of high quality.” 

“There may be situations where the large organization will have to handle small 

or medium sized projects. In such situations the organization cannot invest a large portion 

of its revenue on a comprehensive metrics program. Considering the size of the project 

and number of employees and deliverables a light-weight metrics program would be best 

suitable.” 

Alternatives (Positions) 

Position 1 – Comprehensive metrics program 

Position 2 – Light weight metrics program 

Position 3 – No metrics program 

 

4.6.2.3 Experiment 1. Stakeholders exchanged 204 arguments in one week using 

the intelligent argumentation system.  The proposed method is applied on the 

argumentation tree with c = 4 as input.  The fuzzy c-means algorithm has run for thirty-

two iterations by minimizing the objective function score.  The framework identified four 

polarization groups and presented each stakeholder’s degree of membership in four 
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polarization groups. After thirty-two iterations, the fuzzy c-means clustering algorithm 

had stopped and thereby producing the polarization groups as output.  Figure 4.9 presents 

a plot where the objective function values are plotted against the iteration count. 

The method has identified four polarization groups and also presented each 

stakeholder’s membership in the four polarization groups.  Table 4.3 presents the 

centroids (opinions) of each polarization group, and stakeholders in each group produced 

by the method and Table 4.4 presents the membership of each stakeholder in the four 

polarization groups.  The aggregate of the degree of membership of stakeholders in 

polarization groups is always equal to one. 

Group 1 consisted of four stakeholders who attacked comprehensive metrics 

program, strongly supported light weight metrics program and weakly supported no 

metrics program. Group 2 consisted of six stakeholders who supported comprehensive 

metrics program, attacked light weight and no metrics program.  The opinions of the 

polarization group 1 and group 2 were contrasting and they were like two different 

factions.  Group 3 consisted of 10 stakeholders who strongly supported comprehensive 

metrics program, weakly supported light weight metrics program, and attacked no 

metrics program.  The opinion of the stakeholders in group 3 was contrasting with the 

opinion of the stakeholders in group 1 and group 2 under different positions.  The ten 

stakeholders in group 3 shared similar opinions with group 2 under the context of 

comprehensive metrics and no metrics program.  They, however, had contrasting 

opinions under the context of light-weight metrics program.  Group 1 stakeholders had 

similar opinion with stakeholders in group 3 under the context of light weight metrics 

program.  Group 1 and 3 had contrasting opinions with respect to the other two positions.  

The four stakeholders from group 4 attacked all three alternatives. 

 

 

 



 

 

64 

 
Figure 4.9. Objective Function Values Plotted Against the Iteration Count 

 

 

 

Table 4.3. Four Polarization Groups Identified by Framework in Experiment I 

Polarization 

groups 

Comprehensive 

metrics program 

Light weight 

metrics 

program 

No 

metrics 

program 

Stakeholders 

Group 1 -0.3176 0.7687 0.3881 S4, S18, S21, 

S23 

Group 2 0.5022 -0.0841 -0.6036 S6, S7, S8, 

S12, S14, S24 

Group 3 0.7129 0.0220 -0.3222 S1, S2, S3, S5, 

S10, S11, S13, 

S15, S16, S22 

Group 4 -0.3665 -0.5872 -0.2860 S9, S17, S19, 

S20 

 

4.6.2.3.1 Analysis and discussions. Figure 4.10 presents the opinion vectors of 

the 24 stakeholders that were plotted in a 3-dimensional co-ordinate system with position 

1, position 2 and position 3 as the axis.  Position 1, position 2 and position 3 refer to 

comprehensive metrics program, light weight metrics program and no metrics program 

respectively in Figures 4.10 and 4.11.  Figure 4.11 presents the opinion data of the 24 
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stakeholders that were plotted after the framework was applied to the collected data.  

Each polarization group is represented in a different color and a different symbol.  These 

plots also provide more insight on the polarization groups. 

 

 

 

 
Figure 4.10. Opinion Vectors of Stakeholders Plotted in Three Dimensional space before 

Polarization Assessment 

 

 

 

 
Figure 4.11. Polarization Groups Identified by the Framework in Experiment I 
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Table 4.4. Each Stakeholder’s Degree of Membership in All Four Polarization Groups 

Stakeholders Polarization 

group 1 

Polarization group 

2 

Polarization 

group 3 

Polarization 

group 4 

S1 0.003718 0.080492 0.910671 0.005118 

S2 0.021965 0.261014 0.686536 0.030485 

S3 0.00132 0.016425 0.980567 0.001687 

S4 0.367586 0.202437 0.188603 0.241374 

S5 0.033895 0.263294 0.643013 0.059798 

S6 0.010391 0.821822 0.149782 0.018005 

S7 0.072309 0.475887 0.323848 0.127956 

S8 0.023642 0.742382 0.167901 0.066075 

S9 0.064793 0.346609 0.188301 0.400297 

S10 0.005732 0.052765 0.934514 0.006989 

S11 0.002985 0.031865 0.961423 0.003727 

S12 0.028761 0.639512 0.28445 0.047277 

S13 0.079695 0.294606 0.532597 0.093102 

S14 0.019747 0.479735 0.454579 0.045939 

S15 0.012211 0.4535 0.516165 0.018125 

S16 0.026053 0.257002 0.684736 0.03221 

S17 0.211625 0.153088 0.156209 0.479078 

S18 0.642739 0.100943 0.106787 0.149532 

S19 0.084737 0.125322 0.096394 0.693547 

S20 0.018217 0.049499 0.035057 0.897227 

S21 0.975055 0.00813 0.008987 0.007827 

S22 0.00132 0.016425 0.980567 0.001687 

S23 0.742631 0.087334 0.109836 0.060199 

S24 0.001358 0.966495 0.029186 0.002961 

 

Table 4.4 presents degree of membership of the stakeholders in all four 

polarization groups.  For example, stakeholder S9 had a membership of 0.064793 in 

group 1, 0.346609 in group 2, 0.188301 in group 3 and 0.400297 in group 4.   S9 had the 
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highest membership in group 4 when compared to the degree of membership with other 

groups.  S9 belonged to all the polarization groups however, S9 had highest membership 

with group 4. 

Polarization group 1 and group 2 had contrasting opinions, stakeholders S4, S18, 

S21, S23 were from group 1 and had contrasting opinion with the stakeholders S6, S7, 

S8, S12, S14, S24 in group 2.  Stakeholder S4 belonged to group 1 and shared opinion 

with group 1 with a degree of membership of 0.367586, and 0.202437 with group 2.  We 

understand that although S4 is from group 1, shared opinion with group 2 to a degree of 

0.202437.  Another interesting example from Table 4.4 is stakeholder S14 who shared 

opinion with group 2 with a degree of 0.479735 and 0.454579 with group 3.  The 

membership values of S14 for group 2 and 3 are very close.  Stakeholders from group 3 

or the polarization leader from group 3 can possibly pursue S14 to join their polarization 

group and extend S14s’ support.  One can also understand that S14 belongs to group 2, 

however S14 also had a strong affinity for group 3 as well.  At the same time stakeholder 

S24 belongs to group 2, S24 had a membership of 0.966495 in group 2 and 0.001358 in 

group 1.  We can conclude that S24 strongly belonged to group 2 compared to S4 who 

weakly belongs to group 1 and group 2. 

Figure 4.12 presents the membership plot of the twenty-four stakeholders in the 

decision making group.  Every stakeholder has membership values for polarization 

groups.  The highest membership value of a stakeholder among all his/her membership 

values is presented in Figure 4.12.  Some stakeholder such as S3, S10, S11, S21, S22 and 

S24 strongly belong to a polarization group and they have weak degree of membership 

with other polarization groups. The rest of the stakeholders have relatively lower 

membership values in a polarization group, and they actually share opinion and belong to 

other polarization groups to a good degree of membership. 
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Figure 4.12. Each Stakeholder’s Highest Degree of Membership among all his 

Memberships in Polarization Groups 

 

 

 

Table 4.5 presents the opinion dissimilarity measurement of the polarization 

groups.  Since the centroid of each polarization group is the opinion of that group, the 

Information from Table 4.5 explains the closeness among the polarization groups in 

terms of opinion for the given decision making issue.  Larger the distance value between 

polarization groups, more dissimilar the polarization groups are under their opinion for 

the given decision making issue.  For example, stakeholders from group 3 may pursue 

stakeholders in group 2 and converge to one group.  Since group 2 and group 3 are close 

in terms of their opinion. 

 

 

 

Table 4.5. Dissimilarity among the Polarization Groups 

 Group 1 Group 2 Group 3 Group 4 

Group 1 0 1.5436 1.4574 1.5150 

Group 2 1.5436 0 0.3672 1.0529 

Group 3 1.4574 0.3672 0 1.2399 

Group 4 1.5150 1.0529 1.2399 0 
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Based on the membership value of a stakeholder in each polarization group, 

stakeholders are ranked. 

 

 

 

Table 4.6. Ranked List of Stakeholders Based on Their Degree of Membership 

Polarization 

group 1 

Polarization  

group 2 

Polarization  

group 3 

Polarization 

group 4 

S21 S24 S3 S20 

S23 S6 S22 S19 

S18 S8 S11 S17 

S4 S12 S10 S9 

S17 S14 S1 S4 

S19 S7 S2 S18 

S13 S15 S16 S7 

S7 S9 S5 S13 

S9 S13 S13 S8 

S5 S5 S15 S23 

S12 S2 S14 S5 

S16 S16 S7 S12 

S8 S4 S12 S14 

S2 S17 S4 S16 

S14 S19 S9 S2 

S20 S18 S8 S15 

S15 S23 S17 S6 

S6 S1 S6 S21 

S10 S10 S23 S10 

S1 S20 S18 S1 

S11 S11 S19 S11 

S24 S3 S20 S24 

S3 S22 S24 S3 

S22 S21 S21 S22 
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Table 4.6 presents the stakeholders ranked list in the descending order for all the 

polarization groups. The ranked list is arranged from top to bottom in the descending 

order. Stakeholder S21 in polarization group 1 had the highest membership value in 

group 1, and S22 had the lowest membership value in group 1. 

Stakeholder S21 is ranked number one in polarization group 1 however S21 is 

ranked last in group 2 and group 3.  A decision maker can correlate the opinion of each 

polarization group and the ranked list presented in Table 4.6 for more information on 

social dynamics in the decision making group. By further analyzing the information from 

Table 4.6, one can generate the top – k list of stakeholders from each polarization group 

based on the degree of membership.  This information can be used to identify the top-k 

stakeholders who have the highest degree of membership with each polarization group.  

K value is assumed as four, since c is four.  Although there is no association between the 

variables c and k, we could also generate the top – 6 stakeholders from each polarization 

group.  The framework can even generate the bottom k stakeholders from each 

polarization group.  One can even use the information from Table 4.7 for identifying the 

polarization leader in each group.  A polarization group leader is a stakeholder from a 

polarization group who leads a group.  We could assign stakeholder with highest degree 

of membership as a leader of that group. 

 

 

 

Table 4.7. Top K List of Stakeholders from Each Group Based on Their Rank 

Polarization groups Top K Stakeholders in the group 

Polarization group 1 S21, S23, S18, S4 

Polarization group 2 S24, S6, S8, S12 

Polarization group 3 S3, S22, S11, S10 

Polarization group 4 S20, S19, S17, S9 

 

 

 

We could further analyze the information from Table 4.6 and Table 4.7 and check 

for the overlapping or rankings of a stakeholder in multiple polarization groups.  For 

example from Table 4.6, stakeholder S16 had a rank of 12 in both polarization groups 1 
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and 2.  Similarly S11 had a rank of 21 in polarization groups 1, 2, 4 and S21 had a rank of 

24 in group 2 and 3. 

The information provided by this method offers a great insight in to the social 

dynamics of the decision making group.  The four stakeholders in the polarization group 

4 from experiment I do not support any position provided to them.  The decision maker 

might use this information and request those stakeholders to come up with a new position 

that they think might be more suitable to the given decision making issue.  The six 

stakeholders in group 2 and ten stakeholders in group 3 share similar opinion with respect 

to comprehensive metrics program. Since majority of the stakeholders support this 

alternative, the decision maker might choose to make the decision based on this.  From 

Figure 4.12 the decision maker can understand and identify stakeholders who have high 

and low degree of memberships.  The decision maker might possibly also look in and 

understand to which stakeholder can be pursued more comfortably in case they had to 

purse stakeholders during the decision making process.  The information produced by the 

approach which is presented in Table 4.3, Table 4.4, Table 4.5, Table 4.6, Table 4.7, 

Figure 4.10, Figure 4.11 and Figure 4.12 can help decision makers and stakeholders to 

take more informed decisions. 

 

4.6.2.4 Experiment 2. Selecting the suitable software metrics program for 

software development in a medium scale organization is the second decision issue.  

Stakeholders exchanged 314 arguments in the second week on the second issue of 

experiment using the intelligent argumentation system.  The framework was then applied 

on the tree with c = 4 as input.  The framework produced output after the objective 

function in fuzzy c-means algorithm stabilized after twenty-one iterations.  Figure 4.13 

shows the objective function value plotted against the iteration count. 
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Figure 4.13. Objective Function Values Plotted Against the Iteration Count 

 

 

 

Table 4.8. Polarization Groups Identified by the Method from Experiment II 

Polarization 

groups 

Comprehensive 

metrics program 

Light 

weight 

metrics 

program 

No 

metrics 

program 

Stakeholders 

Group 1 0.8387 0.2598 0.3457 S8, S17, S20, S21 

Group 2 0.7918 -0.3518 0.6152 S1, S2, S5, S7, S9, 

S10, S11, S12, 

S13, S15, S16, S22 

Group 3 -0.6207 0.4604 -0.4039 S18, S19 

Group 4 0.4352 -0.1981 0.5325 S3, S4, S6, S14, 

S23, S24 

 

 

 

4.6.2.4.1 Analysis and discussions. Opinions of the polarization groups produced 

by the framework are presented in Table 4.8.  The four stakeholders in group 1 strongly 

supported comprehensive metrics program, weakly supported light weight metrics 

program, and no metrics program.  Polarization groups 2 and 4 shared similar opinions. 

Group 2 however, strongly supported and group 4 weakly supported comprehensive 
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metrics program.  At the same time, group 2 weakly attacked, and group 4 had very weak 

attack for light weight metrics.  Stakeholders in group 3 had a completely contrasting 

opinion with the opinions of the group 2, and 4.  Polarization group 3 supported light 

weight metrics and attacked comprehensive and no metrics program.  Decision makers 

now have an opportunity for closely investigating the opinion of group 2.  Because, group 

2 had highest number of stakeholders.  A decision maker can understand the similarities 

between the opinions of group 2 and 4.  One might even predict that the polarization 

groups 2 and 4 may converge at some point.  Within the context of argumentation process 

in a political environment, one might understand that groups 2 and 4 might form a 

coalition.  Stakeholders S18 and S19 in group 3 only supported light weight metrics 

program.  The decision maker might predict the post-decision effects on these 

stakeholders based on the decision made.  Stakeholders in the decision making group can 

possibly understand the personal incentives or benefits of those two stakeholders in 

supporting light weight metrics program. 

