
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Fall 2010 

Structure and content semantic similarity detection of eXtensible Structure and content semantic similarity detection of eXtensible 

markup language documents using keys markup language documents using keys 

Waraporn Viyanon 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Computer Sciences Commons 

Department: Computer Science Department: Computer Science 

Recommended Citation Recommended Citation 
Viyanon, Waraporn, "Structure and content semantic similarity detection of eXtensible markup language 
documents using keys" (2010). Doctoral Dissertations. 1950. 
https://scholarsmine.mst.edu/doctoral_dissertations/1950 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1950&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1950&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/1950?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1950&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu




 

 

 

STRUCTURE AND CONTENT SEMANTIC SIMILARITY DETECTION  

 

OF EXTENSIBLE MARKUP LANGUAGE DOCUMENTS USING KEYS 

 

 

 

 

by 

 

 

WARAPORN  VIYANON 

 

 

A DISSERTATION 

 

Presented to the Faculty of the Graduate School of the  

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

 

DOCTOR OF PHILOSOPHY 

in 

COMPUTER SCIENCE 

 

2010 

 

Approved by 

 

Dr. Sanjay  Madria, Advisor 

Dr. Fikret  Ercal 

Dr. Jennifer  Leopold 

Dr. Chaman  Sabharwal 

Dr. Vincent  Yu 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2010 

Waraporn Viyanon 

All Rights Reserved 



 

 

iii 

PUBLICATION DISSERTATION OPTION 

This dissertation consists of four articles prepared in the style required by the 

journals or conference proceedings in which they were published: 

Pages 23 to 37, ―XML Data Integration Based on Content and Structure 

Similarity Using Keys‖, were published in the 16th International Conference on 

Cooperative Information Systems (CooPIS 2008), Monterrey, Mexico. 

Pages 38 to 64, ―A System for Detecting XML Similarity in Content and 

Structure Using Relational Database‖, were published in the Proceedings of 18th ACM 

International Conference on Information and Knowledge Management (ACM CIKM 

2009), Hong Kong, China. 

Pages 65 to 89, ―XML-SIM: Structure and Content Semantic Similarity Detection 

Using Keys‖, were published in the 8th International Conference on Ontologies, 

DataBases, and Applications of Semantics (ODBASE 2009), Vilamoura, Algarve-

Portugal. 

Pages 90 to 113, ―XML-SIM-CHANGE: Structure and Content Semantic 

Similarity Detection among XML Document Versions‖, were published in the 9th 

International Conference on Ontologies, DataBases, and Applications of Semantics 

(ODBASE 2010), Crete, Greece. 

Some parts of the literature review have been included as a part of a book chapter. 

This book chapter has been submitted and under revision for the book named XML Data 

Mining: Models, Methods, and Applications. 

  



 

 

iv 

ABSTRACT 

XML (eXtensible Mark-up Language) has become the fundamental standard for 

efficient data management and exchange. Due to the widespread use of XML for 

describing and exchanging data on the web, XML-based comparison is central issues in 

database management and information retrieval. In fact, although many heterogeneous 

XML sources have similar content, they may be described using different tag names and 

structures.  

This work proposes a series of algorithms for detection of structural and content 

changes among XML data. The first is an algorithm called XDoI (XML Data Integration 

Based on Content and Structure Similarity Using Keys) that clusters XML documents 

into subtrees using leaf-node parents as clustering points. This algorithm matches 

subtrees using the key concept and compares unmatched subtrees for similarities in both 

content and structure. The experimental results show that this approach finds much more 

accurate matches with or without the presence of keys in the subtrees. A second 

algorithm proposed here is called XDI-CSSK (a system for detecting xml similarity in 

content and structure using relational database); it eliminates unnecessary clustering 

points using instance statistics and a taxonomic analyzer. As the number of subtrees to be 

compared is reduced, the overall execution time is reduced dramatically. Semantic 

similarity plays a crucial role in precise computational similarity measures. A third 

algorithm, called XML-SIM (structure and content semantic similarity detection using 

keys) is based on previous work to detect XML semantic similarity based on structure 

and content. This algorithm is an improvement over XDI-CSSK and XDoI in that it 

determines content similarity based on semantic structural similarity. In an experimental 



 

 

v 

evaluation, it outperformed previous approaches in terms of both execution time and false 

positive rates. 

Information changes periodically; therefore, it is important to be able to detect 

changes among different versions of an XML document and use that information to 

identify semantic similarities. Finally, this work introduces an approach to detect XML 

similarity and thus to join XML document versions using a change detection mechanism. 

In this approach, subtree keys still play an important role in order to avoid unnecessary 

subtree comparisons within multiple versions of the same document. Real data sets from 

bibliographic domains demonstrate the effectiveness of all these algorithms. 



 

 

vi 

ACKNOWLEDGMENTS 

I would like to express my deep and sincere gratitude to my advisor, Dr. Sanjay 

Kumar Madria, for his support, guidance, and motivation to finish this dissertation. His 

knowledge, skills, and advice have been of great value to me. It has been a wonderful 

experience to work under him. 

I would also like to thank the members of my advisory committee, Dr. Fikret 

Ercal, Dr. Jennifer L. Leopold, Dr. Chaman Sabharwal, and Dr. Wen-Bin (Vincent) Yu, 

for their valuable feedback and guidance, which helped improve my research. 

I am also grateful to other faculty members, graduate students, colleagues, and 

friends at Missouri S&T: Dr. Ali Hurson, Clayton Price, Dr. Ralph W. Wilkerson, Dr. 

Xiaoqing (Frank) Liu, Cyriac Kandoth, Leong Lee, Dylan McDonald, Roy Cabaniss, 

Vimal Kumar, Rhonda Grayson, and Dawn Davis. They and many others have 

contributed to my work in many ways and made my time in Rolla enjoyable. 

I wish to express particular appreciation to Chalee Intrarakhanchit for his tips on 

Oracle troubleshooting. 

Finally, none of this would have been possible without the love, support, 

understanding, and encouragement of my parents, brothers, and sister. 

 



 

 

vii 

TABLE OF CONTENTS 

Page 

PUBLICATION DISSERTATION OPTION ..............................................................      iii 

ABSTRACT ..................................................................................................................      iv 

ACKNOWLEDGMENTS ............................................................................................      vi 

LIST OF ILLUSTRATIONS .........................................................................................      x 

LIST OF TABLES .........................................................................................................    xii 

SECTION 

1. INTRODUCTION .................................................................................................      1 

2. REVIEW OF LITERATURE ................................................................................      3 

2.1. PRELIMINARIES .........................................................................................      3 

2.1.1. XML Data Model. ...............................................................................      3 

2.1.2. Views of XML. ....................................................................................      3 

2.1.3. Benefits of XML. ................................................................................      4 

2.2. CHALLENGES IN DETECTION OF XML SIMILARITIES .....................      5 

2.2.1. Performance .........................................................................................      5 

2.2.2. Scalability ............................................................................................      5 

2.2.3. Similarity Measures .............................................................................      6 

2.3. MEASUREMENT OF SIMILARITY AND DISTANCE ............................      6 

2.3.1. Vector-Space Data Similarity ..............................................................      6 

2.3.2. String Similarity ..................................................................................      8 

2.4. SEMANTIC SIMILARITY MEASURES.....................................................      9 

2.4.1. Node and Edge Metrics ........................................................................   10 

2.4.2. Information Corpus-based Methods. ....................................................   11 

2.4.3. Hybrid Similarity. .................................................................................   12 

2.5. XML SIMILARITY .......................................................................................   13 

2.5.1. Structure Oriented Similarity. ..............................................................   13 

2.5.2. Similarity of XML Structure and Content. ...........................................   17 

2.5.3. Similarity of Collection of Values ........................................................   20 

2.6. XML STORAGE ............................................................................................   20 

2.7. XML KEYS ....................................................................................................   22 



 

 

viii 

PAPER 

I.    XML DATA INTEGRATION BASED ON CONTENT AND STRUCTURE 

SIMILARITY USING KEYS ...................................................................................   23 

ABSTRACT...........................................................................................................   23 

1. INTRODUCTION ..........................................................................................   23 

2. RELATED WORK.........................................................................................   24 

3. MOTIVATION AND PROBLEM STATEMENT ........................................   25 

4. APPROACH ...................................................................................................   27 

5. PERFORMANCE EVALUATION ...............................................................   32 

6. CONCLUSIONS ............................................................................................   36 

7. REFERENCES ...............................................................................................   36 

II.  A SYSTEM FOR DETECTING XML SIMILARITY IN CONTENT AND 

STRUCTURE USING A RELATIONAL DATABASE .........................................   38 

ABSTRACT...........................................................................................................   38 

1. INTRODUCTION ..........................................................................................   39 

2. BACKGROUND ............................................................................................   40 

3. XDoI ...............................................................................................................   42 

4. XDI-CSSK......................................................................................................   44 

5. ALGORITHM ................................................................................................   56 

6. PERFORMANCE RESULTS ........................................................................   60 

7. CONCLUSIONS .............................................................................................. 61 

8. FUTURE WORK ...........................................................................................   62 

9. REFERENCES ...............................................................................................   62 

III. XML-SIM: STRUCTURE AND CONTENT SEMANTIC SIMILARITY 

DETECTION USING KEYS ...................................................................................   65 

ABSTRACT...........................................................................................................   65 

1. INTRODUCTION ..........................................................................................   65 

2. RELATED WORK.........................................................................................   67 

3. PROBLEM STATEMENT ............................................................................   69 

4. APPROACH ...................................................................................................   70 

5. XML-SIM EXPERIMENT ............................................................................   83 

6. CONCLUSIONS AND FUTURE WORK.....................................................   87 

7. REFERENCES ...............................................................................................   87 



 

 

ix 

IV. XML-SIM-CHANGE: STRUCTURE AND CONTENT SEMANTIC  

SIMILARITY DETECTION AMONG XML DOCUMENT VERSIONS ..............   90 

ABSTRACT...........................................................................................................   90 

1. INTRODUCTION ..........................................................................................   91 

2. RELATED WORK.........................................................................................   92 

3. M-XRel ...........................................................................................................   93 

4. XML-SIM .......................................................................................................   95 

5. XML-SIM-CHANGE FRAMEWORK .......................................................... 101 

6. XML-SIM-CHANGE PERFORMANCE EVALUATION ........................... 107 

7. CONCLUSIONS AND FUTURE WORK..................................................... 111 

8. REFERENCES ............................................................................................... 111 

SECTION 

3. CONCLUSION ...................................................................................................... 114 

BIBLIOGRAPHY ........................................................................................................... 116 

VITA  .............................................................................................................................. 123 

 

 

 

 

 

 

 



 

 

x 

LIST OF ILLUSTRATIONS 

               Page 

Figure 2.1. XML data model..........................................................................................      3 

Figure 2.2. Two types of XML documents: (a) document-centric (b) data-centric .......      4 

Figure 2.3 Example of synsets: (a) WordNet‘s synsets (b) part of WordNet .................   10 

Figure 2.4. Atomic tree edit distance calculation ...........................................................   14 

Figure 2.5. XML trees .....................................................................................................   15 

PAPER 1 

Figure 1. Example of LAX clustering on two different XML structures. ......................   25 

Figure 2. XDoI Algorithm ..............................................................................................   31 

Figure 3. Average execution time for XDoI and SLAX .................................................   35 

Figure 4. Quality of results various (a) file sizes and (b) file types ................................   36 

PAPER 2 

Figure 1. XML documents: (a) SIGMOD Record and (b) DBLP documents ................   44 

Figure 2. XDI-CSSK system architecture .......................................................................   45 

Figure 3. XRel relations ..................................................................................................   46 

Figure 4. XDI-CSSK‘s relations .....................................................................................   46 

Figure 5. SQL query for finding leaf-node parents .........................................................   48 

Figure 6. SQL for removing leaf-node parents without a one-to-one relationship .........   49 

Figure 7. Pseudocode for generating subtrees ................................................................   50 

Figure 8. SQL query for finding keys .............................................................................   51 

Figure 9. SQL query for matching with keys .................................................................   53 

Figure 10. SQL query using key matching to find multiple matched subtrees ...............   53 

Figure 11. SQL query for finding appropriate leaf-node parents ...................................   53 

Figure 12. XDI-CSSK Algorithm ...................................................................................   57 

Figure 13. XRel parsing and storing XML documents ...................................................   59 

Figure 14. Quality of XDoI and XDI-CSSK results .......................................................   59 

Figure 15. Execution time of XDoI and XDI-CSSK ......................................................   60 

PAPER 3 

Figure 1. Example of XML documents compared in XDoI and XDI-CSSK .................   70 

Figure 2. XML-SIM framework .....................................................................................   71 



 

 

xi 

Figure 3. XRel schemas ..................................................................................................   72 

Figure 4. SQL query for finding leaf-node parents .........................................................   73 

Figure 5. XML-SIM relations .........................................................................................   74 

Figure 6. Instance statistics on subtree structure ............................................................   75 

Figure 7. SQL query to remove leaf-node parents lacking a loose one-to-one  

relationship .......................................................................................................   76 

Figure 8. SQL query to identify leaf nodes as keys ........................................................   76 

Figure 9. SQL query for key matching ...........................................................................   77 

Figure 10. Filtering subtrees: (a) SQL query to find multiple matches beyond  

the median number of alternate keys and (b) SQL query to find  

appropriate leaf-node parents ........................................................................   78 

Figure 11. SQL query to identify matched path pairs .....................................................   80 

Figure 12. Algorithm for retrieving matched subtree pairs ............................................   83 

Figure 13. Overall execution time in XDoI, XDI-CSSK, and XML-SIM ......................   86 

Figure 14: Detection of true positive (TPs) and false positives (FPs) ............................   86 

PAPER 4 

Figure 1. M-XRel storage: (a) storing XML documents to M-XRel schema  

(b) M-XRel schema..........................................................................................   94 

Figure 2. XML-SIM framework .....................................................................................   96 

Figure 3. Subtree: (a) clustering by leaf-node parents and (b) relation ..........................   97 

Figure 4: SQL query to identify leaf nodes as keys ........................................................   98 

Figure 5: Matching relation ............................................................................................ 100 

Figure 6: Overview of XML-SIM-CHANGE................................................................. 101 

Figure 7: Framework for identifying changes between two versions ............................. 103 

Figure 8: XML-SIM-CHANGE algorithm ..................................................................... 106 

Figure 9: Execution time of: (a) small data sets with the change of insertions and 

deletions  (b) medium data sets with the change of insertions and deletions   

(c) medium datasets with the change of deletions  (d) medium data sets  

with the change of insertions  (e) large datasets with the change of deletions   

(f) large data sets with the change of insertions ............................................... 110 

Figure 10: Result quality ................................................................................................. 111 

 



 

 

xii 

LIST OF TABLES 

               Page 

Table 2.1. XRel‘s relations ............................................................................................    21 

Table 2.2: XRel‘s tables .................................................................................................    22 

PAPER 1 

Table 1. XRel relational schema and subtree table ........................................................    28 

Table 2. Finding key(s) ..................................................................................................    28 

Table 3. SQLs for clustering subtrees and matching subtrees with key ........................    32 

Table 4. Clustered point and number of subtrees yielded by each approach .................    33 

Table 5. Execution time (in seconds) for clustering and key generation in SIGMOD 

Record and DBLP data .....................................................................................    35 

Table 6. Matched subtrees of SIGMOD Record and DBLP ..........................................    36 

PAPER 2 

Table 1. Clustering points between XDoI and XDI-CSSK ...........................................    58 

Table 2. The numbers of subtree comparisons required ................................................    59 

PAPER 3 

Table 1. Path expressions of the subtrees rooted by <article> and <proceedings> .......    81 

Table 2. Results of Node Label Semantic Similarity Degree (NSSD) ..........................    81 

Table 3. Results of Matched Path Pair (MPP) ...............................................................    82 

Table 4. Data set information and actual matched subtree pairs ...................................    84 

Table 5. Results: (a) the number of clustered subtrees based on the clustering points 

 in SIGMOD Record.xml (b) the number of clustered subtrees based on the 

clustering points in DBLP1, DBLP2, and DBLP3 ...........................................    85 

PAPER 4 

Table 1. M-XRel field descriptions ...............................................................................    95 

Table 2. Controlled data sets ..........................................................................................  108 

Table 3. Data set descriptions for Doc2.V2 ...................................................................  108 

 

 



 

 

1. INTRODUCTION 

XML (eXtensible Mark-up Language) has become increasingly important as the 

fundamental standard for efficient data management and exchange [25]. Information 

designed to be broadcast over the Internet is represented in XML to ensure its 

interoperability. The use of XML covers a wide variety of applications ranging from data 

storage and representation to database information interchange, data filtering, and web 

services interaction. 

As the use of XML to describe and exchange data on the web has grown, 

comparison of XML documents has become central issues in database management and 

information retrieval. Applications of XML similarity analysis are numerous and include: 

(i) data integration, (ii) version control, (iii) classification and clustering of XML 

documents, and (iv) XML query systems [60]. 

Although heterogeneous XML sources may have similar content, they may be 

described using different tag names and structures. Examples include the bibliography 

data sources; DBLP [71] and Sigmod Record [2]. Integration of similar XML documents 

from different data sources benefits users, giving them access to more complete and 

useful information and query systems to retrieve information from a single integrated 

source instead of various sources. 

XML is a structured format, which means that the arrangement, organization, and 

expression of data in a document can be defined exactly. The structure of XML 

documents organized in a hierarchical manner shows how elements stand in relation to 

each other. The content of XML documents holds the meaning. Since XML documents 

encode both structure and data, accurate measurement of similarities among the 

documents and integration of documents demand consideration of similarities in both the 

structure and content of XML documents. 

There is much research to be done on the structural similarities of XML 

documents. Tree edit distance (TED) [16] is one method to estimate similarities among 

hierarchically structured data. This technique determines which edit operations to 

transform one tree into another have the lowest cost. Several projects have relied on TED 



 

 

2 

between corresponding trees of XML documents; however, evaluating TED is 

computationally expensive and difficult to scale up to large collections [16, 59, 62].  

Precise measurement of similarities between XML documents must take into 

account the semantics of those documents. Some work has considered both content and 

structural similarities, such as LAX, SLAX, and composite SVM kernels [41, 42, 28]. 

The techniques presented here to detect degrees of similarities among XML 

documents being by clustering XML documents into smaller subtrees, each considered an 

individual object, using leaf-node parents. The clustered subtrees are filtered using a 

taxonomic analyzer and the instance statistics concept. The taxonomic analyzer is a 

method of determining how close the meanings of element names are and transforming 

them into a single category. For example, an XML document may contain an element 

name ―Pages,‖ which has two sub-elements, ―initPage‖ and ―endPage,‖ as descendants. 

These three element names can be categorized in the same group using the taxonomic 

analyzer. The instance statistic [68] is employed to determine the relationships among the 

element names. Subtrees are considered proper if they show a one-to-one relationship 

between XML elements. Once the subtrees are filtered, the concept of key is exploited. 

