
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 2019

Predictive analysis of real-time strategy games using graph Predictive analysis of real-time strategy games using graph

mining mining

Isam Abdulmunem Alobaidi

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Alobaidi, Isam Abdulmunem, "Predictive analysis of real-time strategy games using graph mining" (2019).
Doctoral Dissertations. 2824.
https://scholarsmine.mst.edu/doctoral_dissertations/2824

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2824?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2824&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PREDICTIVE ANALYSIS OF REAL-TIME STRATEGY GAMES USING GRAPH

MINING

by

ISAM ABDULMUNEM ALOBAIDI

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2019

Approved by:

Dr. Jennifer Leopold, Advisor
Dr. Ricardo Morales
Dr. Patrick Taylor
Dr. Peizhen Zhu
Dr. Robert Paige

Copyright 2019

Isam Abdulmunem Alobaidi

All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

This dissertation consists of the following four articles, formatted in the style used

by the Missouri University of Science and Technology, which have been submitted for

publication as follows:

Paper I: Pages 11-33 have been published in ICDM 2019, 19th Industrial

Conference on Data Mining ICDM 2019.

Paper II: Pages 34-58 have been published in ICDM 2019, 19th Industrial

Conference on Data Mining ICDM 2019.

Paper III: Pages 59-91 have been submitted to IJDMTA, International Journal of

Data Mining Techniques and Applications.

Paper IV: Pages 92-112 have been submitted to IEEE ICDE 2020, IEEE

International Conference on Data Engineering.

iv

ABSTRACT

Machine learning and computational intelligence have facilitated the development

of recommendation systems for a broad range of domains. Such recommendations are

based on contextual information that is explicitly provided or pervasively collected.

Recommendation systems often improve decision-making or increase the efficacy of a

task. Real-Time Strategy (RTS) video games are not only a popular entertainment medium,

they also are an abstraction of many real-world applications where the aim is to increase

your resources and decrease those of your opponent. Using predictive analytics, which

examines past examples of success and failure, we can learn how to predict positive

outcomes for such scenarios. To do this, one way to represent this type of data in order to

model relationships between entities is by using graphs. The vast amount of data has

resulting in complex and large graphs that are difficult to process. Hence, researchers

frequently employ parallelized or distributed processing. But first, the graph data must be

partitioned and assigned to multiple processors in such a way that the workload will be

balanced, and inter-processor communication will be minimized. The latter problem may

be complicated by the existence of edges between vertices in a graph that have been

assigned to different processors. One objective of this research is to develop an accurate

predictive recommendation system for multiplayer strategic games to determine

recommendations for moves that a player should, and should not, make which can provide

a competitive advantage. Another objective is to determine how to partition a single

undirected graph in order to optimize multiprocessor load balancing and reduce the number

of edges between split subgraphs.

v

ACKNOWLEDGMENTS

There are no proper words to convey my deep gratitude and respect for my

dissertation and research advisor, Dr. Jennifer Leopold. She has inspired me to become an

independent researcher and helped me realize the power of critical reasoning. I have

learned a lot from her. Her guidance and encouragement helped me in finishing my

dissertation. Also, I would like to express my great thanks to Dr. Ricardo Morales, Dr.

Peizhen Zhu, Dr. Patrick Taylor, and Dr. Robert Paige for serving on my committee. They

generously gave their time.

My sincere expression of appreciation and thanks goes to my beloved wife Hiba,

who was always my support in the moments when there was no one to answer my queries.

Thank you with all my heart and soul. A big and great thanks from my deep heart goes to

my adorable daughters Maryam and Reetal for their love and for filling my life with

happiness. I would like to thank my Mom, Dad, and Aunt for all of the sacrifices that they

have made on my behalf. Your prayer for me is what sustained me thus far. All of you have

instilled admirable qualities in me and given me a good foundation on which to build my

life. No acknowledgment would be complete without giving thanks to my mother-in-law

and father-in-law for their prayers and support.

Finally, I would like to acknowledge my friend and colleagues in the research — a

very special thanks to Ali Al-Lami, you are always helpful.

vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION ... iii

ABSTRACT ... iv

ACKNOWLEDGMENTS ...v

LIST OF ILLUSTRATIONS ...x

LIST OF TABLES ... xi

NOMENCLATURE ... xii

SECTION

1. INTRODUCTION .. 1

1.1. GRAPHS AND NETWORKS .. 1

1.2. FREQUENT SUBGRAPH MINING ... 4

1.3. FREQUENT SUBGRAPH MINING COMPUTATIONAL CHALLENGES ... 7

1.3.1. Key Computational Challenges in Frequent Subgraph Mining…………7

1.3.2. Variation of Sequential, Distributed, and Parallel Processing in
 Frequent Subgraph Mining .. 8

1.4. SUMMARY .. 10

PAPER

I. THE USE OF FREQUENT SUBGRAPH MINING TO DEVELOP A
 RECOMMENDER SYSTEM FOR PLAYING REAL-TIME STRATEGY
 GAMES .. 11

ABSTRACT ... 11

1. INTRODUCTION .. 12

2. BACKGROUND .. 14

vii

2.1. GAME DATA MINING ... 14

2.2. FREQUENT SUBGRAPH MINING ... 15

2.3. FREQUENT SEQUENCE MINING .. 16

3. METHODOLOGY: FREQUENT SUBGRAPH MINING 17

3.1. PRELIMINARIES .. 18

3.2. GraMi ALGORITHM ... 19

3.3. USING FREQUENT SUBGRAPHS TO MAKE RECOMMENDATIONS ... 21

4. DATA DESCRIPTION .. 24

5. EXPERIMENTAL EVALUATION .. 25

5.1. EXPERIMENT AND RESULTS ... 26

6. CONCLUSION AND FUTURE WORK ... 30

REFERENCES ... 31

II. PREDICTIVE ANALYSIS OF REAL-TIME STRATEGY GAMES USING
 DISCRIMINATIVE SUBGRAPH MINING .. 34

ABSTRACT ... 34

1. INTRODUCTION .. 35

2. RELATED WORK... 36

2.1. GAME DATA MINING ... 36

2.2. DATA MINING TECHNIQUES USED IN PREDICTIVE ANALYTICS 38

2.3. DISCRIMINATIVE SUBGRAPH MINING ... 40

3. METHODOLOGY: DISCRIMINATIVE SUBGRAPH MINING 44

4. EXPERIMENT AND RESULTS ... 47

4.1. EXPERIMENTAL SETUP... 48

4.2. EXPERIMENTAL RESULTS ... 51

viii

5. SUMMARY AND CONCLUSIONS ... 56

6. FUTURE WORK ... 56

REFERENCES ... 57

III. PREDICTIVE ANALYSIS OF REAL-TIME STRATEGY GAMES: A
 GRAPH MINING APPROACH .. 59

ABSTRACT ... 59

1. INTRODUCTION .. 60

2. BACKGROUND .. 62

2.1. GAME DATA MINING ... 62

2.2. DATA MINING TECHNIQUES USED IN PREDICTIVE ANALYTICS 65

2.3. SUBGRAPH MINING ... 66

2.3.1. Frequent Subgraph Mining ... 67

2.3.2. Discriminative Subgraph Mining ... 67

3. METHODOLOGY ... 68

3.1. FREQUENT SUBGRAPH MINING ... 68

3.1.1. Preliminaries ... 68

3.1.2. GraMi Algorithm .. 69

3.1.3. Using Frequent Subgraphs to Make Recommendations 71

3.2. DISCRIMINATIVE SUBGRAPH MINING ... 72

4. DATA DESCRIPTION .. 76

5. EXPERIMENTAL EVALUATION .. 77

5.1. EXPERIMENTAL SETUP... 77

5.2. EXPERIMENT RESULTS ... 79

5.2.1. FSM - Experimental Results .. 79

ix

5.2.2. DSM - Experimental Results .. 82

6. CONCLUSION AND FUTURE WORK ... 87

REFERENCES ... 88

IV. GraPH: GRAPH PARTITIONING BASED ON HOTSPOTS 92

ABSTRACT ... 92

1. INTRODUCTION .. 93

2. RELATED WORK... 94

3. METHODOLOGY ... 97

3.1. PRELIMINARIES .. 97

3.2. VOG GRAPH SUMMARIZATION ... 98

3.3. PROPOSED ALGORITHM ... 100

3.4. COMPUTATIONAL COMPLEXITY ... 102

4. RESULTS AND ANALYSIS .. 103

4.1. DATA DESCRIPTION .. 103

4.2. EXPERIMENT AND RESULTS ... 104

5. CONCLUSION AND FUTURE WORK .. 109

REFERENCES ... 110

SECTION

2. CONCLUSIONS AND FUTURE WORK .. 113

2.1. CONCLUSIONS .. 113

2.2. FUTURE WORK .. 114

BIBLIOGRAPHY ..116

VITA ..117

x

LIST OF ILLUSTRATIONS

SECTION Page

Figure 1.1: Clique Graph .. 3

Figure 1.2: Bipartite Graph ... 3

Figure 1.3: Star Graph... 4

Figure 1.4: Chain Graph ... 4

Figure 1.5: An illustration of the Anti-monotonicity property. If {c, d, e} is frequent,
 then all subsets of this itemset are frequent .. 5

Figure 1.6: An illustration of support-based pruning. If {a, b} is infrequent, then all
 supersets of {a, b} are eliminated. .. 6

PAPER I

Figure 1: Recommender System Classification .. 12

Figure 2: Comparison of Average Precision, Recall and F-measure for Different
 Number of Games. .. 28

Figure 3: Comparison of Average Accuracy for Different Number of Games. 29

PAPER IV

Figure 1: Types of Structures. ... 98

Figure 2: Interior Edges per Partition. .. 105

Figure 3: Exterior Edges per Partition. ... 106

Figure 4: Total Edges Lost. ... 107

xi

LIST OF TABLES

PAPER I Page

Table 1: Winner Data .. 27

Table 2: Loser Data ... 27

Table 3: Portion of the SPADE Output for the 19-Games Dataset................................... 30

PAPER II

Table 1. Cross-Validation Test Results .. 51

PAPER III

Table 1: Winner Data of FSM – Interloper Game .. 80

Table 2: Loser Data of FSM – Interloper Game ... 80

Table 3: Winner Data of FSM – StarCraft II Game .. 80

Table 4: Loser Data of FSM – StarCraft II Game .. 80

Table 5. Cross-Validation Test Results of FSM – Interloper Game 82

Table 6. Cross-Validation Test Results of FSM - StarCraft II Game 82

Table 7. Cross-Validation Test Results of DSM – Interloper Game 83

Table 8. Cross-Validation Test Results of DSM - StarCraft II Game 83

PAPER IV

Table 1: Description of the Graphs Tested ... 103

xii

NOMENCLATURE

Symbol Description

α Percentage of graphs that discriminative subgraph need not be present in
 C+ when relaxing conditions

β Percentage of graphs that discriminative subgraph need not be present in
 C- when relaxing conditions

𝜏𝜏 User-specified Threshold

1

1. INTRODUCTION

Technology is continuously developing, creating a rapid “inflation” process that

compounds over time. Although this development has solved many problems, it has also

created new challenges. One of these challenges is the volume of data produced. Countless

sources can produce this kind of massive data, for example, medical records, mobile phone

applications, automated data creation, and customer databases.

Before looking for an appropriate way to analyze this massive amount of data, we

need to determine what problem we are trying to solve. For instance, are we interested in

predicting the next stage of a satisfactory condition? Do we want to develop specific

recommendations with a view to taking proactive steps in military situations? Are we

interested in predicting the type of problem that is expected to occur for a particular

system? From this point of view, driving the analysis in a particular direction will depend

primarily on the type of problem we wish to solve. One effective way to solve this type of

problem is the graph. We can take advantage of the graph in the field of computer science

for such kinds of problems in three different ways: increase performance, provide

flexibility, and improve the speed of movement.

1.1. GRAPHS AND NETWORKS

A graph, mathematically, is a combination of arbitrary objects called nodes/vertices

connected via paths/edges. The information, or data, can be visualized using graphs to

uncover their relation and facilitate handling them. Either one big graph or transaction

graphs can be used to represent a large volume of data. The choice of one of these forms

2

depends primarily on the nature of the data that will be dealt with. Basically, various

operations can be performed on the vertices and edges within the graph, for instance,

partition one large graph into many of those small ones based on some requirements,

adding/deletion of vertices/edges into or from the graph's collection, or checking whether

two vertices share an edge (are connected as frequent). Graphs are used all over the place.

Networking makes heavy intensive use of them, and they are also utilized in artificial

intelligence, data mining, game development, geoinformatics, bioinformatics, and many

other disciplines. Effectively, anything that contains a set of connections can be represented

in a graph form. Computer scientists have developed a great deal of theory about graphs

and operations on them. This is partly because graphs can be used to represent many

problems in computer science that are otherwise abstract.

Graphs can be categorized into various types based on the number of vertices/edges,

interconnectivity, and their overall structure. The main feature in all types of graphs is

whether they are directed or undirected. The difference is the same as between one

directional and bidirectional streets. In a directed graph, the direction matters, and the edge

can not be used in the other direction, while in an undirected graph, the direction does not

matter, and can be simulated using a directed graph by using pairs of edges in both

directions. Some graphs are extreme because they are made up of vertices only with no

edges to connect them. For example, a Null graph consists of only a few vertices and a

Trivial graph has only one vertex. These types of graph are not our focus.

The other type of graph is called connected graphs. To be a connected graph, it

must fulfill the requirement of at least one existing edge for every vertex connected to some

other vertex at the other side of the edge. If there is an edge from every single vertex to

3

every single other vertex, this will be a fully connected graph (or it can be called a

complete graph). A graph will be called just connected if there is a path to get from each

vertex to each of the other vertices, not necessarily in a direct path. Many categories fall

under these two types of graph, whether it is full connect or not, such that Full-clique, Near-

clique, Full-bipartite, Near-bipartite, Star, and Chain. Figures 1.1, 1.2, 1.3, and 1.4 show

examples of these types of graph.

Full-clique Near-clique

Figure 1.1: Clique Graph

Full-bipartite Near-bipartite

Figure 1.2: Bipartite Graph

4

Figure 1.3: Star Graph

Figure 1.4: Chain Graph

1.2. FREQUENT SUBGRAPH MINING

The quintessence of graph mining is frequent subgraph mining (FSM), where the

objective here is to extract all the frequent subgraphs in a given dataset whose existence

counts are with/above a specified threshold. Many applications (e.g., chemoinformatics,

bioinformatics, or machine learning) have utilized the FSM process in order to extract the

critical knowledge [1, 2, 3, 4, 5, 6, 7] from data. The detection of beneficial hidden patterns

in a very massive dataset represents its objective. This step will assist to reveal properties

that identify real-world graphs from random graphs and uncover anomalies in a specific

graph such as in 1) mining biochemical structures, 2) program control flow analysis, 3)

mining XML structures or Web communities, 4) building blocks for graph classification,

clustering, compression, comparison, and correlation analysis, or 5) fraud detection in

5

telecommunications networks, auction networks, social networks, or cyber-attacks and

intrusion.

null

edcba

bcaeadacab dececdbebd

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Frequent
Itemset

Anti-monotonic

Figure 1.5: An illustration of the Anti-monotonicity property. If {c, d, e} is frequent, then
all subsets of this itemset are frequent

Anti-monotonicity means that a 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑛𝑛 subgraph is frequent only if all of its

subgraphs are frequent [9]. As an illustration of the above property, consider the structure

shown in Figure 1.5. If a subgraph such as {c, d, e} is found to be frequent, then the anti-

monotonic property suggests that all of its 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑛𝑛 subgraphs (i.e., the shaded itemsets in

this figure) must also be frequent. The intuition behind this property is as follows: any

subgraph that contains {c, d, e} must contain {c, d}, {c, e}, {d, e}, {c}, {d}, and {e}, (i.e.,

subgraphs of the 3-itemset). Therefore, if the support for {c, d, e} is greater than the support

threshold, so are its subgraphs.

6

Conversely, if a subgraph such as {a, b} is infrequent, then all of its subgraphs

must be infrequent too. As illustrated in Figure 1.6, the entire subgraph containing

subgraphs of {a, b} can be pruned immediately once {a, b} is found to be infrequent. This

strategy of trimming the exponential search space based on the support measure is known

as support-based pruning. Such a pruning strategy is made possible by a key property of

the support measure, namely, that the subgraph support never exceeds its original source

support. Any measure that possesses an anti-monotonic property can be incorporated

directly into the mining algorithm to effectively prune the candidate search space.

null

edcba

bcaeadacab dececdbebd

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Infrequent
Itemset

Monotonic

Pruned
supersets

Figure 1.6: An illustration of support-based pruning. If {a, b} is infrequent, then all
supersets of {a, b} are eliminated.

7

1.3. FREQUENT SUBGRAPH MINING COMPUTATIONAL CHALLENGES

1.3.1. Key Computational Challenges in Frequent Subgraph Mining. The main

challenge in subgraph mining is efficiency [4, 6, 8], where

• The cardinality of the graph collection to be mined may be very large in both

transaction and single graphs; for example, a biological network may consist of

7496 vertices (|𝑉𝑉| = 7496) with 515 distinct labels and 25408 edges (|𝐸𝐸| =

 25408) [9].

• The number of graphs generated by the subgraph extension process is completely

abundant. This abundance has a significant impact on increasing the cost of support

evaluation, which is the core of the frequent subgraph mining process. The pattern-

growth algorithm extends a frequent graph directly by adding a new edge in every

possible position. It does not perform expensive join operations. A potential

problem with the edge extension is that the same graph can be discovered multiple

times. Also, a new edge to be extended could be frequent or not. The support

evaluation is more complicated than subgraph extension and will cost more time

during the mining process. A major challenge in mining frequent subgraphs is that

the mining process often generates a huge number of patterns. This is because if a

subgraph is frequent, all of its subgraphs are frequent as well. A frequent graph

pattern with 𝑛𝑛 edges can potentially have 2𝑛𝑛 frequent subgraphs, which is an

exponential number.

• Testing for graph isomorphisms is computationally intensive. The isomorphism

challenge is that the vertices and edges in a given pair of graphs may be mapped in

8

a variety of ways. The number of possible mappings may be exponential in terms

of the number of the vertices.

• Communication cost in distributed processing (i.e., MapReduce) is also an

important concern, as large amounts of intermediate data may be generated and

transferred among workers. Excessive network transmission increases the overall

execution time of graph mining and may also lead to bottlenecks and failures.

1.3.2. Variation of Sequential, Distributed, and Parallel Processing in

Frequent Subgraph Mining. Both parallel and distributed processing share the same

challenge when they deal with either single or transaction graphs. The partitioning of a

single graph or distributing of transaction graphs must satisfy the quality graph partitioning

(guarantee of not losing any data), multilevel paradigm, and load balancing. One

straightforward partition scheme for transaction graphs is to distribute the graphs [3], so

that each partition contains the same number of graphs from the set of graphs 𝓖𝓖 =

(𝑮𝑮𝟏𝟏,𝑮𝑮𝟐𝟐, … ,𝑮𝑮𝒏𝒏). This works well for most of the datasets. However, for datasets where the

size (edge count) of the graphs varies substantially, another splitting option occurs where

the total number of edges aggregated over the graphs in a partition are close to each other.

In this way, the load balancing factor of distributed processing will be improved. From

another side, the number of partitions is also an important tuning parameter. The

partitioning of the single graph considered can be a big challenge. The choice of the proper

partitioning method will save a lot of edges from not being lost and maintain the frequency

rules.

Frequent subgraph patterns from a single large graph in the distributed platform

rely on computing the support of a pattern [1]. If the input graphs are partitioned over

9

various worker nodes, the local support of a subgraph in the respective partition at a

worker node is not very useful for deciding whether the given subgraph is frequent or not.

Support measures that simply count the occurrences of a pattern may violate the anti-

monotonic property since occurrences of the pattern may overlap with each other. In a

single graph, the challenge in mining a partitioned graph is that there can be false negative

patterns (i.e., a pattern 𝑝𝑝 that is globally frequent can be missed because certain edges

involved in subgraph isomorphisms for 𝑝𝑝 span different partitions). Communication cost

(in distributed processing like MapReduce) is also an important concern as large amounts

of intermediate data may be generated and transferred among workers. Excessive network

transmission increases the overall execution time of graph mining, where the support

computation cannot be delayed arbitrarily and may lead to bottlenecks and failures.

Both scenarios, single and transaction graph settings, share the scalability problems

in the mining sequential patterns process, including 1) maximum time required for

scanning the database, 2) size of the mining dataset, where large data input may exceed

memory resources of a single machine, and 3) vast amounts of CPU time required to

compute frequent patterns.

A huge number of possible sequential patterns may be hidden in databases. A

mining algorithm should find the complete set of patterns when possible to satisfy the

minimum support (frequency) threshold. This should be done in a manner that is highly

efficient and scalable, involving only a small number of database scans and incorporating

various kinds of user-specific constraints. Also, sequential pattern mining requires, besides

the discovery of frequent itemsets, the arrangement of these itemsets in sequences and the

10

discovery of which of these are frequent. Moving towards a parallel or distributed

environment is very important to solve the challenges in sequential pattern mining.

1.4. SUMMARY

Graphs are everywhere. The capability of a graph database to solve multiple domain

problems, such as in biological networks, chemical patterns, social networks, or computer

network and web data patterns, really are endless. The objective of this dissertation is to

mine the historical data, whether structured or unstructured (e.g., real-time strategy (RTS)

games or medical data) to discover and analyze the value hidden in their connection.

11

PAPER

I. THE USE OF FREQUENT SUBGRAPH MINING TO DEVELOP A
RECOMMENDER SYSTEM FOR PLAYING REAL-TIME STRATEGY

GAMES

Isam A. Alobaidi1, Jennifer L. Leopold1, and Ali A. Allami2

1Department of Computer Science, Missouri University of Science and Technology,
Rolla, MO 65409

2Electrical Engineering & Computer Science Department, University of Missouri,
Columbia, MO 65211

ABSTRACT

Machine learning and computational intelligence have facilitated the development

of recommendation systems for a broad range of domains. Such recommendations are

based on contextual information that is explicitly provided or pervasively collected.

Recommendation systems often improve decision-making or increase the efficacy of a

task. Real-time strategy (RTS) games are one domain where computationally determined

recommendations for moves that a player should, and should not, make can provide a

competitive advantage. The goal of our research is to develop an accurate predictive

recommendation system for multiplayer strategic games that is based on frequent subgraph

mining. Herein we present that approach and validate it using the historical data of one

RTS game.

12

1. INTRODUCTION

The ever-increasing expansion of information and communications technology has

initiated a new era for the development of recommendation systems for a wide variety of

application domains (e.g., entertainment, E-commerce, E-health, etc.); see Figure 1.

Recommendations could be for products or services that a customer might consider

purchasing, treatments that a doctor might consider prescribing for a patient, or a sequence

of actions that a robot should perform in a certain situation. Typically, the

recommendations are based on an analysis of historical data, often characterized as positive

and negative examples for the recommendation scenario. In order to be of value,

recommendation systems must have high predictive accuracy.

Figure 1: Recommender System Classification

Another venue where recommendation systems can be valuable is strategic games.

Players have long been interested in studying previously played games to try to discern

13

which moves are advantageous to make and which moves should be avoided. With the

current widespread interest in online, real-time strategy (RTS) games, which can involve a

diverse and complex set of entities and functionality, determining which moves to make

(and which not to make) can be extremely challenging. Fortunately, there are several

databases of played games that can be analyzed to glean some insight.

In this study, we develop a predictive recommendation system for strategic

multiplayer games that is based on graph mining. Using a database of played games, we

model each of those games as a directed graph, and use frequent subgraph mining to look

for patterns of moves that occurred frequently in winning games; these form the basis of

our recommendations for moves that a player should make. Similarly, we look for patterns

of moves that occurred frequently in losing games; those become the basis of our

recommendations for moves that a player should not make. We test the accuracy of our

method by repeatedly partitioning our database of played games into training and test

datasets, and testing for the occurrence of true positives, true negatives, false positives, and

false negatives. We also compare our method to an alternative approach, frequent sequence

mining.

The organization of this paper is as follows. Section 2 provides a brief discussion

of the main topics in this paper: game data mining, frequent subgraph mining, and frequent

sequence mining. The particular algorithm that we used for frequent subgraph mining is

explained in more depth in Section 3. A description of the RTS game data that we used for

testing our method is provided in Section 4. Our experimental method and results are

discussed in Section 5. A summary of this research and consideration of future work is

discussed in Section 6.

