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ABSTRACT

Online social networks, such as Facebook and Google+, have been emerging
as a new communication service for users to stay in touch and share information with
family members and friends over the Internet. Since the users are generating huge
amounts of data on social network sites, an interesting question is how to mine this
enormous amount of data to retrieve useful information. Along this direction, social
network analysis has emerged as an important tool for many business intelligence
applications such as identifying potential customers and promoting items based on
their interests. In particular, since users are often interested to make new friends, a
friend recommendation application provides the medium for users to expand his/her
social connections and share information of interest with more friends. Besides this,
it also helps to enhance the development of the entire network structure.

The existing friend recommendation methods utilize social network structure
and/or user profile information. However, these methods can no longer be applica-
ble if the privacy of users is taken into consideration. This work introduces a set of
privacy-preserving friend recommendation protocols based on different existing simi-
larity metrics in the literature. Briefly, depending on the underlying similarity metric
used, the proposed protocols guarantee the privacy of a user’s personal information
such as friend lists. These protocols are the first to make the friend recommendation
process possible in privacy-enhanced social networking environments.

Also, this work considers the case of outsourced social networks, where users’
profile data are encrypted and outsourced to third-party cloud providers who pro-
vide social networking services to the users. Under such an environment, this work
proposes novel protocols for the cloud to do friend recommendations in a privacy-

preserving manner.
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1. INTRODUCTION

An online social network (OSN) facilitates users to stay in touch with other
users (such as distant family members or friends), easily share information, look for
old acquaintances and establish friendship with new users based on shared inter-
ests. The wide availability of the Internet has resulted in the fast growth of OSNs
[1, 12,13, 4, 5], such as Google+, Facebook, MySpace, Twitter and LinkedIn, which
resulted in a vast amount of social data containing personal and sensitive information
about individual users. Social network analyses [4, [6] involve mining the social data
to understand user activities and to identify the relationships among various users.
Especially, in applications such as business intelligence, social network analyses have
boosted the research in developing various recommendation algorithms |7, i§]. For
example, an algorithm may recommend a new application to a Facebook user based
on either the applications he/she used in the past or the usage pattern of various
applications used by his/her friends. In general, a recommendation can be a friend, a
product, an ad or even a content potentially relevant to the user. This work focuses

on recommending new friends to a given user in an OSN.

1.1. MOTIVATION

In particular, the friend recommendation application [9] has gained special
importance from both the social network administrators and the users. From the net-
work administrator perspective, recommending potential candidates as new friends
to users will enable the development of the entire network /community since it results
in a more connected network. On the other hand, from the users’ side, friend recom-
mendations help them grow their social contacts and explore for new friends based on

their own interests. In general, the main goal of a friend recommendation algorithm



is to identify the potential candidates for a given target user (who wish to make new
friends) in an effective manner. Along this direction, much work has been done in
developing various friend recommendation algorithms [9, [10, 11, 12, 13, [14] based on
network topology, user contents or both. In the literature, discovering new friends
to a given user A is equivalent to solving the link prediction [15] problem for A in
the corresponding social network. Given a snapshot of the social network, the link
prediction problem aims at inferring the new interactions that are likely to happen
among its nodes. More specifically, the nodes of the social network are the users and
an edge between two users indicates a friendship between them.

Given the snapshot of an OSN, the social closeness between two users is termed
as proximity. The proximity measures can be divided into two groups. The first
group includes measures based on node neighborhoods, such as common neighbors,
Jaccard Coefficient, Adamic/Adar, and preferential attachment. Whereas, the second
group consists of measures based on ensemble of all paths, such as Katz, Hitting
time, Page Rank and SimRank [15, [16]. Irrespective of the similarity metric used,
computation of social closeness between any two given users requires the topological
structures of the network and/or user profile contents (such as friend list, social
interest tags, education, employment details, etc). Briefly, friend recommendations
can be performed as follows. (i) Social closeness (referred to as recommendation
score) between A and each potential candidate is computed. (ii) The candidates with
Top-K scores can be recommended as new friends to A.

The computation of recommendation scores between a target user A and any
other user in the given snapshot of a network is straightforward when user’s profile
information is treated as public. However, with the growing use of OSNs, there have
been various concerns about user privacy [17, [18, [19, 20, 21, 22, 23]. Some well-
known privacy issues in the social networks are data publishing to a third party,

social phishing and analysis on the social data. Due to these privacy concerns, freely



mining the social network data is not allowed or feasible; therefore, researchers from
both academia and industry are moving towards developing problem-specific privacy-
preserving techniques. What is private to a given user is subjective in nature. In
particular to the friend recommendation problem, the friendship between any two
users can be treated as sensitive/private information. This assumption is realistic
and being supported by many on-line social networks (e.g., Facebook) where users
are allowed to hide their friend lists. Most often, when people maintain friendship
with trusted ones, there is much information flowing from one to another. Thus,
revealing this sensitive information (i.e., friendship) poses a great threat to user
privacy through social engineering attacks [24, 125].

Recently, Ratan et al. [26] have conducted a survey by crawling the public
profile pages of 1.4 million New York City (NYC) Facebook users in March 2010 and
again in June 2011. It was shown that NYC users from their sample have become
dramatically private during this period. More specifically, in March 2010 only 17.2%
of users in their sample kept their friend lists as private; however, in June 2011, just
15 months later, 52.6% of the users hid their friend lists [26]. This further suggests
that users are more concerned about their privacy; therefore, forcing them to make
their profile information private. The observation is, in addition to friend list, other
contents of a user profile can also be kept private. Nevertheless, without certain
personal profile information, identifying new friends is not possible using the existing
friend recommendation techniques.

Based on the above discussions, it is clear that there is a strong need to develop
privacy-preserving friend recommendation algorithms in OSNs. Along this direction,
this work proposes a set of private friend recommendation protocols by assuming

different combinations of user’s profile information is kept as private.



1.2. ORGANIZATION

The emerging growth of online social networks has opened new doors for var-
ious business applications such as promoting a new product across its customers.
Besides this, friend recommendation is an important tool for recommending poten-
tial candidates as friends to users in order to enhance the development of the entire
network structure. Existing friend recommendation methods utilize social network
structure and/or user profile information. However, these techniques can no longer
be applicable if the privacy of users is taken into consideration. Along this direc-
tion, this work proposes four different set of private friend recommendation protocols
which are organized into four sections as follows.

First, Section 2l presents an overview of the existing work related to the prob-
lem domain. In addition, this section reviews the literature work of secure multiparty
computation and highlight the security definition adopted.