Keys play an essential part in the database design [13] techniques presented here, 

permitting matching of subtrees between documents. In addition, in order to compare 

documents, this work uses the results of matching with keys to identify irrelevant and 

therefore inappropriate leaf-node parents. The results of experiments show that overall 

computation is improved without compromising quality. 

  



 

 

3 

2. REVIEW OF LITERATURE 

2.1. PRELIMINARIES 

2.1.1. XML Data Model.  An XML document can be represented as a tree. Each 

node
1
 of the tree corresponds to an XML element, which is written with an opening and 

closing tag. Each edge represents parent/child relationship between elements in the XML 

file. The leaf nodes of the tree represent data values according to their relationship. A 

path from the root element to a leaf node element is called a path expression
2
 or path 

signature. In Figure 2.1, ‗/book/title/‘ is the path signature for the data ―XML in Use.‖ 

 

 

<book> 
  <title>XML in Use</title> 
  <authors> 
     <author>Author1</author> 
     <author>Author2</author> 
  </authors> 
</book> 

 

XML document 

 

XML tree 

 

Figure 2.1. XML data model 

 

 

2.1.2. Views of XML.  As Bourret [12] pointed out, XML documents can be 

classified as having either: (1) a document-centric (text-centric) view or (2) a data-centric 

view.  

Data-centric documents are used to transport data. As such, they are highly 

structured data marked up with XML tags. Most data-centric XML documents are 

generated from structured sources such as RDBMS. The data-centric view emphasizes on 

XML structure since the meaning of a data-centric XML document depends only on the 

                                                 

1
 The terms ‗node‘ and ‗element‘ are used interchangeably in this paper. 

2
 The term ‗path expression‘ and ‗path signature‘ are used interchangeably in this paper. 

book

title

XML in 
Use

authors

author

Author1

author

Author2



 

 

4 

structured data represented inside it. It is usually used to exchange data in a structured 

form. 

Document-centric documents focus on application-relevant objects. They are 

loosely structured documents marked-up with XML tags, and their meaning depends on 

the document as a whole. Their structure is more irregular, and their data are 

heterogeneous. Such documents might not even have a document-type declaration (DTD) 

or XML schema. For this view, text is a higher priority than structure. Figure 2.2 shows 

examples of both document-centric and data-centric documents. 

 

 

   <FlightInfo> 
      <Airline>ABC Airways</Airline> provides 
<Count>three</Count> 
      non-stop flights daily from <Origin>Dallas</Origin> to 
      <Destination>Fort Worth</Destination>. Departure 
times are 
      <Departure>09:15</Departure>, 
<Departure>11:15</Departure>, 
      and <Departure>13:15</Departure>. Arrival times are 
minutes later. 
   </FlightInfo> 

 

   <Flights> 
      <Airline>ABC Airways</Airline> 
      <Origin>Dallas</Origin> 
      <Destination>Fort Worth</Destination> 
      <Flight> 
         <Departure>09:15</Departure> 
         <Arrival>09:16</Arrival> 
      </Flight> 
      <Flight> 
         <Departure>11:15</Departure> 
         <Arrival>11:16</Arrival> 
      </Flight> 
      <Flight> 
         <Departure>13:15</Departure> 
         <Arrival>13:16</Arrival> 
      </Flight> 
   </Flights> 

(a) (b) 

Figure 2.2. Two types of XML documents: (a) document-centric (b) data-centric 

 

 

2.1.3. Benefits of XML.  Daly [21] outlines the benefits of XML, explaining why it 

is an effective solution for the design of a wide range of applications.  

(1) XML is simple. It codes information coded in a format that is easy for humans 

to read and understand, and easy for applications to process.  

(2) XML is extensibility. It has no fixed set of fields. New fields can be created as 

needed.  



 

 

5 

(3) XML is self-describing. In traditional databases, data records require schemas 

set up by the database administrator. Because they contain meta-data in the form of fields 

and attributes, XML documents can be stored without such definitions. XML also 

provides a basis for author identification and versioning at the element level. Any XML 

field can possess an unlimited number of attributes, such as author or version.  

(4) XML is a World Wide Web Consortium (W3C) standard endorsed by 

software industry market leaders.  

(5) XML supports multilingual documents and Unicode; it is appropriate for the 

international applications.  

(6) XML facilitates the comparison and aggregation of data. The tree structure of 

XML documents allows documents to be compared and aggregated efficiently, element-

by-element.  

(7) XML can embed multiple data types. XML documents can contain any 

possible data type - from multimedia data (image, sound, and video) to active 

components (Java applets, ActiveX).  

(8) XML can embed existing data. Mapping existing data structures like file 

systems or relational databases to XML is simple. XML supports multiple data formats 

and can cover all existing data structures.  

 

 

2.2. CHALLENGES IN DETECTION OF XML SIMILARITIES 

2.2.1. Performance.  Generally, XML similarity detection relies on a large 

number of comparisons among subtrees in DOM (document object model) trees. To 

identify simple and reasonable properties of the match and merge functions, efficient 

processing and optimal algorithms are needed. 

2.2.2. Scalability.  Most XML documents, such as protein sequence data sets, 

particularly in XML data integration, are large. Efficient matching and merging functions 

require that the data sets are loaded, which may not allow them to fit into the main 

memory to fetch and write results to disk as efficiently as possible. Secondary storage 

may be required in this case. One possible solution is to store XML documents in a 



 

 

6 

relational database, which requires a mapping technique to maintain the structure and 

content of the XML documents. 

2.2.3. Similarity Measures.  Similarity measures play a key role in analyzing 

XML similarity. Selecting or building a similarity approach is important for accuracy. 

Many approaches to measuring similarity must be compared and improved for efficiency.   

 

 

2.3. MEASUREMENT OF SIMILARITY AND DISTANCE 

The concept of similarity has been the subject of much research in the fields of 

computer science, psychology, artificial intelligence, and linguistics. Typically, such 

studies focus on the similarity between vectors, strings, trees, or objects. The input data 

comes from two documents,   and  . Each similarity measure considered is presented as 

a function of   and  ,         , indicating the degree of similarity between documents 

  and  . The similarity value is a number between 0 and 1. The similarity is minimized 

only if the two sets share nothing in common, and it is maximized only if the two sets are 

identical. In order to decide which pair is similar, a threshold is defined. The similarity 

measures described below normalize the overlap and distance in various ways. 

2.3.1. Vector-Space Data Similarity 

2.3.1.1  L1 Norm.  L1 norm is a means of calculating the distance between two 

points by calculating the sum of the differences: 

                 

 

 
(1)  

2.3.1.2 Euclidean Distance.  Euclidean distance (also called L2 norm) is a means 

of determining the distance between two points in mathematics. It can be applied to find 

the similarity between two documents:  

                  
 

 

  

(2)  



 

 

7 

2.3.1.3 Dice Similarity.  This is a similarity measure defined as twice the shared 

information (intersection) over the combined set (union):  

              
      

     
  (3)  

2.3.1.4 Jaccard Similarity.  This similarity metric is similar to dice similarity. 

The Jaccard coefficient measures similarity between two sets; it is defined as the size of 

the intersection divided by the size of the union of the given sets: 

        
     

     
  (4)  

2.3.1.5 Cosine Similarity.  The cosine of the angle between two vectors   and  , 

the cosine similarity, θ, is represented using a dot product and magnitude as 

             
   

      
  

      

    
      

 

  (5)  

As the angle between the vectors narrows two vectors draw closer to one another. 

The measure can be transformed in set notation: 

               
     

        
  

(6)  

This solution is easy to implement, but it suffers from several limitations. The 

structures of XML documents are often ignored in the comparison process. If the 

dimensions of the vector become larger, the value of some features becomes unavailable. 

In addition, the order in which the terms appear in the document is lost in the vector 

space representation.  

2.3.1.6 Overlap Similarity.  This measure computes the overlap between two 

sets defined as  

                   . (7)  

2.3.1.7 Term Frequency-Inverse Document Frequency Weights.  The vector 

space model was proposed by Salton [75]. The term Tf-idf weight is an abbreviation of 

term frequency-inverse document frequency. This approach defines a weight for each 

document term. Terms are typically single words, keywords, or longer phases. The more 

http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Magnitude_(mathematics)#Euclidean_vectors


 

 

8 

common a term, the lower its weight. This weighting prevents a bias toward longer 

documents and gives a measure of the importance of the term    within the particular 

document   . The weight vector can be defined as 

              
   

          
 

(8)  

where       is the number of occurrences. The term (  ) in document   , divided by the 

sum of the number of occurrences of all terms in document. The term    
   

          
 is the 

inverse document frequency,     is the number of documents in the document sets, and 

           is the number of documents in which the term    appears. 

2.3.2. String Similarity 

2.3.2.1 String Matching.  String matching is important in the domain of text 

processing. It involves identifying a place where one or several strings are found within a 

text. String matching algorithms generally scan the text with the help of a window. They 

first align the left ends of the window and the text, then compare the characters of the 

window (called patterns). After a whole match of the pattern, or after a mismatch, they 

shift the window to the right. The same procedure is repeated until the right end of the 

window goes beyond the right end of the text. This mechanism is called the sliding 

window mechanism. 

2.3.2.2 Longest Common Subsequence.  Longest common subsequence (LCS) 

[44] determines the longest subsequences that can be obtained by deleting zero or more 

symbols from each of two given sequences. This is an NP-hard problem. Given two 

sequences be defined as                and                 LCS function is 

defined as 

            

                                                                                   

                                                                        

                                                      

 . (9)  

This method is suitable for biological data integration applications. Exact string 

matching often fails to associate a name with its biological concept (i.e., ID or accession 

number in the database) due to seemingly small differences between names. Soft string 

matching could permit identification of relevant information by considering the similarity 



 

 

9 

between names. However, the accuracy of soft matching depends heavily on the 

similarity measure used.  

 

 

2.4. SEMANTIC SIMILARITY MEASURES 

Semantic similarity rests on the concept that a set of documents or terms within a 

term list can be assigned a metric based on the relatedness of their semantic content. 

Semantic similarity methods [32, 38, 43, 49, and 53] have been introduced to capture the 

meaning of words. Generally, these methods can be categorized into two main groups: 

edge-counting-based methods [50] and information-corpus-based methods. 

Semantic similarity requires a lexical database. One large lexical database used in 

many natural language processing (NLP) applications is WordNet. It includes most 

English nouns, verbs, adjectives, and adverbs.  

WordNet [26] is organized by meaning: Words in close proximity are 

semantically similar. It is classified in terms of synsets, or unordered sets of roughly 

synonymous words or multiword phases. Each synset expresses a distinct meaning or 

concept. Figure 2.3 (a) shows some examples of synsets. Each set contains synonymous 

words and their meaning. 

A taxonomy is represented in a hierarchal form consisting of nodes and edges. 

Each node represents a synset, and each edge indicates a semantic relationship between 

synsets. These relationships could be hyperonyms, hyponyms, holonyms, meronyms, 

coordinate terms, troponyms, or entailments. Figure 2.3 (b) depicts the relationships 

among synsets. 

The Cambridge/Acquilex lexical database system is a computer system that 

provides flexible access to machine-readable dictionaries. It supports user retrieval of 

subsets of entries from one or more dictionaries, including the Longman Dictionary, the 

MRC Psycholinguistic Database, the Van Dale Dutch monolingual, and bilingual 

dictionaries. This system is a hierarchical collection of attributes and associated values 

that can be described in terms of syntax (syn) and semantic (sem). A query can be 

mapped onto a collection of indices to determine which synsets are most discriminating. 

 

http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Semantic


 

 

10 

Noun 

{pipe, tobacco pipe} (a tube with a small bowl at one end; used for smoking tobacco) 

{pipe, pipage, piping} (a long tube made of metal or plastic that is used to carry water, oil, gas, etc.) 

{pipe, tube} (a hollow cylindrical shape) 

{pipe} (a tubular wind instrument) 

{organ pipe, pipe, pipework} (the flues and stops on a pipe organ) 

Verb 

{shriek, shrill, pipe up, pipe} (utter a shrill cry) 

{pipe} (transport by pipeline) “pipe oil, water, and gas into the desert” 

{pipe} (play on a pipe) “pipe a tune” 

{pipe} (trim with piping) “pipe the skirt” 

(a) 

 

(b) 

Figure 2.3 Example of synsets: (a) WordNet‘s synsets (b) part of WordNet 

 

 

2.4.1. Node and Edge Metrics 

2.4.1.1 Edge-counting Based Metric.  The edge-based approach is a simple and 

intuitive way of evaluating semantic similarity in a taxonomy. This approach estimates 

the distance between nodes corresponding to the concepts being compared. This 

geometric distance can be measured. Rada et al. [50] showed that the simplest means of 

determining the distance between two concept nodes, A and B, is identifying the shortest 

path that links A and B, or the minimum number of edges that separate A and B. 

Jiang and Conrath [32] have noted that the distance between any two adjacent 

nodes is not necessarily equal; therefore, this approach is not sensitive to the problem of 

{conveyance; transport} 

{vehicle} 

{motor vehicle; automotive vehicle} 

{car; auto; automobile; machine; motorcar} 

{cruiser; squad car; patrol car; police car; prowl car} {cab; taxi; hack; taxicab} 

{bumper} 

{car door} 

{car window} 

{car mirror} 

hyperonym 

hyperonym 

hyperonym 

hyperonym hyperonym 

meronym 

meronym 



 

 

11 

varying link distances. Edge weight can be considered in order to solve this problem. It is 

related to the number of children, the depth of a node in the hierarchy, the type of link 

(such as the is-a, part-of, or substance-of links), the network density, and the strength of 

an edge link. 

2.4.1.2 Path Length Metric.  Leacock and Chodoro‘s measure of similarity [36] 

relies on the length            of the shortest path between two synsets: 

                  
          

  
 (10) ( 

where   is the overall depth of the taxonomy. This measure is limited by its attention to 

IS-A links and to the scale of the path length, or the depth of the taxonomy.  

2.4.1.3 Node Depth Metric.  This method measures the depth of two concepts in 

a taxonomy and the depth of the least common subsume (LCS). It then combines these 

properties into a similarity score: 

                     
                   

                   
 (11) ( 

where     is the lowest common subsume and           is the depth of node c in the 

hierarchy.  

2.4.2. Information Corpus-based Methods.  Several research groups [53, 32, 

43] have proposed information-content (IC) based measures of semantic similarity 

between terms. These measures were designed mainly for WordNet. 

2.4.2.1 Resnik’s Measure.  Resnik‘s measure calculates the semantic similarity 

between two terms          in a given ontology (e.g., WordNet) as the information 

content (IC) of the least common ancestor (LCA) of         . The IC of a term t can be 

quantified in terms of the probability (      of its occurrence. The probability assigned to 

a term is defined as its relative frequency of occurrence: 

                                              (12) ( 

where P(c) is the probability that a randomly selected word in a corpus is an instance of 

concept c. This can also be written as 



 

 

12 

     
                   

 
 (13) ( 

where words(c) is the set of words subsumed by concept c, and N is the total number of 

words in the corpus. 

2.4.2.2 Jiang and Conrath Distance.  Intuitively, the more differences between 

A and B, the less similar they are. Conversely, the more A and B have in common, the 

more similar they are. Jiang and Conrath distance uses the notion of information content 

and the probability of encountering an instance of a child-synset given an instance of an 

LCS. Thus, the information content of the two nodes, as well as that of their most specific 

subsume, plays a part: 

                                                       (14) ( 

Note that the output for this equation is distance, the inverse of similarity. 

2.4.2.3 Lin’s Measure.  Lin‘s similarity measure follows from his theory of 

similarity between arbitrary objects. It uses the same elements as Jiang and Conrath 

distance, but in a different fashion: 

               
                  

                   
  (15) ( 

2.4.3. Hybrid Similarity.  Semantic similarity plays an important role in finding 

the similarity in meaning or semantic content. Syntactic similarity measures have 

performed strongly with resources containing large amounts of text, but they cannot 

appropriately cope with syntactic and semantic heterogeneity and ambiguity if the 

semantics of the terms are not explicitly available. The hybrid similarity measure 

combines both semantic and syntactic similarity measures to detect the similarity among 

documents. This approach can be incorporated using average, maximum, additive, or 

weighted sum functions. The average, maximum and additive functions are simple. The 

weighted sum seems to work best, but it requires that the domain experts obtain the 

weights. 

 



 

 

13 

2.5. XML SIMILARITY 

Much work has addressed XML similarity. Similarity can be computed at 

different layers of abstraction: at the data layer (i.e., similarity between data), at the type 

layer (i.e., similarity between types, also referred to as schema, models, or structures, 

depending on the application domain), or between the two layers (i.e., similarity between 

data and types). XML similarity can be categorized as either of two approaches: (1) 

structural similarity or (2) content and structural similarity. The XML documents thus 

compared are data-centric documents. 

2.5.1. Structure Oriented Similarity.  Structural similarity focuses mainly on 

document classification or schema mapping in order to generate a global schema. A 

global schema is generated based on a formal merge ontology as a basis for integration 

and to resolve heterogeneity problems during integration. David Buttler [14] summarized 

three approaches to structural similarity: (1) tag similarity, (2) tree edit distance (TED), 

and (3) Fourier transform similarity. 

2.5.1.1 Tag Similarity.  This is the simplest way to measure the structural 

similarity of documents. It measures how close element names from two XML 

documents are. Documents that use similar element names are likely to have similar 

schema. This measure evaluates the number of intersected elements from the compared 

documents and it is divided by the union. In addition, the overlap can be calculated by 

applying a taxonomy to observe how similar element names are; however, this approach 

is not suitable for several reasons. One critical problem is that documents conforming to 

the same schema may have only a limited number of element names; one document may 

contain a large number of a particular element name, whereas the other may contain 

relatively few occurrences of the tag. In addition, tag similarity completely ignores the 

structure of documents, thus yielding low clustering quality. 

2.5.1.2 Tree Edit Distance.  Because XML documents can be represented in tree 

form, one popular technique to determine similarities between them is to determine the 

edit operations that can transform one tree into another with minimum cost. Edit 

operations can be classified in two groups: atomic edit operations and complex edit 

operations. An atomic edit operation can be either the deletion of an inner or leaf node, 

the insertion of an inner or leaf node, or the update of one node by another node. A 



 

 

14 

complex edit operation is the insertion, deletion, or update of a whole subtree. Tai [59] 

introduced the first nonexponential algorithm that has complexity of             

         
           

   when finding the minimum edit distance between trees    

and   . Here,      and      denote the number of nodes in    and    respectively; 

          and           are the depths of the trees. 

Figure 2.4 shows an example of TED calculation of the similarity between trees 

   and   . If nodes b, c ,and d are inserted in sequence,    can transform   . The distance 

            between    and    is 3.  