14

2. BACKGROUND

In this section we briefly discuss some of the related work that has been done in

the fields of game data mining, frequent subgraph mining, and frequent sequence mining.

2.1. GAME DATA MINING

One objective of game data mining is to analyze a collection of played games and

find patterns of moves that were made in winning (and possibly losing) games. Game data

mining was the main focus of research in [1, 2, 3]. In [2] a method, Playtracer, for game

analysis and improvement was proposed. A multidimensional scaling strategy was applied

to cluster players and game states, and a detailed visual representation of the paths taken

by players during the game was provided. Specifically, Classical Multidimensional Scaling

(CMDS) [4] was used in order to visualize the paths. The Playtracer method showed mutual

ways that players succeeded and failed, and enabled tracking a specific player’s progress

across multiple levels.

Two widely used data mining techniques, Classification and Regression Trees

(CART) and artificial neural networks, were utilized in [3] to analyze a collection of game

data (i.e., STEAM) for predictive purposes. CART is a decision tree algorithm that aims to

build a predictive model based on the values of several inputs. Artificial neural networks

also attempt to discover new patterns from inputs by subjecting them to a repetitive

learning process. The aim of this study was to predict what should be followed as accurately

as possible. Their method relied on the analysis of the online reviews (e.g., number of

screenshots, number of reviews of a specific action) to achieve their objectives.

15

2.2. FREQUENT SUBGRAPH MINING

Given a single (directed or undirected) graph, it can be useful to know which

subgraphs occur at least 𝑛𝑛 times where 𝑛𝑛 is a user-specified threshold for frequency.

Similarly, given a collection of graphs and a frequency threshold 𝑛𝑛, it may be important to

know which subgraphs occur in at least 𝑛𝑛 of those graphs. The process of answering this

question is called frequent subgraph mining.

 Several methods for frequent subgraph mining were presented in [5, 6, 7, 8]. An

algorithm that finds only maximal frequent subgraphs from a collection of graphs was

given in [5]. This method consists of two basic steps: (1) from a collection of graphs, all

frequent trees (i.e., undirected graphs in which any two vertices are connected by exactly

one path) are first found; (2) from the mined trees, maximal subgraphs then are constructed.

This strategy can significantly reduce the size of the result set.

Another method was proposed in [6] to only find closed frequent graph patterns

instead of mining all subgraphs. The main idea behind this method was to consider the

graph 𝑔𝑔 closed when it is not possible to find a proper supergraph of 𝑔𝑔 with the same

support (i.e., frequency) as 𝑔𝑔.

An algorithm named Fast Frequent Subgraph Mining (FFSM) was developed in

[7]. The strategy in that work was to reduce the number of redundant candidate subgraphs

that are examined by utilizing specialized operations (called FFSMJoin and FFSM-

Extension) to generate the candidate subgraphs.

A technique for finding frequent subgraphs in a large sparse graph was proposed in

[8]. In that work, two approaches for exploring the search space of subgraphs were

examined. A breadth-first approach was employed in their first algorithm, HSI-GRAM,

16

examining the search space for frequent subgraphs in a horizontal way. A depth-first

approach was employed in their second algorithm, VSI-GRAM, to explore the search space

in a vertical fashion when looking for frequent subgraphs.

Amongst many of the frequent subgraph mining algorithms that have been

developed, computationally expensive extension/joining operations (to create larger

candidate subgraphs from smaller frequent subgraphs) and false positive pruning (to reduce

the search space) have been the biggest challenges that researchers have tried to address.

Unfortunately, most methods have been limited to only working on a single graph or a

collection of graphs, but not being applicable to both settings.

Frequent subgraph mining is a reasonable approach to consider for game mining.

Each played game can be represented as a directed graph, wherein a vertex represents a

move made by a player in that game and an edge represents two consecutive moves. It then

could prove useful to identify subgraphs (i.e., sequences of moves) that frequently occur

in the collection of graphs (i.e., played games).

2.3. FREQUENT SEQUENCE MINING

Frequent sequence mining is used to find a set of patterns amongst a collection of

instances that specify a sequence (e.g., a list) of items. This methodology can be used for

diverse types of data; in [9] it was used to look for patterns in sequences of speech and bio-

signals based on methods proposed in [10].

In [11], researchers proposed an algorithm called Sequential Pattern Discovery

using Equivalence classes (SPADE). It starts by computing the frequencies of single-item

sequences. In the next step, it counts the frequency of two-item sequences using a bi-

17

dimensional matrix to count the number of sequences for each pair of items. Subsequent

𝑛𝑛-item sequences are processed by joining 𝑛𝑛 − 1-item sequences using lists of 𝑠𝑠𝑖𝑖s

representing other objects. The size of those 𝑠𝑠𝑖𝑖s lists is the number of sequences in which

an item appears.

A disadvantage to frequent sequence mining algorithms is that the results (i.e., the

most frequently occurring sequences) do not list the items in the same order that they may

have appeared in an instance’s sequence in the dataset; the method does not care about the

order in which an item appeared in an instance’s sequence, it simply cares about whether

or not the item occurred in the instance’s sequence. Nonetheless this method can potentially

provide some predictive recommendations from a strategic game dataset where each game

can be viewed as sequences of moves by a winner and a loser.

3. METHODOLOGY: FREQUENT SUBGRAPH MINING

The primary data mining technique that we used to develop a predictive

recommendation system for strategic games was frequent subgraph mining. As mentioned

in the previous section, we modeled each played game as a graph where a vertex

represented a move in the game and an edge represented two consecutive moves. A game

graph was not a strictly linear sequence of edges because some moves in turn generated

multiple moves (e.g., a move could create a monster that would in turn propagate additional

monsters, each of which would result in a new vertex and edge). We then analyzed the

collection of graphs (a dataset of played games) to find frequent subgraphs: sequences of

18

moves that were common to several winners’ games and sequences of moves that were

common to several losers’ games.

In this section we start by briefly providing some basic graph terminology that will

facilitate discussion of the particular frequent subgraph algorithm that we utilized for our

study.

3.1. PRELIMINARIES

Let 𝒢𝒢 = {𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑛𝑛} be a set of linear directed graphs which represents the

historical data in our case. Each 𝐺𝐺𝑖𝑖 represents a single game's moves, such that 𝐺𝐺𝑖𝑖 = (𝑉𝑉𝑖𝑖,𝐸𝐸𝑖𝑖)

where 𝑉𝑉𝑖𝑖 represents a node labeled as an action code of a player's move, while an edge in

𝐸𝐸𝑖𝑖 represents two consecutive moves. A graph 𝑇𝑇 = (𝑉𝑉𝑇𝑇 ,𝐸𝐸𝑇𝑇) is a subgraph of 𝐺𝐺𝑖𝑖 =

(𝑉𝑉𝑖𝑖,𝐸𝐸𝑖𝑖) 𝑠𝑠𝑖𝑖𝑖𝑖 𝑉𝑉𝑇𝑇 ⊆ 𝑉𝑉𝐺𝐺𝑖𝑖 ,𝐸𝐸𝑇𝑇 ⊆ 𝐸𝐸𝐺𝐺𝑖𝑖 .

Definition 1. Let 𝑇𝑇 = (𝑉𝑉𝑇𝑇 ,𝐸𝐸𝑇𝑇) be a subgraph of a graph 𝐺𝐺𝑖𝑖 = (𝑉𝑉𝑖𝑖,𝐸𝐸𝑖𝑖). A subgraph

isomorphism of 𝑇𝑇 to 𝐺𝐺𝑖𝑖 is an injective function 𝑖𝑖:𝑉𝑉𝑇𝑇 ⟶ 𝑉𝑉𝐺𝐺𝑖𝑖 satisfying (𝑖𝑖(𝑢𝑢),𝑖𝑖(𝑣𝑣)) ∈ 𝐸𝐸𝐺𝐺𝑖𝑖

for all edges (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸𝑇𝑇. Intuitively, a subgraph isomorphism is a mapping from 𝑉𝑉𝑇𝑇 to 𝑉𝑉𝐺𝐺𝑖𝑖

such that each edge in 𝐸𝐸𝐺𝐺𝑖𝑖 is mapped to a single edge in 𝐸𝐸𝑇𝑇 and vice versa.

Problem 1. Given a set of graphs 𝒢𝒢, the frequent subgraph isomorphism mining problem

is defined as finding all subgraphs 𝑇𝑇 in 𝐺𝐺 such that 𝑡𝑡𝐺𝐺(𝑇𝑇) ≥ 𝜏𝜏, where 𝑡𝑡𝐺𝐺(𝑇𝑇) is the number

of graphs in 𝐺𝐺 that contain 𝑇𝑇 and 𝜏𝜏 is the user-specified threshold.

Problem 2. Given a set of graphs 𝒢𝒢 such that each 𝐺𝐺𝑖𝑖 is divided into three phases

𝐺𝐺𝑖𝑖1,𝐺𝐺𝑖𝑖1,𝐺𝐺𝑖𝑖3 and a frequent subgraph 𝑇𝑇, the frequent phase mining problem is defined as

finding all subgraphs 𝑇𝑇 in 𝐺𝐺𝑖𝑖𝑖𝑖 such that 𝑡𝑡𝐺𝐺𝑖𝑖𝑖𝑖(𝑇𝑇) ≥ 𝜏𝜏, where 𝜏𝜏 is the user-specified threshold.

19

In our case, problem (2) counts the actual frequency (i.e., occurrences) of each

subgraph provided that it is greater than or equal to 𝜏𝜏. However, this may not be useful in

various cases [8, 12], while others necessitate the exact number of occurrences (like graph

indexing in [13].

3.2. GraMi ALGORITHM

For the purpose of generating candidate subgraphs, a variety of frequent subgraph

mining and subgraph extension algorithms have been developed, as discussed in previous

work [8, 14, 15]. In particular, GraMi [15] is one of the most efficient methods and is the

foundation for the work presented in this paper. The key ideas behind GraMi are briefly

outlined here.

Algorithm 1 is used to find a set of all frequent edges fEdges in the collection of

graphs = {𝐺𝐺i=1,...,n}. All of these frequent edges have support greater than or equal to the

assigned threshold 𝜏𝜏. Because of the anti-monotone property, only frequent edges will be

considered when finding the frequent subgraphs. Algorithm 2 is given each frequent edge

to extend it to a new frequent subgraph. This is done by incorporating that edge with

another subgraph. All extensions created in previous iterations are excluded by utilizing

the DFScode canonical form that was introduced for gSpan [14]. The set Candidate in

Algorithm 2 will include all the new subgraph extensions that had not been considered in

prior iterations. In subsequent steps, any new subgraph extension within the set Candidate

that does not meet the support threshold 𝜏𝜏 requirement will be discarded. If any of those

subgraphs had been extended, they would produce a new non-frequent subgraph according

to the anti-monotonic property.

20

Algorithm 1 Frequent Subgraph Mining - 𝐹𝐹𝐹𝐹𝐹𝐹

Input 𝒢𝒢 = {𝐺𝐺𝑖𝑖=1,…,𝑛𝑛} and frequency threshold 𝜏𝜏

Output All 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 𝐹𝐹(𝐺𝐺𝑖𝑖) with the support ≥ 𝜏𝜏

 1: 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 ⟵ 𝜙𝜙

 2: 𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 = 0

 3: for each edge 𝑠𝑠𝐺𝐺𝑖𝑖 do

 4: if 𝑠𝑠𝐺𝐺𝑖𝑖 = 𝑠𝑠𝐺𝐺𝑖𝑖+1 then

 5: 𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 + +

 6: end-if

 7: if 𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 ≥ 𝜏𝜏 then

 8: 𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠 ⟵ 𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠 ⋃ 𝑠𝑠𝐺𝐺𝑖𝑖

 9: end-if
10: end-for
11: for each 𝑠𝑠 ∈ 𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠 do

12: 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 ⟵ 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 ⋃ 𝐹𝐹𝑢𝑢𝑓𝑓𝐸𝐸(𝑠𝑠,𝒢𝒢, 𝜏𝜏,𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠)

13: Remove 𝑠𝑠 from 𝒢𝒢 and ,𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠

14: end-for

15: return 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠

Algorithm 2 Subgraph Extension - 𝐹𝐹𝑢𝑢𝑓𝑓𝐸𝐸

Input 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 𝐹𝐹,𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠 and frequency threshold 𝜏𝜏

Output All 𝐹𝐹𝑢𝑢𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 with the support ≥ 𝜏𝜏

 1: 𝐹𝐹𝑢𝑢𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 ⟵ 𝜙𝜙

 2: 𝐶𝐶𝑓𝑓𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑡𝑡𝑠𝑠 ⟵ 𝜙𝜙

 3: for each 𝑠𝑠 ∈ 𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠 and 𝑛𝑛 ∈ 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 do

 4: if 𝑠𝑠 fit to extend 𝑛𝑛 then

 5: Generate a new subgraph 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹
 6: if 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹 exist in 𝒢𝒢 and not generated before then
 7: 𝐶𝐶𝑓𝑓𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑡𝑡𝑠𝑠 ⟵ 𝐶𝐶𝑓𝑓𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑡𝑡𝑠𝑠 ⋃ 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹
 8: else
 9: remove 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹

10: end-if
11: end-if
12: end-for

21

13: for each 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹 ∈ 𝐶𝐶𝑓𝑓𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑡𝑡𝑠𝑠 do

14: if 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹 count in 𝒢𝒢 ≥ 𝜏𝜏 then
15: 𝐹𝐹𝑢𝑢𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 ⟵ 𝐹𝐹𝑢𝑢𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 ⋃ 𝐹𝐹𝑢𝑢𝑓𝑓𝐸𝐸(𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹, 𝒢𝒢, 𝜏𝜏,𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠)
16: end-if
17: end
18: return 𝐹𝐹𝑢𝑢𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛

3.3. USING FREQUENT SUBGRAPHS TO MAKE RECOMMENDATIONS

In this section we discuss the algorithms that we utilized in order to mine the game

dataset for frequent subgraphs and build a recommendation system. The task of finding the

number of occurrences for each subgraph was carried out using Algorithm 3. The

mechanism for node-finding was used for matching the first node of a candidate subgraph

with its occurrence in the original dataset. The objective of this process was to determine

the starting point for conducting a depth-first search (DFSearch) to find all similar

subgraphs in the winner (or loser) graph collection. These results were stored temporarily

in a temp set to compute their replication in the subsequent steps, and then the final result

was placed within ExactFSG set.

It was decided that the recommendation system might be more useful if the moves

were analyzed for three phases of the game: the beginning of the game, the middle of the

game, and the end of the game. This is traditionally being done for strategic games (i.g.

chess) with the aim of analysis. Hence each game was divided into the first third number

of moves, the second third number of moves, and the last third number of moves. Our work

is not fixed to three phases; the number of phases can be easily modified by making a small

change in Algorithm 4 to handle 𝑘𝑘 phases. The objective of Algorithm 4 was to determine

the number of occurrences of each individual subgraph considering in which phase of the

22

game the sequence of moves was made. Algorithm 4 takes the ExactFSG set that was

introduced by Algorithm 3 and facilitates the node-finding and DFSearch process to

determine the phase of each individual frequent subgraph in this set. The node-finding

mechanism was used a second time in subsequent steps, but only to identify the first node

identity, 𝑛𝑛𝐶𝐶𝑖𝑖𝑠𝑠𝐼𝐼𝐼𝐼, of the candidate subgraph assigned to it from the original dataset this

time. It is worth mentioning that we consider the majority of appearances to decide the

phase of the frequent subgraph. It should be noted that the subgraph nodes may straddle

two consecutive phases. If so, we report that subgraph as it appeared in two phases.

Algorithm 3 Exact Subgraph Frequency

Input 𝒢𝒢 = �𝐺𝐺𝑖𝑖=1,…,𝑛𝑛�,𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 𝐹𝐹 and frequency threshold 𝜏𝜏

Output All the Exact Frequent Subgraph with their frequency

 1: 𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 = 0

 2: for 𝑠𝑠 = 1 ⟶ all graphs in (𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠) do
 3: 𝑖𝑖𝑓𝑓𝑓𝑓 = 0
 4: for 𝑗𝑗 = 1 ⟶ all graphs in (𝒢𝒢) do
 5: if findnode (𝐺𝐺𝑖𝑖 , 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖) ≠ 0 do
 6: 𝑡𝑡𝑠𝑠𝑡𝑡𝑝𝑝 ⟵ dfsearch (𝐺𝐺𝑖𝑖 , 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖)
 7: if 𝑡𝑡𝑠𝑠𝑡𝑡𝑝𝑝 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖) & 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑡𝑡𝐶𝐶𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖(𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖,𝐺𝐺𝑖𝑖) do
 8: 𝑖𝑖𝑓𝑓𝑓𝑓 + +
 9: end-if
10: end-if
11: end-for
12: if 𝑖𝑖𝑓𝑓𝑓𝑓 ≥ 𝜏𝜏 do
13: 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 + +
14: 𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺(𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡) ⟵ 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖
15: end-if
16: end-for
17: return 𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺

23

Algorithm 4 Majority of Subgraph Appearance
Input 𝒢𝒢 = �𝐺𝐺𝑖𝑖=1,…,𝑛𝑛� and 𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺

Output Display each 𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺 and the locate 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠

 1: 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡1 = 0, 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡2 = 0, 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡3 = 0

 2: 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠1 = 0, 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠2 = 0, 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠3 = 0
 3: for 𝑠𝑠 = 1 ⟶ all graphs in (𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺) do
 4: 𝑖𝑖𝑓𝑓𝑓𝑓 = 0
 5: for 𝑗𝑗 = 1 ⟶ all graphs in (𝒢𝒢) do
 6: 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠 = ⌈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺𝑖𝑖)/3⌉
 7: if findnode (𝐺𝐺𝑖𝑖 ,𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺) ≠ 0 do
 8: 𝑡𝑡𝑠𝑠𝑡𝑡𝑝𝑝 ⟵ dfsearch (𝐺𝐺𝑖𝑖 ,𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺)
 9: if 𝑡𝑡𝑠𝑠𝑡𝑡𝑝𝑝 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺) & 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑡𝑡𝐶𝐶𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖(𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖,𝐺𝐺𝑖𝑖) do
10: for 𝑘𝑘 = 1 ⟶ size(𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺) do
11: 𝑛𝑛𝐶𝐶𝑖𝑖𝑠𝑠𝐼𝐼𝐼𝐼 = findnode (𝐺𝐺𝑖𝑖 ,𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺𝑖𝑖)
12: if 𝑛𝑛𝐶𝐶𝑖𝑖𝑠𝑠𝐼𝐼𝐼𝐼 ≤ 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠 do
13: 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡1 + +
14: elseif 𝑛𝑛𝐶𝐶𝑖𝑖𝑠𝑠𝐼𝐼𝐼𝐼 > 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠 & 𝑛𝑛𝐶𝐶𝑖𝑖𝑠𝑠𝐼𝐼𝐼𝐼 ≤ 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠 ∗ 2 do
15: 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡2 + +
16: else
17: 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡3 + +
18: end-if
19: end-for
20: end-if
21: end-if
22: if 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡1 ≠ 0 do
23: if 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡1 > 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡2 do
24: 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠1 + +
25: elseif 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡1 < 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡2 do
26: 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠2 + +
27: else do
28: 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠1&2 + +
29: end-if
30: elseif 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡2 ≠ 0 do
31: if 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡2 > 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡3 do
32: 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠2 + +

24

33: elseif 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡2 < 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡3 do
34: 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠3 + +
35: else do
36: 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠2&3 + +
37: end-if
38: else
39: 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠3 + +
40: end-if
41: end-if
42: end-for
43: return 𝑝𝑝ℎ𝑓𝑓𝑠𝑠𝑠𝑠 result

4. DATA DESCRIPTION

Interloper is an online multiplayer real-time strategy (RTS) game [16]. The game

allows the creation and deployment of entities, and the destruction of an opponent’s

entities. A player wins the game when the other player’s entities/assets have been destroyed

or the other player cannot create any more assets. A dataset of 19 played games involving

2 players was obtained for this study. Each player’s move in the dataset was encoded with

15, 7, or 6 digits. The first two digits in a code of length 15 or 7 represented the type of

action (i.e., move); only the first digit was used in a code of length 6 to represent the type

of action. The last four digits in all codes were used to represent a counter of each specific

action. The purpose of the counter was to produce a unique data item for each move in the

game. The middle eight digits in a code of length 15 was used to represent the source and

destination location when moving an entity. The player ID was represented with the third

digit in codes of lengths 15 and 7, and with the second digit in codes of length 6.

25

For this study the dataset was separated into the winner’s moves and the loser’s

moves for each game. Because of the limited size of the dataset we obtained (i.e., 19

games), a program was written to increase the number of games to 90 and 120 by randomly

duplicating games. Our method was tested on both the original dataset of size 19 and the

larger datasets of sizes 90 and 120.

5. EXPERIMENTAL EVALUATION

In this section we discuss the criteria by which we evaluated the performance of

our recommendation system. As noted above, we analyzed the game in terms of three

phases (i.e., beginning game, middle game, and end game) by dividing each game into

three equal parts; the total number of moves in a game (by both the winner and the loser)

ranged from 183 to 5,338. For each of the 3 phases analyzed, 60% of the data were used

for training and the remaining 40% were used for testing with 𝑘𝑘-fold cross-validation [17].

We measured precision and recall, which are viewed as metrics of exactness and

completeness of testing, respectively. Equations 1 and 2 are the mathematical formulas for

precision and recall, respectively.

 𝑃𝑃𝑓𝑓𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑛𝑛 =
𝑇𝑇𝑓𝑓𝑢𝑢𝑠𝑠 𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠

𝑇𝑇𝑓𝑓𝑢𝑢𝑠𝑠 𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠 + 𝐹𝐹𝑓𝑓𝐹𝐹𝑠𝑠𝑠𝑠 𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠
 (1)

 𝑅𝑅𝑠𝑠𝑖𝑖𝑓𝑓𝐹𝐹𝐹𝐹 =
𝑇𝑇𝑓𝑓𝑢𝑢𝑠𝑠 𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠

𝑇𝑇𝑓𝑓𝑢𝑢𝑠𝑠 𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠 + 𝐹𝐹𝑓𝑓𝐹𝐹𝑠𝑠𝑠𝑠 𝑁𝑁𝑠𝑠𝑔𝑔𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠
 (2)

26

The trade-off between precision and recall was measured by using for another

metric named F-measure [17], which represents the harmonious mean between precision

and recall. The accuracy scale was applied to measure the closeness of the measured value

to the true value. Equations 3 and 4 are the mathematical formulas of F-measure and

accuracy, respectively.

 𝐹𝐹 −𝑡𝑡𝑠𝑠𝑓𝑓𝑠𝑠𝑢𝑢𝑓𝑓𝑠𝑠 = 2 ∗
𝑅𝑅𝑠𝑠𝑖𝑖𝑓𝑓𝐹𝐹𝐹𝐹 ∗ 𝑃𝑃𝑓𝑓𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑛𝑛
𝑅𝑅𝑠𝑠𝑖𝑖𝑓𝑓𝐹𝐹𝐹𝐹 + 𝑃𝑃𝑓𝑓𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑛𝑛

 (3)

 𝐴𝐴𝑖𝑖𝑖𝑖𝑢𝑢𝑓𝑓𝑓𝑓𝑖𝑖𝐴𝐴 =
𝑇𝑇𝑓𝑓𝑢𝑢𝑠𝑠 𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠 + 𝑇𝑇𝑓𝑓𝑢𝑢𝑠𝑠 𝑁𝑁𝑠𝑠𝑔𝑔𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠

𝑇𝑇𝑓𝑓𝑢𝑢𝑠𝑠 𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠 + 𝐹𝐹𝑓𝑓𝐹𝐹𝑠𝑠𝑠𝑠 𝑃𝑃𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠 + 𝐹𝐹𝑓𝑓𝐹𝐹𝑠𝑠𝑠𝑠 𝑁𝑁𝑠𝑠𝑔𝑔𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠 + 𝑇𝑇𝑓𝑓𝑢𝑢𝑠𝑠 𝑁𝑁𝑠𝑠𝑔𝑔𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠
 (4)

5.1. EXPERIMENT AND RESULTS

In this section we present the results of analyzing the Interloper game dataset using

both frequent subgraph mining and frequent sequence mining. The algorithms presented in

Section 3 were (collectively) implemented in Matlab and Java. SPADE (discussed in

Section 2.3) was implemented in R. Our experiments were executed on an Intel(R) Core

(TM) i7-6700 CPU@3.40GHz computer with 32GB memory.

