
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2013

Social-context based routing and security in delay tolerant Social-context based routing and security in delay tolerant

networks networks

Roy A. Cabaniss

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Cabaniss, Roy A., "Social-context based routing and security in delay tolerant networks" (2013). Doctoral
Dissertations. 2262.
https://scholarsmine.mst.edu/doctoral_dissertations/2262

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2262?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2262&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

SOCIAL-CONTEXT BASED ROUTING AND SECURITY

IN DELAY TOLERANT NETWORKS

by

ROY ALAN CABANISS

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2013

Dr. Sanjay Madria, Advisor
Dr. Sriram Chellappan

Dr. Wei Jiang
Dr. Bruce M. McMillin

Dr. Jagannathan Sarangapani

Copyright 2013

Roy Alan Cabaniss

All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

This dissertation consists of four articles prepared in the style required by the journals

or conference proceedings in which they were published:

Pages 21 to 44, ”Dynamic Social Grouping Based Routing in a Mobile Ad-Hoc Net-

work”, was published in the 18th IEEE International Conference on High Performance

Computing (HiPC 2010), Dona Paula, Goa, India.

Pages 45 to 65, ”DSG-N2: A group-based social routing algorithm”, was published in

the IEEE Wireless Communications and Networking Conference (WCNC 2011), Cancun,

Mexico.

Pages 66 to 105, ”Social Group Detection Based Routing in Mobile Ad Hoc Net-

works”, is under submission to the Wireless Networks Journal by Springer.

Pages 106 to 142, ”Three Point Encryption (3PE) - Secure Communications in Delay

Tolerant Networks”, is under submission to the IEEE Transactions on Dependable and

Secure Computing (TDSC).

Pages 143 through 163, ”Content Distribution in Delay-Tolerant Networks using So-

cial Context”, is under submission to the 9th IEEE International Wireless Communications

and Mobile Computing Conference (IWCMC 2013), Sardinia, Italy.

iv

ABSTRACT

Delay Tolerant Networks (DTNs) were originally intended for interplanetary com-

munications and have been applied to a series of difficult environments: wireless sensor

networks, unmanned aerial vehicles, and short-range personal communications. There is a

class of such environments in which nodes follow semi-predictable social patterns, such as

wildlife tracking or personal devices. This work introduces a series of algorithms designed

to identify the social patterns present in these environments and apply this data to difficult

problems, such as efficient message routing and content distribution.

Security is also difficult in a mobile environment. This is especially the case in the

event that a large portion of the network is unreliable, or simply unknown. As the net-

work size increases nodes have difficulty in securely distributing keys, especially using

low powered nodes with limited keyspace. A series of multi-party security algorithms

were designed to securely transmit a message in the event that the sender does not have ac-

cess to the destinations public key. Messages are routed through a series of nodes, each of

which partially decrypts the message. By encrypting for several proxies, the message can

only be intercepted if all those nodes have been compromised. Even a highly compromised

network has increased security using this algorithm, with a trade-off of reduced delivery

ratio and increased delivery time.

v

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank a few of the people that made this work

possible. First, my advisor Sanjay Madria, whose support, advice, and encouragement

guided my efforts in this field.

The faculty at the Missouri University of Science and Technology have been an in-

valuable aid, and I would like to thank them for their help in researching areas I didn’t know

existed before I came here. Special thanks go to my advisement board, Sriram Chellappan,

Bruce McMillin, Jag Sarangapani, and Wei Jiang. Also, thanks to Sahra Sedigh and Daniel

Tauritz.

I would like to thank my lab partners, whose endurance should be applauded. They

have aided my research in many little ways, from open discussions, algorithm checking,

and reviewing writing, and I am in their collective debt.

Finally, thanks go to my family, including my father Roy Franklin, my mother Candi,

and my two sisters Amber and Rhiannon. Raising me was not a simple task, and I appreci-

ate it.

vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION . iii
ABSTRACT . iv
ACKNOWLEDGEMENTS . v
LIST OF ILLUSTRATIONS. xii
LIST OF ALGORITHMS. xiv
LIST OF TABLES. xv

SECTION

1. INTRODUCTION. 1

2. LITERATURE REVIEW .. 5

2.1. PRELIMINARIES. 5

2.2. ROUTING ALGORITHMS . 6
2.2.1. Epidemic Routing . 6
2.2.2. MaxProp . 7
2.2.3. AODV . 8
2.2.4. Probabilistic. 8
2.2.5. PRoPHET . 10
2.2.6. SimBet . 12

2.3. SECURITY IN DTN . 13
2.3.1. Public Key Encryption . 13
2.3.2. Threshold Encryption . 14
2.3.3. Onion Routing . 15
2.3.4. EnPassant . 17

2.4. CONTENT DISTRIBUTION. 18
2.4.1. R-P2P . 18
2.4.2. OnMove . 18

3. BIBLIOGRAPHY . 19

PAPER
I. Dynamic Social Grouping Based Routing in a Mobile Ad-Hoc Network 21

1. INTRODUCTION. 22

2. BACKGROUND . 24

2.1. EPIDEMIC ROUTING . 24

2.2. PROBABILISTIC ROUTING . 24

vii

2.3. BUBBLE RAP. 25

2.4. SOCIALCAST. 25

2.5. SIMBET . 25

3. PROPOSED ALGORITHM .. 27

3.1. GROUPING . 27
3.1.1. Contact Strength . 27
3.1.2. Forming New Groups . 27
3.1.3. Merging . 28
3.1.4. Dynamic Grouping . 29
3.1.5. Group Versions . 29

3.2. ROUTING . 32
3.2.1. Individual Probability . 32
3.2.2. Group Probability . 32
3.2.3. Using Probabilities to Route . 34

4. ANALYSIS . 35

4.1. EXPERIMENTAL SETUP AND EVALUATION . 35

4.2. SIMULATION DATA SOURCE . 36

4.3. IMPACT OF α AND ψ. 36

4.4. IMPACT OF τ AND φ. 37

4.5. COMPARISON OF ROUTING ALGORITHMS. 38

5. CONCLUSIONS . 43

6. BIBLIOGRAPHY . 44
II. DSG-N2: A Group-Based Social Routing Algorithm . 45

1. INTRODUCTION. 46

2. BACKGROUND . 48

2.1. EPIDEMIC ROUTING . 48

2.2. PROBABILISTIC ROUTING . 48

2.3. PROPHET . 49

2.4. BUBBLE RAP. 49

2.5. SIMBET . 49

2.6. SIMBETAGE . 50

3. PROPOSED ALGORITHM .. 51

3.1. GROUPING . 51
3.1.1. Contact Strength . 51
3.1.2. Forming New Groups . 51
3.1.3. Merging . 52

viii

3.1.4. Dynamic Grouping . 54
3.1.5. Group Versions . 55

3.2. ROUTING . 56
3.2.1. Individual Probability . 56
3.2.2. Group Probability . 56
3.2.3. Using Probabilities to Route . 57

4. ANALYSIS . 60

4.1. EXPERIMENTAL SETUP AND EVALUATION . 60

4.2. SIMULATION DATA SOURCE . 61

4.3. IMPACT OF α, φ, AND ψ . 61

4.4. COMPARISON OF ROUTING ALGORITHMS. 63

5. CONCLUSION. 64

6. BIBLIOGRAPHY . 65
III. Social Group Detection Based Routing in Mobile Ad Hoc Networks 66

1. INTRODUCTION. 67

2. BACKGROUND . 69

2.1. EPIDEMIC ROUTING . 69

2.2. MAXPROP . 69

2.3. PROBABILISTIC ROUTING . 70

2.4. PROPHET . 70

2.5. BUBBLE RAP. 71

2.6. SOCIALCAST. 71

2.7. SIMBET . 71

2.8. SIMBETAGE . 72

2.9. DISTRIBUTED CLUSTERING. 72

3. PROPOSED ALGORITHM .. 74

3.1. GROUPING . 74
3.1.1. Contact Strength . 74
3.1.2. Forming New Groups . 74
3.1.3. Merging . 75
3.1.4. Dynamic Grouping . 77
3.1.5. Group Versions . 77

3.2. ROUTING . 78
3.2.1. Basestation Routing . 79
3.2.2. Node-to-Node Routing . 80
3.2.3. Performance-Based Probability . 80

ix

3.2.4. Contact-Based Probability . 82
3.2.5. Group Probability . 84
3.2.6. Using Probabilities to Route . 84

3.3. HYBRID DSG-N2 / EPIDEMIC ROUTING . 85

4. ANALYSIS - DSG . 87

4.1. EXPERIMENTAL SETUP AND EVALUATION . 87

4.2. SIMULATION DATA SOURCE . 87

4.3. IMPACT OF α AND ψ. 88

4.4. IMPACT OF τ AND φ. 90

4.5. COMPARISON OF ROUTING ALGORITHMS. 90

5. ANALYSIS - DSG-N2 . 95

5.1. EXPERIMENTAL SETUP AND EVALUATION . 95

5.2. SIMULATION DATA SOURCE . 96

5.3. IMPACT OF α, φ, AND ψ . 96

5.4. COMPARISON SIMULATIONS. 98

5.5. TINYOS SIMULATIONS . 99

5.6. COMPARISON TO ORACLE . 99

6. CONCLUSION. 102

7. ACKNOWLEDGEMENTS . 103

8. BIBLIOGRAPHY . 104
IV. Three Point Encryption (3PE) - Secure Communications in Delay Tolerant Net-

works. 106

1. INTRODUCTION. 107

2. BACKGROUND . 109

2.1. COMMUTATIVE ENCRYPTION . 109

2.2. THRESHOLD ENCRYPTION . 109

2.3. ONION ROUTING. 110

2.4. ENPASSANT . 110

2.5. SOCIAL CONTACTS FOR MESSAGE CONFIDENTIALITY 111

3. PROPOSED ALGORITHM .. 112

3.1. CHAINING ENCRYPTION . 112

3.2. FRAGMENTING ENCRYPTION. 114

4. TIME AND ENERGY ANALYSIS . 118

4.1. KEY REQUEST ANALYSIS . 119

4.2. CHAINING ANALYSIS . 120

x

4.3. FRAGMENTED ANALYSIS . 121

5. SECURITY ANALYSIS . 126

5.1. NULL ENCRYPTION . 126

5.2. KEY-REQUEST SCHEME . 127

5.3. CHAINING ANALYSIS . 128

5.4. FRAGMENTED ANALYSIS . 129

5.5. OTHER ATTACKS. 131

6. PERFORMANCE EVALUATION . 133

6.1. EXPERIMENTAL SETUP . 133

6.2. COMPARISONS . 134
6.2.1. Simulation Attack Model . 134
6.2.2. Random Waypoint Simulation Results . 135
6.2.3. Small World in Motion Simulation Results . 138

7. CONCLUSION. 140

8. BIBLIOGRAPHY . 141
V. Content Distribution in Delay-Tolerant Networks using Social Context 143

1. INTRODUCTION. 144

1.1. RELATED WORK . 145
1.1.1. Bubble Rap . 145
1.1.2. R-P2P . 146
1.1.3. OnMove . 146

2. PROPOSED SCHEMA .. 147

2.1. GROUPING . 147
2.1.1. Forming Groups . 147
2.1.2. Merging Groups . 149
2.1.3. Resignation . 151

2.2. CONTENT REPOSITORY POSITIONING . 151
2.2.1. Request Frequency . 151
2.2.2. Group Request Score . 152
2.2.3. Repository Position Ranking. 153

3. ANALYSIS . 155

3.1. MOBILITY . 155

3.2. TRAFFIC PATTERN. 156

3.3. COMPARISON. 157

3.4. RESULTS . 157

3.5. TEST CASE . 159

xi

4. CONCLUSIONS . 161

5. BIBLIOGRAPHY . 162

SECTION

4. CONCLUSION . 164
VITA . 166

xii

LIST OF ILLUSTRATIONS

Figure Page
Section 2

2.1 Successful Message Delivery. 9
2.2 Message Timeout . 10

Paper I
3.1 Three Stages of Merging Groups . 28
4.1 Impact of α and ψ . 37
4.2 Impact of τ and φ . 39
4.3 Comparison of DSG Routing, Probabilistic Routing, and Epidemic Routing 40
4.4 Comparison of DSG, Probabilistic, and Epidemic Power Consumption 40
4.5 Scalability Experiments. 42

Paper II
3.1 Three Stages of Merging Groups . 52
4.1 Impact of α and φ with ψ = .1 . 62
4.2 Impact of α and φ with ψ = .2 . 62
4.3 Comparison of DSG-N2 Routing, SimBet, and Epidemic Routing. 63

Paper III
3.1 Three stages of merging groups . 75
4.1 Impact of α and ψ . 89
4.2 Impact of τ and φ . 91
4.3 Comparison of DSG, Probabilistic, and Epidemic for Base-Station Routing 92
4.4 Comparison of DSG, Probabilistic, and Epidemic Power Consumption 93
4.5 Scalability Experiments. 94
5.1 Impact of α and φ with ψ = .1 . 97
5.2 Impact of α and φ with ψ = .2 . 97
5.3 Comparison of DSG-N2, Hybrid, Epidemic, and PRoPHET for Node-to-

Node Routing . 98
5.4 Comparison of DSG-N2 Routing, SimBet, and Epidemic Routing. 100
5.5 Comparison of DSG-N2 and PRoPHET to Oracle . 101

Paper IV
4.1 Expected Performance Comparison . 125
5.1 Null / Key Request Security Analysis. 127
5.2 2-Link Chain Process . 128
5.3 Chaining Security Analysis. 129
5.4 2 of 3 Fragment Process . 130
5.5 Fragmented Security Analysis. 130
6.1 Simulation Results, 400 message buffer, 20% of keys . 136

xiii

6.2 Results of Varying Fragment Count . 137
6.3 Results of Varying Link Count . 138
6.4 Results of SWiM Experiments . 139

Paper V

3.1 Sample Network Layout . 157
3.2 Request Performance . 158
3.3 Repository Maintenance . 159

xiv

LIST OF ALGORITHMS

Algorithm Page
Paper I

1 Merging Groups . 30
2 Dynamic Groups . 31
3 Group Updates . 31
4 Calculating Individual Probability . 33
5 Calculating Group Probability . 33
6 Routing Algorithm . 34

Paper II
7 Merging Groups . 53
8 Dynamic Groups . 54
9 Group Updates . 55
10 Calculating Individual Probability . 57
11 Calculating Group Probability . 58
12 Routing Algorithm . 59

Paper III
13 Merging Groups . 76
14 Dynamic Groups . 77
15 Group Updates . 78
16 Performance Based Probability . 81
17 Contact Based Probability . 83
18 Calculating Group Probability . 84
19 Routing Algorithm . 85
20 Hybrid Algorithm . 86

Paper IV
21 Chained Encryption . 115
22 Fragment Encryption . 116

Paper V

23 Forming New Groups . 148
24 Merging Groups . 150
25 Resigning from a Group . 151

xv

LIST OF TABLES

Table Page
Paper I

4.1 Variable Reference Chart . 35

Paper II
4.1 Variable Reference Chart . 60

Paper III
2.1 Routing Algorithm Comparison . 73
4.1 Variable Reference Chart . 88

Paper IV
4.1 3PE Variable Reference Chart . 119
4.2 Chaining Algorithm Events . 121
6.1 Random Waypoint Simulation Parameters . 134
6.2 SWiM Simulation Parameters . 135

Paper V

2.1 Variable Reference Chart . 154
3.1 The One Control Variables . 155
3.2 SWiM Cambridge Control Variables. 156

1. INTRODUCTION

When routing messages through a Delay Tolerant Network (DTN), efficient routing

techniques utilize environmental information for efficiency and speed. In a social environ-

ment (e.g. human carried devices), nodes follow semi-predictable patterns based on the

social context. It is possible augment message routing in a DTN by based message routes

on this social behavior. Furthermore, security in a DTN is difficult to implement. Without

access to a trusted third party capable of verifying a device or its key data, the trust between

devices is limited to direct contact. While there are methods for verifying identity, ranging

from timing analysis to mundane physical contact [1] [2], these methods only work in direct

contact. Thus, the security information, especially the public key, can only be transmitted

to a device while in direct contact. Even with these limitations, messages can be sent in a

compromised network with high confidentiality.

Consider a global conference of researchers. Several of the researchers have met

before and they tend to form groups that encounter each other frequently. An organizer

gathering data from these users may identify the social groups formed, using the Dynamic

Social Grouping algorithm to efficiently collect such information as participation surveys

or menu selections. Another user with access to similar group information may want to

send a message quickly and efficiently to another researcher at the conference. Rather

than simply hold the message until they come into contact again, he can forward the mes-

sage to a group the recipient is participating in by using the Dynamic Social Grouping -

Node to Node algorithm. If the message is intended to be private, sending the message

through the network is risky. As a new contact, the sender does not have the destination’s

public key, and requesting the key from nearby nodes is hazardous. While he could en-

crypt the message for and trust the proxy to encrypt the message for the final destination,

the proxy then has access to the plaintext of the message. A more secure alternative is

2

to implement Three Point Encryption by sending the message through a series of mid-

points.

The first paper introduced is the basis for Dynamic Social Grouping (DSG), a rout-

ing algorithm originally designed for wildlife data collection. Presented in Section 2.4.2,

this protocol uses information about the social dynamics of the nodes to efficiently route

collected information to a basestation. DSG begins with the assumption that the nodes are

being carried by humans or animals that follow certain social patterns. The nodes consis-

tently encounter members of the groups in which they participate. The nodes first identify

the contact strength with other nodes and form small groups when two devices are strongly

connected. These small groups identify potential group merges, creating larger groups that

accurately reflect the environment. The protocol then uses this group data to identify which

nodes and groups have a high probability of quickly delivering a message to a basestation.

The algorithm was tested using real-world data collected from the IEEE Infocom confer-

ence, in which participants were asked to carry devices for 3 to 4 days to measure their

contact patterns. The contact data was used by a simulation to reveal that using the group

data could deliver messages very close to optimal levels at greatly reduced energy and

bandwidth consumption, compared to Epidemic and Probabilistic routing.

With the previous algorithm demonstrating that using social data could improve the

efficiency of node-to-basestation routing, the next step was to expand on the algorithm

to implement node-to-node routing. The algorithm was modified for inexpensive human

communications over a DTN. The DSG - Node to Node algorithm (DSG-N2) presented in

Section II identifies consistent contacts of a node and expands on the group merge logic.

This paper expands upon the routing algorithm in order to allow users to send messages

directly to other users, rather than to a basestation. This objective requires awareness of

individual nodes’ contact patterns, complicating the routing procedure significantly. To

prevent multicollinearity and provide a better proof of concept, a longer dataset provided

by the MIT Reality Project was used. The simulation results demonstrated that the node-

3

to-node routing problem could also be addressed using social group data with high effi-

ciency.

Having confirmed the advantages of routing using social dynamics, advances on the

routing algorithms were considered. When the social groups are formed and identified,

alternate methods of using that information to route messages effectively were considered.

Previously the Performance Based Probability was used. This based the nodes’ estimated

probability of delivering a message on their performance with previous messages. It is

also possible to base probability on the contact patterns, tracking which nodes come into

contact frequently. This method, called Contact Based Probability, is capable of delivering

messages faster and more reliably, but at a cost of higher message traffic as messages

follow indirect contacts to be delivered. Another method routes the message to the nearest

group containing the destination, then floods the message among the group members. This

method uses replication in parts of the network nearby the destination, as measured by

contact frequency, to ensure rapid message delivery. These modifications to the social

routing algorithms were presented in Section III.

Section IV addresses security in a DTN. Security is made more difficult by limited

resources, intermittent communications, and easily monitored signals. While cryptography

allows secure communications when given a known key, it is difficult for devices in a large-

scale DTN to securely share keys with each other without direct contact. For this reason,

the Three-Point Encryption algorithm was designed to secure messages without direct ac-

cess to the destination’s key. This algorithm is designed to function in a a compromised

network. Messages are routed through a series of proxies. Each proxy partially decrypts

the message, resulting in a message being compromised only if all proxies are compro-

mised. Chaining and Fragmenting are the two applications of Three Point Encryption. The

Chaining algorithm sends the message through the proxies in sequence, resulting in longer

delivery times and higher security. However, the Fragmenting algorithm separates the mes-

sage into distinct sections, sending each fragment of the key in parallel, allowing the final

4

node to decrypt the message only once a certain subset have been received. This results in

a higher delivery ratio - But, if the adversary has compromised enough of the network, the

adversary can read the messages as well, resulting in lower security. Both processes have

trade-offs, but both work to improve security in a difficult environment.

Social context data is applicable to the problem of content distribution, as addressed

in Section V. In a Mobile Ad hoc Network (MANET), nodes can attempt to dynamically

distribute relevant files, such as advertising, media, or news articles. To conserve commu-

nication resources, nodes can be appointed as mobile data repositories, also called throw-

boxes. A node in such an environment can retrieve data from a repository, rather than

the original data source. The optimal selection of nodes to act as repositories can be aug-

mented by identifying the social groups in the environment, based on the supposition that

socially similar nodes will have similar data interests. The Social Content Distribution

(SCD) schema identifies social groups, uses the group data to identify which nodes are

likely to request data items, and uses this information to position the mobile repositories.

5

2. LITERATURE REVIEW

2.1. PRELIMINARIES

The DTN is a networking architecture characterized by long delays in message trans-

missions [3]. These delays may be caused by disconnected networks, high disruption rate,

or low bandwidth between devices. Also called Disruption Tolerant Networks, the Bundle

Protocol is used by grouping a message into a single unit called a bundle. This bundle con-

tains contains all of the information needed to deliver the message to its destination. These

bundles are stored in a device’s message buffer to be transmitted when the device either

comes into contact with the destination or with another node that is more capable of deliv-

ering the message. This store-and-forward method allows a message to make incremental

steps toward successful delivery, coming closer to delivery with each transmission. Differ-

ent routing algorithms use different metrics to determine which devices are more capable

of delivery; in general, each algorithm is designed for a specific environment of devices.

A subset of DTNs are Mobile Ad Hoc Networks (MANETs) (these terms are some-

times used interchangeably). These networks consist of several devices (a portion of which

are mobile) and must organize themselves to deliver messages successfully [4]. The mobil-

ity patterns used by the nodes can vary from random mobility (oceanic probes), scheduled

patterns (e.g bus schedules), bundling together (e.g. highway traffic), or more social pat-

terns (e.g. human carried devices). Routing and content distribution algorithms can func-

tion more efficiently, in terms of time-to-deliver and battery consumption, by utilizing the

mobility patterns the nodes follow.

6

2.2. ROUTING ALGORITHMS

2.2.1. Epidemic Routing. While Epidemic Routing is perhaps the simplest of the

algorithms available, it nonetheless demonstrates both a very high delivery ratio and a low

delay via brute force. Sometimes called Flooding, this algorithm takes advantage of every

encounter, transmitting all messages to all available nodes. Messages are spread through

the network, ‘infecting’ nodes at every opportunity (hence the original title). Provided

messages never expire, they are guaranteed to eventually reach the destination [5].

The procedure begins when both NodeA and NodeB come into contact range. After

establishing a connection, NodeA transmits a list of message identifiers within its buffer to

NodeB. A check is performed in NodeB, creating a list of messages it wants from NodeA.

Afterwards, another check identifies the messages in NodeB’s buffer which are not held by

NodeA. Both lists are transmitted to NodeA, so both nodes are aware of which messages

they need to transmit. After transmitting the messages they transmit acknowledgements

and message hashes to ensure all messages are received successfully.

A variation on Epidemic Routing is adding a hop count attribute to messages. This

attribute indicates the maximum times a particular message will be transmitted, reducing

itself at each stage. A hop count close to the expected distance between the sender and the

receiver nodes can reduce the total energy expended in the network by ensuring messages

are not retransmitted ad infinitum.

Epidemic Routing is generally considered a baseline of comparison for routing algo-

rithms, partly due to ease of implementation and its high delivery ratio. However, imple-

menting this algorithm in a realistic environment has certain difficulties. Sending messages

at every opportunity often results in message collision. When several nodes in the same area

attempt to transmit messages simultaneously the messages are garbled. Both acknowledge-

ment and retransmission fails to resolve this issue. The algorithm also tends to overfill the

message buffer very quickly. This is especially when using low-cost nodes such as those

used by a wireless sensor network. Due to these limitations, the Epidemic algorithm works

7

best in low traffic, low connectivity environments with high powered devices, such as smart

phones.

2.2.2. MaxProp. When Epidemic Routing overflows the buffer, it removes mes-

sages in a last-in-first-off manner. This removal is based on the assumption that messages

which have been in the buffer longer have already been delivered and can therefore be re-

moved without consequence. While generally true, this method ignores information about

a node’s access to the destination or if the message has already been delivered. The Max-

Prop algorithm is a variation on Epidemic Routing which prioritizes messages, affecting

both the order of transmission and buffer removal[6].

A message’s priority is based on both a given node’s likelihood to deliver the message

and the likelihood that other nodes will deliver the message. A given node’s probability is

estimated using incremental averaging. Upon contact, a node’s probability to deliver that

destination is increased by 1. All node probabilities are then normalized to sum to 1. This

method allows nodes to track both recent and current contacts very well. Previous contacts,

however, tend to be overridden regardless of how well they performed historically.

When two nodes encounter each other, they first deliver any messages that are in-

tended for the other node. Nodes then exchange probability data, containing the likelihood

of delivering a message to any given node. The next step is to share delivery acknowledge-

ments; this step allows nodes to share information about which messages have already been

received and can therefore be dropped from the buffer. At this stage, both nodes have all of

the data they need for actual message transmission. Priority is given to any messages which

have not traveled beyond a certain distance from the source node; this behavior forces mes-

sages to be flooded to nearby nodes, ensuring all messages are propagated. Finally, each

node transmits all messages in the order of delivery probability.

These additions to the Epidemic Routing algorithm allow MaxProp to transmit mes-

sages while avoiding some of the redundant transmissions. By prioritizing between mes-

sages for transmissions and buffer removals, the algorithm routes more efficiently than base

8

Epidemic Routing. Overall, however, it has many of the same advantages and disadvan-

tages as Epidemic Routing: high delivery ratio, low delivery time, very high energy con-

sumption, signal noise, and buffer overflows that cripples the network as traffic increases.

2.2.3. AODV. The routing algorithm Ad hoc On-demand Distance Vector (AODV)

is based on obtaining the path a message will follow before transmitting the actual message

[7]. To send a message, the node first floods the network with path requests. Each node

appends its identity to the path request before broadcasting it to other nodes within range.

When the destination node receives the path request, it replies along the same route to the

original source. The source can then use the path to transmit the message. As a result, the

path requests flood the network while the message itself follows the shortest path to the

destination, provided one exists.

This algorithm is primarily used in relatively static, highly connected networks. It

does not need to store messages in a large buffer, allowing it to function using low-powered

devices. Additionally, because the nodes only broadcast when a message is sent, there is no

overhead and little energy is used use unless a message is actively being transmitted. The

algorithm fails to function in an intermittently connected network; if nodes cannot deliver

the message directly to the destination they will not forward the message to a node more

capable of delivery. This is a useful, efficient algorithm, but one with severe limitations.

2.2.4. Probabilistic. As an alternative to sending either messages or path requests

epidemically, the Probabilistic Routing algorithm was designed to forward messages only

to nodes more capable of delivering them to a destination [8]. This algorithm was designed

primarily for highly disruptive networks which cannot afford high message traffic, such

as wireless sensor networks. When a node is carrying a message, its own probability of

delivery slowly decreases. When the node encounters another with a higher probability the

message is transferred, and the sending node increases its probability estimate. For exam-

ple, when NodeA and NodeB encounter each other, both nodes compare their probability of

delivery, σA and σB. If σB is greater, then NodeA will transfer the message and increase σA.

9

The control variable α, between 0 and 1, determines how rapidly the probability estimates

change based on new data. A high α is suitable for more static environments; a lower α

reflects patterns shifting periodically, disregarding previous probability estimates. This is

illustrated in Figure 2.1.

σA = σA ∗α+σB ∗ (1−α) (1)

Base
Station

65%
→

82.5%
60%

50%
→

57.5%
50% 50%

α = 0.5

Figure 2.1. Successful Message Delivery

In addition, to reflect a node’s inability to deliver messages the probability decays

occasionally as a message times out, as shown in Figure 2.2. If a message is contained in a

buffer over a certain period without being forwarded, the node is considered to be unable to

deliver the message, and the probability estimates are reduced to reflect this inability. Note

that a timeout (depending upon implementation) will not actually remove a message from

the buffer, but it will lower the probability of the containing node.