 

 

 

 

Figure 2.4. Atomic tree edit distance calculation 

 

 

Previously, edit operations (insertion, deletion, substitution) have been allowed on 

single nodes only. If the distance between trees is computed by applying atomic edit 

operations as in Figure 2.5, the distance between    and    is equal to as calculated from 

the cost of inserting node h, b, c, d, and h. This cost is equal to the distance between    

and      the cost of inserting h, e, f, g, and h. In other words,    and    are the same 

distance from   . Obviously,    is more similar to    based on subtree structural 

commonalities (the complex tree edit operations) marked as circles in the XML tree 

comparisons in Figure 2.5. 

Chawathe‘s approach [16] considers the insertion and deletion operations at the 

leaf-node level and allows replacement of node labels anywhere in the tree but, 

disregards the move operation. The overall complexity of Chawathe‘s algorithm is 



 

 

15 

expressed as       where   is the maximum number of nodes in the trees being 

compared. This method is computationally expensive and has a prohibitively high run 

time; therefore, it is not practical for similarity matching over large XML data 

repositories. 

 

 

 

 

Figure 2.5. XML trees 

 

 

Shasha and Zhang [58] propose a TED metric that permits the addition and 

deletion of single nodes anywhere in the tree, not just at the leaves. However, entire 

subtrees cannot be inserted or deleted in one step. The complexity of this approach is 

expressed as                              . 

Nierman and Jagadish [48] emphasize the identification of subtree structural 

similarities. Their edit operations are similar to Chawathe‘s, but they add two new 

operations: insert tree and delete tree. To determine subtree similarities, they introduce 

containment in the relationship between trees or subtrees. A tree    is said to be 

contained in a tree    if all nodes of    occur in    with the same parent/child edge 

relationship and node order. The overall complexity of this algorithm is expressed as 

     . This approach proved more accurate in detecting XML structural similarities than 

those of either Chawathe or Shasha. 

2.5.1.3 Fourier Transform Similarity.  Essentially, Fourier transform similarity 

[51] removes all the information from a document except for its start and end tags, 

leaving only its skeleton, which represents its structure. The structure is then converted 

into a sequence of numbers, which is viewed as a time series, and a Fourier transform is 



 

 

16 

applied to convert the data into a set of frequencies. Finally, the distance between two 

documents is computed by calculating the difference in the magnitudes of the two 

signals. Buttler [14] proved that this algorithm is the least accurate of all approximation 

algorithms, and performs poorly because Fourier transform does not discriminate 

sufficiently between very similar documents. 

2.5.1.4 Edge Matching.  Lian et al. [39] represent XML document structures as 

directed graphs called s-graphs, and define a distance metric that captures the number of 

edges common to the graph representations of two XML documents:  

            
                       

                        
  (16) ( 

This metric is more effective than others based on TED, in separating documents 

that are structurally different. It can be applied not only to tree-structured documents but 

also to document collections of arbitrary (graph) structure. 

2.5.1.5 Path Similarity.  Path expressions of XML documents can be used to find 

the similarity among these documents by measuring the similarity of paths between them 

[52]. A path is defined as a list of connected nodes starting at the root and terminating at 

a leaf node. Path similarity can be measured in several different ways: binary (where a 

path is either equivalent or not), partial (where the number of comparable nodes in each 

path is determined), or weighted (where the nodes are weighted according to their 

distance from the root). Rafiei, Moise and Sun [52] define two XML documents as 

similar if they share a large fraction of the paths in their path sets. The path set includes 

all root paths (from the root to leaf nodes) and all possible subpaths. The time complexity 

in terms of the number of string comparisons is expressed as       , where n is the 

number of root paths and   is the length of each path. Buttler [14] shows that the path 

similarity method provides fairly accurate results compared to TED. 

2.5.1.6 XML/DTD Similarity.  Structural similarity can be detected by 

comparing document type definitions (DTDs) with XML documents. Bertino, Guerrini, 

and Mesiti [8] proposed a matching algorithm for measuring the structural similarity 

between an XML document and a DTD. By comparing the document structure with that 

required by the DTD, the matching algorithm is able to identify commonalities and 



 

 

17 

differences. Differences can be the occurrence of extra elements beyond those required 

by the DTD, or the absence of required elements. The degree of similarity can be 

evaluated based on the element‘s properties, such as level or weight. Elements at higher 

levels are considered more relevant than those at lower levels. The authors state that their 

approach is of exponential complexity. 

2.5.2. Similarity of XML Structure and Content.  In the context of XML 

classification and clustering, structural similarity seems to be sufficient to distinguish or 

classify XML documents. However, in the context of XML data integration, not only the 

structure of XML documents must be considered, but also their content in order to 

determine whether XML documents have similar content to integrate. 

2.5.2.1 Subtree Similarity.  To integrate XML documents, many methods begin 

by with identifying objects in a data source that may represent real-world objects by 

clustering them into small fragments or subtrees. This method is called entity resolution 

(ER), also known as duplication or record linkage. A well clustered subtree should meet 

with the following requirements: (1) Each subtree represents one independent item, (2) 

each independent item is clustered into one subtree, and (3) the leaf nodes belonging to 

that item should be included in the subtree. 

Liang and Yokota [41] provide an approach entitled leaf-clustering based 

approximate XML join algorithm (LAX). Their method consists of two main steps: (1) 

fragmenting XML documents into subtrees and (2) computing similarity. First, LAX 

divides XML trees into subtrees by considering a clustering point from the height 

(distance from the furthest child) and the number of link branches of XML trees. A link 

branch is a link between two candidate elements that have at least two children, or the 

distance of which to its furthest child is at least three. The subtree can be generated by 

deleting the link branch below the clustering point. The clustering point is calculated 

from the maximum weighting factor of the multiplication between the height level and 

the number of link branches. After clustering documents, the clustered subtrees are 

compared at the leaf-node levels using the percentage of matched leaf nodes in the 

subtrees. The overall complexity of this approach is expressed as      , where   is the 

maximum number of nodes in the XML documents. The authors found that when LAX is 

applied after fragmenting documents, the matched subtrees selected from the output pair 

http://www.sciencedirect.com/science?_ob=MathURL&_𝑚𝑒𝑡ℎ𝑜𝑑=𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒&_𝑢𝑑𝑖=𝐵8𝐽𝐷𝐺−4𝑊80𝐺𝐾𝑌−1&_𝑚𝑎𝑡ℎ𝐼𝑑=𝑚𝑚𝑙272&_𝑢𝑠𝑒𝑟=1036314&_𝑐𝑑𝑖=43614&_𝑝𝑖𝑖=𝑆1574013709000136&_𝑟𝑑𝑜𝑐=1&_𝑖𝑠𝑠𝑛=15740137&_𝑎𝑐𝑐𝑡=𝐶000050731&_𝑣𝑒𝑟𝑠𝑖𝑜𝑛=1&_𝑢𝑠𝑒𝑟𝑖𝑑=1036314&𝑚𝑑5=717𝑓𝑏𝑎094𝑑098𝑎𝑎𝑏58𝑒7468𝑎1571𝑏41𝑐


 

 

18 

of fragmented documents with a high degree of similarity among trees might not be the 

subtrees appropriate for integration. To solve this problem, they introduce SLAX (an 

improved LAX to Integrate XML data at subtree classes) [42]. SLAX divides XML 

documents into smaller portions by parsing them into   document trees. In each 

document tree, SLAX applies the weighting factor from LAX to find points for subtree 

clustering. Since the clustering method relies on the number of link branches and the 

document‘s depth, this method may not perform well for deep and complex XML 

structures.  

2.5.2.2 Document List Similarity.  Kade and Heuser [33] present an approach 

called XSIM that uses information from both the structure and the content of XML 

documents. Three pieces of information permit calculation of the similarity between two 

nodes of XML trees: the content of the element and the names and path of the nodes. The 

comparison has two main steps: (1) node matching and (2) document matching. First, the 

document tree is traversed to produce a set of tuples containing path and content and 

called a document list for subtrees. Second, the tuples of the document lists are compared 

and searched for matching nodes based on similarity of textual content, node label and 

node path. The similarity between two elements is computed as the average of textual 

content, element name, and path similarity values without considering semantics. 

2.5.2.3 Probabilistic Model.  In the work of de Keijzer [22], the uncertainty is 

stored in order to support unattended information integration in probabilistic form using a 

probabilistic database approach. A problem in using probabilistic databases for data 

integration is how to determine the probabilities. Many schema-matching techniques 

suitable for data integration, however, quantify the degree of matching. For example, 

instance-based matchers use classification techniques. If two data items from different 

information sources referring to the same real-world object conflict on some attribute 

value, and one of those values is classified with less certainty that the other in the class 

corresponding to the attribute, then that attribute value is less likely to be correct and 

should receive a smaller probability. The same holds for techniques that use dictionaries 

or thesauri: if a possible data value is not present in the corresponding dictionary, it 

should receive a smaller probability. The document tree contains two new kinds of nodes: 

(1) probability nodes and (2) possibility nodes. Comparison is based on the probability 



 

 

19 

associated with possibility nodes that can compute a possible representation of the 

matched real-world object. To determine the probability that two XML elements refer to 

the same real-world object, knowledge rules are applied. These rules can be generic or 

domain-specific. The amount of uncertainty can be reduced after applying the rules. 

Another approach that follows a probabilistic model uses a Bayesian network. 

Bayesian networks can be applied effectively to detect duplicates in hierarchical and 

semi-structured XML data. This approach combines the probabilities that children and 

descendents in a given pair of XML subtrees are duplicates. To compare two candidate 

XML elements, a maximum overlay between the two trees is computed. Two nonleaf 

nodes can be matched if they are ancestors of two matched leaves. Once a maximum 

overlay has been determined, its cost is computed by a string distance function. Leitão, 

Calado, and Weis [37] present results showing that the model provides great flexibility in 

its configuration, allowing the use of various similarity measures for the field value and 

various conditional probabilities to combine the similarity probabilities of the XML 

elements. The primary disadvantage of Bayesian techniques is their computational 

complexity. 

2.5.2.4 Object Description Similarity.  Weis and Naumann [69] propose a 

method called DogmatiX for comparing XML elements based on their data values, 

parents, children, and structure. The method comprises three steps: (1) candidate 

detection that specifies what objects to compare, (2) object identification defining what 

information is part of a candidate‘s description, and (3) similarity measure. The method 

starts by taking an XML document, its XML schema, and a file describing a mapping of 

element XPaths to a real world for candidate detection. Objects, or elements, are then 

described. An object description comprises a set of tuples (name, value) that can be 

identified by heuristics and conditions. Heuristics include r-distant ancestors, r-distant 

descendants, and k-closest descendants. The conditions that can be used to refine the 

selection descriptions are content model, string data type, mandatory elements, and 

singleton elements. The last step is similarity comparison. Similarities in textual values 

are compared using a variation of string edit distance. Element similarities are evaluated 

by a variation of the inverse document frequency (IDF) score. Experimental results show 

that DogmatiX is effective in identifying real and synthetic duplicate XML elements and 



 

 

20 

documents. This method relies on manual mapping between the elements of schema and 

real-world entities. 

2.5.2.5 Tree Serialization Similarity.  Wen, Amagasa, and Kitagawa [70] have 

proposed an approach to tree serialization similarity developed in the context of data 

integration. Because the tree structure representation of XML data makes it difficult to 

measure similarity, it is converted into node sequences by traversing the tree in a 

particular order (e.g., pre- and post-order). After serialization, the XML data becomes 

one long node sequence: The sequence is extracted into sub-sequence corresponding to 

the XML subtree using parameters such as the smallest number of the text nodes, the 

maximum number of text nodes, and the least height from the leaf node that a 

subsequence should have. The similarity measure takes into account comparison of 

textual information using Jaccard similarity and comparison of structural information by 

edit similarity. The comparison process is accelerated by a Bloom filter [29] providing a 

probabilistic way to determine if an element is a member of a given set. The authors state 

that the results are accurate and effective; however, they do not compare their approach 

with other existing approaches. 

2.5.3. Similarity of Collection of Values.  Dorneles et al. [24] propose a set of 

similarity metrics for manipulating collections of values occurring in XML documents. 

XML nodes can be considered atomic, containing single values such as numbers, texts, 

and dates, or complex, containing nested node structures. In addition, the authors devide 

the complex nodes into two categories: (1) tuple elements and (2) collection elements. A 

tuple element contains multiple sub-elements, but a collection element contains a 

duplicate of the sub-element. The similarities measure atomic and complex values 

recursively. The evaluation of XML element similarities requires that the elements to be 

compared share the same contexts and have similar children. 

 

 

2.6. XML STORAGE 

Storage of XML data in a relational model to identify similarities presents issues 

of scalability related to the main memory, which affects all other schemes. XRel (a path-



 

 

21 

based approach to storage and retrieval of XML documents using relational dabases) [73] 

uses a single relational schema to store XML documents irrespective of DTDs or XML 

schema. The topology of XML trees and nodes is represented by the combination of 

simple path expressions and regions.  

The basic XRel schema uses paths as a unit of decomposition of XML trees. It 

uses four relations, element, attribute, text and path (shown in Table 2.1), to store the data 

and structure of the XML documents.  

 

 

Table 2.1. XRel relations 

 

Database relations 

Path (pathid, pathexp) 

Element (docid, pathid, start, end, index, reindex) 

Text (docid, pathid, start, end, value) 

Attribute (docid, pathid, start, end, value) 

Field descriptions 

docid Document ID 

pathid  Path expression ID 

pathexp Path expressions of XML elements 

start Start value of the region 

end End value of the region 

index Forward index 

reindex Reverse index 

value Leaf node and attribute values 

 

 

The XML document shown in Figure 2.1 provides an example. It can be stored in 

the relations as shown in Table 2.2. The node ‗author‘ is a descendant of the ‗authors‘ 

node, which is a descendant of the ‗book‘ node. XRel will store the ‗author‘ node 

signature as ‗#/book#/authors#/author‘. Since several nodes may share the same path, 

storing the simple path expression may lead to a loss of the precedence relationship 

among nodes. Therefore, the regions of all the nodes help preserve the topology of XML 

documents. 

 

 



 

 

22 

Table 2.2: XRel tables 

 

(a) Path Table 

PATHEXP PATHID 

#/book 1 

#/book#/title 2 

#/book#/authors 3 

#/book#/authors#/author 4 
 

(b) Element Table 

DOCID PATHID IDX REIDX ST ED 

1 1 1 1 5 137 

1 2 1 1 15 39 

1 3 1 1 44 128 

1 4 1 2 60 83 

1 4 2 1 91 114 
 

(c) Text Table 

DOCID PATHID VALUE ST ED 

1 2 XML in Use 22 31 

1 4 Author1 68 74 

1 4 Author2 99 105 
 

 

 

2.7. XML KEYS 

Using keys is another technique to improve matching efficiency. Keys are an 

essential part of database design; they are fundamental to data models and conceptual 

design. If keys can be identified for XML documents, the matching process takes 

dramatically less time [13]. Since most XML documents are data-centric and derived 

from a relational data model, keys can better identify similarity among subtrees. 

 

 

  



 

 

23 

PAPER 

I.  XML DATA INTEGRATION BASED ON CONTENT AND STRUCTURE 

SIMILARITY USING KEYS 

Waraporn Viyanon
1
, Sanjay K. Madria

1
 and Sourav S. Bhowmick

2
 

1
Department of Computer Science, Missouri University of Science and Technology 

Rolla, Missouri, USA 

2
School of Computer Engineering, Nanyang Technological University, Singapore 

{wvz7b@mst.edu, madrias@mst.edu, assourav@ntu.edu.sg}  

 

Abstract. This paper proposes a technique for approximately matching XML 

data based on content and structure by detecting the similarity of subtrees 

clustered semantically using leaf-node parents. The leaf-node parents are 

considered a root of a subtree, which is then recursively traversed bottom-up 

for matching. First, the key is used to match subtrees, thus reducing 

dramatically the number of comparisons. Second, the degree of similarity is 

measured based on the data and structures of the two XML documents. The 

results show that this approach finds much more accurate matches with or 

without the keys in the XML subtrees. Other approaches experience problems 

with similarity matching thresholds because they either ignore semantic 

information available or have problems handling complex XML data.  

Keywords: XML, Similarity, keys, clustering 

 

 

1. INTRODUCTION 

Data such as ACM SIGMOD Record [9] and DBLP [10] are published and shared 

using XML. Although the content of these sources is similar, it is described using 



 

 

24 

different tag names and structures. Researchers have proposed several methods [1, 4, 5, 

6] to measure the similarity of XML content or structure. These methods extract several 

features or keywords of each document and store them in an XML tree. The similarity 

between XML documents is then calculated by computing the edit distances between two 

trees, a time-consuming task [1]. The method proposed by Liang and Yokota [4] is 

similar; it uses a brute-force algorithm to compare the degree of path similarity. On the 

other hand, some approaches like LAX [5] and SLAX [6], use the characteristics of XML 

documents, such as depth and number of instances contained, to cluster the documents 

into subtrees, which are then used to calculate the similarity. Although these methods 

outperform schemes based on edit distance, they ignore available semantic information 

such as keys; rather, they rely on finding subtrees or ―clustering points,‖ an approach that 

does not work for all XML data.   

Buneman et al. [2] introduced the concept of keys for XML documents. This 

paper proposes a new approach called XML document integration, or XdoI, that 

considers both the data structure and the content to match XML documents 

approximately and thus to integrate XML data sources. More specifically, this approach 

detects the similarity of two semantically clustered subtrees from two XML documents, 

taking advantage of XML keys to match the subtrees from the bottom up. This method 

dramatically reduces the number of comparisons. Once the subtrees are matched based on 

keys, the remaining unmatched subtrees are processed to find similarities in both their 

content and structure and thus to select the best matched subtrees. XdoI outperforms 

LAX and SLAX schemes in terms of false positives, quality of results, and execution 

time.  

 

 

2. RELATED WORK 

Buttler [3] summarized three approaches to evaluating structural similarity: (1) 

tag similarity, (2) tree edit distance (TED), and (3) Fourier transform similarity. The tag 

similarity algorithm is not sufficiently accurate because pages conforming to the same 

schema, such as HTML, have only a limited number of tags; one page may contain many 

incidences of a particular tag, whereas the comparison page may contain relatively few 



 

 

25 

occurrences of the tag. Fourier transform similarity [7] seeks to remove all information 

from a document except its start and end tags, leaving a skeleton that represents the 

structure. Buttler [3] proved that this is the least accurate of any of approximation 

algorithm, and the slowest. In the same work, he also showed that path similarity 

measures are expensive to compute because there are n-factorial mappings between the 

paths of two trees.  

 

 

3. MOTIVATION AND PROBLEM STATEMENT 

The LAX approach [5] divides XML trees into subtrees by identifying a 

clustering point from the height (i.e., the distance from the furthest child) and the number 

of link branches on such trees. A link branch is a link between two candidate elements 

that have at least two children or the distance of which to its furthest child is at least 

three. The subtree can be generated by deleting the link branch below the clustering 

point. The clustering point is calculated from the maximum weighting factor of the 

multiplication between the height level and the number of link branches. For example, 

tinyDB (2,3), shown in Figure 1, has a weight of 6. 