Tables 1 and 2 show some of the experimental results of frequent subgraph mining

using a threshold of 2 for the winner and loser datasets consisting of 19 games. The first

and second columns show the actions in the frequent subgraphs with their number of

occurrences from the entire dataset, respectively. The tables also list the phase of the game

in which each frequent subgraph most often was found. The fourth column in each table is

27

a classification of the majority of that subgraph’s actions; we classified that game’s

actions as either offensive, defensive, or movement (of an entity in the game space).

Table 1: Winner Data
Winner Subgraph Frequency Majority of Appearance Classification

2810040 2810041 2810042 3 Second phase offensive

2810035 2810036 2810037 4 First phase offensive

2300171 2300172 2300173 2300174 3 Second and Third phase move

2300171 2300172 2300173 6 Second phase move

2810084 2810085 2810086 2810087 3 First and Second phase offensive

2810084 2810085 2810086 3 Third phase offensive

2500010 2500011 2500012 2 Third phase offensive

Table 2: Loser Data
Winner Subgraph Frequency Majority of Appearance Classification

2710003 2810015 2810017 3 First phase offensive

2810003 2810005 2710001 2 First phase offensive

2810024 2810026 2810028 6 First phase offensive

2810008 2810010 2810012 3 Third phase offensive

2510000 2510001 2510002 3 Third phase offensive

2310187 2310188 2310189 3 Second phase move

2310419 2310420 2310421 4 Third phase move

These results were obtained by performing 3-fold cross-validation, repeated five

times. Each time, for the 19-game dataset, 12 games were selected randomly (without

duplication) for training, and the remaining 7 games were used for testing. The size of the

resulting frequent subgraphs ranged from two nodes with one edge to four nodes with three

edges. All of the two-node subgraphs were ignored because of the limited information they

28

provide for the recommendation objective (i.e., only two moves) compared to larger

subgraphs.

Frequent subgraphs that were found in the winner graphs indicate actions that are

recommended for a player to do, whereas frequent subgraphs that were found in the loser

graphs indicate actions that are recommended that a player should not do. The benefit of

the counter attached to each action reflects the relative number of times the player had

made that type of move in that game. Characterizing the actions, such as offensive or

defensive, gives a general notion of the strategy the player is employing in that sequence

and would facilitate mapping one game’s actions to another’s (e.g., mapping Interloper’s

offensive actions to StarCraft’s offensive actions).

Figure 2: Comparison of Average Precision, Recall and F-measure for Different
Number of Games

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

19 90 120

Va
lu

e

Number of Games

Recommendation System Performance

Precision Recall F-measure

29

Figure 2 shows the precision, recall, and F-measure scores obtained for each

phase of the game that was analyzed. In order to ensure the fineness of the results, three

different sizes of datasets were tested: 19, 90, and 120 games. All of these tests were subject

to the same conditions of the 3-fold cross-validation with five repetitions. Averages for

these five repetitions were calculated to determine the final results of these metrics.

Precision and recall can be affected when the size of the input dataset increases. Despite

this, our system did not experience a significant difference in those results. Figure 3 shows

the comparison of average accuracy for the different sized datasets.

Figure 3: Comparison of Average Accuracy for Different Number of Games

We also utilized frequent sequence mining to analyze the Interloper game data;

specifically, we used an implementation of the SPADE algorithm discussed in Section 2.3.

The majority of the SPADE results (some of which are shown in Table 3 for the 19-game

dataset) were not consecutive sequences of actions from games; they were simply lists of

0.93333

0.99206

0.96222

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

19 90 120

Va
lu

e

Number of Games

Accuracy of Recommendation System

Accuracy

30

individual actions that had occurred in some order in a majority of winners’ or losers’

games. While this was somewhat informative, it was equivalent to if we had limited our

frequent subgraph mining to subgraphs of single vertices (no edges). Unfortunately, the

highest support for the results returned by SPADE was 0.5, meaning that only 50% of the

games in the tested dataset contained the reported list of actions. This was the case for not

only the 19-game dataset, but also the larger 90- and 120-game datasets. Consequently, we

did not feel that the predictive accuracy of the recommendations we could make from these

results would be high, and did not pursue cross-validation testing.

Table 3: Portion of the SPADE Output for the 19-Games Dataset
Dataset Phase Support Subgraph

Winner 1 0.5
2300005 2300006
2300000 2300005 2300006
2300000 2300004 2300005 2300006

Winner 2 0.3 2700018

Winner 3 0 No result

Loser 1 0.4 2810003
2710007 2810003

Loser 2 0.2 2710017
2810064 2810066
2710017 2810064 2810066

Loser 3 0.2
600011
500010 600011
500010 600009 600011

6. CONCLUSION AND FUTURE WORK

The use of recommendation systems has become widespread in our society. In

general, they examine historical data and try to predict what should be done in the future.

Herein we have applied a graph data mining technique, frequent subgraph mining, to a

31

strategy game dataset to develop a system that can provide recommendations about

moves that a player should and should not make in order to improve his/her chances of

winning the game. As proof of concept, we tested our system on a real-time strategy (RTS)

game dataset, and achieved very accurate results when we tested our recommendations.

We also attempted to apply another technique, frequent sequence mining, but did not find

that it provided as useful or accurate recommendations.

In the future we plan on testing our approach on other RTS games such as StarCraft,

and will try to develop a generalized mapping scheme for action types that will be

applicable for the broader genre of RTS games. We then hope to apply this approach to

other problem domains that can map their entities and actions to those of a strategic game

in a broad semantic sense, where resources are effectively created and destroyed, and where

it would be beneficial to have recommendations for optimal management of those

resources.

REFERENCES

[1] Drachen, C. Thurau, J. Togelius, G. N. Yannakakis, and C. Bauckhage, “Game
Data Mining,” in Game Analytics: Maximizing the Value of Player Data, (London,
UK), pp. 205–253, Springer, 2013.

[2] E. Andersen, Y.-E. Liu, E. Apter, F. Boucher-Genesse, and Z. Popović, “Game-
play Analysis Through State Projection,” in Proceedings of the 5th. International
Conference on the Foundations of Digital Games, (Monterey, CA, USA), pp. 1–
8, ACM, 2010.

[3] H.-N. Kang, H.-R. Yong, and H.-S. Hwang, “A Study of Analyzing on Online
Game Reviews using a Data Mining Approach: STEAM Community Data,”
International Journal of Innovation, Management and Technology, vol. 8, no. 2,
pp. 90, 2017.

32

[4] M. A. A. Cox and T. F. Cox, “Multidimensional Scaling,” Handbook of Data
Visualization, pp. 315–347. Berlin, Heidelberg: Springer, Berlin Heidelberg,
2008.

[5] J. Huan, W. Wang, J. Prins, and J. Yang, “SPIN: Mining Maximal Frequent
Subgraphs from Graph Databases,” in Proceedings of the 10th. ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD `04,
(Seattle, WA, USA), pp. 581–586, ACM, 2004.

[6] X. Yan and J. Han, “CloseGraph: Mining Closed Frequent Graph Patterns,” in
Proceedings of the 9th. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD '03, (Washington DC., USA), pp. 286–295,
ACM, 2003.

[7] J. Huan, W. Wang, and J. Prins, “Efficient Mining of Frequent Subgraphs in the
Presence of Isomorphism,” in Proceedings of the 3rd. IEEE International
Conference on Data Mining, ICDM '03, pp. 549–552, IEEE, 2003.

[8] M. Kuramochi and G. Karypis, “Finding Frequent Patterns in a Large Sparse
Graph,” in Proceedings of the 2004 SIAM International Conference on Data
Mining, pp. 345–356, SIAM, 2004.

[9] H. P. Martinez and G. N. Yannakakis, “Mining Multimodal Sequential Patterns:
A Case Study on Affect Detection,” in Proceedings of the 13th. International
Conference on Multimodal Interfaces, ICMI '11, (Alicante, Spain), pp. 3–10,
ACM, 2011.

[10] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” in Proceedings of the
11th. International Conference on Data Engineering, (Taipei, Taiwan), pp. 3–14,
IEEE, 1995.

[11] M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences,”
Machine Learning, vol. 42, no. 1, pp. 31–60, 2001.

[12] W.-T. Chu and M.-H. Tsai, “Visual Pattern Discovery for Architecture Image
Classi_cation and Product Image Search,” in Proceedings of the 2nd. ACM
International Conference on Multimedia Retrieval, ICMR '12, (Hong Kong,
China), pp. 1–27, ACM, 2012.

[13] X. Yan, P. S. Yu, and J. Han, “Graph Indexing: A Frequent Structure-based
Approach,” in Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, SIGMOD '04, (Paris, France), pp. 335–346, ACM, 2004.

[14] X. Yan and J. Han, “gSpan: Graph-based Substructure Pattern Mining,” in
Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM
'02, (Maebashi City, Japan), pp. 721–724, IEEE, 2002.

33

[15] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “GraMi: Frequent
Subgraph and Ppattern Mining in a Single Large Graph,” Proc. VLDB Endowment,
vol. 7, no. 7, pp. 517–528, 2014.

[16] “Interloper Game Description.” http://interlopergame.com/. Accessed: 2018-18-
12.

[17] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Pearson
Education India, 2006.

34

II. PREDICTIVE ANALYSIS OF REAL-TIME STRATEGY GAMES USING
DISCRIMINATIVE SUBGRAPH MINING

Jennifer L. Leopold1, Isam A. Alobaidi1, and Nathan W. Eloe2

1Department of Computer Science, Missouri University of Science and Technology,
Rolla, MO 65409

2School of Computer Science and Information Systems, Northwest Missouri State
University, Maryville, MO, USA

ABSTRACT

Real-Time Strategy (RTS) video games are not only a popular entertainment

medium, they also are an abstraction of many real-world applications where the aim is to

increase your resources and decrease those of your opponent. An obvious application is a

military battle; yet another example is a person’s physical health where it is advantageous

to increase the number of healthy cells in the body and destroy cancerous cells (wherein

cancer is your opponent). Using predictive analytics, which examines past examples of

success and failure, we can learn how to predict positive outcomes for such scenarios.

Herein we show how discriminative subgraph mining can be employed to analyze a

collection of played RTS games, and make recommendations about sequences of actions

that should, as well as should not, be made to increase the chances of winning future games.

As proof of concept, we present the results of an experiment that utilizes our strategy for

one particular RTS game.

35

1. INTRODUCTION

Real-Time Strategy (RTS) games are a subgenre of strategy video games wherein

the participants position and maneuver units (e.g., troops, robots, and drones) and structures

under their control to secure areas and destroy their opponent’s assets. In some games, the

created entities can in turn create and destroy other entities. Hence the focal points of such

games are: resource generation and destruction, and indirect control of units and structures

(via other units and structures). RTS games typically have a diverse set of resources which

the player can deploy, basically offensive or defensive in nature, and a large variety of

environments/storylines from which to select, often with a military science fiction theme;

a popular and sophisticated example is StarCraft. The games are usually multi-player, with

the winner determined by some criterion such as the player with the most assets at the end

of a certain time period or by the last player remaining after all other players’ assets have

been depleted. Although the RTS game scenario is used for entertainment purposes, it can

be abstracted as a model for real-world applications such as military battles,

cyberinfrastructure networks that may need to be managed as they come under malicious

attack, and even disease history/diagnosis systems which track a patient’s symptoms,

treatments, and disease progression over time.

Herein we test the hypothesis that predictive analytics can be employed to examine

a collection of played games and make recommendations as to what a player should do and

what a player should not do in order to increase the chances of winning the game the next

time s/he plays. As proof of concept, this method will be tested for one particular RTS

game; however, the method that we employ should be applicable to any multi-player RTS

36

game and possibly could be generalized to sequences of categorically offensive versus

defensive moves for any RTS game. Specifically, we will model the moves of each played

game as directed graphs for the winner’s and loser’s moves, respectively, and apply

discriminative subgraph mining to identify our game strategy recommendations.

The organization of this paper is as follows. Section 2 provides a brief overview of

game data mining, data mining techniques used in predictive analytics, and discriminative

subgraph mining. Section 3 explains the discriminative subgraph mining algorithm that we

utilized for our study. Section 4 outlines the experiment that we conducted to test our

hypothesis and the results that we obtained. A summary and conclusions of our research

are given in Section 5. Future work is discussed in Section 6.

2. RELATED WORK

2.1. GAME DATA MINING

For years there has been interest in analyzing games played by others in order to

become a more competitive player. In its earliest form, people sought to identify the moves

in the game that led to desirable, rather than undesirable, outcomes. For many games it is

not only the quantity of assets, but particular features of the assets in the game that must

be considered (e.g., an asset’s functionality and location). For example, in the game of

chess, given the choice, it is usually better to have one bishop than three pawns; position

of a piece on the game board is also important as a bishop that is blocked by other pieces

may not be able to attack. A number of studies have been conducted wherein a database of

played games is analyzed to determine the winning percentage under various scenarios

37

such as games in which one player has two bishops and no knights and the other player

has two knights and no bishops after some point in a chess game; see [1, 2] for examples

of such studies. Contemporary genres of games, such as RTS video games, have a much

more sophisticated collection of assets (e.g., game pieces) than traditional games such as

chess and the characteristics of the assets can be much more diverse. Accordingly, analysis

of desirable asset acquisition and deployment throughout a game has become more

complex and computationally expensive.

Another branch of game data mining, also known as game telemetry, involves

analysis of the people who play the game and/or the personas they may create. There are

databases of this information for various online games and mining software to analyze data

such as the players’ skill level and time spent having played the game; see [3] for an

example of such software. Some analyses may try to relate features from a player’s profile

to his/her winning percentage and odds of winning future games. This area of study is not

the focus of the research pursued herein; we do not consider any data related to a player’s

profile.

As is discussed in [4], the intentions of game data mining should be made clear.

Description describes patterns found in the game data; similarly, characterization is a

summation of some general features associated with the data. These patterns could be

independent of whether they occurred in the winners’ games or the losers’ games, or

whether the patterns occurred in a majority or a minority of the games in the dataset.

Description and characterization are the fundamental, general goals of most data mining

efforts. Classification (and clustering) are used to compare and organize some features of

the data into classes; with game data this usually isn’t necessary since we are most

38

interested in classifications as winning and losing games, information which is already

known. Discrimination seeks to identify the differences between groups of instances in the

game data beyond just the classification of winning and losing. Prediction has the goal of

providing a rule (or some form of guideline) that can be used as guidance for playing or

forecasting the outcome of future games. The work presented in this study focuses on

discrimination and prediction of game data.

2.2. DATA MINING TECHNIQUES USED IN PREDICTIVE ANALYTICS

Utilizing mathematical modeling, the field of predictive analytics examines past

examples of success and failure to determine the variables that lead to successful outcomes

and can be used to make predictions about future events. It has been used widely in the

financial and insurance sectors. Here we briefly discuss some of the most common types

of data mining methods used for predictive analytics.

Regression analysis: Linear regression is one type of regression analysis commonly

used for predictive analytics. This method analyzes the relationship between a dependent

variable and a set of independent variables. The relationship is expressed as an equation

that predicts the value of the dependent variable as a linear function of the independent

variables. For game data the dependent variable is typically the outcome of the game (i.e.,

win or lose) and the independent variables can be the various possible moves. Given the

number of possible moves in an RTS game and the number of possible sequences of moves,

this method could be computationally prohibitive.

Rule induction: Rule induction methods such as association rule mining seek to find

relationships between variables in the dataset. For example, it could be determined that

39

when the player does actions A and B, s/he also does actions C and D. By applying

association rule mining on only the winners’ games, we could identify some actions that

winning players did. Similarly, by mining the losers’ games, we could find some actions

common to losing players. However, we then would have to examine the differences

between those rule sets to gain knowledge about what winners did that losers did not do,

and vice-versa. It should be noted that rule mining typically generates a considerable

number of rules because of its combinatorial approach; typically, only rules meeting a

certain support threshold are retained.

Decision trees: Decision trees are most often used for classification and can be

thought of as a graphical depiction of a rule; each branch of a decision tree can be thought

of as a separate rule consisting of a conjunction of the attribute predicates of nodes along

that branch. One approach would be to construct decision trees from the winning games

and losing games, respectively. Resultingly, the issues previously mentioned for

association rule mining of the RTS game data would apply for decision tree methods as

well.

Clustering: Clustering is a way to categorize a collection of instances in order to

look for patterns; groups are formed to maximize similarity between the instances within a

group and to maximize dissimilarly between instances in different groups. Game data are

already clustered into two groups: winners and losers. For the purpose of analyzing

successful (and unsuccessful) actions, we would likely attempt to form clusters of action

sequences. As with linear regression, given the number of possible moves in an RTS game

and the number of possible sequences of moves, this method would be computationally

prohibitive, and likely would result in an uninformative number of clusters, unless some

40

type of feature reduction mapping method was employed (i.e., mapping specific actions

and their time of occurrence in the game to more generalized representations).

Neural networks: Neural networks are composed of a series of interconnected nodes

that map a set of inputs into one or more outputs. The interconnections between inputs

(which, for the game data, could be actions in the game) are determined based on an

analysis of the played games. As with clustering, this method likely would be

computationally prohibitive, and would probably not yield useful results, for the RTS game

data unless we employed some type of data reduction mapping, which subsequently could

result in loss of useful, specific information.

2.3. DISCRIMINATIVE SUBGRAPH MINING

Many problems can be modeled with graphs, wherein entities are represented as

vertices and relationships between entities are represented as edges. When the relationship

between two vertices has some semantic distinction of a predecessor and a successor, the

edges are directed and hence the graph is considered directed. A played RTS game can be

modeled as a directed graph where each action (e.g., move) is represented by a vertex and

an edge represents two consecutive actions that were made in the game. By necessity, each

vertex also must be identified by which player performed that action. The moves for one

player do not form a strictly linear sequence because an action can generate multiple

actions; for example, the player may create a drone which in turn simultaneously spawns

5 more drones, each of which becomes a new vertex, and 5 edges are created from the

propagating drone vertex.

41

Finding interesting patterns in graphs (both directed and undirected) has been

well-researched and is applicable to many problem domains in fields such as

bioinformatics, cheminformatics, and communication networks. An ‘interesting’ pattern in

a graph could be a subgraph that appears frequently over a collection of graphs or could be

a subgraph that has a particular topography (e.g., a clique). Another type of interesting

pattern is a discriminative subgraph.

Discriminative subgraph mining seeks to find a subgraph that appears in one

collection of graphs, but does not appear in another collection of graphs. This approach has

been used to study several problems including identifying chemical functional groups that

trigger side-effects in drugs [5], classifying proteins by amino acid sequence [6], and

identifying bugs in software [7, 8, 9]. Here we briefly discuss some of the strategies that

have been employed for discriminative subgraph mining.

In [10] the authors define global-state networks, a collection of graphs that

represent a series of snapshots taken over a period of time and model some event. Each

snapshot graph has the same topology, but the nodes and/or edges in each graph may have

different values. The authors’ technique, MINDS, is specifically designed to find

minimally discriminative subgraphs in large global-state networks. The network graph

search space is organized as a set of decision trees to scrutinize the changes from one

snapshot to the next in the collection. To reduce an exponential subgraph search space,

they employ a Monte Carlo Markov sampling strategy. While the strategies employed in

MINDS were found to work well for the global-state networks, they would not be

appropriate for the RTS game dataset where each game, and hence each graph’s topology,

can differ significantly from other games. Additionally, as will be discussed in Section 3,

42

game data mining should not necessarily be limited to just finding minimally

discriminative subgraphs.

Discriminative subgraph mining was used in [11] to find subgraphs that would

cover as many positive examples and as few negative examples as possible. The test dataset

contained protein structures possessing a specific function and proteins not having that

function. Each graph contained approximately 1,000 edges and was very dense (i.e., in

terms of the number of edges relative to the number of vertices in the graph). Two heuristics

were employed to reduce the computational complexity of the mining process. Together

these heuristics were used to assign a score to each candidate discriminative subgraph; the

score considered the number of positive graphs minus the number of negative graphs in

which the subgraph was found. Only the smallest such subgraphs with high scores were

returned in the results; any (larger) subgraph that contained one of these (smaller)

subgraphs was not further examined, thereby reducing the search space. This algorithm

could have been adapted for the predictive game strategy study, but would have had to

have been run for both the cases of the winning games being the positive examples and the

losing games being the negative examples, and the winning games being the negative

examples and the losing games being the positive examples in order to find

recommendations for what should and should not be done to win the game.

Another strategy for dealing with the large search space normally incurred with

discriminative subgraph mining was presented in [12]. As discussed above, a scoring

scheme was used to evaluate the discrimination potential of candidate subgraphs. However,

The Learning To Search (LTS) algorithm of [12] differed from the work of [11] by

combining the scoring scheme with a sampling strategy to select candidate subgraphs.

43

Candidates deemed promising (in terms of their score) were added to a list and further

extended with edges for additional consideration; non-promising candidates were

discarded, thereby implementing a branch-and-bound search. This method was tested on

protein datasets with good prediction accuracy and a faster runtime than some other

discriminative mining methods. As with the algorithm in [12], this approach possibly could

be used to analyze a strategy game dataset.

Discriminative subgraph mining also has been used to find bugs in software in [7,

8, 9]. For this application, a program is modeled as a graph based on its control flow graph.

In brief, a control flow graph is a directed graph made up of nodes representing basic

blocks. Each basic block contains one or more statements from the program. There is an

edge from basic block 𝐵𝐵𝑖𝑖 to basic block 𝐵𝐵𝑖𝑖 if program execution can flow from 𝐵𝐵𝑖𝑖 to 𝐵𝐵𝑖𝑖.

Traces through the control flow graph for inputs that produce correct results forms one

collection of graphs and traces for inputs that produce incorrect results forms a second

collection of graphs. The idea is to look for a discriminative subgraph between the two

collections of graphs; this represents the lines of code that are, or are not, being executed

when the bug occurs. The algorithm presented in [7] utilizes the LEAP algorithm [13] as a

branch-and-bound heuristic on the search space of graphs that it examines; it is based on

the observation that subgraphs with higher frequency are more likely to be discriminative.

This algorithm was modified slightly to specifically scrutinize certain programming

constructs and subsequently was tested in [8, 9]. This general approach to discriminative

subgraph mining is applicable to the RTS game dataset and is discussed in more detail in

the next section.

44

3. METHODOLOGY: DISCRIMINATIVE SUBGRAPH MINING

The algorithm we employed for discriminative subgraph mining is similar to the

approach taken in [8, 9], but does not employ any heuristics specific to game data. Although

we ran it sequentially, it easily lends itself to parallel or distributed processing.

Let 𝐶𝐶+ and 𝐶𝐶− represent two sets of (undirected or directed) graphs for which we

want to find a discriminative subgraph; that is, we want to find a subgraph that appears in

the graphs in 𝐶𝐶− and does not appear in the graphs in 𝐶𝐶+, or vice-versa. We shall refer to

𝐶𝐶+ as the positive graphs and 𝐶𝐶− as the negative graphs although this naming convention

has no direct semantic correlation to the classification of the graphs in those respective sets

(e.g., ‘winner’ does not necessarily mean positive). The function FindDiscriminativeGraph

(Algorithm 1) first removes non-discriminative edges from the graphs in both sets; since

such edges appear in the graphs in both sets, they cannot be used to differentiate the graphs

in the those sets. FindDiscriminativeGraph then calls CreateDiscriminativeGraph

(Algorithm 2) to try to find a subgraph that is common to all graphs in 𝐶𝐶−, but not common

to all the graphs in 𝐶𝐶+. If we are unable to find such a graph, then the function

RelaxedCreateDiscriminativeGraph (Algorithm 3) is called, which relaxes the requirement

that the subgraph we seek not be present in all of the 𝐶𝐶+ graphs; instead the subgraph only

has to not be present in 𝛼𝛼 ∗ |𝐶𝐶+| of the 𝐶𝐶+ graphs, where 𝛼𝛼 is a user-specified parameter

(our default is 𝛼𝛼 = 0.5).