Section B proposes a two-phase private friend recommendation protocol for
recommending friends to a given target user based on the network structure as well
as utilizing the real message interaction between users. The proposed protocol com-
putes the recommendation scores of all users who are within a radius of A from the
target user in a privacy-preserving manner. This work also addresses some imple-
mentation details and point out an inherent security issue in the current online social
networks due to the message flow information. To mitigate this issue or to pro-
vide better security, this work proposes an extended version of the proposed protocol
using randomization technique. In addition, the practical applicability of the pro-
posed approach is discussed extensively through empirical analysis based on different
parameters.

Section Ml proposes two private friend recommendation algorithms for users in

a social network group G by leveraging both social tags and network topology. For



a given target user wu;, the proposed protocols compute the social closeness scores
between u; and each user in the subset G; C G in a privacy-preserving manner by
utilizing an ontology tree T' constructed by the domain expert such as the network
administrator. The first protocol is more efficient from a user’s perspective compared
to the second protocol, and this efficiency gain comes at the expense of relaxing the
underlying privacy assumptions. On the other hand, the second protocol provides the
best security guarantee. In addition, this work empirically analyzes the complexities
of the proposed protocols and provides various experimental results.

Section [B] proposes two novel methods to recommend friends for a given tar-
get user by using the common neighbors proximity measure in a privacy preserving
manner. The first method is based on the properties of an additive homomorphic
encryption scheme and also utilizes a universal hash function for efficiency purpose.
The second method utilizes the concept of protecting the source privacy through
randomizing the message passing path and recommends friends accurately and effi-
ciently. In addition, this work empirically compares the efficiency and accuracy of
the proposed protocols, and addresses the implementation details of the two meth-
ods in practice. The proposed protocols act as a trade-off among security, accuracy,
and efficiency; thus, users can choose between these two protocols depending on the
application requirements.

Section [@ considers the scenario of outsourced social networks, where users
encrypt their profiles independently and export them to a third-party cloud service
provider, such as Google or Amazon. Since the data are encrypted, query processing
over encrypted data becomes challenging for the cloud. In particular, this section
focuses on the friend recommendation problem over encrypted users’ profiles based on
the secure k-nearest neighbor (SKNN) technique. More specifically, this work develops
two novel SENN protocols for the cloud to recommend the top k-nearest neighbors

as potential friends to a given target user in a privacy-preserving manner. The first



protocol, which acts as a basic solution, leaks some information to the cloud. On the
other hand, the second protocol is fully secure, that is, it protects the confidentiality
of the data and also hides the data access patterns. However, the second protocol
is more expensive compared to the basic protocol. Also, the performance of the
proposed protocols under different parameter settings is evaluated.

Finally, this report concludes the contributions of this work and demonstrates

several possible directions for future research in Section [7



2. LITERATURE REVIEW

Social network analyses have been utilized for various business applications
[6, 27], such as predicting the future [28] and developing recommender systems
[29,130,131,132]. With growing interest of expanding a person’s social circle, friend rec-
ommendation has become an important service in many online social networks. This
section reviews upon the existing friend recommendation algorithms along with the
the existing work related to private friend recommendations. Finally, it discusses the
literature work on secure multiparty computation along with the security definition

adopted in this work.

2.1. EXISTING FRIEND RECOMMENDATION METHODS

Social network analyses have been utilized for various business applications
[6, 27], such as predicting the future 28] and developing recommender systems
[29,130,131,132]. With growing interest of expanding a person’s social circle, friend rec-
ommendation has become an important service in many OSNs. Along this direction,
researchers from both academia and industry have published much work. In par-
ticular, Chen et al. [9] evaluated four recommender algorithms, which utilize social
network structure and/or content similarity, in an IBM enterprise social networking
site Beehive through personalized surveys. Their analysis showed that algorithms
based on social network information produce better-received recommendations. A
novel user calibration procedure was proposed by Silva et al. [11] based on a ge-
netic algorithm to optimize the three indices derived from the structural properties
of social networks. Xie [12] designed a general friend recommendation framework to
recommend friends based on the common interests by characterizing user interests in

two dimensions - context (e.g., location and time) and content.



By treating the friend recommendation process as a filtering problem, Naru-
chitparames et al. [10] developed a two-step approach to provide quality friend recom-
mendations by combining cognitive theory with a Pareto-optimal genetic algorithm.
Gou et al. [13] developed a visualization tool (named as SFViz) that allows users
to explore for a potential friend with an interest context in social networks. Their
method considers both semantic structure in social tags and topological structures
in social networks to recommend new friends. The correlation between social and
topical features in three popular OSNs: Flickr, Last.fm, and aNobii has been stud-
ied by Aiello et al. [33] to analyze friendship prediction. Their results showed that
social networks constructed solely from topical similarity captured the actual friend-
ship accurately. Nevertheless, Facebook uses the “People You May Know” feature to

recommend friends based on the simple “friend-of-a-friend” approach [34].

2.2. PRIVATE FRIEND RECOMMENDATION (PFR) METHODS

Due to various privacy issues [17, 18, [19, 20, 21, 22, 23], many users keep
their profile information as private. Existing friend recommendation techniques
[9, 110, 11, 12, [13, [14] do not take users’ privacy into consideration; therefore, they
cannot be directly applied. Only recently, researchers have focused on developing
accurate and efficient PFR methods. Along this direction, Dong et al. [35] proposed
a method to securely compute and verify social proximity between two users using
cosine similarity in mobile social networks. In their approach, (mobile social network)
users physical location is treated as private. Their approach identifies new friends
who happen to be in the physical vicinity of the target user. That is, social coordi-
nates (users geographical location) are used to compute the social proximity between

users. Nevertheless, their approach assumes that the social coordinates (which may



change often due to the mobility of users) for individual users are pre-computed by
a trusted central server which is a violation of user privacy.

Machanavajjhala et al. [36] formally analyzed the trade-offs between accuracy
and privacy of private friend recommendations using differential privacy [37]. In their
work, the authors used the existing differentially private algorithms as underlying sub-
routines and assumed the existence of PFR protocols based on these sub-routines.
Also, according to their claims, if privacy is to be preserved when using the common
neighbors utility function [15], only users with Q(logn) friends can hope to receive
accurate recommendations, where n is the number of users in the graph. Furthermore,
the users’ privacy in [36] is based on differential privacy. Whereas, in this work,
privacy guarantees are based on an entirely different security model, namely the semi-
honest security definitions from the field of secure multiparty computation (SMC)
[38, 139]. Under the SMC model, this work develops accurate and private friend

recommendation protocols.