σA = σA ∗α (2)

10

Base
Station

82.5%

→

41%
60%

57.5%
→

65%
50% 50%

α = 0.5

Figure 2.2. Message Timeout

Because the destination node has a probability of 100%, the node probability prop-

agates throughout the network. The nodes within 1 hop of the destination will increase

their probability as they deliver messages. Then the nodes 2 hops away will increase their

probability when they transfer to the 1 hop neighbors, ad infinitum. This process continues

until all nodes have an accurate measurement of their probability to deliver a message.

Although not designed specifically for mobile networks, the Probabilistic algorithm

can function within them if the nodes follow repeated patterns. Because only a single

copy of any given message exists, any node not actively involved in routing a message can

remain idle which lowers energy costs. Because the algorithm has no load distribution the

optimal nodes quickly lose battery life by routing other node’s messages, shortening the

network lifespan. A more significant disadvantage, however, is that the probability only

changes when messages are sent. In a low traffic environment, the probability estimate (σ)

will be wildly inaccurate. Efforts to improve this inaccuracy by sending a series of junk

messages increases network costs considerably.

2.2.5. PRoPHET. A more proactive solution to the routing problem is the Prob-

abilistic Routing Protocol using History of Encounters and Transitivity (PRoPHET)[9].

PRoPHET is similar to Probabilistic Routing in that nodes estimate their probability of de-

11

livering a message and then route messages based on these estimates, but the probability

is based on contact frequency rather than upon previous message performance. Variable

σA,B indicates the probability that NodeA can successfully deliver a message to NodeB.

PRoPHET is based on three methods of adjusting the probability estimates: direct contact,

indirect contact, and decay. Direct contact occurs whenever two nodes come to point to

point contact. The control variable Pinit determines how much the delivery probability σA,B

changes on each contact.

σA,B = σA,B +(1−σA,B)∗Pinit (3)

This method allows nodes to keep track of direct contacts. In addition, PRoPHET

allows nodes to adjust their probability estimates based upon indirect contacts, indicating

that NodeA can successfully deliver a message to NodeB by routing through another node.

This increase, known as either transitive or indirect contact, occurs when NodeA encounters

NodeB. Both nodes increase the chance of delivery for all nodes the other has encountered.

Similar to Pinit , the control variable β determines the rate of increase.

σA,C = σA,C +(1−σA,C)∗σA,B ∗σB,C ∗β (4)

Both direct and indirect contact can raise the probability of delivery. An accurate es-

timate of the delivery chance, however, must reduce itself whenever nodes do not encounter

for long periods. For this reason, a probability decay function performs periodically. The

rate of decay is based on the control variable γ, occuring periodically in every node.

σA,B = σA,B ∗ γ
time (5)

12

These three events occur continuously throughout the network lifetime, working to

make the estimate σA,B an accurate representation of the probability of delivery. When a

node with a message encounters another node, it compares σ. If the encountered node has

a higher chance of delivery, it forwards the message. The PRoPHET routing algorithm

is ideal for disconnected networks following some patterns of contact and adapts well to

changing layouts. PRoPHET has a notable weakness in that it maintains the probabilities

whether there is any traffic or not. While this is a significant energy drain, it also allows

messages to be consistently sent to new nodes.

2.2.6. SimBet. The SimBet routing algorithm [10] is a node-to-node routing algo-

rithm that takes advantage of the social structure of the network. Nodes engage in ‘con-

versations’ when they meet, exchanging information about both data messages and current

neighboring nodes. This information is used to determine ‘betweenness’ and ‘similarity’.

Betweenness is a measure of how often a node lies on a path between otherwise

unconnected nodes. Equation 6 shows the method for calculating the betweenness of nodei,

where g jk(this) is the number of paths from node j to nodek that include nodethis, and g jk

is the total number of paths between node j and nodek.

Betthis =
N

∑
j=1

j−1

∑
k=1

(
g jk(this)

g jk

)
(6)

BetUtilthis =
Betthis

Betthis +Betother
(7)

Similarity is simply the ratio of common neighbors between two nodes. To calculate

similarity between nodex and nodey, identify all nodes which are neighbors to either, as

shown in Equation 8.

Sim(this,dest) = |N(this)
⋂

N(dest)| (8)

SimUtilthis(dest) =
Sim(this,dest)

Sim(this,dest)+Sim(other,dest)
(9)

13

Once both metrics are calculated, the system can route through nodes with higher val-

ues. Both metrics are locally determined; global knowledge of the network is not needed.

The ratio of priority given to either metric is the control variable α and can affect the sys-

tems performance. When two nodes encounter, they determine their relative SimBetUtil

(see eqn. 10), and all messages are forwarded to the node with the higher value.

SimBetUtili = αSimUtili +(1−α)BetUtili,∀i ∈ DT N (10)

A notable disadvantage of SimBet is the quantity of messages the aforementioned

conversations send across the network. The amount of data which must be exchanged is a

significant strain on the node’s limited power supply. Additionally, relationships between

nodes in SimBet are represented as either in-contact or not-in-contact. More specific in-

formation, such as percent of time in contact, would result in a better measure of a node’s

likelihood to forward a message to the destination.

2.3. SECURITY IN DTN

2.3.1. Public Key Encryption. Originally, encryption was performed using a

shared secret (e.q., passwords, large numbers, or book titles) communicated by secure

channels [11]. In order for Alice to communicate securely with Bob, they had to pri-

vately exchange a key. That key was the basis for encryption or decryption of all secure

message traffic. When performing large scale communications, the distribution of these

keys was always a security risk - difficult and dangerous. As mathematics progressed, the

theory of asymmetric encryption was developed. These encryption techniques would allow

a user with a publicly available key to encrypt messages for a destination, but access to that

key could not decrypt the message. Such encryption schemes enabled large scale secure

communications, as any user could securely send a message provided he had access to the

public key.

14

The first public-key encryption algorithm was developed by James Ellis, Clifford

Cocks, and Malcolm Williamson[11]. These cryptographers worked for the Government

Communications Headquarters, a British intelligence agency dedicated to signal intelli-

gence. Due to the secret nature of the organization, they did not disclose their discovery.

This secrecy resulted in Whitfield Diffie and Martin Hellman independently researching

and publishing the ‘first’ public key exchange algorithm: the Diffie-Hellman Key Ex-

change. Later, a series of MIT mathematicians, Ron Rivest, Adi Shamir, and Leonard

Adleman, independently developed a version of Ellis’ work that enabled public keys to be

distributed openly for secure communication[11] [12]. Currently, several public key al-

gorithms are available; the most commonly used are RSA, ElGamal, and Elliptical Curve

Cryptography.

Public key infrastructures are considered secure in wired networks when nodes set-

ting up to communicate securely can exchange keys. A series of trusted servers containing

public keys are available. These servers are used if the destination computer or user is not

immediately available. However, this infrastructure is difficult to implement in DTNs since

messages take longer to deliver. Further, a public key exchange is vulnerable to Main in

the Middle (MitM) attacks. When NodeA sends its public key to NodeB, nothing exists to

stop a malicious node along the way from replacing the key with their own. By controlling

the key nodes use to communicate, the node can access any secure traffic. Techniques to

prevent this are difficult to implement in a DTNs, requiring either precise timing or verifi-

cation by several other nodes. While the public key infrastructure is a powerful tool, there

are difficulties applying it to DTNs.

2.3.2. Threshold Encryption. Generally, encryption algorithms use a single key to

encrypt a message, and a single key to decrypt a message. A class of encryption algorithms,

known as Threshold Encryption, encrypts a message and then generates several decryption

keys [13]. A subset of those keys must be used to decrypt the message.

15

Shamir’s Secret Sharing key is a sample threshold encryption algorithm[14]. To en-

crypt a number m, a k-degree polynomial equation is plotted, where k+ 1 is the number

of keys needed to decrypt the algorithm. For example, when the user wants for 4 keys to

decrypt the message, the algorithm will generate f (x) = a∗ x3 +b∗ x2 + c∗ x+d. Coeffi-

cients a, b, and c, are randomly generated, but d is selected such that f (1) =m. Because the

k-degree curve can be plotted correctly once k+ 1 points are known, points on the curve

(y, f (y)) are treated as the threshold keys. Once an intended recipient has obtained any

k+1 keys he can solve for a, b, c, and d, finally generating f (1), the original message.

This encryption algorithm is very useful in unreliable networks, where keys can be

lost due to either failed routing or message disruption. Because as many keys as desired

can be generated, the algorithm can be scaled to match the reliability of the network. This

feature makes reliable security possible in a DTN, as demonstrated in Section IV.

2.3.3. Onion Routing. A security system currently used in wired networks is

the Onion Router, also known as Tor [15]. The purpose of this system is to privately and

anonymously transmit messages to a destination. Neither the destination nor any moni-

toring nodes are allowed to know both the source and destination of the messages. The

technique uses a series of proxies, public key and symmetric key encryption, and a series

of publicly available servers.

When Alice wants to establish an anonymous connection using a Tor network, she

first reviews the servers that contain a list of computers volunteering to act as proxies.

The servers contains the IP addresses and public keys of the computers. Alice randomly

selects 3 nodes, acquiring both their IPA and their KeyA. The final node, ProxyC, is the exit

relay, which will have unmonitored traffic. Alice then generates a series of symmetric keys

using the Advanced Encryption Standard (AES). AES is a powerful symmetric encryption

algorithm, which the proxies will use to communicate between themselves. Alice then

generates AESA,B, the symmetric key which ProxyA and ProxyB will use to communicate,

for all proxy pairs. With this data, Alice prepares the message to be sent through the

16

network. The message is composed of a series of contact information layers, each of which

contains the address and encryption data of both the previous and the next step in the proxy

chain. Each node, upon receiving the message, will remove its layer of encryption, establish

a secure channel to the previous proxy, and send the remainder of the message to the next

node.

When ProxyA receives the message, it has no difficulty removing the first layer of

encryption. This action reveals the source of the message IPAlice, the next step in the chain

IPB, and the secure keys to be used to send future messages up and down the chain. The

remainder is still encrypted with KeyB and, thus, is sent on. (An important note: ProxyA

cannot access any information about the chain beyond the two nodes it is between - it is all

encrypted.) Later nodes will not have access to the source of the stream; without IPAlice,

they can only guess the source of the connection.

After each proxy has received the AES of the previous and the next proxy,

ProxyC sends an encrypted acknowledgement message back up the chain of proxies -

AESBtoC(ack). At each proxy, the AES encryption layer is removed and replaced with

the next stages. The result is that messages can be sent securely, without any proxy know-

ing both the source and the destination of the chain. The final node, ProxyC, is the link

to the outside world, in the sense that it will make requests on Alice’s behalf to insecure

servers along open channels. Anyone monitoring ProxyC can identify its traffic but cannot

link it to Alice.

Tor networks are secure in the sense that they preserve both the privacy of the source

and the destination nodes. Already implemented in large scale, they are useful in monitored

environments. There is ongoing research into timing attacks on the Tor network, which

work by deliberately delaying Alice’s traffic. If the delays are noticed on the exit node, a

monitor can link the source and destination of traffic. These attacks, however, are difficult

to implement [16].

17

While invaluable for wired communications, an Onion Router network is difficult to

implement in a DTN. Without consistent access to the central server, a node has to generate

its own list of device addresses and public key information, and an adversary can inject false

data into these lists. To address these issues is the purpose of 3PE, detailed in Section IV.

2.3.4. EnPassant. Researchers Vakde et. al. [17] have detailed one solution to

the Tor weaknesses as they apply to the DTNs. The purpose of the EnPassant algorithm

is to disguise the source of a message by both encrypting it and forwarding it through the

network. Each node is arbitrarily assigned to a pawn group, a set of nodes with a shared

public-private key pair. Messages are encrypted with the public keys of these groups, then

forwarded through any member of the selected groups. Unlike Tor, there is no access to

a central server containing information on each device. However, nodes can reasonably

contain a key for each group.

The process begins when the sending node selects which groups to use as prox-

ies. The message is first encrypted and then sent on to a member of the first group -

KeyGroup1(KeyGroup2(KeyGroup3(dest,msg))). The method of selecting a member of the

pawn groups to send the message to was studied. The nodes can select either randomly

for improved security, the nearest member for greater speed, or, if the nodes have enough

information, the member closest to the original path from the source to the destination.

Regardless of how the next member is chosen, a member of Group1 should acquire the

message. This member removes the Group1 layer of encryption and forwards it to the next

group. At the final stage, a member of Group3 will acquire the message, and so has no

information on the original sender. This node removes the final encryption layer, revealing

both the actual message and the destination. It can now forward the message to the actual

message destination.

While this technique has little impact on either the delivery ratio or the speed of mes-

sages, the question remains about how well it addresses Byzantine attacks. These attacks

assume the adversary is capable of controlling a portion of the network, either by taking

18

over machines already in the network or by inserting devices controlled by the adversary.

Because each member of a pawn group acquires access to the private key information of

that group, if the message reaches a compromised node first the adversary can remove that

group’s layer of encryption, and forward it to another compromised member of another

group. Because the first to receive the message has knowledge of the source of the mes-

sage, and the final member is compromised, the adversary has access to both the source

and the destination, violating anonymity. This ignores the possibility that the adversary

will simply share compromised keys, allowing the first node to read the message without

needing to forward anything. Although the algorithm can disguise the path from monitors,

it does little to protect messages from partially compromised networks.

2.4. CONTENT DISTRIBUTION

2.4.1. R-P2P. The R-P2P system is designed to allow mobile repositories to request

data items from other repositories. By maintaining a Distributed Hash Table (DHT), a

repository can identify the location of a particular data item quickly and efficiently. This

allows a node to find the location of a data item by referring to the nearest repository,

improving the time to delivery. One contribution of this article was the introduction of the

throwbox concept, in which a server designates other nodes in the network to store and

distribute data. Distributing content in this manner improves delivery time, and efficient

identification of the nodes to act as throwboxes improves it further.

2.4.2. OnMove. An earlier attempt to improve throwbox selection by using social

context was the OnMove protocol. The system is designed to determine optimal place-

ment with a series of metrics, including social similarity, meet frequency, and betweenness

(among others). By assigning different weights to each metric the protocol can optimize

itself for any environment. While the overview is promising, the complete protocol was

never developed. The concept has been expanded on to introduce the Social Content Dis-

tribution schema.

19

3. BIBLIOGRAPHY

[1] F. Stajano and R. J. Anderson, “The resurrecting duckling: Security issues for ad-
hoc wireless networks,” in Proceedings of the 7th International Workshop on Security
Protocols, (London, UK, UK), pp. 172–194, Springer-Verlag, 2000.

[2] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong, “Talking to strangers: Au-
thentication in ad-hoc wireless networks,” in NDSS, 2002.

[3] K. Fall, “A delay-tolerant network architecture for challenged internets,” in Proceed-
ings of the 2003 conference on Applications, technologies, architectures, and proto-
cols for computer communications, SIGCOMM ’03, (New York, NY, USA), pp. 27–
34, ACM, 2003.

[4] I. Chlamtac, “Mobile ad hoc networking: imperatives and challenges,” Ad Hoc Net-
works, vol. 1, pp. 13–64, July 2003.

[5] A. Vahdat and D. Becker, “Epidemic Routing for Partially-Connected Ad Hoc Net-
works,” tech. rep., Duke University, Apr. 2000.

[6] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “MaxProp: Routing for
vehicle-based disruption-tolerant networks,” in INFOCOM, 2006.

[7] C. Perkins, E. Royer, and S. Das, “RFC 3561 Ad hoc On-Demand Distance Vector
(AODV) Routing,” tech. rep., 2003.

[8] Y. Wang and H. Wu, “Delay/fault-tolerant mobile sensor network (DFT-MSN): A
new paradigm for pervasive information gathering,” IEEE Transactions on Mobile
Computing, vol. 6, no. 9, pp. 1021–1034, 2007.

[9] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in intermittently con-
nected networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 7, pp. 19–20, July
2003.

[10] E. M. Daly and M. Haahr, “Social network analysis for routing in disconnected delay-
tolerant MANETs,” in Proceedings of the 8th ACM international symposium on Mo-
bile ad hoc networking and computing, MobiHoc ’07, (New York, NY, USA), pp. 32–
40, ACM, 2007.

[11] S. Singh, The Code Book: The Evolution of Secrecy from Mary, Queen of Scots, to
Quantum Cryptography. New York, NY, USA: Doubleday, 1st ed., 1999.

[12] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and

20

public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–126, 1978.

[13] I. B. Damgard and M. J. Jurik, “A length-flexible threshold cryptosystem with appli-
cations,” in In proceedings of ACISP’03, LNCS series, vol. 2727, pp. 350–364, 2003.

[14] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,
1979.

[15] P. F. Syverson, M. G. Reed, and D. M. Goldschlag, “Private web browsing,” Journal
of Computer Security, vol. 5, no. 3, pp. 237–248, 1997.

[16] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix networks: At-
tacks and defenses,” in ESORICS, pp. 18–33, 2006.

[17] G. Vakde, R. Bibikar, Z. Le, and M. Wright, “Enpassant: anonymous routing for
disruption-tolerant networks with applications in assistive environments,” Security
and Communication Networks, vol. 4, no. 11, pp. 1243–1256, 2011.

21

PAPER

I. Dynamic Social Grouping Based Routing in a Mobile Ad-Hoc Network

Roy Cabaniss∗, Sanjay Madria∗, George Rush∗,

Abbey Trotta†, and Srinivasa S. Vulli∗

∗ Department of Computer Science,

Missouri University of Science and Technology, Rolla, Missouri 65401

† School of Computing and Engineering,

University of Missouri, Kansas City, Missouri 64110

The patterns of movement used by Mobile Ad-Hoc networks are application specific,

in the sense that networks use nodes which travel in different paths. When these nodes

are used in experiments involving social patterns, such as wildlife tracking, algorithms

which detect and use these patterns can be used to improve routing efficiency. The intent of

this paper is to introduce a routing algorithm which forms a series of social groups which

accurately indicate a node’s regular contact patterns while dynamically shifting to represent

changes to the social environment. With the social groups formed, a probabilistic routing

schema is used to effectively identify which social groups have consistent contact with the

base station, and route accordingly. The algorithm can be implemented dynamically, in the

sense that the nodes initially have no awareness of their environment, and works to reduce

overhead and message traffic while maintaining high delivery ratio.

22

1. INTRODUCTION

Mobile Ad-hoc networks are a collection of computing devices connected through

wireless communications, such as Bluetooth or wireless LAN. They are characterized by

the mobility and dynamic nature of the devices, referred to as nodes. This mobility makes

conventional routing algorithms ineffective or inapplicable, and to accommodate these en-

vironments new routing methods have been developed. These routing methods are gen-

erally examples of Delay Tolerant Routing, which holds copies of transmitted messages

to transmit them to appropriate nodes, as opposed to traditional routing which broadcasts

them immediately.

As a general rule, routing algorithms are more effective when they can rely on more

information regarding the mobility patterns of nodes. Conventional probabilistic routing

schema assumes consistent avenues of communication - nodes which interact with a set

group of nodes in the past will do so again in the future [1]. Similarly, social routing

assumes that nodes that are assigned to the same social network (classroom, project team)

will regularly interact with members of that social group. To take advantage of the partial

applicability of both social and probabilistic routing, a grouping method is studied which

will form social groups based on contact patterns. With these groups identified, consistent

routes to basestations are identified based on the delivery history of a group or node. We

compare this algorithm, called Dynamic Social Grouping (DSG), with two well known

algorithms referred as Epidemic routing [2] and Probabilistic routing [1], and results show

that DSG performs better than both routing algorithms in terms of message delivery ratio

and the time to deliver a message.

The objective of this algorithm is to reliably deliver messages from a group of sen-

sor nodes to basestation nodes, as presented in Probabilistic Routing, using as few com-

munications as possible. The basestations are immobile, and thus can use more reliable

23

communications to transmit the data to the end user, but the sensor nodes are attached to

mobile social entities. This algorithm is designed to identify social groups without rely-

ing on outside information, based only on its contact patterns with other nodes. A given

node may belong to several social groups and will attempt to merge together groups who

share common members. Once the social groups are identified, routing occurs through

these groups based on which group has more reliable access to the basestations, as de-

termined by the reliability of previously delivered messages. Simulations with real-world

data comparing DSG to Probabilistic and Epidemic routing algorithms show that the Dy-

namic Social Grouping algorithm is superior in terms of delivery ratio and message costs to

the Probabilistic scheme in a social environment, and much less expensive than Epidemic

routing while maintaining high delivery ratio and low transit time (refer to Section 4 for

details). Applications of this technique include wildlife tracking or tracking human social

behaviors, although it can improve any environment in which groups of regular contacts

are formed.

24

2. BACKGROUND

Research in the area of Delay Tolerant Networks (DTN) has been receiving consid-

erable attention in the last few years owing to their widespread occurrence in a variety

of applications. Routing and data aggregation are of particular interest as they affect the

performance of the network as a whole and also affect longevity of the sensor nodes con-

siderably. A survey of routing techniques for DTNs is presented in [3].

2.1. EPIDEMIC ROUTING

Epidemic routing [2] was designed for partially connected networks, and its goal is

to maximize the message delivery ratio while minimizing the time necessary to deliver

a message. The main strategy is to pass messages along to each node encountered, in

hopes of making a connection with parts of the network with low connectivity. In wireless

sensor networks, this often results in excessive network traffic which reduces the life of the

network. Also, minimizing time to message delivery is not as important in delay tolerant

networks. That said that the delivery ratio of epidemic routing is considered the ideal

delivery ratio possible when ignoring network life or node overflow.

2.2. PROBABILISTIC ROUTING

Introduced by Yu Wang, the Probabilistic Routing Schema [1] is based on individual

nodes having a set probability of successfully delivering a message to a base station. This

probability is based on the set of neighbors which the node regularly interacts with, and as

such it is based on regular, if not social, patterns of movement. Nodes individually begin

with a set delivery probability and transfer the messages they are carrying to neighbors with

higher delivery probability, adjusting their own probability upward as they do so. If they

are carrying a message when it times out their probability is reduced to reflect the node’s

25

inability to transfer. This algorithm shows a marked improvement in terms of message

transmission rate while maintaining a high delivery probability, but does not take advantage

of any knowledge other than past contacts.

2.3. BUBBLE RAP

The Bubble-Rap grouping method [4] allocates nodes into social groups based on

direct and indirect contacts. They distribute using a method called k−cliques, in which all

fully connected groups of k members are considered a distinct social group and are then

merged with all other k−cliques which can be reached through k−1 nodes. This provides

a very accurate representation of the social groups formed by a set of nodes. However,

it relies on global knowledge of the nodes’ contacts, and it must have them before the

algorithm can group them. In this sense, k-grouping is neither dynamic nor distributed,

which limits it’s applicability to a MANET.

2.4. SOCIALCAST

Costa et al. described an application using social dynamics for a publish/subscribe

schemata across a wireless sensor network. They detail a SocialCast model [5], in which

nodes are assigned a Utility Value for each interest in which they participate which indicates

their routing utility for that group. By separating the routing utility from group participa-

tion, the authors improve the lifespan and routing efficiency of the wireless nodes. The

given algorithm is designed for use across a publish/subscribe model, as well as a wireless

network (as opposed to a sensor network), but can still serve as a basis for further research,

especially regarding the social dynamics described, such as the Caveman Model.

2.5. SIMBET

The SimBet routing algorithm [6] has a similar routing structure to DSG in that it

takes advantage of Social Grouping and contact patterns to predict paths to node destina-

26

tions, improving delivery ratio and time. The algorithm calculates the Betweenness rating

of a node, which is a measurement of the number of message routes which contain the

node. By using this, as well as the Centrality of the node, the algorithm can route mes-

sages through to destination nodes with remarkable efficiency. A notable deficiency of this

algorithm is it’s reliance on near-complete knowledge of neighboring nodes, increasing

traffic and memory use. It can, however, deliver messages from node to node, whereas the

Dynamic Social Grouping algorithm is strictly node to base station.

27

3. PROPOSED ALGORITHM

The algorithm addresses two distinct subproblems. First, given an arbitrary collection

of nodes, the network must identify cohesive social patterns, and identify them as groups,

at the same time distributing this information throughout the network. This network orga-

nization can change to reflect changes to the network or to the social patterns of the nodes.

Second, once the networks have been identified, a route must be identified to deliver mes-

sages to a base station. Delivery must minimize the number of message repetitions while

ensuring a high percentage of messages delivered to the destination.

3.1. GROUPING

A major advantage this algorithm has over conventional mobile ad-hoc routing meth-

ods is the use of social groups to improve communication throughput. The task of identify-

ing such groups, however, requires knowledge of the nodes which is not present at startup.

3.1.1. Contact Strength. The first task in identifying a social group is to calculate

a metric for the contact frequency two nodes have with one another. The symbol λi, j is

used to represent the contact strength between two nodes. This is measured as a function

of the time from the previous contact, where the symbol φ is used to determine how much

the λ changes based on new data. Initially, λi, j will be 0 between all nodes, but when nodes

contact one another, it is recalculated as shown in Eqn 11.

λA,B = (1−φ)λA,B +
φ

timecurrent− timeprev
(11)

3.1.2. Forming New Groups. When the λi, j exceeds a certain threshold ψ, the

nodes can identify as being members of the same group. Initially, all groups will have

two members. The node with the higher delivery probability (as defined in section 3.2.1)

be designated the group clusterhead - this node has the responsibility of maintaining the

28

group membership list and approving any changes to the group. The group will also have

its probability set to the average of the two founding members (this will be expanded upon

in section 3.2).

(a) Joint members of the Dot
Group and Stripe Group send a
Suggestion to the Stripe Cluster-
head

(b) Stripe Clusterhead confirms
the Group Merge and sends an
Invitation to the Dot Cluster-
head

(c) The Dot Clusterhead con-
firms again and adds all Stripe
Members to the Dot Group

Figure 3.1. Three Stages of Merging Groups

3.1.3. Merging. Having formed two-node groups, the next step is to determine

which of these groups can be merged with each other to form larger, more applicable social

groups. Groups are merged when the similarity between the groups exceeds a threshold

value τ. Similarity is defined as the number of common members divided by the total num-

ber of members in both groups. Each node checks through its list of groups periodically to

see if the groups should be merged. If it finds two groups that qualify for a merger, it sends a

suggestion message to the clusterhead of the smaller group, as shown in Figure 3.1(a). This

message is distributed epidemically through that group until it arrives at the clusterhead,

which contains the up-to-date member list of the group. Once the clusterhead receives the

suggestion it compares it’s member list with the member list for the larger group (contained

within the suggestion message), confirms that the groups should be merged, and sends an

invitation message to the clusterhead of the larger group (Figure 3.1(b)). The larger group’s

clusterhead repeats the confirmation. Once confirmed, the clusterhead updates the member

29

list to include the new members from the smaller group (Figure 3.1(c)). A Kill message is

then sent to remove the smaller group. This process is detailed in Algorithm 1.

3.1.4. Dynamic Grouping. Due to changing social patterns, group membership

needs to allow nodes to remove themselves from a group’s membership, as shown in Al-

gorithm 2. To reduce communication overhead and group fragmentation, however, the

clusterhead has to know about the resignation immediately. When a node contacts the clus-

terhead it will calculate it’s GroupλA,Y , which is the average λA,B between the node and

all members of the group, to determine whether it should resign from the group. If this

average λ is below the threshold ψ, it sends a resignation to the clusterhead and removes

the group data. This method has the advantage of low overhead and communication, but

nodes cannot leave the group until they contact the clusterhead, which can result in nodes

maintaining group data for groups they don’t participate in. Experiments which allowed

nodes to periodically review their groups and resign through a message sent to any group

member resulted in badly fragmented group data.

3.1.5. Group Versions. A constant issue when creating dynamic groups is reflect-

ing changes to the group data to all members of that group. Data fragmentation occurs

whenever two nodes, members of the same Social Group, have different data regarding

that group’s membership. To prevent this issue, all changes are controlled by the group’s

Clusterhead. This node, arbitrarily chosen, holds the group’s master member list.

As movement patterns change or are revealed, there will be changes to a group’s member-

ship. The Clusterhead will increment the version value of the group as changes are made,

including merges and nodes resigning from the group. Whenever two members of the same

group meet, they compare the version number of their local copy of the group. The higher

version number is the one whose information regarding the group came from the cluster-

head more recently. This information is copied over to the less recent node, along with the

version number. This process is detailed in Algorithm 3.