 

 

 

 

Figure 1. Example of LAX clustering on two different XML structures:  DBLP tree has 

two article elements, part A on the left and part B on the right. 

 

 

      Link branch 
      Segmented subtree 

publisher ISBN 

fname lname 

author 

DBLP  (2,6) 

articles(2,5) proceeding 

article(1,4) article(1,4) 

authors(4,3) title 

fname lname 

author 

fname lname 

author 

fname lname 

author 

article 

author number volume title 

publisher 

LEFT RIGHT 

number volume 

title 

fname 

author 

authors(2,3) ISBN 

fname lname lname 

author 

tinyDB  (2,3) 

article 

title author 



 

 

26 

Figure 1 shows LAX clustering on two different XML documents with dissimilar 

structures. The clustering points on the tinyDB tree are the link branches under the 

candidate element tinyDB(2,3) because the maximum weight is equal to 2*3, or 6. 

Therefore, the tinyDB tree is clustered into two subtrees rooted by the article nodes, but 

the DBLP tree is clustered into four subtrees rooted by the author nodes for the first 

article since the maximum weight is from the element authors(1,3). Figure 1 shows 

clearly that the resulting subtrees in both documents are semantically different. The first 

tree is cut into a set of articles, but the second (part A) is chopped into a set of authors. 

The results of clustering affect subsequent steps such as subtree matching because they 

permit comparison of various types of objects. In addition, the leafnodes ―title‖, 

―publisher,‖ and ―ISBN‖ of the first article on the second tree are not considered in any 

subtree. 

The second article on the second XML tree in Figure 1 (part B) is clustered into 

one subtree because the maximum weight is 2*5, or 10, as calculated from the element 

article(2,5). This example shows that an XML document may yield various kinds of 

subtrees and therefore, similarity scores will vary. Elements missing from the first article, 

such as ―title,‖ ―publisher,‖ and ―ISBN,‖ also occur after clustering. 

Liang and Yokota [6] found that when LAX is applied after fragmenting 

documents, the matched subtrees selected from the output pair of fragment documents 

with a high degree of tree similarity might not be the appropriate subtrees for integration. 

SLAX [6] is an improved LAX that solves this problem. It divides XML documents into 

smaller portions by parsing them into   document trees. In each document tree, SLAX 

applies the weighting factor from LAX to find points for subtree clustering. Thus, they 

solve the issue of matching right subtrees but the problem with LAX clustering discussed 

above still occurs in divided trees. We elaborate this problem further in Section 5.  

This paper addresses the drawbacks of clustering discussed above using leaf-node 

parents as clustering points, exploiting keys, and employing a bottom-up approach to 

match subtrees recursively from the bottom-up.  

 



 

 

27 

4. APPROACH 

The XDoI approach involves three phases. In Phase I, the base XML tree and 

target XML tree are clustered by treating leaf-node parents as clustering points. The 

clustered subtrees in the base XML tree are considered independent items to be matched 

in Phase II with clustered subtrees in the target XML tree. In Phase III, the best matched 

subtrees are integrated in the first XML tree. 

4.1 Basic Definitions 

Definition 1. XML Document Tree: An XML document tree   is an ordered labeled 

tree parsed from an XML document. The terms    and    represent two XML document 

trees, where   denotes the base tree and   denotes the target tree. The    and    are 

clustered into subtrees. 

Definition 2. Leaf-node parent: A leaf-node parent is a node that has at least one child 

leaf node. It is considered the root of a subtree in the clustering process.  

Definition 3. Clustering point: The clustering point is the link above the leaf-node 

parent. It indicates the place for clustering an XML tree into subtree(s). 

Definition 4. Simple subtree: A simple subtree is a clustered tree with only a root and 

leaf nodes.  

Definition 5. Complex subtree: A complex subtree is a clustered subtree with at least 

one simple subtree, a root, and one or more of leaf nodes.  

4.2 Preprocessing 

The XML documents are compared by using XRel [8] to parse and store them in 

relational tables based on their structure. Storing XML data in a relational model to 

evaluate similarity addresses the issue of scalability, which affects all other schemes. 

XRel uses four relations (element, attribute, text, and path) to store the data and structure 

of the XML documents and a document relation to store the complete XML document, as 

shown in Table 1.  

This paper describes the process for identifying a leaf-node value match for all 

unique node values that share a single path using the SQL statement shown in Table 2. 

The unique leaf node is considered the key that can identify the subtree. Some XML 

documents may not contain a key in some subtrees, or an item in either the base or target 



 

 

28 

XML tree may have a key but may not appear in the other XML tree. Therefore, the best 

match for this case must be identified by comparing the remaining subtrees. 

 

 

Table 1. XRel relational schema and subtree table  Table 2. Finding keys 

 

  

Element(docid, pathid, start, end, index, re-index) 

Attribute(docid, pathid, start, end, value) 

Text(docid, pathid, start, end, value) 

Path(pathid, pathexp)  

Document(docid, document) 

Subtree(docid, subtreeid, pathid, start, end, key, value) 

 SELECT docid, pathid, value  

FROM subtree  

GROUP BY docid, PathID,Value  

HAVING Count(Value) = 1 

 

 

4.3 Phase I: Clustering an XML Tree into Subtrees 

An XML tree can be parsed into small independent items by clustering it into 

more meaningful subtrees. Each clustered subtree represents independent items. As 

explained by Lian and Yokota [5], a well clustered subtree requires that (1) each subtree 

represents one independent item, (2) each independent item is clustered into one subtree, 

and (3) the leaf nodes belonging to that item are included in the subtree. 

In the approach presented here, an XML tree is clustered into an independent item 

using leaf-node parents as clustering points. The leaf-node parents are considered a root 

of each subtree. The clustered subtrees are categorized as either simple or complex. They 

are stored in the subtree table (see Table 1) to be used later in subtree matching. 

4.4 Phase II: Matching Subtrees 

The keys in the base subtrees are matched with the keys in the target subtrees. 

This matching process reduces the number of unnecessary subtree matches. One-to-

multiple matches may occur in this step. Once the degree of similarity is determined, the 

number of matches is reduced. The unmatched subtrees are also needed to determine the 

degree of similarity in each subtree pair. 



 

 

29 

To find the correct matched subtree, both the content and structure of the base and 

target XML trees are considered by comparing the PCDATA (parsed character data) 

values and signatures. First, the subtree similarity degree (SSD) is determined as follows: 

Definition 6.1. Subtree Similarity Degree (measure1): Let     be the base subtree and 

    be the target subtree. Assume   is the number of leaf nodes having the same 

PCDATA value. Let     represent the number of leaf nodes in    , and let     represent 

the number of leaf nodes in    . For scoring purposes, each common node is assigned 1 

point, and a common node defined as a key is assigned 2 points: 

             
 

   
       (1) 

Definition 6.2. Subtree Similarity Degree (measure2): This metric is the ratio of 

common matched leaf-node values in the base subtree to the same values in the target 

subtree:  

             
   

       
       (2) 

This measure eliminates the number of one-to-multiple matches having the maximum 

SSD (measure1) as overlapping target subtrees.  

Definition 7. Matched Subtree: The matched pair of subtrees     and     is the pair that 

has the maximum subtree similarity degree based on Definitions 6.1 and 6.2. The 

maximum subtree similarity degree is considered as a matched subtree: 

                        (3) 

Definition 8. Path Similarity Degree (PSD): PSD is the best matched subtree identified 

by comparing the number of nodes in the base path to the number of nodes in the target 

path on the matched leaves that have the same labels, excluding leaf nodes. This metric is 

applied when the subtrees have the same maximum degree of similarity as mentioned in 

Definition 7: 

        
 

   
      (4) 

where N denotes the number of nodes in the base path that have the same labels as those 

in the target path,     denotes the total number of nodes in the base path, and   is the total 

number of matched leaf node paths in the base subtree between 1 to k paths. 



 

 

30 

Definition 9. Path Subtree Similarity Degree (PSSD): After PSD is calculated as in 

Definition 8, the PSSD is calculated as 

               
        
   

 
                    (5) 

4.5 Phase III: Join Algorithm 

Here    and    are two XML data sources, and the XML document       and 

      be clustered into XML document trees    and   . These trees, in turn, are 

clustered into subtrees,     and    , where   denotes the number of subtrees in the base 

document  tree and   denotes the number of subtrees in the target document tree. The 

steps to join two XML documents are as follows: (1) Find the degree of similarity for 

each subtree pair. If there is more than one matched subtree, find the maximum degree of 

similarity among them. (2) Calculate the degree of similarity between two trees from the 

mean value of the degree of similarity degree between the matched subtrees. (3) If the 

degree of similarity between two trees is greater than a given threshold  , where      

 , the two documents can be integrated at the clustering point. 

4.6 Algorithm 

The approach presented here can be written in pseudocode as follows: The 

algorithm is processed after the XML documents are parsed into a relational database. 

There are four main modules: (1) preprocessing, (2) clustering, (3) matching subtrees, 

and (4) integrating matched subtrees. In the subtree matching phase, the subtrees are first 

matched with keys according to Query 3 in Table 3. The first unmatched subtree in the 

first XML document is compared with all the subtrees in the second XML document. 

This procedure is performed recursively for all the subtrees in the first XML document. 

The best match can be calculated by following the algorithm steps shown in Figure 2. 

  



 

 

31 

Algorithm XDoI: Input: XML documents db and dt and Output: Set of matched subtrees pairs 

(tbi, ttj)  

//Module1 Identifying key(s) 

Define key();        //Table 2: Finding key(s)  

//Module 2: Clustering the XML trees 

Find_leafnode_parent();     //Sub Module 

ClusterXMLTree();     //Sub Module 

//Module 3: Matching subtrees 

Match_with_key();     //Table 3: (Query 3) 

// Subtree Similarity degree computation 

for (every tbi in db) {    //Subtrees from the based document 

   MaxSim[i] = 0; 

   for (ttj in dt){    

     CalSimilarity S(tbi ,ttj)     //Definition 6.1&2  

     MaxSim[i] = Max(MaxSim[i], S(tbi ,ttj));    //Definition 7  

   } 

   StoreMSSD(tbi, ttj, MaxSim[i]);  //Store MSSD in a temp table 

}                                              // Path Subtree Similarity degree computation 

for (every tbi in MSSD, such that Count MaxSim() >1 and MaxSim >   ) { 

   MaxPath[i] = 0                        //Match subtree more than one pair 

   for (j = 1 to kt) { 

      CalPathSimilarity P(tbi ,ttj)      //Definition 8  

      MaxPath[i] = Max(MaxPath[i], P(tbi ,ttj));     //Definition 9  

   } 

   StorePSSD(tbi, ttj, MaxPath[i]);  //Store MSSD in a temp table 

} 

//Module4: Integration 

// similarity degree > the threshold 

for (every tbi in PSSD, such that MaxPath >  ){        

   di = integrate(Sb, St)      // Section 4.5  

   return (di); 

} 

Sub Modules: 

Find_leafnode_parent(){ 

  for every pi from the PATH table{ 

    if lastpathsection(pi) is not attribute { 

      lnp = Remove the last path section from (pi); 

      store_lnp(lnp);           //store a leafnode parent into a temporary table 

    } 

  } 

} 

ClusterXMLTree()  { 

  for (i in all_lnp){ 

     regioni = Retrieve leafnode parent info   //Table 3 (Query 1) 

     ti = find_subtree(regioni);                //Table 3 (Query 2) 

     store_subtree(ti) 

  } 

} 

 

Figure 2. XDoI Algorithm 



 

 

32 

Table 3. SQLs for clustering subtrees and matching subtrees with key 

 

Query1: Retrieve leafnode parent information:  

Select distinct e.docid, e.pathid, e.st, e.ed  

From tmp_leafnode_parent p , element e   

Where p.docid = e.docid and p.ppathid = e.pathid 

Query2: Find subtrees:  

Select docid, pathid, st, ed, ++subtreeid, value  

From txt  

Where st >= region.st and ed <= region.ed 

Query 3: Match subtrees with keys:  

Select s1.subtreeid, s2.subtreeid  

From subtree s1, subtree s2  

Where s1.docid = 1 and s2.docid = 2 and s1.key = ‗Y‘ and s2.key = ‗Y‘ and  

s1.value = s2.value 

 

 

5. PERFORMANCE EVALUATION 

This section describes experiments conducted to evaluate the efficiency and 

effectiveness of this algorithm compared with LAX and SLAX [5, 6]. The experiments 

used on Intel Pentium 4 CPU 2.80GHz with 1GB of RAM running on Window XP 

Professional with Sun JDK 1.6.0_02 and Oracle Database 10g Standard Edition. 

SIGMOD Record [9], 482 KB, was used as the base document, and three segmented 

documents of DBLP.xml [10], 700 KB each were used as the target documents. Some 

synthetic XML datasets classified according to key, structure type (shallow or deep), and 

file size were also used.  

5.1 Experimental Results 

First, the variation of clustered subtrees among all three algorithms was evaluated. 

The clustering points (subtree roots) and the number of subtrees were then compared 

using SIGMOD Record and DBLP. Table 4 shows the difference IN the clustered subtree 

AMONG the three approaches. XDoI clustered subtrees by leaf-node parents, which 

covering all leaf-node values on the documents. This guaranteed that the associated 

values were not missed while clustering. LAX and SLAX were clustered according to the 

weighting factor w discussed in Section 3. The clustered subtrees from SLAX rely on the 

K value mentioned in that section. Clustering of SIGMOD Record yielded segmented 



 

 

33 

subtrees at three different levels, ―issue,‖ ―article,‖ and ―author,‖ that can be integrated 

with various kinds of bibliographical documents. On the other hand, LAX yielded a 

subtrees only at ―issue‖ level, which affected the similarity scores when the subtrees 

clustered using LAX were compared with the subtrees rooted at ―article‖ level from the 

DBLP dataset. SLAX clusters XML documents based on the selected K value; however, 

the appropriate K value required for clustering across multiple XML documents was not 

clear [6] because no procedure was provided to select this value. This uncertainty in K 

value also causes the loss of some meaningful information such as ―issue volume‖ and 

―issue number‖ when K is greater than 4 for SIGMOD Record. Similarly, K has different 

values for different documents, as shown in Table 4. Therefore, clustering using LAX 

and SLAX can substantially affect the degree of subtree similarity identified and thus 

result in the integration of mismatched subtrees.  

 

 

Table 4. Clustered point and number of subtrees yielded by each approach 

 

XML 

document 

XDoI LAX SLAX 

subtree-

root 

element 

# of 

subtrees 

subtree-

root 

element 

# of 

subtrees 

K subtree-

root 

element 

# of 

subtrees 

SIGMOD 

Record 

issue 

article 

authors 

67 

1504 

1504 

issue 67 k≤4 issue 67 

k>4 article 1504 

DBLP 

(dblp01.xml) 

inproceed- 

ings 

769 inproceed- 

ings 

769 Any k inproceed- 

ings 

769 

 

 

The next steps were to evaluate the execution time for clustering subtrees and to 

identify keys. The degree of subtree and path similarity was then computed for three pairs 

of SIGMOD Record and selected DBLP fragments respectively, labeled 1
st
, 2

nd
, and 3

rd
. 

The experiments used a threshold value of 0.5. The three data set pairs had no predefined 

keys, so the key identification module was required. However, integration of two XML 

documents, such as those generated by RDBMS, with predefined keys would not require 

this module. In the case of hybrid XML documents, some portions of which have 

predefined keys, execution time for the key identification module would be reduced. The 



 

 

34 

approach tested here requires both key identification and key mapping modules; 

nonetheless, the execution time was less than that for SLAX because SLAX clusters the 

XML documents into subtrees using the weighting factor. Most of the execution time, 

therefore, is used to calculate this factor. The key mapping module in XDoI, on the other 

hand, reduces the number of subtrees needed to calculate SSD and PSSD. 

These experiments also compared this new approach with and without keys to 

observe the improvement in overall execution time produced by the use of keys. In Table 

5, the numbers in parentheses represent XDoI execution time without keys. Obviously, 

this time is longer because SSD must be calculated for each subtree pair. Figure 3 

compares XDoI and SLAX for each module.  

The effectiveness of each approach was evaluated by measuring the false 

positives based on the number of matched pairs and the number of actual matched 

subtrees. Table 6 shows the number of matched subtrees yielded by these experiments; 

the values in parentheses indicate the number of correctly matched subtrees and the 

number of incorrectly matched subtrees, respectively. The results indicate that all the 

incorrect matched pairs are simple subtrees rooted by the ―authors‖ element and 

overlapped with a complex subtree rooted by the ―article‖ element. Each pair is matched 

with a target subtree because the base and target subtrees share the same authors but they 

are from different articles. The false positive rates show that the new approach, with 

keys, has a much lower false positive rate than SLAX. Therefore, it can detect the 

matched subtrees appropriate for integrating XML documents more precisely than 

SLAX. 

5.2 Results Quality 

This section compares the accuracy of the degree of similarity generated by the 

new approach and by SLAX for several types of XML files. The quality of the subtree 

matching result is characterized as Sn/An, where Sn is the number of matched subtrees 

yielded by a given approach and An is the number of actual matched subtrees. Figure 4 

shows the quality of results for XML documents with file sizes ranging from 1KB to 

71KB. It demonstrates that the new approach and SLAX perform similarly for shallow 

and semi-shallow XML documents. For large and deep XML documents, however, XDoI 

yields much better results than SLAX.  The performance of SLAX drops from 100% to 



 

 

35 

0% because it does not cluster the complex XML documents into appropriate subtrees, 

for the reasons discussed in Section 3. 

 

Table 5. Execution time (in seconds) for clustering and key generation in SIGMOD 

Record and DBLP data 

 

Module XDoI SLAX 

1st pair 2nd pair 3rd pair 1st pair 2nd pair 3rd pair 

Clustering 17625 20070 22344 233482 281576 258624 

Finding 

keys 

156811 154796 184983 - - - 

Mapping 

with keys 

217358 209748 89484 - - - 

SSD 15975258 

(37149128) 

17697580 

(45629554) 

53201074 

(59464448) 

17775897 20445114 36746179 

PSSD  162200 

(185655) 

32063 

(40594) 

890605 

(1082337) 

962885 935901 1385309 

Total 

Time  

16529252 

(37352408) 

18114257 

(45690218) 

54388490 

(60569129) 

18972264 

 

21662591 38390112 

 

 

 

 

Figure 3. Average execution time for XDoI and SLAX 

 

 

  

E x ec ution time for X DoI and S L AX

1

10

100

1000

10000

100000

C lus tering F inding

K eys

Mapping

with keys

S S D P S D Time in total

T
im

e
 i

n
 s

e
c

o
n

d
s

XDoI with non-keys XDoI with keys S L AX



 

 

36 

Table 6. Matched subtrees of SIGMOD Record and DBLP 

 

Threshold XDoI with keys SLAX 

1st pair 2nd pair 3rd pair 1st pair 2nd pair 3rd pair 

50% 361(339,22)  

FP = 6.09% 

336(322,14) 

FP = 4.17% 

93(67,26) 

FP=27.96% 

314(273,41) 

FP=13.06% 

286(225,61) 

FP= 21.33% 

102(55,47) 

FP=46.08% 

 

 

  

Figure 4. Quality of results various (a) file sizes and (b) file types 

 

 

6. CONCLUSIONS 

This paper presented a data-centric approach to clustering XML documents into 

subtrees using leaf-node parents and keys to reduce the number of subtrees matches and 

improve the determination of similarity by reducing false positives. The performance 

evaluation indicates that keys are very efficient at identifying appropriate subtrees 

matches among XML documents. The XDoI approach performs better than SLAX and 

LAX for complex XML documents because they could not identify appropriate subtrees 

in the step of subtree clustering. 