 

 

 

 
Figure 4.14. Opinion Vectors of Stakeholders Plotted in Three Dimensional Space before 

Polarization Assessment 
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Figure 4.14 shows the opinion vectors of the stakeholders plotted in a 3 – 

dimensional coordinate space.  We have three alternatives for the issue and the opinion 

vector consists of three elements.  Each element represents favorability for an alternative.  

Hence, we have a 3 – dimensional figure.  Figure 4.15 shows the four polarization groups 

that were identified.  Each group is represented by a different color and a shape.  The x-

axis, y-axis, and z-axis represent comprehensive metrics program, light weight metrics 

program and no metrics program respectively in Figures 4.14 and 4.15.  Centroids of the 

polarization groups are also presented in Figure 4.15.  Figure 4.15 is best viewed in color. 

Table 4.9 presents degree of membership of stakeholders’ in the polarization 

groups.  Table 4.9 helps the decision maker understand the affinity of a stakeholder for 

each polarization group.  Stakeholders S18 and S19 shared similar opinion and they are 

from polarization group 3 who attacked light weight metrics program.  Polarization 

groups 1, 2 and 4 however, are in favor of light weight metrics program.  S18 had a 

stronger affinity for group 3 over S19 whose degree of membership is lower than S18.  

Stakeholders in a polarization group share similar opinion however, their affinity for 

groups might be varying. 

 

 

 

 
Figure 4.15. Polarization Groups Identified By the Framework in Experiment II 
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From Table 4.9, we understand that stakeholders from group 4 had strong affinity 

with their own group.  It may be difficult for stakeholders from group 4 to converge with 

the opinion of group 2. 

 

 
 

Table 4.9. Each Stakeholder’s Degree of Membership in All Four Polarization Groups 

Stakeholders Group 1 Group 2 Group 3 Group 4 

S1 0.066309 0.564548 0.007758 0.361385 

S2 0.15174 0.602358 0.014526 0.231377 

S3 0.02336 0.077697 0.004414 0.894529 

S4 0.176516 0.16427 0.29305 0.366164 

S5 0.079482 0.771355 0.007121 0.142042 

S6 0.022661 0.066392 0.003128 0.907819 

S7 0.035881 0.740234 0.004514 0.219371 

S8 0.767019 0.124634 0.013667 0.094681 

S9 0.135102 0.513536 0.046085 0.305277 

S10 0.024032 0.917903 0.002872 0.055192 

S11 0.030108 0.832204 0.003572 0.134115 

S12 0.144465 0.64284 0.010414 0.202281 

S13 0.023056 0.908369 0.003591 0.064985 

S14 0.062764 0.099469 0.006549 0.831218 

S15 0.010061 0.966701 0.001044 0.022194 

S16 0.132405 0.610679 0.028726 0.22819 

S17 0.868031 0.064921 0.009006 0.058041 

S18 0.043175 0.034691 0.870638 0.051496 

S19 0.16046 0.108674 0.587603 0.143263 

S20 0.462958 0.150185 0.02771 0.359147 

S21 0.471298 0.153726 0.179534 0.195442 

S22 0.004483 0.984292 0.000536 0.01069 

S23 0.050795 0.089029 0.012478 0.847698 

S24 0.037005 0.108505 0.009782 0.844707 
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Information from Table 4.9 possibly helps decision makers to predict the mobility 

of stakeholders within polarization groups. We learn that, even if polarization groups are 

close or similar in their opinions, groups may not converge on some opinions. 

Figure 4.16 presents the highest degree of membership of stakeholders among 

his/her membership values in all polarization groups.  The x-axis presents the stakeholder 

identification number and the y-axis presents the membership value. 

 

 

 

 
Figure 4.16. Each Stakeholder’s Highest Degree of Membership among all his 

Memberships in Polarization Groups 

 

 

 

Table 4.10 illustrates dissimilarity among polarization groups identified in the 

argumentation process. Smaller distance value between groups signifies groups are closer 

in their opinion.  In the argumentation process stakeholders may change their opinions. 

The groups identified by the framework are very dynamic by nature.  Similarly, distance 

between the groups change dynamically. Table 4.11 presents stakeholders in each 

polarization group based on their rank. Ranked lists are generated based on the degree of 

membership of stakeholders in each group.   
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Table 4.10. Dissimilarity among the Polarization Groups 

 Group 1 Group 2 Group 3 Group 4 

Group 1 0 0.6699884 1.6528729 0.6382624 

Group 2 0.6699884 0 1.9218194 0.3970221 

Group 3 1.6528729  1.9218194 0 1.5573670 

Group 4 0.6382624 0.3970221 1.5573670 0 

 

 

 

Ranked list is arranged from top to bottom in Table 4.11.  Stakeholders S17, S22, 

S18 and S6 have the highest degree of membership in polarization groups 1, 2, 3 and 4 

respectively. S17, S22, S18 and S6 are ranked one in the polarization groups respectively.  

Stakeholder S22 is ranked last in groups 1, 3 and 4. Because S22’s degree of membership 

in groups 1, 3 and 4 are lowest.  Stakeholder S18 has lowest degree of membership in 

group 2.  A decision maker can correlate the opinion of each polarization group and the 

stakeholders in ranked list and understand the rationale behind stakeholder’s degree of 

membership. A leader from each polarization group can analyze and understand the 

ranked list and participate in the argumentation process accordingly.  Stakeholders with a 

high degree of membership in a polarization group, usually tend to have low degree of 

membership in other groups. This is logically sound. Because, the aggregate of 

membership values of a stakeholder in all the polarization groups is always equal to 1. 

Further analyzing information in Table 4.11, one can generate the top – k list and 

the bottom – k list of stakeholders from each polarization group based on the degree of 

membership. Table 4.12 presents the top – k list of stakeholders from Table 4.11.   

Analyzing a ranked list and top – k list of the stakeholders from each polarization group 

are different possible ways in analyzing the information. 
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Table 4.11. Ranked List of Stakeholders Based on Their Membership in Each Group 

Polarization  

group 1 

Polarization  

group 2 

Polarization  

group 3 

Polarization  

group 4 

S17 S22 S18 S6 

S8 S15 S19 S3 

S21 S10 S4 S23 

S20 S13 S21 S24 

S4 S11 S9 S14 

S19 S5 S16 S4 

S2 S7 S20 S1 

S12 S12 S2 S20 

S9 S16 S8 S9 

S16 S2 S23 S2 

S5 S1 S12 S16 

S1 S9 S24 S7 

S14 S4 S17 S12 

S23 S21 S1 S21 

S18 S20 S5 S19 

S24 S8 S14 S5 

S7 S19 S7 S11 

S11 S24 S3 S8 

S10 S14 S13 S13 

S3 S23 S11 S17 

S13 S3 S6 S10 

S6 S6 S10 S18 

S15 S17 S15 S15 

S22 S18 S22 S22 
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Table 4.12. Top K List of Stakeholders from Each Group Based on Their Rank 

Polarization groups Stakeholders 

Polarization group 1 S17, S8, S21, S20 

Polarization group 2 S22, S15, S10, S13 

Polarization group 3 S18, S19, S4, S21 

Polarization group 4 S6, S3, S23, S24 

 

 

 

From Table 4.11, S12 ranks eighth in polarization group 1 and group 2.  

Stakeholder S22 ranks least in groups 1, 3 and 4.  S22 has same rank in groups 1, 3 and 4.  

From Table 4.12, one can find S21 ranks third in polarization group 1 and ranks fourth in 

the third polarization group.  So, S21 is in the top k list of the two polarization groups.  If 

one uses Table 4.12 information for polarization leader assessment, then S21 has good 

chances of being a leader in polarization group 1, group 3 or both. 

 

4.6.2.5 Experiment 3. Selection of a suitable software metrics program for 

software development in a small scale organization.  Same set of stakeholders exchanged 

176 arguments in the third week of experiment and constructed an argumentation tree.  

The framework was then applied on the tree and the framework produced polarization 

assessment information. C value was provided as four and the system produced four 

polarization groups.  After twenty-three iterations the objective function value in the 

fuzzy c-means clustering algorithm was stabilized and the four clusters were produced by 

the system.  Figure 4.17 illustrates the objective function values plotted against the 

iteration count. 
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Figure 4.17. Objective Function Values Plotted Against the Iteration Count 

 

 

 

Table 4.13 presents both the polarization group information and the stakeholders 

in each group.  The opinion of polarization group 1 and group 2 were similar.  Group 1, 

however weakly supported and group 2 had medium support for the comprehensive 

metrics program.  There were ten stakeholders in group 2 and six in group 1.  The three 

stakeholders in group 3 supported comprehensive metrics program, no metrics program 

and attacked light weight metrics program.  Stakeholders in group 3 and group 4 had 

completely contrasting opinions.  Group 3 stakeholders attacked light weight metrics 

while group 4 stakeholders strongly supported light weight metrics program.  From Table 

4.13 one can understand that sixteen stakeholders altogether supported comprehensive 

metrics program and attacked light weight metrics program and no metrics program.  No 

two groups had shared same opinion with same strength.  Because, each individual in a 

group has unique thoughts and preferences. 
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Table 4.13. Four Polarization Groups Identified in Experiment III 

Groups Comprehensive 

metrics program 

Light 

weight 

metrics 

program 

No 

metrics 

program 

Stakeholders 

Group 1 0.1412 -0.3631 -0.6936 S1, S2, S3, S5, S9, S11 

Group 2 0.4859 -0.4062 -0.3973 S4, S6, S7, S10, S12, S15, 

S17, S21, S22, S24 

Group 3 0.1136 -0.5150 0.3081 S13, S16, S23 

Group 4 -0.3290 0.8150 -0.6566 S8, S14, S18, S19, S20 

 

 

 

4.6.2.5.1 Analysis and discussion. Figure 4.18 presents the opinion of twenty 

four stakeholders in the three dimensional space, and Figure 4.19 presents the four 

polarization groups that are produced by the framework.  Each polarization group is 

represented by a different color and a symbol.  In Figure 4.19, we can clearly identify the 

four polarization groups that were separated and the centroid of the polarization groups.  

It is also interesting to see the similarity of the opinion between the stakeholders rather 

than just looking in to the similarity between the groups.  Figures 4.18 and 4.19 help us in 

understanding the social dynamics that exist among the stakeholders and polarization 

groups.  From Figure 4.18, one can identify that data instances in some areas are denser 

than others. 
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Figure 4.18. Opinion Vectors Plotted in Three Dimensional Space before Polarization 

Assessment 

 

 

 

 
Figure 4.19. Polarization Groups Identified by the Framework in Experiment III 
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Table 4.14. Each Stakeholder’s Degree of Membership in All Four Polarization Groups 

Stakeholders Group 1 Group 2 Group 3 Group 4 

S1 0.528969 0.282258 0.149189 0.039585 

S2 0.820777 0.13061 0.026625 0.021988 

S3 0.840177 0.126731 0.019501 0.013591 

S4 0.058591 0.91423 0.021974 0.005205 

S5 0.871446 0.083482 0.028168 0.016903 

S6 0.209016 0.595462 0.133559 0.061963 

S7 0.19047 0.7492 0.047927 0.012403 

S8 0.14994 0.144968 0.123818 0.581274 

S9 0.616079 0.188771 0.099032 0.096118 

S10 0.309594 0.585871 0.085458 0.019076 

S11 0.721712 0.240129 0.024678 0.013481 

S12 0.152758 0.727372 0.091889 0.027982 

S13 0.135651 0.176181 0.615575 0.072593 

S14 0.209014 0.19013 0.101489 0.499367 

S15 0.058403 0.908283 0.026544 0.00677 

S16 0.08337 0.183783 0.712917 0.01993 

S17 0.22567 0.658491 0.078144 0.037695 

S18 0.030519 0.022795 0.019103 0.927583 

S19 0.224934 0.135551 0.115132 0.524382 

S20 0.001341 0.00098 0.000742 0.996936 

S21 0.376506 0.493723 0.0908 0.038971 

S22 0.058591 0.91423 0.021974 0.005205 

S23 0.028017 0.04174 0.919501 0.010742 

S24 0.138118 0.819122 0.029215 0.013546 

 

 

 

Table 4.14 presents degree of membership of the twenty-four stakeholders in each 

polarization group.  The membership of each stakeholder from experiment to experiment 

was different and this completely depends on the opinion of a stakeholder.  In addition, as 
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stakeholders interact in the dialogue process, stakeholders might change their opinions.  

Hence their degree of membership in each polarization group changes dynamically. 

Figure 4.20 illustrates the highest degree of membership value of each stakeholder among 

all the membership values a stakeholder has with each polarization group.  The x-axis in 

Figure 4.20 presents the stakeholder identification number and y-axis represents the 

membership value from 0 to 1.  In the first experiment we realized that there were more 

number of stakeholders who were having membership to a polarization group with a 

value greater than 0.9.  The number of stakeholders with a membership value greater than 

0.9 has come down from experiment 2 to experiment 3.  This is one of the important 

observations that were recorded from our experiments. 

 

 

 

 
Figure 4.20. Each Stakeholder’s Highest Degree of Membership among all his 

Memberships in Polarization Groups 

 

 

 

Table 4.15 presents the opinion dissimilarity measurement among the polarization 

groups.  Polarization groups 1 and 2 are close in terms of their opinion.  In fact, the 

dissimilarity score between these two polarization groups was lowest of all in Table 4.15.  

The distance between the opinion of polarization group 3 and 4 was the highest in the 

table, the higher the value is the more dissimilar are the groups in terms of their opinion. 
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   Table 4.15. Dissimilarity among the Polarization Groups 

 Group 1 Group 2 Group 3 Group 4 

Group 1 0 0.4565845 1.0135276 1.2690062 

Group 2 0.4565845 0 0.8050055 1.4908481 

Group 3 1.0135276 0.8050055 0 1.7015995 

Group 4 1.2690062 1.4908481 1.7015995 0 

 

 

 

Based on the membership value of a stakeholder in each polarization group, 

stakeholders are ranked in Table 4.16.  Ranked list is arranged from top to bottom in the 

descending order. Stakeholder S5 has the highest degree of membership and S20 has 

lowest degree of membership in polarization group 1. 