30

Algorithm 1 Merging Groups
Notation
GroupY , GroupZ - Any social groups in MANET
NodeA - Member of both GroupY and GroupZ
NodeB - Clusterhead of GroupY , ClusterheadY
NodeC - Clusterhead of GroupZ , ClusterheadZ
τ - Threshold for Merging a Group

Trigger - Periodically in NodeA
for all GroupY ,GroupZ of which NodeA is a member do

if |GroupY
⋂

GroupZ |
|GroupY

⋃
GroupZ | > τ then

if |GroupY |> |GroupZ| then
Send SUGGEST Message to all members of GroupZ

else
Send SUGGEST Message to all members of GroupY

end ifcannot determine size of graphic no boundingbox
end if

end for

Trigger - NodeA contacts NodeB
In NodeA...
for all GroupY which contain both NodeA and NodeB do

if NodeA has Control Messages for GroupY then
NodeA sends Control Messages to NodeB

end if
end for

Nodes pass Control Messages epidemically to all Group Members

Trigger - NodeB receives SUGGEST message
if NodeB is ClusterheadY then

if |GroupY
⋂

GroupZ |
|GroupY

⋃
GroupZ | > τ then

Send INVITE Message to all members of GroupZ
end if

end if

The Clusterhead confirms the suggestion, and sends an Invite to the other group

Trigger - NodeC receives INVITE message
if NodeC is ClusterheadZ then

if |GroupY
⋂

GroupZ |
|GroupY

⋃
GroupZ | > τ then

GroupZ = GroupZ
⋃

GroupY
GroupY =∅
Send KILL message to GroupY

end if
end if

If both Group Clusterheads approve, the smaller group is added to the larger, and then
removed.

31

Algorithm 2 Dynamic Groups
Notation
NodeA - Member of GroupY
NodeB - Clusterhead of GroupY , ClusterheadY
NodeListY - All nodes in GroupY
GroupλA,Y - Contact Strength between NodeA and NodeListY
ψ - Threshold for Forming a Group

Trigger - NodeA contacts NodeB
In NodeA
if NodeB is ClusterheadY then

GroupλY = Average(λA,Y)
if GroupλY < ψ then

Send RESIGN to NodeB
Remove GroupY from NodeB

end if
end if

Trigger - NodeB receives RESIGN from NodeA
NodeListY = NodeListY −NodeA

Algorithm 3 Group Updates
Notation
VersionA,Y - Version Number of GroupY kept by NodeA

Trigger - NodeA contacts NodeB
In NodeA
for all GroupY which contains both NodeA and NodeB do

Send VersionA,Y to NodeB
Receive VersionB,Y from NodeB
if VersionA,Y >VersionB,Y then

Send GroupY to NodeB
else if VersionA,Y >VersionB,Y then

Receive GroupY from NodeB
VersionA,Y =VersionB,Y

end if
end for

32

3.2. ROUTING

Having organized the nodes into social groups, the algorithm can now use this infor-

mation to route data to the base station. The Probabilistic method assigns a metric to each

node to depict the node’s chance of successfully delivering the message, and continually

routes messages to higher performing nodes until the message reaches a destination. To

improve on this the DSG identifies a similar metric to measure a group’s ability to deliver

a message to the base station. Both methods are described below.

3.2.1. Individual Probability. Nodes are initially assigned a default probability

σ, while base stations are assigned a probability of 100%. When nodes encounter one

another, they compare probabilities to determine routing (more on this in section 3.2.3).

The member with the lower probability will forward all its messages to the other, and then

it will update its σ to reflect the ability of the node to deliver either directly or indirectly

to a base station. The result is that nodes with immediate access to a base station achieve

a higher probability, and the probability cascades outwards through node contacts. The

cascade rate is determined by a control variable α, which is similar to φ in that is controls

how quickly the probability changes based on new data. For details, review Algorithm 4.

In addition to message transmission, the Individual Probability σ can also update to

reflect inability to deliver a message. Messages log the time they were originally sent, and

can use this to determine if they have been in the system too long. When these messages

expire, all nodes which contain the message have their individual probability reduced to

reflect their inability to reach a sink.

3.2.2. Group Probability. Each node calculates group probability, depicted as β,

independently, based on the contact patterns of that specific node. This means that each

node will have different values for the probability of the same group, but these values are

based on the subset of the group which each node contacts. Nodes which exist in a common

group and are not encountered are estimated using the current group probability. The exact

method, described also in Algorithm 5, begins when NodeA contacts NodeB and both are

33

Algorithm 4 Calculating Individual Probability
Notation
NodeA, NodeB - Nodes in MANET
σA - Individual Probability for NodeA
σB - Individual Probability for NodeB
messagei - Message in MANET
timeSenti - Time messagei was sent
timeOut - Parameter determining max duration of messages
α - Control Parameter determining Probability decay ratio

Trigger - NodeA transmits messagei to NodeB
σA = (1−α)σA +ασB

Trigger - Periodical maintenance in NodeA
for all messagei in NodeA do

if timecurrent− timeSenti > TimeOut then
Remove messagei
σA = (1−α)σA

end if
end for

in GroupY . Since the σ for all other nodes in GroupY are unknown, they are assumed to

be the current βY . It then calculates the average probability of all members of the group,

based on previous βY , σA, and σB, as detailed in Algorithm 5.

Algorithm 5 Calculating Group Probability
Definition
βY - Group Probability for GroupY

Trigger - NodeA contacts NodeB
NodeA sends σA to NodeB
NodeA receives σB from NodeB
for all GroupY which contain NodeB and NodeA do

βY = σA+σB+βY×(|GroupY |−2)
|GroupY |

end for

34

3.2.3. Using Probabilities to Route. When two nodes contact each other, they

independently determine their γ value. This is the maximum probability of all the groups

they participate with and their individual probability. The node with the higher value is

assumed to either have more consistent contact with the base station or to be a member of a

group which has consistent contact. In either event, the node with the lower value transfers

all messages to the node with the higher probability, then updates its individual probability

based on successful delivery of a message. This algorithm is detailed in Algorithm 6.

Previously, the individual probability was adjusted by the individual probability, but

as the system gains more information it can update based on the groups it contacts, rather

than the individual nodes. For this reason, the individual probability (Algorithm 4) is ad-

justed to use the γB of the destination node, rather than the individual probability σB.

Algorithm 6 Routing Algorithm
Notation
βA - List of all Group Probabilities in NodeA
γA - Max Group / Individual Probability of NodeA

Trigger - NodeA contacts NodeB
In NodeA
γA = max(βA,σA)
Transmit γ to NodeB
Receive γB from NodeB
if γB > γA then

Transmit messages to NodeB
σA = (1−α)σa +αγB

else
Receive messages from NodeB

end if

35

4. ANALYSIS

4.1. EXPERIMENTAL SETUP AND EVALUATION

To evaluate this algorithm and the impact of control variables a simulation was de-

signed and implemented using MATLAB. Once the routing efficiency was determined, a

power consumption comparison was performed in NesC, using a TOSSIM simulator mod-

ified with PowerTossim Z. For comparison, both simulations also ran Epidemic Routing

and base Probabilistic Routing schema. Epidemic Routing is considered to be the ideal

in terms of message time and delivery ratio, and is therefore used for comparison, while

Probabilistic Routing is an improvement over Epidemic in terms of resources used. Other

comparable algorithms were reviewed, but either use previous knowledge of the environ-

ment (such as Bubble Rap) or are targeted to solve different communication issues (Simbet

performing node-to-node communication, while SocialCast performing publish/subscribe

broadcasts). For these reasons, the Probabilistic and Epidemic schemas were considered

as comparable algorithms. The control variables tested, along with ideal values identified,

can be found in Table 4.1.

Table 4.1. Variable Reference Chart
Control Variables Range Tested Ideal Value

α Probability Decay Rate 0.05 - 0.5 0.075
ψ Group Formation Threshold 0.0001 - 0.005 0.004
τ Group Merge Threshold 0.1 - 0.33 0.3
φ Contact Decay Ratio 0.1 - 0.5 0.3
Ideal values tested by experimentation

Variables
λ Contact Strength between nodes
σ Node’s Probability of Delivery
β Group’s Probability of Delivery
γ Maximum probability of Delivery

36

4.2. SIMULATION DATA SOURCE

To accurately implement this algorithm, the node contacts must follow social pat-

terns. Potential sources for this are either real-life tracking data or the results from a social

prediction algorithm, such as the Caveman Model. For this reason the simulation used

data obtained from an experiment conducted by the University of Cambridge at the 2005

Grand Hyatt Miami IEEE Infocom conference. Participants were asked to carry iMotes

with them during the conference for 3 to 4 days to capture data on social interactions [7].

Although the experiment did not include base stations capable of collecting information,

they did include static immobile nodes. For simulation purposes, these units were treated

as data sinks.

4.3. IMPACT OF α AND ψ

Based on the dataset used, the α setting is directly influenced by the dynamic nature

of the contact patterns. In either long range simulations or simulations in which nodes

consistently follow similar contact patterns, a lower value for α can result in more effective

simulations. In contrast, a higher α results in the algorithm placing more weight in recent

data. If the probability is more dynamic, it can more rapidly respond to changes in the

layout.

The ψ setting influences the ease with which the nodes form social groups. In an

environment in which nodes only encounter other nodes they are in a social group of, a

lower value can result in the network being rapidly organized, whereas a higher ψ results

in groups forming slowly, and only with regular contacts.

The results (as shown in Figure 4.1) indicate a peak Message Delivery Ratio as α de-

creases and ψ increases. The lower α seems to be due to the large amount of ‘garbage’ data

- a node which successfully delivers to the basestation is quite likely just passing through,

and will not likely be a good long-range contact. A lower α allows the algorithm to ignore

37

these incidental contacts and concentrate on nodes which regularly successfully deliver.

Similarly, the ψ peak value is based on ignoring the large number of casual contacts. Be-

cause this dataset occurs at a conference, there are several regular contacts between nodes

which are not members of the same group. To ignore this noise, a higher ψ setting is

optimal.

 0.1 0.2 0.3 0.4 0.5 0.0001
.0002

0.0003
0.0004

0.0005

 0.2

 0.3

 0.4

Impact of α and ψ on Message Delivery Ratio

M
es

sa
ge

 D
el

iv
er

y
R

at
io

α
ψ

(a) Message Delivery Ratio

 0.1 0.2 0.3 0.4 0.5 0.0001
.0002

0.0003
0.0004

0.0005
 4000
 4500
 5000
 5500
 6000
 6500

Impact of α and ψ on Message Delivery Time

M
es

sa
ge

 D
el

iv
er

y
T

im
e

(s
ec

)

α
ψ

(b) Message Delivery Time

 0.1 0.2 0.3 0.4 0.5 0.0001
.0002

0.0003
0.0004

0.0005
 10000
 20000
 30000
 40000
 50000
 60000

Impact of α and ψ on Admin Message Traffic

A
dm

in
 M

es
sa

ge
s

S
en

t

α
ψ

(c) Admin Message Traffic

Figure 4.1. Impact of α and ψ

4.4. IMPACT OF τ AND φ

The control variable τ represents the level of similarity necessary for groups to be

merged. A higher value for τ results in fewer groups being merged and keeps the group

38

size small. This does not influence the number of groups being created; a higher value of

τ will result in several smaller groups. Due to the ratio needed to ensure any group merges

occur, the maximum value for τ is 1
3 . If it is higher, the initial 2-member groups cannot

have enough common members to merge.

The contact deterioration φ determines how quickly the contact strength changes over

time. A higher value for φ results in the contact strength changing more rapidly. Higher

values would be used in more dynamic environment, so the nodes’ contact strength are

more influenced by recent events than historical data. This value is closely linked to the ψ

value given earlier; more rapidly changing contact strength would result in needing a lower

value of ψ to successfully form groups.

The results, shown in Figure 4.2, indicate that the algorithm functions best when

the τ value is nearly, but not quite, at the maximum value. A τ of 0.3 allows groups to

merge regularly, reflecting larger groups while still ignoring the casual group affiliations.

Similarly, the φ results show peak functionality at the value 0.3, although this may be due

to the ψ value already inserted. These metrics show the largest increase of delivery ratio,

but also increase the average message delivery time (Figure 4.2(b)). That is due to this time

only reflecting delivered messages – by increasing delivered messages, the system includes

several messages which were ignored.

4.5. COMPARISON OF ROUTING ALGORITHMS

A review of the results (Figure 4.3) shows that the DSG Routing Scheme performs

better than the Probabilistic Scheme in all metrics, and is comparable to the Epidemic in

terms of both the delivery ratio and delivery time while having considerably less message

traffic. Some of this is due to the applicability of the dataset – the social environment pro-

vided at the conference provided an area ideal for forming short-term dynamic groups. In

contrast, the Probabilistic Schema had difficulty adjusting to the social groups that formed,

and took too long to cascade the probabilities that would result from successful delivery.

39

0.1
.2

0.30.33
 0.1

 0.2
 0.3

 0.4
 0.5

 0.44
 0.45
 0.46
 0.47
 0.48

Impact of τ and φ on Message Delivery Ratio

M
es

sa
ge

 D
el

iv
er

y
R

at
io

τ
φ

(a) Message Delivery Ratio

0.1
.2

0.30.33
 0.1

 0.2
 0.3

 0.4
 0.5

 4000

 6000

Impact of τ and φ on Message Delivery Time

A
ve

ra
ge

 M
es

sa
ge

 D
el

ay
 (

se
c)

τ
φ

(b) Message Delivery Time

0.1
.2

0.30.33
 0.1

 0.2
 0.3

 0.4
 0.5

 0
 20000
 40000
 60000
 80000

Impact of τ and φ on Admin Message Traffic

A
dm

in
 M

es
sa

ge
s

τ
φ

(c) Admin Message Traffic

Figure 4.2. Impact of τ and φ

The results indicate that DSG is comparable to the ideal routing, with considerably less

cost.

A cost comparison of the algorithms was performed in the TOSSIM simulation, us-

ing the PowerTOSSIMZ [8] model, as shown in Figure 4.4. The baseline shown in the

graph shows the simulation’s power comsumption when no routing occurs, to be used as a

comparison point. We use this to find that the Dynamic Social Grouping’s cost is 16%

of Epidemic’s cost, and 18% of the base Probabilistic algorithm’s cost. This includes

the overhead from group management such as group merge invitations, suggestions, and

membership updates, but not standard maintenance such as neighbor discovery or message

generation.

40

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

DSG Probabilistic Epidemic

D
el

iv
er

y
R

at
io

 (
%

)

Routing Method

Comparison of Message Delivery Ratio

(a) Message Delivery Ratio

 4550

 4600

 4650

 4700

 4750

 4800

 4850

 4900

Social Probabilistic Epidemic

M
es

sa
ge

 D
el

iv
er

y
T

im
e

(s
ec

)

Routing Method

Comparison of Message Delivery Time

(b) Message Delivery Time

 580000

 600000

 620000

 640000

 660000

 680000

 700000

 720000

DSG Probabilistic Epidemic

M
es

sa
ge

s
S

en
t

Routing Method

Comparison of Total Message Traffic

(c) Total Message Traffic

Figure 4.3. Comparison of DSG Routing, Probabilistic Routing, and Epidemic Routing

Figure 4.4. Comparison of DSG, Probabilistic, and Epidemic Power Consumption

41

When considering a routing algorithm for large-scale deployment, there is always

concern by how well the algorithm scales to a higher number of nodes. For this reason,

scalability experiments were performed to find the performance of the DSG algorithm with

differing number of nodes. Because the experiment was performed using a real-world

dataset, it is impossible to add additional nodes to the experiment, but relatively simple

to randomly remove nodes from consideration. The results show that the ratios from the

three algorithms tend to increase as the number of nodes increases, improving connectivity,

but the DSG algorithm doesn’t show a marked improvement until the full 40 nodes are in

use (Figure 4.5(a)). This is due the same control variables being used through the entire

experiment set, from 5 to 40 nodes. As indicated earlier, the algorithm is sensitive to the

control variables used during execution (detailed in Table 4.1) - by using these variables

despite the different environments, performance fluctuates wildly. Nonetheless, the costs

of the system remains consistently lower than the alternatives (Figure 4.5(b)). This is due

to the nature of the administration traffic. As the number of nodes decreases, reducing

node connectivity, the administration overhead is reduced. Fewer groups are being formed,

merged, or updated. As the connectivity increases, it improves routing performance by

enough to offset the overhead.

42

(a) Comparison of Delivery Probability versus
Node Count

(b) Comparison of Total Message Traffic versus
Node Count

Figure 4.5. Scalability Experiments

43

5. CONCLUSIONS

The Dynamic Social Grouping (DSG) algorithm has been shown to provide a signif-

icant increase in efficiency over probabilistic routing and epidemic routing. While main-

taining a lower overhead than either epidemic or probabilistic routing, DSG has managed

to achieve as high a message delivery ratio and as low a delivery time as can be expected.

This will lead to better data aggregation and longer battery life, both of which are primary

goals in modern wireless sensor networks.

There remains further research to consider the implications of alternative merge

methods. The current method using a simple ratio depicting commonality may not be

optimal, and experiments in alternative methods may provide further improvement. It

may also be improved by introducing a load-balancing method to equalize the drain

on commonly used nodes, further improving the network lifespan. Load balancing

techniques can also change the clusterhead, to spread energy drain among the group. A

final improvement to consider is the expansion of this algorithm to include point-to-point

communication, expanding its impact to include a wider range of applications.

44

6. BIBLIOGRAPHY

[1] Y. Wang and H. Wu, “Delay/fault-tolerant mobile sensor network (dft-msn): A new
paradigm for pervasive information gathering,” IEEE Transactions on Mobile Comput-
ing, vol. 6, no. 9, pp. 1021–1034, 2007.

[2] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,”
tech. rep., Duke University, 2000.

[3] Z. Feng and K.-W. Chin, “A survey of delay tolerant networks routing protocols,”
CoRR, vol. abs/1210.0965, 2012.

[4] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forwarding in delay-
tolerant networks,” Mobile Computing, IEEE Transactions on, vol. 10, pp. 1576 –1589,
nov. 2011.

[5] P. Costa, C. Mascolo, M. Musolesi, and G. Picco, “Socially-aware routing for publish-
subscribe in delay-tolerant mobile ad hoc networks,” Selected Areas in Communica-
tions, IEEE Journal on, vol. 26, pp. 748–760, June 2008.

[6] E. M. Daly and M. Haahr, “Social network analysis for routing in disconnected delay-
tolerant MANETs,” in Proceedings of the 8th ACM international symposium on Mobile
ad hoc networking and computing, MobiHoc ’07, (New York, NY, USA), pp. 32–40,
ACM, 2007.

[7] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD data set cambridge/haggle (v. 2009-05-29).” Downloaded from
http://crawdad.cs.dartmouth.edu/cambridge/haggle, May 2009.

[8] E. Perla, A. O. Catháin, R. S. Carbajo, M. Huggard, and C. Mc Goldrick, “Powertossim
z: realistic energy modelling for wireless sensor network environments,” in PM2HW2N
’08: Proceedings of the 3nd ACM workshop on Performance monitoring and measure-
ment of heterogeneous wireless and wired networks, (New York, NY, USA), pp. 35–42,
ACM, 2008.

45

II. DSG-N2: A Group-Based Social Routing Algorithm

Roy Cabaniss∗, James M. Bridges∗, Andrew Wilson†, and Sanjay Madria∗

∗ Department of Computer Science,

Missouri University of Science and Technology, Rolla, Missouri 65401

†Department of Computer Science,

Truman State University, Kirksville, Missouri 63501

Devices in a mobile ad-hoc environment can follow different movement patterns

based on the application environment. Some environments, such as mass transit systems,

follow regular and predictable patterns. Others, such as an aerial monitoring network, gen-

erally follow random paths. Optimal routing schemes tend to take advantage of informa-

tion regarding movement patterns available in social interaction domains. In a social envi-

ronment like wildlife tracking or monitoring socio-human interactions, the devices and/or

users will follow regular contact habits, tending to encounter social groups in which they

participate. In this paper, by dynamically identifying these groups, the patterns are used to

speed routing through a social environment. When social groups are formed, a probability

based scheme is used to route messages to devices efficiently. This algorithm can be imple-

mented ad null, meaning the devices have no information of their environment, and works

to reduce overhead, message traffic, and delivery time while maintaining a high delivery

ratio.

46

1. INTRODUCTION

Mobile Ad-hoc Networks (MANETs) are a collection of computing devices con-

nected through wireless communications, such as Bluetooth or wireless LAN. Each node

in a MANET can move freely throughout the network. In environments with unpredictable

and changing motions, such as wildlife sensors, traditional routing algorithms are ineffec-

tive or inapplicable. In order to address this issue new routing methods have been devel-

oped. These new routing methods are often examples of Delay Tolerant Routing, in which

nodes are able to retain copies of messages and forward them at a more opportune time.

As a rule, routing algorithms are more effective when they rely on information regard-

ing the contact patterns of nodes. Conventional probability based routing scheme assumes

consistent avenues of communication; nodes which interacted with a set group of nodes

in the past will do so again in the future [1]. Similarly, social routing assumes that nodes

assigned to the same social network (classroom, project team, department faculty, etc.) will

regularly interact with members of that social group. To take advantage of the partial ap-

plicability of both social and probability based routing, our grouping method is designed

form social groups based on contact patterns. Once these groups are identified, consistent

routes to nodes are recognized based on the delivery history of a group or node. The new

algorithm, called Dynamic Social Grouping: Node-to-Node (DSG-N2), was based on a

previous algorithm [2] and expanded to include node-to-node capability and improve the

grouping and routing efficiency. The new algorithm was them compared to two well known

algorithms referred to as Epidemic routing [3] and SimBet routing [4]. Results show that

DSG-N2 performs better than both routing algorithms in terms of total message traffic and

delivery time.

The purpose of DSG-N2 is to reliably deliver messages from a node to another us-

ing as few communications as possible. In this network scenario every node is capable

47

of movement, due to the host being mobile, and contact between each node is not always

reliable or consistent. This algorithm is designed to identify social groups based solely

on contact patterns between nodes without relying on full knowledge of the network. A

node that is part of multiple identified social groups can suggest that two groups be merged

based on common members and delay between groups. Routing occurs through groups or

nodes that have a high probability of delivering the message, based on previous message

deliveries, to the intended destination node. Simulations with real-world data comparing

DSG-N2 to Epidemic and SimBet routing algorithms show that our Dynamic Social Group-

ing algorithm is superior in terms of delivery ratio and message costs to both (see Section

4 for details). Applications of DSG-N2 include inventory tracking or tracking human inter-

actions, although it can improve any environment in which groups of regular contacts are

formed.

48

2. BACKGROUND

Delay Tolerant Networks (DTN) have received considerable attention from re-

searchers in recent years due to their widespread occurrences in a variety of applica-

tions. Routing and data aggregation are of particular interest as they considerably affect

the longevity of the sensor nodes and the performance of the network as a whole. A survey

of routing techniques for DTNs is presented in [5].

2.1. EPIDEMIC ROUTING

Epidemic routing [3] is designed to route messages through partially connected net-

works in a semi-probabilistic fashion. The routing is done through copying and forwarding

packets to other parts of the network in order to reach more sparse sections. When two

nodes meet any unshared messages are transmitted, and the message’s hop count is incre-

mented. A message is passed until its hop count has reached the max. Through this scheme,

Epidemic routing is able to maximize the amount of messages successfully delivered with-

out taking into account delivery time. This creates a large message overhead, redundantly

transmitting messages throughout the network.

2.2. PROBABILISTIC ROUTING

This scheme is based on individual nodes tracking their probability of delivering a

message successfully to a base station. The version introduced by Yu Wang functions by

individual nodes tracking their performance based on individual messages [1]. Each node

is assigned a probability estimate of successfully delivering a message to the basestation

node, and increases this estimate with successful delivery to nodes with higher probability,

or decreases as messages expire. The probability is therefore based on the contacts of

nodes, and as such works well when nodes follow regular, if not necessarily social, contact

49

patterns. The algorithm is therefore an effective routing system, but it only takes advantage

of any data other than past performance.

2.3. PROPHET

A similar routing scheme currently implemented is Probabilistic ROuting Protocol

using History of Encounters and Transitivity [6], introduced initially to allow efficient com-

munications in a sparse environment. Similar in many way to the Probabilistic method in

Section 2.2, this method allows individual nodes to track their contact patterns to other

nodes. Unlike the previous method, it is based not on message performance, but on the

contacts themselves; the nodes will adjust their probability when they meet, whether any

messages are transmitted or not. This method is also an effective algorithm in a sparse

network, but also limits the data it applies to routing decisions.

2.4. BUBBLE RAP

The Bubble-Rap grouping method [7] allocates nodes into social groups based on

direct and indirect contacts. They distribute using a method called k−cliques, in which all

fully connected groups of k members are considered a distinct social group and are then

merged with all other k−cliques which can be reached through k−1 nodes. This provides

an accurate representation of the social groups formed by a set of nodes. However, it relies

on global knowledge of the nodes’ contacts, and it must have them before the algorithm can

create groups. In this sense, k-grouping is neither dynamic nor distributed, which limits it’s

applicability to a MANET.

2.5. SIMBET

The SimBet routing algorithm [4] is similar to DSG-N2 in that it can deliver mes-

sages node to node using social patterns. Nodes engage in ‘conversations’ when they meet

and exchange information about data messages and current neighbors. This information

50

is used to determine ‘betweenness’ and ‘similarity’. Betweenness is a measure of how of-

ten a node lies on a path between otherwise unconnected nodes. Similarity is a count of

common neighbors between two nodes. These values can accurately predict which node

is more likely to successfully forward a message to the destination. Both betweenness and

similarity are locally determined; global knowledge of the network is not needed. A notable

disadvantage of SimBet is the amount of messages the aforementioned conversations send

across the network, resulting in significant message traffic and strain on the node’s lim-

ited power supply. Also, relationships between nodes in SimBet are represented as either

in contact or not in contact. More specific and informative bookkeeping, such as percent

of time in contact, would result in a better measure of a node‘s likelihood to forward a

message to the destination.

2.6. SIMBETAGE

Link et al. provides an improvement to the SimBet routing protocol to deal with

more dynamic networks [8]. Using SimBet as a baseline, SimBetAge improves upon it by

adding a ‘freshness’ value, which dictates how often a node A has contacted node B and

changes based on an encounter event or time event. On an encounter the freshness value

will increase by a logistic growth function and on a time step event the freshness value

will decrease in proportion to a exponential decay function. Since this algorithm takes into

consideration temporal changes in the network it allows for more reliable and direct routing

to occur.

51

3. PROPOSED ALGORITHM

DSG-N2 addresses two distinct subproblems. First, given an arbitrary collection of

nodes, the network must recognize cohesive social patterns and identify them as groups,

at the same time distributing this information throughout the network. This network orga-

nization can adjust to reflect changes to the network or to the social patterns of the nodes.

Second, once the groups have been recognized, a route must be identified to deliver mes-

sages to other nodes. The algorithm must minimize the number of message repetitions

while ensuring a high delivery ratio.

3.1. GROUPING

A major advantage this algorithm has over conventional mobile ad-hoc routing meth-

ods is the use of social groups to improve communication throughput. The task of identi-

fying such groups, however, requires knowledge of the nodes that is not present at startup.

3.1.1. Contact Strength. The first task in identifying a social group is to calculate a

metric for the contact frequency two nodes have with one another. The symbol λi, j is used

to represent the contact strength between two nodes. This is measured as a function of the

duration for which two nodes, i and j, were in contact and the time that they were not in

contact. The symbol α is used to determine how much the λ changes based on new data,

mimicking a Markov process. Initially, λi, j will be 0 between all nodes, but when nodes

contact one another, it is recalculated as shown in Eqn 1.

λA,B = (1−α)λA,B +α
timecontact

timecontact + timenocontact
(1)

3.1.2. Forming New Groups. When the λi, j exceeds or is equal to a threshold ψ,

the nodes identify themselves as being members of the same group. Initially, all groups

will have two members and the cluster head of the group is arbitrarily chosen. The cluster

52

head has the power to confirm an invitation for a merge, merge two groups, and send out

kill group messages (see section 3.1.4 for details). The group will also have a probability

assigned to it based on a weighted probability average (more information on this in Section

3.2).

3.1.3. Merging. Nodes regularly review their group listing for potential merges.

When a node determines two groups should merge with one another, a suggestion message

is sent to the cluster head of a group as shown in Figure 3.1(a). The criteria for a suggestion

of a group merge is that the ratio of common members over total unique members is greater

than τ. Once the cluster head receives the suggestion, it uses an up-to-date member list to

determine if the two groups are fit for merging with the same criteria as the joint member.

The cluster head will then send out an invitation message to the other cluster head epidemi-

cally as seen in Figure 3.1(b). Once the other cluster head confirms the ratio it measures the

delay of the invitation message. If the delay is greater than one day, the merge is refused;

otherwise the cluster head sends out a kill message to remove the other group and adds that

group’s member list to its own. This process is detailed in Algorithm 7.