2.3. SECURE MULTIPARTY COMPUTATION AND ITS SECURITY
DEFINITION

Due to the growing concerns about privacy and the distributed nature of data,
secure multiparty computation (SMC) plays an important role in solving a wide-
range of applications. Some of these applications include secure electronic voting
[40], private auctioning and bidding [41, |42], and privacy-preserving data mining
[43, 144].

Consider a scenario where multiple parties, each with their private input a;,
wish to collaborate and compute a common functionality f by preserving the privacy
of each user. To achieve that, parties have to exchange messages and perform some
local computations until all the parties get the desired output. In the literature,

this is referred to as secure multiparty computation (SMC). More formally, SMC is
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the evaluation of the function f(ay,...,a,) = (by,...,b,) such that the output b; is
known to party P; and the input a; of each party is kept private. This definition was
first introduced by Yao to solve the famous Millionaires’ problem in 1982 [38,; 139].
Let Alice and Bob be two millionares with their respective wealth a and b. The goal
of Alice and Bob is to determine who is richer without revealing their wealth to one
another. More precisely, the functionality one need to evaluate is “greater than”, that
is, whether a is greater than b or not. The first general and provably secure solution,
for a two-party case, was developed by Yao and it was also demonstrated that any
function that can be described by a polynomial size boolean circuit of logarithm depth
can be solved securely [38, 139]. This work was extended to multiparty computations
by Goldreich et al. [45]. It was proved in [45] that any computation which can be done
in polynomial time by a single party can also be done securely by multiple parties.
Since then much work has been published for the multiparty case [46, |47, 48, 149].
In this work, privacy/security is closely related to the amount of information
disclosed during the execution of a protocol. There are many ways to define in-
formation disclosure. To maximize privacy or minimize information disclosure, this
work adopts the security definitions in the literature of SMC [49, 50]. There are two
common adversarial models under SMC: semi-honest and malicious. An adversarial
model generally specifies what an adversary or attacker is allowed to do during an
execution for a security protocol. In the semi-honest model, an attacker (i.e., one
of the participating parties) is expected to follow the prescribed steps of a protocol.
However, the attacker can compute any additional information based on his or her
private input, output and messages received during an execution of a secure proto-
col. As a result, whatever can be inferred from the private input and output of an
attacker is not considered as a privacy violation. An adversary in the semi-honest

model can be treated as a passive attacker; on the other hand, an adversary in the
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malicious model can be treated as an active attacker who can arbitrarily diverge from
the normal execution of a protocol.

In this dissertation, to develop secure and efficient protocols, all the participat-
ing parties are assumed to be semi-honest. Detailed security definitions and models
can be found in [49, 50]. The following definition captures the above discussion

regarding a secure protocol under the semi-honest model.

Definition 1. Let a; be the input of party P, [[.(7) be P;’s execution image of the
protocol m and b; be the result computed from m for party P;. m is secure if [[,(7) can
be simulated from {(a;,b;) and distribution of the simulated image is computationally

indistinguishable from [, ().

In the above definition, an execution image generally includes the input, the
output and the messages communicated during an execution of a protocol. Briefly,
to prove a protocol is secure, it is required to show that the execution image of a
protocol does not leak any information regarding the private inputs of participating

parties [50].
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3. STRUCTURAL AND MESSAGE BASED PRIVATE FRIEND
RECOMMENDATION

In general, a recommendation score between any two given users can be com-
puted based on the network topology and/or user profile contents (such as previous
employer, location and hobbies). For the past few years, researchers have been focused
on developing hybrid friend recommendation algorithms [9, [13] to take advantage of
both approaches. Recently, Bi-Ru Dai et al. [14] proposed a new friend recommenda-
tion algorithm (denoted as CSM - meaning “Combine Structure and Messages”) by
utilizing the real messages communicated between the users as well as the network
structure. To be concrete, this work computes the recommendation scores between
users based on the similarity metric given in [14]. More details are given in the later
part of this section.

The computation of recommendation scores based on the similarity metric
given in [14] is straight-forward if user’s data is public. However, as users are more
concerned about their privacy [19, 21, 22, 23, |51], many online social networks have
provided various privacy settings for users to keep their data private. In general, users
are allowed to keep their friend lists, profile information etc., as private information.
Under this scenario, the computation of recommendation scores is non-trivial. This
work proposes a two-phase private friend recommendation algorithm based on the
similarity metric proposed in [14]. The proposed method computes the recommen-
dation scores between A and all potential users who are h-hop away from A in a
privacy-preserving manner. Figure B.I] shows a sample network for target user Lee
with h = 3. In practice, as proposed by Stanley Milgram [52], any two people can
get acquainted each other through six degree of separation (i.e., 1 < h < 6) in the

network.
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Figure 3.1: A sample social network for Lee with h = 3

Also, this work discusses various practical implementation details of the pro-
posed protocol. In addition, this work points out an inherent security issue in the
current online social networks due to the message flow information among various
users. To mitigate this issue or to provide better security, an extension to the pro-

posed protocol is developed using randomization technique.

3.1. PROBLEM DEFINITION

Consider a social network graph G with the nodes denoting the users and the
(directed) weighted edge between any two nodes denoting the number of real message
interactions between them. Since the message interaction can be bi-directional, one
can take the minimum number of messages, as mentioned in [14, 53], as the actual
weight of the edge (denoting the strength of the relationship). A sample minimum
message interaction between various users (for h = 3) in Lee’s network is as shown in
Figure B2l In general, if user A sends n; messages to B and B sends ny messages to

A, then the weight of the edge between A and B is taken as min(ny,ny). This further



14
NS

eI
GO & @ o

Figure 3.2: Message interaction between different users in Lee’s network

implies that the weight of the edge between any two friends is directly correlated to
the strength of their relationship (i.e., larger weight indicates stronger friendship).
For a target user A (i.e., a user who wants to make new friends), generate a
candidate network with A as the root and an edge between the users denoting the
number (minimum) of real message interactions. Note that the users who are 1-hop
away from A are actually his/her friends. In order to generate the candidate network,
one has to remove the links between users at the same level. E.g., refer to Figure [3.2]
one can generate the candidate network by removing the link between Hall and C'ox
(since they are on the same level). The recommendation score (RS) between A and

a user U who is I-hop (2 <1 < h) away from A in the candidate network is given as

[14]:

RS(A,U) = (Z (lPkA 0)| HC .8 ))ﬁj—; (3.1)

k
where Py (A, U) denotes all the intermediate users on the k™ shortest path starting
from A (root) to user U, |P.(A,U)| is the total number of messages along path

Pi(A,U), and let L(i) be the set of all users at level i (i.e., i-hop away from A).
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S; € Pe(A,U)N L(3), for i = 1,...,1 — 1, where U € L(l). Note that Sy denotes
the root user A. C(S;_1,95;) denotes the proportion of messages between users .S;
and S;_1 to the total number of messages at level ¢. Here, user S;_; is the parent of
user S; in the corresponding candidate network; Dy denotes the degree of U and T'N
denotes the total number of users in the candidate network.