FindDiscriminativeGraph and CreateDiscriminativeGraph use a function called

Augment; this function takes a subgraph 𝐺𝐺 and adds to it an edge (and possibly a node)

such that the source vertex exists in 𝐺𝐺, and the edge (and destination node) exists in all

45

graphs in subgraph collection 𝐹𝐹1. In this way, a subgraph with an additional edge that

exists in all elements of 𝐹𝐹1 is created and considered by the algorithm.

Algorithm 1 𝐹𝐹𝑠𝑠𝑛𝑛𝑖𝑖𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ (𝐶𝐶+, 𝐶𝐶−, 𝛼𝛼, 𝛽𝛽)

𝐶𝐶+: set of positive graphs
𝐶𝐶−: set of negative graphs
𝛼𝛼 : percentage of graphs that discriminative subgraph need not be present in 𝐶𝐶+
 when relaxing conditions
𝛽𝛽 : percentage of graphs that discriminative subgraph need not be present in 𝐶𝐶−
 when relaxing conditions
 1: remove non-discriminative edges from graphs in 𝐶𝐶+ and 𝐶𝐶−;
 2: 𝐺𝐺 = 𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ(𝐶𝐶− ,𝐶𝐶+);
 3: if 𝐺𝐺 is empty then
 4: 𝐺𝐺 = 𝑅𝑅𝑠𝑠𝐹𝐹𝑓𝑓𝐸𝐸𝑠𝑠𝑖𝑖𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ(𝐶𝐶− ,𝐶𝐶+, |𝐶𝐶+| ∗ 𝛼𝛼);
 5: if 𝐺𝐺 is empty then
 6: 𝐺𝐺 = 𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ(𝐶𝐶+ ,𝐶𝐶−);
 7: if 𝐺𝐺 is empty then
 8: 𝐺𝐺 = 𝑅𝑅𝑠𝑠𝐹𝐹𝑓𝑓𝐸𝐸𝑠𝑠𝑖𝑖𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ(𝐶𝐶+ ,𝐶𝐶−, |𝐶𝐶−| ∗ 𝛽𝛽);
 9: end-if
10: end-if
11: end-if
12: return 𝐺𝐺

If we still fail to find a discriminative subgraph, then the difference likely does not

involve edges that are in all graphs in 𝐶𝐶− and not in graphs in 𝐶𝐶+, but rather involves edges

in the 𝐶𝐶+ graphs that are not in the 𝐶𝐶− graphs. Thus, we again call

𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ, but reverse the order of the parameters (𝐶𝐶+ and 𝐶𝐶−) from

our previous call. If we still fail to find a discriminative subgraph, we again call

𝑅𝑅𝑠𝑠𝐹𝐹𝑓𝑓𝐸𝐸𝑠𝑠𝑖𝑖𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ and look for a subgraph that only has to not be

46

present in 𝛽𝛽 ∗ |𝐶𝐶−| of the 𝐶𝐶− graphs, where 𝛽𝛽 is a user-specified parameter (our default

is 𝛽𝛽 = 0.5).

Algorithm 2 𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ (𝐹𝐹1,𝐹𝐹2)

𝐹𝐹1: set of graphs
𝐹𝐹2: set of graphs
 1: 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺 = queue of 1-edge subgraphs in 𝐹𝐹1;
 2: while 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺 is not empty do
 3: 𝐺𝐺 = 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺.dequeue ();
 4: if 𝐺𝐺 is not in any graph in 𝐹𝐹2then
 5: return (𝐺𝐺);
 6: end-if
 7: NewGraphs = Augment (𝐺𝐺);
 8: for each graph 𝐺𝐺′ in NewGraphs do
 9: 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺.enqueue (𝐺𝐺′);
10: end-for
11: end-while
12: return (empty graph)

It is possible that the resulting discriminative graph will be disconnected.

Additionally, it could be the case that multiple subgraphs could qualify as a discriminative

subgraph. The algorithm addresses both of these cases by returning the maximal

discriminative subgraph; this result may be disconnected and will include all possible

discriminative edges. It should be noted that it also is possible that our algorithm will not

find any subgraph that meets the discriminative conditions. This could occur if the

requirement that at least 𝛼𝛼 (𝛽𝛽) of the graphs in 𝐶𝐶−(𝐶𝐶+) must have at least one edge in

common has not been satisfied.

The computational complexity of the process is dependent upon the number of

graphs in each collection and the number of edges in each graph. As specified in line 1 of

47

CreateDiscriminativeGraph, we begin by examining each single edge from each graph

in one of the graph collections. However, in lines 7-9 of that algorithm, we potentially build

larger subgraphs that must be searched for; this is the subgraph isomorphism problem,

which is NP-complete.

Algorithm 3 𝑅𝑅𝑠𝑠𝐹𝐹𝑓𝑓𝐸𝐸𝑠𝑠𝑖𝑖𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ (𝐹𝐹1, 𝐹𝐹2, 𝛾𝛾)

𝐹𝐹1: set of graphs
𝐹𝐹2: set of graphs
 𝛾𝛾 : threshold for number of graphs discriminative subgraph must be present in
 1: 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺 = queue of 1-edge subgraphs in 𝐹𝐹1;
 2: while 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺 is not empty do
 3: 𝐺𝐺 = 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺.dequeue ();
 4: if 𝐺𝐺 is in < 𝛾𝛾 graph in 𝐹𝐹2then
 5: return (𝐺𝐺);
 6: end-if
 7: NewGraphs = Augment (𝐺𝐺);
 8: for each graph 𝐺𝐺′ in NewGraphs do
 9: 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺.enqueue (𝐺𝐺′);
10: end-for
11: end-while
12: return (empty graph)

4. EXPERIMENT AND RESULTS

In this section we discuss the details of an experiment we conducted to test the

hypothesis that predictive analytics, specifically discriminative subgraph mining, can be

employed to examine a collection of played strategy games and make recommendations as

to what a player should do, and should not do, in order to increase the chances of winning

the game in the future.

48

4.1. EXPERIMENTAL SETUP

The game that we selected is an online, multi-player RTS game called Interloper

[14]. Interloper was chosen over more sophisticated RTS games like StarCraft because of

its relatively limited set of action types which include: creating territory tiles, spawning

drones, spawning blockades, creating units (e.g., sentinels, drones, defenders, destroyers,

markers, bombs, blockades, and snipers), building structures, destroying targets, moving

and positioning characters, removing characters, hitting characters, and exploding

characters. We obtained a database of 19 played Interloper games from the game’s

developer. Each of these games contained the sequence of actions performed by each of

two players, with a designation of which player won the game. Each action type in the data

file had a documented integer encoding. The total number of moves (for both players) in a

game in the dataset ranged from 183 to 5,338.

For each game in the dataset we created two individual files: one for the winner’s

moves and one for the loser’s moves. The format for each of the data files that we created

was modeled as a directed graph, one edge per line, where each vertex was an action, and

an edge represented a consecutive sequence of (two) actions made in that game. As with

games such as chess, we thought it would be interesting to analyze (and make

recommendations for) the game in three phases: the beginning game, the middle game, and

the end game. In chess there is no clear definition of when the middle game begins and

ends, or when the end game begins. Similarly, we had no such guidelines for Interloper.

Therefore, we simply divided each game file into the first third number of moves, the

middle third number of moves, and the last third number of moves, and referred to these

as phases 1, 2, and 3 of the games, respectively. Each phase was analyzed separately.

49

As described in the previous section, our discriminative subgraph mining

algorithm would not find a discriminative subgraph unless a certain percentage of the

graphs in each (𝐶𝐶− or 𝐶𝐶+) “collection” had at least a certain percentage of edges in

common. Therefore, we had to test small groups of games at a time. To make sure that we

did not miss any possible common edges, we tested every combination of two winning and

two losing graphs; that is, a pair of winning graphs played the role of 𝐶𝐶+ in

FindDiscriminativeGraph and a pair of losing graphs played the role of 𝐶𝐶−. We then

reversed the roles (i.e., a pair of losing graphs played the role of 𝐶𝐶+ and a pair of winning

graphs played the role of 𝐶𝐶−). Depending on whether the discriminative subgraph was

found in 𝐶𝐶+ or 𝐶𝐶− for the particular assignment to those parameters told us whether the

moves should be recommended as something that should be done in order to increase the

chance of winning (because it was a difference found in the winning graphs) or something

that should not be done (because it was a difference found in the losing graphs).

To test the predictive accuracy of our method, we performed cross validation on

the dataset of 19 played games. For phase 1, we used 5-fold cross validation. Five partitions

were created, 4 of which contained 4 games and 1 of which contained 3 games; by ‘game’

we mean both the winner and loser for that game. A random number generator

(www.random.org/lists/) was used to determine which games were assigned to each

partition (with no duplication). For each of the 5 iterations of the 5-fold cross validation,

the “training” dataset was formed from 4 of the partitions and the “test” dataset was the

remaining partition; the roles of the partitions were rotated through each iteration of the 5-

fold cross validation. Discriminative subgraphs were determined from all possible pairs of

winning and losing games in the “training” dataset (i.e., 4 of the 5 partitions). This resulted

http://www.random.org/lists/

50

in a set of subgraphs that formed the recommendations for actions that should be done

and a set of subgraphs which formed the recommendations for actions that should not be

done in order to win the game.

The error rate was calculated as follows. If a recommendation for what should be

done (subgraph) was found in one of the winning graphs in the test partition, it was counted

as a true positive (TP); if instead that recommendation (subgraph) was found in one of the

losing graphs in the test partition, it was counted as a false positive (FP). If a

recommendation for what should not be done (subgraph) was found in one of the losing

graphs in the test partition, it was counted as a true negative (TN); if instead that

recommendation (subgraph) was found in one of the winning graphs in the test partition, it

was counted as a false negative. The error rate was calculated as 1 – ((𝑇𝑇𝑃𝑃 +

 𝑇𝑇𝑁𝑁) / (𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁)), and was averaged over the five iterations of the 5-fold

cross validation.

For phases 2 and 3 of the game, significantly fewer discriminative subgraphs were

found than for phase 1; this will be discussed in the next section. Therefore, instead of

creating 5 partitions for cross-validation, we only created 3 partitions: 2 partitions

contained 6 games and 1 partition contained 7 games. Consequently, only 3 iterations were

run in those cross validations instead of 5. As was done for phase 1, games still were

randomly chosen for each partition for each test. All cross-validation tests (for all phases)

were repeated 5 times.

It should be noted that the discriminative subgraph mining algorithm was

implemented in Python 3.7. A combination of Python programs and bash scripts were

51

created for data file conversions and batch program executions. All programs were

executed on a Dell Intel i7-7700 3.60 GHz 64 GB RAM Windows 10 PC.

4.2. EXPERIMENTAL RESULTS

Each of the three phases of the game was analyzed separately using cross-

validation, with each cross-validation test repeated 5 times with randomized data (game)

assignment for training and test data from the 19-game dataset. Table 1 shows the average

error rate for each of the cross-validation tests for each phase, as well as the average error

rate over each phase’s 5 tests. The resulting predictive accuracy was good, considering

that, in general, discriminative subgraphs can have very low frequencies. The collective

recommendations (for moves that should be made and moves that should not be made)

were accurate approximately 86.5%, 92.4%, and 98.7% of the time for phases 1, 2, and 3

of the game, respectively.

Table 1. Cross-Validation Test Results
Test No. Phase 1 Avg. Error Rate Phase 2 Avg. Error Rate Phase 3 Avg. Error Rate

1 14.40% 10.60% 1.00%

2 13.40% 0.08% 1.60%

3 13.00% 9.10% 0.70%

4 13.50% 9.80% 2.00%

5 13.30% 8.50% 1.40%

Avg. 13.32% 7.62% 1.34%

It should be noted that the accuracy for phases 2 and 3 were likely much higher

than for phase 1 in part because 3-fold (rather than 5-fold) cross validation testing was used

52

for those phases and because there were significantly fewer discriminative subgraphs to

test in those phases.

For phase 1 of the game, when testing all pairs of 2 winning and 2 losing graphs,

2,333 discriminative subgraphs were found that constituted “should do” recommendations

and 2,270 discriminative subgraphs were found that represented “should not do”

recommendations. The average size of the “should do” recommendation subgraphs was 28

edges; the smallest had 1 edge and the largest had 170 edges. The average size of the

“should not do” recommendation subgraphs was 22 edges; the smallest had 1 edge and the

largest had 168 edges.

Of the ten most frequently recommended “should do” subgraphs, 3 contained 3

edges (i.e., 4 moves) and 4 contained 4-5 edges (i.e., 5-6 moves). In contrast, 5 of the 10

most frequently recommended “should not do” subgraphs contained only 1 edge (i.e., 2

moves) and 5 contained 2-3 edges (i.e., 3-4 moves). Thus, for this phase of the game, we

are not able to provide quite as much information about what a player should not do as we

can say about what a player should do.

The types of actions in the phase 1 discriminative subgraphs were predominantly

only two types: creation of territory tiles and (fast) moves of a game character. In the

Interloper game, creation of territory files can be considered an offensive action against

one’s opponent. Movement of a game character could be either an offensive or defensive

action; the player’s intent (e.g., moving away from danger versus moving to a more

strategic position in the game space) cannot be deduced from the game data. Another

observation that can be made from these particular discriminative subgraphs is a counter

that is associated with both of these types of moves. For each game, the counter for each

53

type of action begins at 1 and is incremented by 1 each time that type of action occurs.

The phase 1 discriminative subgraphs differed not only in sequences of territory tile

creation and character movement, but also in how relatively early (or late) those actions

occurred and in what succession. For example, an edge (2800029, 2800030) represents two

tile creations with counters 29 and 30, indicating that these were tile creations that occurred

well after the game had started (i.e., they were the 29th and 30th tile creations that this

player made). Their occurrence in a discriminative subgraph would indicate that it either is

or is not advisable to create so many tiles (back to back) in the first phase of the game.

For phase 2 of the game, when testing all pairs of 2 winning and 2 losing graphs,

250 discriminative subgraphs were found that represented “should do” recommendations

and 213 discriminative subgraphs were found that characterized “should not do”

recommendations. These were about 90% less than the respective numbers of subgraphs

found in phase 1. This is not surprising as the number (and order) of different moves that

a player could (and likely did) make increased at this point in the game, thereby reducing

the number of graphs that had edges in common and could meet the criteria of

FindDiscriminativeGraph. The average size of the “should do” recommendation subgraphs

was 25 edges; the smallest had 1 edge and the largest had 274 edges. The average size of

the “should not do” recommendation subgraphs was 14 edges; the smallest had 1 edge and

the largest had 155 edges.

The most frequently recommended “should not do” subgraphs in phase 2 only

contained a single edge (i.e., 2 moves); thus, there was a further decrease in the amount of

information we could provide a player in terms of what not to do in order to win the game.

In contrast, 3 of the top 6 most frequently recommended “should do” subgraphs contained

54

at least 11 edges (i.e., 12 moves). Overall, compared to phase 1, this can be seen as the

ability to provide much more information about what a player should do in order to win

the game during this phase. Unfortunately, again the types of actions that occurred in the

discriminative subgraphs were limited, mostly moving a game character (although now at

a slower speed than in phase 1); we had anticipated seeing more offensive actions during

this phase of the game.

For the final phase of the game, 68 discriminative subgraphs were found that

characterized “should do” recommendations; this was a 97% decrease from the number

found in phase 1 and a 72% decrease from the number found in phase 2. In this phase, 36

discriminative subgraphs were found that represented “should not do” recommendations;

this was a 98.4% decrease from the number of such subgraphs found in phase 1 and an

83% decrease from the number found in phase 2. As mentioned previously, the moves in

this phase of the game likely varied more from game to game, and, as such, it became more

difficult to meet the criteria stipulated in FindDiscriminativeGraph. The average size of

the “should do” recommendation subgraphs was 22 edges, which was only slightly smaller

than what had been seen in the other two phases; the smallest had 1 edge and the largest

had 115 edges, which was by far the smallest of the three phases. The average size of the

“should not do” recommendation subgraphs was 18 edges, which is the average size

between what was seen for phases 1 and 2; the smallest had 1 edge and the largest had 145

edges, which was slightly smaller than in phase 2. There were 92% fewer discriminative

subgraphs found in phase 3 than had been found in phase 1.

For phase 3, we finally saw some of the most frequently recommended “should not

do” subgraphs have multiple edges (i.e., more than 2 moves); of the top 7 such subgraphs,

55

3 contained more than 4 edges, and 2 of those contained 9-10 edges. Amongst the top 7

most frequently recommended “should do” subgraphs, only 1 had a single edge; the

average number of edges for the others in this list was 7 edges (i.e., 8 moves). Although

we could provide more recommendations about what ‘not to do’ in phase 3 than for phases

1 and 2, we still could provide much more information about what ‘to do’ during this phase

of the game.

The majority of the actions in the “should do” subgraphs still involved (slow)

movement of a game character whereas the actions in the “should not do” subgraphs

predominantly involved territory tile creation, removal of a game character, and/or

positioning of a game character. Territory tile creation and removal of a game character

can be considered offensive actions in Interloper; as mentioned previously, positioning of

a game character could be for offensive or defensive purposes, which cannot be determined

from the game data. We were surprised that none of the discriminative subgraphs (for any

of the phases) included any defensive actions (e.g., spawning a blockade); however, there

are by far more offensive types of actions in the game than defensive actions.

Of all the pairs of 2 winner and 2 loser graphs tested, only a few failed to produce

a discriminative subgraph. There were no contradictory results; that is, it was never the

case that a sequence of actions in essence would be both recommended and not

recommended. Some test pairs produced the same results as other pairs; duplicates were

not included in the counts of discriminative subgraphs reported for each phase. Some test

pairs produced discriminative subgraphs that were subgraphs of other reported

discriminative subgraphs; this was not unexpected since some test (game) pairs had edges

in common.

56

5. SUMMARY AND CONCLUSIONS

Herein we tested the hypothesis that a form of predictive analytics, namely

discriminative subgraph mining, can be used to examine a set of played strategy games and

generate a set of recommendations that could be used to predict the chances of winning the

game in the future. Using a dataset of played games of a multi-player, Real-Time Strategy

(RTS) video game, Interloper, we modeled each game as a graph and found a collection of

subgraphs that specified sequences of actions that players should, and should not, make in

each of three phases of the game. Although the dataset only contained 19 games, the

experimental results showed that the accuracy of our recommendations was high. Overall,

our recommendations for our test game, Interloper, were more informative in terms of what

a player should do at each of three phases of the game in order to win; however, we also

were able to provide some information about what the player should not do. Most

importantly, this study has served as a proof of concept that this approach may be a

promising strategy for not only game predictive analytics, but also for other problem

domains that involve direct and indirect resource generation and destruction.

6. FUTURE WORK

We plan to test our discriminative subgraph mining approach on other types of RTS

games. If we have the success that we had with Interloper, we hope to establish a mapping

between action types and assets in this genre of games so that a more generalized

recommendation system can be developed. We also hope to explore ways to make the

algorithms more efficient, perhaps applying some heuristics to reduce the search space that

57

are inherent to the nature of game data. Ultimately, we intend to abstract this strategy to

other problem domains such as a health care disease tracking and prediction systems using

the same foundation of analyzing examples of success and failure in order to make

recommendations for future positive outcomes.

REFERENCES

[1] L. Kaufman, “The Relative Value of the Pieces,” Computer Chess Reports, 4:2,
pp. 33–34, 1994.

[2] M. Sturman, “Beware the Bishop Pair,” Computer Chess Reports, 5:2, pp. 58–59,
1995.

[3] P. Braun, A. Cuzzocrea, T. Keding, C. Leung, A. Padzor, and D. Sayson, “Game
Data Mining: Clustering and Visualization of Online Game Data in Cyber-
Physical Worlds,” in proceedings of International Conference on Knowledge
Based and Intelligent Information and Engineering Systems KES '17, (Marseille,
France), vol. 112, no. 2, pp. 2259–2268, 2017.

[4] A. Drachen, C. Thurau, J. Togelius, G. Yannakakis, and C. Bauckhage, “Game
Data Mining,” Game Analytics: Maximizing the Value of Player Data, (London,
UK), pp. 205–253, Springer London, 2013.

[5] Z. Shao, Y. Hirayama, Y. Yamanishi, and H. Saigo, “Mining Discriminative
Patterns from Graph Data with Multiple Labels and Its Application to Quantitative
Structure-Activity (QSAR) Models,” Journal of Chemical Information Models,
vol. 55, no. 12, pp. 2519–2527, 2015.

[6] N. Jin, C. Young, and W. Wang, “Discriminative Subgraph Mining for Protein
Classification,” in Computational Knowledge Discovery for Bioinformatics
Research, pp. 279–295, 2012.

[7] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying Bug Signatures
Using Discriminative Graph Mining,” in Proceedings of the 18th. International
Symposium on Software Testing and Analysis ISSTA '09, (Chicago, IL USA), pp.
141–151, ACM, 2009.

58

[8] J. Leopold, N. Eloe, and P. Taylor, “BugHint: A Visual Debugger Based on Graph
Mining,” in Proceedings of the 24th International Conference on Visualization
and Visual Languages ICVVL '18, (San Francisco, CA, USA), pp. 109–118, 2018.

[9] J. Leopold, N. Eloe, J. Gould, and E. Willard, “A Visual Debugging Aid Based
on Discriminative Graph Mining,” in Journal of Visual Languages and
Computing, to appear February 2019.

[10] S. Ranu, M. Hoang, and A. Singh, “Mining Discriminative Subgraphs from
Global-state Networks,” in Proceedings of the 19th. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining KDD '13, (Chicago, IL,
USA), pp. 509– 517, ACM, 2013.

[11] A. Fuksova, O. Kuzelka, and A. Szaboova, “A Method for Mining Discriminative
Graph Patterns,” in Proceedings of NIPS Machine Learning in Computational
Biology Workshop, 2013.

[12] N. Jin, and W. Wang, “LTS: Discriminative Subgraph Mining by Learning from
Search History,” in Proceedings of IEEE 27th. International Conference on Data
Engineering ICDE '11, (Hannover, Germany), pp. 207–218, 2011.

[13] X. Yan, H. Cheng, J. Han, and P. Yu, “Mining Significant Graph Patterns by Leap
Search,” in Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data SIGMOD '08, (Vancouver, BC, Canada), pp. 433–444,
ACM, 2008.

[14] “Interloper Game Description.” http://interlopergame.com/. Accessed: 2019-12-
01.

59

III. PREDICTIVE ANALYSIS OF REAL-TIME STRATEGY GAMES: A GRAPH
MINING APPROACH

Isam A. Alobaidi1, Jennifer L. Leopold1, Ali A. Allami2, Nathan W. Eloe3, and Dustin
Tanksley4

1Department of Computer Science, Missouri University of Science and Technology,
Rolla, MO 65409

2Electrical Engineering & Computer Science Department, University of Missouri,
Columbia, MO 65211

3School of Computer Science and Information Systems, Northwest Missouri State
University, Maryville, MO, USA

4Department of Computer & Electrical Engineering, Missouri University of Science and
Technology, Rolla, MO 65409

ABSTRACT

Machine learning and computational intelligence have facilitated the development

of recommendation systems for a broad range of domains. Such recommendations are

based on contextual information that is explicitly provided or pervasively collected.

Recommendation systems often improve decision-making or increase the efficacy of a

task. Real-Time Strategy (RTS) video games are not only a popular entertainment medium,

they also are an abstraction of many real-world applications where the aim is to increase

your resources and decrease those of your opponent. Using predictive analytics, which

examines past examples of success and failure, we can learn how to predict positive

outcomes for such scenarios. The goal of our research is to develop an accurate predictive

recommendation system for multiplayer strategic games to determine recommendations

for moves that a player should, and should not, make and thereby provide a competitive

60

advantage. Herein we compare two techniques, frequent and discriminative subgraph

mining, in terms of the error rates associated with their predictions in this context. As proof

of concept, we present the results of an experiment that utilizes our strategies for two

particular RTS games.

1. INTRODUCTION

The ever-increasing expansion of information and communications technology has

initiated a new era for the development of recommendation systems for a wide variety of

application domains (e.g., entertainment, E-commerce, E-health, etc.). Recommendations

could be for products or services that a customer might consider purchasing, treatments

that a doctor might consider prescribing for a patient, or a sequence of actions that a robot

should perform in a certain situation. Typically, the recommendations are based on an

analysis of historical data, often characterized as positive and negative examples for the

recommendation scenario. In order to be of value, recommendation systems must have high

predictive accuracy.