(a) Joint members of the
Dot Group and Stripe Group
send a Suggestion to the
Stripe Cluster head

(b) Stripe Cluster head confirms
the Group Merge and sends
a Confirmation message to the
Dot Cluster head

(c) The Dot Cluster head
confirms again and adds all
Stripe Members to the Dot
Group

Figure 3.1. Three Stages of Merging Groups (figures provided by [2])

53

Algorithm 7 Merging Groups

Notation
GroupY , GroupZ - Any social groups in MANET
NodeA - Member of both GroupY and GroupZ
NodeB - Cluster head of GroupY , ClusterheadY
NodeC - Cluster head of GroupZ , ClusterheadZ
τ - Threshold for Merging a Group
MT T - Max Transit Time

Trigger - Periodically in NodeA
for all GroupY ,GroupZ of which NodeA is a member do

if |GroupY
⋂

GroupZ |
|GroupY

⋃
GroupZ | > τ then

Send SUGGEST Message to arbitrary Group (GroupY or GroupZ)
end if

end for

Trigger - NodeA contacts NodeB
In NodeA...
for all GroupY which contain both NodeA and NodeB do

if NodeA has Control Messages for GroupY then
NodeA sends Control Messages to NodeB

end if
end for

Nodes pass Control Messages epidemically to all Group Members

Trigger - NodeB receives SUGGEST message
if NodeB is ClusterheadY then

if |GroupY
⋂

GroupZ |
|GroupY

⋃
GroupZ | > τ and transit time < MT T then

Send CONFIRMATION Message to all members of GroupZ
end if

end if

The Cluster head confirms the suggestion, and sends a Confirmation to the other group

Trigger - NodeC receives CONFIRMATION message
if NodeC is ClusterheadZ then

if |GroupY
⋂

GroupZ |
|GroupY

⋃
GroupZ | > τ and transit time < MT T then

GroupZ = GroupZ
⋃

GroupY
GroupY =∅
Send KILL message to GroupY

end if
end if

If both Group Cluster heads approve, the arbitrary group is added to the other, and then
removed.

54

3.1.4. Dynamic Grouping. Sometimes a node becomes alienated from a group

because of movement and the contact frequency ratio does not meet the group’s required

value of ψ. In this case a node needs to be removed from that group by sending a resign

message to the cluster head, as shown in Algorithm 8. In order to reduce group fragmenta-

tion the cluster head needs to know about the resignation immediately. Periodically a node

will check to see whether or not it still belongs in a group. When this is done, the node will

calculate its GroupλA,Y , which is the average λA,B between the node and all members of

the group, and compare that value to ψ. If the average is less than ψ the node will send a

message to the cluster head that states that the node is no longer part of the cluster head’s

group. This message removes all information regarding that node from the group, and the

rest of the group must be updated with new group information. Until the update has prop-

agated through the group, the group data is considered fragmented. This process is more

thoroughly explained in Section 3.2.

Algorithm 8 Dynamic Groups

Notation
NodeA - Member of GroupY
NodeB - Cluster head of GroupY , ClusterheadY
NodeListY - All nodes in GroupY
GroupλA,Y - Average Contact Strength between NodeA and NodeListY
ψ - Threshold for Forming a Group

Trigger - NodeA checks it’s groups
In NodeA
GroupλY = Average(λA,Y)
if GroupλY < ψ then

Send RESIGN to NodeB
end if

Trigger - NodeB receives RESIGN from NodeA
NodeListY = NodeListY −NodeA
Update all nodes in GroupY of removal and NodeA

55

3.1.5. Group Versions. A major concern when dealing with multiple nodes in a

Delay Tolerant Network is keeping group information up to date and decreasing update

overhead. For instance, assume two nodes of the same social group meet and they wish to

exchange information about the groups they have in common. There would be a problem

if there was no way to track which node has the most up-to-date member list and other

properties specific to the group.

To solve this problem group versions are introduced. Every time contact patterns

change (social patterns) there is a possibility of group membership changing or a group

being removed altogether. If the group information is altered in any way, the cluster head,

which has control of group membership, will update the group information and increment a

version number. A higher version number indicates more recent information. If a node en-

counters another node that has a higher version number then the information is transferred.

This process is further detailed in Algorithm 9

Algorithm 9 Group Updates

Notation
VersionA,Y - Version Number of GroupY kept by NodeA

Trigger - NodeA contacts NodeB
In NodeA
for all GroupY which contains both NodeA and NodeB do

Send VersionA,Y to NodeB
Receive VersionB,Y from NodeB
if VersionA,Y >VersionB,Y then

Send GroupY to NodeB
else if VersionA,Y <VersionB,Y then

Receive GroupY from NodeA
else if VersionA,Y =VersionB,Y then

Do nothing
end if

end for

56

3.2. ROUTING

Now that the nodes have been organized into groups this information can be used

to route data to other nodes. Similar to Probabilistic Routing, each node is assigned a

vector of probability values based on the chance that a message is successfully delivered to

another node. In order to transfer a message throughout the network a node will forward

a message to other nodes that have higher probability of delivering the message to the

intended node. DSG-N2 improves upon the Probabilistic model by incorporating group

probabilities. Using group dynamics increases system awareness, in turn improving the

network’s delivery ratio.

3.2.1. Individual Probability. Nodes are initially assigned a default probability

σ. When nodes encounter one another, they compare probabilities to determine routing

(more on this in section 3.2.3). The node with lower probability for a given destination will

forward all messages for that destination to the node with the higher probability. When a

node successfully forwards a message, its probability to the destination is updated. The

rate at which the probability changes is controlled by φ, similar to α’s relation to contact

strength. For details, review Algorithm 10.

In addition to message transmission, individual probability can be updated to reflect

the inability to deliver a message. Messages eventually timeout in a network. When this

happens a node’s probability is decreased. This reflects its inability to transfer a message

to the destination node.

3.2.2. Group Probability. Each node calculates vector of group probabilities, de-

noted as~β, independently based on the contact patterns of that specific node. Group prob-

ability differs among members, but this allows nodes to take into account only neighbors

in the group. Nodes that exist in a common group and are not encountered are estimated

using the current group probability. The procedure begins when NodeA contacts NodeB

and both nodes are in GroupY . The algorithm is a weighted average of the individual prob-

abilities, with the weight determined by the contact strength. Since only the encountered

57

Algorithm 10 Calculating Individual Probability

Notation
NodeA, NodeB, NodeC - Nodes in MANET
σA - Individual Probability for NodeA
σB - Individual Probability for NodeB
messagei - Message in MANET
timeSenti - Time messagei was sent
T T L - Parameter determining max duration of messages (time to live)
φ - Control Parameter determining Probability decay ratio

Trigger - NodeA transmits messagei to NodeB
if NodeA can forward messagei to NodeB for NodeC then

σA,C = (1−φ)σA,C +φσB,C
else

σA,C = (1−φ)σA,C
end if

Trigger - Periodical maintenance in NodeA
for all messagei in NodeA do

if timecurrent− timeSenti > T T L then
Remove messagei
σA,C = (1−φ)σA,C

end if
end for

node’s probability is known, the σ of other group members is estimated as the current group

probability. This is simplified and shown in Algorithm 11.

3.2.3. Using Probabilities to Route. When two nodes contact each other, they

independently determine their γ value. This is the joint probability of all the groups they

participate with and their individual probability. The node with the higher value is assumed

to either have more consistent contact with the destination node or to be a member of a

group which has consistent contact. In either event, the node with the lower value transfers

all messages to the node with the higher probability, then updates its individual probability

based on successful delivery of a message. This algorithm is detailed in Algorithm 12.

When adjusting the individual probability of a sending node, the system initially uses

the probability of the receiver. As time elapses, nodes gain more information regarding

58

Algorithm 11 Calculating Group Probability

Definition
βY - Group Probability for GroupY
NodeA, NodeB - Nodes in GroupY

Trigger - NodeA contacts NodeB in a group of size 2
NodeA sends σA to NodeB
NodeA receives σB from NodeB
for all GroupY which contain NodeB and NodeA do

βY =
~σA+~σBλA,B

1+λA,B

end for

Trigger - NodeA contacts NodeB in a group of size > 2
NodeA sends σA to NodeB
NodeA receives σB from NodeB
for all GroupY which contain NodeB and NodeA do

~βY =
~βY (∑λA,∗−λA,B)+λA,B ~σB

∑λA,∗
end for

their social structure, resulting in a joint probability which can differ from its σ value. For

this reason, the individual probability (Algorithm 10) is adjusted by the γ of the destination

node, rather than the individual probability.

59

Algorithm 12 Routing Algorithm

Notation
βA - List of all Group Probabilities in NodeA
jointIndProbA - Group / Individual Probability of NodeA

Trigger - NodeA contacts NodeB
In NodeA jointIndProbA = (1−σA,B)
for all Groups NodeA is a member of do

jointIndProb∗= (1−GroupY)
end for
jointIndProb = (1− jointIndProb)
Transmit jointIndProb to NodeB
Receive jointIndProbB from NodeB
if jointIndProbB > jointIndProbA then

Transmit messages to NodeB
σA,B = (1−φ)σa +φ jointIndProbB

else
Receive messages from NodeB

end if

60

4. ANALYSIS

4.1. EXPERIMENTAL SETUP AND EVALUATION

DSG-N2 was first implemented in MATLAB to evaluate the control parameters and as

a proof of concept. After optimal values were determined, the algorithm was implemented

using TOSSIM and a virtual hardware simulation was performed. Data was output from

the simulation depicting the time messages were generated, received, and the packet size

of messages sent at each node to determine power consumption, average delivery time and

delivery ratio. The SimBet and Epidemic Routing Algorithms were also implemented in

the hardware simulation, and the results compared to DSG-N2. Other routing algorithms

were reviewed, but either use previous knowledge of the environment (Bubble Rap [7])

or solve different communication issues (Probabilistic [1] performs node-to-basestation

communications). For these reasons, the SimBet and Epidemic schemes were considered

as comparable algorithms. The control variables tested, along with ideal values identified,

can be found in Table 4.1.

Table 4.1. Variable Reference Chart
Control Variables Range Tested Ideal Value

φ Probability Decay Rate 0.1 - 0.7 0.6
ψ Group Formation Threshold 0.1 - 0.7 0.3
α Contact Decay Ratio 0.1 - 0.7 0.4
Ideal values tested by experimentation

Variables
λ Contact Strength between nodes
σ Node’s Probability of Delivery
β Group’s Probability of Delivery

61

4.2. SIMULATION DATA SOURCE

In order to test our algorithm in a simulated environment a record of social interac-

tions was needed. The data used for these simulations originated from the MIT Reality

Dataset [9]. The study tracked 100 nodes (people) with cell phones and Bluetooth de-

vices over the course of nine months. A set of Symbian based phones was programmed

to measure contact data and messages, and participants were asked to carry and use them.

Multiple social patterns developed between participants, which resulted in an ideal data set

for testing social algorithms.

4.3. IMPACT OF α, φ, AND ψ

Based on the simulations (Figure 4.1), when ψ is low the value of α will have no

effect on the delivery ratios, since any node to node contact will result in a new group.

These groups do not accurately reflect social groups formed by nodes, lowering the delivery

ratio. As ψ is increased (Figure 4.2), α will start to behave differently and make the groups

more relevant. Based on current results, no matter the ψ the best φs seem to be midrange.

These φs seem to hold probabilities between nodes at a relevant level. It appears as if upper

and lower bound values of φ holds on to or ignores probability history, respectively.

Regarding delivery time, a low ψ will yield evenly distributed results. This is due

to groups being easy to form and nodes transmitting messages liberally rather than finding

efficient delivery routes. When ψ is increased and φ is low, meaning probability history

is ignored, at any α the delivery time will be lower. The delivery ratio takes a hit due to

contact history being ignored, but the average transmission time is better.

62

(a) Message Delivery Ratio (b) Message Delivery Time

Figure 4.1. Impact of α and φ with ψ = .1

(a) Message Delivery Ratio (b) Message Delivery Time

Figure 4.2. Impact of α and φ with ψ = .2

63

4.4. COMPARISON OF ROUTING ALGORITHMS

When simulating the Epidemic routing protocol, there were two cases which were

tested, based on propagation distance. The baseline version limited the hopcount to three,

while the full execution had an unlimited hopcount where messages only ceased when they

expired. SimBet was executed with default control parameters, and DSG-N2 with control

parameters of α = 0.4, φ = 0.6, and ψ = 0.3, based on optimal values found in MATLAB

simulations 4. As seen in Figure 4.3(a), DSG-N2 performed much better than both Sim-

Bet and Epidemic Routing. Epidemic underperformed in the TOSSIM environment, due

primarily to realistic implementation of limiting factors such as buffer sizes, message colli-

sion, and limited time to transmit messages. Additionally, the power consumption was far

less using the Dynamic Social Grouping algorithm (Figure 4.3(b)). Similarly, SimBet did

not perform as well in regards to either delivery ratio or power consumption, due primarily

to the disconnected nature of the environment. SimBet would perform optimally in a static

or strongly connected environment, which does not apply to the real-world dataset used.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

F
ul

ly
 E

pi
de

m
ic

E
pi

de
m

ic
 (

H
C

 3
)

S
im

B
et

D
S

G

P
er

ce
nt

ag
e

D
el

iv
er

ed

Delivery Ratio

(a) Message Delivery Ratio

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

F
ul

ly
 E

pi
de

m
ic

E
pi

de
m

ic
 (

H
C

 3
)

S
im

B
et

D
S

G

P
ow

er
 C

on
su

m
ed

 (
J)

Power Consumption

Sending
Receiving

(b) Power

Figure 4.3. Comparison of DSG-N2 Routing, SimBet, and Epidemic Routing

64

5. CONCLUSION

Dynamic Social Grouping with Node-to-Node transmissions (DSG-N2) performs

better than SimBet and Epidemic routing in both power consumption and delivery ratio

for the dataset specified by identifying the regular contact groups and routing accordingly.

Using the additional information yields considerable benefits for message delivery in a

social environment.

Future improvements include optimizing the grouping metric even further, meaning

not just based on time, but some other applicable metric. Adding load balancing logic to

move the cluster head around in the group to the most optimal position is another pos-

sible improvement. Different environments can be explored, such as tool sets, datasets,

or devices for DSG-N2. A final improvement would be to make DSG-N2 transparent to

developers, easing implementation in a real world environment.

65

6. BIBLIOGRAPHY

[1] Y. Wang and H. Wu, “Delay/fault-tolerant mobile sensor network (dft-msn): A new
paradigm for pervasive information gathering,” IEEE Transactions on Mobile Comput-
ing, vol. 6, no. 9, pp. 1021–1034, 2007.

[2] R. Cabaniss, S. Madria, G. Rush, A. Trotta, and S. S. Vulli, “Dynamic social grouping
based routing in a mobile ad-hoc network,” Mobile Data Management, IEEE Interna-
tional Conference on, vol. 0, pp. 295–296, 2010.

[3] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,”
Duke University, Tech. Rep., 2000.

[4] E. M. Daly and M. Haahr, “Social network analysis for routing in disconnected delay-
tolerant MANETs,” in Proceedings of the 8th ACM international symposium on Mobile
ad hoc networking and computing, ser. MobiHoc ’07. New York, NY, USA: ACM,
2007, pp. 32–40. [Online]. Available: http://doi.acm.org/10.1145/1288107.1288113

[5] E. P. Jones and P. A. Ward, “Routing strategies for delay-tolerant networks,” Submitted
to ACM Computer Communication Review (CCR), 2006.

[6] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in intermittently con-
nected networks,” in SIGMOBILE Mobile Computing and Communication Review,
2004, p. 2003.

[7] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forwarding in delay-
tolerant networks,” Mobile Computing, IEEE Transactions on, vol. 10, no. 11, pp. 1576
–1589, nov. 2011.

[8] J. A. Bitsch Link, N. Viol, A. Goliath, and K. Wehrle, “Simbetage: utilizing temporal
changes in social networks for pocket switched networks,” in U-NET ’09: Proceedings
of the 1st ACM workshop on User-provided networking: challenges and opportunities.
New York, NY, USA: ACM, 2009, pp. 13–18.

[9] N. Eagle, A. Pentland, and D. Lazer, “Inferring social network structure using mobile
phone data,” Downloaded from http://reality.media.mit.edu/download.php, pp. 15 274
– 15 278, 2009.

http://doi.acm.org/10.1145/1288107.1288113

66

III. Social Group Detection Based Routing in Mobile Ad Hoc Networks

Roy Cabaniss, Srinivasa S. Vulli, and Sanjay Madria

Department of Computer Science,

Missouri University of Science and Technology, Rolla, Missouri 65401

When developing and implementing a Mobile Ad Hoc Network, a key characteristic

of the network topology is the mobility pattern of the nodes. Based on the application,

nodes can follow semi-predictable patterns, such as the routes followed by Vehicular Ad

Hoc Networks, or the more strict schedules followed by aerial reconnaissance . Optimal

routing schemes tend to take advantage of any information regarding these contact patterns.

In social environments, such as wildlife tracking or sending messages between humans, the

devices and/or users will follow regular contact habits, tending to encounter social groups

in which they participate. By dynamically identifying these groups, the patterns are used

to optimize routing through a social environment. One of two algorithms can be used to

route messages based on these social groups. Dynamic Social Grouping (DSG), used to

route messages strictly from a node to a basestation, is ideal for gathering sensor data and

updating a shared data cache. In contrast, Dynamic Social Grouping - Node to Node (DSG-

N2) is used to route messages between nodes, generally conventional communications.

Both of these algorithms can be implemented ad null, meaning the devices initially have

no information about their environment, and they work to reduce overhead, message traffic,

and delivery time while maintaining a high delivery ratio.

67

1. INTRODUCTION

Mobile Ad-Hoc Networks (MANETs) are a collection of mobile computing devices

connected through wireless communications, such as Bluetooth or wireless LAN. Each

node in a MANET can move freely throughout the network, generally following the mo-

bility patterns based on the type of device[1] [2]. For sensors in environments with unpre-

dictable and changing motions, such as wildlife sensors [3], traditional routing algorithms

are ineffective or inapplicable. In order to address this issue new routing methods have been

developed. These methods are often examples of Delay-Tolerant Networks (DTN) [4], in

which nodes are able to retain copies of messages and forward them at a more opportune

time. Originally designed to enable interplanetary communications, a DTN functions by

grouping messages into a series of bundles intended for the same destination and routing

each bundle as a single unit rather than as independent packets. The store-and-forward

method enables a message to be delivered even when no immediate path to the destination

exists. A device that is carrying a message will store it in the buffer until a path becomes

available. The routing algorithm works by passing the message through nodes capable of

forwarding the message to the destination. The question of which node is more capable of

this forwarding is the main difference between the various routing algorithms.

As a rule, routing algorithms are more effective when they rely on information re-

garding the contact patterns of nodes. Conventional probability-based routing schemes

assume consistent avenues of communication; nodes that interacted with a set group of

nodes in the past will do so again in the future [5]. Similarly, social routing assumes that

nodes assigned to the same social network (classroom, project team, department faculty,

etc.) will regularly interact with members of that social group [6]. To take advantage of

the partial applicability of both social and probability-based routing, our grouping method

is designed form social groups based on contact patterns. Once these groups are identi-

68

fied, consistent routes to nodes are recognized based on the delivery history of a group or

node.

The purpose of a routing algorithm is to deliver messages reliably and efficiently,

which is difficult in networks in which nodes are capable of movement, and contact be-

tween each node is not always reliable or consistent. Both the Dynamic Social Group-

ing (DSG) and DSG - Node to Node (DSG-N2) begin by identifying social groups based

solely on contact patterns between nodes without relying on full knowledge of the network.

Groups are formed based on the assumption that frequent and regular contact occurs within

a group; there is no context regarding the group’s purpose, nor is there pre-identification of

groups. Once the groups are identified, routing occurs based on the type of message sent.

If messages are sent in a node-to-base-station pattern, such as for wildlife sensor collection

or data caching, the DSG algorithm routes messages through consistent nodes and groups.

If messages are sent to individual nodes, such as for conventional message passing, the

DSG-N2 is used. Simulations with real-world data comparing Epidemic and Probabilistic

algorithms were performed, showing that the Dynamic Social Grouping algorithm is supe-

rior in terms of its delivery ratio and message costs (see Section 4 for details). Similarly,

DSG-N2 was then compared to Epidemic routing [7] and SimBet routing [8], the results

of which comparisons are shown in Section 5. These results show that DSG-N2 performs

better than both routing algorithms in terms of total message traffic and delivery time.

69

2. BACKGROUND

Delay-Tolerant Networks (DTNs) have received considerable attention from re-

searchers in recent years due to their widespread occurrence in a variety of applications.

Routing and data aggregation are of particular interest as they considerably affect the

longevity of the sensor nodes and the performance of the network as a whole. A survey of

routing techniques for DTNs is presented in [9], and a brief comparison can be found in

Table 2.1.

2.1. EPIDEMIC ROUTING

Epidemic routing [7] is designed to route messages through partially connected net-

works in a semi-probabilistic fashion. Routing is accomplished by copying and forwarding

packets to other parts of the network in order to reach more sparse sections. When two

nodes meet, any unshared messages are transmitted, and the message’s hop count is incre-

mented. A message is passed along until its hop count has reached the max. Through this

scheme, Epidemic routing is able to maximize the amount of messages successfully deliv-

ered but without taking into account delivery time. This creates a large message overhead,

redundantly transmitting messages throughout the network.

2.2. MAXPROP

This variation on a flood based protocol was developed by Burgess et al [10] to prior-

itize the transmission of messages. By adding an intelligent priority to messages, they can

be spread throughout the network such that messages are transmitted more often to their

destination, and dropped from the buffer when the node either will not likely deliver the

messages or another node is more likely. The priority is based on the individual node’s

chance of delivery (as based on past performance), other node’s chance of delivery, and

70

how far the message has already spread. This algorithm has higher performance than a

basic implementation of epidemic, although there is significantly greater overhead from a

node gathering data on the network layout.

2.3. PROBABILISTIC ROUTING

This scheme is based on individual nodes tracking their probability of delivering a

message successfully to a base station. The version introduced by Yu Wang functions by

individual nodes tracking their performance based on individual messages [5]. Each node

is assigned a probability estimate of successfully delivering a message to the base-station

node; this estimate increases with successful delivery to nodes with higher probabilities

decreases as messages expire. The probability is therefore based on the contacts of nodes,

and as such works well when nodes follow regular, if not necessarily social, contact pat-

terns. The algorithm is therefore an effective routing system, but it does not take advantage

of past performance data.

2.4. PROPHET

A similar routing scheme currently implemented is Probabilistic ROuting Protocol

using History of Encounters and Transitivity [11], introduced initially to allow efficient

communications in a sparse environment. Similar in many ways to the Probabilistic method

in Section 2.3, this method allows individual nodes to track their contact patterns to other

nodes. Unlike the previous method, it is based not on message performance, but on the

contacts themselves; the nodes will adjust their probability when they meet, whether or not

any messages are transmitted. This method, while also an effective algorithm in a sparse

network, limits the data it applies to routing decisions.

71

2.5. BUBBLE RAP

The Bubble-Rap grouping method [12] allocates nodes into social groups based on di-

rect and indirect contacts. These contacts are distributed using a method called k−cliques,

in which all fully-connected groups of k members are considered a distinct social group and

are then merged with all other k− cliques that can be reached through k− 1 nodes. This

provides an accurate representation of the social groups formed by a set of nodes. How-

ever, it relies on global knowledge of the nodes’ contacts, which must be known before the

algorithm can create groups. In this sense, k-grouping is neither dynamic nor distributed,

which limits its applicability to a MANET.

2.6. SOCIALCAST

Costa et al. have described an application using social dynamics for a pub-

lish/subscribe schemata across a wireless sensor network, detailing a SocialCast model

[13] in which nodes are assigned a ’Utility Value’ for each interest in which they partici-

pate, which indicates their routing utility for that group. By separating the routing utility

from group participation, the authors improve the lifespan and routing efficiency of the

wireless nodes. The given algorithm is designed for use across a publish/subscribe model,

as well as a wireless network (as opposed to a sensor network), but it can still serve as a

basis for further research, especially regarding the social dynamics described, such as the

Caveman Model.

2.7. SIMBET

The SimBet routing algorithm [8] is similar to DSG-N2 in that it can deliver mes-

sages node to node using social patterns. Nodes engage in ’conversations’ when they meet

and exchange information about data messages and current neighbors. This information

is used to determine ’betweenness’ and ’similarity’. Betweenness is a measure of how of-

ten a node lies on a path between otherwise unconnected nodes. Similarity is a count of

72

common neighbors between two nodes. These values can accurately predict which node

is more likely to successfully forward a message to the destination. Both betweenness and

similarity are locally determined; global knowledge of the network is not needed. A no-

table disadvantage of SimBet is the number of messages the aforementioned conversations

send across the network, resulting in significant message traffic and strain on the node’s

limited power supply. Also, relationships between nodes in SimBet are represented as ei-

ther in contact or not in contact. More specific and informative data, such as the percentage

of time in contact, would result in a better measure of a node’s likelihood of forwarding a

message to the destination.

2.8. SIMBETAGE

Link et al. have improved the SimBet routing protocol to handle more dynamic net-

works [14]. SimBetAge improves upon the baseline established by SimBet by adding a

’freshness’ value, which dictates how often node A contacts node B and changes based on

an encounter event or a time event. During an encounter, the freshness value will increase

by a logistic growth function, and during a time step event, the freshness value will de-

crease in proportion to an exponential decay function. This algorithm considers temporal

changes in the network, thereby allowing more reliable and direct routing to occur.

2.9. DISTRIBUTED CLUSTERING

A method based on identifying mobile clusters was researched by Dang et al [15].

This method uses exponentially weighted moving averages (ENWA) to track how similar

the mobility patterns of two nodes are, under the assumption that two nodes moving in

similar patterns are part of the same cluster. When the contact probability between two

nodes exceeds a certain threshold, a new cluster is formed, while if a node’s contact prob-

ability with all group members is high enough, it joins the cluster. Routing is based on a

series of identified gateway nodes, which act as liaisons between two clusters. The routing

73

algorithm varies on the relationship between the nodes; two nodes of the same group will

simply hold the message until direct contact is established, while neighbouring groups will

route through a ’gateway’ node, dedicated to transmitting messages to nearby groups. This

algorithm is similar to DSG in many respects, with the main difference being a node’s rela-

tion to the group. While routing in Distributed Clustering is based almost entirely on group

membership, DSG integrates a node’s independent routing ability with that of groups.

Table 2.1. Routing Algorithm Comparison
Routing Algorithm Proactive /

Reactive
Uses Social
Data

Replication

Epidemic Forward messages to all avail-
able nodes

Reactive No Yes

MaxProp Message priority for epidemic
transmission / dropping

Proactive No Yes

PRoPHET Monitor node contact to mea-
sure delivery probability

Proactive No No

Probabilistic Record message performance
to measure delivery probability

Reactive No No

SimBet Identify central & similar nodes Proactive Yes No
SimBetAge Centrality & similarity values

decay
Proactive Yes No

Distributed
Clustering

Identify clusters of nodes based
on common mobility, route
through clusters

Proactive Yes No

Dynamic
Social
Grouping

Identify social groups of nodes,
route via group & individual
probability

Proactive Yes Yes

74

3. PROPOSED ALGORITHM

Both DSG and DSG-N2 address two distinct subproblems. First, given an arbitrary

collection of nodes, the network must recognize cohesive social patterns and identify them

as groups, while simultaneously distributing this information throughout the network. This

network organization can adjust to reflect changes to the network or to the social patterns

of the nodes. Second, once the groups have been recognized, a route must be identified

to deliver messages to other nodes. The algorithm must minimize the number of message

repetitions while ensuring a high delivery ratio.

3.1. GROUPING

A major advantage that this algorithm has over conventional mobile ad hoc routing

methods is the use of social groups to improve communication throughput. The task of

identifying such groups, however, requires knowledge of the nodes that is not present at

startup.

3.1.1. Contact Strength. The first task in identifying a social group is to calculate

a metric for the contact frequency between two nodes. The symbol λi, j, used to represent

the contact strength between two nodes, is measured as a function of the duration for which

two nodes, i and j, were in contact and not in contact. The symbol α is used to determine

the extent to which λ changes based on new data, mimicking a Markov process. Initially,

λi, j will be 0 between all nodes, but when nodes contact one another, it is recalculated as

shown in Eqn 1.

λA,B = (1−α)λA,B +α
timecontact

timecontact + timenocontact
(1)

3.1.2. Forming New Groups. When λi, j exceeds or is equal to a threshold ψ, the

nodes identify themselves as members of the same group. Initially, all groups have two

75

members, and the head of the group is chosen arbitrarily. The group head has the power to

confirm an invitation for a merge, merge two groups, and send out kill group messages (see

section 3.1.4 for details). The group will also have a probability assigned to it based on a

weighted probability average (see Section 3.2 for additional information).