When the privacy of users is taken into consideration, the computation of
above mentioned recommendation score is not straight-forward. More specifically,

this work assumes the following private information (PI) for user U:

(i). PI 1 - Friendship: The friendship between any two users U and V' is not

revealed to any other user.

(ii). PI 2 - Strength of Friendship: The weight of an edge between U and V/,

denoted as Cy v, is not revealed to users other than U and V.
(iii). PI 3 - Degree: The size of the friend list of U is not revealed to other users.

Without loss of generality, let Uy, ..., U, be the set of potential candidates
who are at most [-hop (2 < [ < h) away from A. The goal of this work is to develop a

private friend recommendation (PFR) protocol which is formally defined as follows:
PFR(A, F(A),U,,...,U,) > T (3.2)

where F'(A) denote the friend list of user A. T"is defined as:
[ = {(RS(A,U),U1),....(RS(A,U,),Un)}

Here, RS (A,Uj) is the new recommendation score for U; which is correlated to the

actual score RS(A,U;) (based on Equation B.1l) as below, for 1 < j < n:

RS(A,U;) = My *TN x RS(A,Uj;)
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Mj, is the normalizing factor for a user at h-hop away from A and T'N is the number
of users in the candidate network. For any fixed h and A, the observation is that M,
and T'N are constants. At the end of the PFR protocol, the values of RS (A,U;) and
U;, for 1 < j < n, are known only to A and the privacy of each user (PI 1, 2, and
3) is preserved. In practice, since the friend lists can be large, the number of scores
returned to A can be in the hundreds. Therefore, a more effective way is to simply

select Top-K users as the final set of friend recommendations.

3.2. MAIN CONTRIBUTIONS

The proposed protocol computes the recommendation scores between a target
user A and all potential candidates who are at most [-hop (2 <[ < h) away from A
in a privacy-preserving manner. The main contributions of this particular work are

summarized below:

e Security - The proposed protocol guarantees that the friend lists, the strength
of friendships, and the friend list sizes of each user are kept as private from
other users. However, this work identifies an inherent security issue that may
leak valuable information to the network administrator in the current online
social networks which is also applicable to the proposed protocol. To mitigate
this risk, this work also proposes an extended version of the proposed protocol

using randomization technique.

e Accuracy - The proposed protocols compute the recommendation scores which
are scaled by a constant factor M), xT'N; therefore, the relative ordering among
the scores is preserved. Hence, the proposed protocols guarantee the same kind
of effectiveness similar to the CSM method [14]. That is, the final Top-K list
of recommended users in the proposed protocols is the same as that in [14] and

is independent of K.
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e Efficiency - In the empirical analysis, this work shows the practical value of
PFR through various experiments. Also, it shows that the efficiency of the
extended version is very close to that of PFR. The experiments show that the
computation costs incurred on the internal users in the proposed protocols are
very small; therefore, the proposed protocols are very efficient from an internal

user’s perspective.

3.3. RELATED WORK

As mentioned earlier, friend recommendation is a very useful application for
both users and the social network provider. Through social recommendations, users
are allowed to make new friends; therefore, expanding their social connections. In
addition, it helps the social network provider in a way to enhance the development
of entire network structure.

3.3.1. Existing Friend Recommendation Methods. In general, recom-
mendation scores between any two given users can be computed either based on the
network topology [10, [11] and/or user profile contents [12].

Only recently, researchers have focused on developing hybrid friend recommen-
dation algorithms [9, [13] to take advantages of both approaches. As an independent
work, Lo et al. 53] proposed a graph-based friend recommendation algorithm us-
ing a weighted minimum-message ratio as the scoring metric. This work was later
improved in [14] by taking the evolution of entire network into consideration. The
computation of recommendation scores based on the metric given in [14] is straight-
forward when users data is public. However, due to the growing concerns over user
privacy [19, 21, 22, 23, 51], many users prefer to keep their profile data (including
their friend lists) as private. Along this direction, many online social networks such

as Facebook, provide various privacy settings for users to make their data private.
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Therefore, the above existing methods are not applicable if privacy of users is taken
into consideration.

To make friend recommendations possible even in privacy-sensitive environ-
ments, this work proposes a two-phase PFR protocol based on the similarity metric
given in [14]. Furthermore, this work addresses an inherent security issue in the
current online social networks. To overcome this issue, an extended version to the
proposed PFR protocol is also proposed.

3.3.2. Existing PFR Protocols. In the literature, that there has not been
much work done in developing efficient PFR protocols based on different metrics.
Dong et al. [35] proposed a method to securely compute the social proximity between
users in a mobile social network. They have used the cosine similarity metric to
compute how close two give users are by treating user’s location as private.

Machanavajjhala et al. [36] analyzed the trade-offs between accuracy and
privacy for private friend recommendation algorithms based on differential privacy
[37, 154]. The work in this section is entirely different from theirs since the security
guarantee in this work is based on the the well-known semi-honest security definition
of secure multiparty computation (SMC) [38,139, 50]. In addition, they use a different
similarity metric, namely common neighbors [15] whereas this work is based on the
scoring metric given in Equation BTl

In general, different metrics have different advantages. Secure protocols de-
signed for one metric often may not work for other metrics. Therefore, there is a
strong need to develop a secure protocol based on particular scoring function. In
particular, this work focuses on developing a secure PFR protocol based on the scor-
ing function given in Equation 3.1l Table 3.1 presents some common notations used

extensively in this section.
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Table 3.1: Common notations used in PFR

HPEnc™ An Additive Homomorphic Probabilistic Encryption System

T A trusted party (such as network administrator)

(E, D) A pair of HPEnct based encryption and decryption functions
(pk, pr) A public and private key pair corresponding to (E, D)

F(U) Friend list of user U

m Size of friend list of target user A

Cuv Minimum number of messages exchanged between U and V

(or weight of edge between U and V)

L(4) List of all users at level ¢ in the corresponding candidate network

M1, Minimum number of messages exchanged between users at L(i — 1) and L(4)
C(Si—1,5;) | Ratio of Cs, .5, to M;_1,

M, M) Normalization and Scalar factors for a user € L(I)

3.4. ORDER PRESERVING SCORING FUNCTION

The original scoring function [14] given in Equation Bl contains a rational
factor (i.e., C'(S;_1,S;)) which varies with ¢, for 1 < i <[ —1and 2 <[ < h.
Therefore, to perform encryption operations, this work defines a new scoring function
(producing an integer value) based on Equation Bl such that the relative rankings
among the final recommendation scores are preserved.