Another venue where recommendation systems can be valuable is strategic games.

Real-Time Strategy (RTS) games are a subgenre of strategy video games wherein the

participants position and maneuver units (e.g., troops, robots, and drones) and structures

under their control to secure areas and destroy their opponent’s assets. In some games, the

created entities can in turn create and destroy other entities. Hence the focal points of such

games are: resource generation and destruction, and indirect control of units and structures

(via other units and structures).

61

RTS games typically have a diverse set of resources which the player can deploy,

basically offensive or defensive in nature, and a large variety of environments/storylines

from which to select, often with a military science fiction theme; a popular and

sophisticated example is StarCraft. The games are usually multi-player, with the winner

determined by some criterion such as the player with the most assets at the end of a certain

time period or by the last player remaining after all other players’ assets have been depleted.

Although the RTS game scenario is used for entertainment purposes, it can be abstracted

as a model for real-world applications such as military battles, cyberinfrastructure networks

that may need to be managed as they come under malicious attack, and even disease

history/diagnosis systems which track a patient’s symptoms, treatments, and disease

progression over time.

In this study, we test the hypothesis that predictive analytics can be employed to

examine a collection of played games and make recommendations to increase the chances

of winning the game the next time a person plays. Using a database of played games, we

model each of those games as a directed graph, and use frequent subgraph mining and

discriminative subgraph mining, respectively, to look for patterns of moves that occurred

in winning games; these form the basis of our recommendations for moves that a player

should make. Similarly, we look for patterns of moves that occurred in losing games; those

become the basis of our recommendations for moves that a player should not make. We

test the accuracy of our two methods by partitioning our database of played games into

training and test datasets, and testing for the occurrence of true positives, true negatives,

false positives, and false negatives. We also compare these two methods against each other,

in terms of error rate of predictions.

62

The organization of this paper is as follows. Section 2 provides a brief discussion

of the main topics in this paper, including game data mining and data mining techniques

used in predictive analytics. The particular algorithms that we used for frequent subgraph

mining and discriminative subgraph mining are explained in more depth in Section 3. A

description of the RTS game data that we used for testing our method is provided in Section

4. Our experimental method and results are discussed in Section 5. A summary of this

research and consideration of future work is discussed in Section 6.

2. BACKGROUND

In this section we briefly discuss some of the related work that has been done in

the fields of game data mining, frequent subgraph mining, and discriminative subgraph

mining.

2.1. GAME DATA MINING

For years there has been interest in analyzing games played by others in order to

become a more competitive player. In its earliest form, people sought to identify the moves

in the game that led to desirable, rather than undesirable, outcomes. For many games it is

not only the quantity of assets, but particular features of the assets in the game that must

be considered (e.g., an asset’s functionality and location). For example, in the game of

chess, given the choice, it is usually better to have one bishop than three pawns; position

of a piece on the game board is also important as a bishop that is blocked by other pieces

may not be able to attack. A number of studies have been conducted wherein a database of

played games is analyzed to determine the winning percentage under various scenarios

63

such as games in which one player has two bishops and no knights and the other player

has two knights and no bishops after some point in a chess game; see [1, 2] for examples

of such studies. Contemporary genres of games, such as RTS video games, have a much

more sophisticated collection of assets (e.g., game pieces) than traditional games such as

chess and the characteristics of the assets can be much more diverse. Accordingly, analysis

of desirable asset acquisition and deployment throughout a game has become more

complex and computationally expensive.

One objective of game data mining is to analyze a collection of played games and

find patterns of moves that were made in winning (and possibly losing) games. Game data

mining was the main focus of research in [3, 4, 5]. In [4] a method, Playtracer, for game

analysis and improvement was proposed. A multidimensional scaling strategy was applied

to cluster players and game states, and a detailed visual representation of the paths taken

by players during the game was provided. Specifically, Classical Multidimensional Scaling

(CMDS) [6] was used in order to visualize the paths. The Playtracer method showed mutual

ways that players succeeded and failed, and enabled tracking a specific player’s progress

across multiple levels.

Two widely used data mining techniques, Classification and Regression Trees

(CART) and artificial neural networks, were utilized in [5] to analyze a collection of game

data (i.e., STEAM) for predictive purposes. CART is a decision tree algorithm that aims to

build a predictive model based on the values of several inputs. Artificial neural networks

also attempt to discover new patterns from inputs by subjecting them to a repetitive

learning process. That method relied on the analysis of online reviews (e.g., number of

screenshots and number of reviews of a specific action) to predict what should be done

64

next in a game. Another branch of game data mining, also known as game telemetry,

involves analysis of the people who play the game and/or the personas they may create.

There are databases of this information for various online games and mining software to

analyze data such as the players’ skill level and time spent having played the game; see [7]

for an example of such software. Some analyses may try to relate features from a player’s

profile to his/her winning percentage and odds of winning future games. This area of study

is not the focus of the research pursued herein; we do not consider any data related to a

player’s profile.

As is discussed in [8], the intentions of game data mining should be made clear.

Description describes patterns found in the game data; similarly, characterization is a

summation of some general features associated with the data. These patterns could be

independent of whether they occurred in the winners’ games or the losers’ games, or

whether the patterns occurred in a majority or a minority of the games in the dataset.

Description and characterization are the fundamental, general goals of most data mining

efforts. Classification (and clustering) are used to compare and organize some features of

the data into classes; with game data this usually isn’t necessary since we are most

interested in classifications as winning and losing games, information which is already

known. Discrimination seeks to identify the differences between groups of instances in the

game data beyond just the classification of winning and losing. Prediction has the goal of

providing a rule (or some form of guideline) that can be used as guidance for playing or

forecasting the outcome of future games. The work presented in this study focuses on

discrimination and prediction of game data.

65

2.2. DATA MINING TECHNIQUES USED IN PREDICTIVE ANALYTICS

Utilizing mathematical modeling, the field of predictive analytics examines past

examples of success and failure to determine the variables that lead to successful outcomes

and can be used to make predictions about future events. It has been used widely in the

financial and insurance sectors. Here we briefly discuss some of the most common types

of data mining methods used for predictive analytics.

Regression analysis: This method analyzes the relationship between a dependent

variable and a set of independent variables. For game data the dependent variable would

likely be the outcome of the game (i.e., win or lose) and the independent variables would

be the various possible moves.

Rule induction: Rule induction methods such as association rule mining seek to find

relationships between variables in the dataset. By applying association rule mining on only

the winners’ games, we could identify some actions that winning players did. Similarly, by

mining the losers’ games, we could find some actions common to losing players.

Decision trees: Decision trees are most often used for classification and can be

thought of as a graphical depiction of a rule; each branch of a decision tree can be thought

of as a separate rule consisting of a conjunction of the attribute predicates of nodes along

that branch. One approach would be to construct decision trees from the winning games

and losing games, respectively.

Clustering: Clustering is a way to categorize a collection of instances in order to

look for patterns; groups are formed to maximize similarity between the instances within a

group and to maximize dissimilarly between instances in different groups. Game data are

already clustered into two groups: winners and losers. For the purpose of analyzing

66

successful (and unsuccessful) actions, we would likely attempt to form clusters of action

sequences.

Neural networks: Neural networks are composed of a series of interconnected nodes

that map a set of inputs into one or more outputs. The interconnections between inputs

(which, for the game data, could be actions in the game) could be determined based on an

analysis of the played games.

Most of the above methods would be computationally prohibitive, and would

probably not yield useful results, for the RTS game data unless we employed some type of

data reduction mapping, which subsequently could result in loss of useful, specific

information.

2.3. SUBGRAPH MINING

Many problems can be modeled with graphs, wherein entities are represented as

vertices and relationships between entities are represented as edges. When the relationship

between two vertices has some semantic distinction of a predecessor and a successor, the

edges are directed and hence the graph is considered directed. A played RTS game can be

modeled as a directed graph where each action (e.g., move) is represented by a vertex and

an edge represents two consecutive actions that were made in the game. By necessity, each

vertex also must be identified by which player performed that action. The moves for one

player do not form a strictly linear sequence because an action can generate multiple

actions; for example, the player may create a drone which in turn simultaneously spawns

5 more drones, each of which becomes a new vertex, and 5 edges are created from the

propagating drone vertex.

67

Subgraph mining is a technique used to discover a particular pattern in graphs.

Two techniques will discuss here.

2.3.1. Frequent Subgraph Mining. Given a single (directed or undirected) graph,

it can be useful to know which subgraphs occur at least 𝒏𝒏 times where 𝒏𝒏 is a user-specified

threshold for frequency. Similarly, given a collection of graphs and a frequency threshold

𝒏𝒏, it may be important to know which subgraphs occur in at least 𝒏𝒏 of those graphs. The

process of answering this question is called frequent subgraph mining.

 Several methods for frequent subgraph mining were presented in [9, 10, 11, 12].

Amongst many of the frequent subgraph mining algorithms that have been developed,

computationally expensive extension/joining operations (to create larger candidate

subgraphs from smaller frequent subgraphs) and false positive pruning (to reduce the

search space) have been the biggest challenges that researchers have tried to address.

2.3.2. Discriminative Subgraph Mining. Discriminative subgraph mining seeks

to find a subgraph that appears in one collection of graphs but does not appear in another

collection of graphs. This approach has been used to study several problems including

identifying chemical functional groups that trigger side-effects in drugs [13], classifying

proteins by amino acid sequence [14], and identifying bugs in software [15, 16, 17].

Various discriminative subgraph mining algorithms are given in [15, 16, 17, 18, 19], some

of which are tailored for particular problems; due to space limitations, they are not

discussed in detail here.

68

3. METHODOLOGY

In this section we discuss the two graph mining methods that we utilized for a

predictive recommendation system for strategic games.

3.1. FREQUENT SUBGRAPH MINING

One of the data mining techniques that we used to develop a predictive

recommendation system for strategic games was frequent subgraph mining. As mentioned

in the previous section, we modeled each played game as a graph where a vertex

represented a move in the game and an edge represented two consecutive moves. A game

graph was not a strictly linear sequence of edges because some moves in turn generated

multiple moves (e.g., a move could create a monster that would in turn propagate additional

monsters, each of which would result in a new vertex and edge). We then analyzed the

collection of graphs (a dataset of played games) to find frequent subgraphs: sequences of

moves that were common to several winners’ games and sequences of moves that were

common to several losers’ games. In this section we first briefly provide some basic graph

terminology that will facilitate discussion of the particular frequent subgraph algorithm

that we utilized for our study.

3.1.1. Preliminaries. Let 𝓖𝓖 = {𝑮𝑮𝟏𝟏,𝑮𝑮𝟐𝟐, … ,𝑮𝑮𝒏𝒏} be a set of linear directed graphs

which represents the historical data. Each 𝑮𝑮𝒊𝒊 represents a single game's moves, such that

𝑮𝑮𝒊𝒊 = (𝑽𝑽𝒊𝒊,𝑬𝑬𝒊𝒊) where 𝑽𝑽𝒊𝒊 represents a node labeled as an action code of a player's move,

while an edge in 𝑬𝑬𝒊𝒊 represents two consecutive moves. A graph 𝑻𝑻 = (𝑽𝑽𝑻𝑻,𝑬𝑬𝑻𝑻) is a subgraph

of 𝑮𝑮𝒊𝒊 = (𝑽𝑽𝒊𝒊,𝑬𝑬𝒊𝒊) 𝒊𝒊𝒊𝒊𝒊𝒊 𝑽𝑽𝑻𝑻 ⊆ 𝑽𝑽𝑮𝑮𝒊𝒊 ,𝑬𝑬𝑻𝑻 ⊆ 𝑬𝑬𝑮𝑮𝒊𝒊.

69

Definition 1. Let 𝑇𝑇 = (𝑉𝑉𝑇𝑇 ,𝐸𝐸𝑇𝑇) be a subgraph of a graph 𝐺𝐺𝑖𝑖 = (𝑉𝑉𝑖𝑖,𝐸𝐸𝑖𝑖). A subgraph

isomorphism of 𝑇𝑇 to 𝐺𝐺𝑖𝑖 is an injective function 𝑖𝑖:𝑉𝑉𝑇𝑇 ⟶ 𝑉𝑉𝐺𝐺𝑖𝑖 satisfying (𝑖𝑖(𝑢𝑢),𝑖𝑖(𝑣𝑣)) ∈ 𝐸𝐸𝐺𝐺𝑖𝑖

for all edges (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸𝑇𝑇. Intuitively, a subgraph isomorphism is a mapping from 𝑉𝑉𝑇𝑇 to 𝑉𝑉𝐺𝐺𝑖𝑖

such that each edge in 𝐸𝐸𝐺𝐺𝑖𝑖 is mapped to a single edge in 𝐸𝐸𝑇𝑇 and vice versa.

Problem 1. Given a set of graphs 𝒢𝒢, the frequent subgraph isomorphism mining problem

is defined as finding all subgraphs 𝑇𝑇 in 𝐺𝐺 such that 𝑡𝑡𝐺𝐺(𝑇𝑇) ≥ 𝜏𝜏, where 𝑡𝑡𝐺𝐺(𝑇𝑇) is the number

of graphs in 𝐺𝐺 that contain 𝑇𝑇 and 𝜏𝜏 is the user-specified threshold.

Problem 2. Given a set of graphs 𝒢𝒢 such that each 𝐺𝐺𝑖𝑖 is divided into three phases

𝐺𝐺𝑖𝑖1,𝐺𝐺𝑖𝑖1,𝐺𝐺𝑖𝑖3 and a frequent subgraph 𝑇𝑇, the frequent phase mining problem is defined as

finding all subgraphs 𝑇𝑇 in 𝐺𝐺𝑖𝑖𝑖𝑖 such that 𝑡𝑡𝐺𝐺𝑖𝑖𝑖𝑖(𝑇𝑇) ≥ 𝜏𝜏, where 𝜏𝜏 is the user-specified threshold.

In our case, problem (2) counts the actual frequency (i.e., occurrences) of each

subgraph provided that it is greater than or equal to 𝜏𝜏. However, this may not be useful in

various cases [12, 20], while others necessitate the exact number of occurrences (like graph

indexing in [21]. The choice of three for number of phases was an arbitrary decision

influenced by board games such as chess that have tradictionally been analyzed in terms of

the moves made in the beginning, middle, and end of the game.

3.1.2. GraMi Algorithm. For the purpose of generating candidate subgraphs, a

variety of frequent subgraph mining and subgraph extension algorithms have been

developed, as discussed in previous work [12, 22, 23]. In particular, GraMi [23] is one of

the most efficient methods and is the foundation for the work presented in this paper. The

key ideas behind GraMi are briefly outlined here. Algorithm 1 is used to find a set of all

frequent edges fEdges in the collection of graphs = {𝑮𝑮𝐢𝐢=𝟏𝟏,...,𝐧𝐧}. All of these frequent edges

have support greater than or equal to the assigned threshold 𝝉𝝉. Because of the anti-

70

monotone property, only frequent edges will be considered when finding the frequent

subgraphs.

Algorithm 1 Frequent Subgraph Mining - 𝐹𝐹𝐹𝐹𝐹𝐹

Input 𝒢𝒢 = {𝐺𝐺𝑖𝑖=1,…,𝑛𝑛} and frequency threshold 𝜏𝜏

Output All 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 𝐹𝐹(𝐺𝐺𝑖𝑖) with the support ≥ 𝜏𝜏

 1: 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 ⟵ 𝜙𝜙

 2: 𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 = 0

 3: for each edge 𝑠𝑠𝐺𝐺𝑖𝑖 do

 4: if 𝑠𝑠𝐺𝐺𝑖𝑖 = 𝑠𝑠𝐺𝐺𝑖𝑖+1 then

 5: 𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 + +

 6: end-if

 7: if 𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 ≥ 𝜏𝜏 then

 8: 𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠 ⟵ 𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠 ⋃ 𝑠𝑠𝐺𝐺𝑖𝑖

 9: end-if
10: end-for
11: for each 𝑠𝑠 ∈ 𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠 do

12: 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 ⟵ 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 ⋃ 𝐹𝐹𝑢𝑢𝑓𝑓𝐸𝐸(𝑠𝑠,𝒢𝒢, 𝜏𝜏,𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠)

13: Remove 𝑠𝑠 from 𝒢𝒢 and ,𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠

14: end-for

15: return 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠

Algorithm 2 is given each frequent edge to extend it to a new frequent subgraph.

This is done by incorporating that edge with another subgraph. All extensions created in

previous iterations are excluded by utilizing the DFScode canonical form that was

introduced for gSpan [22]. The set Candidate in Algorithm 2 will include all the new

subgraph extensions that had not been considered in prior iterations.

In subsequent steps, any new subgraph extension within the set Candidate that does

not meet the support threshold 𝜏𝜏 requirement will be discarded. If any of those subgraphs

71

had been extended, it would produce a new non-frequent subgraph according to the anti-

monotonic property.

Algorithm 2 Subgraph Extension - 𝐹𝐹𝑢𝑢𝑓𝑓𝐸𝐸

Input 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 𝐹𝐹,𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠 and frequency threshold 𝜏𝜏

Output All 𝐹𝐹𝑢𝑢𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 with the support ≥ 𝜏𝜏

 1: 𝐹𝐹𝑢𝑢𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 ⟵ 𝜙𝜙

 2: 𝐶𝐶𝑓𝑓𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑡𝑡𝑠𝑠 ⟵ 𝜙𝜙

 3: for each 𝑠𝑠 ∈ 𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠 and 𝑛𝑛 ∈ 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 do

 4: if 𝑠𝑠 fit to extend 𝑛𝑛 then

 5: Generate a new subgraph 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹
 6: if 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹 exist in 𝒢𝒢 and not generated before then
 7: 𝐶𝐶𝑓𝑓𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑡𝑡𝑠𝑠 ⟵ 𝐶𝐶𝑓𝑓𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑡𝑡𝑠𝑠 ⋃ 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹
 8: else
 9: remove 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹

10: end-if
11: end-if
12: end-for
13: for each 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹 ∈ 𝐶𝐶𝑓𝑓𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑡𝑡𝑠𝑠 do

14: if 𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹 count in 𝒢𝒢 ≥ 𝜏𝜏 then
15: 𝐹𝐹𝑢𝑢𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 ⟵ 𝐹𝐹𝑢𝑢𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 ⋃ 𝐹𝐹𝑢𝑢𝑓𝑓𝐸𝐸(𝐸𝐸𝐸𝐸𝑡𝑡𝐹𝐹, 𝒢𝒢, 𝜏𝜏,𝑖𝑖𝐸𝐸𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠)
16: end-if
17: end
18: return 𝐹𝐹𝑢𝑢𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛

3.1.3. Using Frequent Subgraphs to Make Recommendations. In this section we

discuss the algorithms that we utilized in order to mine the game dataset for frequent

subgraphs and build a recommendation system. The task of finding the number of

occurrences for each subgraph was carried out using Algorithm 3.

The mechanism for node-finding was used for matching the first node of a

candidate subgraph with its occurrence in the original dataset. The objective of this process

72

was to determine the starting point for conducting a depth-first search (DFSearch) to

find all similar subgraphs in the winner (or loser) graph collection. These results were

stored temporarily in a temp set to compute their replication in the subsequent steps, and

then the final result was placed within ExactFSG set.

Algorithm 3 Exact Subgraph Frequency

Input 𝒢𝒢 = �𝐺𝐺𝑖𝑖=1,…,𝑛𝑛�,𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠 𝐹𝐹 and frequency threshold 𝜏𝜏

Output All the Exact Frequent Subgraph with their frequency

 1: 𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 = 0

 2: for 𝑠𝑠 = 1 ⟶ all graphs in (𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠) do
 3: 𝑖𝑖𝑓𝑓𝑓𝑓 = 0
 4: for 𝑗𝑗 = 1 ⟶ all graphs in (𝒢𝒢) do
 5: if findnode (𝐺𝐺𝑖𝑖 , 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖) ≠ 0 do
 6: 𝑡𝑡𝑠𝑠𝑡𝑡𝑝𝑝 ⟵ dfsearch (𝐺𝐺𝑖𝑖 , 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖)
 7: if 𝑡𝑡𝑠𝑠𝑡𝑡𝑝𝑝 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖) & 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑡𝑡𝐶𝐶𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖(𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖,𝐺𝐺𝑖𝑖) do
 8: 𝑖𝑖𝑓𝑓𝑓𝑓 + +
 9: end-if
10: end-if
11: end-for
12: if 𝑖𝑖𝑓𝑓𝑓𝑓 ≥ 𝜏𝜏 do
13: 𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡 + +
14: 𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺(𝑖𝑖𝐶𝐶𝑢𝑢𝑛𝑛𝑡𝑡) ⟵ 𝑖𝑖𝐹𝐹𝑢𝑢𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝑠𝑠𝑖𝑖
15: end-if
16: end-for
17: return 𝐸𝐸𝐸𝐸𝑓𝑓𝑖𝑖𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺

3.2. DISCRIMINATIVE SUBGRAPH MINING

The algorithm we employed for discriminative subgraph mining is similar to the

approach taken in [16, 17], but does not employ any heuristics specific to game data.

Although we ran it sequentially, it easily lends itself to parallel or distributed processing.

73

Let 𝐶𝐶+ and 𝐶𝐶− represent two sets of (undirected or directed) graphs for which

we want to find a discriminative subgraph; that is, we want to find a subgraph that appears

in the graphs in 𝐶𝐶− and does not appear in the graphs in 𝐶𝐶+, or vice-versa. We shall refer

to 𝐶𝐶+ as the positive graphs and 𝐶𝐶− as the negative graphs although this naming convention

has no direct semantic correlation to the classification of the graphs in those respective sets

(e.g., ‘winner’ does not necessarily mean positive).

Algorithm 4 𝐹𝐹𝑠𝑠𝑛𝑛𝑖𝑖𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ (𝐶𝐶+, 𝐶𝐶−, 𝛼𝛼, 𝛽𝛽)

𝐶𝐶+: set of positive graphs
𝐶𝐶−: set of negative graphs
𝛼𝛼 : percentage of graphs that discriminative subgraph need not be present in 𝐶𝐶+
 when relaxing conditions
𝛽𝛽 : percentage of graphs that discriminative subgraph need not be present in 𝐶𝐶−
 when relaxing conditions
 1: remove non-discriminative edges from graphs in 𝐶𝐶+ and 𝐶𝐶−;
 2: 𝐺𝐺 = 𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ(𝐶𝐶− ,𝐶𝐶+);
 3: if 𝐺𝐺 is empty then
 4: 𝐺𝐺 = 𝑅𝑅𝑠𝑠𝐹𝐹𝑓𝑓𝐸𝐸𝑠𝑠𝑖𝑖𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ(𝐶𝐶− ,𝐶𝐶+, |𝐶𝐶+| ∗ 𝛼𝛼);
 5: if 𝐺𝐺 is empty then
 6: 𝐺𝐺 = 𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ(𝐶𝐶+ ,𝐶𝐶−);
 7: if 𝐺𝐺 is empty then
 8: 𝐺𝐺 = 𝑅𝑅𝑠𝑠𝐹𝐹𝑓𝑓𝐸𝐸𝑠𝑠𝑖𝑖𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ(𝐶𝐶+ ,𝐶𝐶−, |𝐶𝐶−| ∗ 𝛽𝛽);
 9: end-if
10: end-if
11: end-if
12: return 𝐺𝐺

The function FindDiscriminativeGraph (Algorithm 4) first removes non-

discriminative edges from the graphs in both sets; since such edges appear in the graphs in

both sets, they cannot be used to differentiate the graphs in the those sets.

74

FindDiscriminativeGraph then calls CreateDiscriminativeGraph (Algorithm 5) to try to

find a subgraph that is common to all graphs in 𝐶𝐶−, but not common to all the graphs in

𝐶𝐶+. If we are unable to find such a graph, then the function

RelaxedCreateDiscriminativeGraph (Algorithm 6) is called, which relaxes the requirement

that the subgraph we seek not be present in all of the 𝐶𝐶+ graphs; instead the subgraph only

has to not be present in 𝛼𝛼 ∗ |𝐶𝐶+| of the 𝐶𝐶+ graphs, where 𝛼𝛼 is a user-specified parameter

(our default is 𝛼𝛼 = 0.5).