3.1.3. Merging. Groups grow larger when two existing groups with shared members

merge. The nodes regularly review their group listings for potential merges. When the

number of common members shared by two groups is greater than the merge threshold

τ, a suggestion message is sent to the head of a group, as shown in Figure 3.1(a). Once

the group head receives the suggestion, it uses an up-to-date member list to determine if

the two groups are fit for merging with the same criteria as the joint member. The group

head will then send out an invitation message to the other group head epidemically, as seen

in Figure 3.1(b). Once the other group head confirms the ratio, it measures the delay of

the invitation message. If the delay is greater than a certain period, the merge is refused;

otherwise, the group head sends out a kill message to remove the other group and adds that

group’s member list to its own. This process is detailed in Algorithm 13.

(a) Joint members of the
Dot Group and Stripe Group
send a suggestion to the
Stripe Group head

(b) Stripe Group head con-
firms the group merge and
sends a confirmation mes-
sage to the Dot Group head

(c) The Dot Group head
confirms again and adds all
Stripe members to the Dot
Group

Figure 3.1. Three stages of merging groups (figures provided by [16])

76

Algorithm 13 Merging Groups
Notation
GroupY , GroupZ - Any social groups in MANET
NodeA - Member of both GroupY and GroupZ
NodeB - Group head of GroupY , GroupHeadY
NodeC - Group Head of GroupZ , GroupHeadZ
τ - Threshold for Merging a Group
MT T - Max Transit Time

Trigger - Periodically in NodeA
for all GroupY ,GroupZ of which NodeA is a member do

if |GroupY
⋂

GroupZ |
|GroupY

⋃
GroupZ | > τ then

Send SUGGEST Message to arbitrary Group (GroupY or GroupZ)
end if

end for

Trigger - NodeA contacts NodeB
In NodeA...
for all GroupY which contain both NodeA and NodeB do

if NodeA has Control Messages for GroupY then
NodeA sends Control Messages to NodeB

end if
end for

Nodes pass Control Messages epidemically to all Group Members

Trigger - NodeB receives SUGGEST message
if NodeB is GroupHeadY then

if |GroupY
⋂

GroupZ |
|GroupY

⋃
GroupZ | > τ and transit time < MT T then

Send CONFIRMATION Message to all members of GroupZ
end if

end if

The Group Head confirms the suggestion, and sends a Confirmation to the other group

Trigger - NodeC receives CONFIRMATION message
if NodeC is GroupHeadZ then

if |GroupY
⋂

GroupZ |
|GroupY

⋃
GroupZ | > τ and transit time < MT T then

GroupZ = GroupZ
⋃

GroupY
GroupY =∅
Send KILL message to GroupY

end if
end if

If both Group Heads approve, the arbitrary group is added to the other, and then removed.

77

3.1.4. Dynamic Grouping. Due to changing social patterns, nodes can become

alienated from a group. Such alienation is discovered by a node periodically reviewing its

group list and determining whether or not the contact frequency ratio meets the group’s

required value of ψ. If not, the node must be removed from that group by sending a resign

message to the group head, as shown in Algorithm 14. To determine whether a node should

resign, it periodically calculates its GroupλA,Y , which is the average λA,B between itself

and all members of the group, and compares that value to ψ. If the average is less than

ψ, the node will send a resignation message to the group head. In order to reduce group

fragmentation, the resignation is not recognized until the group head receives the message

and then propagates a group update through all members. Until the update has propagated

through the group, the group data is considered fragmented.

Algorithm 14 Dynamic Groups
Notation
NodeA - Member of GroupY
NodeB - Group Head of GroupY , GroupHeadY
NodeListY - All nodes in GroupY
GroupλA,Y - Average Contact Strength between NodeA and NodeListY
ψ - Threshold for Forming a Group

Trigger - NodeA checks it’s groups
In NodeA
GroupλY = Average(λA,Y)
if GroupλY < ψ then

Send RESIGN to NodeB
end if

Trigger - NodeB receives RESIGN from NodeA
NodeListY = NodeListY −NodeA
Update all nodes in GroupY of removal and NodeA

3.1.5. Group Versions. An ongoing issue when using dynamic groups is transmit-

ting group membership changes to all members of that group. Data fragmentation occurs

78

whenever two nodes, members of the same social group, have different data regarding that

group’s membership. To prevent this issue, all changes are controlled by the group’s head.

This node, arbitrarily chosen, holds the group’s master member list.

Social patterns changing or being revealed will cause changes to a group’s member-

ship, as defined in Sections 3.1.3 and 3.1.4. The group head will increment the version

value of the group as changes are made, including merges and resignations from the group.

Whenever two members of the same group meet, they compare the version number of their

local copy of the group. The higher version number is the one whose information regarding

the group came from the group head more recently. This information is copied over to the

less recent node, along with the version number. This process is detailed in Algorithm 15.

Algorithm 15 Group Updates
Notation
VersionA,Y - Version Number of GroupY kept by NodeA

Trigger - NodeA contacts NodeB
In NodeA
for all GroupY which contains both NodeA and NodeB do

Send VersionA,Y to NodeB
Receive VersionB,Y from NodeB
if VersionA,Y >VersionB,Y then

Send GroupY to NodeB
else if VersionA,Y <VersionB,Y then

Receive GroupY from NodeA
else if VersionA,Y =VersionB,Y then

Do nothing
end if

end for

3.2. ROUTING

Having organized the nodes into social groups, the algorithm can now use this in-

formation to route data to the destination, which is either the basestation or another node.

79

The probability σ is assigned to each node, depicting an estimate of its ability to transmit

a message. This metric is changed to reflect changes in the message delivery or contact

patterns, as described below.

3.2.1. Basestation Routing. Basestation routing is based on nodes gathering data

and then transmitting that data to the nearest basestation. No other messages are transmitted

in this architecture - nodes receive no feedback, nor do they send messages to each other.

Nodes initially are assigned a default probability σ, while base stations are assigned a

probability of 100%. When two nodes encounter one another, they compare probabilities

to determine routing. The member with the lower probability will forward all its messages

to the other before updating its σ to reflect the ability of the node to deliver either directly

or indirectly to a base station. The result is that nodes with immediate access to a base

station achieve a higher probability, and the probability cascades outwards through node

contacts. The cascade rate is determined by a control variable α, which is similar to φ in

that it controls how quickly the probability changes based on new data. For example, when

NodeA transmits a message to NodeB...

σA = (1−φ)σA +φσB (2)

To reflect a given node’s inability to transmit messages, the algorithm also decays

σ. When a message is transmitted to a node, it logs the reception time. If a node holds a

message for a certain duration without transmitting it, its probability is reduced, again in

ratio to φ.

σA = (1−φ)σA (3)

80

This can result in a message lowering its probability below that of neighboring nodes.

For example, if NodeA receives a message, it logs the time and compares its probability

(55%) to that of its neighbors (40%). The neighbor nodes are less likely to deliver the

message, so NodeA holds the message, slowly lowering the probability as time passes.

If NodeA never encounters another node, eventually its probability will drop below that

of the neighboring nodes, at which point the message will be transmitted. The result of

this algorithm is that the probability will be reduced if a node is incapable of delivering a

message in a timely manner.

3.2.2. Node-to-Node Routing. Although the algorithm for routing messages to

nodes is larger than that used in base-station routing, requiring more space and more pro-

cessing power, the two are not substantially different. The routing probability metric is

a vector of numbers, one for each node. There are two possible methods by which to

determine a node’s ability to transmit a message to a destination node. The first, called

Performance-Based Probability, is based on the assumption that nodes that have success-

fully delivered a message are more likely to do so again. When nodes transmit messages to

the destination or to nodes with a higher probability, they increase the probability metric.

The Contact-Based Probability method ignores the message history in favor of the node’s

contact patterns.

3.2.3. Performance-Based Probability. This algorithm (Algorithm 16) is similar

to base-station routing in that a node’s probability metric σ is updated to reflect its ability or

inability to transmit a message. When a node successfully transmits a message to another

node with a higher probability, the first node’s probability of delivery is increased to reflect

this.

In addition to message transmission, a node’s individual probability can be updated

to reflect its inability to deliver a message. Messages eventually time out in a network,

which reduces a node’s probability, thereby reflecting its inability to transfer a message to

the destination node.

81

This algorithm is best used in a high-traffic environment because less message traffic

can result in an inaccurate σ. It functions well when nodes are heterogenous because,

by tracking the message performance, the algorithm does not assume that all nodes react

identically to messages.

Algorithm 16 Performance Based Probability
Notation
NodeA, NodeB, NodeC - Nodes in MANET
σA,B - Probability of NodeA to deliver a message to NodeB
messagei - Message in MANET
timeRcvdi - Time messagei was received at current node
T T L - Parameter determining duration of messages (time to live)
φ - Control Parameter determining Probability decay ratio

Trigger - NodeA transmits messagei to NodeB
if NodeB is destination of messagei then

σA,C = (1−φ)σA,C +φ

else
σA,C = (1−φ)σA,C +φσB,C
timeRcvdi = timecurrent

end if

Trigger - Periodical maintenance in NodeA
for all messagei in NodeA do

if timecurrent− timeRcvdi > T T L then
σA,C = (1−φ)σA,C

end if
end for

82

3.2.4. Contact-Based Probability. This method is more useful in an environment

with lower message traffic or uniform message failure probabilities. Using this scheme,

the probability is based on contact with other nodes, rather than message transmission

(Algorithm 17). Upon contact, the probability increases (the exact increase is a function of

φ and the time the nodes spend in contact with each other). This is shown in equation 4.

σA,B = σA,B +(1−σ)φ (4)

In addition, nodes increase their probability when they encounter other nodes capable

of transmitting messages to a destination. This method, called either transitive probability

or indirect contact, occurs when two nodes encounter each other and then. After adjusting

their probability to deliver to each other, they adjust the probabilities of all other nodes.

The control variable β is used to determine the impact of transitive probability, as seen in

equation 5.

σA,B = σA,B +β(1−σA,B)σA,CσC,B (5)

Finally, to ensure that the probability decays for two nodes not in contact for extended

durations, a decay is implemented. Periodically, the node adjusts its probabilities based on

the decay variable γ. A higher γ indicates that the environment should remain relatively

stable for extended durations.

σA,B = σA,Bγ (6)

83

Algorithm 17 Contact Based Probability
Notation
NodeA, NodeB, NodeC - Nodes in MANET
σA,B - Probability of NodeA to deliver a message to NodeB
φ - Control Parameter determining direct probability impact
β - Control Parameter determining transitive probability impact
γ - Control Parameter determining Probability decay ratio

Trigger - NodeA comes into contact with NodeB
σA,B = σA,B +(1−σ)φ
for all NodeC in environment do

σA,C = σA,C +β(1−σA,C)σA,BσB,C
end for

Trigger - Periodical maintenance in NodeA
for all NodeC in environment do

σA,C = σA,Cγ

end for

84

3.2.5. Group Probability. The group probability, depicted as ρY , is a given node’s

estimate of a group’s ability to deliver a message. This is the estimated average probability

of delivery, based on the node members encountered frequently by the node. This method

begins when NodeA contacts NodeB and both are in GroupY . As the σ for all other nodes in

GroupY are unknown, they are assumed to be the current ρY . This method then calculates

the average probability of all members of the group based on previous ρY , σA, and σB, as

detailed in Algorithm 18.

Each node will encounter different nodes in a group, so it is likely that different group

members will have different estimates of that group’s probability. Because group member-

ship is kept current with dynamic grouping, a group’s ρ will still be a reasonable estimate

of the group’s actual probability of delivering, with added emphasis on the members of the

group that a given node is likely to encounter.

Algorithm 18 Calculating Group Probability
Definition
ρY - Group Probability for GroupY

Trigger - NodeA contacts NodeB
NodeA sends σA to NodeB
NodeA receives σB from NodeB
for all GroupY which contain NodeB and NodeA do

ρY = σA+σB+ρY×(|GroupY |−2)
|GroupY |

end for

3.2.6. Using Probabilities to Route. When two nodes contact each other, they

independently determine their γ value. This is considered the cahnce of either the node

itself or any of the groups it participates in successfully deliverying the message. The

simplest method to calculate it is the inverse of the probability that all groups fail. The

node with the higher value is assumed to either have more consistent contact with the

base station or to be a member of a group that has consistent contact. In either event, the

85

node with the lower value transfers all messages to the node with the higher probability,

and it then (if it is using Performance-Based Probability) updates its individual probability

based on the successful delivery of a message. The basestation version of this algorithm is

detailed in Algorithm 19. To expand on it for node-to-node routing, it is repeated for all

destination nodes in either buffer.

Algorithm 19 Routing Algorithm
Notation
ρNodeA - List of all Group Probabilities in NodeA
γA - Composite Probability of NodeA

Trigger - NodeA contacts NodeB
In NodeA
γA = 1− (1−σA)×∏(1−ρNodeA)
Transmit γA to NodeB
Receive γB from NodeB
if γB > γA then

Transmit messages to NodeB
σA = (1−α)σa +αγB

else
Receive messages from NodeB

end if

3.3. HYBRID DSG-N2 / EPIDEMIC ROUTING

As an alternative to a composite probability based on the groups in which a node

participates, the routing algorithm can route through all members of a group containing

the destination node. When the message initially is sent, it is routed ’near’ the destination

node by a probabilistic method. Upon finding a member of the same social group as the

destination, the message is routed epidemically to all members of that group, quickly ar-

riving at the destination. This algorithm is designed to achieve the high delivery ratio and

low delivery time of epidemic by ensuring that all nodes that come into contact with the

86

destination have a copy for delivery, while reducing the number of redundant copies by

only transmitting a single copy around nodes not in contact.

This algorithm (Alg 20) functions best when the identified social groups have a high

correlation with the contact patterns. If the groups are too large, then the number of redun-

dant messages increases the transmission costs, overloads buffers, and causes transmission

collisions. If the groups are too small, then the algorithm functions the same as PRoPHET,

ignoring any available social data.

Algorithm 20 Hybrid Algorithm
Notation
BuddyListA - List of nodes that are in same group as NodeA
GroupX - Group containing NodeA
σA,B - NodeA probability to deliver to NodeB
σ̂A - Vector of NodeA probability to all other nodes
desti - Destination node of msgi

Trigger - NodeA contacts NodeB
In NodeA
BuddyListA = /0

for all GroupX ∈ NodeA do
BuddyListA = BuddyListA∪Members of GroupX

end for
Send BuddyListA, σ̂A to NodeB
Receive BuddyListB, σB
for all msgi in NodeA do

if desti ∈ BuddyListB then
Transmit msgi to NodeB

else if σA,desti < σB,desti then
Transmit msgi to NodeB

end if
end for

87

4. ANALYSIS - DSG

4.1. EXPERIMENTAL SETUP AND EVALUATION

To evaluate this algorithm and the impact of control variables, a simulation was de-

signed and implemented using MATLAB. Once the routing efficiency was determined, a

power consumption comparison was performed in NesC using a TOSSIM simulator mod-

ified with PowerTossim Z. For comparison, both simulations also ran Epidemic Routing

and base Probabilistic Routing schema. Epidemic Routing is considered the ideal in terms

of the message transmission time and delivery ratio, and is therefore used for comparison,

while Probabilistic Routing represents an improvement over Epidemic Routing in terms of

the resources used. Other comparable algorithms were reviewed, but they either use previ-

ous knowledge of the environment (such as Bubble Rap) or are targeted to solve different

communication issues (Simbet performing node-to-node communication, and SocialCast

performing publish/subscribe broadcasts). For these reasons, the Probabilistic and Epi-

demic schemas were chosen as comparable algorithms. The control variables tested, along

with ideal values identified, can be found in Table 4.1.

4.2. SIMULATION DATA SOURCE

To implement this algorithm accurately, the node contacts must follow social

patterns. Potential sources of this information include real-life tracking data or the results

from a social prediction algorithm, such as the Caveman Model. For this reason, the

simulation utilized data obtained from an experiment conducted by the University of

Cambridge at the 2005 Grand Hyatt Miami IEEE Infocom conference. Participants were

asked to carry iMotes with them during the conference for 3 to 4 days to capture social

interaction data [17]. Although the experiment did not include base stations capable of

88

Table 4.1. Variable Reference Chart
Control Variables Range Tested Ideal Value

α Contact Decay Ratio 0.1 - 0.7 0.4
φ Contact Impact on Probability 0.1 - 0.7 0.6
β Transitive Impact on Probability (CBP) 0 - .5 .015
γ Probability Decay (CBP) .95 - .999 .998
ψ Group Formation Threshold 0.1 - 0.7 0.3
τ Group Merge Threshold 0.1 - 0.33 0.3
Ideal values tested by experimentation

Variables
λ Contact Strength between nodes
σ Node’s Probability of Delivery
β Group’s Probability of Delivery
γ Composite Probability

collecting information, they did include static, immobile nodes. For simulation purposes,

these units were treated as data sinks.

4.3. IMPACT OF α AND ψ

Based on the utilized dataset, the α setting is directly influenced by the dynamic na-

ture of the contact patterns. In both long-range simulations and simulations in which nodes

consistently follow similar contact patterns, a lower α value can result in more effective

simulations. In contrast, a higher α results in the algorithm placing more weight on recent

data. If the probability is more dynamic, it can more rapidly respond to changes in the

layout.

The ψ setting influences the ease with which the nodes form social groups. In an

environment in which nodes only encounter other nodes in the same social group, a lower

value can result in the network being rapidly organized, whereas a higher ψ results in

groups forming slowly, and only with regular contacts.

89

The results (as shown in Figure 4.1) indicate a peak Message Delivery Ratio as α de-

creases and ψ increases. The lower α seems to be due to the large amount of ’garbage’ data

- a node that successfully delivers to the base station is quite likely just passing through and

will not likely serve as a good long-range contact. A lower α allows the algorithm to ignore

these incidental contacts and concentrate on nodes that deliver successfully with regularity.

Similarly, the ψ peak value is based on ignoring the large number of casual contacts. Be-

cause this dataset was gathered at a conference, there are several regular contacts between

nodes that are not members of the same group. To ignore this noise, a higher ψ setting is

optimal.

 0.1 0.2 0.3 0.4 0.5 0.0001
.0002

0.0003
0.0004

0.0005

 0.2

 0.3

 0.4

Impact of α and ψ on Message Delivery Ratio

M
es

sa
ge

 D
el

iv
er

y
R

at
io

α
ψ

(a) Message Delivery Ratio

 0.1 0.2 0.3 0.4 0.5 0.0001
.0002

0.0003
0.0004

0.0005
 4000
 4500
 5000
 5500
 6000
 6500

Impact of α and ψ on Message Delivery Time

M
es

sa
ge

 D
el

iv
er

y
T

im
e

(s
ec

)

α
ψ

(b) Message Delivery Time

 0.1 0.2 0.3 0.4 0.5 0.0001
.0002

0.0003
0.0004

0.0005
 10000
 20000
 30000
 40000
 50000
 60000

Impact of α and ψ on Admin Message Traffic

A
dm

in
 M

es
sa

ge
s

S
en

t

α
ψ

(c) Admin Message Traffic

Figure 4.1. Impact of α and ψ

90

4.4. IMPACT OF τ AND φ

The control variable τ represents the level of similarity necessary for groups to merge.

A higher τ value results in fewer groups merging and maintains a small group size, but it

does not influence the number of groups being created. A higher τ value will result in

several smaller groups. Due to the ratio needed to ensure that any group merges occur, the

maximum value for τ is 1
3 . If it is higher, the initial 2-member groups will not have enough

common members to merge.

The contact deterioration φ determines how quickly the contact strength changes over

time. A higher φ value results in the contact strength changing more rapidly. Higher values

would be used in more dynamic environments, so the nodes’ contact strengths are influ-

enced more by recent events than historical data. This value is closely linked to the ψ value

given earlier; a more rapidly-changing contact strength results in a lower required value of

ψ to successfully form groups.

The results, as shown in Figure 4.2, indicate that the algorithm functions best when

the τ value is nearly, but not quite, at its maximum. A τ of 0.3 allows groups to merge

regularly, reflecting larger groups while still ignoring the casual group affiliations. Simi-

larly, the φ results show peak functionality at 0.3, although this may be due to the ψ value

already inserted. These metrics show the largest increase in the delivery ratio, but with a

corresponding increase in the average message delivery time (Figure 4.2(b)). These obser-

vations are due to this time reflecting only delivered messages; by increasing the number

of delivered messages, the system includes several messages that were ignored.

4.5. COMPARISON OF ROUTING ALGORITHMS

A review of the results (Figure 4.3) shows that the DSG Routing Scheme performs

better than the Probabilistic Scheme in all metrics and is comparable to Epidemic Routing

in terms of both the delivery ratio and delivery time while having considerably less message

traffic. Some of this is due to the applicability of the dataset – the social environment

91

0.1
.2

0.30.33
 0.1

 0.2
 0.3

 0.4
 0.5

 0.44
 0.45
 0.46
 0.47
 0.48

Impact of τ and φ on Message Delivery Ratio

M
es

sa
ge

 D
el

iv
er

y
R

at
io

τ
φ

(a) Message Delivery Ratio

0.1
.2

0.30.33
 0.1

 0.2
 0.3

 0.4
 0.5

 4000

 6000

Impact of τ and φ on Message Delivery Time

A
ve

ra
ge

 M
es

sa
ge

 D
el

ay
 (

se
c)

τ
φ

(b) Message Delivery Time

0.1
.2

0.30.33
 0.1

 0.2
 0.3

 0.4
 0.5

 0
 20000
 40000
 60000
 80000

Impact of τ and φ on Admin Message Traffic

A
dm

in
 M

es
sa

ge
s

τ
φ

(c) Admin Message Traffic

Figure 4.2. Impact of τ and φ

provided at the conference was ideal for forming short-term dynamic groups. In contrast,

the Probabilistic Scheme had difficulty adjusting to the social groups that formed and took

too long to cascade the probabilities that would result from successful delivery. The results

indicate that DSG is comparable to the ideal routing method, and with considerably less

cost.

A cost comparison of the algorithms was performed in the TOSSIM simulation

using the PowerTOSSIMZ [18] model, as shown in Figure 4.4. The baseline shown in the

graph indicates the simulation’s power consumption when no routing occurs and serves

as a comparison point. We use this to find that the Dynamic Social Grouping’s cost is

16% of Epidemic’s cost and 18% of the base Probabilistic algorithm’s cost. This includes

92

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

DSG Probabilistic Epidemic

D
el

iv
er

y
R

at
io

 (
%

)

Routing Method

Comparison of Message Delivery Ratio

(a) Message Delivery Ratio

 4550

 4600

 4650

 4700

 4750

 4800

 4850

 4900

Social Probabilistic Epidemic

M
es

sa
ge

 D
el

iv
er

y
T

im
e

(s
ec

)

Routing Method

Comparison of Message Delivery Time

(b) Message Delivery Time

 580000

 600000

 620000

 640000

 660000

 680000

 700000

 720000

DSG Probabilistic Epidemic

M
es

sa
ge

s
S

en
t

Routing Method

Comparison of Total Message Traffic

(c) Total Message Traffic

Figure 4.3. Comparison of DSG, Probabilistic, and Epidemic for Base-Station Routing

the overhead from group management, such as group merge invitations, suggestions,

and membership updates, but not standard maintenance, such as neighbour discovery or

message generation.

When considering a routing algorithm for large-scale deployment, there is always

concern regarding how well the algorithm scales to a higher number of nodes. For this

reason, scalability experiments were performed to investigate how well the DSG algorithm

performs with different numbers of nodes. Because the experiment was performed using a

real-world dataset, it is impossible to add additional nodes to the experiment, but relatively

simple to randomly remove nodes from consideration. The results show that the ratios from

93

Figure 4.4. Comparison of DSG, Probabilistic, and Epidemic Power Consumption

the three algorithms tend to increase as the number of nodes increases, improving connec-

tivity, but the DSG algorithm does not show a marked improvement until the full 40 nodes

are in use (Figure 4.5(a)). This is because the same control variables are used throughout

the entire experiment set, from 5 to 40 nodes. As indicated earlier, the algorithm is sensitive

to the control variables used during execution (detailed in Table 4.1); using these variables

despite the different environments causes performance to fluctuate wildly. Nonetheless, the

cost of this system remains consistently lower than the alternatives (Figure 4.5(b)) because

of the nature of the administration traffic. As the number of nodes decreases, reducing node

connectivity, the administration overhead also decreases. Fewer groups are being formed,

merged, or updated. As the connectivity increases, the routing performance improves by

enough to offset the overhead.

94

(a) Comparison of Delivery Probability versus
Node Count

(b) Comparison of Total Message Traffic versus
Node Count

Figure 4.5. Scalability Experiments

95

5. ANALYSIS - DSG-N2

5.1. EXPERIMENTAL SETUP AND EVALUATION

DSG-N2 was first implemented in MATLAB to evaluate the control parameters and

as a proof of concept. After optimal values were determined, the algorithm was imple-

mented using TOSSIM, and a virtual hardware simulation was performed. Data were out-

put from the simulation depicting the time at which messages were generated and received,

the packet size of messages sent at each node to determine power consumption, the average

delivery time and the delivery ratio. The SimBet and Epidemic Routing Algorithms also

were implemented in the hardware simulation, and the results were compared to DSG-N2.

Other routing algorithms were reviewed, but they either use previous knowledge of the en-

vironment (Bubble Rap [12]) or solve different communication issues (Probabilistic [5],

which performs node-to-base-station communications). For these reasons, the SimBet and

Epidemic schemes were chosen as comparable algorithms.

96

5.2. SIMULATION DATA SOURCE

In order to test our algorithm in a simulated environment, a record of social inter-

actions was needed. The data used for these simulations originated from the MIT Reality

Dataset [19]. The study tracked 100 nodes (people) with cell phones and Bluetooth devices

over the course of 9 months. A set of Symbian-based phones was programmed to measure

contact data and messages, and participants were asked to carry and use them. Multiple so-

cial patterns developed between participants, which resulted in an ideal dataset for testing

social algorithms.

5.3. IMPACT OF α, φ, AND ψ

Based on the simulations, when ψ is low (Figure 5.1), the value of α will have no

effect on the delivery ratios because any node-to-node contact will result in a new group.

These groups do not accurately reflect social groups formed by nodes, thus lowering the

delivery ratio. As ψ increases (Figure 5.2), α will begin to behave differently and make

the groups more relevant. Based on current results, the best φ values seem to be midrange

because such values appear to hold probabilities between nodes at a relevant level. Con-

versely, it appears as if upper and lower bound values of φ hold onto or ignore the proba-

bility history, respectively.

Regarding delivery time, a low ψ will yield evenly-distributed results. This is due

to groups forming easily and nodes transmitting messages liberally rather than finding ef-

ficient delivery routes. When ψ is increased and φ is low, meaning that the probability

history is ignored, the delivery time will be lower at any α. The delivery ratio suffers due

to the contact history being ignored, but the average transmission time is better.

97

(a) Message Delivery Ratio (b) Message Delivery Time

Figure 5.1. Impact of α and φ with ψ = .1

(a) Message Delivery Ratio (b) Message Delivery Time

Figure 5.2. Impact of α and φ with ψ = .2

98

5.4. COMPARISON SIMULATIONS

With ideal control parameters tested, a simulation to compare the routing algorithms

was implemented. Epidemic and PRoPHET were implemented as a baseline comparison

and compared to DSG-N2 using both the Performance-Based Probability and the Contact-

Based Probability. In addition, the Hybrid Algorithm was tested. The results, as presented

in Figure 5.3, show that the Hybrid Method generally has the best tradeoff. While Epi-

demic’s delivery ratio of 95.5% is slightly higher than Hybrid’s 94.1%, it achieves this

ratio at the expense of 4 times as many message transmissions. In contrast, the PBP ver-

sion of DSG-N2 is by far the least burdensome to use, requiring only 22,797 transmissions

over a simulated 9 months, as opposed to PRoPHET’s 53,874. This performance bene-

fit has a tradeoff of a lower delivery ratio. These results are based on a relatively lower

message count - 6,400 messages constitute a poor basis of probability. In conclusion, the

Hybrid transmits the most messages, while the Performance-Based Probability is the most

energy efficient.

(a) Message Delivery Ratio (b) Message Delivery Time (c) Total Message Traffic

Figure 5.3. Comparison of DSG-N2, Hybrid, Epidemic, and PRoPHET for Node-to-Node
Routing

99

5.5. TINYOS SIMULATIONS

To validate the above simulations, the algorithms were simulated in a TOSSIM en-

vironment. This simulation tool allows individual nodes to track additional factors, such

as buffer overflow, message collision, and power consumption. Although it is infeasible to

implement for more complicated algorithms, it was used to validate the above results in a

realistic environment.

When simulating the Epidemic routing protocol, two cases were tested based on the

propagation distance. The baseline version limited the hop count to three, while the full

execution had an unlimited hop count for which messages only ceased when they expired.

SimBet was executed with default control parameters, and DSG-N2 with control parameters

of α = 0.4, φ = 0.6, and ψ = 0.3, based on optimal values found in MATLAB simulations.