3.4.1. Normalization Factor. Given a snapshot of the network for A, the
normalization factor for a user [-hop (or friend) away from A (where 2 <[ < h) is

defined as:

-1
M, = H M1, (3.3)
i=1

where M;_;;, denoting the total number of messages exchanged between users at

L(i — 1) and L(1), is as given below.

M;_1; = veri-1) Cuy
VeL(i)

Cyy denotes the minimum number of messages exchanged between users U and V.

This work explicitly assumes M; = 1 since users who are 1-hop from A are already
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friends of A. For any two potential candidates who are [-hop away from A, the

observation is that the two candidates have the same normalization factor.

Example 1. Refer to Figure [32. Consider the potential candidate Cole who is
2 hops away from Lee. Here, L(0) = (Lee) and L(1) = (Hall,Cozx, Bell). The
normalization factor for Cole is My = My1 = Clree,tali + CrLee,cox + ClLee,Bett = O.
Note that the normalization factor for Ford, Butler, and Kelly (who are also 2 hops
away from Lee) is the same as Cole. Similarly, it is clear that My, = 13. By
substituting these values in Equation [3.3, the normalization factor for users at level
3is My = [[7_; Mi_1; = Mo, % My = 65.

Observation 1. For any user S;_1 € L(i — 1) and S; € L(i), one can observe that

— 1.5

Cs,
the value of C'(S;_1,S;) is equivalent to ]\Sj—l Therefore, for a potential user U at

level 1, the rational factor in Equation[3.1 can be simplified as follows:

-1 1-1 Cs;_4,s; -1
Hi:l C(Si-1,5) = Hi:l Mi,ll,i - M% Hi:l Csioys,
3.4.2. Scalar Factor. Given a target user A and h, the scalar factor for a

user at level [, for 1 <[ < h, can be defined as follows:

. Mh . M(),l FO 3 Mh—2,h—1

M =t =
l
M, Moy ... % Mg

(3.4)

where M, is the normalization factor for a user belonging to L(l). In addition, the
observation is that M| is the same for all users who are at same level [. Furthermore,
when | = h, it is clear that M; = 1. This further implies that M] = M),. From

Figure B.2] the scalar factor for Cole is M) = % =M, =13.

Definition 2. For any given target user A and potential candidate U who is | hops

away from A, the new scoring function (denoted as Z/%TS'(A, U)) is defined as follows:

RS(A,U) = M} * <Z <|Pk(A, U)| HCSMSZ)) « Dy (3.5)

k
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Note that Cg, | s, is the weight of edge between parent user S;_y and its child user S;
on the k'™ shortest path from A to U, for 1 <i <1 — 1. Based on Equations and

and by using Observation 1, one can re-write Equation [3.3 as below.

k
Csi—l,si
= M), * Z | P(A,U)| * VA * Dy
4 i—1,

k

k

= M, x TN * RS(A,U)

The values of My, and T'N are constants for any given snapshot of the social network
(for a fized h). Therefore, the relative orderings among the recommendation scores
of the potential candidates based on Equation[3. are preserved. That is, for any two
potential users U and V if RS(A,U) > RS(A,V), then the new scoring function
gquarantees that %(A, U) > I%TS'(A, V') for any fized h and A, and vice versa.

3.4.3. Computation of Recommendation Score. Refer to Figure3.2land
let us consider the case of computing the recommendation score between Lee and Fozx.
Here, Fox has two shortest paths from Lee; Py (Lee, Fox) = {Lee, Hall, Butler, Fox}
and Py(Lee, Fox) = { Lee, Cox, Butler, Fox}. The total (minimum) number of mes-
sages along the first path i.e., |Pi(Lee, Foz)| is 7. Similarly, |Pz(Lee, Fox)| = 10.
Along Py (Lee, Fox), there exist two internal users Hall and Butler who are respec-
tively 1 and 2 hops away from Lee. In addition, Cree gan = 2 and Crau Butier = 1.
Similarly, for the path Py(Lee, Fox), Cree.cor = 2 and Cooz putier = 4. Since Fox is

3 hops away from Lee, her scaling factor Mj is 1. By substituting the above values



22

in Equation 3.5 the recommendation score for Fox is given as:

—~

RS(Lee,Foxr) =1* [T+ 2% 1+ 10% 2% 4] * Dpoy = 94 % Dpyy

Whereas, the actual recommendation score for Fox, following from Equation B.] is

given by:
2 4 DFox
— 7% — 4 10% 2% —
RS(Lee, Forx) 7*5*13+ 0 F* 3| YT
1 DFox
_%*94* TN

where Dp,, is the degree (size of friend list) of For and TN denotes the size of the
candidate network. It is clear that RS(Lee, Fox) = My, * TN * RS(Lee, Fox), where
Mh = M()’l * MLQ =5x*13 = 65.

3.5. THE PROPOSED PFR PROTOCOL

This sub-section presents the proposed private friend recommendation (termed
as PFR) protocol which computes the recommendation scores between the target user
A and all potential candidates who are at most h-hop (> 1) away from A based on

Equation B35l This work explicitly considers the following assumptions:

1. If U € F(V), then V € F(U), and Cy,y is known only to U and V. Also, let
F(A) = (By,...,B,,) denote the friend list of A.

2. Each user has a unique user ID (for example, Facebook user ID is generally at

most 128-bit integer).

3. There exists a third party T (e.g., network administrator) who generates a
pair of encryption and decryption function (F, D) for A based on the additive

homomorphic probabilistic encryption scheme (HPEnc™) such as the Paillier
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cryptosystem [55]. The corresponding private key pr is known only to 7" and
the public key pk is public. In addition, let N be the group size (usually of
1024 bits). For any two given plaintexts mi,my € Zy, the HPEnct system

exhibits the following properties:

(a) Homomorphic Addition: E;(m;+msy) < Ey(my)*Ey(ms) mod N?;
(b) Homomorphic Multiplication: E,x(m; x mz) + E(my)™ mod N?;

(c) Semantic Security: The encryption scheme is semantically secure as
defined in [49, 56]. Briefly, given a set of ciphertexts, an adversary cannot

deduce any additional information about the plaintext.