By further analyzing the information from Table 4.16, the system generates the 

top – k list of stakeholders from each polarization group based on the degree of 

membership.  This information can be used to identify the top – k stakeholders who have 

the highest degree of membership with each polarization group.  In this experiment, the 

stakeholders in the top k list are unique.  A stakeholder in one list (Top – k list) is not 

present in another list.  See Table 4.17. 
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Table 4.16. Ranked List of Stakeholders Based on Their Degree of Membership 

Polarization 

group 1 

Polarization 

group 2 

Polarization 

group 3 

Polarization 

group 4 

S5 S4 S23 S20 

S3 S22 S16 S18 

S2 S15 S13 S8 

S11 S24 S1 S19 

S9 S7 S6 S14 

S1 S12 S8 S9 

S21 S17 S19 S13 

S10 S6 S14 S6 

S17 S10 S9 S1 

S19 S21 S12 S21 

S6 S1 S21 S17 

S14 S11 S10 S12 

S7 S14 S17 S2 

S12 S9 S7 S16 

S8 S16 S24 S10 

S24 S13 S5 S5 

S13 S8 S2 S3 

S16 S19 S15 S24 

S4 S2 S11 S11 

S22 S3 S4 S7 

S15 S5 S22 S23 

S18 S23 S3 S15 

S23 S18 S18 S4 

S20 S20 S20 S22 
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Table 4.17. Top K List of Stakeholders Based on the Ranks in Each Polarization Group 

Polarization groups Stakeholders 

Polarization group 1     S5, S3, S2, S11 

Polarization group 2 S4, S22, S15, S24 

Polarization group 3 S23, S16, S13, S1 

Polarization group 4 S20, S18, S8, S19 

 

 

4.7. FINAL REMARKS 

Clearly from the experiments we have realized that the method that is proposed in 

this chapter has provided more information than the framework [1] that was proposed 

earlier. This framework has provided the membership of each stakeholder in every 

polarization group.  Also the system provides a stakeholders’ highest membership value 

among all the membership values (in group), this explains the degree of overlap of a 

stakeholder’s participation in other groups as well.  The membership value of a 

stakeholder in the method proposed earlier [1] is either 0 or 1, however in this method the 

membership ranges from 0 to 1. The objective behind conducting these experiments is to 

evaluate the effectiveness of the proposed framework. 
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5. ASSESSMENT OF INDIVIDUAL THOUGHTS BY COLLECTIVE 

THOUGHTS 

 

 

 

5.1. PROBLEM DESCRIPTION 

Individual stakeholders express their viewpoints and opinions in their arguments; 

however opinion of the group i.e. the aggregate thought of group on that argument should 

be fully analyzed and understood before a decision is made in a collaborative decision 

making process. Some arguments might be controversial and others might be not 

trustworthy. They may receive many supporting or attacking arguments. Computing the 

collective thoughts on arguments and identifying groups of those arguments which are 

highly agreed or attacked collectively is crucial in the collaborative decision making 

process. The collective thought of a group on an individuals’ opinions convey more 

information and presents collective assessment of that argument from the group’s 

perspective. 

A novel approach is developed to derive collective determination of an argument 

based on total support and attack that an argument receives in the argumentation tree.  

The collective determination value and the strength of an argument are used to analyze 

the relationship between aggregate thought and individual thought of arguments and 

cluster the arguments. The decision maker will be able to review clusters of arguments 

with opposing collective thoughts or supporting collective thoughts versus their 

individual thoughts.  Experiment is conducted to evaluate the proposed method, and the 

experimental results show that the proposed method is effective. 

 

5.2. SIGNIFICANCE OF THE PROBLEM 

Every argument posted by a stakeholder carries strength which is provided 

explicitly by the stakeholder.  Stakeholders can also post evidences supporting their 

arguments in the argumentation process. As the stakeholders attach more evidences 

supporting their arguments, the strength of the arguments will increase.  If an argument is 

being supported by several other arguments and evidences, it strengthens the argument.  

In practice, when an argument is posted by an individual, others tend to assess the 

argument by supporting and attacking based on their views.  It is difficult to assess 
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impact of an argument at low level in the tree on the argument which is at upper level in 

the tree.  Hence our method uses argument reduction fuzzy inference engine and 

computes impact of all the arguments that are connected directly and indirectly to an 

argument.  Although aggregate thoughts on solution alternatives can be computed and the 

most favorable solution alternative can be identified in the current system, a method 

needs to be devised to compute aggregate thoughts on individual arguments. 

Understanding relationships between individual opinions and collective opinions of 

arguments is important. This helps decision maker to make sound decisions. 

The proposed method derives the collective determination value of an argument 

node by aggregating the total support and the total attack of all its descendant argument 

nodes that are directly and indirectly associated.  The collective determination represents 

the summation of total support and total attack an argument receives from the rest of the 

group.  Although, the approach computes the collective determination values of all the 

arguments, it is more important to analyze and understand relationships between 

aggregate thoughts and individual thoughts on the arguments.   Therefore, we cluster the 

arguments based on relationships between the collective determination and strength of an 

argument employing the K-means clustering algorithm. The centroids produced for each 

cluster by the K-means clustering algorithm are further used to analyze the cluster of 

arguments that are supported and opposed by the collective opinions.  The information 

from the clusters of arguments might possibly provide the decision maker to deliberate 

these arguments against various alternative solutions. 

The analytic results on collective thoughts on arguments and relationships 

between individual opinions and collective opinions help decision makers to understand 

aggregate thoughts in a collaborative decision making process and allow participants to 

see what others think about their opinions. 

5.3. RELATED WORK 

According to Gilbert [82], “Collective action is interpreted as a matter of people 

doing something together, and it is assumed that this involves their having a collective 

intention to do that thing together”.  The theory of collective action exists in collective 

decision making, collaborative decision making, and argumentation process. For 

instance, if stakeholder S1 posts an argument Arg1 supporting alternative A1, and 
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stakeholders S2, S5, S7, attack the Arg1 with their arguments Arg2, Arg3, Arg4 

respectively.  Meanwhile, stakeholder S8 joins S2, S5, S7 and attacks Arg1 by supporting 

Arg4 by posting Arg5.  Stakeholders, S2, S5, S7, and S8 are collectively acting upon the 

argument posted by the stakeholder S1.  Argument Arg1 is being collectively assessed by 

arguments Arg2, Arg3, Arg4 and Arg5.  The proposed method derives the collective 

thoughts of Arg2, Arg3, Arg4 and Arg5 on Arg1.  The association between Arg1 and A1 

is collectively assessed by Arg2, Arg3, Arg4 and Arg5.  Individuals in a social group can 

also be motivated by providing social incentive in the form of respect, prestige, and other 

social and psychological objectives [83].  This is another reason to identify arguments 

with supporting collective thoughts and opposing collective thoughts. 

According to Rashotte [84], “Social influence is defined as change in an 

individual’s thoughts, feelings, attitudes, or behaviors that results from interaction with 

another individual or a group. Social influence is distinct from conformity, power, and 

authority”.  Kelman, in 1950s’ introduced a theoretical framework for the analysis of 

social influence in the social groups.  Kelman [85, 86] further classified the social 

influence in to compliance, identification and internalization. In the argumentation 

system, the social influence occurs through the arguments posted by the individuals.  

From the dynamic social impact theory of Latane [50], we understand that influence is 

one of the crucial factors in the group processes.  Macy, James and Flache in their article 

[62], present the research on the dynamics of influence and attraction among the agents in 

a network.  “Formally, social pressure on agent i to adopt a binary states (where s = +1 or 

-1) is the sum of the states of all other agents j, conditioned by the weight (Wij) of the 

dyadic tie between I and j (-1.0<Wij<1.0)” [62]. 

      (6) 

 

s = +1 or -1, which signifies that the social pressure could be both ways, and it 

could be for good cause or a bad cause.  The intelligent argumentation system is based on 

the fuzzy systems, where the strength of the argument ranges from [-1, +1].  Since the 

social pressure in argumentation system is through arguments, we intend to derive the 

collective thoughts on the arguments. 
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According to Scheuer et al. [87, 88], discussion assessment drives for improving 

successful knowledge sharing, resolution of the conflicts among the stakeholders and 

responsiveness of the participants.  There are different ways to find and analyze the 

credibility of posts in Web-blogs, and discussion forums. Earlier, some researchers 

suggested to provide user ratings to the posts based on which the posts are rated on a 

scale.  There are some discussion forums on the Web, where the posts can be rated by a 

stakeholder and hence the collective assessment of that post is quantified. However it 

does not consider the negative rating provided by the stakeholders who may contradict 

that post. The collective viewpoint on an individual thought may force others to read that 

post.  

The content quality assessment in collaborative systems is a challenging issue, 

when the contributions made by the stakeholders are in natural language. It is difficult to 

assess the quality of the contribution; however with the participation of the stakeholders 

for rating a post, the collaboration tool [88] evaluates the quality of each and individual 

post at the content level. Scheuer et al. [88] presented an argumentation system in the 

education domain for students. They presented an approach for assessing the quality of 

the content in a post. A student rates argument posted by other students and this helps all 

the participants to understand the quality of a post in the argumentation system [88]. The 

idea of peers evaluating a post is good, but however not all the stakeholders may be 

interested in evaluating the post. Few researchers are working in the area of text analytics 

for argumentation [89, 90, 91, 92]. Text analytics to resolve argumentation challenges 

would be interesting to see. 

5.4. METHOD FOR ASSESSING AGGREGATE THOUGHTS ON INDIVIDUAL 

ARGUMENTS 

5.4.1. Deriving Collective Thoughts on an Argument. Figure 5.1 presents the 

method.  Since the collective thoughts on an argument can only be assessed and analyzed 

collectively by the group, the collective determination value is derived from the 

arguments posted by the individuals in that group.  The total support an argument 

receives in the argumentation tree is called the collective support and the total attack an 

argument receives is called the collective attack.  The collective determination of an 

argument is the aggregate of collective support and collective attack. 

 



 

 

92 

Collective determination of an argument = (Total collective support of an 

argument) + (Total collective attack of an argument) 

 

An argument with positive value of collective determination illustrates that the 

argument has more support than attack from the collective thoughts.  An argument with 

negative value of collective determination presents that the argument has more attack 

than support from the collective thoughts of stakeholders through their arguments.  In 

case if an argument has a collective determination value equivalent to zero, this signifies 

that the aggregate of collective support and collective attack have neutralized the value or 

the argument has no support or attack from other arguments in a tree.  In sub-section 

2.2.3, the fuzzy heuristic rules and the fuzzy inference system are used to compute the 

favorability factor of an alternative. In this section we present a detailed example to show 

how the fuzzy inference system is used to derive the collective thoughts on an argument.  

Figure 5.1 presents a sample argumentation tree consisting of an alternative and nine 

different arguments.  The arguments Arg1, Arg5, Arg6, Arg8 and Arg9 in Figure 5.1 are 

the leaf arguments that are not supported or attacked by other arguments in the tree, the 

collective determination for these arguments is zero.  The collective determination of 

Arg3 is the strength of Arg5 and the collective determination of Arg7 is the aggregate of 

strengths of Arg8 and Arg9.  In the intelligent argumentation system, the strength of the 

argument is bound to range from -1 to +1. 
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Figure 5.1. Collective Assessment of Arguments and Classification of Arguments Based 

on Relationships between Individual Opinion and Aggregate Opinions 
 

 

 

From Figure 5.2, Arg8 and Arg9 are indirectly associated to Arg4 through Arg7.  

To compute the collective determination for Arg4, the fuzzy inference system will reduce 

arguments Arg8 and Arg9 to one level, where Arg8, Arg9 are directly related to Arg4.  

The strength of arguments Arg7 and Arg8 are provided as inputs to the argument 

reduction fuzzy inference engine, and inference engine will provide new strength of 

argument Arg8 which is now directly associated with argument Arg4.  The association 

between Arg7 and Arg4 are considered during the reduction process.  Similarly, the 

strengths of argument Arg7 and Arg9 are also provided as inputs to the argument 

reduction fuzzy inference engine, and the fuzzy inference engine will produce a new 

strength of argument Arg9, and now argument Arg9 is directly associated with argument 

Arg4.  All the descendant arguments of Arg4 are child arguments, Arg8, Arg9, Arg6 and 

Arg7 are directly associated with argument Arg4. To derive the collective determination 

of argument Arg4, the system aggregates the new strength of arguments Arg8, Arg9 with 

the strength of argument Arg6 and Arg7. The collective determination is derived for 

every argument in the argumentation tree. After computing the collective determination 

value of the arguments, the system normalizes the data using the min-max normalization 
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technique.  Eq. (7) is used to normalize the obtained data; we assign new_max A to +1 

and new_min A to -1, since we want the new data to be normalized to -1 to +1. 

       

    (7) 

 

 

 

 
Figure 5.2. Sample Argumentation Tree 

 

 

 

5.4.2. Classification of Arguments Based on the Relationship between 

Individual and Aggregate Thoughts. In this section, we explain how to classify 

arguments and identify the cluster of arguments with opposing collective thoughts and 

cluster of arguments with supporting collective thoughts. A stakeholder presents his view 

point in the argumentation process, and other stakeholders collectively either oppose or 

support the argument with their thoughts.  We are interested in two types of clusters (see 

Table 5.1), 

- Individual view point with opposing collective thoughts – The 

individual view point represented by an argument is opposed collectively by 

other stakeholders.  In this case, the collective thoughts of the stakeholders 

oppose the individual argument. 

- Individual view point with supporting collective thoughts – The 

individual view point represented by an argument is supported collectively by 

other stakeholders.  In this case, the collective thoughts of the stakeholders 

support the individual argument. 
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Table 5.1. Cluster Labels for Identification of Arguments with Opposing and Supporting 

Collective Thoughts 

Strength of Argument  Collective determination Cluster labels 

-1 -1 Individual view point with 

opposing collective thoughts 1 -1 

-1 1 Individual view point with 

supporting collective thoughts 1 1 

 

 

 

The collective determination value and the strength of an argument are the 

attributes in the K-means clustering algorithm [3].  Each cluster is analyzed by referring 

the centroid of a cluster. The Euclidean distance metric is used for similarity 

measurement among the data instances in the K-means clustering algorithm [3]. 

 

x = Strength of an argument 

y = Collective determination of an argument 

  

                               (8) 

 

 

 

 
Figure 5.3. After Argumentation Inference Process 

 

 

 

Figure 5.3 shows a sample argumentation tree, the relationship between Argument 

1 and Position 1 is strong support, which is assessed by the association between 

Argument 1 and the collective thoughts from Argument 2, Argument 3, and Argument 4.  
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The clustering algorithm accepts the arguments itself as the input for clustering along 

with K as the number of clusters.  The output of the algorithm is K clusters with the given 

arguments grouped based on the similarity measurement.  The centroid of each cluster 

represents the cluster. K-means clustering algorithm provides the flexibility to the 

decision maker in providing the number of clusters required to see in the given 

argumentation tree data.  After running the clustering algorithm over the tree, every 

argument that is posted will be classified under a cluster.  Every cluster centroid has the 

collective determination of the argument and the strength of an argument.  For example, 

if the centroid of a cluster is (0.9, 1.0), this signifies that the arguments or viewpoints in 

this cluster are supported by the collective thoughts.  There might be several other types 

of clusters as well.  The classes of clusters presented in Table 5.1 can be further classified 

with several linguistic labels such as strong opposing collective thoughts, weak 

supporting collective thoughts [93]. 