7. REFERENCES 

[1] Bille, P.: Tree Edit Distance, Alignment Distance and Inclusion. ISBN 87-7949-032-8 

[2] Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Keys for XML. Computer 

Networks, Volume 39, Issue 5, August 2002, pp 473 - 487. 

[3] Buttler, D.: A Short Survey of Document Structure Similarity Algorithms. In: 

International Conference on Internet Computing 2004, pages 3-9, 2004. 

0%

20%

40%

60%

80%

100%

120%

1 KB 2 KB 10KB 45KB 71KB

R
at

io
 (

Q
)

Result Quality

XDoI

SLAX

0%

20%

40%

60%

80%

100%

120%

shallow semi-shallow deep

R
at

io
 (

Q
)

Result Quality

XDoI

SLAX



 

 

37 

[4] Liang, W., Yokota, H.: A Path-sequence Based Discrimination for Subtree Matching 

in Approximate XML Joins. In: Proceedings of the 22nd International Conference on 

Data Engineering Workshops (ICDEW‘06), IEEE, pp. 23-28, 2006. 

[5] Liang, W., Yokota, H.: LAX: An Efficient Approximate XML Join Based on 

Clustered Leaf Nodes for XML Data Integration. In: Proceedings of BNCOD 2005, 

LNCS3567, Springer, pages 82-97, July 2005. 

[6] Liang, W., Yokota, H.: SLAX: An Improved Leaf-Clustering Based Approximate 

XML Join Algorithm for Integrating XML Data at Subtree Classes. In: Proceedings 

of DBWeb2005, IPSJ Symposium Series. 2005(16), pp.41-48. 

[7] Rafiei, D.: Fourier-Transform Based Techniques in Efficient Retrieval of Similar 

Time Sequences. Thesis of University of Toronto, 1999. 

[8] Yoshikawa, M., Amagasa, T.: XRel: A Path-based Approach to Storage and Retrieval 

of XML Documents. In: Proceedings of the 19th IEEE International Conference of 

Data Engineering (ICDE), India, pp. 519-530, 2003.  

[9] ACM SIGMOD Record in XML, http://www.acm.org/sigmod/record/xml XML 

Version of DBLP, http://dblp.uni-trier.de/xml/ 

 

  



 

 

38 

II.  A SYSTEM FOR DETECTING XML SIMILARITY IN CONTENT AND 

STRUCTURE USING A RELATIONAL DATABASE 

Waraporn Viyanon 

Department of Computer Science,  

Missouri University of Science and 

Technology 

Rolla, Missouri, USA 

wvz7b@mst.edu 

Sanjay Kumar Madria 

Department of Computer Science,  

Missouri University of Science and 

Technology 

Rolla, Missouri, USA 

madrias@mst.edu 

 

 

ABSTRACT 

This paper describes a technique that uses keys to detect similarities in structure 

and content between two XML documents. The technique has three major components: a 

subtree generator and validator, a key generator, and similarity detection components that 

compare the content and structure of documents. First, an XML document is stored in a 

relational database and extracted into small subtrees using leaf-node parents. These 

parents are considered the root of a subtree, which is then recursively traversed from the 

bottom up. Second, potential keys are identified to facilitate efficient matching of XML 

subtrees from the two documents. Key matching dramatically reduces the number of 

comparisons dramatically. In addition, the number of subtrees to be processed is reduced 

in the subtree validation phase using  instance statistics and a taxonomic analyzer. First, 

the subtrees are matched by the keys, then the remaining subtrees are matched by 

determining degrees of similarity in content and structure. To improve the results of 

comparisons, XML element names are transformed according to their semantic similarity. 

The results show that this method selects the clustering points appropriately and 

dramatically reduces the overall execution time. 

  



 

 

39 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications—Data Mining 

H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—

Clustering, Information Filtering, Selection process 

General Terms 

Measurement, Performance, Verification. 

Keywords 

XML, Similarity measures, Keys, Clustering, Taxonomy Analyzer 

 

 

1. INTRODUCTION 

XML is a standard for data representation and interchanging data on the Internet 

because it can represent data from a wide variety of sources. Data such as DBLP [16] and 

ACM SIGMOD Record [1] are published and shared on the Internet using the XML 

format. XML eases the integration of data from multiple sources; however, correlating 

XML data sources presents significant complexities due to the structure of XML 

documents. Different data sources may have similar content; they may be described using 

different tag names and structures [1, 3]. 

This paper describes improvements developed for  XML document integration 

(XDoI) [13]. The approach presented here considers both the structure and content of 

data to match XML documents approximately and thus to integrate data sources using 

keys. XDoI clusters an XML document into smaller subtrees, considered individual 

objects, using leaf-node parents. These parents can generate many clustered subtrees due 

to overlap among the subtrees. A large number of clustered subtrees extends 

computational time needed to compare subtrees, identify similarities among them, and 

match them appropriately. To eliminate unnecessary subtrees and thus reduce the number 

of comparisons necessary, this approach uses a taxonomic analyzer to determine how 

close the meanings of element names are and to transform them into a single category. 

For example, an XML document containing an element name ―Pages‖ may have two 



 

 

40 

subelements, ―initPage‖ and ―endPage,‖ as descendants. These three element names can 

be categorized in a single group using the taxonomic analyzer. The concept of instance 

statistics [14] is used to determine the relationships among element names to eliminate 

subtrees that do not hold a one-to-one relationship among XML elements. Keys are used 

to match subtrees and the results of the matching are analyzed to identify inappropriate 

subtrees that are not irrelevant to the subtrees in the other document, thus reducing the 

number of comparisons necessary to identify similarities. Experiments demonstrate that 

the system improves overall computation without sacrificing accuracy. 

The remainder of the paper is organized as follows: Section 2 presents an 

overview of XML document integration. Section 3 describes previous work of the 

subject. Section 4 introduces the improved approach and describes the system 

architecture in detail. The algorithm for this approach is defined in Section 5. Section 6 

presents the performance results, and Section 7 offers conclusions. 

 

 

2. BACKGROUND 

XML documents can be considered collections of objects. A scalable integration 

technique is needed to accommodate the growing number of XML data sources. XML 

integration generally begins by extracting XML documents into subtrees according to 

their semantics. The subtrees are represented as individual objects. The clustered subtrees 

are evaluated in order to detect the similarity among them. Similar subtrees in structure 

and semantics are integrated. 

Clustering XML documents automatically into proper objects is challenging. 

Existing techniques for clustering include LAX [9], SLAX [10], and S-GRACE [7]. After 

XML documents are clustered into subtrees, they are compared to identify similarities. 

The result may consider similarities of: (1) structure, (2) content, or (3) both structure and 

content.  Previous research [2, 3] has addressed structural similarity, aiming to extract 

from documents pure structural information. Tree edit distance (TED) measures the 

minimum number of node insertions, deletions, and substitutions required to convert one 

tree into another. By default, TED assigns a unit cost to each edit operation. The edit 



 

 

41 

distance between two trees is the smallest cost of transforming tree    to tree    [18]. 

This transformation process is computationally very expensive and leads to a 

prohibitively high run time. For a tree with n nodes, l leaf, and a depth of d, the 

computational time is expressed as                time and       space. Thus, it is 

not practical for similarity matching over large XML data repositories. 

Traditional content similarity methods can be roughly separated into two groups: 

character-based techniques and vector-space-based techniques. TED can be applied to 

measure context similarity using a character-based technique. This technique relies on 

character edit operations. It transforms strings into vector representation on which 

similarity is computed. 

Content similarity can be measured based on the information content of the least 

common subsumer (LCS) of concepts A and B in a hierarchy. LCS is the most specific 

concept that is an ancestor of both concepts A and B. The measures, based on the 

information content, are Resnik [12], Jiang [6] and Lin [11]. All three required a source 

for information content for concepts such as WordNet. WordNet [5] is a utility program 

that allows a user to compute information content values from the Brown Corpus, the 

Penn Treebank, the British National Corpus, or any given corpus of raw text. 

Liang et al. [8] also proposed measurement of structure and content similarity. 

Their approach, called a path-sequence-based discrimination, solves the problem of the 

one-to-multiple matching in leaf-clustering-based approximate XML join algorithms. 

When calculating similarity scores, only identical text nodes are considered, and the 

number of identical labels is counted. This method decreases the incidence of one-to-

multiple matching.  

These solutions are easy to implement; however, they have several limitations. 

For example, computing TED is time-consuming and therefore impractical for similarity 

matching over large XML data repositories. The same applies to SLAX [10], which uses 

a brute-force algorithm to determine the degree of path similarity. 

 

 



 

 

42 

3. XDoI 

This section presents an overview of the previous approach, XDoI [13]. It then 

demonstrates how XDoI system outperforms SLAX. Finally, it addresses the drawbacks 

of the XDoI approach, explaining how it affects the similarity computation. 

3.1 XDoI Overview 

Previous work [13] proposed the XDoI approach to evaluate the approximate 

similarity between XML documents. Because many real XML documents are constructed 

from repeating elements, those to be integrated are fragmented into subtrees representing 

independent objects. They can be divided into independent subtrees at the repeating 

elements using leaf-node parents.  

The XML keys introduced by Buneman et al. [4] play an essential role in subtree 

matching. They are used to identify their own subtree. Keys for XML documents are 

found by identifying a leaf-node value match for all unique node values with the same 

path.  

The subtree similarities are determined first by key matching, then by the degree 

of similarity between trees. The keys in the base subtrees are matched with the keys in 

the target subtrees. This process dramatically reduces the number of unnecessary subtree 

matchings. 

The unmatched subtrees are evaluated for the approximate degree of subtree 

similarity based on the content and structure of XML documents. The matched subtree 

pairs are determined from the maximum degree of similarity, which is greater than a user 

defined threshold.  

The approach is first to map XML documents to relational databases, then to use 

SQL queries to execute the following modules: (1) clustering of XML documents into 

independent subtrees using leaf-node parents, (2) identification of keys, (3) measurement 

of the degree of similarity in content and structure, and (4) matching of subtrees. The 

resulting matched subtree pairs remain in the relational databases, which are easy to 

integrate and output in XML format. 



 

 

43 

3.2 Comparison with SLAX 

XDoI divides XML documents into subtrees in a data-centric manner using leaf-

node parents. Previous experimental results have shown that this approach leaves no 

information mission after clustering. To compare this approach with other work, SLAX 

[10] has been implemented in a relational database using XRel [17] to support large XML 

documents. The results showed that SLAX is not suitable for clustering complex XML 

documents into proper subtrees because its clustering method ignores semantic 

information. This limitation arises because SLAX define clustering spots base on a 

weighting factor computed by multiplying the number of link branches and by the depth 

of the element. This depth is the distance from the element to its furthest child. A link 

branch is a link between two candidate elements. Either it must have at least two 

children, or the distance to its furthest child must be at least three. A subtree can be 

generated by deleting the link branch below the clustering point. The clustering point is 

calculated from the maximum weighting factor, determined by multiplying the height of 

the candidate element and by the number of link branches. SLAX may not cluster 

subtrees appropriately, in which case they cannot be compared with subtrees from the 

other XML document. Previous work [13] has shown that SLAX cannot cluster XML 

documents containing deep and complex structures into proper subtrees; therefore, it 

matches subtree inaccurately. 

3.3 Problems of XDoI 

Clustering XML documents using leaf-node parents can also produce many 

subtrees because of subtree overlap. Figure 1 provides an example from two XML 

documents, one a SIGMOD Record and the other DBLP. It shows the results of subtree 

clustering using the leaf-node parents, ―issue,‖ ―article,‖ and ―authors.‖ There are three 

overlapped subtrees in the SIGMOD Record. The ―issue‖ subtree contains two different 

levels of subtrees, inside which are the subtrees rooted by ―article‖ and those rooted by 

―authors.‖ A large number of clustered subtrees increase the cost of computing the degree 

of similarity.  

Automatically elimimating unnecessary subtrees is not simple; selection of 

subtrees for elimination requires additional information. 



 

 

44 

 

 

Figure 1. XML documents: (a) SIGMOD Record and (b) DBLP documents 

 

 

4. XDI-CSSK 

This section introduces an improved approach to XML data integration based on 

content and structure similarity using keys (XDI-CSSK), and it shows how this approach 

can solve the problem of XDoI discussed in Section 3.3. System design is discussed here 

as well.  

4.1 XDI-CSSK System 

The following describes the XDI-CSSK system architecture, which is comprised 

of four components: (1) XML document storage, (2) subtree generator and validator, (3) 

XML key generator, and (4) subtree similarity components.  

Figure 2 illustrates the system architecture. First, XML documents are stored in a 

relational database to increase scalability and avoid problems resulting from memory 

restrictions. Next, XML documents are clustered into subtrees using leaf-node parents. 

The integrity of the clustered subtrees is verified so that they can be compared in the next 

SigmodRecord

issue

volume

xxx

number

xxx

articles

article

title

xxx

initPage

xxx

endPage

xxx

authors

author

xxx

author

xxx

...

article ...

issue ...

dblp

inproceedings

booktitle

xxx

title

xxx

pages

xxx

year

xxx

… proceedings 

booktitle

xxx

editor

xxx

isbn

xxx

…



 

 

45 

step using the subtree filter. The subtree filter uses the concept of XML instance statistics 

and a taxonomic analyzer to eliminate inappropriate subtrees before comparing subtrees. 

After filtering subtrees, the similarity components are used to determine the similarity in 

terms of content and structure. This process involves three measurements: (1) degree of 

subtree similarity on based document (SSD1), (2) degree of subtree similarity on both 

documents (SSD2), and (3) degree of subtree path similarity degree (PSSD). The subtree 

pairs with the highest degree of similarity are selected as matched pairs for later 

integration. 

 

 

 

 

Figure 2. XDI-CSSK system architecture 

 

 

4.1.1 XML Document Storage 

For scalability, the XML documents are loaded into a relational database using 

XRel [17]. The database is designed to store XML documents and degrees of XML 

document similarity. XRel decomposes an XML document into nodes on the basis of its 

tree structure and stores in relational tables according to the node type, with information 

on path from the root to each node. The basic XRel schema consists of the following four 

relational schemas shown in Figure 3: Document, Element, Attribute, Text, and Path:  



 

 

46 

 

Document (docID, value) 
Element (docID, pathID, start, end, index, reindex) 
Attribute (docID, pathID, start, end, value) 
Text (docID, pathID, start, end, value) 
Path (pathID, pathexp) 

 

Figure 3. XRel relations 

 

 

The database attributes ―docID,‖ ―pathID,‖ ―start,‖ ―end,‖ and ―value‖ represent 

the document identifier, simple path expression identifier, start position of a region, end 

position of a region, and the string value, respectively. An element node or a leaf node is 

identified by its region and stored in the relations Element and Text. To identify each of 

the attribute nodes, the attribute name is retained as the suffix of the simple path 

expression of an attribute node, and the attribute value is stored in the relation Attribute. 

The database attribute ―pathexp‖ in the relation Path stores simple path expressions.  

To store leaf-node parents, clustered subtrees, and degrees of subtree similarity, 

three additional relations were built; they are shown in Figure 4.  

 

 

Leanode_parent (docID, ppathExp, ppathid, pathexp, pathid) 

Subtree (docID, ppathID, pst, ped,pathid, st, ed, value, key, subtreeid) 

Subtree_similarity_score (base_docid, base_subtreeid, target_docid, target_subtreeid, 
ssd1, ssd2, pssd, match_type) 

 

Figure 4. XDI-CSSK‘s relations 

 

 

The leafnode_parent relation stores path expressions that have leaf nodes and 

their parent path expressions. The ―pathids‖ of parent paths can be retrieved from the 

path relation. The subtree relation stores the clustered subtrees, which are used later for 

comparison. Each subtree contains path information, including the content values at the 

leaf node level and the key flag. The key flag is used to identify unique leaf nodes. The 



 

 

47 

subtree_similarity_score relation stores the results of comparison for similarity. The 

attributes of this measurement are labeled SSD1, SSD2, and PSSD; they are discussed 

above in Section 4.1. The attribute ―match_type‖ identifies a type of measurement of 

each subtree pair. This attribute can be either SSD1, SSD2, or PSSD. The similarity 

measurement functions are discussed in detail in [13].  

These three relations reduce the complexity of SQL queries (reducing natural 

joins, nested sub queries, and correlated sub queries), thus minimizing the size of the 

SQL queries and improving the performance of the approach. 

4.1.2 Subtree Generator and Validator 

The subtree generator and validator procedure has three steps: (1) extracting leaf-

node parents, (2) validating leaf-node parents using the taxonomy analyzer, and (3) 

clustering XML documents into subtrees.  

The subtree generator is intended to produce small independent items by 

clustering XML documents into meaningful subtrees. Each clustered subtree represents 

independent items. A well clustered subtree requires (1) that each subtree represents one 

independent item, (2) that each independent item be clustered into one subtree, and (3) 

that the leaf nodes belonging to that item be included in the subtree.  

In some circumstances, fragmenting an XML tree into well clustered subtrees is 

difficult. The nature of XML documents containing content information at the leaf-node 

level is known; therefore, an XML tree can be more easily clustered into an independent 

item by using leaf-node parents as clustering points.  

4.1.2.1 Leaf-node parent extraction 

Because the contents of XML documents are stored at the leaf-node level, leaf-

node parents are used as the clustering points to fragment the documents into subtrees 

and thus to capture the content. The leaf-node parents are found using the SQL query in 

Figure 5. 

The query searches for the paths that contain content at the leaf node. It returns 

―docid,‖ ―pathid,‖ and ―pathexp‖ (i.e., path expressions), which have associated content 

values. The path expressions returned from the query are trimmed by removing the last 



 

 

48 

element of each. The trimmed path expressions are called leaf-node parent path 

expressions. They are stored in the leafnode_parent relation. 