As seen in Figure 5.4, DSG-N2 performed much better than both SimBet and Epidemic

Routing. Epidemic underperformed in the TOSSIM environment due primarily to the real-

istic implementation of limiting factors such as buffer sizes, message collision, and limited

message transmission time. Additionally, the Dynamic Social Grouping algorithm con-

sumed far less power (Figure 5.4(b)). Similarly, SimBet did not perform as well in regards

to both the delivery ratio and power consumption due primarily to the disconnected na-

ture of the environment. SimBet would perform optimally in a static or strongly connected

environment, which does not apply to the real-world dataset used.

5.6. COMPARISON TO ORACLE

The ideal routing algorithm will make its decision based on total knowledge of fu-

ture events. Its ability to identify the shortest, most reliable route makes the Oracle routing

algorithm a useful comparison tool for other algorithms [20]. Although impossible to im-

plement in real life, it is possible to use Oracle in simulation to compare its ideal routes to

another algorithm’s estimates. During simulation, measurements were taken periodically to

identify which nodes had the simplest, easiest path to a given destination. Similar measure-

100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

F
ul

ly
 E

pi
de

m
ic

E
pi

de
m

ic
 (

H
C

 3
)

S
im

B
et

D
S

G

P
er

ce
nt

ag
e

D
el

iv
er

ed

Delivery Ratio

(a) Message Delivery Ratio (b) Power

Figure 5.4. Comparison of DSG-N2 Routing, SimBet, and Epidemic Routing

ments were taken during DSG-N2 simulations to identify what the algorithm identified as

the ideal path. For comparison, PRoPHET also was submitted to identify which nodes were

more capable of delivering a message. The lists then were compared to identify how many

’swaps’ would be necessary to make the probability metrics identical to the ideal case; a

higher swap count indicates that the simulations did not reflect an accurate measurement

of ’real’ probability. The results, shown in Figure 5.5, show that the DSG-N2 matches the

ideal Oracle routing scheme, having a value equal to Oracle’s ideal route in 86.23% of the

cases, as opposed to PRoPHET’s 64.98%.

101

Figure 5.5. Comparison of DSG-N2 and PRoPHET to Oracle

102

6. CONCLUSION

The Dynamic Social Grouping (DSG) algorithm has been shown to provide a signifi-

cant increase in efficiency over Probabilistic routing and Epidemic routing, while Dynamic

Social Grouping with Node-to-Node Transmissions (DSG-N2) performs better than Sim-

Bet and Epidemic routing in an applicable social environment. While maintaining a lower

overhead, the grouping methods described achieve as high a message delivery ratio and as

low a delivery time as can be expected. This will lead to better data aggregation and longer

battery life, both of which are primary goals in modern wireless sensor networks.

Further research remains to be conducted to consider the implications of alternative

merge methods. The current method using a simple ratio depicting commonality may not

be optimal, and experiments in alternative methods may provide further improvement. The

current method may also be improved by introducing a load-balancing method to equal-

ize the drain on commonly-used nodes, further improving the network’s lifespan. Load-

balancing techniques also can change the clusterhead to distribute the energy drain among

the group. A final improvement to consider is the expansion of this algorithm to include

point-to-point communication, allowing it to impact a wider range of applications.

103

7. ACKNOWLEDGEMENTS

We would like to thank James M. Bridges, Andrew Wilson, George Rush and Abbey

Trotta for their hard work on implementing the simulations.

104

8. BIBLIOGRAPHY

[1] W. Chen, R. K. Guha, T. J. Kwon, J. Lee, and Y.-Y. Hsu, “A survey and challenges in
routing and data dissemination in vehicular ad hoc networks,” Wireless Communica-
tions and Mobile Computing, vol. 11, no. 7, pp. 787–795, 2011.

[2] C.-M. Cheng, P.-H. Hsiao, H. T. Kung, and D. Vlah, “Maximizing throughput of
UAV-relaying networks with the load-carry-and-deliver paradigm,” in Proceedings of
the 2007 IEEE Wireless Communications and Networking Conference (WCNC 2007),
Kowloon, China, Mar. 2007, pp. 4417–4424. [Online]. Available: http:
//dx.doi.org/10.1109/WCNC.2007.805

[3] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: design tradeoffs and early
experiences with zebranet,” SIGOPS Oper. Syst. Rev., vol. 36, no. 5, pp. 96–107, Oct.
2002. [Online]. Available: http://doi.acm.org/10.1145/635508.605408

[4] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” SIGCOMM
Comput. Commun. Rev., vol. 34, no. 4, pp. 145–158, Aug. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1030194.1015484

[5] Y. Wang and H. Wu, “Delay/fault-tolerant mobile sensor network (dft-msn): A new
paradigm for pervasive information gathering,” IEEE Transactions on Mobile Com-
puting, vol. 6, no. 9, pp. 1021–1034, 2007.

[6] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of Predictability in
Human Mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, Feb. 2010. [Online].
Available: http://dx.doi.org/10.1126/science.1177170

[7] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,”
Duke University, Tech. Rep., 2000.

[8] E. M. Daly and M. Haahr, “Social network analysis for routing in disconnected delay-
tolerant manets,” New York, NY, USA, pp. 32–40, 2007.

[9] E. P. Jones and P. A. Ward, “Routing strategies for delay-tolerant networks,” Submit-
ted to ACM Computer Communication Review (CCR), 2006.

[10] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “Maxprop: Routing for vehicle-
based disruption-tolerant networks,” in INFOCOM, 2006.

[11] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in intermittently con-
nected networks,” in SIGMOBILE Mobile Computing and Communication Review,

http://dx.doi.org/10.1109/WCNC.2007.805
http://dx.doi.org/10.1109/WCNC.2007.805
http://doi.acm.org/10.1145/635508.605408
http://doi.acm.org/10.1145/1030194.1015484
http://dx.doi.org/10.1126/science.1177170

105

2004, p. 2003.

[12] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forwarding in delay
tolerant networks,” pp. 241–250, 2008.

[13] P. Costa, C. Mascolo, M. Musolesi, and G. Picco, “Socially-aware routing for publish-
subscribe in delay-tolerant mobile ad hoc networks,” Selected Areas in Communica-
tions, IEEE Journal on, vol. 26, no. 5, pp. 748–760, June 2008.

[14] J. A. Bitsch Link, N. Viol, A. Goliath, and K. Wehrle, “Simbetage: utilizing temporal
changes in social networks for pocket switched networks,” in U-NET ’09: Proceed-
ings of the 1st ACM workshop on User-provided networking: challenges and oppor-
tunities. New York, NY, USA: ACM, 2009, pp. 13–18.

[15] H. Dang and H. Wu, “Clustering and cluster-based routing protocol for delay-tolerant
mobile networks,” IEEE Transactions on Wireless Communications, vol. 9, no. 6, pp.
1874–1881, 2010.

[16] R. Cabaniss, S. Madria, G. Rush, A. Trotta, and S. S. Vulli, “Dynamic social grouping
based routing in a mobile ad-hoc network,” in HiPC, 2010, pp. 1–8.

[17] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD data set cambridge/haggle (v. 2009-05-29),” Downloaded from
http://crawdad.cs.dartmouth.edu/cambridge/haggle, May 2009.

[18] E. Perla, A. O. Catháin, R. S. Carbajo, M. Huggard, and C. Mc Goldrick, “Power-
tossim z: realistic energy modelling for wireless sensor network environments,” in
PM2HW2N ’08: Proceedings of the 3nd ACM workshop on Performance monitoring
and measurement of heterogeneous wireless and wired networks. New York, NY,
USA: ACM, 2008, pp. 35–42.

[19] N. Eagle, A. Pentland, and D. Lazer, “Inferring social network structure using mobile
phone data,” Downloaded from http://reality.media.mit.edu/download.php, pp. 15 274
– 15 278, 2009.

[20] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Single-copy routing in intermit-
tently connected mobile networks,” in In IEEE SECON, 2004, pp. 235–244.

106

IV. Three Point Encryption (3PE) - Secure Communications in Delay Tolerant

Networks

Roy Cabaniss, Vimal Kumar, and Sanjay Madria

Department of Computer Science

Missouri University of Science & Technology, Rolla, Missouri 65401

Mobile Ad Hoc Networks (MANET) are a subset of Delay Tolerant Networks

(DTNs) composed of several mobile devices. These dynamic environments make con-

ventional security algorithms unreliable; nodes located far apart from each other may not

have access (available) to each other’s public keys or have doubt on validity of the public-

key, making secure message exchange difficult. Furthermore, ad hoc networks are likely

to be highly compromised and therefore may be untrusted. Other security methods, such

as identity-based encryption and Kerberos, rely on requesting key data from a trusted third

party, which can be unavailable or compromised in a DTN-like environment. The purpose

of this paper is to introduce two security overlay networks capable of delivering messages

securely, preventing both eavesdropping and alteration of messages. The first algorithm,

Chaining, uses multiple midpoints to re-encrypt the message for the destination node. The

second, Fragmenting, separates the message key into pieces that are routed and secured

independently from each other. Both techniques improve security in hostile environments;

under test conditions, Chaining reduces the number of messages intercepted by 90%, and

Fragmenting by 83%. This improvement has a performance trade-off, however, reducing

the delivery ratio by 63% in both algorithms.

107

1. INTRODUCTION

Secure communication is a base requirement for many wireless computing applica-

tions. Thus, any effective Delay Tolerant Networking (DTN) implementation must have

a security system capable of routing messages without allowing an adversary to access

or modify those messages. With the advent of public-key cryptography, private commu-

nication without any direct interaction is now feasible by providing the public key over

unsecured networks. To communicate securely, the origin node must verify the key’s as-

sociation with the destination. In conventional communications, this problem is solved by

using a trusted key repository to store and verify the keys used. However, this technique is

infeasible in dynamic DTN in which the trusted party may be unreachable. This limitation

forces nodes to handle their own key distribution and verification [1].

Methods are available that verify a node’s identity, ranging from the very low tech

(physical contact) to the more sophisticated (measuring the performance traits of the de-

vices) [2]. However, these methods require point-to-point contact and therefore are difficult

over any distance. When a node wants to send a message to another in direct contact or

has already stored the destination’s public key, the problem of secure transmission is triv-

ial. However, in a DTN, validation of a public key [3] may not be feasible. Also, in DTN

networks, connections can be short-lived and message delivery may get delayed. Thus,

public keys may be inaccessible or untrusted. In such an environment, a node can encrypt

a message with a key of a trusted node or multiple semi-trusted nodes and these nodes will

be responsible for secure delivery of messages when connections are established. The in-

tent of Three Point Encryption (3PE) is to send a message securely to a destination without

having access to the destination’s public key for reasons explained above. This task is per-

formed by routing the message through the keys of other nodes and asking the midpoint to

re-encrypt the message for the destination node.

108

This algorithm could possibly be applied to the task of routing messages securely

through a series of allies (any of whom may or may not be compromised). If a member of

the Red army wishes to communicate securely with another Red, he can do so using his

public key, which he should already have. If he wants to communicate with a member of

the Blue army, however, he may not have the key available or trust the public key. Rather

than wait for direct contact with the destination to obtain the key, he can route the message

through a series of members to ensure its security. Additional applications include a user

in a battlefield trying to communicate when surrounded by untrusted nodes, and secure

interactions between independently deployed wireless sensor fields.

The objective of this paper is to analyze two 3PE schemes: Chaining (Section 3.1)

and Fragmenting (Section 3.2) in a DTN environment for secure delivery of messages. The

chaining algorithm secures messages by sending them through a series of midpoints in the

delay tolerant network; each midpoint must decrypt and re-encrypt the message before for-

warding it to the final destination. Because the message is always encrypted with multiple

layers, no midpoint will have access to the original message. The fragmenting algorithm

functions similarly, sending the message through multiple midpoints in parallel. The mes-

sage is broken into several fragments. Any node attempting to read the original message

must have access to many (although not necessarily all) of the fragments. Simulation results

(shown in Section 6) indicate that these schemes increase security significantly. Chaining

reduces the number of compromised messages by as much as 90%, while fragmenting does

so by 83%. However, there is a trade-off of reduced performance and reliability in terms of

message delivery ratio.

109

2. BACKGROUND

A wide variety of advanced encryption methods are available to enable secure com-

munications. Key distribution techniques give nodes access to public keys in the network.

Our algorithms approach the problem of secure communications by expanding on these

base methods.

2.1. COMMUTATIVE ENCRYPTION

Encryption algorithms, by definition, convert a coherent message into an unreadable

ciphertext. Normally, when two encryption keys can be used on the same message, they

must be encrypted and decrypted in a last-in-first-off order. Otherwise, the result is in-

comprehensible. Commutative encryption is a class of encryption algorithms that can be

applied and removed in an arbitrary order, as shown in Eqn 1.

decA(encB(encA(msg))) = encB(msg) (1)

This class of encryption techniques allows multiple encryptions to be applied to a message,

thereby increasing the security of the system. Sample commutative encryption techniques

include the Shamir algorithm [4], the Massey-Omura algorithm [5], and the El-Gamal re-

encryption scheme[6].

2.2. THRESHOLD ENCRYPTION

Delay Tolerant Networks (DTNs) are designed to work in unreliable environments

in which messages are corrupted or dropped. While this unreliability can be reduced by

both message replication and resubmission, these solutions complicate security. Alternative

methods can be used to allow a message to be decrypted if portions of the original key are

lost. Using Shamir’s (k,n) scheme [7], a message can be encrypted with n keys, requiring k

110

shares to decrypt (where k is always less than or equal to n). This technique allows complex

security systems to be implemented in unreliable networks.

2.3. ONION ROUTING

Onion routing, developed by Syverson et al. [8], allows secure, anonymous commu-

nications in a static network. This method is based on establishing secure communications

through a series of proxies, each of which only knows their incoming and outgoing proxy.

By limiting data, traffic is forwarded without the destination being aware of the source of

the messages, and without any of the nodes along the route being aware of the message’s

contents. This technique has been implemented in the Tor anonymity network, a series of

computers that act as proxies for onion routing. The algorithm cannot be implemented in

a MANET due to the unavailable or untrusted list of secure nodes; however, it serves as

a demonstration of multiple midpoint encryption, which was expanded upon to design the

chaining encryption technique.

2.4. ENPASSANT

Node mobility means that proxies may be unavailable or, at the very least, expensive

to reach when implementing Tor in a DTN. The designers of the EnPassant [9] scheme

expanded on the onion routing scheme with groups of proxies. Both the delivery time and

ratio improve because any group members are allowed to act as a proxy, both decrypting

and forwarding a data stream. Anonymity is preserved by forcing a message to follow

indirect routes. This scheme is functional, but only under certain assumptions regarding

the attacker. First, this scheme is very vulnerable to global eavesdropping adversaries; if

all messages can be followed through the midpoints, randomizing the route has no benefit as

the messages still can be tracked. This is a general weakness among DTN security schemes,

however. A larger issue is that using group keys makes the scheme very vulnerable to

Byzantine attacks [10]. A single compromised node jeopardizes the security of the entire

111

group. If a member of each group is compromised, all traffic can be tracked. Despite these

vulnerabilities, this scheme prevents traffic analyses fairly well.

2.5. SOCIAL CONTACTS FOR MESSAGE CONFIDENTIALITY

El Defrawy et al. [11] proposed a method by which to securely communicate mes-

sages in a DTN. With this algorithm, a node lacking the destination’s public key can encrypt

the message with the public keys of several nodes near the destination, in terms of either

physical proximity or contact frequency. While secure, this algorithm has the issue of hav-

ing to maintain contact information for several nodes in the network. Another algorithm

proposed for comparison, the Poor Man’s Approach, fractures the key into several parts.

Each fragment follows a different route to the destination. The random key then is split

into several other sub-keys such that all fragments must be accessed to retrieve the original

message. Using a bitwise XOR is the easiest method (K = K1⊕K2⊕K3...). The encrypted

message and all of the fragments are sent directly to the destination, but with a time lag

so that each fragment will follow a different route. The purpose is to ensure that only the

destination node receives all key fragments. If an adversary can monitor all transmissions

(either by global eavesdropping or by being located on the sole path between the nodes),

it can retrieve the key as easily as the destination can. This method, expanded on by the

3PE algorithm, is simple to implement but is only secure as long as the routing algorithm

forwards each fragment independently. Even with these limitations, these approaches to

keyless secure communication serve as a foundation for future algorithms.

112

3. PROPOSED ALGORITHM

The algorithms presented in this section are designed to function in large-scale DTNs.

They assume that the message will be processed by untrusted nodes (hence the need for

encryption at every step). Each node keeps a subset of the public keys available, referred

to as the keychain, maintained by any number of key distribution techniques [13] [14]

[15]. The following subsections describe the algorithms designed to use partial keychains

to improve message confidentiality.

3.1. CHAINING ENCRYPTION

Chaining encryption forces the algorithm to route through k randomly selected nodes,

known as links, without allowing any links to access the plaintext. The original message is

first encrypted with the public key of each link and then routed to the nearest link. At each

link, that node’s encryption layer is removed. If the link has access to the final destination’s

public key, then the message is encrypted with it. Otherwise, the link encrypts the message

for a node in its keychain, adding that node to the link chain. Only when each layer has

been replaced with the final destination’s key can the message be forwarded to the endpoint.

Once there, it is decrypted k times, each time removing a layer of encryption from the

message. Pseudocode for this method can be found in Algorithm 21.

This method is very secure, avoiding pitfalls inherent to the normal key-exchange

sequence and fragmentation method. The only way it can be broken is if all of the links

are compromised by an adversary. Another advantage is that it can be either scaled up

for high-risk networks or down for more casual security by changing the number of links

required. The trade-off is that this algorithm requires a message to travel to numerous

midpoints, increasing the message delivery time considerably. Another trade-off is that

a link compromised by the adversary can stop message delivery. The compromised link

113

either can refuse to forward a message or can reencrypt it with its own key. The latter can

allow the adversary to read the message if all of the link’s encryption layers are replaced

with the adversary’s. If the message uses a compromised node as a link, the message cannot

be read by the adversary unless all links are compromised. However, it cannot be read by

the destination either, resulting in a dropped message.

For example, Alice, a member of the Red army, sends a secure message to Bob, a

member of the Blue army. If Alice possesses Bob’s public key, she simply encrypts the

message and forwards it. Failing that, she may attempt normal key distribution techniques,

asking other members of the Red army (who she assumes are trusted) if they have the desti-

nation key. If they do not, she will select two midpoints, Chuck and David (Alice must pos-

sess the public key for both), and encrypt the message for both - encChuck(encDavid(Msg)).

Because she may not trust them, she layers the encryption to ensure that the message cannot

be read by either party. The message is routed to Chuck first simply by virtue of his prox-

imity. Chuck then removes his layer of encryption, leaving encDavid(Msg). Chuck cannot

read the message, so he obeys the protocol, re-encrypts it with Bob’s key, and forwards it to

David - encBob(encDavid(Msg)). David cannot read the message either, so he follows the al-

gorithm, removing his layer of encryption and forwarding it to Bob - encBob(encBob(Msg)).

Once Bob receives the message, he has no problem removing both layers of encryption and

retrieving the original message.

This example of execution changes if one of the midpoints is compromised. If

Chuck had been compromised, he would not have encrypted the message for Bob. Even

if Chuck cannot read the message, he can refuse to forward it, causing the message de-

livery to fail. If he wants to read the message, he can re-encrypt it with the adversary

key and forward it to David - encAdv(encDavid(Msg)). David, in this case, does not pos-

sess Bob’s public key. Thus, he randomly selects midpoint Eric, forwarding the message

on - encEric(encAdv(Msg)). If Eric is compromised and working with Chuck, he can re-

move his layer of encryption and Chuck’s adversary key to retrieve the original message.

114

Only through their collaboration can the message be compromised. If Eric is not compro-

mised, he removes his layer of encryption, encrypts the message for Bob, and forwards it

- encBob(encAdv(Msg)). In this case (when a portion of the chain was compromised), the

final intended destination cannot read the message, but neither can the adversary.

The chaining method, therefore, has three possible outcomes. If all midpoints are un-

compromised, the message is delivered successfully and securely. When all members are

both compromised and collaborating, the message is compromised. If some are compro-

mised and some not, or if they are not collaborating, the message delivery fails - a midpoint

either refuses to forward the message or encrypts it with the wrong key. A detailed look at

these relative probabilities is presented in Section 4.

3.2. FRAGMENTING ENCRYPTION

The trade-off for chaining encryption’s increased security is its significantly increased

delivery time. The fragmenting encryption method, rather than sending messages sequen-

tially through links, will fragment the message into different pieces. Using threshold en-

cryption, the message is encrypted into several subkeys. This allows the final destination

to decrypt the message even if fragments are compromised by the adversary or dropped.

Each fragment is encrypted and forwarded through a single link. Because each fragment

is routed through a single midpoint, this technique takes less delivery time than chaining.

Pseudocode for this method can be found in Algorithm 22.

One drawback of the fragmented method is that threshold encryption makes it less

secure than chaining. Also, the adversary can read the original message if enough of the

fragments are sent through compromised nodes. Additionally, because a copy of the mes-

sage must be sent with each fragment, the system’s energy costs are considerably higher.

Section 4 offers detailed information regarding these trade-offs.

A performance weakness in the scheme is that the midpoint is selected randomly from

the available keychain rather than from among those related to either the origin or desti-

115

Algorithm 21 Chained Encryption
Notation
k - The number of links through which a message must be routed
NodeOrigin - Origin of msg
msgdest - Final destination of msg
plaintext - Original message to be sent to msgdest
NodeA - Arbitrary node in MANET
KeychainA - Set of Public Keys to which NodeA has access
EncA(text) - Encrypted form of text using public key of NodeA
DecA(text) - Decrypted form of text using private key NodeA

Trigger - NodeOrigin wants to send msg to Nodedest
msgtext ← plaintext
for i = 1→ k do

Nodei← Random Node from KeychainOrigin
msgmid ← msgmid ∪Nodei
msgtext ← EncNodei(msgtext)
/* Message is now encrypted commutatively */

end for
Route to nearest node in msgmid

Trigger - NodeA receives msg
if NodeA = msgdest&&msgmid = /0 then

for i = 1→ k do
msgtext ← Decdest(msgtext)

end for
Message has been delivered

else
if NodeA ∈ msgmid then

msgmid ← msgmid−NodeA
msgtext ← DecA(msgtext)
msgtext ← DecA(msgtext)
/* Since msg was encrypted commutatively,

order of node delivery / decryption is irrelevant */
if msgdest ∈ KeychainA then

msgtext ← Encmsgdest (msgtext)
else

Nodei← Random Node from KeychainA
msgmid ← msgmid ∪Nodei
msgtext ← EncNodei(msgtext)

end if
end if
Route to nearest node in msgmid

end if

116

Algorithm 22 Fragment Encryption
Notation
NodeOrigin - Origin of msg
plaintext - Original message to be sent to msgdest
KeychainA - Set of Public Keys to which NodeA has access
Nodes use T hreshold(k,n) algorithm

EncT HencKeyset(text) - Encrypts text using Threshold encryption.
DecT HdecKeyset(text) - Decrypts text using Threshold encryption.
decKeyset must contain at least k keys of original encKeyset
Keyi - Fragment i of a total of n fragments.

msgFrag - Message Fragment. Contains...
msgFragtext - encrypted original message
msgFragkey - One key for encrypted message
msgFragdest - Final destination of message
msgFragmid - Midpoint of this fragment

RcvdKeys - Keys received by Nodedest , initially /0

Trigger - NodeOrigin wants to send message plaintext to msgdest
Generate random keys {Key1,Key2, ...,Keyn}
for i = 1→ n do

Node j← Random Node from KeychainOrigin

Generate new message fragment msgFrag
/* In message, include encrypted form of original plaintext and Keyi */
msgFragtext ← EncT HKey1..n(plainText)
msgFragkey← Enc j(Keyi)
msgFragdest ← msgdest
msgFragmid ← j
Send msgFrag to Node j

end for

Trigger - NodeA receives msgFrag, A = msgFragmid
if msgFragdest ∈ KeyChainA then

msgFragkey← Encdest(DecA(msgkey))
/* At this point, Encdest(DecA(msgkey)) = Encdest(Keyi) */
msgFragmid ← /0

Send msgFrag to Nodedest
else

msgFragmid ← Random Node from KeychainA

msgFragkey← Encmid(DecA(msgkey))
/* At this point, Encmid(DecA(msgkey)) = Encmid(Keyi) */
Send msgFrag to msgFragmid

end if

Trigger - Nodedest receives msgFrag, msgFragmid = /0

RcvdKeys← RcvdKeys∪Decdest(msgFragkey)
if |RcvdKeys|= k then

/* Nodedest has enough keys to decrypt the message */
plaintext← DecT HRcvdKeys(msgFragtext)
Message has been delivered

end if

117

nation of the message. While this selection technique reduces performance by potentially

sending messages from one end of the network to the other, it is necessary for security. Any

metric that would allow nodes to identify themselves as high-value midpoints would allow

adversaries to falsely identify themselves, resulting in a large number of messages routing

through compromised nodes. For this reason, midpoints are chosen randomly, rather than

using any awareness of the environment.

Consider that Alice again wants to send a message securely to Bob. Lacking the pub-

lic key, Alice encrypts the message using threshold encryption. Three keys are generated,

two of which must be possessed to read the message - enck1,k2,k3(Msg). The encrypted mes-

sage is sent to each of the three untrusted midpoints, Chuck, David, and Eric, along with a

copy of a single key encrypted with that army’s public key - encChuck(k1),enck1,k2,k3(Msg)

is sent to Chuck, and so forth. Each midpoint, upon receiving the message, should decrypt

the key, then encrypt it with Bob’s public key, and finally forward the message to Bob -

encBob(k1),enck1,k2,k3(Msg). If Chuck has been compromised, he can access a single key

that is insufficient for reading the message. This demonstrates the trade-off between se-

curity and reliability; by forcing the message to require a larger number of keys in order

to be read (such as needing three out of four created keys, for example) the algorithm is

more secure. A larger number of midpoints must be compromised by the adversary before

it is able to read the original message. This increases security at the cost of preventing the

destination from reading the message until it receives more of the keys, thus limiting both

its successful delivery ratio and its time to delivery.

118

4. TIME AND ENERGY ANALYSIS

The cost of both implementing and maintaining a security infrastructure is a critical

consideration. Thus, this section contains an analysis of both the expected time required to

deliver a message and the cost of said delivery for both chained and fragmented encryption.

For comparison, an overview of the null security scheme and the key-request scheme (also

referred to as the reflection scheme) also is provided.

Although the total source-to-destination cost of a message is based on the routing al-

gorithm rather than the security system, the costs will still increase when a message must be

re-encrypted and forwarded multiple times 1. The exception to this is null security, which

will only encrypt a message if it already has the key immediately available. Otherwise, the

message will be sent in plaintext. The energy cost to transmit this message is simply the

cost required to forward a given message based on the routing protocol - E(J). Similarly,

the time required to deliver a message, T , is based solely on the routing method used -

E(T). Both the distribution and expected values of J and T are undefined because they can

change based on the protocol used. A list of the symbols used for comparison can be found

in Table 4.1.

A major factor influencing the efficiency of a security schema is the probability that

any given node will have the public key of any other node. Such techniques as caching and

distribution can increase this probability but generally have their own security risks [16].

For the purpose of these calculations, the probability that a node will contain another node’s

key is assumed to be independent of neighboring nodes. Intelligent caching schemes, for

instance, are implemented such that if a node does not have a key, nearby nodes are more

likely to have them. Naive caching schemes tend to fill the local keyspace with the first keys

available, which means that nearby nodes likely will not have the key. As the probability

1The costs of encrypting the message are negligible compared to the transmission costs. During experi-
ments with Mica2 nodes, for example, encrypting a 1kB message required 12.96µJ. Transmitting the message
required 1.5mJ.

119

of codependence is a function of the distribution and mobility schemes, for calculation

purposes they are assumed to be independent.

Table 4.1. 3PE Variable Reference Chart
Pkey Probability that a node chosen at random has the Public Key for another

node chosen at random
E(T) Expected time for the routing algorithm to deliver a message from src

to dest
Ereq(T) Expected time for Key Request scheme to securely deliver msg
Echain(T) Expected time for Chaining scheme to securely deliver msg
E f rag(T) Expected time for Fragmenting scheme to securely deliver msg
E(J) Expected energy cost for the routing algorithm to deliver a message

from src to dest
Ereq(J) Expected energy cost for Key Request scheme to deliver msg
Echain(J) Expected energy cost for Chaining scheme to deliver msg
E f rag(J) Expected energy cost for Fragmenting scheme to deliver msg

4.1. KEY REQUEST ANALYSIS

The key-request scheme begins by determining whether or not the node has the key

for the destination in question. If it does, the algorithm simply sends the encrypted message.