 

5.5. EVALUATION 

5.5.1. Background. The dataset in this experiment is from Satyavolu [8].  The 

decision making issue in this experiment is the selection of software metrics program for 

a large scale organization.  No metrics program, light weight metrics program, and 

comprehensive metrics program are the three different alternative solutions provided. 

5.5.2. Classification of Arguments. The argumentation tree consists of 204 

arguments.  The argumentation system has computed the collective determination value 

of all 204 arguments in the tree. The K-means clustering algorithm was run on the data 

for nine clusters.  The cluster centroids are presented in Table 5.2.  Figure 5.4 illustrates 

the nine clusters produced by the K-means clustering algorithm.  

The arguments or the individual viewpoints are analyzed after the K-means 

clustering algorithm has produced the clusters.  Cluster 8 contains ten arguments which 

are supported by the collective thoughts. The four arguments in cluster 7 are also 

supported by the collective thoughts from the group.  The remaining arguments in the 

argumentation tree are opposed by the collective thoughts.   
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Table 5.2. Cluster Centroids Produced by the K-means Clustering Algorithm 

 Argument 

strength 

Collective 

determination 

Cluster 1 -0.6724 -0.0028 

Cluster 2 -0.7500 -0.8814 

Cluster 3 -0.8417 -0.0039 

Cluster 4 -1.0000 -0.0483 

Cluster 5 0.7988 -0.0560 

Cluster 6 -0.7571 -0.2532 

Cluster 7 -0.2750 0.0203 

Cluster 8 0.7900 0.4269 

Cluster 9 -0.4600 -0.0300 

 

The ten arguments in cluster 8 are moderately supported by the collective 

thoughts.  The two arguments in cluster 2 are strongly opposed by the collective thoughts, 

and it might be helpful for the decision makers to overview these arguments.  It can 

provide more insight in to the problem, and get more understanding on why those two 

arguments were strongly opposed by the collective thoughts. The decision maker can 

identify the stakeholders behind the opposing or supporting collective thoughts, with 

added analytical ability the decision maker might also investigate further on the personal 

incentives or benefits of the stakeholders on opposing those individual viewpoints.  

Arguments in cluster 1, cluster 3, cluster 4, cluster 5, cluster 6 and cluster 9 are weakly 

opposed by the collective thoughts.  The weight of the arguments in cluster 8 as 

represented by the centroids is 0.7900 and the collective determination is 0.4269, which 

signifies that the collective thoughts are supporting only to certain degree.  In the best 

case, possibly a group of arguments could be supported by the collective thoughts with a 

collective determination of 1.  The classes of cluster labels can be further classified based 

on how strong or how weak the collective thoughts are opposing and supporting.  This 

information could also provide the stakeholders with a good feedback about the 

arguments they have posted.  They could understand the arguments that are in the interest 

of the group collectively.  In several situations, as the argumentation discourse continues, 
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the discussion evolves and the tree grows largely, it is very difficult to keep track of all 

the arguments, and it is crucial to see the group of arguments that have been supported 

with collective thoughts. 

 

 
 

 
Figure 5.4. Clusters of Arguments (best viewed in color) 

 

 

 

Figure 5.4 presents the nine clusters produced by the proposed method, the 

horizontal axis is the strength of the argument i.e. the individual opinions and the vertical 

axis is the collective determination i.e. the collective thoughts. 
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6. IDENTIFYING OUTLIER OPINIONS IN ARGUMENTATION TREE 

 

 

 

6.1. PROBLEM DESCRIPTION 

In a collaborative dialog process, stakeholders exchange both their views and 

opinions.  The intelligent argumentation system allows a group of stakeholders to post 

their decision making issues, solution alternatives (positions), and exchange arguments 

over those alternatives to reach consensus.  In the dialog process, as stakeholders 

exchange arguments, some change their opinions, some strengthen their opinions, and 

some weaken their opinions [48]. Each stakeholder’s opinion within the argumentation 

process must be considered for collaborative decision support. 

Argumentation is an important step in a collaborative decision making group.  In 

the decision making group, stakeholders form communities and polarize on their 

opinions.  Some stakeholders approach the problem very uniquely.  Their opinions are 

further away from either any another stakeholder or polarization group within the opinion 

dimensionality. Those opinions are referred as the outlier opinions, as they are very 

different from the individual opinions of the group. According to Hawkins [94], “Outliers 

are observations which deviate significantly from other observations as to arouse 

suspicion that these are generated by a different mechanism.”  In face-to-face discussions, 

participating stakeholders can understand the social dynamics within their group.  

Participants with some analytical ability might be able to identify his peers with outlier 

opinion. Our objective is to incorporate this feature in computer enabled collaborative 

argumentation systems. 

By identifying the outlier opinions, the decision maker can closely investigate the 

arguments posted by that stakeholder. The decision maker can also encourage discussions 

on outlier opinions and this can refine the opinions of the stakeholders based on the 

outlier opinion. More discussions leverage in refining the opinions and building 

consensus within the group. Both the decision maker and the decision making group are 

responsible for understanding the underlying semantics of the outlier opinion. For 

example, if an outlier opinion is not in the interest of the organization and promoting 

extreme ideology. The decision maker can take relevant action against the owner of that 
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outlier opinion. This problem is new to the argumentation system’s domain. Few 

researchers are working on identifying either the extreme opinions found on Web-blogs 

and other social media such as YouTube [95]. 

The identification of outlier opinions in the argumentation process is very useful.  

This information can help the decision maker in taking more appropriate actions during 

the decision making process.  The information produced by the proposed framework 

helps the group to understand if they have reached an agreement in the context of 

decision issue. Opinions of the stakeholders are initially scattered in the opinion 

dimensionality. In a dialogue process, the decision making group might converge with 

the stakeholder with outlier opinion or they may even diverge. This result, however, helps 

a decision making group explore opinions as well. Using the information from the 

framework, the group might converge or diverge with the outlier opinions. In many 

situations during the argumentation process, stakeholders form polarization groups, and 

these groups influence others.  In some instances a stakeholder’s opinion might be further 

from any other individual in the decision making group in the opinion dimensionality. 

Earlier argumentation systems never had this functionality. In a large 

argumentation process, when several stakeholders participate, contributing hundreds and 

thousands of arguments, both computing and analyzing the aggregate opinion of every 

stakeholder could be challenging. In this dissertation, a unique framework is presented to 

identify both stakeholders with outlier opinions and stakeholders with inliers opinions. 

This framework can address the above mentioned challenge. 

A framework was previously developed to identify polarization groups in an 

argumentation system [4].  This framework is based on the similarity measurement.  The 

framework in this chapter, however considers the dissimilarity of each stakeholder’s 

opinion. Along with the dissimilarity between opinions, the mean opinion of the group is 

used to generate ranked list of stakeholders based on their dissimilarity values. We do not 

state that the outlier opinion is either a good opinion or a bad opinion to the decision 

making group within the context of a decision making issue. Our framework only 

identifies the outlier opinion.  It is up to the decision making group on how to use the 

outlier opinions information. 
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The process of this framework is carried out in two folds (methods) for 

identifying outlier opinions. First, the outlier opinions are identified based on the 

aggregate opinion of a stakeholder. These opinions are computed by aggregating the 

strengths of the arguments posted by a stakeholder.  In the second approach, the outlier 

opinions are identified based on the collective assessment scores received by a 

stakeholder through arguments. The collective assessment value of arguments are derived 

and aggregated.  The aggregated collective assessment value of a stakeholder is used to 

identify the outliers.  The results produced by these two methods are later analyzed and 

compared. A simple, distance-based outlier detection algorithm is implemented to 

identify both the outlier’s and inlier’s opinions in the intelligent argumentation system. 

An individual’s viewpoint is essentially, an individual’s belief in an opinion 

vector. A collective viewpoint is an entire group’s belief in an individual’s opinion.  

Unique thoughts from the minority of participants in the decision making group needs to 

analyzed. Analyzing the outlier opinions can accelerate new discussions and possibly 

refine the stakeholder’s opinions.   

The following sections present the literature work, the proposed framework 

followed by experiments.  

6.2. RELATED WORK 

This section presents a brief state-of-the-art literature on opinion mining and 

analysis followed by a brief survey on outlier detection techniques. 

6.2.1. Opinion Mining and Analysis. This section provides a brief overview on 

opinion mining and classification in social networks. 

The textual information on Web can be broadly classified in two categories: facts 

and opinions [96]. Jindal and Liu [97] researched on opinion mining and analysis. Their 

primary objective was to detect and analyze the opinion spam written by reviewers on 

several products. They grouped reviews into three categories, namely Type 1(untruthful 

opinions), Type 2 (reviews on brands only), and Type 3 (non-reviews). Jindal and Liu 

have labeled some of the type 2 and type 3 reviews manually in order to carry out 

supervised learning. Labeling type 1 reviews was a challenging issue. Jindal and Liu 

performed analysis on the amazon data using Jaccard distance to identify the duplicate 

and near duplicate reviews. Spam reviews may exist in both duplicate and non-duplicate 
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reviews. To identify type 2 and type 3 reviews, they build a model using logistic 

regression. They claim that the logistic regression worked well over support vector 

machine and naïve Bayesian classification. The logistic regression outputs the probability 

likelihood of a review being spam. Jindal and Liu [97] identified type 1 based reviews by 

dividing reviews into positive spam review and negative spam review. They are also 

classified on good quality, bad quality and average quality.  Further, reviews are analyzed 

by identifying duplicate and non-duplicate reviews. 

Bermingham et al. [95], researched sentiment analysis in social networking to 

explore potential for online radicalization. Bermingham et al. use the dictionary-based 

polarity scoring method to assign positivity and negativity scores to YouTube profiles 

and comments for the sentiment analysis. These scientists used automated crawlers which 

crawl across YouTube and collect data. User comments and user profile information were 

collected. These scientists developed a sentiment analysis engine earlier for analyzing 

blogs and they used the same system was used to analyze the YouTube data. The 

sentiment analysis engine [95] generates a score for each document based on the text 

parsing. It will compute the scores considering the positive and negative oriented terms in 

a document. There are two types of scores: positive sentiment score and negative 

sentiment score. Term frequency, document frequency and user frequency were used to 

computer the sentiment scores. The sentiment analysis scores are used in the social 

media. 

Tang and Fong [98] in their article mentioned that the relations between users on 

social media sites often indicate correlation (negation) between user’s opinions. Tang and 

Fong [98] studied the sentiment diffusion in large social networks. They researched the 

sentiment of people in social networks on several products, brands, politicians and so 

forth. Tang and Fong [98] claim that the polarity (sentiment) must be computed for a 

person rather than a document (comment). Capturing sentiment in a social group on Web 

is challenging since, it is hard to identify the hidden sentiment in the social context. Also 

the labels of the training data are not available which is difficult to do it manually [98]. In 

their model, unlabeled users and user’s tweets are used from the network and the 

unlabeled data is predicted using multiclass SVM. In the model it is assumed that, 

influence is between the nodes only occurs within distance of 1. 



 

 

103 

Rabelo et al. [99], proposed a method for collective sentiment analysis which 

primarily considers social connections on social networks than processing text analytics. 

The researchers have evaluated their method by running it on political opinion analysis 

on twitter. A text based classifier was used to label the initial set of nodes for training 

purposes. A relational neighbor classifier combined with a relaxation labeling technique 

in order to perform the collective classification was used. Initially a text classifier will 

assign score by analyzing the text in a post. These scores represent labels which are then 

used for training purposes. In the second step, the collective classification algorithm 

receives the graph and the training labels for classification purposes. 

Gokulkrishnan et al. [100], researched about sentiment and opinion analysis on 

twitter data. They used different classifiers to perform this task and evaluated their 

models based on the precision and recall. The objective behind their experimentation was 

to identify classifier that classifies tweets based on the expressed sentiment as neutral, 

polar and irrelevant. Polar is further classified into positive and negative. Gokulkrishnan 

[100] have conducted their experiments using several classifiers such as Naïve Bayes, 

Naïve Bayes multinomial, SVM, Random Forest and many more. They conclude that 

classifiers SVM and Random Forest performed well over other classifiers. 

King et al. [101], present a survey of computational approaches used in social 

computing. Connectivity, collaboration and community [101] are the three characteristics 

that capture the essence of social computing. 

Opinion analysis on movie reviews, product reviews, twitter data for political 

analysis and so forth are performed. Opinion analysis on blogs was also carried out but 

very less focus has been given to argumentation research for opinion and sentiment 

analysis. Research in social networks is carried out from community detection, 

polarization analysis, to viral marketing from social science perspective. Research on 

polarization analysis [1, 4] and argument analysis [6] has begun. But, research areas such 

as outlier opinion analysis in argumentation needs much more attention. 
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6.2.2. Outlier Detection Algorithms. Hawkins [94] stated that “Outliers are 

observations which deviate significantly from other observations as to arouse suspicion 

that these are generated by a different mechanism.”  Outlier detection techniques are 

crucial in data mining applications.  Outlier detection algorithms have been utilized well 

in complex network systems. 

In this dissertation, we intend to use the outlier detection techniques in the 

argumentation network. Several supervised outlier detection techniques and unsupervised 

outlier detection techniques are well explored and used across several domains. 

Supervised outlier detection algorithms work by training data with the existing 

data labels provided.  Unsupervised outlier detection techniques are more suitable in our 

application, as data labels are not available with the data. Most of the data that we work 

on is unlabeled. Gogoi et al. [102] broadly classified the outlier techniques into distance-

based, density-based, and machine learning-based techniques. There are several other 

distance based statistical approaches and fuzzy logic based techniques to identify outliers.  

Several outlier detection algorithms such as K-nearest neighbor’s method [103], local 

distance-based methods [104, 105], density-based outlier detection algorithms [106], 

evolutionary [107], Gaussian model, and LOF family of methods [108, 109, 110, 111] are 

well researched. Angle based outlier detection techniques [112] work by computing the 

dissimilarity among data points.  This dissimilarity is computed using the angle between 

objects.  These techniques work efficiently when the data consists of several dimensions. 

In social data based applications, this type of algorithms may be suitable. They are 

specially designed, however for data with large dimensions.  The Euclidean distance 

metric can be used to compute the dissimilarity (i.e., distances between the objects). 

 

6.3. FRAMEWORK 

Figure 6.1 illustrates the proposed framework for both identifying and assessing 

outlier opinions in an argumentation process. 