SELECT distinct docid, p.pathid as pathid, pathexp  

FROM text l, path p  

WHERE p.pathid = l.pathid 

 

Figure 5. SQL query for finding leaf-node parents 

 

 

The leaf-node parents from SIGMOD Record in Figure 1 (a) are as follows:  

(1) #/SigmodRecord#/issue,  

(2) #/SigmodRecord#/issue#/articles#/article, and  

(3) #/SigmodRecord#/issue#/articles#/article#/authors#/author. 

The leaf-node parents from DBLP in Figure 1 (b) are: 

(1) #/dblp#/inproceedings and 

(2) #/dblp#/proceedings. 

4.1.2.2 Leaf-node parents filter 

Since leaf-node parents function here as clustering points, they become the root of 

the clustered subtrees. A subtree should contain all the various attributes of an object, not 

merely one kind of information. The instance statistics concept [14] permits evaluation of 

the relationship between the leaf-node parent and its children determine whether they 

preserve a one-to-one relationship. For example, in Figure 1 (a) the ―authors‖ node of a 

subtree is the parent of two ―author‖ nodes, which are leaf nodes. The ―authors‖ node is 

considered a root of this subtree. The subtree does not contain a variety of information 

and it is; therefore, not useful for extracting the extract this kind of subtree that represents 

an individual object and thus for comparison based on measurements of subtree 

similarity. 

4.1.2.2.1 Relabel XML element names semantically 

To determine the variety of information, the relationship between the leaf-node 

parents and their children is checked.  First, the children are evaluated for semantic 

similarity using Wu and Palmer‘s metric [15] to measure the similarity between two 



 

 

49 

words. This metric takes into account both path length and the depth of the least common 

subsumer based on the lexical database WordNet [5]. It relies on the following formula: 

         
            

                  
 

where s and t denote the source and target words being compared, depth(s) is the shortest 

distance from the root node to a node s on the taxonomy where the synset of s lies, and 

LCS denotes the least common subsumer of the words s and t. 

If the sim(s, t) is greater than a given threshold, the two are considered 

semantically similar. The words s and t are relabeled to the LCS word instead; for 

example, ―author‖ and ―writer‖ are semantically similar and are thus relabeled to their 

LCS, ―author‖.  

For cases in which XML element names do not exist in the dictionary, edit-

distance similarity is used instead to measure similarity; for example, short forms of 

initial page, ―initPage,‖ and end page, ―endPage,‖ do not appear in WordNet.  

4.1.2.2.2 Validate leaf-node parents 

Leaf-node parents are used as clustering points. They sometimes generate many 

clustered subtrees, which extend the time required to compare similarity.  

 

 

DELETE FROM leafnode_parent 
WHERE ppathexp IN ( 
    SELECT ppathexp 
    FROM leafnode_parent 
    GROUP BY ppathexp 
    HAVING count(pathexp) = 1) 

 

Figure 6. SQL for removing leaf-node parents without a one-to-one relationship 

 

 

To reduce the number of subtrees generated, the concept of instance statistics [14] 

is applied to check the relationship between the leaf-node parents and their children. 

Leaf-node parents that do not have a one-to-one relationship to their children are 

removed from the leafnode_parent relation using the SQL in Figure 6. 



 

 

50 

The leaf-node parent #/SigmodRecord#/issue#/articles#/article#/authors#/author 

in Figure 1 is eliminated at this point. Thus, the remaining leaf-node parents from 

SIGMOD Record in Figure 1(a) are: 

(1) #/SigmodRecord#/issue and  

(2) #/SigmodRecord#/issue#/articles#/article.  

The leaf-node parents from DBLP in Figure 1(b) are: 

(1) #/dblp#/inproceedings and 

(2) #/dblp#/proceedings. 

If the ―author‖ node is considered a leaf-node parent, it would generate at least a 

many subtrees as are generated by the ―article‖ node. 

4.1.3 Clustering XML documents into subtrees 

The remaining leaf-node parents are used to generate appropriate subtrees 

containing a variety of information. The subtrees can be generated by the pseudocode 

shown in Figure 7.  

 

 

$record_set = SELECT distinct e.docid, e.pathid as rootsubtree, e.st, e.ed 

FROM leafnode_parent p, element1 e 

WHERE p.docid = e.docid 

AND p.ppathid = e.pathid  

AND e.docid = $docid  

ORDER BY e.docid, st 

 

for each $r in $record_set{ 

    INSERT INTO subtree(docid, ppathid, pst, ped,pathid, st,ed, key, subtreeid, value)  

    SELECT docid, ppathid, scope_start, scope_end, pathid, st, ed, ' ',subtreeid , value  

    FROM txt1 

    WHERE docid = $r.docid   

    AND st >= $r.st  

    AND ed <= $r.ed) 

}   

 

Figure 7. Pseudocode for generating subtrees 



 

 

51 

First, using the attributes start and end from the element relation, the region 

covered by each leaf-node parent is selected. These regions are matched with the regions 

in the text relation in order to identify all content nodes at the leaf-node level under the 

leaf-node parent. The content values for each leaf-node parent are grouped together by 

the attribute ―subtreeid.‖ 

There are two types of clustered subtrees: simple and complex. A simple subtree 

has only leaf nodes under its root. A complex subtrees has one or more subtrees under its 

root and at least one leaf node originating from its root. 

In Figure 1, the SIGMOD Record document is clustered into two subtree levels. 

One is rooted by the ―issue‖ node and categorized as complex; the other one is rooted by 

the ―article‖ node and cauterized as simple. No subtrees are rooted by the ―author‖ node 

because that node is dismissed after the leaf-node parents are validated. 

4.1.4 Key Generator 

A key is a unique value that can be used to identify a particular item or distinguish 

items from others. The key of a subtree is modeled as an XML attribute, which is one of 

leaf nodes in a subtree. It has a unique value and is able to identify other attributes. 

Possible keys for an XML document are identified by the SQL query in Figure 8, which 

retrieve unique values from the text relation that can be used to distinguish among items.  

 

 

SELECT docid, pathid, value  

FROM text  

GROUP BY docid, PathID,Value  

HAVING Count(Value) = 1 

 

Figure 8. SQL query for finding keys 

 

 

The leaf nodes returned are considered keys. The value, ―Y,‖ is flagged in the 

attribute ―key‖ on the matched records (according to their docid, pathid, and value) in the 

subtree relation. 



 

 

52 

From this point, same subtrees of XML documents may not contain a key. 

Further, an item in either a base or a target XML tree may have a key but not appear in 

the other XML tree. Finally, a subtree may have multiple alternate keys. Consequently, 

subtree matching using keys may cause one-to-multiple matching. To find the best match 

for this case, the remaining subtrees are compared. When available, however, a key can 

reduce the number of matchings. 

4.1.5 Similarity Components 

This procedure has two steps: (1) matching subtrees with keys and (2) matching 

subtrees using similarity measurements based on XML content and structure.  

The keys found as described in Section 4.1.4 facilitate subtree matching and 

identification of the best matched subtree pairs. Measurements of subtree similarity are 

then used to compare the remaining unmatched subtrees. 

4.1.5.1 Match with keys and analyze subtree-pair matching 

First, the subtrees from the base and target documents are matched using keys 

generated by the key generator using the SQL in Figure 9. They are matched by 

comparing the leaf-node values, which are marked as ―Key.‖ The results are stored in a 

temporary table called v_key_match. This table will be used later to characterize subtree 

matches as either one-to-one, which is considered the best type, or one-to-multiple, which 

can occur due to multiple alternate keys. 

4.1.5.2 Analyze results from matching with keys  

The results of matched subtree pairs (one-to-one) are then stored in the 

subtree_similarity_score relation and flagged as ―Key‖ in order to distinguish the match 

type. The matched subtree pairs categorized as one-to-multiple matching are analyzed to 

identify unnecessary an inappropriate leaf-node parents to be compared with the subtrees 

in the other document.  

The subtrees generated from the leaf-node parent #/SigmodRecord#/issue in 

Figure 1(a) should not be compared with the subtrees in Figure 1(b) because they are 

different kinds of entities.  

 

 



 

 

53 

SELECT DISTINCT s1.docid as base_docid, s1.subtreeid AS base_subtreeid, s2.docid as 
target_docid, s2.subtreeid AS target_subtreeid 

FROM subtree s1, subtree s2 

WHERE s1.docid = docid of the base document 

AND s2.docid = docid of the target document 

AND (s1.KEY = 'Y' 

AND s2.KEY = 'Y') 

AND s1.VALUE = s2.VALUE 

 

Figure 9. SQL query for matching with keys 

 

 

SELECT 'doc_base' as doc_type, base_docid as docid, base_subtreeid as subtreeid, count(*) as 
match_cnt 

FROM v_key_match 

GROUP BY base_docid, base_subtreeid 

HAVING count(*) > median # of alternate keys in the base document 

UNION 

SELECT 'doc_target' as doc_type, target_docid as docid, target_subtreeid as subtreeid, count(*) 
as match_cnt 

FROM v_key_match 

GROUP BY target_docid, target_subtreeid 

HAVING count(*) > median # of alternate keys in the target document 

 

Figure 10. SQL query using key matching to find multiple matched subtrees 

 

 

SELECT distinct docid, ppathid 

FROM subtree 

MINUS 

SELECT distinct v.docid, s.ppathid 

FROM v_key_manymatching v, subtree s 

WHERE v.docid = s.docid and 

v.subtreeid = s.subtreeid 

 

Figure 11. SQL query for finding appropriate leaf-node parents 

 



 

 

54 

In order to reduce the number of one-to-multiple matches the matching 

information (i.e., the results from the SQL query shown in Figure 10) is analyzed to 

identify unnecessary leaf-node parents generating subtrees. The SQL query in Figure 11 

returns only the path expression of leaf-node parents that have fewer subtree matchings 

than the median number of alternate keys. These leaf-node parents are considered 

appropriate clustering points. Thus, the clustered subtrees not rooted by these points are 

dropped. 

Like the subtrees rooted by the ―issue‖ node, the complex subtree should contain 

many alternate keys because the keys from each article subtree are part of the issue 

subtree. The leaf-node parent #/SigmodRecord#/issue in Figure 1(a) is dismissed. 

Therefore, the subtrees that must be compared now are those rooted as described below.  

For SIGMOD Record in Figure 1(a):  

(1) #/SigmodRecord#/issue#/articles#/article  

For DBLP in Figure 1(b): 

(1) #/dblp#/inproceedings and 

(2) #/dblp#/proceedings 

4.1.5.3 Match with XML content and structure 

To determine which subtrees are an appropriate match the remaining subtrees are 

analyzed for both the content and structure of the base and target XML trees by 

comparing PCDATA value (content approach) and signatures (structure approach). Three 

components are used to compute the degree of similarity in content and structure: using 

Subtree Similarity Degree based on the base document (SSD1), Subtree Similarity 

Degree based on the both documents (SSD2), and Path Subtree Similarity Degree 

(PSSD). 

4.1.5.4 Content similarity 

Subtree Similarity Degree based on the base document (SSD1) is the percentage 

of the number of leaf nodes sharing the same PCDATA value out of the total number of 

leaf nodes in    . SSD1 can be calculated using the formula 

               
 

   
      



 

 

55 

where     and     are two subtrees from the base document and target document 

respectively,   is the number of leaf nodes sharing the same PCDATA value, and     

represents the total number of leaf nodes in    . SSD2 is the ratio of leaf-node values 

common to both the base and target subtrees. It can be written as 

               
   

       
      

where     is the number of leaf nodes in the target subtree. 

For scoring purposes, each common node is worth 1 point, and a common node 

defined as a key is worth 2 points. The SSD1 and SSD2 scores of all remaining subtree 

pairs are calculated and stored in the subtree_similarity_score relation. The matched pair 

is the subtree pair with the highest similarity score.  

However, the one-to-multiple matches may occur despite these steps. To find out 

which subtree pair is the best match, the similarity of the signature of matched leaf-node 

values is measured using Path Similarity Degree (PSD). 

4.1.5.5 Structural similarity 

Before measuring path similarity, XML element names of the both documents are 

semantically transformed using LCS to ensure precise results (as described in Section 

4.1.2.2.1). 

Path Similarity Degree (PSD) is the ratio of common labels N on paths from the 

base and target subtrees having the same PCDATA value to the number of path elements 

in the base subtree:  

        
 

   
       

4.1.5.6 Similarity of content and structure 

Path Subtree Similarity Degree (PSSD) is an average of Path similarity degree for 

    and    :  

               
        

   

 
                   



 

 

56 

where   is the total number of matched leaf node paths in the base subtree between 1 to   

paths. The matched subtree is the pair of subtrees that has the highest degree of subtree 

similarity above a certain threshold in terms of content and structure.  

4.2 System Design 

This section describes the system design, requirements, and implementation.  

The system relies on the programming language Java 5.0 (JDK 5) and on Oracle 

10G database. XRel uses the validating XML parser and simple API for XML (SAX) in 

order to convert XML documents into the relations described in Section 4.1.1, and it uses 

JDBC to connect with the database.  

For the interface, the XML documents are parsed by the Java API for XML 

processing (JAXP), which enables applications to parse, transform, validate, and query 

XML documents using an API independent of any specific XML processor 

implementation. The XML documents are then displayed in a tree data structure by 

JTree.  

 

 

5. ALGORITHM 

Figure 12 illustrates the approach described in Section 4 and written in 

pseudocode. This algorithm is processed after XML documents are parsed into a 

relational database. There are three main modules: (1) subtree generator and validator, (2) 

key generator, and (3) subtree matching by similarity components.  

The inputs of this algorithm are two XML documents stored in a relational 

database. First, the XML documents are fragmented into small subtrees using leaf-node 

parents. In Module 1, the leaf-node parents are identified and validated using the 

taxonomic analyzer and the instance statistics concepts. The XML documents are 

clustered into subtrees. Finally, subtrees are generated using the leaf-node parents. 

All possible keys are identified in Module 2 and used in turn to identify their 

subtrees. At this point, the subtree relation is updated by marking the attribute ―key‖ as 

‗Y‘ (see Section 4.1.4). 



 

 

57 

Module 3, subtree matching, is separated into two sub modules, Module 3.1 and 

Module 3.2.  

 

 

Algorithm XDI-CSSK 

Input: XML document tree Tb and Tt 

Output: Set of matched subtree pairs {(tbi,ttj)} 
  

//Module 1: Generate and validate subtree 

Find_leafnode_parent(); //Figure 5 

Validate_leafnode_parent(); //Figure 6 

Generate_subtree()  //Figure 7 
 

//Module 3: Subtree Matching 

//Module 2: Identifying key(s) 

Finding_key();    //Figure 8 
 

//Module 3.1: Matching subtrees 

Match_with_key();  //Figure 9 

Find_proper_lefanode_parent   //Figure 10 and Figure 11 
 

//Module 3.2: Subtree similarity degree 

for (every tbi in Tb){ //non- matched subtrees from the base document tree 

MaxSim[i] = 0; 

for (ttj in Tt){ //Subtrees from the target document tree 

     CalSimilarity S(tbi ,ttj)  //Section 4.1.5.4 

     MaxSim[i] = Max(MaxSim[i], S(tbi ,ttj));   

} 

StoreMSSD(tbi, ttj, MaxSim[i]);  //Store Max SSD in a temporary table 

} 

//Path Subtree Similarity degree computation 

for (every tbi in MSSD, such that Count(MaxSim()) >1 and MaxSim >    ){  //Count the number of maximum 

similarity degrees 

//Match subtree more than one pair 

MaxPath[i] = 0 

for (j = 1 to kt){ 

     CalPathSimilarity PSSD(tbi ,ttj) //Section 4.1.5.5 

     MaxPath[i] = Max(MaxPath[i], PSSD(tbi ,ttj));  

} 

StoreMPSSD(tbi, ttj, MaxPath[i]); 

} 

Return (tbi,ttj) stored in Max SSD and Max PSSD 

 

Figure 12. XDI-CSSK Algorithm 

 

 

First, the clustered subtrees from the both base and target documents are 

compared by the key identified in the function ―match_with_key()‖. The results can be 

the best matched subtrees or multiple matched subtrees. The best matched subtrees are 

stored as outputs. Multiple-matched subtrees occur when the subtrees have more than one 

alternate key. These subtrees are not considered the best matched. The results of multiple 



 

 

58 

matched subtrees are analyzed by the function ―find_proper_leafnode_parent‖ to find and 

eliminate irrelevant subtrees. This function compares the number of keys with the median 

number of alternate keys per subtree. These irrelevant subtrees no longer count as 

subtrees, so they are removed from the subtree relation. The remaining unmatched and 

multiple-matched subtrees from this module are identified to find the degree of subtree 

similarity in Module 3.2. 

For Module 3.2, the remaining subtrees     from the base document tree    are 

selected. Each subtree is compared with the remaining subtrees     from the target 

document    to calculate subtree similarity degrees (SSD1 and SSD2). The maximum 

degree of subtree similarity (MaxSim) for each subtree     is stored in a temporary table 

for later identification of the best match. The best match is defined as the subtree pair 

          with the maximum degree of subtree similarity, which must be greater than a 

user-defined threshold  . In the cases when we have more than one pair fit these criteria, 

PSSD is computed for those pairs, and the best matched subtree is that with the maximum 

path subtree similarity degree. 

 

 

Table 1. Clustering points between XDoI and XDI-CSSK 

 

Document XDoI Number 
of 
subtrees 

XDI-CSSK Number of 
subtrees 

SIGMOD 
Record 

#/SigmodRecord#/issue 
#/SigmodRecord#/issue#/arti
cles#/article 
#/SigmodRecord#/issue#/arti
cles#/article#/authors#/auth
or 

67 
1504 
1504 

#/SigmodRecord#/issue#/
articles#/article 

1504 

DBLP1 #/dblp#/inproceedings 769 #/dblp#/inproceedings 769 

DBLP2 #/dblp#/inproceedings 
#/dblp#/proceedings 

803 
2 

#/dblp#/inproceedings 
#/dblp#/proceedings 

803 
2 

DBLP3 #/dblp#/inproceedings 
#/dblp#/proceedings 

1421 
17 

#/dblp#/inproceedings 
#/dblp#/proceedings 

1421 
17 

 

 

  



 

 

59 

Table 2. The numbers of subtree comparisons required 

 

 XDoI XDI-CSSK 

1st pair 1208099 1156576 

2nd pair 1264655 1210720 

3rd pair 2259098 2162752 

 

 

 

 

Figure 13. XRel parsing and storing XML documents 

 

 

 

 

Figure 14. Quality of XDoI and XDI-CSSK results 

 

 

SigmodRec
ord (482KB)

DBLP1 (679 
KB)

DBLP2 (688 
KB)

DBLP3 (717 
KB)

store 23.593 40.203 40.25 37.562

parse 0.422 0.437 0.437 0.422

0.1

1

10

100

Se
co

n
d

s

Parsing and Storing XML Documents to a Database

store

parse

0

0.2

0.4

0.6

0.8

1

1.2

1st pair 2nd pair 3rd pair

R
at

io
 (

Q
)

Result Quality

XDoI-0.5 XDoI-0.7 XDI-CSSK-0.5 XDI-CSSK-0.7



 

 

60 

 

 

Figure 15. Execution time of XDoI and XDI-CSSK 

 

 

From this point, the best matched subtree pairs are the outputs. They can be joined 

together in order to integrate them. Joining matched subtrees is not difficult because they 

are stored in a relational database. 