Algorithm 5 𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ (𝐹𝐹1,𝐹𝐹2)

𝐹𝐹1: set of graphs
𝐹𝐹2: set of graphs
 1: 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺 = queue of 1-edge subgraphs in 𝐹𝐹1;
 2: while 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺 is not empty do
 3: 𝐺𝐺 = 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺.dequeue ();
 4: if 𝐺𝐺 is not in any graph in 𝐹𝐹2then
 5: return (𝐺𝐺);
 6: end-if
 7: NewGraphs = Augment (𝐺𝐺);
 8: for each graph 𝐺𝐺′ in NewGraphs do
 9: 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺.enqueue (𝐺𝐺′);
10: end-for
11: end-while
12: return (empty graph)

FindDiscriminativeGraph and CreateDiscriminativeGraph use a function called

Augment; this function takes a subgraph 𝐺𝐺 and adds to it an edge (and possibly a node)

such that the source vertex exists in 𝐺𝐺, and the edge (and destination node) exists in all

graphs in subgraph collection 𝐹𝐹1. In this way, a subgraph with an additional edge that exists

in all elements of 𝐹𝐹1 is created and considered by the algorithm.

75

If we still fail to find a discriminative subgraph, then the difference likely does

not involve edges that are in all graphs in 𝐶𝐶− and not in graphs in 𝐶𝐶+, but rather involves

edges in the 𝐶𝐶+ graphs that are not in the 𝐶𝐶− graphs. Thus, we again call

𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ, but reverse the order of the parameters (𝐶𝐶+ and 𝐶𝐶−) from

our previous call. If we still fail to find a discriminative subgraph, we again call

𝑅𝑅𝑠𝑠𝐹𝐹𝑓𝑓𝐸𝐸𝑠𝑠𝑖𝑖𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ and look for a subgraph that only has to not be

present in 𝛽𝛽 ∗ |𝐶𝐶−| of the 𝐶𝐶− graphs, where 𝛽𝛽 is a user-specified parameter (our default is

𝛽𝛽 = 0.5).

Algorithm 6 𝑅𝑅𝑠𝑠𝐹𝐹𝑓𝑓𝐸𝐸𝑠𝑠𝑖𝑖𝐶𝐶𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ (𝐹𝐹1, 𝐹𝐹2, 𝛾𝛾)

𝐹𝐹1: set of graphs
𝐹𝐹2: set of graphs
 𝛾𝛾 : threshold for number of graphs discriminative subgraph must be present in
 1: 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺 = queue of 1-edge subgraphs in 𝐹𝐹1;
 2: while 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺 is not empty do
 3: 𝐺𝐺 = 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺.dequeue ();
 4: if 𝐺𝐺 is in < 𝛾𝛾 graph in 𝐹𝐹2then
 5: return (𝐺𝐺);
 6: end-if
 7: NewGraphs = Augment (𝐺𝐺);
 8: for each graph 𝐺𝐺′ in NewGraphs do
 9: 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝐹𝐹𝐺𝐺.enqueue (𝐺𝐺′);
10: end-for
11: end-while
12: return (empty graph)

It is possible that the resulting discriminative graph will be disconnected.

Additionally, it could be the case that multiple subgraphs could qualify as a discriminative

subgraph. The algorithm addresses both of these cases by returning the maximal

76

discriminative subgraph; this result may be disconnected and will include all possible

discriminative edges. It should be noted that it also is possible that our algorithm will not

find any subgraph that meets the discriminative conditions. This could occur if the

requirement that at least 𝛼𝛼 (𝛽𝛽) of the graphs in 𝐶𝐶−(𝐶𝐶+) must have at least one edge in

common has not been satisfied.

The computational complexity of the process is dependent upon the number of

graphs in each collection and the number of edges in each graph. As specified in line 1 of

CreateDiscriminativeGraph, we begin by examining each single edge from each graph in

one of the graph collections. However, in lines 7-9 of that algorithm, we potentially build

larger subgraphs that must be searched for; this is the subgraph isomorphism problem,

which is NP-complete.

4. DATA DESCRIPTION

Interloper [24] and StarCraft II [25] are online multiplayer real-time strategy (RTS)

games. These games allow the creation and deployment of entities, and the destruction of

an opponent’s entities. A player wins the game when the other player’s entities/assets have

been destroyed or the other player cannot create any more assets. In this study, a dataset of

19 played games involving 2 players was obtained for Interloper, and a dataset of 228

played games involving 2 players was obtained for StarCraft II. Each of these games

contained the sequence of actions performed by each of two players, with a designation of

which player won the game. Each move in the Interloper’s/StarCraft II dataset was encoded

with 6-7 digits. Certain digits represented the action type, other digits represented the

77

player ID, and other digits represented a counter (distinguishing how many times a

particular action had been executed by a particular player).

As with games such as chess, we thought it would be interesting to analyze (and

make recommendations for) the games in three phases: the beginning game, the middle

game, and the end game. In chess there is no clear definition of when the middle game

begins and ends, or when the end game begins. Similarly, we had no such guidelines for

Interloper and StarCraft. Therefore, we simply divided each game file into the first third

number of moves, the middle third number of moves, and the last third number of moves,

and referred to these as phases 1, 2, and 3 of the games, respectively. Each phase was

analyzed separately.

5. EXPERIMENTAL EVALUATION

In this section we discuss the details of an experiment we conducted to test the

hypothesis that predictive analytics, specifically frequent and discriminative subgraph

mining, can be employed to examine a collection of played strategy games and make

recommendations as to what a player should do, and should not do, in order to increase the

chances of winning the game in the future.

5.1. EXPERIMENTAL SETUP

We analyzed the game in terms of three phases (i.e., beginning game, middle game,

and end game) by dividing each game into three equal parts; the total number of moves in

a game (by both the winner and the loser) ranged from 183 to 5,338 in Interloper and from

595 to 5,245 in StarCraft. For each of the three phases analyzed, 80% of the data were used

78

for training and the remaining 20% were used for testing with 5-fold cross validation. A

random number generator (www.random.org/lists/) was used to determine which games

were assigned to each partition (with no duplication). This process was repeated five times

for each phase in order to avoid any bias during the measure of error rate. Accuracy was

used to evaluate the closeness of the measured value to the true value. Equation 1 is the

mathematical formula of accuracy where TP is true positive, TN is true negative, FP is

false positive, and FN is false negative.

 𝐴𝐴𝑖𝑖𝑖𝑖𝑢𝑢𝑓𝑓𝑓𝑓𝑖𝑖𝐴𝐴 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁 + 𝑇𝑇𝑁𝑁
 (1)

If a recommendation for what should be done (subgraph) was found in one of the

winning graphs in the test partition, it was counted as a true positive (TP); if instead that

recommendation (subgraph) was found in one of the losing graphs in the test partition, it

was counted as a false positive (FP). If a recommendation for what should not be done

(subgraph) was found in one of the losing graphs in the test partition, it was counted as a

true negative (TN); if instead that recommendation (subgraph) was found in one of the

winning graphs in the test partition, it was counted as a false negative. The error rate was

calculated as 1 – 𝐴𝐴𝑖𝑖𝑖𝑖𝑢𝑢𝑓𝑓𝑓𝑓𝑖𝑖𝐴𝐴, and was averaged over the five iterations of the 5-fold cross

validation.

For phase 1 of the Interloper game, we used 5-fold cross validation. Five partitions

were created, 4 of which contained 4 games and 1 of which contained 3 games; by ‘game’

we mean both the winner and loser for that game. For phases 2 and 3 of the Interloper

game, significantly fewer discriminative subgraphs were found than for phase 1; this will

http://www.random.org/lists/

79

be discussed in the next section. Therefore, instead of creating 5 partitions for cross-

validation, we only created 3 partitions: 2 partitions contained 6 games and 1 partition

contained 7 games. Consequently, only 3 iterations were run in those cross validations

instead of 5. As was done for phase 1, games still were randomly chosen for each partition

for each test. The same procedure of 5-fold cross validation was utilized for the three phases

of StarCraft game. In each phase of this game five partitions were created, 4 of which

contained 46 games and 1 of which contained 44 games; 5 iterations were run in those

cross validations. This was unlike what happened with phase 2 and 3 of Interloper game

because this time enough discriminative subgraphs were found for this purpose.

5.2. EXPERIMENT RESULTS

In this section we present the results of analyzing the Interloper and StarCraft games

dataset using both frequent subgraph mining and discriminative subgraph mining. The

algorithms of frequent subgraph mining presented in Section 3.1 were (collectively)

implemented in Matlab and Java. The algorithms of discriminative subgraph mining

presented in Section 3.2 were implemented in Python 3.7. A combination of Python

programs and bash scripts were created for data file conversions and batch program

executions. Our experiments were executed on an Intel(R) Core (TM) i7-6700

CPU@3.40GHz computer with 32GB memory.

5.2.1. FSM - Experimental Results. Tables 1, 2, 3, and 4 show some of the

experimental results of frequent subgraph mining using a threshold of 2 for the winner and

loser datasets consisting of 19 Interloper’s games and a threshold of 10 for the winner and

loser datasets consisting of 228 StarCraft’s games.

80

Table 1: Winner Data of FSM – Interloper Game
Winner Subgraph Frequency Classification

2810003 2810004 2810005 2810006 13 offensive

2800002 2400005 2400006 2800003 2400007 2400008 28 move

2110001 2610001 2110002 21 defensive

2400001 2400002 2400003 2800001 16 move

Table 2: Loser Data of FSM – Interloper Game
Winner Subgraph Frequency Classification

2810010 2810011 2810012 2810013 15 offensive

2810002 2710001 2810003 2810004 2810005 22 offensive

2110011 2110012 2110013 2810014 2110015 2810016 26 defensive

2410008 2810010 2410012 33 move

Table 3: Winner Data of FSM – StarCraft II Game
Winner Subgraph Frequency Classification

1262215 1262216 1262217 1262218 73 offensive

1272171 1272172 1272173 1272174 1272175 26 offensive

1572171 1572172 1272173 1572174 58 move

1772219 1272220 1772221 1772222 1272223 1772224 1772225

63 defensive

Table 4: Loser Data of FSM – StarCraft II Game
Winner Subgraph Frequency Classification

1292114 1772278 1772279 1772280 1772281 1772282 85 offensive

1592115 1292116 1592117 1592118 32 move

1762199 1262200 1762201 1262202 1762203 1762204 46 defensive

3622407 3622408 3622409 17 offensive

The first and second columns show the actions in the frequent subgraphs with their

number of occurrences from the entire dataset, respectively. The third column in each table

is a classification of the majority of that subgraph’s actions; we classified that game’s

81

actions as either offensive, defensive, or movement (of an entity in the game space).

These results were obtained by performing 5-fold cross-validation, repeated five times.

Each time, for the 19-game Interloper dataset, 15 games were selected randomly (without

duplication) for training, and the remaining 4 games were used for testing. For the 228-

game of StarCraft’s dataset, 182 games were selected randomly (without duplication) for

training, and the remaining 46 games were used for testing.

The size of the resulting frequent subgraphs ranged from two nodes with one edge

to twenty-eight nodes with twenty-seven edges. All of the two-node subgraphs were

ignored because of the limited information they provide for the recommendation objective

(i.e., only two moves) compared to larger subgraphs. Frequent subgraphs that were found

in the winner graphs indicate actions that are recommended for a player to do, whereas

frequent subgraphs that were found in the loser graphs indicate actions that are

recommended that a player should not do. The benefit of the counter attached to each action

reflects the relative number of times the player had made that type of move in that game.

Characterizing the actions, such as offensive or defensive, gives a general notion of the

strategy the player is employing in that sequence and would facilitate mapping one game’s

actions to another’s (e.g., mapping Interloper’s offensive actions to StarCraft’s offensive

actions).

Tables 5 and 6 show the average error rate for each of the cross-validation tests for

each phase, as well as the average error rate over each phase’s 5 tests for Interloper and

StarCraft, respectively. The resulting predictive accuracy was not good for frequent

subgraph mining; in general, frequent subgraphs can have very low frequencies at times

and high frequencies at other times. The collective recommendations (for moves that

82

should be made and moves that should not be made) were accurate approximately

50.28%, 39.67%, and 14.32% of the time for phases 1, 2, and 3 of Interloper, respectively.

It should be noted that this ratio improved slightly to 45.13.% when measuring the error

rate for phase 1 of StarCraft but increased to 40.1% and 24.1% for phase 2 and 3. We

attribute this increase in the error rate to the increase in the number of winner frequent

subgraphs found in the loser dataset and the loser frequent subgraphs found in the winner

dataset.

Table 5. Cross-Validation Test Results of FSM – Interloper Game
Test No. Phase 1 Avg. Error Rate Phase 2 Avg. Error Rate Phase 3 Avg. Error Rate

1 50.21% 36.67% 7.87%

2 45.91% 41.92% 24.08%

3 47.94% 42.6% 14.33%

4 54.83% 38.86% 11.23%

5 52.52% 38.27% 13.99%

Avg. 50.28% 39.67% 14.32%

Table 6. Cross-Validation Test Results of FSM - StarCraft II Game
Test No. Phase 1 Avg. Error Rate Phase 2 Avg. Error Rate Phase 3 Avg. Error Rate

1 45.53%

44.83% 24.26%

2 45.71%

41.62% 22.26%

3 45.42% 38.33% 29.02%

4 43.6% 40.71% 22.71%

5 45.42% 34.55% 22.1%

Avg. 45.13% 40.1% 24.1%

5.2.2. DSM - Experimental Results. Tables 7 and 8 show the average error rate

for each of the cross-validation tests for each phase, as well as the average error rate over

83

each of the phase 5 tests for Interloper and StarCraft, respectively. The resulting

predictive accuracy was good, considering that, in general, discriminative subgraphs can

have very low frequencies. The collective recommendations (for moves that should be

made and moves that should not be made) had error rates of approximately 13.32%, 7.62%,

and 1.34% of the time for phases 1, 2, and 3 of Interloper, respectively. It should be noted

that this ratio improved to 10.52%, 7.38%, and 2.52% when measuring the error rate for

the first, second, and third phase of StarCraft. We attribute this decrease in the error rate to

the decrease in the number of winner discriminative subgraphs found in the loser dataset

and the loser discriminative subgraphs found in the winner dataset.

Table 7. Cross-Validation Test Results of DSM – Interloper Game
Test No. Phase 1 Avg. Error Rate Phase 2 Avg. Error Rate Phase 3 Avg. Error Rate

1 14.40% 10.60% 1.00%

2 13.40% 0.08% 1.60%

3 13.00% 9.10% 0.70%

4 13.50% 9.80% 2.00%

5 13.30% 8.50% 1.40%

Avg. 13.32% 7.62% 1.34%

Table 8. Cross-Validation Test Results of DSM - StarCraft II Game
Test No. Phase 1 Avg. Error Rate Phase 2 Avg. Error Rate Phase 3 Avg. Error Rate

1 10.70% 7.70% 1.90%

2 9.80% 6.70% 3.90%

3 10.10% 8.40% 1.70%

4 10.90% 7.60% 1.20%

5 11.10% 6.50% 3.90%

Avg. 10.52% 7.38% 2.52%

84

For phase 1 of the Interloper game, when testing all pairs of 2 winning and 2

losing graphs, 2,333 discriminative subgraphs were found that constituted “should do”

recommendations and 2,270 discriminative subgraphs were found that represented “should

not do” recommendations. The average size of the “should do” recommendation subgraphs

was 28 edges; the smallest had 1 edge and the largest had 170 edges. The average size of

the “should not do” recommendation subgraphs was 22 edges; the smallest had 1 edge and

the largest had 168 edges.

For phase 1 of StarCraft, when testing all pairs of 2 winning and 2 losing graphs,

33,981 discriminative subgraphs were found that constituted “should do”

recommendations and 28,503 discriminative subgraphs were found that represented

“should not do” recommendations. The average size of the “should do” recommendation

subgraphs was 146 edges; the smallest had 1 edge and the largest had 297 edges. The

average size of the “should not do” recommendation subgraphs was 82 edges; the smallest

had 1 edge and the largest had 268 edges.

For phase 2 of Interloper, when testing all pairs of 2 winning and 2 losing graphs,

250 discriminative subgraphs were found that represented “should do” recommendations

and 213 discriminative subgraphs were found that characterized “should not do”

recommendations. These were about 90% less than the respective numbers of subgraphs

found in phase 1. This is not surprising as the number (and order) of different moves that

a player could (and likely did) make increased at this point in the game, thereby reducing

the number of graphs that had edges in common and could meet the criteria of

𝐹𝐹𝑠𝑠𝑛𝑛𝑖𝑖𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ. The average size of the “should do” recommendation

subgraphs was 25 edges; the smallest had 1 edge and the largest had 274 edges. The average

85

size of the “should not do” recommendation subgraphs was 14 edges; the smallest had

1 edge and the largest had 155 edges.

The situation was not similar in phase 2 of StarCraft, where there were about 42%

less than the respective numbers of subgraphs found in phase 1. When testing all pairs of

2 winning and 2 losing graphs, 14,264 discriminative subgraphs were found that

represented “should do” recommendations and 12,656 discriminative subgraphs were

found that characterized “should not do” recommendations. The average size of the “should

do” recommendation subgraphs was 109 edges, which was only slightly smaller than what

had been found in phase 1 and 3; the smallest had 1 edge and the largest had 384 edges.

The average size of the “should not do” recommendation subgraphs was 94 edges; the

smallest had 1 edge and the largest had 285 edges.

For the final phase of Interloper, 68 discriminative subgraphs were found that

characterized “should do” recommendations; this was a 97% decrease from the number

found in phase 1 and a 72% decrease from the number found in phase 2. In this phase, 36

discriminative subgraphs were found that represented “should not do” recommendations;

this was a 98.4% decrease from the number of such subgraphs found in phase 1 and an

83% decrease from the number found in phase 2. As mentioned previously, the moves in

this phase of the game likely varied more from game to game, and, as such, it became more

difficult to meet the criteria stipulated in 𝐹𝐹𝑠𝑠𝑛𝑛𝑖𝑖𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ. The average size of

the “should do” recommendation subgraphs was 22 edges, which was only slightly smaller

than what had been seen in the other two phases; the smallest had 1 edge and the largest

had 115 edges, which was by far the smallest of the three phases. The average size of the

“should not do” recommendation subgraphs was 18 edges, which is the average size

86

between what was seen for phases 1 and 2; the smallest had 1 edge and the largest had

145 edges, which was slightly smaller than in phase 2. There were 92% fewer

discriminative subgraphs found in phase 3 than had been found in phase 1. In the final

phase of StarCraft, 7,047 discriminative subgraphs were found that characterized “should

do” recommendations; this was a 75% decrease from the number found in phase 1 and a

39% decrease from the number found in phase 2. In this phase, 4,550 discriminative

subgraphs were found that represented “should not do” recommendations; this was an 86%

decrease from the number of such subgraphs found in phase 1 and a 64% decrease from

the number found in phase 2. The average size of the “should do” recommendation

subgraphs was 119 edges; the smallest had 1 edge and the largest had 255 edges. The

average size of the “should not do” recommendation subgraphs was 73 edges, which is

close to the average size between what was seen for phases 1 and 2; the smallest had 1 edge

and the largest had 246 edges.

Instead of looking at all the result subgraph (recommendations), the user should be

able to view only the top 𝑘𝑘 “should” and “should not do” subgraphs, where k is a user-

specified parameter. For example, among the top ten frequently recommended "should do"

subgraphs in phase 1 of Interloper, 3 had 3 edges (i.e., 4 moves) and 4 contained 4-5 edges

(i.e., 5-6 moves). In contrast, 5 of the 10 most frequent “should not do” subgraphs contained

only 1 edge (i.e., 2 moves) and 5 contained 2-3 edges (i.e., 3-4 moves). It should be noted

that the “should” and “should not do” subgraphs can vary in the number of edges they

contain; thus, we may not be able to provide as much information about what a player

should not do as we can say about what a player should do (or vice versa). The type of

action can have an important role in characterizing a recommended subgraph (i.e.,

87

predominantly offensive, defensive, or movement). In the Interloper or StarCraft game,

creation of territory files likely is considered an offensive action against one’s opponent.

Movement of a game character could be either an offensive or defensive action; the player’s

intent (e.g., moving away from danger versus moving to a more strategic position in the

game space) cannot be deduced from the game data.

Another observation that can be made from discriminative subgraphs is a counter

that is associated with both of these types of moves. For each game, the counter for each

type of action begins at 1 and is incremented by 1 each time that type of action occurs. For

example, edges (4921156, 3881100, 4921157, 4921158) in phase 2 of a StarCraft game

represent three factory creations (actions beginning 492) with counters 156, 157, and 158

(where the counter is initialized to 100), indicating that these particular factories were built

well after the game had started. Their occurrence in a discriminative subgraph would

indicate that it either is or is not advisable to build so many factories early in the game.

6. CONCLUSION AND FUTURE WORK

The use of recommendation systems has become widespread in our society. In

general, they examine historical data and try to predict what should be done in the future.

Herein we have applied graph data mining techniques, frequent and discriminative

subgraph mining, to multiplayer, Real-Time Strategy (RTS) video games, Interloper and

StarCraft, to develop a system that can provide recommendations in order to improve a

player’s chances of winning a future game. We modeled each game as a graph and found

a collection of subgraphs that specified sequences of actions that players should, and should

88

not, make in each of three phases of the game. When testing datasets of both games,

experimental results of discriminative subgraph mining showed that the accuracy of our

recommendations was high (an average of 93% accuracy for all three phases of both

games), and better than when using frequent subgraph mining. Overall, our

recommendations for our test games were more informative in terms of what a player

should do at each of three phases of the game in order to win; however, we also were able

to provide some information about what the player should not do. Most importantly, this

study has served as a proof of concept that the discriminative subgraph approach may be a

promising strategy for not only game predictive analytics, but also for other problem

domains that involve direct and indirect resource generation and destruction.

In the future we plan to establish a mapping between action types and assets in this

genre of games so that a more generalized recommendation system can be developed. We

also hope to explore ways to make the algorithms more efficient, perhaps applying some

heuristics to reduce the search space that are inherent to the nature of game data.

Ultimately, we intend to abstract this strategy to other problem domains such as a health

care disease tracking and prediction systems using the same foundation of analyzing

examples of success and failure in order to make recommendations for future positive

outcomes.

REFERENCES

[1] L. Kaufman, “The Relative Value of the Pieces,” Computer Chess Reports, 4:2,
pp. 33–34, 1994.

89

[2] M. Sturman, “Beware the Bishop Pair,” Computer Chess Reports, 5:2, pp. 58–59,
1995.

[3] A. Drachen, C. Thurau, J. Togelius, G. N. Yannakakis, and C. Bauckhage, “Game
Data Mining,” in Game Analytics: Maximizing the Value of Player Data, (London,
UK), pp. 205–253, Springer, 2013.

[4] E. Andersen, Y.-E. Liu, E. Apter, F. Boucher-Genesse, and Z. Popović, “Game-
play Analysis Through State Projection,” in Proceedings of the 5th. International
Conference on the Foundations of Digital Games, (Monterey, CA, USA), pp. 1–
8, ACM, 2010.

[5] H.-N. Kang, H.-R. Yong, and H.-S. Hwang, “A Study of Analyzing on Online
Game Reviews using a Data Mining Approach: STEAM Community Data,”
International Journal of Innovation, Management and Technology, vol. 8, no. 2,
pp. 90, 2017.

[6] M. A. A. Cox and T. F. Cox, “Multidimensional Scaling,” Handbook of Data
Visualization, pp. 315–347. Berlin, Heidelberg: Springer, Berlin Heidelberg,
2008.

[7] P. Braun, A. Cuzzocrea, T. Keding, C. Leung, A. Padzor, and D. Sayson, “Game
Data Mining: Clustering and Visualization of Online Game Data in Cyber-
Physical Worlds,” in proceedings of International Conference on Knowledge
Based and Intelligent Information and Engineering Systems KES '17, (Marseille,
France), vol. 112, no. 2, pp. 2259–2268, 2017.

[8] A. Drachen, C. Thurau, J. Togelius, G. Yannakakis, and C. Bauckhage, “Game
Data Mining,” Game Analytics: Maximizing the Value of Player Data, (London,
UK), pp. 205–253, Springer London, 2013.

[9] J. Huan, W. Wang, J. Prins, and J. Yang, “SPIN: Mining Maximal Frequent
Subgraphs from Graph Databases,” in Proceedings of the 10th. ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD `04,
(Seattle, WA, USA), pp. 581–586, ACM, 2004.