An argumentation tree is provided as input for not only processing but also 

analyzing the arguments. The framework will generate the ranked lists of stakeholders’ 

opinions. Framework identifies outlier opinions based on stakeholder’s individual 

viewpoint as well as from the collective viewpoint.  Method 1 discusses how the outlier 
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opinions are identified from the individual viewpoint.  Method 2 discusses how the 

outlier opinions are identified from the collective viewpoint of individual’s. 

 

 

 

 
Figure 6.1. Framework for Identifying Outlier Opinions in the Argumentation System 

 

 

 

6.3.1. Method 1 – Individual Viewpoint. In method 1, the system first computes 

the aggregate favorability of every stakeholder across each position in the argumentation 

tree. The argumentation inference system developed in our previous research [43, 49] is 

used to compute the aggregate favorability. 

Step 1 - After the argumentation tree is constructed by the stakeholders, the 

framework is applied on the argumentation tree. In the first step of this framework, the 

system carries out the argumentation reduction inference process using the fuzzy 
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argumentation reduction inference system on the argumentation tree. This process is 

conducted to compute a stakeholder’s opinion.  

The fuzzy argumentation reduction inference system is built upon the four fuzzy 

heuristic rules (section 2.2.3). In the argumentation tree, the arguments are either directly 

associated or indirectly associated with their respective positions. After the 

argumentation reduction process, arguments are directly associated with their respective 

positions. Initially, all arguments that are indirectly associated with the alternative in the 

argumentation tree are reduced to one level. This process is conducted until all arguments 

are directly associated with its alternative. This process is conducted with an argument 

reduction fuzzy inference system [43, 49]. 

The framework proposed in this chapter employs an argumentation reduction 

fuzzy inference engine to compute a stakeholder’s favorability for an alternative. In 

Figure 6.2, stakeholder S2 has contributed three arguments under position 1. While one 

argument is directly associated with position 1, the other two are associated with the 

arguments posted by stakeholder S1. 

The fuzzy inference rules are used for the argumentation reduction process. The 

association between (Arg1, position 1) and (Arg4, Arg1) are considered for using the 

appropriate fuzzy inference rules, see Figure 6.2 and Figure 6.3.  Based on the suitable 

fuzzy inference rule, Arg4 is reduced level by level such that it is directly associated to 

Position 1. The same procedure was conducted for Arg6.  The system ensures that all 

arguments posted by a stakeholder are directly associated with an argument. The 

argument-based fuzzy inference system then reassesses the strengths of the arguments 

based on the inference rules.  The new strength that an argument is assigned is relative to 

the solution alternative. 

See Figure 6.3 for the argumentation tree after the fuzzy inference process.  The 

favorability of stakeholder S2 for position 1 is the aggregate of the argument’s strength: 

Arg4, Arg2, and Arg6 (see Figure 6.3).  Similarly, the favorability of stakeholder S2 for 

positions 2 and 3 are derived. 
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Figure 6.2. Argumentation Tree before Argumentation Inference 

 

 

 

 
Figure 6.3. Argumentation Tree after Argumentation Inference 

 

 

 

Step 2 - After the argumentation reduction inference process, the strength of the 

arguments posted by a stakeholder is aggregated to compute the overall favorability of a 

stakeholder for that alternative. The system then computes the stakeholder’s favorability 

for each position to compute a stakeholder’s favorability for that position. The 

argument’s strengths posted by a stakeholder under a position are aggregated after the 

inference process.  This aggregation is conducted to compute the aggregate trust of a 

stakeholder for that position. The trust of all stakeholders is computed with respect to 

each position posted in the argumentation tree. 

The favorability of a stakeholder for all of the alternatives is represented as a 

vector. This vector is known as an opinion vector.  Each element in the opinion vector 

presents the favorability of a stakeholder for a position. 
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Step 3 - The favorability of a stakeholder for all of the positions is represented as 

a vector, also known as an opinion vector.  Each element in the vector represents a 

stakeholder’s trust in the position.  The opinion vectors can be represented in the opinion 

dimensionality. The opinion vectors are normalized using the min-max normalization 

technique (Eq. 1). For example, stakeholder S2’s opinion can be represented as (x1, x2, 

x3), where x1, x2, and x3 represent S2’s favorability for position 1, position 2, and 

position 3 respectively. 

 

          (9)  
 

 

Where min A and max A represent the minimum and the maximum values in the 

data set, respectively.  We assign new_max A to +1 and new_min A to -1, as we want the 

new data to be normalized within the range of -1 and +1. 

Step 4 - The distance-based outlier detection algorithm (Algorithm 3) will be 

applied on the vectors to generate a ranked list. The ranked list is generated based on the 

opinion vector’s distance with the mean opinion of the group. A simple distance based 

outlier detection algorithm was implemented on the opinion vectors.  Several distance-

based techniques can also be used here.  The algorithm initially computes the mean 

vector using the input vectors provided.  The algorithm next computes the distance from 

each opinion vector to the mean opinion.  The distance value presents the dissimilarity 

between each input opinion vector and the mean opinion vector. After the distance values 

are obtained, the opinion vectors are arranged in a descending order to present the ranked 

list. 
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                              (10) 

 

Step 5 - This step discusses the ranked list generated in the last step. The ranked 

list generated in the previous phase is used to analyze the results. The top stakeholder 

(opinion) in the list represents the opinion furthest from the mean opinion of the group.  

The last element in the generated list represents the opinion closest to the mean opinion 

of the group.  This list helps both decision makers and stakeholders better understand the 

argumentation process within the context of outlier opinions.  The top – K list of outlier 

opinions can also be generated using the list produced in the last step.  The top – K values 

in the list would be the top – K outlier opinions; the rest would be the inliers opinions. 

6.3.2. Method 2 – Collective Viewpoint. In order to detect outlier opinions of 

participants from a collective perspective, we will first compute the collective trust 

received by a stakeholder’s arguments under a position and aggregate all collective trust 

values received by that stakeholder under each position. 

Step 1 - After the argumentation process, the argumentation reduction inference 

process is conducted using the fuzzy argumentation reduction inference system. Each 

argument’s collective determination value will be derived using the inference system 

(Figure 6.4). In method 1, the argumentation reduction process was conducted on a tree 

alternative.  Here, however, the argumentation reduction process is conducted on each 

and every argument to compute the favorability of each argument from other arguments 

Algorithm 3 - Distance Based Dissimilarity Algorithm 

 

Input:    Opinion vectors 

Output: Ranked list of opinions based on the farthest from 

the mean opinion of the group. 

 

Step1 – Compute the mean vector (X) of the input opinion 

vectors (Y). 

Step2 – Compute the Euclidean distance (Eq. 10) from the 

mean opinion vector and all input opinion vectors. 

Step3 – Sort and generate the ranked list based on the 

distance between opinion vector and mean vector. 
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in the tree. The four fuzzy heuristic rules (section 2.2.3) are used in the fuzzy inference 

system. 

 

 

 

 
Figure 6.4. Computing Collective Determination of Arguments 

 

 

 

Step 2 - In this step, the collective determination values of all arguments are 

aggregated for each stakeholder under a position. The aggregate collective determination 

of a stakeholder on all positions is derived. Collective determination scores of each 

stakeholder are represented as a vector. This process will be conducted for all the 

arguments and stakeholders in the argumentation process. 

Each element in a vector represents the aggregate collective determination that a 

stakeholder’s arguments have received under a position.  The vectors are then normalized 

using the min-max normalization technique (Eq. 9) to attain consistency in the data.  A 

detailed explanation is provided on how the collective trust value of an argument is 

derived using the argumentation inference engine in earlier section.  

The total collective determination received by a stakeholder under a position 

represents the support received by that stakeholder under that position.  This process is 

conducted for all stakeholders across all positions posted under an issue in the 

argumentation tree. The distance-based outlier detection algorithm (Algorithm 1) is used 

here to produce the ranked list of outlier opinions from the collective viewpoint. 
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Step 3 - Collective determination values of stakeholders, across all positions, are 

represented as vectors. A collective determination vector of a stakeholder has three 

elements if there are three different positions in a tree.  Each element represents the 

aggregate collective determination value that a stakeholder’s arguments have received 

under a position.  For example, stakeholder S3’s collective determination vector can be 

represented as (c1, c2, c3), where c1, c2, and c3 represent the aggregate collective 

determination that S3’s arguments received from other arguments under position 1, 

position 2, and position 3, respectively. 

Step 4 - The distance-based outlier detection algorithm presented in algorithm 3 is 

employed here to identify both the inlier and the outlier opinions. 

Step 5 - The ranked list generated in the last step is used to analyze the results. 

The top stakeholder (opinion) in the list represents the opinion furthest from the mean 

opinion of the group.  The last element in the generated list represents the opinion closest 

to the mean opinion of the group.  The list generated here is from the group’s perspective. 

In some cases, a few stakeholders may not have presented their opinion in the 

argumentation system.  If a stakeholder has not participated in the argumentation process, 

the system cannot process this stakeholder’s opinion.  This is not the framework’s 

problem. However, the system currently assigns the opinion value as zero when a 

stakeholder has not presented his opinion. 

 

6.4. EVALUATION 

This section presents two different small scale studies carried out at Missouri 

University of Science and Technology. The first study was conducted in 2010 and the 

second study was conducted in the year 2013. Results in the second study are validated 

by the participants. 
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6.4.1. Empirical Study 1. An experiment was conducted in early 2010 [8] by 

recruiting twenty-four students from the software engineering class. Students were 

provided with the case study, a decision issue, and positions pertaining to the case study.  

Students participated in the argumentation process using the intelligent argumentation 

system. The data in these experiments is from real discussions. 

6.4.1.1 Objective. The objective of this experiment is to evaluate the proposed 

framework and identify the outlier and inliers opinions based on the two methods 

presented and evaluate the results produced. 

6.4.1.2 Case study. This experiment was based on a hypothetical case study.  The 

subject of the case study was the adoption of software metrics during a software 

development life-cycle. A large, private organization was working on a special project 

which is important.  The adoption of software metrics program is important. Selecting the 

appropriate metrics package was a decision challenge provided to the decision making 

group.  After the argumentation system was provided to the stakeholders, stakeholders 

spent more than one week exchanging arguments.  A tree with 204 arguments was built 

by the stakeholders. 

Issue - Selection of software metrics program for a large scale organization for the 

given project described in the given case study. 

Positions 

Comprehensive metrics program 

Light metrics program 

No metrics program 

Sample arguments - The following two arguments are sample arguments posted 

by stakeholders in the tree. These arguments were randomly chosen. Each is directly 

attacking the no metrics program. 

Argument 1 - A large organization will have huge projects and huge number of 

employees. If there is no metric program in place it might be very difficult to     

1. Manage the effort and productivity of the employees.     

2. Determine and improve quality of the product.     

3. Make proper estimation for the future projects 
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Argument 2 - To improve the quality of software products it is crucial to enhance 

the quality of the software process used to develop it. The primary target for any 

organization in the competitive world is to improve it sales which signifies that the 

organization should produce quality products. To improve the quality of software 

products it is important to enhance the quality of the software processes used to develop 

software. In a large scale organization to enhance the quality of software process each 

tasks needs to be performed with at most care by assigning the tasks to respective people.  

So it has huge number of employees. In order to have good communication and co-

operation between all the employees we need good software metrics. 

6.4.1.3 Experiment procedure. Initially, the twenty-four stakeholders in the 

decision making group were provided with both the decision-making issue and the 

relevant positions posted in the argumentation tree. Stakeholders exchanged arguments 

over different positions for one week. After the argumentation tree was constructed, the 

developed framework was applied on the argumentation tree.  Both the individual 

perspective and the collective perspective sub-frameworks were applied on the tree.  This 

framework then produced the results explained in detail in the following sub-sections. 

6.4.1.4 Results. The following results were produced using method 1 (individual 

method) in the framework of an argumentation tree constructed by twenty-four 

stakeholders. Figure 6.5 is a three-dimensional plot, where position 1, position 2, and 

position 3 represent the x-axis, y-axis, and z-axis, respectively. Each data point represents 

an opinion across the three axes.  

Figure 6.6 represents a three-dimensional figure plotted after the framework was 

applied on the argumentation tree. The data points in blue are the outlier opinions in 

Figure 6.6.  The top-5 outliers from the ranked list are included as well. 
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Figure 6.5. Individual Opinion Vectors Plotted on 3-D Plot 

 

 

 

Table 6.1 presents the ranked list of stakeholder opinions.  Table 6.1 presents 

outliers and inliers opinions based on the individual method. S18 is the opinion of 

stakeholder number eighteen. Stakeholder S18 ranks one in the outlier ranked list, while 

stakeholder S7 is ranked one in the inlier’s ranked list. Stakeholder S18’s opinion is 

furthest from the mean opinion of the group, while stakeholder S7’s opinion is closest to 

the mean opinion of the group. 

 

 

 

 
Figure 6.6. Outlier Opinions Identified By the Framework Based On the Individual 

Method 
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Table 6.1. Ranked List of Stakeholders with Outlier and Inlier Opinions Based on the 

Individual Method 

Ranked list of outliers based on the 

farthest opinion from the mean 

opinion of the decision making group 

Ranked list of inliers based 

on the closest opinion from 

the mean opinion of the 

decision making group 

S18, S19, S21, S23, S9, S17, S12, 

S20, S16, S2, S8, S5, S4, S14, S15, 

S1, S10, S11, S22, S3, S24, S6, S13, 

S7 

S7, S13, S6, S24, S3, S22, 

S11, S10, S1, S15, S14, S4, 

S5, S8, S2, S16, S20, S12, 

S17, S9, S23, S21, S19, S18 

 

 

 

A decision maker can also generate the top-K list of stakeholders, with both 

outlier and inlier opinions, using the results in Table 6.1.  Table 6.2 presents the results 

by the framework when K = 5.  The results in Tables 6.1 and 6.2 were generated 

according to stakeholder’s opinions. 

 

 

 

Table 6.2. Top-K Stakeholders with Outlier Opinions Based on the Individual Method 

Stakeholders 

with outliers 

opinions 

Stakeholders with inliers 

opinions 

S18, S19, S21, 

S23, S9 

S17, S12, S20, S16, S2, S8, 

S5, S4, S14, S15, S1, S10, 

S11, S22, S3, S24, S6, S13, S7 

 

 

 

The results in Tables 6.3 and 6.4 were produced with the collective outlier method 

in the framework on the argumentation tree. This method identified outliers based on the 

collective determination factor of each stakeholder across all positions. Tables 6.3 and 

6.4 present the outlier opinions in a decision making group from the group’s perspective. 
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Figure 6.7. Collective Opinion Vectors Plotted On 3-D Plot 

 

 

 

Figure 6.7 presents the stakeholders’ vectors. These vectors were computed from 

the collective determination received on stakeholder’s opinion by the group. Figure 6.8 

presents a three-dimensional figure of the top-5 outlier opinions identified by the 

collective outlier identification method. The blue data points are the outlier opinions; the 

rest are the inlier opinions. 