Otherwise, it sends a key request to the destination, along with the public key. Then, the

destination node sends an encrypted, symmetric key back to the source, where the original

message is encrypted and sent. The expected energy cost and required transmission time

therefore are based on the probability that the source already has the destination’s key,

represented as Pkey.

Ereq(J) = Pkey ∗E(J)+(1−Pkey)∗3∗E(J)

Ereq(T) = Pkey ∗E(T)+(1−Pkey)∗3∗E(T)

120

For comparison purposes, consider a large-scale environment in which nodes are

capable of carrying 30% of the total number of public keys. In such a network, 30% of the

messages will be delivered in a single origin-to-destination transmission. The other 70%

will require three such transmissions. Messages thus have an expected delay and cost of

2.4 times that of a single transmission - Ereq(J) = .3∗E(J)+ .7∗3∗E(J) = 2.4E(J).

4.2. CHAINING ANALYSIS

Similar to the key-request scheme, the chaining method begins by determining

whether or not the source has the destination’s key. If it does not, it selects k midpoints,

as described in Algorithm 21. This analysis is based on k being two nodes, although a

system with better security will have a higher k. The expected hop count is based on how

many nodes the message must visit before it is received by k nodes that have the destination

key. The probability that the hop count is equal to the probability of the source having the

key for the destination is P(HC = 1) = Pkey. For the hop count to be 3, the first node will

not have the key. Both midpoints will, however, and therefore they will not redirect the

message at all. The probability of this is P(HC = 3) = (1−Pkey)∗Pkey ∗Pkey. For the hop

count to exceed three, either of the midpoints must be forced to redirect the message. The

number of redirects is equal to the hop count minus 2, including the source’s redirect to the

two midpoints. A summary of these events can be found on Table 4.2.

The expected number of node-to-node messages can be derived when the probability

of the various hop counts is known. The expected delivery cost and time can be calculated

from the hop count.

121

Table 4.2. Chaining Algorithm Events
Event Expected Delivery

Time
Probability

Src Node has Keydest E(T) Pkey
Src does not have Keydest , both
Chosen Links have Keydest

3E(T) PkeyP2
key

Src does not have Keydest 4E(T) Pkey ∗Pkey ∗Pkey ∗Pkey+
One link must redirect once Pkey ∗PkeyPkey ∗Pkey

= 2Pkey
2 ∗P2

key

Links must redirect j times (j+3)E(T) Pdest
j+1P2

dest

Echain(T) = E(T)×

(
Pkey +

∞

∑
i=3

i∗ (i−2)∗ (1−Pkey)
i−2 ∗P2

key

)

= E(T)×

(
Pkey +

2−5∗Pkey +3P2
key +P3

key−P4
key

(1−Pkey)2 ∗Pkey

)

Echain(J) = E(J)∗

(
Pkey +

2−5∗Pkey +3P2
key +P3

key−P4
key

(1−Pkey)2 ∗Pkey

)

Because the algorithm is based on a single message being forwarded through numer-

ous midpoints, both the expected delivery time and energy cost are based directly on the

hop count. For purposes of comparison, when an individual node can carry 30% of the

public keys in the network, the average hop count is 52
3 .

4.3. FRAGMENTED ANALYSIS

Fragmented encryption is the first algorithm discussed in which the delivery time

and the energy consumed are not directly proportional. As in the chaining algorithm, the

message routes through a set number of midpoints and continues routing until all fragments

are received. For this reason, the energy cost is nearly identical to chaining; only the

122

number of fragments is different. The following equations assume that three fragments

are sent to the destination, two of which are needed to decrypt the message. In order to

send only the message through a single hop, the source node must have the destination key,

so P(HC = 1) = Pkey; otherwise, there will be at least six transmissions - the source will

send the message to each of the three midpoints, and each of those three will send it to the

destination if all three have the key - P(HC = 6) = (1−Pkey) ∗P3
key. If a single midpoint

must redirect, the hop count is 7, and the probability of all three midpoints redirecting is

P(HC = 7) = 3(1−Pkey)
2P3

key.

P(HC = 1) = Pkey

P(HC = 6) = (1−Pkey)∗P3
key

P(HC = 7) = 3(1−Pkey)
2 ∗P3

key

P(HC = i) =
(i−4)(i−5)

2
(1−Pkey)

i−5 ∗P3
key

This allows us to track the total number of transmissions, which in turn is used to calculate

the total energy consumed per message.

E f rag(J) = E(J)×(
Pkey +

∞

∑
i=6

i∗ (i−4)(i−5)
2

(1−Pkey)
i−5 ∗P3

key

)

= E(J)
(

3
Pkey
−2∗Pkey

)

Using the previous 30% example, this method will require each message to be trans-

mitted an expected 9.1 times before all fragments are delivered.

123

Because the fragmented encryption scheme sends each message independently of the

others, the total delivery time is actually much shorter. Considering the example in which

three fragments are sent, two of which are needed to decrypt the message, the delay will be

the time the second fragment takes to reach the destination. Each fragment has a minimum

of two hops - one to reach the midpoint, and another to be forwarded to the destination.

If the fragment must be redirected to find the destination key, another hop is added. This

means that the probability of two fragments reaching the destination in two hops is the

probability of all three midpoints immediately having the key, or two of the midpoints

having the key and the third midpoint being greater. P(HC = 2) = Pkey ∗Pkey ∗Pkey +Pkey ∗

Pkey ∗ (1−Pkey). This can be expanded to show the fragment’s hop-count probability.

P(HC = i) = Pkey× (1−Pkey)
i−2

P(HC > i) = (1−Pkey)
i−1

P(HC < i) = 1−P(HC = i)−P(HC > i)

= 1−Pkey ∗ (1−Pkey)
i−2− (1−Pkey)

i−1

Calculating the hop count of the message is feasible when the individual fragment’s

hop count is known. A message will be delivered in i hops if one fragment is delivered

in exactly i hops, one fragment is delivered in i or less hops, and the third is delivered

in i or more hops (independent of order). There are four discrete possibilities: 1) All

three fragments can be delivered in exactly i hops, 2) Any one of the fragments can be

delivered in less than i hops (because it does not matter which fragment is delivered, three

combinations exist), 3) Any one can be delivered in more than i hops, and 4) One can be

delivered in less than i hops, while another is delivered in greater than i hops (likewise, this

distribution can occur in six different ways). These possible delivery hop counts, shown in

124

Eqn. 2, can be used to derive the expected delivery time of the fragmented method, shown

in Eqn. 3.

P(HCmsg = i) = P(HC = i)3 +

3∗P(HC < i)∗P(HC = i)2 +

3∗P(HC = i)2 ∗P(HC > i)+

6∗P(HC < i)∗P(HC = i)∗P(HC > i)

(2)

E f rag(T) = E(T)
P4

key−2P3
key +5P2

key +Pkey−5

P4
key−5P3

key +9P2
key−6Pkey

(3)

To follow our original example, the fragmenting security scheme, with each node car-

rying 30% of the total number of keys in the system, will deliver a message in roughly 3.84

hops. This analysis confirms our earlier assertion that this scheme will deliver a message

in much less time than the chaining method, but with more energy consumption. Compar-

isons showing how the energy costs and delivery times vary with the Pkey can be found in

Figure 4.3.

125

(a) Increased Energy Cost (b) Increase of Time to Deliver

Figure 4.1. Expected Performance Comparison

126

5. SECURITY ANALYSIS

The purpose of 3PE techniques is to provide security in unreliable networks. In en-

vironments with either unreliable, easily-compromised communications or nodes that have

been compromised by an adversary, both chaining and fragmentation provide some mea-

sure of security, but at the cost of reduced performance and increased energy consumption.

The conditions under which 3PE fails must be determined to identify whether or not these

techniques are beneficial despite their drawbacks.

Certain assumptions were made in evaluating the system. For example, the encryp-

tion method itself was considered secure. The network uses a node identification method

that functions while the nodes are in direct contact. A certain percentage of the nodes, how-

ever, were assumed to have been compromised by an adversary. Another assumption was

that messages were compromised if they were sent without encryption, even if they did not

pass through a compromised node. However, in the simulations in Section 6, a link-layer

encryption scheme was implemented, securing messages unless they were routed through

compromised nodes.

5.1. NULL ENCRYPTION

Despite the title, the base security infrastructure will encrypt all of the messages it

can. If a node does not have the public key, it will send the message unencrypted. Due to

an adversary’s ability to eavesdrop, a message can be read any time the source key does not

have the destination key. Thus, a linear relationship exists between the number of keys a

single node possesses and the number of compromised messages (Fig. 5.1).

127

(a) Message Delivery Rate (b) Compromised Message Rate

Figure 5.1. Null / Key Request Security Analysis

5.2. KEY-REQUEST SCHEME

A key-request scheme generally is broken by a man-in-the-middle attack, which is

more difficult to implement in a MANET. Because nodes are mobile, messages tend not to

follow the same message route continuously. The required position between the source and

the destination is therefore more difficult to maintain. In practice, this means that a com-

promised node must lie somewhere on the path of the original key request (so the adversary

can alter the public key), on the path of the reply containing the symmetric key (to read the

encrypted key), and on the path of the encrypted message. Because the compromised nodes

work together, message security can be violated if one node on each path is compromised.

However, if it has a dedicated communication channel, an eavesdropping adversary can re-

ply to the source node with false key information immediately upon the message being sent.

This attack renders the key-request scheme no more secure than employing no encryption

scheme at all, although the attack is more difficult to implement.

128

5.3. CHAINING ANALYSIS

The major advantage of the chaining method is that all messages are encrypted in one

form or another. Eavesdropping attacks are thus rendered useless, so an adversary must rely

on compromised nodes to intercept any traffic. To determine the security of this scheme,

a Markov State process was used to simulate the current message status (Figure 5.3). A

message is sent securely from its origin to the destination only if the origin node already

possessed the key. Otherwise, the node uses the chaining algorithm, sending the message

to the first link on the chain. The first link will either be compromised by the adversary,

have the destination’s public key, or redirect the message to another link.

Figure 5.2. 2-Link Chain Process

Three possibilities exist according to how many of the two links are compromised.

If neither is compromised, the message is sent successfully to the destination. If only one

is compromised, neither the destination nor the adversary can read the result. If both are

compromised, the adversary can read the message. The probabilities of these possible

scenarios are demonstrated in Figure 5.3.

129

(a) Message Delivery Rate (b) Message Failure Rate (c) Compromised Message Rate

Figure 5.3. Chaining Security Analysis

5.4. FRAGMENTED ANALYSIS

As with chaining, the adversary’s inability to eavesdrop on any traffic means that

the focus must be on compromised nodes. When using a threshold encryption scheme, an

adversary can sometimes read a message with only a portion of the traffic read. This algo-

rithm has no middle ground when using a 2 of 3 threshold encryption scheme. Eventually,

either the adversary will read the message by intercepting two of the three fragments, or

the message will be delivered successfully (Fig. 5.4).

The results of this analysis (Fig. 5.4) illustrate that both chaining and frag-

menting considerably reduce the percentage of messages compromised by the adver-

sary. In an environment in which more than half of the nodes are compromised,

neither algorithm provides enough security to operate safely. Messages can be com-

promised even when only small portions of environments are compromised. Regard-

less, both of these algorithms reduce the expected percentage of messages compro-

mised, doubling the number of messages securely transmitted in the base case in which

a given node has 30% of the keys available and 20% of the nodes have been com-

promised, though at the cost of multiplying the total energy consumed by 10 and

tripling the transmission time (refer to Figure 4.3). This increase in security is nec-

130

essary in compromised environments, such as either ubiquitous or social ad hoc net-

works.

Figure 5.4. 2 of 3 Fragment Process

(a) Message Delivery Rate (b) Compromised Message Rate

Figure 5.5. Fragmented Security Analysis

131

5.5. OTHER ATTACKS

A Byzantine attack [10] is when nodes are compromised and then work in collusion

to compromise security. While considered an advanced attack, other types of attacks also

are available to the adversary.

Two attacks to consider in tandem are Black Hole [17] [18] and Wormhole attacks

[19][20]. The Black Hole attack is based on nodes identifying themselves falsely as being

of high utility in order to direct all traffic through that node. Similarly, Wormhole attacks

identify themselves as having high utility. In this case, however, the utility is at least

partially correct because messages are routed with both high speed and reliability through a

dedicated channel. When applied to a routing scheme, either attack can impact the number

of messages delivered successfully. The fact that all message traffic is encrypted means

that even directing all traffic through a particular node will not allow the adversary to read

it. Incidentally, these attacks are the reason that the midpoint nodes are selected randomly.

While delivery speed and reliability may be increased by assigning a utility value to a node

(thus indicating its function as a midpoint), an adversary can use this function to route

message traffic through compromised nodes. Thus, the current 3PE model is based on

midpoints being selected randomly.

Man-in-the-Middle (MitM) attacks are based on a midpoint intercepting a key ex-

change message and then altering that key to one that the adversary controls. When Alice

sends her public key to Bob, midpoint Eve can replace Alice’s key with her own. When

Bob uses the key, Eve can easily read all of the messages that Bob sends to Alice. Most

techniques for preventing the MitM attack are based on a trusted third party verifying the

key, which does not work in a MANET, although other techniques are designed to function

in such an environment [13] [14] [15]. Both the chaining and fragmenting algorithms are

designed to avoid this problem by only accepting keys in direct contact, thus preventing an

intermediate node from replacing the keys used.

132

A final attack to consider is the Sybil attack [21], which is based on an adversary in-

jecting simulated nodes into the network. Because the algorithm selects keys from existing

nodes, a large number of false nodes increases the probability that a compromised node

will be selected as a midpoint. A review of solutions to this attack is provided by Levine et

al. [22].

In conclusion, both 3PE algorithms render the majority of network attacks useless for

the purpose of reading encrypted messages being sent across the network. While the Sybil

attack remains a threat, solutions are available that can identify simulated nodes with high

degrees of accuracy.

133

6. PERFORMANCE EVALUATION

While all security systems have trade-offs regarding performance, the amount of per-

formance delay should be compared to the increase in performance before implementation.

For this reason, both the chaining and fragmenting algorithms were simulated using the

Omnet++ Network Simulator. Performance and security metrics were gathered and com-

pared to the null encryption scheme and the key-request scheme. When evaluating mobile

networks, the mobility patterns followed by the devices should follow realistic patterns.

The Small World in Motion mobility model [12] is a synthetic trace generator used to

match real world datasets. It assumes nodes visit locations, with the probability of visiting

a location determined by distance and popularity of the area. The performance evaluation

was simulated using control parameters set to match the Cambridge ’05 experiment.

6.1. EXPERIMENTAL SETUP

The algorithms were simulated in a 1000m x 1000m area, in which 100 mobile nodes

were generated. Two seperate simulations were performed. The first simulation set, de-

signed to test the concept and optimize control variables, was implemented using simple

nodes and the random waypoint mobility pattern. Each iteration varied the algorithm, the

key space, and the buffer space available on each node. A message generation schedule

was likewise generated in advance following a Gaussian distribution, with messages being

sent every 30 seconds. For message routing, a PRoPHET routing algorithm was used [23]

to route messages across the network. This routing algorithm was selected because it func-

tions well in disconnected networks, especially where the nodes have a limited range. How-

ever, the random patterns followed by nodes reduced the efficiency of PRoPHET, which

typically relies on long-term historical patterns to determine optimal paths. A summary of

this setup can be found in Table 6.1.

134

The second simulation set was performed using more realistic parameters. The SWiM

trace generator was implemented to simulate human-carried devices in a large-scale area.

By measuring the social patterns, the routing algorithm PRoPHET was capable of identi-

fying reliable message routes. This resulted in greater message efficiency, allowing more

accurate measurements of the impact of the 3PE security schemata. A summary of this

setup can be found in Table 6.2.

Table 6.1. Random Waypoint Simulation Parameters
System Parameters Settings
Length x Width 1000m x 1000m
Number of Nodes 100
TX Power (tx) 0.25 mW
Signal-to-Noise Threshold (snr) 3.98∗10−9

Carrier Frequency (cf) 2.4∗109 Hz
Transmission range between nodes 53m
Message Generation Rate 30 sec mean
Mobility Pattern Random Waypoint
Movement Speed 5 meters/second
PRoPHET α .1
PRoPHET β .05
PRoPHET γ .95

6.2. COMPARISONS

6.2.1. Simulation Attack Model. The potential attacker’s capabilities are a primary

factor when evaluating a security system. MANET uses radio communications, which al-

low attackers to eavesdrop on all unencrypted traffic. The simulation assumes that nodes

use link-layer security, meaning that all traffic is encrypted. Breaking message encryption

is not considered feasible. Adversaries can, however, inject themselves into the network,

135

Table 6.2. SWiM Simulation Parameters
PRoPHET Settings

α Direct Contact Impact Setting .007
β Inirect Contact Impact Setting .008
γ Probability Decay Rate .9992

SWiM Control Settings
Wait Time Exponent Exponent of the power-law of the waiting time dis-

tribution
1.35

Wait Time Upper Bound Upper bound of the waiting time distribution 12h
α Distribution of home nodes .75
Buckets per Side Bucket number per network area side (Used for

performance improvements)
14

disguising themselves as normal nodes. The simulation is based on the adversary com-

promising a certain percentage of the nodes. These nodes can read and modify any un-

encrypted messages going through them but are unable to break any encryption scheme

used.

6.2.2. Random Waypoint Simulation Results. Based on the analysis described

above, the chaining method was expected to be the most secure, but at the cost of reduced

performance, both in terms of the ratio of messages successfully delivered and the delivery

time.

For general comparison, all algorithms were submitted multiple times using a fi-

nite buffer from 10 to 1000 messages. The keychain also varied, holding from 10%

to 100% of the available keys in the network. The chaining algorithm varied the num-

ber of required links from 2 to 5. Likewise, the fragmented algorithm varied both the

number of fragments sent and the number needed for decryption from 2 to 5. Due to

limited space, full results are shown for runs with buffers capable of carrying 400 mes-

sages, and 20% of the node keys are displayed. The chaining algorithm results for

two links are shown, as are the fragmenting results for sending three fragments, two of

which are required to decrypt the message. The results (shown in Figure 6.2.2) match

136

the expected results; 3PE algorithms offer much better security but at a greatly increased

cost.

(a) Energy Costs and Delivery
Ratio

(b) Security Analysis (c) Message Delivery Time
Analysis

Figure 6.1. Simulation Results, 400 message buffer, 20% of keys

One valuable trait of the 3PE methods is that they are scalable. Security can be in-

creased to suit compromised networks, though at a higher cost. The simulation (Figure

6.2.2) shows that increasing the number of midpoints increases security at a faster rate than

the performance degrades. Scaling the system up has drawbacks, including higher trans-

mission costs and longer delivery times. In theory, however, the security can be improved

indefinitely.

Similar experiments were run for the fragmented method with various numbers of

fragments. The results are complicated by the extra variable. The overview in Figure 6.2.2

shows that performance varies in the same manner as in chaining, but much faster. The

performance starts off slightly worse than in chaining and then drops quickly. The security,

however, improves just as quickly. For comparison, when chaining into 5 links, the delivery

ratio is 16%, with 1% of the messages being compromised. A comparable delivery ratio can

be found when fragmenting to 3 messages, in which the compromised ratio is 2.6%. In the

same environments, by fragmenting into 5 messages (all of which are needed), the delivery

ratio is 14%, but 0.1% of the messages are compromised. This indicates that, while the

137

fragmented algorithm is more flexible, accomodating a wider range of environments with

a faster delivery time, chaining is the more secure method of the two.

 2
 3

 4
 5 2

 3

 4

 5

0 %

10 %

20 %

30 %

40 %

P
ro

b
ab

il
it

y
 M

es
sa

g
e

 i
s

C
o

m
p

ro
m

is
ed

 (
%

)

Comparison of Message Compromised Rate

Number of Fragments
 needed for Decryption

Number of Fragments

P
ro

b
ab

il
it

y
 M

es
sa

g
e

 i
s

C
o

m
p

ro
m

is
ed

 (
%

)

 0
 5
 10
 15
 20
 25
 30
 35
 40

(a)

 2
 3

 4
 5 2

 3

 4

 5

0 %

10 %

20 %

30 %

40 %

P
ro

b
ab

il
it

y
 M

es
sa

g
e

 i
s

D
el

iv
er

ed
 (

%
)

Comparison of Message Delivery Ratio

Number of Fragments
 needed for Decryption

Number of Fragments

P
ro

b
ab

il
it

y
 M

es
sa

g
e

 i
s

D
el

iv
er

ed
 (

%
)

 0
 5
 10
 15
 20
 25
 30
 35

(b)

Figure 6.2. Results of Varying Fragment Count

For general comparison, all algorithms were submitted multiple times using a finite

buffer from 10 to 1000 messages, and capable of holding from 10% to 100% of the available

keys in the network. The Chaining algorithm varied the number of links needed from 2 to 5.

Likewise, the Fragmented algorithm was submitted varying both the number of fragments

sent and the number needed for decryption, ignoring those in which the number required to

decrypt was larger than the number sent. Due to limited space available, full results were

shown for runs with buffers capable of carrying 400 messages and 20% of the node keys

were displayed, with the number of links used in the Chaining algorithm was set to 2, and

the Fragmenting algorithm sending 3 fragments, requiring 2 to decrypt the message. The

results, shown in Figure 6.2.2, match the expected results - much larger costs, much better

security for the 3PE algorithms.

One valuable trait regarding the 3PE methods is that they are scalable, able to increase

security at a higher cost. By increasing the number of midpoints, the simulation shows

(Figure 6.2.2) that security increases at a faster rate than the performance degrades. Scaling

138

the system up has other drawbacks, such as higher transmission costs and longer delivery

time, but in theory the security can be improved indefinitely.

Figure 6.3. Results of Varying Link Count

6.2.3. Small World in Motion Simulation Results. The second set of simulations

allowed more accurate measurements of the performance considerations in a realistic en-

vironment. The results, show in Figure 6.2.3, indicate that changing the mobility pattern

allowed much more reliability and improved security in the environments. This indicates

that the 3PE security overlay networks are susceptible to a disruptive environment. The

Fragmenting algorithm performed very well in this environment, only exceeding the Chain-

ing algorithm’s security when more than half of the network was compromised. Based on

these results, the Fragmenting algorithm is more secure and better performing except at

very insecure networks.

139

(a) Simulated Performance (b) Simulated Security

Figure 6.4. Results of SWiM Experiments

140

7. CONCLUSION

Both the experimental results and the analytical models indicate that 3PE algorithms

can improve the security in an otherwise unsecured network at the cost of increased net-

work traffic and slower performance. While exact numbers vary based on both the network

environment and the degree of security needed, results suggest that 3PE algorithms serve

as secure methods for routing without public keys. Additionally, both 3PE schemes can be

implemented without prior knowledge or trust schemes. They can be fine tuned to the de-

gree of performance and security required by increasing the number of links or fragments.

While the chaining system boasts higher security and lower system costs, fragmenting has a

faster delivery time and can be modified more easily to suit a wider range of environments.

An ongoing issue to be addressed is the integration of 3PE methods with a proper key

management system. Because key management systems can use a variety of trust models to

indicate the security of the individual key, a feasible approach is to merge the two, using key

management when trust exceeds a certain threshold, and using a 3PE method otherwise. In

theory, this would achieve the best of both algorithms, making this a promising area for

future development.

141

8. BIBLIOGRAPHY

[1] S. A. Camtepe and B. Yener, “Key distribution mechanisms for wireless sensor net-
works: a survey,” tech. rep., 2005.

[2] F. Stajano and R. Anderson, “The resurrecting duckling: Security issues for ad-hoc
wireless networks,” pp. 172–194, Springer-Verlag, 1999.

[3] A. Menezes and B. Ustaoglu, “On the importance of public-key validation in the
mqv and hmqv key agreement protocols,” in Proceedings of the 7th international
conference on Cryptology in India, INDOCRYPT’06, (Berlin, Heidelberg), pp. 133–
147, Springer-Verlag, 2006.

[4] D. R. Stinson, Cryptography: Theory and Practice, Third Edition (Discrete Mathe-
matics and Its Applications). Chapman & Hall/CRC, Nov. 2005.

[5] R. E. Lewand, Cryptological Mathematics (Classroom Resource Materials). The
Mathematical Association of America, Dec. 2000.

[6] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Universal re-encryption for
mixnets,” in IN PROCEEDINGS OF THE 2004 RSA CONFERENCE, CRYPTOG-
RAPHERS TRACK, pp. 163–178, Springer-Verlag, 2002.

[7] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,
1979.

[8] P. F. Syverson, M. G. Reed, and D. M. Goldschlag, “Private web browsing,” Journal
of Computer Security, vol. 5, no. 3, pp. 237–248, 1997.

[9] G. Vakde, R. Bibikar, Z. Le, and M. Wright, “Enpassant: anonymous routing for
disruption-tolerant networks with applications in assistive environments,” Security
and Communication Networks, vol. 4, no. 11, pp. 1243–1256, 2011.

[10] B. Wu, J. Chen, J. Wu, and M. Cardei, “A survey of attacks and countermeasures
in mobile ad hoc networks,” in Wireless Network Security (Y. Xiao, X. S. Shen, and
D.-Z. Du, eds.), Signals and Communication Technology, pp. 103–135, Springer US,
2007.

[11] K. El Defrawy, J. Solis, and G. Tsudik, “Leveraging Social Contacts for Message
Confidentiality in Delay Tolerant Networks,” in 2009 33rd Annual IEEE International
Computer Software and Applications Conference, pp. 271–279, IEEE, July 2009.

[12] Proceedings of the Seventh Annual IEEE Communications Society Conference on

142

Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2010, June 21-
25, 2010, Boston, Massachusetts, USA, IEEE, 2010.

[13] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE NETWORK MAGAZINE,
vol. 13, pp. 24–30, 1999.

[14] S. Capkun, L. Buttyn, and J.-P. Hubaux, “Self-organized public-key management for
mobile ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 2, pp. 52–64,
2002.

[15] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing robust and ubiquitous
security support for manet,” in Proceedings of IEEE International Conference on Net-
work Protocols (ICNP), November 2001.

[16] Y. Kong, J. Deng, and S. R. Tate, “A distributed public key caching scheme in large
wireless networks,” in Proc. of IEEE Global Telecommunications Conference - Com-
munication and Information System Security (GLOBECOM ’10), (Miami, FL, USA),
December 6-10 2010.

[17] M. Al-Shurman, S.-M. Yoo, and S. Park, “Black hole attack in mobile ad hoc net-
works,” in ACM Southeast Regional Conference, pp. 96–97, 2004.

[18] J. Yin and S. K. Madria, “A hierarchical secure routing protocol against black hole
attacks in sensor networks,” in SUTC (1), pp. 376–383, 2006.

[19] M. Jain and H. Kandwal, “A survey on complex wormhole attack in wireless ad hoc
networks,” in Proceedings of the 2009 International Conference on Advances in Com-
puting, Control, and Telecommunication Technologies, ACT ’09, (Washington, DC,
USA), pp. 555–558, IEEE Computer Society, 2009.

[20] S. K. Madria and J. Yin, “Serwa: A secure routing protocol against wormhole attacks
in sensor networks,” Ad Hoc Networks, vol. 7, no. 6, pp. 1051–1063, 2009.

[21] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in sensor networks:
Analysis & defenses,” 2004.

[22] B. N. Levine, C. Shields, and N. B. Margolin, “A Survey of Solutions to the Sybil
Attack,” Tech report 2006-052, University of Massachusetts Amherst, Amherst, MA,
October 2006.

[23] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in intermittently con-
nected networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 7, pp. 19–20, July
2003.

143

V. Content Distribution in Delay-Tolerant Networks using Social Context

Roy Cabaniss and Sanjay Madria

Department of Computer Science,

Missouri University of Science and Technology, Rolla, Missouri 65401

Wireless communication technologies have given rise to the development of Delay

Tolerant Networks, a collection of devices which route data opportunistically. These net-

works can be used to distribute data, such as news articles, advertisements, or media, to

interested clients. To deliver content efficiently, the Social Content Distribution (SCD)

schema collects social context data and request patterns. Nodes are then designated as

mobile repositories, or throwboxes, at which large content stores are kept. Clients request

specific articles from nearby repositories. By predicting which nodes request data, based

on request and social patterns, the SCD schema services content requests quickly and effi-

ciently. Applying the SCD protocol to a simulated environment of social entities resulted

in improvement of the delivery ratio and reducing the average delivery time to a third of

the static repository.

144

1. INTRODUCTION

Wireless ad-hoc networks are a developing field in which devices exchange infor-

mation and resources to perform tasks beyond their individual capabilities. These tasks

can include large-scale computing, message delivery, navigation, or sharing sensory data.