To generate the candidate network, one need to omit the messages between
users who are at the same level. For example, in Figure B.2] one should not con-
sider Chai,cor for computing the recommendation scores in the PFR protocol (as
mentioned in [14, 53]). Thus, to explicitly generate the candidate network, this work
includes an initialization step as follows. Initially, A generates a counter ¢t = h — 1
and passes it over to his/her friends. Upon receiving the counter, each intermediate
user U stores the value of received counter (locally) and also stores the parent user
who sent the counter to U (denoted as Pr(U)). After this, U decrements the counter
by 1 and sends it to his/her friends. This process continues until users at h-hop from
A receive a counter of ¢ = 0. Since a user can receive multiple counter values, the

following observations are considered.

Observation 2. Consider user U, who is l-hop away from A and 1 <1 < h, receiving

multiple t values. This work addresses the following two cases:

Case 1: If the counter values are same, then U has multiple shortest paths
(with parents of U on the same level). In this case, U considers one of the parents

(can be chosen randomly) as actual parent Pr(U) and any further communication
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happens only with that parent. E.g., refer to Figure 8.2 “Hart” receives t = 0 from
both Cole and Kelly. Therefore, he can pick one of them, say Kelly, as Pr(U).

Case 2: If U receives different values of ¢ which happens when U receives
counters from parents who are at different levels. In this case, U selects one of the
parent user who sent the maximum ¢ value as Pr(U). In the PFR protocol, the
child users of U (denoted as C'h(U)) are users belonging to F(U) — R(U), where
R(U) denotes the set of users who have sent a counter value to U. The important
observation here is U omits the messages exchanged with the users who have sent
smaller counter values (also dumps the corresponding counter). This further implies
that, U considers only messages exchanged between him/her and either Pr(U) or
Ch(U) (therefore forming a candidate network by omitting messages with users on
the same level). An example to this case is user “Coz” (refer to Figure B.2)). Here,
Cox receives t = 2 and t = 1 from Lee and Hall respectively. Therefore, Cox treats
Lee as the actual parent user and omits Ceog, mai-

At the end of the initialization step, based on Observation 2, each internal
user U who is [-hop away from A, for 1 <[ < h, has the values of ¢, pk, Pr(U) and
Ch(U). Apart from the above initialization step, the proposed PFR protocol mainly
consists of the following two phases:

Phase 1 - Secure Computation of Scalar Factors: During Phase 1, A
computes the list of encrypted scalar factors (denoted as ®, where ®;_; denotes the
encrypted scalar factor for level [ and 2 < [ < h) in a privacy-preserving manner.
This phase utilizes a secure multiplication protocol (only if A > 3) as a building block.
At the end, only A knows ® and nothing is revealed to other users.

Phase 2 - Secure Computation of Recommendation Scores: Follow-
ing from Phase 1, A (with ® as input), 7" and other internal users jointly compute
the recommendation scores of all potential candidates who are [-hop away from A,

for 2 <[ < h. This phase utilizes a secure multiplication and addition protocol as a
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building block. The final recommendation scores and the corresponding user IDs are
revealed only to A and nothing is revealed to other users.

To start with, A chooses the value of Al and executes the initialization step
as explained earlier. Then, during Phase 1, A decides whether there is a need to
take the help of other users in order to generate ®. If h = 2, A computes ® locally.
Otherwise, for h > 2, A computes ® with the help of internal users. After this,
during Phase 2, A sends necessary information to B; along with his/her user 1D
and ®, for 1 < i < m. Then, each intermediate user U; receives the necessary
information from Pr(U;), generates his/her encrypted partial scores (only if U; is
not already a friend of A) and sends the encrypted partial scores to A. In addition,
if the value of ¢ (stored during initialization step) of U; is greater than 0, he/she
computes the necessary information (for ¢ > 0) and sends it to his/her corresponding
child friends. After receiving all the encrypted partial scores, A and T involve in a
secure multiplication and addition protocol to compute the recommendation scores
for each potential candidate U;. At the end of this step, only A knows the user IDs
of all potential friends along with their recommendation scores (computed based on
Equation B.5). The main steps of PFR are shown in Algorithm [II Now, the steps
involved in each of the two phases are discussed in detail.

3.5.1. Phase 1 - Secure Computation of Scalar Factors. If the value
of h is 2, then only the child friends of A’s friends are considered as the potential
candidates. Since the scalar factor for users at | = 2 is M} = 1, A simply sets
®; = E,i(1) for security reasons. When i > 2, A does not have necessary information
to compute the encryption of scalar factors (such as M}) since the potential candidates
can belong to any L(l), where 2 < [ < h. Therefore, when h > 2, A computes P,
with the help of internal users who are at most h — 2 hops away from A. Note that

the potential candidates who are at most h — 2 hops away from A are sufficient to

*Note that h should always be greater than 1. Because, if h = 1, then | = 1 implies the potential
candidates who are 1-hop away from A who are already friends of A.
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generate the encryptions of all scalar factors because the partial scores of Mj_o 1
are known to users belonging to L(h — 2). Note that, irrespective of the value of h,
®),_y = E,i(1) always hold. Phase 1 involves steps 1 to 16 as shown in Algorithm [

In order to compute ®, for h > 2, A simply waits for internal users with ¢ > 2
to send in the aggregated data. To start with, each internal user U; (including B;)

performs the following operations based on his/her counter value ¢:
1. Compute Xy, = (D iy Cu,v;), where V; is the child friend of U; and s =
Ch(U;)
2. Create a vector Ly, of size t — 1; sets Ly, [t — 1] to Xy,

3. Ift > 2, Uj receives Ly; from V; and updates Ly, by aggregating Ly; component-

wise as follows, and sends it to Pr(U;).
Ly, k] = TT;_; Ly, [k] mod N?, for 1 <k <t —2

The above process forwards the aggregated data at each internal user in a bottom-up
fashion. At the end, A receives Lp, from B;, for 1 < i < m. After this, A generates

the final aggregated encrypted list (L4) and proceeds as follows:

1. Lalk] = [11%, Lp,[k] mod N2, for 1 < k < |Lg,|, where Lp, denote the aggre-

gated list received from B;. The observation is |Lg,| = h — 2, for 1 <i < m.