 

 

 

 
Figure 6.8. Outlier Opinions Identified By the Framework Based On the Collective 

Method 
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Table 6.3 presents the ranked list of both stakeholders with outlier opinions and 

stakeholders with inlier opinions. Stakeholder S20’s opinion is an outlier with respect to 

the group’s opinion and is ranked one. S2’s opinion is ranked one in the inlier’s list. The 

results in Table 6.3 are from the collective perspective of the group. Table 6.4 presents 

the top-5 list of outliers. The remaining are identified by the group as inlier opinions. 

Figure 6.8 was plotted according to the results from Table 6.4. 

 

 
 

Table 6.3.Ranked List of Stakeholders with Outlier and Inliers Opinions Based on the 

Collective Method 

Ranked list of outliers based 

on the farthest opinion from 

the mean opinion of the 

decision making group 

Ranked list of inliers based 

on the closest opinion from 

the mean opinion of the 

decision making group 

S20, S8, S23, S17, S22, S19, 

S12, S21, S13, S24, S5, S10, 

S9, S3, S4, S16, S11, S6, S14, 

S1, S18, S7, S15, S2 

 

S2, S15, S7, S18, S1, S14, 

S6, S11, S16, S4, S3, S9, 

S10, S5, S24, S13, S21, S12, 

S19, S22, S17, S23, S8, S20 

 

 
 

Table 6.4. Top-K Stakeholders with Outlier Opinions Based on the Collective Method 

Outliers Inliers 

S20, S8, S23, S17, 

S22 

 

S19, S12, S21, S13, 

S24, S5, S10, S9, S3, 

S4, S16, S11, S6, S14, 

S1, S18, S7, S15, S2 

 

 

6.4.1.5 Analysis and discussions. Table 6.5 presents further analysis of the 

results produced by both methods. 
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Table 6.5. Ranked List of Outliers Based on both Individual and Collective Methods 

Ranked list of outliers based on the farthest 

opinion from the mean opinion of the 

decision making group based on the 

stakeholders’ individual opinions. 

Ranked list of outliers based on the 

farthest opinion from the mean opinion 

of the decision making group based on 

stakeholders’ collective determination 

values. 

S18 S20 

S19 S8 

S21 S23 

S23 S17 

S9 S22 

S17 S19 

S12 S12 

S20 S21 

S16 S13 

S2 S24 

S8 S5 

S5 S10 

S4 S9 

S14 S3 

S15 S4 

S1 S16 

S10 S11 

S11 S6 

S22 S14 

S3 S1 

S24 S18 

S6 S7 

S13 S15 

S7 S2 
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We could use this information to determine both the ranking and the overlap of 

rankings in the outlier opinion ranks (e.g., see rank 7 in Table 6.5). Stakeholder S12’s 

opinion is ranked as outlier number seven from both the individual method as well as the 

collective determination method. 

 

The following four different cases can be analyzed: 

 From an individual’s perspective, his opinion is an outlier. From the 

collective perspective, his opinion is not an outlier. 

 From an individual’s perspective, his opinion is not an outlier. From a 

group’s perspective, his opinion is not an outlier. 

 From an individual’s perspective, his opinion is an outlier. From the 

group’s perspective, his opinion is an outlier. 

 From an individual’s perspective, his opinion is not an outlier. From the 

group’s perspective, his opinion is an outlier. 

 

The results presented in Table 6.5 will fall into one of the cases explained above. 

This classification provides a better understanding of the opinions in a decision making 

group. It also allows to better understand the dynamics involved in a decision making 

group during an argumentation process. 

The results produced by the proposed framework helps both a decision maker and 

the decision making group not only analyzes the results but also make more informed 

decisions. These results can also help decision makers understand the overall group 

opinion, inliers, and outlier opinions. The decision maker can also discuss outlier 

opinions with various stakeholders.  

We do not claim that a stakeholder with an outlier opinion is either good or bad. 

Our model simply identifies the outlier opinions and allows the group to decide on how 

best to use this information. 

 

6.4.2. Empirical Study 2 

6.4.2.1 Background. In this experiment fourteen students from the e-commerce 

business class were recruited to participate in our study.  The fourteen students played the 
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role of stakeholders and participated by posting arguments in the argumentation tree.  The 

team of fourteen stakeholders were provided with the background case study and the 

decision making issue to be resolved. After participating for around ten days, an 

argumentation tree was constructed which consisted of thirty five arguments. 

6.4.2.2 Case study. The issue was about the death of Aaron Swartz [56, 57].  

Aaron Swartz was an American computer programmer, writer, political organizer and 

internet activist.  He founded the online group demand progress, known for its campaign 

against the stop online piracy act.  Aaron was charged for downloading thousands and 

millions of articles illegally from JSTOR archive using MIT’s open network.  If proven 

to be guilty Aaron would face up to thirty five years of prison and a fine up to $1 million.  

On January 11
th

, 2013 two years of after his arrest, Aaron had hanged himself in his 

apartment. 

Issue – What happened with Aaron Swartz? Who is at fault for Aaron Swartz 

killing himself? 

Position 1 – The laws, attorneys and MIT who pushed the case? 

Position 2 – Not anybody’s fault.  It’s not the Government’s or MIT’s fault in 

anyway.  The rules have to be followed in any means. 

6.4.2.3 Objective and framework. The objective of this experiment was to 

evaluate the outlier detection assessment framework with a real world issue. The 

participating stakeholders were provided with a detailed background about the case and 

how to use the system. Each stakeholder was provided with a unique username and 

password to log-on to our intelligent argumentation system to participate in the 

discussion. Around ten days of time was given to the stakeholders to participate in the 

dialog process. After the discussion process, the outlier detection assessment framework 

was run on the discussion tree to identify the outlier opinions.  The results generated by 

the framework were given to the stakeholders to validate. 

6.4.2.4 Process and observations. The fourteen stakeholders participated in the 

discussion process using the intelligent argumentation system which was followed by the 

application of outlier detection framework on the discussion.  The top K value was 

provided as three when the framework was used on the argumentation tree.  The 

framework identified three outlier opinions and the participants associated with those 



 

 

121 

opinions. Figure 6.9 presents the opinion vectors of participants computed by the 

framework which are plotted in the opinion dimensionality. The results generated by the 

framework were given to the stakeholders to validate. Please see Figure 6.10 for the 

validation results. After the framework generated the outlier opinion results, they were 

presented to the stakeholders as a survey. Eight participants agreed with the result 

produced by the system. Four participants were neutral in their opinion and two 

participants disagreed with the result. 

 

 

 

 

Figure 6.9. Opinion Vectors of Participants Plotted in the Opinion Dimensionality 

 

 

 

 

Figure 6.10. Outlier Opinion Detection Framework Results Validation by Participants 
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6.5. FINAL REMARKS 

The results produced by the proposed framework helps both a decision maker and 

the decision making group not only analyzes the results but also makes more informed 

decisions. These results can also help decision makers understand the overall group 

opinion, inliers, and outliers opinions. The decision maker can also discuss outlier 

opinions with various stakeholders. We do not claim that a stakeholder with an outlier 

opinion is either good or bad. Our model simply identifies the outlier opinions and allows 

the group to decide on how to use this information. 
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7. CASE STUDY AND EMPIRICAL STUDY OF INTELLIGENT 

ARGUMENTATION SYSTEM 

 

 

 

Section 7.1 in this chapter presents the air traffic management case study. Section 

7.2 presents the empirical evaluation which is conducted to compare the argumentation 

system and the email system for collaborative decision support. 

7.1. AIR TRAFFIC MANAGEMENT STUDY 

7.1.1. Introduction. In this section, we present an approach on how the intelligent 

argumentation based collaborative decision support system can facilitate resolution of 

conflicts in air traffic management.  It could enhance the Ground Delay Program (GDP) 

and help the Air Traffic Control System Command Center (ATCSCC) to take a better 

decision depending on the argumentation of Air Route Traffic Control Centers (ARTCC) 

and stakeholders from different airlines. 

Collaborative Decision Making (CDM) is one of the most important aspects in 

any industry. One such industry is air traffic management.  Every decision in this industry 

made is in a high-level, strategic scenario.  The National Airspace System (NAS) in the 

United States is the most complex aviation system in the world. It is divided into 21 

zones known as Air Route Traffic Control Centers (ARTCC). In this application 

environment, the stakeholders are geographically distributed across the country, and the 

decisions made are mission critical. 

In this section, we explain how the intelligent argumentation system can be used 

in enhancing the Ground Delay Program (GDP) by demonstrating the technique through 

a developed and tested hypothetical case study. The case study was carried out in a 

controlled environment in our laboratory. The decision making process in a GDP 

program involves stakeholders such as Air Traffic Control System Command Center, Air 

Route Traffic Control Center, Airlines and other NAS users. 
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7.1.2. Background. One of the primary objectives of Federal Aviation 

Administration (FAA) is to both plan and apply strategic initiatives to advocate 

anticipated demand-capacity imbalances at airports [113].  If an imbalance is expected at 

an airport, traffic managers apply ground delays to flights bound for the troubled airport 

commensurate with the delays they would receive in an airborne queue [114].  The FAA 

is responsible for handling ground delay program situations. Ground delay programs 

typically occur due to bad weather conditions. These bad weather conditions limit the 

number of flight operations possible. As flight operations are reduced, several airlines 

incur heavy financial losses. The current GDP rations the available arrival slots at the 

affected airport by scheduled arrival time of the flights with some adjustments.  These 

adjustments are made to balance the equity between airlines.  Current rationing rules do 

not take into account passenger flow efficiency in rationing assignment tradeoffs [118].  

Both Air Traffic Control (ATC) specialists and CDM participating airlines use Flight 

Scheduled Monitor (FSM), developed by Metron Aviation Inc., to both monitor and 

model traffic flow management.  Many scientists have examined different GDP rationing 

rules to achieve fairness among airlines. Fairness is interpreted as allocating delays 

equally among airlines. Several methods were used to determine how to distribute delays 

among airlines. 

The FAA command center also known as ATCSCC, other FAA facilities, and the 

airlines use a software program, Flight Schedule Monitor. The Flight Schedule Monitor 

software displays Airport Demand List (ADL) information, monitor the airport-traffic 

situation, and collaborate on other problems.  Flight Schedule Monitor both imports and 

displays ADL data. This list enables all FAA and airlines to view airport demand and 

capacity, to list flights, to produce flight counts and statistics, and to color-code flights 

according to a variety of fields.  Flight Schedule Monitor provides two displays: a very 

detailed timeline display and an aggregate bar graph. A situation that could require a 

ground delay program is indicated when the airport capacity line on the bar graph drops 

below a certain threshold [113]. 

None of these developed models consider the problems associated with the 

airlines.  Instead they pay strict attention to both the fairness and efficiency of the model.  

Airlines have a very limited opportunity to both discuss and argue with the FAA 
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command center for the slot allocations in the present system.  This is the major 

drawback of the existing systems. Air traffic flow management can be improved by 

generating better information.  This can be achieved by combining information generated 

by both FAA and NAS users, and distributing the same information both to FAA and 

NAS users [115]. The case study here examines how ATCSCC, ARTCC, and airlines 

participate in the discussion process for slot allocations using the intelligent 

argumentation system. 

 

7.1.3. Significance. The airline industry remains a large and growing industry.  

The central idea of the air transportation system is to be cost-effective, rapid, and safe 

transportation of both passengers and cargo.  It facilitates economic growth, world trade, 

and international investments.  The air transportation system is a significant engine of the 

national economy, providing a service that cannot be achieved by other modes of 

transportation [116]. During peak hours in air travel in the United States (US), 

approximately 5,000 flights per hour fill the sky. This number is equivalent to 

approximately 50,000 flights operating in National Air Space (NAS) every day. 

Ground Delay Program (GDP) was implemented to control air traffic volume 

around airports.  GDP is implemented when the projected traffic demand is expected to 

exceed the airport’s acceptance rate for a lengthy period of time.  Demand exceeding the 

acceptance rate is normally a result of the airport’s acceptance rate being reduced.  

Weather is the most common reason for a reduction in the acceptance rate.  Low ceilings, 

low visibility, snow, and thunderstorms are some of these. 

Between 1999 and 2006, averages of 960 GDP programs per year were declared 

around the United States.  During the first five months of 2007, more than 25 percent of 

domestic flights arrived more than 15 minutes late [117].  During the Ground Delay 

Program, the number of flights that should be operated must be reduced to a given level.  

The imbalance between demand for flights and available capacity is estimated to cost 

passengers between $3 billion and $5 billion a year in trip delays [118]. 

During the GDP program, the Air Traffic Control System Command Center 

(ATCSCC) needs to downsize the number of flight operations for each airline to achieve 

a balance between the demand for flights and the airport acceptance rate.  Thus, the 
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ATCSCC must make a reasonable solution to reduce the flight operations in each airline 

while maintaining fairness among all airlines.  The ATCSCC needs to ration the flights 

among all airlines.  Sometimes the airlines may not be happy with the number of flight 

operations allocated to them. 

The web-based intelligent computational argumentation-based conflict resolution 

system allows the airlines to argue the issues for which they are unsatisfied.  The 

following section focuses on a hypothetical case study, developed and tested on the 

intelligent argumentation system. This system introduces argumentation among the 

ATCSCC, the ARTCC, airlines and other National Air Space users.  By using intelligent 

argumentation system, the ATCSCC can better understand problems of airlines and other 

stakeholders through their arguments and take a better decision.  There will be an 

improvement in the quality of information exchange and it could possibly enhance the 

GDP planning process.  Ultimately, our system can improve collaborative decision 

making among stakeholders. 

 

7.1.4. Case Study. Let us suppose that, due to incremental weather conditions, a 

large-hub airport, such as Chicago ORD, decides to reduce its operational capacity.  This 

reduction will initiate the GDP program.  Reducing the flight operations will need to be 

discussed via a conference-call among stakeholders at ATCSCC.  In our case study, the 

ATCSCC will post both the issue and its possible positions in the intelligent 

argumentation system. Other stakeholders can also post their positions if they believe the 

positions meet the criteria set by the ATCSCC. 

7.1.4.1 The issue. Let us assume that the Chicago ORD airport has 100 flight 

operations per hour.  Due to the GDP program, these flight operations must be reduced to 

45 – 60 operations per hour.  The length of the GDP affected period is assumed to be one 

hour.  The GDP program is also assumed occur during the day.  Airlines1 has its hub in 

the Chicago ORD airport.  Airlines 3 operate more international flights than domestic 

flights during the GDP affected hour.  Table 7.1 illustrates all of the airlines involved in 

this case study.  