[10] X. Yan and J. Han, “CloseGraph: Mining Closed Frequent Graph Patterns,” in
Proceedings of the 9th. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD '03, (Washington DC., USA), pp. 286–295,
ACM, 2003.

[11] J. Huan, W. Wang, and J. Prins, “Efficient Mining of Frequent Subgraphs in the
Presence of Isomorphism,” in Proceedings of the 3rd. IEEE International
Conference on Data Mining, ICDM '03, pp. 549–552, IEEE, 2003.

90

[12] M. Kuramochi and G. Karypis, “Finding Frequent Patterns in a Large Sparse
Graph,” in Proceedings of the 2004 SIAM International Conference on Data
Mining, pp. 345–356, SIAM, 2004.

[13] Z. Shao, Y. Hirayama, Y. Yamanishi, and H. Saigo, “Mining Discriminative
Patterns from Graph Data with Multiple Labels and Its Application to Quantitative
Structure-Activity (QSAR) Models,” Journal of Chemical Information Models,
vol. 55, no. 12, pp. 2519–2527, 2015.

[14] N. Jin, C. Young, and W. Wang, “Discriminative Subgraph Mining for Protein
Classification,” in Computational Knowledge Discovery for Bioinformatics
Research, pp. 279–295, 2012.

[15] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying Bug Signatures
Using Discriminative Graph Mining,” in Proceedings of the 18th. International
Symposium on Software Testing and Analysis ISSTA '09, (Chicago, IL USA), pp.
141–151, ACM, 2009.

[16] J. Leopold, N. Eloe, and P. Taylor, “BugHint: A Visual Debugger Based on Graph
Mining,” in Proceedings of the 24th International Conference on Visualization
and Visual Languages ICVVL '18, (San Francisco, CA, USA), pp. 109–118, 2018.

[17] J. Leopold, N. Eloe, J. Gould, and E. Willard, “A Visual Debugging Aid Based
on Discriminative Graph Mining,” in Journal of Visual Languages and
Computing, to appear February 2019.

[18] N. Jin, and W. Wang, “LTS: Discriminative Subgraph Mining by Learning from
Search History,” in Proceedings of IEEE 27th. International Conference on Data
Engineering ICDE '11, (Hannover, Germany), pp. 207–218, 2011.

[19] X. Yan, H. Cheng, J. Han, and P. Yu, “Mining Significant Graph Patterns by Leap
Search,” in Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data SIGMOD '08, (Vancouver, BC, Canada), pp. 433–444,
ACM, 2008.

[20] W.-T. Chu and M.-H. Tsai, “Visual Pattern Discovery for Architecture Image
Classi_cation and Product Image Search,” in Proceedings of the 2nd. ACM
International Conference on Multimedia Retrieval, ICMR '12, (Hong Kong,
China), pp. 1–27, ACM, 2012.

[21] X. Yan, P. S. Yu, and J. Han, “Graph Indexing: A Frequent Structure-based
Approach,” in Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, SIGMOD '04, (Paris, France), pp. 335–346, ACM, 2004.

91

[22] X. Yan and J. Han, “gSpan: Graph-based Substructure Pattern Mining,” in
Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM
'02, (Maebashi City, Japan), pp. 721–724, IEEE, 2002.

[23] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “GraMi: Frequent
Subgraph and Ppattern Mining in a Single Large Graph,” Proc. VLDB Endowment,
vol. 7, no. 7, pp. 517–528, 2014.

[24] “Interloper Game Description.” http://interlopergame.com/. Accessed: 2018-18-
12.

[25] “StarCraft II Game Description.” https://starcraft2.com/en-us/. Accessed: 2019-
05-09.

https://starcraft2.com/en-us/

92

IV. GraPH: GRAPH PARTITIONING BASED ON HOTSPOTS

Isam A. Alobaidi1, Jennifer L. Leopold1, and Andrea E. Smith1

1Department of Computer Science, Missouri University of Science and Technology,
Rolla, MO 65409

ABSTRACT

Graphs have long been used to model relationships between entities. For some

applications, a single graph is sufficient; for other problems, a collection of graphs may be

more appropriate to represent the underlying data. Many contemporary problem domains,

for which graphs are an ideal data model, contain an enormous amount of data (e.g., social

networks). Hence, researchers frequently employ parallelized or distributed processing.

But first the graph data must be partitioned and assigned to the multiple processors in such

a way that the work load will be balanced, and inter-processor communication will be

minimized. The latter problem may be complicated by the existence of edges between

vertices in a graph that have been assigned to different processors. Herein we introduce a

strategy that combines vocabulary-based summarization of graphs (𝑉𝑉𝐶𝐶𝐺𝐺) and detection of

hotspots (i.e., vertices of high degree) to determine how a single undirected graph should

be partitioned to optimize multi-processor load balancing and minimize the number of

edges that exist between the partitioned subgraphs. We benchmark our method against

another well-known partitioning algorithm (𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹) to demonstrate the benefits of our

approach.

93

1. INTRODUCTION

Graphs have long been used to model relationships between entities. For some

applications, a single graph is sufficient; for other problems, a collection of graphs may be

more appropriate to represent the underlying data. Some of these graphs may contain an

enormous amount of data (e.g., social networks). Hence, parallelized or distributed

processing often is employed. Before the analysis commences, typically the graph dataset

is partitioned, and a subset of data is assigned to each processor. The partitioning should

be done in such a way that the ensuing work load will be balanced and inter-processor

communication will be minimized. These tasks can be particularly challenging for a single

graph; consideration must be given to which vertices are assigned to which partitions (i.e.,

processors) and what edges originally existed between those vertices.

Ideally, partitions should be of approximately equal size, and the number of edges

between vertices that are in different partitions should be minimized. The problem of

finding good partitions in these respects has been studied in graph theory. Despite the

numerous algorithms that have been proposed and implemented, the complexity of this

problem is still considered NP-complete.

In general, most graph partitioning algorithms utilize either edge-cut partitioning

or vertex-cut partitioning. Edge-cut partitioning splits the vertices of a graph into disjoint

sets of approximately equal size considering the minimum number of cut-edges (e.g.,

PowerGraph [3], Spark GraphX [4], and Chaos [13]). In contrast, vertex-cut partitioning

splits the edges of a graph into equal-sized sets. In this approach, the partitioning of a single

graph must satisfy two requirements: the quality graph partitioning criterion (which

94

guarantees no lost data) and load balancing. Many studies have shown that edge-cut

partitioning produces more accurate results on large real-world graphs [3, 4].

Herein we introduce a novel vertex-cut partitioning strategy that determines how a

single, undirected graph should be partitioned to optimize multi-processor load balancing

and minimize the number of edges that exist between the partitioned subgraphs. Our

approach, 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺, first uses vocabulary-based summarization [9] to identify the most

highly connected structures that exist in the graph (e.g., cliques, stars, and chains). We then

find the vertices in those structures that have the highest degree; these are called hotspots.

The hotspots become the starting points from which subgraph partitions are formed.

This paper is organized as follows. In Section 2 we briefly discuss some of the

related work in graph partitioning. We present the 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 algorithm in Section 3, and

include a discussion of the 𝑉𝑉𝐶𝐶𝐺𝐺 summarization algorithm. In Section 4 we benchmark our

method against another well-known partitioning algorithm (𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹) to demonstrate the

benefits of our approach. Concluding remarks and a discussion of future work are provided

in Section 5.

2. RELATED WORK

In this section, we briefly review some of the research that has been done in graph

partitioning. Despite the numerous sequential, distributed, and parallel algorithms that have

been developed, the complexity of this problem is still considered to be NP-complete. One

of the most significant challenges of the problem continues to be minimizing the loss of

information (from the original graph dataset) when the partitions are formed; that is, the

goal is to minimize the number of edges (from the original graph) that exists between

95

vertices that are in different partitions, a situation which is more likely to occur as the

number of partitions increases.

Some heuristic methods for sequential graph partitioning of a single graph are

discussed in [2, 6]. One offline method (wherein the entire graph is resident in memory),

𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹, is proposed in [6]. This method produces high-quality partitions in terms of

uniformity of partition size and minimization of “lost” edges. However, because of the

offline setting, it cannot handle large graphs. The 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 algorithm consists of three

phases: coarsening, partitioning, and refinement. During each phase, a sequence of

specialized algorithms is applied. These algorithms help in selecting the maximal

matchings in the coarsening phase, partitioning of the coarse graph in the partitioning

phase, and projecting the graph back to the original graph in the refinement phase. An

extension to 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 (Streaming 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 Partitioning method (𝐹𝐹𝐹𝐹𝑃𝑃)) is proposed in [2],

replacing the offline setting of 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 by an online setting. 𝐹𝐹𝐹𝐹𝑃𝑃 provides the ability to

adjust the memory capacity, and subsequently decrease computational requirements by

applying the partitioning method to small subgraphs.

Some graph partitioning techniques are designed for specific application problems.

Another technique for local (i.e., memory-resident, sequential processing) graph

partitioning [1] specifically targets fixed cardinality problems such as 𝑘𝑘-densest subgraph

and max 𝑘𝑘-vertex cover. The authors developed a fixed parameter algorithm using a

greediness-for-parameterization technique. Clustering systems are used as a base in [16].

In this research, the authors propose a heuristic graph edge partitioning strategy, Neighbor

Expansion (NE), with polynomial running time. Their goal was to reduce the running time

96

and communication cost for some specific applications such as triangle counting and

PageRank.

The graph partitioning problem in a distributed environment is addressed in [7, 8,

11, 12, 14]. The authors in [12] propose a fully distributed algorithm called JA-BE-JA.

This algorithm is built on two types of partitioning: vertex-cut and edge-cut partitioning;

the absence of central coordination and the processing of each vertex independently make

this algorithm well-designed for distributed processing. Another distributed algorithm,

PACC (Partition-Aware Connected Components), based on graph partitioning for edge-

filtering and load-balancing, is proposed in [11]. The authors of [14] propose a multi-level

label propagation (MLP) method that uses distributed memory of several machines for

partitioning the graphs. Another distributed partitioning algorithm is discussed in [10],

PARallel Submodular Approximation algorithm (Parsa), also configures the partitions to

fit the storage and computation ability of each machine.

One important characteristic of graph partitioning algorithms is the strategy

employed for selecting the vertex around which the subgraph will be built for each

partition. Many algorithms select such vertices randomly. Our approach was motivated by

MELT [15], MapReduce-based Efficient Large-scale Trajectory anonymization. The main

objective of that work was to examine paths traveled by people in a geographical space,

and then partition the space into regions around popular locations (e.g., a coffee house, an

exercise center, etc.); those locations are referred to as hotspots. As will be discussed later

in this paper, the utilization of hotspots as a basis for forming partitions is a novel feature

of our partitioning strategy.

97

3. METHODOLOGY

In this section, we present the 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 strategy for partitioning a single, undirected

graph. We begin with some preliminary definitions that will facilitate this discussion. An

explanation of the vocabulary-based summarization of graphs (𝑉𝑉𝐶𝐶𝐺𝐺) technique developed

in [9] then follows; this is a key component for our approach as it is used to determine

subgraphs of high connectivity (e.g., cliques, stars, and chains). Finally, our complete set

of algorithms is presented, detailing how the vocabulary-based summarization and

identification of hotspots lead to the creation of optimal partitioning.

3.1. PRELIMINARIES

Definition 1. Graph: A graph 𝐺𝐺 is a tuple (𝑉𝑉,𝐸𝐸, 𝐿𝐿) where 𝑉𝑉 is a finite set of nodes called

the vertex set of 𝐺𝐺, and 𝐸𝐸 is a set of 2-element subsets of 𝑉𝑉(𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉) called the edge

set of 𝐺𝐺. The nodes and edges are labeled by the function 𝐿𝐿.

Definition 2. Graph partitioning: A graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) will be partitioned into 𝑘𝑘

subgraphs 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠′ = (𝑉𝑉′,𝐸𝐸′), 𝑠𝑠𝑢𝑢𝑓𝑓 = 1, . . . ,𝑘𝑘. Each 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠′ ⊂ 𝑉𝑉𝑠𝑠𝑛𝑛𝑠𝑠 where 𝑉𝑉𝑖𝑖 ∩ 𝑉𝑉𝑖𝑖 = 0 for

𝑠𝑠 ≠ 𝑗𝑗, and each 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠′ ⊂ 𝐸𝐸𝑠𝑠𝑛𝑛𝑠𝑠.

Definition 3. Full-clique: Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be an undirected graph. A set 𝐹𝐹𝐶𝐶 of vertices in

𝐺𝐺 is called a Full-clique if any two distinct vertices in 𝐹𝐹𝐶𝐶 are adjacent in 𝐺𝐺, when 𝑘𝑘 ≥ 1.

The Full-clique term may refer to the subgraph in some cases. If several edges are missing,

this will be defined as a Near-clique.

Definition 4. Full bipartite core: Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be an undirected graph. A set 𝐹𝐹𝑓𝑓 of

vertices in 𝐺𝐺 is called Full-bipartite if two sets of vertices 𝐹𝐹1 and 𝐹𝐹2, 𝐹𝐹1 ∩ 𝐹𝐹2 = 𝜙𝜙, have

98

edges between them, where each vertex in 𝐹𝐹1will be connected to every edge in 𝐹𝐹2 but

not within the same set. When the core is not fully connected this will be defined as a Near-

bipartite core.

Definition 5. Star: A Star consists of one internal vertex in set 𝐹𝐹1 connected to 𝑘𝑘 edges of

other sets 𝐹𝐹𝑖𝑖+1 (spokes). A Star is considered as a special case of a Full bipartite core.

Definition 6. Chain: A Chain is a sequence of vertices such that all vertices have degree

2, except two of them have degree 1.

Figure 1 shows examples of these structure types.

(a) Full-Clique (b) Near-Clique (c) Full-bipartite

(d) Chain (e) Star

Figure 1: Types of Structures

3.2. 𝑽𝑽𝑽𝑽𝑮𝑮 GRAPH SUMMARIZATION

The ability to summarize information about highly connected subgraphs contained

within a large graph can greatly facilitate understanding of the graph as a whole.

Vocabulary-based summarization of Graphs (𝑉𝑉𝐶𝐶𝐺𝐺) [9] is a formal methodology developed

99

for this purpose. Using a set of terms (i.e., a vocabulary) like full-cliques, near-cliques,

full-bipartite core, near-bipartite core, stars, and chains, 𝑉𝑉𝐶𝐶𝐺𝐺 provides a summary of the

most highly connected and frequently occurring structures in a graph. For problem domains

like social networks and communication networks, these are typically the structures of most

interest.

Algorithm 1 𝑉𝑉𝐶𝐶𝐺𝐺

Input Graph 𝐺𝐺

Output Graph summary 𝐹𝐹, encoding cost.

 1: Subgraph Generation. Using graph decomposition methods, produce a set of
 candidate subgraphs, which may overlap with each other.
 2: Subgraph Labeling. Characterize each subgraph as one of the vocabulary
 structure types.
 3: Summary Assembly. From the candidate structures, select a non-redundant subset
 to instantiate the graph model 𝐹𝐹. Utilizing a heuristic model (e.g., PLAIN,
 TOP10, TOP100, GREEDY’nFORGET), the set of structures with the lowest
 description cost will be selected.

Algorithm 1 outlines the main steps that are performed in 𝑉𝑉𝐶𝐶𝐺𝐺; see [9] for a more

detailed discussion. Using graph decomposition methods, candidate subgraphs are first

generated. They are then classified as various connected structures such as cliques, stars,

and chains; if a subgraph qualifies as more than one of these structure types, a scoring

method (based on minimum description length (MDL)) is used to determine which

structure type that subgraph best fits. 𝑉𝑉𝐶𝐶𝐺𝐺 then uses another scoring system to determine

which collection of those structures best characterizes the graph as a whole. This is called

the summary model, and could include all of the structures (PLAIN), just the 𝑘𝑘 structures

100

with the best scores (TOP10, TOP100), or a combination of structures whose total score

is best (GREEDY’nFORGET).

3.3. PROPOSED ALGORITHM

In 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺, we first use 𝑉𝑉𝐶𝐶𝐺𝐺 to identify the most highly connected, and frequently

occurring, subgraphs. That produces a set of structures (i.e., the model summary), 𝐹𝐹.

Algorithm 2 is then used to select a subset of 𝐹𝐹 which we call the majority structures, 𝐹𝐹𝑓𝑓𝑗𝑗𝐹𝐹.

The number of majority structures depends on the desired number of partitions, 𝑛𝑛. The 𝑛𝑛

structures in 𝐹𝐹 that have the largest number of vertices become the majority structures.

Algorithm 2 Select the Majority Structures
Input 𝐹𝐹 is set of structures produced by 𝑉𝑉𝐶𝐶𝐺𝐺,
 𝑛𝑛 is number of desired partitions
Output 𝐹𝐹𝑓𝑓𝑗𝑗𝐹𝐹 contains 𝑛𝑛 structures in 𝐹𝐹 that have the largest number of vertices
 1: 𝐹𝐹𝐶𝐶𝑓𝑓𝑡𝑡𝑠𝑠𝑖𝑖𝐹𝐹 = Sort structures in 𝐹𝐹 in descending order by number of vertices
 2: for 𝑠𝑠 = 1 to 𝑛𝑛 do
 3: 𝐹𝐹𝑓𝑓𝑗𝑗𝐹𝐹[𝑠𝑠] = 𝐹𝐹𝐶𝐶𝑓𝑓𝑡𝑡𝑠𝑠𝑖𝑖𝐹𝐹[𝑠𝑠]
 4: end-for
 5: return 𝐹𝐹𝑓𝑓𝑗𝑗𝐹𝐹

For each majority structure, Algorithm 3 is applied to identify the vertex that has

the highest degree; in the case of a tie, an arbitrary choice between those qualifying vertices

is made. These vertices of highest degree are called hotspots.

After assigning the hotspots, the actual partitioning commences. The subgraph that

will be assigned to a partition will consist of all the vertices in a hotspot’s structure unless

that number of vertices exceeds the total number of vertices in the graph divided by the

number of desired partitions; that is considered the ideal partition size. In Algorithm 4, we

101

start a depth-first search from a hotspot vertex (denoted as 𝐺𝐺𝐶𝐶𝑡𝑡𝑠𝑠𝑝𝑝𝐶𝐶𝑡𝑡). The 𝐹𝐹𝑓𝑓𝑗𝑗𝐹𝐹

denoted in the algorithm is the set of structures from which the hotspot was selected.

Algorithm 3 Assign the HotSpot
Input 𝐹𝐹 = (𝑉𝑉𝑆𝑆,𝐸𝐸𝑆𝑆) is a structure

Output 𝐺𝐺𝐶𝐶𝑡𝑡𝐹𝐹𝑝𝑝𝐶𝐶𝑡𝑡𝑠𝑠 is a vertex in 𝑉𝑉𝑆𝑆 that is the hotspot vertex for structure 𝐹𝐹 = (𝑉𝑉𝑆𝑆,𝐸𝐸𝑆𝑆)

 1: for 𝑠𝑠 = 1 to |𝑉𝑉𝑆𝑆| do
 2: 𝑖𝑖𝑠𝑠𝑔𝑔𝑓𝑓𝑠𝑠𝑠𝑠[𝑠𝑠] = 0
 3: end-for
 4: for 𝑠𝑠 = 1 to |𝑉𝑉𝑆𝑆| do
 5: for 𝑗𝑗 = 1 to |𝑉𝑉𝑆𝑆| do
 6: if there is an 𝑠𝑠𝑖𝑖𝑔𝑔𝑠𝑠(𝑠𝑠, 𝑗𝑗) in 𝐸𝐸𝑆𝑆 then
 7: 𝑖𝑖𝑠𝑠𝑔𝑔𝑓𝑓𝑠𝑠𝑠𝑠[𝑠𝑠] = 𝑖𝑖𝑠𝑠𝑔𝑔𝑓𝑓𝑠𝑠𝑠𝑠[𝑠𝑠] + 1
 8: end-if
 9: end-for
10: end-for
11: 𝐺𝐺𝐶𝐶𝑡𝑡𝐹𝐹𝑝𝑝𝐶𝐶𝑡𝑡 = 1
12: for 𝑠𝑠 = 2 to |𝑉𝑉𝑆𝑆| do
13: if 𝑖𝑖𝑠𝑠𝑔𝑔𝑓𝑓𝑠𝑠𝑠𝑠[𝐺𝐺𝐶𝐶𝑡𝑡𝐹𝐹𝑝𝑝𝐶𝐶𝑡𝑡] ≤ 𝑖𝑖𝑠𝑠𝑔𝑔𝑓𝑓𝑠𝑠𝑠𝑠[𝑠𝑠] then
14: 𝐺𝐺𝐶𝐶𝑡𝑡𝐹𝐹𝑝𝑝𝐶𝐶𝑡𝑡 = 𝑠𝑠
15: end-if
16: end-for
17: return 𝐺𝐺𝐶𝐶𝑡𝑡𝐹𝐹𝑝𝑝𝐶𝐶𝑡𝑡

There are two discontinuation criteria for building a subgraph partition; the

expansion will stop when either of those conditions is satisfied:

1. The current size of a partition subgraph has reached the ideal partition size.

2. The path length from the current vertex to the hotspot has reached a maximum

threshold (i.e., the total number of desired partitions).

102

Some vertices from the original graph may not be included in any partition

using these conditions. To handle those cases, we perform a breadth-first search starting

from each hotspot until all nodes are included in some partition.

Algorithm 4 Graph Partitioning
Input Graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸),𝐺𝐺𝐶𝐶𝑡𝑡𝐹𝐹𝑝𝑝𝐶𝐶𝑡𝑡, and 𝐹𝐹𝑓𝑓𝑗𝑗𝐹𝐹

 𝐺𝐺𝐶𝐶𝑡𝑡𝐹𝐹𝑝𝑝𝐶𝐶𝑡𝑡 is a vertex in the structure connected to the largest number of edges
 𝐹𝐹𝑓𝑓𝑗𝑗𝐹𝐹 is a set containing structures that have the largest number of vertices
 𝑛𝑛 is the number of partitions
Output All 𝐹𝐹𝑢𝑢𝑓𝑓𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ of 𝐺𝐺, where |𝑉𝑉| of each subgraph ≥ 𝑃𝑃𝑓𝑓𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝐶𝐶𝑛𝑛𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠

 1: 𝑃𝑃𝑓𝑓𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝐶𝐶𝑛𝑛𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 = |𝑉𝑉|/ 𝑛𝑛
 2: if |𝐹𝐹𝑓𝑓𝑗𝑗𝐹𝐹𝑖𝑖| ≤ 𝑃𝑃𝑓𝑓𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝐶𝐶𝑛𝑛𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 then
 3: Include all nodes of 𝐹𝐹𝑓𝑓𝑗𝑗𝐹𝐹𝑖𝑖 in 𝑃𝑃𝑓𝑓𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝐶𝐶𝑛𝑛𝑖𝑖
 4: end-if
 5: Perform 𝐹𝐹𝐹𝐹𝐹𝐹 starting from each 𝐺𝐺𝐶𝐶𝑡𝑡𝐹𝐹𝑝𝑝𝐶𝐶𝑡𝑡
 6: 𝐹𝐹𝑢𝑢𝑓𝑓𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝐼𝐼𝐷𝐷𝑆𝑆 ⟵ 𝐹𝐹𝐹𝐹𝐹𝐹
 7: Perform 𝐵𝐵𝐹𝐹𝐹𝐹 starting from each 𝐺𝐺𝐶𝐶𝑡𝑡𝐹𝐹𝑝𝑝𝐶𝐶𝑡𝑡
 8: 𝐹𝐹𝑢𝑢𝑓𝑓𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝐵𝐵𝐷𝐷𝑆𝑆 ⟵ 𝐵𝐵𝐹𝐹𝐹𝐹
 9: 𝐹𝐹𝑢𝑢𝑓𝑓𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ ⟵ 𝐹𝐹𝑢𝑢𝑓𝑓𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝐼𝐼𝐷𝐷𝑆𝑆 ∪ 𝐹𝐹𝑢𝑢𝑓𝑓𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ𝐵𝐵𝐷𝐷𝑆𝑆
10: return 𝐹𝐹𝑢𝑢𝑓𝑓𝐺𝐺𝑓𝑓𝑓𝑓𝑝𝑝ℎ

3.4. COMPUTATIONAL COMPLEXITY

The complexity of one well-known partitioning method that is considered to

produce high-quality partitions, 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 [6] (implemented as kmetis), is approximately

𝑂𝑂(𝑉𝑉 + 𝐸𝐸 + 𝑘𝑘 log 𝑘𝑘) where 𝑉𝑉 is the number of nodes, 𝐸𝐸 the number of edges, and 𝑘𝑘 is the

number of partitions [5]. In contrast, the complexity of 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 is approximately 𝑂𝑂(𝑉𝑉 +

𝐸𝐸 + 𝑛𝑛 log 𝑛𝑛) where 𝑉𝑉 is the number of nodes, 𝐸𝐸 is the number of edges, and 𝑛𝑛 is the number

of structures. Contributing to the overall complexity of 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 is the complexity of BFS

103

and DFS, which are 𝑂𝑂(𝑉𝑉 + 𝐸𝐸), and the complexity of sorting 𝑛𝑛 structures, which is

𝑂𝑂(𝑛𝑛 log 𝑛𝑛). We are not including the complexity of the 𝑉𝑉𝐶𝐶𝐺𝐺 processing, which has not

been published by its authors.