2. Assign the encrypted scalar factor for level h as ®;,_; = E,;(1). If h = 3, set
Oy «— Ly[1]. Else, let Ly = (Epp(z1), ..., Epk(zh—2)). Using secure multiplica-

tion (SMP) given in Algorithm 2l A and 7' compute ® from L4 as below.

h—1-1

@,%Epk<H xj),forlglgh—2

j=1

The SMP protocol is one of the basic building blocks in the field of secure multiparty

computation (SMC) [50]. The basic concept of the SMP protocol is based on the
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Algorithm 1 PFR

Require: pr is private to 7', h is private to A, U; knows (¢, Pr(U;), Ch(U;))

*®

10:
11:
12:
13:
14:
15:
16:

17:
18:

19:
20:
21:

22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:

33:
34:
35:

36:
37:

{Steps 1 - 7 performed by U, with ¢t > 2}
s |Ch(U;)
XUj — Epk(Zle CUJ.J/;;), where V; € Ch(UJ)
LUj [t — 1] — XUJ-
if ¢ > 2 and Uj received Ly, from V; then
LU].[/{?] < Hle L%[k] mod NQ, for 1 < k <t—2
end if
send Ly, to Pr(U;)
{Steps 8 - 16 performed by A and T}
D1 = Epi(1)
if h > 3 then
Lalk] < 11", L[kl mod N2, for 1 <k <h—2
if h =3 then
D+ Ly
else
Compute ® using L4 as input to the SMP protocol
end if
end if
{Steps 17 - 21 performed by A}
for all B, € Ch(A) do
a1 < Ep(Cap,)
ay <I>IC_A1’B" mod N2, for 2 <1< h
send A, ®, and « to B; (note that « is different for each B;)
end for
{Steps 22 - 36 performed by U;}
receive A, ®, and o from Y = Pr(Uj,)
if A€ F(U;) then
send A, ® and « to each V; € Ch(U;)
else Dy

compute (; < «; ’ mod N?

Cr; 2
compute y; <= o * ®; 77 mod N
Zj — {Epk(Uj)7 <ﬁj7’yj>}
send Z; to A
end if
if t > 0 then
<I>l<—<Dl+1,for1§l§t
Qg alcY’Uj mod N?
Qp 4 Qi ¥ (IDZCLYin mod N2 for 2 <[ <t+1
send A, ® and «a to each V; € Ch(U;)
end if
(RS(A,U;),U;) < SMPA(Z;), for each Z;
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following property which holds for any given a,b € Zy:
axb=(a+r)*(b+ry)) —a*ry—bxr —ri*ry (3.6)

where all the arithmetic operations are performed under Zy. Given that A has input
E,;(a) and E,;(b), the SMP protocol computes Epi(a * b) as the output (which will
be revealed only to A) without disclosing the values of a and b to either A or T'. The
output of Phase 1 is the list of encrypted scalar factors (in order) for each level. More

specifically,
Q) = Epp (M), for 1 <I<h-1

where M, is the scalar factor for users at (/4 1)-hop away from A. If the maximum
value of h is 6 (sufficient for most situations), the maximum size of L, is 4. Therefore,

Phase 1 is bounded by 2 instantiations of the SMP Protocol.

Theorem 1. The output of Phase 1 is the list of encrypted scalar factors (in order)
for each level. That is, ®; is equivalent to the encryption of scalar factor for users at

level | + 1, where 1 <1 < h—1. Formally,
Oy = Epr(Mj,)
where M, is the scalar factor for users at | + 1 hops away from A.

Proof. For h = 2, since M} = 1, it is clear that ®; = E,;(1) = E,(M;). Note
that irrespective of the value of h, ®,_1 = E,(1) = E,,(M}) always holds. When
h > 3, initially the internal user X with ¢ = 2 (denoting level h — 2) sends Ly =
Epk(z|0h(x)| Cxy,) to Z, where Y; € Ch(X) and Z = Pr(X). Then, Z aggregates
the data received from Ch(Z). Without loss of generality, let Z receives Lx,, ..., Lx,,
where X; € Ch(Z). Then, the aggregated entry in Lz is Lz[1] = Lx, [1]*...x Lx,[1].

In addition, Z sets Lz[2] = E, (Z @1y x,). Since the data are aggregated
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Algorithm 2 SMP(E,.(a), Ep(b)) — Epk(axb)
Require: A has E,;(a) and E,(b)
1. A:

a). Pick two random numbers r,, 7, € Zy
b). 2, < Epi(a) * Ep(r,) mod N?
(¢). 2 = Epi(b) * Epk(ry) mod N?; send z,, 2, to T

2: T
(a). Receive z, and z, from A
(b). uq < Dpr(2a); up < Dy (2)
(c). Compute u = u, * up mod N
(d). v ¢ Ep(u); send v to A

3: A

. Receive v from T'
s + v Ey(a)N " mod N?
s' < s* Eu,(b)N " mod N?

Epi(a*b) < 8" % Ey(ry *ry) V=1 mod N2

component-wise, {**

component in Lz is equivalent to the encryption of summation of
(minimum) number of messages exchanged between users at L(h—[—1) and L(h—1)
under sub-tree of Z. (Note that, following from Observation 2, if X; has multiple par-
ents, then he/she will send Ly, to only actual parent user Pr(X;)). This aggregation
process continues at each level in a bottom-up fashion. Finally, when A computes
L4 (by aggregating the Lp.’s component-wise, for 1 < i < m), the [ component
in L, is equivalent to the encryption of sum of (minimum) number of messages ex-
changed between users at L(h —1—1) and L(h —1), that is, Ls[l] = Ep(Mp—i1—14-1),
for 1 <1 < h —2. As mentioned earlier, let Ly = (E,;(z1),..., Ey(zp—2)), where

2 = Mp_j_1p—y, for 1 <1 < h — 2. Based on the above discussions, consider the

following two scenarios:
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When h = 3, it is clear that |L,| = 1 and ®; gives the encrypted

scalar factor for users at level 2 as shown below.