Table 7.1 illustrates that Airlines 1 is operating 40 flights per hour.  Airlines 2 has 

24 operations per hour, and Airlines 3 has 36 flight operations per hour.  Airlines 3 
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operate with more passengers over the other two airlines.  It also has more international 

than domestic flights during that GDP affected hour. 

 

 

 

Table 7.1. Flight Operations of Airlines 

Airlines Flight operations / hour 

Airlines 1 40 operations / hour 

Airlines 2 24 operations / hour 

Airlines 3 36 operations / hour 

 

 

 

7.1.4.2 The stakeholders. Stakeholders are individuals who either can affect or 

are affected by the achievement of an objective in a project.  We had five stakeholders 

involved in our decision making process.  ATCSCC was utilized as the command center.  

Their role was to manage the flow of air traffic within the continental United States.  

ARTCC was responsible for controlling the instrument flight rules for aircraft en route, in 

a particular volume of airspace, at high altitudes. We used three airlines: Airlines 1, 

Airlines 2, and Airlines 3.  Each stakeholder was given a priority in the system.  Priority 

value ranges between 0 and 1.  A higher value priority implied a higher influence in the 

decision making scenario. A lower value priority implied a lower influence.  This priority 

was used to assess the strength of an argument.  This influences the favorability factor of 

an alternative.  Table 7.2 presents the priority of each stakeholder in this case study. 

 

 

 

Table 7.2. Priorities of the Stakeholders 

Stakeholder ATCSCC ARTCC Airlines 1 Airlines 2 Airlines 3 

Priority 0.9 0.6 0.3 0.3 0.3 

 

 

 

7.1.4.3 The positions. An alternative, or a position, is a choice limited to one of 

two or more possibilities for the given decision problem.  ATCSCC posts the decision 
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issues along with the positions.  The following hierarchy (Figure 7.1) illustrates all of the 

positions for the given issue. 

 

 

 

 
Figure 7.1.  Five Positions for the Given Decision Making Issue 

 

 

 

Five alternatives were posted for the given decision making issue.  The first two 

positions are provided by the ATCSCC, and the remaining three positions are provided 

by the airlines.  Each position was a plan.  Each position actually tells how the flight 

operations slots have to be assigned to each airline.  The first two alternatives followed 

the equity, and all of the airlines were given an equal number of operational slots.  

Fairness existed among the airlines in the first two alternatives.  The third alternative was 

posted by airlines 1, the fourth by airlines 2, and the fifth by airlines 3.  All of the three 

positions posted by the airliners were in their own favor.  Each position obeyed the 

criteria set by the ATCSCC for an alternative.  The total number of flight operations had 

to be between 45 and 60.  The following description provides a detailed discussion about 

the five positions. 

Position 1 – Reducing flight operations by 50% in all three airlines.  This 

reduction indicates that airlines 1, 2, and 3 had to reduce their flight operations by 50%. 

Position 2 – Reducing fifteen flight operations in all three airlines.  This reduction 

indicates that airlines 1, 2, and 3 had to reduce 15 flight operations from each of their 

schedules. 
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Position 3 – Reducing flight operations by 25% in Airlines 1, 50% in Airlines 2, 

and 50% in Airlines 3.  This reduction indicates that Airlines 1 could operate 75% of 

their scheduled flights.  Airlines 2 can operate only 50% and Airlines 3 can operate only 

50% of their scheduled flights.  This position was originally posted by Airlines 1.  This 

alternative was intuitively favorable to airlines 1. 

Position 4 – Reducing flight operations by 40% in all three airlines.  This position 

indicates that all three airlines can only operate 60% of their total scheduled flights.  This 

position was posted by airlines 2 in their favor. 

Position 5 – Reducing flight operations by 50% in Airlines 1, 50% in Airlines 2, 

and 25% in Airlines 3.  This position was posted by airlines 3 in their own favor.  This 

position allowed airlines 3 to operate 75% of their scheduled flight by cutting down only 

25% of their flight operations, while Airlines 1 and Airlines 2 can only operate 50% of 

their scheduled flight operations. 

Table 7.3 shows the total number of flights allocated to each airline according to 

each alternative. 

 

 

 

    Table 7.3. Five Positions for the Issue and Their Flight Slot Allocation 

 Reducing 

flight 

operations 

by 50% in 

all 

airlines. 

Reducing 

15 flight 

operations 

in each 

airline. 

Reducing 

25% in 

Airlines 1, 

50% in 

Airlines 2, 

50% in 

Airline 3. 

Reducing 

flight 

operations 

by 40% in 

all 

airlines. 

Reducing 

50% in 

airlines1, 

50% in 

airlines2, 

25% in 

airlines3. 

Airlines 1 20 25 30 24 20 

Airlines 2 12 9 12 14 12 

Airlines 3 18 21 18 21 27 

Total 

flight 

operations 

50 55 60 59 59 
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7.1.4.4 The argumentation framework. This section explains how the web-

based intelligent argumentation system is used in air traffic management.  Initially, the 

ATCSCC center identifies both the issues and its possible positions.  The stakeholders 

then participate in the argumentation process by posting arguments on the positions listed 

by ATCSCC.  They can post their arguments either against an alternative or in support of 

it.  They can also post supporting evidences. Additionally, an argument can either support 

or attack another argument. Once the argumentation process is complete, the system 

computes the favorable position.  The output of the system is the favorability value of all 

five positions posted in the tree. Figure 7.2 illustrates the argumentation framework of the 

application of air traffic management in a web-based intelligent computational 

argumentation system. 

 

 

 

 

Figure 7.2. Argumentation Framework for Conflict Resolution in Air Traffic 

Management 

 

 

 

7.1.4.5 The argumentation tree. The web-based intelligent computational 

argumentation tool is a logic-based framework for argumentation process. Figure 7.3 

Support / attack 

Air traffic stakeholders 

Conflicts 

Issues of flight slot 

allocation 

Flight slot allocation 

alternatives 

Most favorable 

alternative 

Evidences 

Arguments and 

strengths 
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presents a snapshot of the argumentation tree of the flight slots allocation decision issue 

in the air traffic management. 

 

 

 

 
Figure 7.3. Argumentation Tree of Flight Slot Allocation Issue in Air Traffic 

Management 

 

 

 

The argumentation tree is developed by the stakeholders.  It evolves as the 

stakeholders post their arguments under the positions in the tree.  We present 5 different 

figures (Figure 7.4, Figure 7.5, Figure 7.6, Figure 7.7 and Figure 7.8).  Each figure 

represents the argumentation tree of a position.  The rectangular boxes at the top of the 

figure are the positions. The remaining boxes are the arguments in the tree.  These 

arguments are specified by the labels A, B, C, D, and E for positions 1, 2, 3, 4, and 5 

respectively. 

These arguments also have indexes associated with them.  Beneath the label are 

two boxes.  The box on the left indicates the degree of strength of the argument.  The box 

on the right indicates the priority of the stakeholder who posted the argument.  The 

degree of strength is between -1 and +1.  The priority of the stakeholder is between 0 and 

1. When an argument is posted, the stakeholder should indicate his/her name, the strength 

of the argument and the priority.  Using the mechanism specified in section 2.2.3 in this 
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article, the arguments undergo the inference process. Finally, the weighted summation 

technique is used to compute the favorability factor of a position. 

 
Figure 7.4. Argumentation Tree under Position 1 

 
 
 

 
Figure 7.5. Argumentation Tree under Position 2 

 
 
 

 
Figure 7.6. Argumentation Tree under Position 3 
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The detailed arguments of the boxes are as follows: 

A1-This alternative has minimum number of flight operations among all the 

alternatives. 

A1.1-It satisfies the range of 45-60 flight operations per hour as suggested. 

A2-There is no equity problem in this alternative.  Fairness is maintained among 

the airlines. 

A3-This alternative operates 50 flight operations per hour.  It is the best one 

among all the alternatives. 

A4-It is difficult to cut down 50% of flights.  It would be better if the reduction in 

operations is by 40%, still the equity is maintained. 

A4.1-This idea would be really great, I can reduce my financial loss to a great 

extent. 

A4.2-Passenger delay could be reduced. 

A4.3-The sector workload will be relatively more. 

A5-Workload in sectors is relatively better with this alternative. 

A6-I have my hub in this airport, I need comparatively more flight operations.  

50% really affects my economy. 

A6.1-Customer satisfaction and reputation of the airlines goes down with this 

alternative. 

A6.2-I do not have any flight operation slots to exchange with you. 

A6.2.1-I am running short of flight operation slots. I am not in a position to 

exchange slots. 

B1-This alternative is better than alternative 1. It has more number of flight 

operations. 

B2-This alternative has 55 flight operations per hour.  It is a good alternative. 

B3-I have many international flights during this time.  This alternative doesn’t 

work with me. 

B3.1-We can exchange a flight operation slot. 

B4-This alternative has more sector work load relatively. 

B5-I have my hub in this airport, so I expect more flight operation slots for me. 

C1-Equity among the airlines is not maintained. 
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C1.1-It is same as alternative1 in terms of airlines 2. You get the same number of 

flight operation slots. 

C1.2-Airlines1 is given more priority over airlines 2 and airlines 3. 

C2-This alternative drives me to less financial loss relatively. 

C3-This alternative operates 60 flights, highest possible value in the given range 

which is not advised in terms of safety. 

C3.1-Fewer number of flight cancellations relatively. 

C3.1.1-Workload is high in this alternative. 

C3.1.2-Customer satisfaction will be better. 

C3.2-Over all passenger delay can be reduced. 

D1-Equity among the airlines is maintained. 

D1.1-Fewer number of cancellations relatively. 

D2-This alternative has 59 flight operations per hour.  It satisfies the condition 

given by the ATCSCC. 

D3-This alternative is really great, I can reduce my financial loss to a great extent. 

D3.1-Passengers delay could be reduced to a great extent. 

D4-This alternative has high workload in the sector. 

E1-Equity among airlines is not maintained.  This alternative is more favorable to 

airlines 3. 

E2-Passengers delay could be reduced to a great extent. 

E2.1-This alternative would be really great, I can reduce my financial loss to a 

great extent. 

E3-This alternative has 59 flight operations per hour.  It satisfies the condition 

given by the ATCSCC. 

E4-This alternative has high sector work load. 

E5-I have several international flights during this time. This alternative does not 

work for me. 



 

 

135 

 
Figure 7.7. Argumentation Tree under Position 4 

 

 

 

 
Figure 7.8. Argumentation Tree under Position 5 

 

 

 

7.1.4.6 The favorability factor. After the argumentation process, the decision 

maker selects an issue from the argumentation tree to compute the favorability factor of 

all positions.  Figure 7.9 illustrates the favorability factor of all five positions.  Position 4 

had the highest favorability factor, indicating position 4 is the most favorable position 

among the stakeholders.   Therefore, position 4 is the winning alternative.  Position 2 is 

the least favorable one among all five positions posted.  Reducing flight operations by 

40% in all airlines is the most favorable [11, 119].  The position with highest favorability 

factor follows the constraints provided by the air traffic control system command center 

(ATCSCC). 
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Figure 7.9. Favorability Factor of Positions Produced By the Intelligent 

Argumentation System 

 

 

 

7.1.5. Discussions. The web-based intelligent argumentation facilitates the 

resolution of conflicts in air traffic management.  Web-based intelligent computational 

argumentation-based conflict resolution improves the exchange of information among the 

stakeholders who are in geographically distributed locations.  When applied to air traffic 

management, ATCSCC can better understand both the viewpoints and preferences of 

airlines.  This system, when used in air traffic management for resolving conflicts, 

benefits the stakeholders by bringing in transparency in the decision process. 

 

7.2. COMPARING ARGUMENTATION SYSTEM WITH EMAIL LIST-SERVER 

FOR COLLABORATIVE DECISION SUPPORT 

 

7.2.1. Introduction. An experiment is conducted to compare the intelligent 

argumentation system with the email list-server system for collaborative decision 

support.  This experiment was conducted in fall 2010.  In this sub-section the experiment 

details, the case study and the results are presented. 

Twenty one students are recruited from the software engineering class to 

participate in this study. The experiment was conducted for over month using the 

intelligent argumentation system and an email list-server.  The objective of the study was 

to: 

 Evaluate the effectiveness of the intelligent argumentation 

system and email system for collaborative decision support. 

 Measure the effectiveness of collaboration, and 

participation factor of email system and argumentation system using some 

metrics that are developed. 
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 Evaluate the quality of the decision made by the 

stakeholder groups. 

The twenty one recruited students were provided with a software organization 

case study, and a decision making issue pertaining to that case study.  The case study was 

very concrete and hypothetical by nature.  These students played the role of stakeholders 

in the decision making process. Experiment was conducted from 3rd of November to 

14th of December, 2010. 

Twenty one students were divided in to two groups, Team A and Team B.  Both 

the teams were provided with the case study and the decision making issue.  One team 

used the intelligent argumentation system and the other used email list-server for the 

dialogue process to resolve the decision making problem. Surveys forms were provided 

before, after and during the experiment.  Survey was provided to identify the opinion of 

students about their experience with the tools given to them.  The experiment was 

conducted in four different phases.  The framework of the experiment, the case study and 

the results are explained in the following sub-sections in detail. 

 

7.2.2. Framework. Experiment is started by providing all the stakeholders with 

the case study details, the issue and the solution alternatives to the issue.  The experiment 

began with a survey.  The objective of conducting a survey for all stakeholders was to 

capture their initial opinion on the given decision making issue.  Survey results also tell 

us the winning alternative through the survey. 

Twenty one students were divided in to two groups representing team A and team 

B.  Dividing into teams was performed randomly.  Team A had ten students and team B 

had eleven.  In phase 2, team A participated in the decision making process using email 

list-server and team B used intelligent argumentation system.  Both team A and team B 

were provided one month time to interact with their team members to resolve the decision 

issue in a collaborative environment. 

In phase 3, again the opinions of all twenty one stakeholders on the decision issue 

are collected using a survey.  This was conducted to see the change in their opinion after 

participating in the discussion process. 



 

 

138 

In phase 4, the email discussions of team A were provided to team B and the 

argumentation tree developed by team B was provided to team A.  Both team A and team 

B were provided with some time to read the dialogue process of the other team.  Another 

survey was conducted (survey 3), with some more additional questions about the study.  

The objective of this survey is to detect and identify change in the opinion of the students 

after going through the conversations of the other team.   

Each phase of the experiment is explained in detail in the following sections.  The 

following sub-section presents the case study. 

7.2.3. Case Study. St. Robert’s Institute of Science and Technology was founded 

in the year 1930 and offers degrees and courses in various fields of engineering.  5000 

students are currently enrolled as full-time students in this University.  There are about 

107 instructors, with 45 staff members working in different departments including with 

registrar office, library, cashier’s office and so forth. 