4. RESULTS AND ANALYSIS

In this section we compare the results of partitioning three datasets using 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺

and another well-known partitioning method, 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹, which was discussed in Section 2.

The 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 algorithms presented in Section 3.2 and 3.3 were (collectively) implemented

in Matlab and C++. A C++ implementation of 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 was downloaded from the Karypis

Lab website [5]. Our experiments were executed on an Intel(R) Core(TM) i7-6700

CPU@3.40GHz computer with 32 GB memory.

4.1. DATA DESCRIPTION

Three single undirected graphs were used to evaluate our approach. Table 1 lists

descriptive information about the graphs. One graph was synthetically generated; a second

graph represented a two-dimensional finite element mesh; the third graph represented a

three-dimensional finite element mesh.

Table 1: Description of the Graphs Tested
Graph Name Number of Nodes Number of Edges Description

Synthetic 1565 3561 Synthetically generated

4ELT 15606 45878 2D Finite element mesh

COPTER2 55476 352238 3D Finite element mesh

104

4.2. EXPERIMENT AND RESULTS

We executed 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 and 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 on each of the graphs listed in Table 1, testing

seven different numbers of partitions for each graph. The results from each test were

analyzed in terms of three different metrics: the number of interior edges per partition (i.e.,

edges in a partition’s graph), the number of exterior edges per partition (i.e., edges between

vertices in a partition and vertices assigned to other partitions), and the total number of

edges lost (i.e., edges from the original graph that were not represented in any of the

partition graphs).

Seven tests were conducted to create 10, 20, 30, 40, 50, 60, and 70 partitions,

respectively, of the Synthetic graph. 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 failed to partition this graph into either 20 or

40 partitions; the program simply failed to return any results. 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 produced results for

all of the tested numbers of partitions for this graph. The representation of edges amongst

partitions was not well distributed when 10 partitions were requested. Specifically, the

number of interior edges in one of those partitions was much higher than in the other

partitions, which was not an optimal partitioning. This was likely due to the fact that when

a hotspot is selected from a structure, if the structure can fit entirely into a partition, all

nodes from that structure automatically will be added to the partition before the depth-first

search algorithm is run. This can then prevent other partitions from growing during depth-

first search (as would be the case in unconnected components), encouraging

disproportionate partition sizes. Because the 4ELT and COPTER2 graphs were much

larger than the Synthetic graph, we tested larger numbers of partitions for those graphs,

namely: 100, 200, 300, 400, 500, 600, and 700.

105

Figure 2: Interior Edges per Partition

10 20 30 40 50 60 70
GraPH 234.2 57.9 13.1 6.7 3.5 2.4 1.8
METIS 38.4 0 6.1 0 1.84 1.4 1.1

0
50

100
150
200
250

N
um

be
r o

f E
dg

es

Partition Size

1565 Nodes - 3561 Edges

GraPH METIS

100 200 300 400 500 600 700
GraPH 269.1 119.5 73.7 51.7 37.6 29 23.9
METIS 185.9 63.1 33.8 21.4 13.6 9.8 5.6

0
50

100
150
200
250
300

N
um

be
r o

f E
dg

es

Partition Size

15606 Nodes - 45878 Edges

GraPH METIS

100 200 300 400 500 600 700
GraPH 1747 779 479.4 338 253 201.3 165
METIS 750 198 204 138.4 114 83 55

0
500

1000
1500
2000

N
um

be
r o

f E
dg

es

Partition Size

55476 Nodes - 352238 Edges

GraPH METIS

106

Figure 3: Exterior Edges per Partition

10 20 30 40 50 60 70
GraPH 197.5 217.2 195.8 153 126.3 106.2 91.6
METIS 635.4 0 225.2 0 138.76 115.8 99.6

0
100
200
300
400
500
600
700

N
um

be
r o

f E
dg

es

Partition Size

1565 Nodes - 3561 Edges

GraPH METIS

100 200 300 400 500 600 700
GraPH 1246.3 653.2 447.4 342.6 281.7 239 207
METIS 1412.6 765.6 527.3 403.3 329.6 277.7 243.6

0

500

1000

1500

N
um

be
r o

f E
dg

es

Partition Size

15606 Nodes - 45878 Edges

GraPH METIS

100 200 300 400 500 600 700
GraPH 1368 873 662 540 467 408 366
METIS 2895 1696 1198 927.3 736.3 638 553

0
500

1000
1500
2000
2500
3000
3500

N
um

be
r o

f E
dg

es

Partition Size

55476 Nodes - 352238 Edges

GraPH METIS

107

Figure 4: Total Edges Lost

10 20 30 40 50 60 70
GraPH 987 2171 2937 3060 3156 3183 3206
METIS 3177 0 3378 0 3469 3475 3487

0

1000

2000

3000

4000

N
um

be
r o

f E
dg

es

Partition Size

1565 Nodes - 3561 Edges

GraPH METIS

100 200 300 400 500 600 700
GraPH 62312 65314 67104 68519 70422 71807 72498
METIS 70630 76561 79087 80659 82407 83322 85268

0
20000
40000
60000
80000

100000

N
um

be
r o

f E
dg

es

Partition Size

15606 Nodes - 45878 Edges

GraPH METIS

100 200 300 400 500 600 700
GraPH 68391 87313 99282 107971 116624 122352 127998
METIS 144749 169582 179627 185449 184071 191271 193419

0
50000

100000
150000
200000
250000

N
um

be
r o

f E
dg

es

Partition Size

55476 Nodes - 352238 Edges

GraPH METIS

108

For all three of the graphs listed in Table 1, in the majority of the tests, the

partitions produced by 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 had a higher number of interior edges in each partition than

the partitions produced by 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹. It can be seen in Figure 2 that more edges from the

original graph were retained within the partitions produced by 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺. As shown in Figure

3, the 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 partitioning resulted in fewer exterior edges (between partitions) than what

occurred in the 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 partitioning. Additionally, as shown in Figure 4, 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺

outperformed 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 in terms of reducing the total number of edges lost from the original

graph. It should be noted that as the desired number of partitions grew, the difference in

partition quality (in terms of the three metrics) obtained from both methods became less

distinct.

Because of the use of two methods (depth-first/breadth-first search) in 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 for

the extension process that include vertices in/out of partition boundaries, we also evaluated

different variations of our method. We ran 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 on the three test graphs using four

different orders of processing:

1. Depth-first search extension for vertices inside the partition boundaries followed

by breadth-first search extension for vertices outside the partition boundaries.

2. Breadth-first search extension for vertices inside the partition boundaries followed

by depth-first search extension for vertices outside the partition boundaries.

3. Depth-first search extension for vertices inside the partition boundaries followed

by depth-first search extension for vertices outside the partition boundaries.

4. Breadth-first search extension for vertices inside the partition boundaries followed

by breadth-first search extension for vertices outside the partition boundaries.

109

We found that more consistent partitions were obtained (in terms of more

interior edges and fewer external edges per partition) when we utilized the depth-first

search extension process for vertices inside the boundaries followed by breadth-first search

extension processing for vertices outside the boundaries. We also tested random

assignment of hotspots. This was found to be unreliable in generating high-quality

partitions. Interestingly, although the number of internal edges was not balanced across

partitions utilizing randomization, 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 still outperformed 𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹 in terms of producing

partitions with more internal edges and fewer external edges.

5. CONCLUSION AND FUTURE WORK

With the proliferation of data in our technological world and the usefulness of

modeling some problems using graphs, it is becoming increasingly difficult to process an

entire graph dataset in memory. It is more efficient to partition a single large graph, and

process multiple smaller subgraphs. However, in doing so, the partitioning of what may be

highly interconnected data must be done in such as way as to balance the work load

amongst the individual processes, minimize inter-process communication, and minimize

loss of information from the original dataset. The latter problems can occur if, in the

original graph, there is an edge that exists between vertices assigned to different partitions.

Herein we have presented an algorithm, 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺, for partitioning a single,

undirected graph. Our algorithm strives to produce quality partitions in terms of: uniformity

of the size of each partition, maximization of the number of edges from the original graph

that are included in each partition, and minimization of the number of edges from the

110

original graph that effectively exist between partitions. Our approach is novel; we first

utilize vocabulary-based summarization (𝑉𝑉𝐶𝐶𝐺𝐺) to find the most highly connected

structures, and then find the vertices of highest degree (known as hotspots) within those

structures. A benchmark comparison of 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺 with another well-known, high-quality

partitioning algorithm (𝐹𝐹𝐸𝐸𝑇𝑇𝑀𝑀𝐹𝐹) demonstrated the benefits of our strategy.

In the future, we plan to explore ways to distribute or parallelize the 𝐺𝐺𝑓𝑓𝑓𝑓𝑃𝑃𝐺𝐺

algorithms so that we can process even larger graphs than those tested for this study. To

that end, we also may explore the use of some approximation (e.g., sampling) methods that

may increase the efficiency of the assignment of vertices to partitions after identification

of structures and hotspots.

REFERENCES

[1] É. Bonnet, B. Escoffier, V. Th. Paschos, and É. Tourniaire, “Multi-parameter
Analysis for Local Graph Partitioning Problems: Using Greediness for
Parameterization,” in Algorithmica, (New York, NY, USA), vol. 71, no. 3, pp.
566–580, Springer, 2015.

[2] G. Echbarthi and H. Kheddouci, “Streaming METIS Partitioning,” in Proceedings
of the 2016 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, ASONAM '16, (Piscataway, NJ, USA), no. 8, pp.17–24,
IEEE, 2016.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:
Distributed Graph-parallel Computation on Natural Graphs,” in Proceedings of
the 10th. USENIX Symposium on Operating Systems Design and Implementation,
OSDI '12, (Hollywood, CA, USA), no. 14, pp.17–30, USENIX Association, 2012.

[4] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica,
“GraphX: Graph Processing in a Distributed Dataflow Framework” in
Proceedings of the 11th. USENIX Symposium on Operating Systems Design and
Implementation, OSDI '14, (Broomfield, CO, USA), no. 16, pp. 599–613,
USENIX Association, 2014.

111

[5] G. Karypis, “Complexity of pmetis and kmetis Algorithms.” http:
//glaros.dtc.umn.edu/gkhome/node/419. Accessed: 2019-22-01.

[6] G. Karypis and V. Kumar, “A Fast and High-Quality Multilevel Scheme for
Partitioning Irregular Graphs,” SIAM Journal on Scientific Computing,
(Philadelphia, PA, USA), vol. 20, no. 1, pp. 359–392, SIAM, 1998.

[7] G. Karypis and V. Kumar, “A Parallel Algorithm for Multilevel Graph
Partitioning and Sparse Matrix Ordering,” in Journal of Parallel and Distributed
Computing, vol. 48, no. 1, pp. 71–95, ELSEVIER, 1998.

[8] R. Kiveris, S. Lattanzi, V. Mirrokni, V. Rastogi, and S. Vassilvitskii, “Connected
Components in MapReduce and Beyond”, in Proceedings of the ACM Symposium
on Cloud Computing SOCC '14, (New York, NY, USA), no. 13, pp. 1–13, ACM,
2014.

[9] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, “Summarizing and
Understanding Large Graphs,” in Statistical Analysis and Data Mining: The ASA
Data Science Journal, Wiley Periodicals, Inc., vol. 8, no. 3, pp. 183–202, 2015.

[10] M. Li, D. G. Andersen, and A. J. Smola, “Graph Partitioning via Parallel
Submodular Approximation to Accelerate Distributed Machine Learning,” CoRR,
2015.

[11] H.-M. Park, N. Park, S.-H. Myaeng, and U. Kang, “Partition Aware Connected
Component Computation in Distributed Systems,” in Proceedings of the 16th.
IEEE International Conference on Data Mining ICDM '16, pp. 420–429, IEEE,
2016.

[12] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi, “A
Distributed Algorithm for Large-Scale Graph Partitioning,” ACM Trans. Auton.
Adapt. Syst, (New York, NY, USA), vol. 10, no. 2, pp. 1–12, ACM, 2015.

[13] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos: Scale-out
Graph Processing from Secondary Storage,” in Proceedings of the 25th.
Symposium on Operating Systems Principles SOSP '15, (New York, NY, USA),
pp. 410–424, ACM, 2015.

[14] L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to Partition a Billion-Node
Graph,” in Proceedings of the 30th. IEEE International Conference on Data
Engineering ICDE ’14, pp. 568–579, IEEE, 2014.

[15] K. Ward, D. Lin, and S. Madria, “MELT: Mapreduce-based Efficient Large-scale
Trajectory Anonymization,” in Proceedings of the 29th. International Conference
on Scientific and Statistical Database Management SSDBM '17, (New York, NY,
USA), pp. 1–35, ACM, 2017.

112

[16] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li, “Graph Edge Partitioning via

Neighborhood Heuristic,” in Proceedings of the 23rd. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining KDD '17, (New York, NY,
USA), pp. 605–614, ACM, 2017.

113

SECTION

2. CONCLUSIONS AND FUTURE WORK

2.1. CONCLUSIONS

This dissertation presents algorithms and methods to mine and analyze transaction

graphs. Specifically, we have applied graph data mining techniques, frequent (FSM) and

discriminative subgraph mining (DSM), to Real-Time Strategy (RTS) video game datasets

to develop a system that can provide recommendations in order to improve one’s chances

of winning the game.

In paper I, frequent subgraph mining, has been applied to a strategy game dataset

to develop a system that can provide recommendations about moves that a player should

and should not make in order to improve his/her chances of winning the game. As proof of

concept, we applied our system to a real-time strategy (RTS) game dataset during each of

three phases of the game and achieved fairly accurate results when we tested using cross-

fold validation. We also attempted to apply another technique, frequent sequence mining,

but did not find that it provided as useful or accurate recommendations.

In paper II, we tested another graph mining technique, discriminative subgraph

mining, on the same RTS game dataset. The predictions for what sequences of moves a

player should and should not make in order to increase his/her chances of winning a game

were found to be extremely accurate for each of three phases of the game when tested using

cross-fold validation.

114

In paper III, a comparison between the two previously mentioned graph data

mining techniques, frequent and discriminative subgraph mining, were compared and

tested on a much larger dataset of played multi-player, Real-Time Strategy (RTS) video

games. The earlier results were reinforced, with discriminative subgraph mining producing

the more accurate recommendations than frequent subgraph mining, and those

recommendations being highly accurate for all three phases of the game.

In paper IV, we proposed an algorithm, GraPH, for partitioning a single, undirected

graph. Our algorithm strives to produce quality partitions in terms of: uniformity of the size

of each partition, maximization of the number of edges from the original graph that are

included in each partition, and minimization of the number of edges from the original graph

that effectively exist between partitions. Our approach is novel; we first utilize vocabulary-

based summarization (VoG) to find the most highly connected structures, and then find the

vertices of highest degree (known as hotspots) within those structures. An implementation

of the algorithm was benchmarked against a well-known partitioning algorithm (METIS)

and was found to be superior in the aforementioned metrics for quality partitioning for

most all test cases.

2.2. FUTURE WORK

As a part of the future research, we intend to extend the scope of the graph mining

predictive analytics using real-life datasets other than game data (e.g., healthcare data).

Although discriminative subgraph mining produced the best results for the game datasets,

we will still compare both graph mining methods for the other types of datasets in case one

method proves to be more useful than the other for different types of data.

115

In order to reduce the search space and speed up the computation process, we

intend to work on heuristic algorithms for both FSM and DSM. It is possible, for example,

that we could combine particular actions into categories based on semantic similarity (e.g.,

“create fort” and “create castle” into “create protective unit”) inorder to more quickly find

common subgraphs.

116

BIBLIOGRAPHY

[1] J. Yang, W. Su, S. Li, and M. M. Dalkilic, “Wigm: discovery of subgraph patterns
in a large weighted graph,” in Proceedings of the 2012 SIAM International
Conference on Data Mining, pp. 1083–1094, SIAM, 2012.

[2] N. Jin, and W. Wang, “LTS: Discriminative Subgraph Mining by Learning from
Search History,” in Proceedings of IEEE 27th. International Conference on Data
Engineering ICDE '11, (Hannover, Germany), pp. 207–218, 2011.

[3] M. A. Bhuiyan and M. Al Hasan, “An iterative mapreduce based frequent
subgraph mining algorithm,” in Proceedings of IEEE Transactions on Knowledge
and Data Engineering, vol. 27, no. 3, pp. 608–620, IEEE, 2015.

[4] W. Lin, X. Xiao, and G. Ghinita, “Large-scale frequent subgraph mining in
mapreduce,” in Proceedings of IEEE 30th. International Conference on Data
Engineering ICDE '14, pp. 844–855, IEEE, 2014.

[5] E. Wong, B. Baur, S. Quader, and C.-H. Huang, “Biological network motif
detection: principles and practice,” in Proceedings of Briefings in bioinformatics,
vol. 13, no. 2, pp. 202–215, Oxford University Press, 2011.

[6] C. Jiang, F. Coenen, and M. Zito, “A survey of frequent subgraph mining
algorithms,” in Proceedings of The Knowledge Engineering Review, vol. 28, no.
1, pp. 75–105, Cambridge University Press, 2013.

[7] E. Scharwӓchter, E. Müller, J. Donges, M. Hassani, and T. Seidl, “Detecting
change processes in dynamic networks by frequent graph evolution rule mining,"
in Proceedings of IEEE 16th. International Conference on Data Mining ICDM '16,
pp. 1191–1196, IEEE, 2016.

[8] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, “Summarizing and
Understanding Large Graphs,” in Statistical Analysis and Data Mining: The ASA
Data Science Journal, Wiley Periodicals, Inc., vol. 8, no. 3, pp. 183–202, 2015.

[9] H. Cheng, X. Yan, and J. Han, “Mining graph patterns,” in Frequent Pattern
Mining, pp. 307–338, Springer, 2014.

117

VITA

Isam Abdulmunem Alobaidi was born in Baghdad, Iraq. He earned his bachelor’s

degree in software engineering from Al-Mansour University College, Iraq in 2001. He

subsequently earned his higher diploma degree in software engineering from the Iraqi

Commission for Computers and Information - Institute of Higher Studies in Informatics,

Iraq in 2002. In December 2015, he received his master’s degree in computer science from

Missouri University of Science and Technology, USA. He continued his graduate study

towards his Ph.D. in 2016 at the same institution.

During his time as a student, he worked as a graduate research assistant and

graduate teaching assistant within the Department of Computer Science. He published

conference papers as a primary and secondary author, most of which are cited in this

research. In December 2019, he received his Ph.D. in computer science from Missouri

University of Science and Technology, USA.

	Predictive analysis of real-time strategy games using graph mining
	Recommended Citation

	1. INTRODUCTION
	1.1. GRAPHS AND NETWORKS
	1.2. FREQUENT SUBGRAPH MINING
	1.3. FREQUENT SUBGRAPH MINING COMPUTATIONAL CHALLENGES
	1.3.1. Key Computational Challenges in Frequent Subgraph Mining. The main challenge in subgraph mining is efficiency [4, 6, 8], where
	1.3.2. Variation of Sequential, Distributed, and Parallel Processing in Frequent Subgraph Mining. Both parallel and distributed processing share the same challenge when they deal with either single or transaction graphs. The partitioning of a single g...

	1.4. SUMMARY

	1. INTRODUCTION
	2. BACKGROUND
	2.1. GAME DATA MINING
	2.2. FREQUENT SUBGRAPH MINING
	2.3. FREQUENT SEQUENCE MINING

	3. METHODOLOGY: FREQUENT SUBGRAPH MINING
	3.1. PRELIMINARIES
	3.2. GraMi ALGORITHM
	3.3. USING FREQUENT SUBGRAPHS TO MAKE RECOMMENDATIONS

	4. DATA DESCRIPTION
	5. EXPERIMENTAL EVALUATION
	5.1. EXPERIMENT AND RESULTS

	6. CONCLUSION AND FUTURE WORK
	1. INTRODUCTION
	2. RELATED WORK
	2.1. GAME DATA MINING
	2.2. DATA MINING TECHNIQUES USED IN PREDICTIVE ANALYTICS
	2.3. DISCRIMINATIVE SUBGRAPH MINING

	3. METHODOLOGY: DISCRIMINATIVE SUBGRAPH MINING
	4. EXPERIMENT AND RESULTS
	4.1. EXPERIMENTAL SETUP
	4.2. EXPERIMENTAL RESULTS

	5. SUMMARY AND CONCLUSIONS
	6. FUTURE WORK
	1. INTRODUCTION
	2. BACKGROUND
	2.1. GAME DATA MINING
	2.2. DATA MINING TECHNIQUES USED IN PREDICTIVE ANALYTICS
	2.3. SUBGRAPH MINING
	2.3.1. Frequent Subgraph Mining. Given a single (directed or undirected) graph, it can be useful to know which subgraphs occur at least 𝒏 times where 𝒏 is a user-specified threshold for frequency. Similarly, given a collection of graphs and a freque...
	2.3.2. Discriminative Subgraph Mining. Discriminative subgraph mining seeks to find a subgraph that appears in one collection of graphs but does not appear in another collection of graphs. This approach has been used to study several problems includin...

	3. METHODOLOGY
	3.1. FREQUENT SUBGRAPH MINING
	3.1.1. Preliminaries. Let 𝓖={,𝑮-𝟏.,,𝑮-𝟐., …, ,𝑮-𝒏.} be a set of linear directed graphs which represents the historical data. Each ,𝑮-𝒊. represents a single game's moves, such that ,𝑮-𝒊.=(,𝑽-𝒊., ,𝑬-𝒊.) where ,𝑽-𝒊. represents a node lab...
	3.1.2. GraMi Algorithm. For the purpose of generating candidate subgraphs, a variety of frequent subgraph mining and subgraph extension algorithms have been developed, as discussed in previous work [12, 22, 23]. In particular, GraMi [23] is one of the...
	3.1.3. Using Frequent Subgraphs to Make Recommendations. In this section we discuss the algorithms that we utilized in order to mine the game dataset for frequent subgraphs and build a recommendation system. The task of finding the number of occurrenc...

	3.2. DISCRIMINATIVE SUBGRAPH MINING

	4. DATA DESCRIPTION
	5. EXPERIMENTAL EVALUATION
	5.1. EXPERIMENTAL SETUP
	5.2. EXPERIMENT RESULTS
	5.2.1. FSM - Experimental Results. Tables 1, 2, 3, and 4 show some of the experimental results of frequent subgraph mining using a threshold of 2 for the winner and loser datasets consisting of 19 Interloper’s games and a threshold of 10 for the winne...
	5.2.2. DSM - Experimental Results. Tables 7 and 8 show the average error rate for each of the cross-validation tests for each phase, as well as the average error rate over each of the phase 5 tests for Interloper and StarCraft, respectively. The resul...

	6. CONCLUSION AND FUTURE WORK
	1. INTRODUCTION
	2. RELATED WORK
	3. METHODOLOGY
	3.1. PRELIMINARIES
	3.2. 𝑽𝑶𝑮 GRAPH SUMMARIZATION
	3.3. PROPOSED ALGORITHM
	3.4. COMPUTATIONAL COMPLEXITY

	4. RESULTS AND ANALYSIS
	4.1. DATA DESCRIPTION
	4.2. EXPERIMENT AND RESULTS

	5. CONCLUSION AND FUTURE WORK
	2. CONCLUSIONS AND FUTURE WORK
	2.1. CONCLUSIONS
	2.2. FUTURE WORK