Scenario 2:

= Ly[1]

= Ep(M2)

Moy, * M 2)
= F, | ——c
”’“( Mo,

M;
- g (22
. (M2>

= Epk(Mé>

On the other hand, when h > 3, A and T jointly involve in the SMP

protocol (Step 14 in Algorithm [Il). Following from the SMP protocol (as given in

Algorithm [2)), the value of ®;, for 1 <[ < h — 2, can be formulated as shown below:

P

h—Il—1
Ex| ] l’j)
Ex| I1 thl,hj)

E (M01* ok My, 2h1)
pk
MOl*--'*Ml—ll
M,
o (31
My
Epk(Ml/+1)

O

3.5.2. Phase 2 - Secure Computation of Recommendation Scores.

During Phase 2, A with input ® along with 7" and the internal users jointly compute
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the recommendation score for each potential candidate. The main steps involved in
Phase 2 of the PFR protocol are shown as steps 17 to 37 in Algorithm [Il To start
with, initially A computes a vector o (which is different for each B;) of size h as

follows:

ap = Epx(Cap)

a = O A% mod N2 for 2<1<h

After this, A sends A, ®, and corresponding « to B;, for 1 < ¢ < m. Then, each
internal user U; receives the values of A, ®, and « from Pr(U;) and checks whether
A is already a friend of U; (this case happens only if U; is equal to one of the B;’s).
If A e F(U,), then U; simply forwards A, ®, and « to each of his/her child friend.
Otherwise, U; computes the encryption of shares of his/her recommendation score as

below:
Dy, Cyu,
B = oy I mod NZ; v = gk @, mod N?

where Dy, denotes the degree of U; (i.e., |[F(U;)|) and Y is the parent friend of U;.
After this, U; sends Z; = {E,,(U;), (B;,7;)} to A. Note that U; can receive multiple
pairs of (®,«) which occurs only when there exist multiple shortest paths from A
to U;. Under this scenario, U; creates the encrypted partial scores for each pair of

(®, ) and simply appends them to Z; as follows.

Zj = {Epk(Uj>7 <B1,j7 ’YLJ‘>7 o 7ﬁs,j7 787j>}

where each 3,7, for 1 <[ < s, is computed as explained above for each pair of
(®,«) and s denotes the number of such pairs (number of shortest paths to U, from
A). In addition, if the counter (¢) corresponding to U; is greater than 0, then U;

generates necessary information for his/her child friends as follows.

e Update ¢ and a:
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*CI)Z @l+1,for1<l<t

Cyu,
— a;=a; ’ mod N?

Cy.u.
— al:alﬂ*(bljl’%,for2§l§t+1

e Send A, ® and « to his/her child friends. If U; receives multiple pairs of (P, a),

U, updates each pair as above and sends all updated pairs to the child friends.

Upon receiving the entries from all potential candidates, A and T involve in a secure
multiplication and addition (SMPA) protocol. The main steps involved in the SMPA
protocol are shown in Algorithm Bl Without loss of generality, consider the entry
Z; = {Ew(U;), (B1,j:71,5)» - -+ (Bsj,Vs,j) }, where s denotes the number of shortest
paths from A to U;. In addition, let Sy ; = Ep(ar,;) and 4 ; = Epi(by;), for 1 < k <
s. The goal of the SMPA protocol is to securely compute a; j * by ; + -+ 4 as; * by
as output without revealing the values of a; ; and by ;, for 1 < k < s, to either A or
T. At the end of the SMPA protocol, only user A knows the recommendation score
corresponding to Uj;, for 1 < j < n. The basic idea of the SMPA protocol is based

on the following property which holds for any given ay j, by ; € Zn, for 1 < k < 's:

S

S
Y argxbig = > (ak;+rig)* (be+ri,) - E g % T — E brj * T — E:T’kj*ﬁw
k=1

k=1

where ry ; and 7} ; are random numbers in Zy and all arithmetic operations are per-
formed under modulo N. The overall steps involved in SMPA are shown in Algorithm

Bl Initially, A randomizes each encrypted tuple (B ;, Vk,;), for 1 <k <'s, as follows:

Bri = Brj* Ep(re,) mod N2

Frg = Yej* Epr(ry ;) mod N7

, ) )
Here ry, ; and rj, ; are randomly chosen in Zy. A also randomizes E,(U;) and performs

these homomorphic operations (steps 1(b) to 1(g) of Algorithm [). The r; and 7; are
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Algorithm 3 SMPA

Require: A’s input is Z;

1. A:

(a).

for 1 <k < s do:

. B}w  Brj * Epr(ry;) mod N2, where 1y ; € Zy

® Vi) Thj* Epk(r,’f’j) mod N2, where rfw- € Ly

. Aj  Ep(U;) * Epy(rj) mod N2, where r; € Zy

Epi(r) <= Epe(Q 5y Thj * T s)

Ep(r1) « [T, By mod N?

Epr(r2) < [[im 'VI:k]J mod N?

T < Eu(7) * Epi(r)N ! mod N2, where 7; € Zy
w; =7 % By (r1)V 1 % Ep(r2)V ! mod N2

Send wj, \; and ng?:ﬁ?,j’ for1<k<stoT

. Receive parameters from A

akJ — DpT(ﬁk:,j) ) gk,j < Dpr(:?khj), for1<k<s
¢j 4 Y hy G * by mod N

z; < Dy (w;); 515 < zj + ¢;j mod N

. 82,5 Dp'r(/\j); send 81,5 and 82,5 to A

. Receive s; ; and sy ; from T'

. RTSY(A, U;) < s1; —7; mod N (recommendation score)

. Uj <= s9; —rj mod N (corresponding user ID)

also random numbers in Zy. Then, A sends E,w- and 7, for 1 <k <'s, to T along

with w; and A;. Upon receiving, T' decrypts B,w» and 7y j, for 1 < k < s, multiplies

and adds them as below:

e For 1 S k S S, ﬁ;w- = Dpr(glw-) and ZkJ = Dpr(;?k,j)



34

-
® ¢ =2 o1 Uk * by mod N.

Furthermore, T" decrypts w; and A;: z; = D, (w;) and sy ; = Dy, (), and computes
s1; = z; + ¢;jmod N. Then, T sends s;; and sy to A. Finally, A removes the

randomness from s; ; and s ; to get the actual score and user ID U; as follows:

RS(A, U]> = S1,5 — ’I:j mod N, Uj =825 — Ty mod N

Here, RS (A,Uj) is the recommendation score for user U; based on Equation 3.5

Note that (N — 1) represents “-1” under Zy.

Theorem 2. The output of Phase 2 is the list of recommendation scores along with

the corresponding users IDs. That is, for any given entry Z;:

—~

S1,5 — fj mod N = RS(A, U])

S25 — 15 mod N = Uj

Where s1; and sy ; are the final values sent to A from T corresponding to the entry

Zj in the SMPA protocol, for 1 < j <n.

Proof. Without loss of generality, consider a potential user U; who receives A and
(®, ) pairs from his/her parent friends. Let us assume t