 

 

6. PERFORMANCE RESULTS 

This section evaluates the improvement in XML document clustering and 

similarity comparison made possible by this approach. Experiments were designed to 

compare XML documents from SIGMOD Record [1] and DBLP [16]. They used the 

same data sets used for the XDoI experiments, that is SIGMOD Record and portions of 

700 KBs of DBLP. Three fragments of DBLP randomly selected from the XDoI 

experiments were used; they are labeled named DBLP1, DBLP2, and DBLP3. The first 

document pair is SIGMOD Record and DBLP1, the second is SIGMOD Record and 

DBLP2, and the third is SIGMOD Record and DBLP3. 

First, the XML documents were parsed and stored in an Oracle 10G database 

using XRel [17]. This process is illustrated in Figure 13 using the vertical axis with log 

scale; it took less than 41 seconds to complete. 

Second, the difference in the clusterings between XDoI and XDI-CSSK were 

evaluated. Table 1 shows the clustering points and the number of clustered subtrees from 

1st pair 2nd pair 3rd pair

XDoI-0.5 275487.53 301890.62 906474.83

XDI-CSSK-0.5 192615.42 218177.40 369877.67

XDoI-0.7 274173.65 426880.03 887780.57

XDI-CSSK-0.7 201721.77 215028.27 381029.77

0.00

200000.00

400000.00

600000.00

800000.00

1000000.00

se
co

n
d

s

Execution time of XDoI and XDI-CSSK



 

 

61 

XDoI and XDI-CSSK. The number of clustered subtrees on SIGMOD Record from XDI-

CSSK is less than that from XDoI. Based on validation of leaf-node parents and on the 

information from multiple matching using keys, the system identified unnecessary leaf-

node parents. Therefore, only appropriated and relevant subtrees remained to be 

measured. 

For both approaches, experiments were also conducted to evaluate the quality of 

results and the overall time required to cluster, identify keys, measure subtree similarity, 

and identify matches. Each approach was tested with three pairs of fragments from the 

two documents. The similarity thresholds for the experiments were 0.7 % and 0.5%. The 

quality of subtree matching result,   was defined as      , where Sn is the number of 

subtrees matched by a given approach and An is the number of actual matched subtrees. 

As shown in Figure 14, the quality of results was identical for both approaches are 

identical because they use the same similarity measures. The higher the threshold, the 

higher the quality. Figure 15 shows the execution time for XDI-CSSK and XDoI. The 

former outperformed the latter because it was able to eliminate inappropriate subtrees 

using subtree validation and information from the results of multiple matches based on 

keys. In addition, identification of common content using SQL queries of indexed 

relations improved the computation time. The third pair in Figure 15 required more 

execution time because the number of clustered subtree comparisons was higher than in 

the first two pairs shown in Table 2. 

 

 

7. CONCLUSIONS 

This paper has described XDI-CSSK, a system that determines the degree of 

semantic similarity using XML content and structure, as well as the concept of XML 

keys. Major challenges in XML integration include identification of appropriate subtrees 

representing individual objects and identification and elimination of clustered subtrees, 

which are the main factors causing high computation cost in similarity measurements. 

Leaf-node parents were used as clustering points and validated using instance statistics 

and a taxonomic analyzer. The results of subtree matching based on defined keys were 



 

 

62 

also used to purge unrelated subtrees to the subtrees in other document. Matching 

subtrees with the keys and validating subtrees by eliminating unnecessary subtrees 

certainly reduces the workload of the system in terms of subtree similarity comparison. 

The experiments demonstrated that XDI-CSSK works effectively with the bibliographical 

documents, SIGMOD Record and DBLP. It will likely work just as well with other 

domains and types of XML trees (shallow, deep, etc.). 

 

 

8. FUTURE WORK 

This work applied taxonomy of concepts to determine the structural similarity (or 

path similarity) of XML documents from XML element names. Comparison of content 

for XDI-CSSK still depends on a string matching technique, which may not reveal 

exactly how similar the two strings are. Future work will focus on identifying the 

semantic similarity of content by applying the taxonomy of concepts with acceptable 

execution time. In addition, it will expand the scope of comparison to address two XML 

documents of different versions. 

 

 

9. REFERENCES 

[1] ACM SIGMOD Record in XML. (n.d.). Retrieved March 2006, from 

http://www.acm.org/sigmod/record/xml 

[2] Augsten, N., Bohlen, M., & J, G. (2005). Approximate matching of hierarchical data 

using pq-grams. Proceedings of the 31st international conference on Very large data 

bases (pp. 301-312). VLDB Endowment. 

[3] Bille, P. (2003). Tree edit distance, alignment distance and inclusion. IT Univ. of 

Copenhagen TR-2003-23 . 

[4] Buneman, P., Davidson, S., Fan, W., Hara, C., & Tan, W. (2002). Keys for XML. 

Computer Networks , 473-487. 



 

 

63 

[5] Christiane, F. (1998). WordNet: An Electronic Lexical Database. MA: MIT press 

Cambridge. 

[6] Jiang, J., & Conrath, D. (1997). Semantic similarity based on corpus statistics and 

lexical taxonomy. Jiang, J.J. and Conrath, D.W. , 19-33. 

[7] Lian, W., Cheung, D. W.-l., Mamoulis, N., & Yiu, S.-M. (2004). An Efficient and 

Scalable Algorithm for Clustering XML Documents by Structure. IEEE 

Transactions on Knowledge and Data Engineering , 16 (1), 82-96. 

[8] Liang, W., & Yokota, H. (2006). A path-sequence based discrimination for subtree 

matching in approximate XML joins. Proceedings of the 22nd International 

Conference on Data Engineering Workshops (ICDEW’06), (pp. 23-28). 

[9] Liang, W., & Yokota, H. (2005). LAX: An Efficient Approximate XML Join Based 

on Clustered Leaf Nodes for XML Data Integration. Proceedings Of BNCOD 2005, 

(pp. 82-97). 

[10] Liang, W., & Yokota, H. (2006). SLAX: An Improved Leaf-Clustering Based 

Approximate XML Join Algorithm for Integrating XML Data at Subtree Classes. 

IPSJ Digital Courier , 2, 382-392. 

[11] Lin, D. (1998). An information-theoretic definition of similarity. In Proceedings of 

the Fifteenth International Conference on Machine Learning (pp. 296-304). 

[12] Resnik, P. (1995). Using information content to evaluate semantic similarity in a 

taxonomy. Proceedings of the 14th Internaltional Joint Conference on Artificial 

Intelligence , 448-453. 

[13] Viyanon, W., Madria, S. K., & S, B. S. (2008). XML Data Integration Based on 

Content and Structure Similarity Using Keys . Proceedings of the OTM 2008 

Confederated International Conferences, CoopIS, DOA, GADA, IS, and ODBASE 

2008. Part I on On the Move to Meaningful Internet Systems , 484-493. 

[14] Weis, M. (2005). Fuzzy Duplicate Detection on XML Data. Proceedings of VLDB 

2005 PhD Workshop, (p. 11). 



 

 

64 

[15] Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. Proceedings of 

the 32nd annual meeting on Association for Computational Linguistics (pp. 133-

138). Association for Computational Linguistics Morristown, NJ, USA. 

[16] XML Version of DBLP. (n.d.). Retrieved May 2006, from http://dblp.uni-

trier.de/xml/ 

[17] Yoshikawa, M., Amagasa, T., Shimura, T., & Uemura, S. (2001). XRel: a path-based 

approach to storage and retrieval of XML documents using relational databases. 

ACM Transactions on Internet Technology , 1 (1), 110-141. 

[18] Zhang, K., & Shasha, D. (1989). Simple fast algorithms for the editing distance 

between trees and related problems. SIAM journal on computing , 18, 1245. 

 

 

  



 

 

65 

III. XML-SIM: STRUCTURE AND CONTENT SEMANTIC SIMILARITY 

DETECTION USING KEYS 

Waraporn Viyanon and Sanjay K. Madria 

Department of Computer Science, Missouri University of Science and Technology 

Rolla, Missouri, USA 

{wvz7b@mst.edu, madrias@mst.edu}  

Abstract. This paper describes an approach to detecting similarity in 

structure and content semantically between two XML documents from 

heterogeneous data sources using the notion of keys. Comparison with 

previous systems (XDoI and XDI-CSSK) demonstrates that this new 

approach performs significantly better, yields fewer false positives, and offers 

a shorter execution time. 

Keywords: XML similarity detection, keys, clustering, matching 

 

 

1. INTRODUCTION 

XML has been increasing relevance as a means to exchange information and 

present complex data on the Internet [7]. XML sources with similar content may be 

described using different tag names and structures; bibliographical data such as DBLP 

[20] and SIGMOD Record [1] are examples. Integration of the similar XML documents 

from different data sources benefits users, permitting them access to more complete and 

useful information.  

XML documents encode both structure and data. In order to integrate them, 

therefore, similarities in both structure and content must be accurately identified. Most 

matching algorithms treat XML documents as a collection of items represented in tree 

form. These trees are fragmented into small, independent subtrees. The subtrees can be 

analyzed to identify similarities of content and structure between two XML documents. 



 

 

66 

Subtree pairs with a degree of similarity above a given threshold are considered matched 

pairs; these can be integrated into one XML document. Recent works on XML document 

integration have introduced systems [3, 4, 6, and 12] such as SLAX. Other studies have 

shown that integration techniques such as XDoI [17] and XDI-CSSK [18] outperform 

SLAX. Both these approaches require that the degree of similarity in the content of XML 

documents must first be determined; structure is considered only later. Ideally, however, 

structure should be considered first, and similarities of content between two subtrees 

should be evaluated only for structurally similar pairs. The degree of similarity in content 

is measured by computing common leaf-node values from a subtree in a base XML 

document with those in the target document. This is a time consuming method; however, 

leaf-node values should be compared only when they have similar structures. 

This paper describes the design and implementation of a system to integrate XML 

documents based on the similarity of their structure and content using keys and semantic 

matching. This framework is an improvement on XDoI [17] and XDI-CSSK [18]. It 

focuses on the semantics associated with the child nodes in a subtree, thus reducing the 

number of subtree comparisons to be made. The contributions of this paper can be 

summarized as follows: 

1. It proposes an improved framework for XML integration based on previous 

methods that cluster XML documents into subtrees, identify and match 

subtrees using keys [17], use the Java WordNet similarity library (JWSL) to 

apply the metric of semantic similarity based on information content [14]. It 

defines a new method of computing the similarity between two XML 

documents in terms of both structure and content and it describes the 

implementation of an algorithm based on structure (path) semantic similarity 

for matching subtrees. 

2. It describes experiments performed on bibliographical data sources, ACS 

SIGMOD Record [1] and DBLP [20], and evaluates the proposed framework 

by comparing it with previous systems. This comparison demonstrates a clear 

improvement in parameters such as similarity detection and execution time 

[17, 18]. It also shows that the approach presented here reduced the number of 

false positive by 12.84%. 



 

 

67 

2. RELATED WORK 

Similarity detection in XML documents can be categorized as relating to either 

structural similarity alone or to similarity of both content and structure. Detection of 

structural similarity relies mostly on in document clustering and change detection. 

Similarity of both content and structural, however, is important in document integration. 

Several approaches [3, 4, 6] to the identification of structural similarity in tree-

based documents are based on finding the least edit distance [22] between two documents 

In other words, they determine how one document (T1) can be edited to transform it into 

a second document (T2). Other work on structural similarity aims to extract pure 

structural information from documents. Tree edit distance (TED) measures the minimum 

number of node insertions, deletions, and updates required to convert one tree into 

another. By default, TED assigns a cost value of 1 to each edit operation [3, 4]. The edit 

distance between two trees is the smallest cost of transforming one document into 

another. Tree edit distance is expressed in term of                time and       

space, where   represents the number of nodes,   represents the number of leaves, and   

is the depth [22]. 

A path is defined as a list of connected nodes starting at the root and terminating 

at a leaf node. Path similarity can be measured in several different ways: Binary 

measurement determines whether a pair of paths is equivalent; Partial measurement 

determines the number of comparable nodes in two paths. Finally, weighted measurement 

weights the nodes according to their distance from the root. Partial path similarity 

measures are expensive to compute because there are n-factorial mappings between the 

paths of two trees. They depend on exhaustive algorithms that yield an optimal similarity 

score. 

XML DTD can evaluate similarity by comparing document type definition (DTD) 

of one document with that of another; however, the XML DTD may not always be 

available. 

There are also many effective and widely used methods to detect similarity 

between two elements; these include string matching, edit distance, and semantic 

similarity. String matching determines whether strings are identical. This method is 

simple to implement, but it often fails to identify similar strings. The distance between 



 

 

68 

strings   and   is equal to the computational cost of the sequence of edit operations that 

converts   to  . As mentioned above, edit distance is time-consuming, and the results may 

not be semantically accurate. Another approach that is similar in many ways to edit 

distance is the longest common subsequence (LCS) approach [2], which finds the longest 

sequence of tokens common to the two strings. 

Methods of identifying semantic similarity [9, 10, 13, 14, and 16] have been 

introduced in order to capture meaning of words. Generally, these methods can be 

categorized into two main groups: those based on edge counting [15] and those based on 

information corpus. 

The information-theory-based method of identifying semantic similarity was first 

proposed by Resnik [16]. The similarity of two concepts is defined as the maximum 

probability score of the concept that subsumes them in the taxonomic hierarchy. The 

information content of a concept depends on the probability of encountering an instance 

of the concept in a corpus. This probability is determined by the frequency with which 

the concept and its sub-concept occur in the corpus. The information content is thus 

defined as the negative of the log of the probability. Jiang and Conrath [9] proposed a 

combined method derived from the edge-based notion by adding the information content 

as a decision factor. They consider the fact that edges in the taxonomy may have unequal 

link strength; therefore, the link strength of an edge between two adjacent nodes is 

determined by local density, node depth, information content, and link type. The 

similarity between two words is simply the summation of edge weights along the shortest 

path linking two words. Lin [13] derived a measure similar to Resnik‘s information 

content, but better [16]. His contribution consisted of normalizing by the combined 

information content of the concepts to be compared and assuming their independence. 

The best known resource on taxonomic hierarchy is WordNet [8], a utility 

program that allows a user to compute information content values from the Brown 

Corpus, the Penn Treebank, the British National Corpus, or any given corpus of raw text. 

Pirror and Seco [14] have developed JWSL, which provides methods based on 

information theoretic theories of similarity. 

Keys are fundamental to data models and conceptual design, and they facilitate 

subtree matching [5]. If keys could be identified in XML documents, the number of 



 

 

69 

matchings could be dramatically reduced. Since most XML data is data-centric (i.e., 

derived from the relational data model), keys can more accurately identify matching 

subtrees. 

 

 

3. PROBLEM STATEMENT 

This paper explains the drawbacks of XDoI [18] and XDI-CSSK [17]. These 

methods compute subtree similarity based on the similarity of content by comparing the 

number of common values at the leaf-node levels; they do not consider document 

structure. If evaluation of content similarity yields multiple matches, then the structural or 

path similarity is taken into account to identify the most similar subtree pair. This 

approach makes the computation time consuming because it requires comparison of all 

leaf nodes regardless of the degree of similarity in data type and semantic. 

Figure 1 provides an example of the structure of SIGMOD Record and DBLP 

documents. To integrate these two XML documents, XDoI and XDI-CSSK cluster them 

into smaller subtrees using leaf-node parents as clustering points; they then compare all 

subtree pairs. According to previous work [18], clustering in XDI-CSSK is better than 

that in XDoI because the former is able to segment XML documents into proper subtrees. 

In the example shown in Figure 1, the clustering points are the edges above the article 

node from SIGMOD Record, and the inproceedings and proceedings nodes are from 

DBLP. Even XDI-CSSK clusters subtrees in order to compare those of two XML 

documents. The clustering process removes inappropriate subtree levels from the results 

of multiple matchings using keys, but in evaluating the similarity of subtrees, it considers 

only content, ignoring the structure of the document. The algorithms of both approaches 

for identifying similar content and structure are straightforward; they compare leaf nodes 

that share the same PCDATA value. In this example, all the leaf nodes rooted by the 

article node are compared with those rooted by the inproceedings and proceedings nodes. 

It would make no sense to compare the value at the title node in the article subtree with 

that at the pages or year node in the inproceedings subtree because these are not similar 

in terms of semantics and data type.  



 

 

70 

 

 

Figure 1. Example of XML documents compared in XDoI and XDI-CSSK 

 

 

XDoI shows that identification of a key can reduce the number of subtree 

matchings, and XDI-CSSK takes advantage of the results of key matchings to eliminate 

inappropriate subtrees. 

This paper addresses these drawbacks by considering the structural semantic 

similarity of leaf nodes in clustered subtrees before comparing the content of leaf nodes. 

 

 

4. APPROACH 

This section describes an XML document integration called XML-SIM, which 

detects similarities in two XML documents more effectively than either XDoI or XDI-

CSSK. First, it describes the overall framework of this approach, then it provides the 

details of each component. Finally, it presents the algorithm for this approach.  

SigmodRecord

issue

volume

xxx

number

xxx

articles

article

title

xxx

initPage

xxx

endPage

xxx

authors

author

xxx

author

xxx

...

article ...

issue ...

dblp

inproceedings

booktitle

xxx

title

xxx

pages

xxx

year

xxx

inproceedings ... proceedings 

booktitle

xxx

editor

xxx

title

xxx

ISBN

xxx

proceedings ...



 

 

71 

4.1 XML-SIM Framework 

XML-SIM framework consists of four components: (1) XML document storage, 

(2) subtree generation, (3) key generation and matching, and (4) similarity detection and 

subtree matching. Figure 2 illustrates this framework. 

 

 

 

 

Figure 2. XML-SIM framework 

 

 

First, XML documents are stored in a relational database, which increases 

scalability so that very large XML trees do not exceed the limits of the system. Second, 

XML documents are clustered into subtrees using leaf-node parents. The subtrees are 

verified for integrity using the concept of instance statistics [19]. XML key(s) are defined 

based on a leaf-node value match for all unique node values sharing the same path 

signature. The key are later matched with subtrees; however, key matching may result in 

multiple matches because a key may be a part of multiple subtrees. According to 

Definition 6 in Section 4.2 this key-matching information can be used in the subtree filter 

process to eliminate inappropriate subtrees. At this point, only appropriate subtrees 

remain to be compared. The structures of these subtrees are measured to find the 

structural semantic similarity using the taxonomic analyzer. This similarity facilitates 

External XML 

data sources 
XRel Database 

Subtree Generation using leaf-node parents  

and Validation using instance statistics 

 

Key Generation and subtree filter  

by analyzing key matching information 

Structure and Content Similarity Detection 

XML Documents 

(in DB format) 

Taxonomic Analyzer 

Semantic similarity value 

between element names 

Clustered subtrees 

Proper subtrees 

XML  

Documents 

XML document  

storage 

Similarity degrees 

Matched subtree 

pairs 

 



 

 

72 

comparison of content. Similarity in content is determined by comparing leaf-node values 

with a similar semantic structure. Finally, the system identifies the best matched subtree 

pairs, which can then be integrated. 