Many such networks are examples of Delay-Tolerant Networks (DTNs). Devices in these

architectures store messages in their buffer to be forwarded to the destination as opportuni-

ties for routing occur. One task applicable to DTNs is that of efficient content distribution.

Content distribution is defined as the task of providing requested data to the clients.

Requests are constructed by the client and transmitted to a node capable of servicing them,

usually a server or repository. This is different from caching in the distribution of the

content requested. Caching is used ideally to provide the same data item to a large number

of clients, which means having individual nodes keep a copy of the data item allows them

to serve requests just as well as the server[1]. If the content repository contains a large

number of related data items that are requested individually, caching a particular data item

will only allow the node to serve that specific data item. A mobile repository, sometimes

called a data store or a throwbox, contains a large collection of related items which allow

the device to serve the majority of requests.

An example execution is a mobile advertisement server. Since each consumer is

interested in a different set of articles, caching is of limited benefit. Although a node can

cache several items, it is unlikely that nodes it encounters will be interested in that specific

advertisement. However, if a node can act as a throwbox containing a collection of adver-

tisements it can respond to requests, reducing average access time. Clients in the shopping

environment send a request to the nearest throwbox, including any patterns they wish to

share, and the throwbox can process it without waiting for the request to be processed by

the main server. Other use cases include media files, navigation data, or a news site.

145

In the area of delay tolerant networks, social context can be used to improve the ef-

ficiency of certain tasks such as routing or caching. Clients tend to be influenced by social

patterns regarding their content requests [2]. In general, if the client’s contacts request a

specific data item, the probability of that client requesting it are increased. To take ad-

vantage of this tendency a node must first identify the consistent contacts of a node. In a

dynamic environment, in which nodes are added and removed, the social structure must

accommodate such changes.

The purpose of the Social Content Distribution schema is to locate the optimal posi-

tion for mobile repositories. This is accomplished by evaluating the existing social struc-

ture of the network, identifying which nodes and groups issue frequent content requests,

and locating the devices most capable of fulfilling these requests. Initially, a node identifies

its frequent contacts, forming small groups. These groups are merged, joined and left by

nodes to accurately reflect the network’s social structure. Simultaneously, nodes track the

request frequency of themselves and their groups. This data is reviewed to determine a

metric for the benefit of positioning a throwbox at that node. The end result is to position

repositories in close proximity to requests, increasing content availability and reducing the

average round-about time.

1.1. RELATED WORK

1.1.1. Bubble Rap. The Bubble-Rap grouping method [3] al-

locates nodes into groups based on direct contacts. They distribute using a

method called k − cliques, in which all fully connected groups of k mem-

bers are considered a distinct group. They are then merged with all other

k − cliques which share k − 1 members. This provides an accurate rep-

resentation of the groups formed by a set of nodes. However, it relies

on global knowledge of the nodes’ contacts, and it must have them before

the algorithm can group them. As such, it cannot be used in an on-

146

going DTN, although it provides a valuable tool for analysis and compari-

son.

1.1.2. R-P2P. Another system designed to allocate data through a delay tolerant

network is the R-P2P system [4]. It is designed to ensure content, such as advertising or

media content, is consistently available to a client. This is performed by designating certain

nodes in the environment as throwboxes, responsible for serving data queries and maintain-

ing updated content. Throwboxes maintain a Distributed Hash Table among themselves,

enabling them to locate data without storing is directly. When a client requests a data item,

it contacts the nearest throwbox. The distributed hash table is consulted to determine which

throwbox contains the data item in particular, then dedicated communication channels ob-

tain the item. The use of throwboxes in the DTN is a valuable contribution to the field of

content distribution, which the SCD algorithm utilizes along with a social aspect.

1.1.3. OnMove. An earlier attempt to position throwboxes in a DTN uses social

context, among other metrics. The OnMove protocol [5] is designed to determine which

nodes are ideal for distributing content based on a series of parameters. By calculating the

repository rank of a node based on social similarity, meeting frequency, connection quality,

content similarity, and ’betweenness’ to other nodes, the protocol can establish ranking

metric. While the overview is promising, the complete protocol was never developed. The

SCD algorithm expands on this concept, applying the social context of nodes to identify

ideal content repository nodes.

147

2. PROPOSED SCHEMA

2.1. GROUPING

All nodes in a mobile ad hoc network are aware of their immediate surroundings,

including neighboring nodes, via wireless communications. A social group, in this context,

is a collection of nodes which have regular contact with each other. Nodes of a social group

maintain group data, including group membership and the metrics of all group members.

By tracking the contact patterns of a node it is possible to extrapolate the social patterns

a node follows. Node’s maintain their group list in three ways. When two nodes have

regular contact with each other, they form a new social group. Two social groups with

similar members can merge. Finally, nodes can resign from groups which they no longer

participate in.

2.1.1. Forming Groups. To determine any groups formed by nodes, the first step

is to establish a metric by which the distance between two nodes can be measured. The

SCD schema calculates the percent of time spent in direct contact, using an exponential

moving average formula to adjust the current estimate. Initially the direct contact strength,

λA,B is set to 0 between all nodes. Whenever nodes enter contact, nodes measure how long

they have spent in and out of contact. This data is used to calculate λA,B as the estimated

percent of time the nodes spend in contact. As an exponential moving average, it is based

on historical data, with a higher emphasis placed on more recent data. The control variable

α determines how quickly the contact strength changes, as shown in eq. 1. A higher α will

result in more emphasis being placed in recent changes, allowing nodes to swiftly adapt

but also be fooled or confused by brief changes.

λA,B = (1−α)λA,B +α
timecontact

timecontact + timenocontact
(1)

148

Although λA,B measures the direct contacts of a node fairly well, it tends not to ac-

commodate indirect contacts. Indirect contacts, also called transitive contacts, indicate a

node’s ability to communicate to another node via intermediate nodes. Although NodeA

may only occasionally encounter NodeB, if it constantly encounters other nodes which have

high connection to NodeB there is still a high level of association. The control variable β

is used to determine the impact of transitive contacts to a node. With this a cumulative

estimate of the contact strength, CSA,B, is calculated and compared to a group formation

threshold, ψ. When the contact strength exceeds a control threshold ψ, this indicates the

nodes are considered close enough to form a new group. The updates to λ and forming new

groups are detailed in Algorithm 23.

Algorithm 23 Forming New Groups
Notation
NodeA, NodeB - Active nodes in the network
λA,B - Direct contact strength between NodeA and NodeB
CSA,B - Cumulative contact strength between NodeA and NodeB
α - Control variable, rate of direct contact change
β - Control variable, impact of transitive contacts
ψ - Threshold for forming a new group

Trigger - NodeA contacts NodeB
λA,B = (1−α)λA,B +α

timecontact
timecontact+timenocontact

CSA,B = λA,B +(1−λA,B)×β×∏NodeB λA,C×λC,B
if CSA,B > ψ then

Form new GroupY , consisting of NodeA and NodeB
end if

Since groups will change as time passes, through group merges or resignations, dis-

tributing the group data through all the participating nodes is difficult. Attempts to allow

any node in the group to make changes resulted in data fragmentation, which is when

two nodes of the same group had different group data. To avoid this, one of the nodes

is arbitrarily selected as the group head. The group head also maintains data on member

149

nodes, specifically their relative connection strengths. This data is used to validate group

merges.

2.1.2. Merging Groups. By tracking the contact strength between nodes, a series

of two-node social groups can be formed. The next step is to integrate these links into

larger groups by merging similar groups. Nodes which are joint members of two groups

will periodically review the group data for merges. Although further checks will occur at

the group head, the joint member’s only concern is group similarity, which is defined as the

ratio of joint group to the union of the two groups - |GroupY∩GroupZ |
|GroupY∪GroupZ | . The control variable τ

determines what percentage of nodes must be in both groups. If the joint node determines

the two groups are similar enough, then a SUGGEST message is sent to the group head

of the smaller of the two groups. This message indicates that the node believes there is a

potential group merge available.

When the group head receives the suggestion, it confirms that the two groups are

similar. It then performs a check to ensure that it has enough contact strength with the

new group; if the group head’s average CS to the merged group is below ψ, it will discard

the suggestion. Otherwise, an INV IT E message is generated and sent to the other group

head. This message indicates that one of the groups has already approved the merger, and

the other group must still approve the merge. The other group head confirms the similarity

and contact strength as well. At this point, both group heads have confirmed that the two

groups should be merged. A KILL message is sent to all members of the smaller group,

and all members are added to the larger group. The process is detailed in Algorithm 24.

Performing merges in this manner updates groups in a limited environment. It has

the drawback in that it does not ensure all nodes of the group are strongly connected to all

members of the new group. To address this issue, nodes can resign from groups they no

longer have a strong attachment to.

150

Algorithm 24 Merging Groups
Notation
GroupY , GroupZ - Social groups in DTN
NodeA - Member of both GroupY and GroupZ
NodeB - Group head of GroupY
NodeC - Group Head of GroupZ
τ - Threshold for Merging a Group
ψ - Grouping Threshold

Trigger - Periodically in NodeA
for all GroupY ,GroupZ of which NodeA is a member do

if |GroupY
⋂

GroupZ |
|GroupY

⋃
GroupZ | > τ then

Send SUGGEST Message to Group Head (NodeB)
end if

end for

Trigger - NodeB receives SUGGEST Message
if GroupY

⋂
GroupZ |

|GroupY
⋃

GroupZ | > τ then
Calculate average CSB,GroupZ∪GroupY

if Avg(CSB,GroupZ∪GroupY)> ψ then
Send INV IT E Message to Group Head NodeC

end if
end if

The Group Head confirms the suggestion, and sends a Confirmation to the other group

In NodeC...
if |GroupY

⋂
GroupZ |

|GroupY
⋃

GroupZ | > τ then
Calculate average CSB,GroupZ∪GroupY

if Avg(CSB,GroupZ∪GroupY)> ψ then
GroupZ = GroupZ

⋃
GroupY

Send KILLY Message to all members of GroupY
end if

end if

If both Group Heads approve, one group is added to the other and then removed

151

2.1.3. Resignation. Periodically nodes will review their group list to ensure they

are still participating, as shown in Algorithm 25. The average contact strength to all group

members is calculated, and if it is beneath ψ the node resigns from the group. A RESIGN

message is sent to the group head which requests that this node be removed from the group

data. To avoid fragmentation, the sending node will not remove group data until the mes-

sage has been confirmed. This stage limits the groups size, and ensures members of a group

are still regularly encountering other members.

Algorithm 25 Resigning from a Group
Notation
NodeA - Active node in the network
GroupY - Group containing NodeA
NodeB - Head of GroupY
ψ - Group Threshold

Trigger - Periodically in NodeA
sumCS = 0
for all NodeB ∈ GroupY do

sumCS = sumCS+CSA,B
end for
AvgCSA,Y = sumCS

|GroupY |
if CSA,Y < ψ then

Send RESIGNA,Y to NodeB
end if

2.2. CONTENT REPOSITORY POSITIONING

2.2.1. Request Frequency. To determine the optimal position for a repository,

it is necessary to measure which nodes are requesting data items frequently. The request

score for NodeA, µA, is an exponential moving average which estimates the time between

requests. Whenever a node makes a user request the update process estimates the average

time between requests based on the previous estimate and the control variable φ, which

152

determines how much emphasis is placed on historical data. This process allows nodes to

maintain an up-to-date estimate, adjusting to reflect the node’s request patterns.

µA = (1−φ)µA +φ(timecurrent− timeprev) (2)

2.2.2. Group Request Score. The SCD schema augments repository selection

by considering the social aspects of the nodes. The ranking of a node depends on its own

ability to deliver a content item to requesting nodes and the ability of its contacts. Having

identified the social groups in Section 2.1, a node can calculate its Request with Group

Score (RGS). This is considered as the time for NodeA or a neighboring node to request a

data item.

Traffic requests tend to follow a Markov-Poisson process [6]. As such, the time be-

tween a node’s estimated requests follow exponential distribution. This allows the schema

to estimate the minimum of any set of node requests as the sum of the λ of these distribu-

tions (not related to the contact strength between nodes in 2.1). The λ of the distributions

is the inverse of the average time between contacts, 1
µA

. Thus, for group GY an estimate of

the soonest request of this group is shown in Eqn 3.

µGroupY =
1

∑NodeB|B∈G
1

µB

(3)

The Spread control variable is an estimate of how likely a client’s request patterns

are influenced by their social groups. This tends to vary based on the type of content

- while close friends may watch similar videos, program update requests are not based

on a contact’s programs. This control variable allows different amounts of emphasis to

153

be placed on the social aspects of the content. These variables are used to calculate the

request score with group data, RSGA.

RSGA =
1

1
µA

+Spread×∑GroupY |A∈GroupY
1

µGroupY

(4)

2.2.3. Repository Position Ranking. At this stage of the process, nodes are aware

of the frequency with which they contact other nodes (λA,B) and how often these nodes

will request content, either on their own behalf or that of neighbors (RSGA). The ranking

algorithm establishes a metric, Rank Position Score (RPSA) as the sum of other node’s

chance of requesting the data times the chance of encountering NodeA.

RPSA = ∑
NodeB

λA,B×RSGB (5)

Whenever a node which contains a repository, NodeA, encounters NodeB, both calcu-

late their respective RPS. If RPSB is greater than RPSA, this indicates that NodeB is closer

to more frequently requesting nodes than NodeA. A message updating the data owner is

sent, and the entire repository is shifted. As this is a high-bandwidth operation, it is only

performed if RPSB exceeds RPSA by a certain threshold.

For reference, a summary of the control variables and metrics used has been provided

in Table 2.1. The ideal control variables were identified through experimentation, submit-

ting repeatedly under baseline conditions before implementing experimental algorithms.

154

Table 2.1. Variable Reference Chart
Control Variables Range

Tested
Ideal Value

α Contact Strength Change Rate 0 - 1.0 0.4
β Transitive Contact Impact 0 - 1.0 0.7
ψ Group Formation Threshold 0 - 1.0 .2
φ Request Strength Change Rate 0 - 1.0 0.85
Spread Impact of group on node 0 - 0.1 .05
Ideal values tested by experimentation

Variables
λA,B Direct Contact Strength between nodes
CSA,B Contact Strength between nodes, including transitive con-

tacts
µA Estimated request frequency of NodeA
µGroupY Estimated request frequency of GroupY
RSGA Estimated request frequency of NodeA and participating

groups

155

3. ANALYSIS

To determine the performance of the SCD schema the schema was implemented in

The One DTN simulation environment[7]. This tool, originally written in Java, is designed

to realistically implement traits such as buffer overflow, transmission speeds, and disruption

(Table 3.1). The analysis was generated using 120 mobile nodes using Bluetooth to com-

municate. Nodes used the Dynamic Social Grouping routing algorithm, which functions

well in social, largely disconnected environments [8].

Table 3.1. The One Control Variables
Simulation Variables

Buffer Size 5Mb
Range 40m

Bandwidth 250kBps
Message TTL 12h

Duration 30 days

3.1. MOBILITY

To simulate a schema which relies on the social aspects of mobile nodes, the mo-

bility patterns must incorporate social dynamics. For this reason a series of patterns were

generated using the Small World in Motion (SWiM) algorithm, which is based on nodes

repeatedly revisiting either locations that have meaning to them as individuals (house, lab),

or locations where they see a large number of other nodes (restaurant, park)[9]. The time

these nodes remain at a given location follows a power law distribution with a set upper

limit. Another variable, α, determines how the nodes’ home points are distributed. An

α of 0 represents uniform distribution, while 1 indicates all nodes have the same home.

These variables can be tuned to match sets of real world data. A control parameter set was

156

generated to match the Cambridge dataset (Table 3.2), which is a real-world collection of

Bluetooth contacts [10]. The SWiM tool created 120 nodes and deployed them in a 1km by

1km area without features. Using the control parameters to match the Cambridge dataset, a

period of 1 month was randomly generated 20 times. The result was several sets of mobility

patterns, each modelling human behaviour.

Table 3.2. SWiM Cambridge Control Variables
Nodes 120
Wait Time Exponent Exponent of the power-law of the

waiting time distribution
1.35

Wait Time Upper Bound Upper bound of the waiting time
distribution

12h

α Distribution of home nodes .75
Buckets per Side Bucket number per network area

side (Used for performance im-
provements)

14

3.2. TRAFFIC PATTERN

Message traffic was generated using a Poisson process in which each node has a dif-

ferent interest level. The interest level was generated to average at a user requesting a data

item per hour, with a variance of 12 hours. Afterwards, the tendency of a social group

to influence interest was considered. The mobility data was reviewed to determine which

nodes spent over 2% of their time in another node’s company (a sample linkage display

is shown in Figure 3.1(a), figure produced by SocNetV[11]). A MATLAB script was im-

plemented to review the links, generating a series of groups using the k-clique grouping

algorithm for analysis (Figure 3.1(b)). After the cliques were prepared, the participating

nodes’ interest levels were adjusted towards the group average. The result was a series of

157

contact request patterns in which nodes would request data based on individual interest and

group tendencies.

(a) Connectivity Display (b) k− clique Display

Figure 3.1. Sample Network Layout

3.3. COMPARISON

The results of the SCD schema were compared against two baselines. The first is

the Static Repository, which has no mobile throwboxes. Instead, one node acts as the

server. This baseline has the advantage of no update cost, since the server node is also the

one generating all updates. However, all requests are sent to the server, and the server’s

location in the DTN is randomly selected, resulting in poor performance. In contrast, the

Wandering Datastore baseline has multiple repositories that transfer themselves randomly.

On each contact, a throwbox has a set probability, p, to transfer to the neighboring node.

A range of probabilities were simulated, resulting in the better performance with p = .05.

This method has a tendency to spread datastores throughout the network, allowing them

to service the whole environment. By positioning randomly, however, it does not take

advantage of any context data, and thus performs poorly.

158

3.4. RESULTS

The simulation results indicated that applying social context to the task of throw-

box positioning improves the performance considerable. The delivery ratio shows a 21%

improvement, and the delivery time is reduced to 30%, as shown in Figure 3.4. This perfor-

mance increase has a trade-off, however, of higher costs to update the repositories (Figure

3.3). A static repository (which remains on a single device) can be updated at no cost,

since all the requests come to the device. In contrast, allowing nodes to place themselves

optimally requires the various repositories be updated by sending file updates through the

network. As the simulation uses a sparse DTN of relatively low mobility (see section 3.1),

this is a significant delay, taking between 6 to 10 hours. This delay is acceptable to some

applications (such as advertisement or navigation data), but other applications require up-

dates be implemented much more quickly (such as a news site).

In addition to the update delay, the throwbox must also deploy itself to the optimal

position. On contact, a repository will transfer, or shift, when the RPS of the contact

exceeds the current node’s ranking. Considering that the content repository can range from

large to very large, the costs of such transmissions are considerable. A single throwbox

must reposition itself on average once every day to maintain the optimal position, as shown

in Figure 3.3(b). Even a large repository (500Mb) can position itself optimally by using 4J

of energy per day (based on the 100nJ per bit cost [12]).

(a) Content Delivery Ratio (b) Content Delivery Time (c) Content HopCount

Figure 3.2. Request Performance

159

(a) Update Delivery Time (b) Number of Repository Shifts

Figure 3.3. Repository Maintenance

Allocating additional throwboxes apparently had very limited benefit to the algo-

rithm. Although both delivery ratio and time-to-delivery improved with added repositories,

the performance increase was marginal. This is possibly due to the tendency of throwboxes

to find the optimal position independent of the activity of other throwboxes. Although

there is a mechanism to prevent them from inhabiting the same device, all throwboxes will

identify the most heavily trafficked network area and position themselves in the same re-

gion. Future experiments should be considered to implement a repulsion element to the

throwboxes, ensuring they maintain a reasonable distance from each other.

3.5. TEST CASE

To determine the benefit of the SCD algorithm, consider an application which dis-

tributes music samples. The mobile repository contains a sample of every music the store

has for sale, and clients will send requests for specific songs. If the store is using itself as

the sole source, it acts as a static repository. Based on the simulations, clients who request

a song will have to wait an average of 5 hours to receive the song. Assuming the song is

3Mb, it will also require 131mJ to deliver from the entire network. Since a sample smart-

phone battery contains 3284J of energy [13], this number is fairly low, although high traffic

from other nodes can still drain the battery life.

160

In contrast, the store may request customers use an app implementing the SCD al-

gorithm. If so, a clients song request time will drop from 5 hours to 1 hour and 30 min.

This is still much slower than downloading from the 3G network, which can perform a

3MB download in roughly 60 seconds. However, the energy consumption (not to mention

bandwidth allocation) is much cheaper using SCD. The 3G environment requires 20J to

download a 100kB file, so the 3MB song will require an estimated 2000J to obtain[13]. In

contrast, the SCD schema will require only 130mJ, even if only a single repository is used.

Increasing the number of repositories can reduce this to 126mJ.

There are also maintenance costs to consider. Each repository will shift position

roughly once per day. Assuming the repository contains 200 songs, this means the cost per

day is 4.2J. Furthermore, when the server wants to update the song selection it must send an

update to each throwbox. Since the average hopcount for updates is 9.13, this means that

sending one song to one throwbox will consume an additional 29mJ, and will take roughly

6 hours and 40 minutes to implement.

The above analysis demonstrates SCD schema provides much faster access to data

than a static and randomly selected repository although it requires some energy to maintain

the throwboxes. It is much cheaper than using the 3G network to download the song, both

in terms of bandwidth and energy consumption.

161

4. CONCLUSIONS

By taking advantage of the social context of a network, several of the network ca-

pabilities can be augmented. With the full range of social dynamics yet to be explored,

applications can be developed to take advantage of the additional information, as well as

developing algorithms to identify social patterns. This paper presents one such social al-

gorithm, identifying groups dynamically by measuring the contact intervals. It then uses

this data to accurately identify which nodes are optimal positions for mobile repositories.

Future considerations can include further optimizing the social group detection algorithm.

Identifying links between nodes based on common request patterns, for instance, may be

used to establish which nodes are contacts and which are friends. This in turn can be used

to augment grouping by distinguishing between common contacts and common interests.

162

5. BIBLIOGRAPHY

[1] Y. Ma, M. R. Kibria, and A. Jamalipour, “Cache-based content delivery in opportunis-
tic mobile ad hoc networks.,” in GLOBECOM, pp. 768–772, IEEE, 2008.

[2] D. J. Crandall, D. Cosley, D. P. Huttenlocher, J. M. Kleinberg, and S. Suri, “Feed-
back effects between similarity and social influence in online communities,” in KDD,
pp. 160–168, 2008.

[3] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forwarding in delay-
tolerant networks,” IEEE Trans. Mob. Comput., vol. 10, no. 11, pp. 1576–1589, 2011.

[4] F. De Pellegrini, I. Carreras, D. Miorandi, I. Chlamtac, and C. Moiso, “R-p2p: a
data centric dtn middleware with interconnected throwboxes,” in Proceedings of the
2nd International Conference on Autonomic Computing and Communication Systems,
Autonomics ’08, (ICST, Brussels, Belgium, Belgium), pp. 2:1–2:10, 2008.

[5] R. C. Rumin, E. Jaho, C. Guerrero, and I. Stavrakakis, “Onmove: a protocol for
content distribution in wireless delay tolerant networks based on social informa-
tion,” in Proceedings of the 2008 ACM Conference on Emerging Network Experiment
and Technology, CoNEXT 2008, Madrid, Spain, December 9-12, 2008 (A. Azcorra,
G. de Veciana, K. W. Ross, and L. Tassiulas, eds.), p. 40, ACM, 2008.

[6] A. Erramilli, O. Narayan, and W. Willinger, “Experimental queueing analysis with
long-range dependent packet traffic,” IEEE/ACM Trans. Netw., vol. 4, pp. 209–223,
Apr. 1996.

[7] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn protocol evalua-
tion,” in Proceedings of the 2nd International Conference on Simulation Tools and
Techniques, Simutools ’09, (ICST, Brussels, Belgium, Belgium), pp. 55:1–55:10,
2009.

[8] R. Cabaniss, S. Madria, G. Rush, A. Trotta, and S. S. Vulli, “Dynamic social grouping
based routing in a mobile ad-hoc network,” in HiPC, pp. 1–8, 2010.

[9] S. Kosta, A. Mei, and J. Stefa, “Small world in motion (SWIM): Modeling com-
munities in ad-hoc mobile networking,” in Proceedings of The 7th IEEE Communica-
tions Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON 2010), (Boston, MA, U.S.A.), June 2010.

[10] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau, “CRAWDAD data
set cambridge/haggle (v. 2009-05-29),” May 2009.

163

[11] D. V. Kalamaras, “SocNetV,” October 2010.

[12] J. M. Kahn, R. H. Katz, Y. H. Katz, and K. S. J. Pister, “Emerging challenges: Mo-
bile networking for ”smart dust”,” Journal of Communications and Networks, vol. 2,
pp. 188–196, 2000.

[13] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh, “Who killed my
battery?: Analyzing mobile browser energy consumption,” in Proceedings of the 21st
international conference on World Wide Web, WWW ’12, (New York, NY, USA),
pp. 41–50, ACM, 2012.

164

SECTION

4. CONCLUSION

This document presents a series of algorithms for efficient routing in a Delay Toler-

ant Network based on the social dynamics of the mobile nodes. It also presents algorithms

enabling secure communications when the source does not have access to a destination’s

public key. Finally, it applies social context to the problem of optimal mobile repository se-

lection, allowing content to be placed in the network such that it can be distributed quickly

and efficiently.

The Dynamic Social Grouping algorithm is designed for efficient node-to-basestation

routing. The group identification method based upon contact patterns was introduced. The

group data was used to augment the probabilistic scheme. By combining a node’s group

data with individual probability, the algorithm could accurately estimate a node’s chance

of successful message delivery based on previous message performance. A simulation

using real-world data from an IEEE conference showed a significant improvement over the

Epidemic and Probabilistic routing algorithms.

The Dynamic Social Grouping - Node to Node algorithm is an expansion of the DSG

routing algorithm. Using a similar method to identify the social groups of the environ-

ment, the routing method was expanded to deliver to any node in the network. Further

experiments were performed using different methods to route through known groups. The

routing could be based on the node’s performance with previous messages (Performance

Based Probability), or it could be based on contact frequency, both direct and indirect

(Contact Based Probability). Further, the Hybrid algorithm could ignore probability within

a group, routing epidemically through the destination’s social groups. These algorithms

were tested using the MIT Reality Project dataset, which collected contact and message

165

data about students over the course of 9 months, resulting in long-term views of the social

patterns.

There are two Three Point Encryption algorithms designed to send a message pri-

vately in a DTN when the source node does not have the destination’s public key. The

Chaining method selects other nodes for which it does possess the key, then encrypts the

message for both using a commutative encryption algorithm. Each midpoint, upon receiv-

ing the message, will remove their layer of encryption and then encrypt it for the final

destination. This algorithm is the more secure of the two at a penalty to delivery ratio and

time. To reduce the impact, the Fragmenting method was implemented. This algorithm

encrypts the message using a threshold encryption technique and then sends each fragment

of the key through a different midpoint. Since threshold encryption can be decrypted by a

subset of the keys, the final destination can decrypt the original message even if fragments

were intercepted or dropped. This algorithm has a much faster speed and better delivery

ratio, but the adversary can break the security more often. Both of these algorithms were

tested in a highly compromised DTN, and showed that they reduced the probability of a

message being compromised considerably, with a trade-off of reduced delivery ratio and

increased delivery time.

The selection of mobile repository location in a DTN can be improved by a schema

which incorporates social context. While nodes can cache data items they encounter, sev-

eral applications are too large to efficiently store in a single node. Further, in certain ap-

plications nodes are unlikely to request a data item multiple times, which renders caching

nearly useless. Distributing repositories throughout the network can improve access time,

and this can be further improved by selecting their location intelligently. By identifying

groups and matching their interests, both as a group and as an individual node, a mobile

repository can preemptively position data to serve client requests, consuming less band-

width and improving access time.

166

VITA

Roy Cabaniss was born in Georgia of the United States of America. He earned his

Bachelors of Science undergraduate degree from the University of Arkansas at Fayetteville,

majoring in Computer Science. After his graduation, he become a Programmer, then Ad-

vanced Programmer for Wal-Mart ISD in the Replenishment Division. His responsibilities

involved updating the Two-Tier Replenishment systems, upgrading buffer pull systems,

and monitoring the background processes that order supplies for the stores.

Roy was accepted at the Missouri University of Science and Technology in 2008,

where he earned his Doctorate of Philosophy in May, 2013. While there he served as a

research assistant for Dr. Sanjay Madria, focusing in the areas of routing and security in

Delay Tolerant Networks and Mobile Ad-Hoc Networks. He served as a teaching assistant

for the Introduction to C++ classes, both the lab and the lecture, and mentored summer

workshops teaching wireless sensor systems to undergraduate students.