 The responsibility of registrar’s office staff is to help students in enrolling 

courses, dropping and swapping courses.  The responsibility of employees in cashier’s 

office is to manage the financial transactions concerned with the students.  As the 

students enroll courses in a semester, based on their enrollment the cashier’s office staff 

is responsible to collect tuition fees and other activities fees such as insurance and many 

more. 

With very wide range of courses offered in each department for graduate and 

undergraduate students.  It has been very difficult for the administrative staff to manage 

the student records.  Students had a wide range of courses to select with very limited 

number of seating in each class.  There is a tough competition in the enrollment process 

of the courses in each semester.  Presently, the registrar office staff is using a DB2 

application, in enrollment process, where the administrative staff works with the 

database.  It is difficult for the staff to work with this application.  The staff needs to run 

queries for each and every student request.  A student needs to physically appear in the 

registrar office and fill out the course registration form.  Based on the student form 

details, administrative staff runs query and registers a class for the student.  It is 

challenging and tiring for the administrative staff.  Sometimes students need to wait in 

the queue for long hours to finish their course registration process.  Both the students and 
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the administrative staff follow the same procedure to drop a class or swap a class.  The 

instructors had to fill up forms in order to know the number of students enrolled in their 

class.  Presently, the students, instructors and the administrative staff are having trouble 

with the enrollment procedures.  Because of this problem, the University has come to a 

conclusion that, they need to consult Peribot technologies to help them building a 

software application.  This software should help the University students, staff and faculty.  

In the desired system, all the students, instructors and staff including registrar’s office 

staff and cashier’s office staff can access the software application over the Web.  Each 

and every user is given login credentials.  Using their log-in credentials, one can log-in 

and perform the actions. 

Peribot Technologies, a division of Peribot Limited, is a software company based 

in Los Angeles, California.  Peribot Technologies is an information, communications and 

technology company providing good integrated business applications, and information 

technology and process solutions on a global level infrastructure. 

A thorough discussion was carried out between the requirements team from the 

University and the core team from the Peribot technologies. Software requirements 

documentation was then generated by the Peribot team.  Now, the Peribot technologies 

team has to select software process model they need to adopt to develop this software. 

Issue - Selecting software development process model for developing the software 

that is needed by the University? 

Positions – Students were provided with the decision making issue and the 

positions (alternatives).  Both the issue and the positions are built around the case study.  

In this experiment we have three positions: 

1). Waterfall Model 

2). Agile Process Model 

3). Unified Process Model 

Twenty one students from the software engineering class played the role of 

software developers from the Peribot technologies to resolve the decision issue.  The 

decision issue and alternatives are provided to all stakeholders in all three surveys and 

also for group discussion by email system and argumentation system.  The complete 
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experiment was built around this case study, and we have empirically evaluated the 

results. 

 

7.2.3.1 Phase 1. The experiment began with a survey.  Survey 1 was conducted 

starting from November 3rd to November 6
th

, 2010.  All twenty one students participated 

in this phase.  Eleven students expressed that agile process model would best suit for the 

given case study, seven supported waterfall model and three students supported unified 

process model.  The results of survey 1 are also presented in the following figure (Figure 

7.10). 

In the first survey (survey 1), one of the important questions was the rationale 

behind a stakeholder supporting an alternative.  With this question, we understood the 

perspective of the stakeholders.  This defined the criteria set assumed by the stakeholders. 

 

 

 

 
Figure 7.10. Support for an Alternative in the First Survey 

 

 

 

7.2.3.2 Phase 2. This section presents how both team A and team B used the 

email system and the argumentation system respectively for collaborative decision 

making.  Stakeholders exchanged posts in both email and argumentation system from 

November 7th to December 5th, 2010.  The ten stakeholders were added to a list-server 

and the name of the list-server was distributed to everyone in the team.  Anyone in team 

A can post emails to that list-server.  Totally 42 emails have been circulated in the group 

of ten stakeholders under nine different threads.  Out of these 42 emails, 37 were 
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exchanged by the team and the rest were by the mediator.  The discussion between the 

stakeholders was about the given issue and alternatives. They exchanged emails and 

arrived at a conclusion.  The participation of the stakeholders in the email system was 

low.  From the email conversations we identified that, the unified process model received 

highest support, waterfall model was next highest supported and the support for the agile 

process model was very low. The email group had considered twenty-six different 

criterions during collaborative decision making process.  Figure 7.11 presents the 

contribution made by each stakeholder in team A. 

 

 

 

    
Figure 7.11. Contribution of Each Stakeholder in Team A 

 

 

 

Team B used intelligent argumentation system.  In argumentation system, there 

are eleven students who built argumentation tree with thirty arguments and eight 

evidences.  The participation level was low.  The intelligent argumentation system allows 

stakeholders to argue among them and assists them in decision support.  The system 

computes the favorability factor of each position and present position with highest 

favorability.  The system computed the favorability factor of the given three positions in 

the argumentation tree. Higher the favorability factor value is the more favorable the 

position is.  Table 7.4 presents the favorability factor of all three positions.  Waterfall 
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model was the position with highest favorability value.  See Figure 7.12 for the 

argumentation tree built by team B. 

 

 

 

Table 7.4. Favorability Factor of Each Alternative Computed by the Argumentation 

System 

Position Favorability factor 

Agile Process Model 2.265 

Waterfall Model 5.226 

Unified Process Model .494 

 

 

 

 
Figure 7.12. Argumentation Tree Developed by Team B 

 

 

 

In team B, the waterfall model was highly supported by the stakeholders, 

followed by agile process model.  The support for unified process model was low.  Figure 

7.13 illustrates the contribution made by each stakeholder in team B using the intelligent 

argumentation system. 
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Figure 7.13. Contribution of Each Stakeholder in Argumentation System 

 

 

 

Table 7.5. Depth of the Argumentation Tree 

Depth of the 

argument tree 

Percentage of 

arguments 

Percentage of 

evidences 

1 63.3% 0% 

2 33.3% 80% 

3 3.33% 10% 

4 0% 10% 

 

 

 

Table 7.5 presents the percentage of arguments and evidences in the 

argumentation tree (Figure 7.12).  Team B considered 29 different criterions during 

collaborative decision making among them. 

 

7.2.3.3 Phase 3. The second survey was conducted from December 6th, 2010 to 

December 9th, 2010.  Sixteen students participated in survey 2.  The results of survey 2 

are presented in Figure 7.14. Out of the sixteen stakeholders six supported agile process 

model, five supported waterfall model and five stakeholders supported unified process 

model. 
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Figure 7.14. Support of an Alternative in the First Survey 

 

 

 

From survey 2 we identified that, six stakeholders reaffirmed their opinion, seven 

stakeholders strengthened their opinion, and three stakeholders’ opinion was remained 

unchanged.  No stakeholder’s opinion was weakened during the process of discussion in 

phase 2.  We can conclude that out of sixteen stakeholders, who have participated, 

thirteen stakeholders’ opinion has been changed and three stakeholder’s opinion 

remained unchanged. We understand that the process of collective intelligence and 

knowledge exchange helped people change their mind. 

After the second survey, team A was given access to view the argumentation tree 

built by team B and team B was provided with the emails exchanged by team A.  We 

provided students with some time to go through conversations, and then we conducted 

survey 3. The results of survey 3 are presented in the following section. 

 

7.2.3.4 Phase 4. The third survey was conducted from December 9th to 

December 13th, 2010 and fourteen stakeholders out of twenty one participated.  Seven 

were from team A and seven were from team B.  Out of fourteen stakeholders who 

participated in the survey, five stakeholders supported agile process model, five 

stakeholders supported waterfall model and four opted unified process model.  See Figure 

7.15 for the third survey results. 
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Figure 7.15. Support of an Alternative by Stakeholders in the Third Survey 

 

 

 

Out of seven people from team A who participated in the third survey, six 

stakeholders have gone through the argumentation tree built by team B.  Out of seven 

people from team B, six stakeholders have gone through the email conversations 

exchanged by team A.  In survey 3, six stakeholders have agreed that argumentation 

system is a better tool in achieving consensus in a group than a email list-server.  Six 

stakeholders agreed that, the information in the argumentation system is more structured, 

many stakeholders however, not answered this question.  Seven stakeholders supported 

argumentation tool is better in helping in comprehending the rationale of the decision.  In 

survey 3, the stakeholders have considered twenty two different criterion for decision 

making. 

7.2.4. Results and Analysis. The criterion set considered by team B during the 

decision making process was stronger when compared with the criterion set considered 

by team A.  In phase 1, each individual stakeholder has considered some criterion for 

decision making.  In several cases, some of them have considered a similar set of 

criterion.  After participating in the collaborative decision making process, several 

stakeholders considered many other criteria.  This was evident from the second survey.  

A group of people can definitely produce more when they work collaboratively.  But, the 

web-based collaboration tool that a group is using also has an impact. 

The intelligent argumentation system is more advanced than email system in 

organizing the posts.  It helps in capturing the rationale of the stakeholders and also helps 

achieve consensus in the group.  Better organization of posts also helps the stakeholders 

in better understanding and comprehending the posts of other stakeholders.  When an 
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argument is posted, a stakeholder can come back to see his/her arguments and other 

arguments that either support them or attack them. 

In email list-server, as more and more mails are posted in the same thread it is 

very difficult to track the conversation and the criterion or sub-criterion in the discussion 

might change very quickly.  Some information in a post might be lost.  There is a very 

little scope for argumentation and some stakeholders may be unheard.  Scalability is an 

important aspect in an email list-server for collaborative decision process.  If huge 

number of stakeholders participate in the argumentation process using an email system, it 

becomes difficult to understand which stakeholder is responding to whom. 

Klein et al. [34] conducted an experiment with argumentation system with a 

group as big as 200 students. In spring – 2010, Satyavolu et al. [8] conducted experiment 

on the intelligent argumentation system with twenty-five stakeholders.  The structure and 

representation of arguments in the tree makes an argumentation system unique from other 

mass communication tools such as email, Weblog, forums.  In addition the intelligent 

argumentation system has the decision support ability, which is built using the fuzzy 

systems. 

We present some metrics here that help us understand and compare an email list-

server and the intelligent argumentation system for collaboration. 

Quality of collaboration is computed using the number of stakeholders actively 

participated in a group and the total number of stakeholders registered in that group.  This 

value can range between zero and one. 

Quality of Collaboration = (# of stakeholders participating actively)/(# of 

stakeholders registered in the group) 

Quality of Collaboration for the group that used email system (team A) was 0.6 

and for the team B was 0.81. 

Average number of posts posted by a stakeholder is another metric to understand 

the activity in a group.  It is computed by using the total number of posts in a group and 

the total number of stakeholders registered in that group. 

Average # of posts by stakeholder = (Total number of posts) / (Total number of 

stakeholders) 
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The average number of posts posted by a stakeholder in team A is 3.7 and in team 

B is 3.63. 

 

 

 

Table 7.6. Individual Stakeholder Contributions 

Stakeholder Id Group Contribution to collaboration 

1 Team A 0.29 

2 Team A 0.24 

3 Team A 0.189 

4 Team A 0.135 

5 Team A 0.08 

6 Team A 0.05 

7 Team A 0 

8 Team A 0 

9 Team A 0 

10 Team A 0 

11 Team B 0.275 

12 Team B 0.175 

13 Team B 0.15 

14 Team B 0.125 

15 Team B 0.125 

16 Team B 0.05 

17 Team B 0.025 

18 Team B 0.025 

19 Team B 0.025 

20 Team B 0 

21 Team B 0 

 

 

 

Individual stakeholders’ contribution to collaboration is another interesting metric 

that is computed using the total number of posts posted by a stakeholder and the total 
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number of posts posted by the team.  Table 7.6 presents each stakeholder’s contribution 

towards the collaboration. 

Individual stakeholder contributions = (# of posts of a participant)/ (Total number of 

arguments/posts) 

 

Some additional metrics for the email list-server are also presented here. 

1. Ration of argumentation-related emails to non-argumentation emails = (16) / (37) 

= 0.432.  Out of thirty seven emails exchanged in the group, only sixteen of them 

were argumentation based and the rest were based on the opinion of the stakeholders. 

2. Average length of threads in email-based argumentation = 37 / 4 = 9.25 (Four 

threads) 

Table 7.7 illustrates the number of posts exchanged by team A and team B during 

the discussion process in phase 2. 

 

 

 

Table 7.7. Number of Posts Exchanged by Team A and Team B 

Posts during the 

discussion 

E-mail System Argumentation 

System 

Arguments 

based posts 

16 30 

Evidences 

based posts 

1 10 

Total # of posts 37 40 

 

 

 

Some observations were made during the study. It was challenging for 

stakeholders to come to a conclusion using an email list-server.  They tend to go for 

voting which is similar in a way with survey system.  After phase 2, the discussion 

process, in the second survey some stakeholders changed their support for a position from 

survey 1. The discussion process in phase 2 has helped stakeholders.  We also realized 

that as people have been using email system for a long time, it was easier for them to 
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participate. In case of an argumentation system, people had to learn to post the arguments 

supporting or attacking other arguments or an alternative. 

The quality of the decision directly depends on the criteria set developed during 

the discussion by the team. The criterion set identified in phase 2 in the discussion 

process is much larger and stronger.  The criterion set considered by the stakeholders in 

survey 2 and survey 3 were much stronger than survey 1. 

Argumentation system allows stakeholders to argue, which is central to the 

collaborative decision making. This was not possible in the email system.  Intelligent 

argumentation system is advanced in terms of decision support ability. 
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8. CONCLUSION 

 

 

 

In a large argumentation tree, analyzing arguments is challenging. Four research 

challenges were identified and addressed to analyze argumentation trees.  First, a method 

was proposed to identify polarization groups, and leaders in the argumentation process. 

Later, a novel approach was developed to quantify stakeholders’ degree of membership 

in multiple polarization groups. These polarization assessment frameworks help in better 

understanding polarization groups and polarization group formation process. Results 

from these frameworks also help in identifying stakeholder who is playing important role 

in polarization groups. 

A method was developed to assess the collective opinion of stakeholders in a 

group, on each individual argument in an argumentation tree and cluster the arguments 

based on the collective determination scores. This framework produces clusters of 

arguments with collective support and collective attack. Results produced from this 

framework helps in understanding the collective perception of the group on every 

argument in a tree.  

Finally, a framework was developed to identify outlier opinions in argumentation 

trees, from both individual and collective viewpoint. Using the results from outlier 

opinion framework one can understand how different are the outlier opinions from inlier 

opinions in an argumentation tree, from both the perspectives. 

Evaluations of the proposed methods were also presented. Empirical results are 

consistent with the social dynamics in the decision making group with higher accuracy.
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