4.2 Key Definitions for XML-SIM 

This section presents the notations, definitions, and algorithm that solve the 

problem described in Section 3 above. 

4.2.1 XML Document Storage 

Following are some definitions of terms related to XML documents and a 

description of the storage model.  

Definition 1. XML document tree: An XML document tree    is an ordered labeled tree 

generated after parsing an XML document.    denoted as             where   is the 

set of nodes;    is the root node;   is the set of edges in the tree   .    is a base 

document tree, and    is a target document tree.  

The XML documents are loaded into a relational database using XRel [21], which 

decomposes the document into nodes on the basis of its tree structure and stores it in 

relational tables according to the node type, with information on the path from the root to 

each node. XRel consists of the four relational schemas shown in Figure 3. 

 

 

Element(docID, pathID, start, end, index, reindex) 
Attribute(docID, pathID, start, end, value) 
Text(docID, pathID, start, end, value) 
Path(pathID, pathexp) 

 

Figure 3. XRel schemas 

 

 

The database attributes ―docID,‖ ―pathID,‖ ―start,‖ ―end,‖ and ―value‖ represent 

the document identifier, simple path expression identifier, start position of a region, end 

position of a region, and string value, respectively. Element nodes or leaf nodes are 

identified by their region and stored in the relations Element and Text. To identify each of 

the attribute nodes, the attribute name is retained as the suffix of the simple path 



 

 

73 

expression of an attribute node and the attribute value is stored in the relation Attribute. 

The database attribute ―pathexp‖ in the relation Path stores simple path expressions as 

explained in Definition 2. 

Definition 2. Path expression: Any node    can be identified by its location within a tree 

    by a path expression or signature   . A path expression    consists of one node or 

nodes from the node set   separated by "/". In Figure 1, the path expression of the node 

title is as /sigmodRecord/issue/articles/article/title. The path expressions are used to 

measure structural semantic similarity. 

4.2.2 Subtree Generation  

Below are definitions related to subtree clustering, followed by a discussion of the 

subtree generation phase.  

Definition 3. Leaf-node parent: For a document tree    with a node set   and an edge 

set  ,    is a leaf-node parent, if (1)      (2)          , where    is the parent of   , 

and     is a leaf node.  

In other words, a leaf-node parent is a node that has at least one child leaf node. 

This leaf-node parent is considered a subtree root in the clustering process. In Figure 1, 

the leaf-node parents are the nodes, ―issue,‖ ―article,‖ and ―author.‖ They can be found 

using the SQL query in Figure 4. 

 

 

SELECT distinct docid, p.pathid as pathid, pathexp  
FROM text l, path p  
WHERE p.pathid = l.pathid 

 

Figure 4. SQL query for finding leaf-node parents 

 

 

Definition 4. Clustering point: An edge    lies between nodes    and   .  This edge is a 

clustering point iff           , where    is the parent of   , and    is a leaf-node 

parent (as described in Definition2). The edge    is deleted to generate a subtree    

denoted as              . The clustering point is the point at which an XML tree is 



 

 

74 

clustered into subtrees. The clustered subtrees are categorized as either, simple or 

complex: 

Definition 5. Simple subtree: Two XML document trees    (the base tree) and    (the 

target tree.) are clustered into    and    subtrees respectively, where     is a node in    

such that        and     is a node in    such that       . The subtree     with a 

node set     is simple subtree if (i)                 is equal to 0, 

(ii)                 is equal to 1, the parent of    is NOT a leaf-node parent (see 

Definition 3),     is a leaf-node parent in the subtree    , and num_parent() is a function 

that counts the number of parents. This condition applies to the subtree     as well. A 

simple subtree is a clustered tree with only a root and one or more of leaf nodes  

Definition 6. Complex subtree: Any clustered subtrees   
  with a node set   

  is complex 

if the parent of     
  is a leaf-node parent. A complex subtree is a clustered subtree with at 

least one simple subtree, a root, and one or more of leaf nodes.  

The leaf-node parent and clustered subtrees are also stored in the relational 

database, as shown in Figure 5. The leafnode_parent relation stores path signatures that 

have leaf-nodes and their parent path expressions. The pathids of parent paths can be 

retrieved from the path relation. The subtree relation stores the clustered subtrees, which 

are used later to compare subtree similarity. Each subtree contains path information, 

content values at the leaf-node level, and a key flag. The key flag is used to identify 

multiple unique leaf nodes with the same pathid. Key generation is discussed in Section 

4.2.4. 

 

 

Leanode_parent(docID, ppathExp, ppathid, pathexp, pathid) 
Subtree(docID, ppathID, pst, ped,pathid, st, ed, value, key, subtreeid) 

 

Figure 5. XML-SIM relations 

 

 



 

 

75 

4.2.3 Subtree Validation 

A subtree representing an independent object should contain nodes representing 

various types of information, rather than just one kind of node. For example, in Figure 1 

<authors> is the parent of two <author> nodes, which are its leaf nodes. The <authors> 

node is considered the root of the subtree that has two <author> nodes as its children. 

Clearly, this kind of subtree contains no information other than <author>; therefore, 

extraction of such a subtree is not useful for evaluating subtree similarity.  

 

 

  

Figure 6. Instance statistics on subtree structure 

 

 

The concept of instance statistics based on the element structure of subtrees [19] 

is applied to check the relationship between the elements of the leaf-node parent and 

those of its children leaf-node elements. This process determines whether they preserve a 

loose one-to-one relationship by capturing how often an instance (or a subtree) of leaf-

node parents includes a particular number of instances of children. Figure 6 shows that 

there is only one <title> element per <article> subtree; on the other hand, most ―authors‖ 

subtrees have two ―author‖ elements. The relationship between <article> and <title> is, 

therefore, one to one. The leaf-node parents that do not have a loose one-to-one 

1504

012

1492

0

200

400

600

800

1000

1200

1400

1600

1 2

Fr
e

q
u

e
n

cy

Instance Statistics on Subtree Structure

number of "title" items per "article" subtree

number of "author" items per "authors" subtree



 

 

76 

relationship with their children are removed from the leafnode_parent relation using the 

SQL in Figure 7. 

 

 

DELETE FROM leafnode_parent 
WHERE ppathexp IN ( 
    SELECT ppathexp 
    FROM leafnode_parent 
    GROUP BY ppathexp 
    HAVING count(pathexp) = 1) 

 

Figure 7. SQL query to remove leaf-node parents lacking a loose one-to-one relationship 

 

 

4.2.4 Key Generation 

The key of a subtree is modeled as an XML attribute, which is one of leaf nodes 

in a subtree. It has a unique value and is able to identify other attributes in its subtree. 

Possible keys for the XML documents are identified by the SQL query in Figure 8. This 

query retrieves unique values from the text relation that can be used to distinguish among 

various items. 

 

 

SELECT docid, pathid, value  
FROM text  
GROUP BY docid, PathID,Value  
HAVING Count(Value) = 1 

 

Figure 8. SQL query to identify leaf nodes as keys 

 

 

Definition 7. Subtree key: A subtree key is a leaf node    that has a unique value. This 

leaf node is compared with any leaf nodes    having the same path expression    of the 

node   . 



 

 

77 

The query in Figure 8 returns leaf nodes, the labels of which are considered 

subtree keys. In the subtree relation ―Y‖ in the attribute ―key‖ on the matched records 

(according to their docid, pathid, and value) is flagged. 

4.2.5 Subtree Matching Using Subtree Keys 

The subtree keys thus identified are used to match subtrees. Those subtrees whose 

leaf nodes (labels) are marked as ―key‖ and have identical values are compared. The key 

matching results are stored in a temporary relation called v_key_match. Subtree key 

matching may cause multiple matchings, stored in v_key_manymatching, because 

complex subtrees contain multiple subtrees that may have leaf nodes defined as keys. 

Although this comparison disregards the structure of the leaf nodes, its matching results 

can be analyzed to identify any subtree level inappropriate for comparison. The matching 

information is analyzed by determining the difference between the number of subtree 

matches and the median number of alternate keys. This step assumes that a complex 

subtree may contain a huge number of simple subtrees, which in turn contain alternate 

keys. Such complex subtrees yield inappropriate. To eliminate inappropriate subtrees, a 

threshold is calculated using the median number of alternate keys. Subtrees that produce 

more multiple matches more than the median number of alternate keys are eliminated. 

The results of the key matching are retrieved by the SQL query in Figure 9, and the SQL 

queries in Figure 10 identify appropriate leaf-node parents. 

At this point, we have filtered the subtrees and got the appropriate subtrees from 

both XML documents to be compared in the structure and content similarity detection.  

 

 

SELECT DISTINCT s1.docid as base_docid, s1.subtreeid AS base_subtreeid, 
s2.docid as target_docid, s2.subtreeid AS target_subtreeid 
FROM subtree s1, subtree s2 
WHERE s1.docid = docid of the base document 
AND s2.docid = docid of the target document 
AND (s1.KEY = 'Y' 
AND s2.KEY = 'Y') 
AND s1.VALUE = s2.VALUE 

 

Figure 9. SQL query for key matching 

 



 

 

78 

 

Part (a) 
SELECT 'doc_base' as doc_type, base_docid as docid, base_subtreeid as 
subtreeid, count(*) as match_cnt 
FROM v_key_match 
GROUP BY base_docid, base_subtreeid 
HAVING count(*) > median # of alternate keys in the base document 
UNION 
SELECT 'doc_target' as doc_type, target_docid as docid, target_subtreeid as 
subtreeid, count(*) as match_cnt 
FROM v_key_match 
GROUP BY target_docid, target_subtreeid 
HAVING count(*) > median # of alternate keys in the target document 
 
Part (b) 
SELECT distinct docid, ppathid 
FROM subtree 
MINUS 
SELECT distinct v.docid, s.ppathid 
FROM v_key_manymatching v, subtree s 
WHERE v.docid = s.docid and 
v.subtreeid = s.subtreeid 

 

Figure 10. Filtering subtrees: (a) SQL query to find multiple matches beyond the median 

number of alternate keys and (b) SQL query to find appropriate leaf-node parents 

 

 

4.2.6 Detection of Similarity in Structure and Content 

To detect appropriate matched subtree pairs, both the structure and content of the 

base and target XML trees must be considered. First, the degree of semantic similarity 

between paths must be determined based on path signatures.  

Notation. For any subtree               rooted by distinct labels of node   , let 

                   be a collection of leaf nodes in    iff           Consider    

                as a collection of path expressions (defined in Definition 2) of the leaf 

nodes in    which has   elements.  

All     in the base subtree where        are compared with all     in the 

target subtree where       . The terms    and    represent the number of leaf 

nodes in the base subtree and target subtree respectively to determine the semantic 



 

 

79 

similarity of the paths. To measure the similarity between     and    , the node labels of 

both must first be compared.  

Definition 8. Node label semantic similarity degree (NSSD): For each pair of path 

expressions     and    , let                   
  and                   

  denote a 

series of nodes in     and     respectively. The node label semantic similarity degree is 

based on methods of Jiang and Resnik [9, 16] and defined as 

                    
                                     

 
. 

(1) 

The    value is calculated by considering the negative log of the probability: 

                 (2) 

where      is the probability of having   in a given corpus and   is a concept in 

WordNet. The use of the negative likelihood is based on the notion that the more likely 

the appearance of a concept, the less information it coveys. 

The function            is evaluated by using their subsumer          of      : 

                             . 
(3) 

Definition 9. Path semantic similarity degree (PSSD): A path semantic similarity 

degree is expressed by the ratio of the sum the average NSSD for each node    in the path 

expression    and the number of nodes in the path expression series. It can be expressed 

as: 

              
           

  
   

  
 

(4) 

where            is computed from: 

           
                   

  
   

  
  (5) 



 

 

80 

Definition 10. Matched path pair (MPP): A matched path pair is the pair with the 

highest PSSD value: 

                             
                  (6) 

Definition 11. Selected Path Pair: The selected path pair is the path expression with an 

MPP value greater that a given threshold   . 

The values of PSSD are stored into a PathSim table. The SQL query in Figure 11 

retrieves the matched path pair. 

 

 
select base_docid, base_ppathid, base_pathid, target_docid, target_ppathid, target_pathid, pathsim  
from pathsim p,  
( 
select b_docid, b_ppathid, t_docid, t_ppathid, t_pathid, max(max_pathsim) as max_pathsim 
from ( 
   select p.base_docid as b_docid, p.base_ppathid as b_ppathid, p.base_pathid as b_pathid, 
p.target_docid as t_docid, p.target_ppathid as t_ppathid, p.target_pathid as t_pathid, max(p.pathsim) as 
max_pathsim 
   from pathsim p,(  
 select base_docid, base_ppathid, base_pathid, target_docid, target_ppathid, max(pathsim) as 
max_pathsim 
 from pathsim 
 group by  base_docid, base_ppathid, base_pathid, target_docid, target_ppathid  
 ) max --one to many relationship may occur 
      where p.base_docid = max.base_docid 
      and p.base_ppathid = max.base_ppathid 
      and p.base_pathid  = max.base_pathid 
      and p.target_docid = max.target_docid 
      and p.target_ppathid = max.target_ppathid 
      and p.pathsim = max.max_pathsim 
       group by p.base_docid, p.base_ppathid, p.base_pathid, p.target_docid, p.target_ppathid,  
p.target_pathid 
      )  
   group by  b_docid, b_ppathid, t_docid, t_ppathid, t_pathid  
)max -- one to one relationship 
where p.base_docid = max.b_docid 
and p.base_ppathid = max.b_ppathid 
and p.target_docid = max.t_docid 
and p.target_ppathid = max.t_ppathid 
and p.target_pathid = max.t_pathid 
and p.pathsim = max.max_pathsim 
order by base_ppathid, target_ppathid 

 

Figure 11. SQL query to identify matched path pairs 



 

 

81 

At this point, all path expressions at the leaf-node levels have been evaluated and 

selected. The selected paths (see Definition 11) will be used to determine the similarity in 

subtree content. 

The following example illustrates path pair selection. Figure 1 compares the 

subtree rooted by the <article> node and the subtree rooted by the <proceedings> node. 

Table 1 shows the path expressions from both subtrees.  

 

 

Table 1. Path expressions of the subtrees rooted by <article> and <proceedings> 

 

Path expressions (pb)  
in the subtree <article> 

Path expressions (pt)  
in the subtree <proceedings>  

pb1 = /article/title pt1 = /proceedings/booktitle 
pb2 = /article/initPage pt2 = /proceedings/editor 
pb3 = /article/endPage pt3 = /proceedings/title 
pb4 = /article/authors/author pt4 = /proceedings/ISBN 

 

 

The node labels from both subtrees (<article>, <title>, <initPage>, <endPage>, 

<authors>, <author> and <proceedings>, <booktitle>, <editor>, <title>, <ISBN>) are 

then distinguished so that NSSD may be computed. Table 2 shows the results. Because 

<authors> is the plural form of <author>, is treated as the same label. 

 

 

Table 2. Results of Node Label Semantic Similarity Degree (NSSD) 

 

                  

            article title initPage endPage author 

proceedings 0.409435 0.385556 0.149673 0.281467 0.000000 

booktitle 0.743695 0.840329 0.285693 0.441001 0.281880 

editor 0.497065 0.503894 0.420978 0.5198375 0.587105 

title 0.649263 1.000000 0.181844 0.282675 0.000000 

ISBN 0.000000 0.000000 0.000000 0.000000 0.000000 

 

 



 

 

82 

Next, PSSD is calculated for each pair of path expressions: 

                     
                                                      

 
 

                        

and  

                       
                                                  

 
 

                       , 

thus 

                    
                                     

 
  

                       . 

 

 

The same calculation is preformed for all pairs of path expressions. Table 3 shows 

the results and the selected path pair, (pb1, pt3) or (/article/title, /proceedings/title). This 

pair will be used to compare content. Selection of multiple path pair is possible. 

 

 

Table 3. Results of Matched Path Pair (MPP) 

 

                           

 pt1 pt2 pt3 pt4 

pb1  0.594754 0.448988 0.611064 0.198748 0.611064 
pb2  0.397124 0.369287 0.347553 0.139777 0.397124 
pb3  0.468900 0.426951 0.40571 0.172726 0.468900 
pb4  0.358752 0.373401 0.264674 0.102358 0.373401 

             0.594754 0.448988 0.611064 0.198748  

 

 

Definition 12. Subtree similarity based on structure and content: The PCDATA value 

of each subtree             (content approach) is compared with those of the 

subtrees             based on the selected path (structure approach) to identify the 

proper matched subtree pair (MSP).  

Such a comparison based on content and structure can be done simply using 

loops, but this method is time consuming if there are many subtrees. Instead of loops, the 

approach introduced here uses an SQL query to retrieve subtree pairs, a much faster 



 

 

83 

process. The subtree pairs thus identified, which are based on the same leaf-node parent, 

intersect to find the subtree pair that best satisfies the conditions, which have the same PC 

data content and a similar structure. Figure 12 presents the algorithm of identifying 

matched subtree pairs. 

 

 

Algorithm for Definition 12 
Input: set of matched path expression pairs           
Output: set of pairs of matched subtrees 
//find matched subtree pair based on         
for each path expression pair         
{ 
        =  Retrieve subtree pair         having the same PC data content on the similar path expression of 
        } // find matched subtree pairs based on    

for each    in    

{  
  for    in      
                      //MSP is a set of Matched Subtree Pairs 
  } 

 

Figure 12. Algorithm for retrieving matched subtree pairs 

 

 

5. XML-SIM EXPERIMENT 

To evaluate the efficiency and effectiveness of the XML-SIM algorithm, 

experiments were designed to compare it with the XDoI and XDI-CSSK algorithms in 

terms of accuracy and execution time. 

5.1 Experimental Setup 

The experiments used on Intel Core 2 Duo 2.20GHz CPU processor with 4GB of 

RAM running on Windows XP Professional with Sun JDK 1.6.0_02 and Oracle Database 

10g Standard Edition. The bibliographical data set SIGMOD Record (482 KB) was the 

base document, and three segmented DBLP documents, 700 KB each, were the target 

documents. 

 

 



 

 

84 

Table 4. Data set information and actual matched subtree pairs 

 

Pair Base XML document  
(size KB) 

Target XML document  
(size KB) 

Actual matched  
subtree pairs 

#1 SIGMOD Record (482) DBLP1 (679) 343 

#2 SIGMOD Record DBLP2 (688) 321 

#3 SIGMOD Record DBLP3 (717) 67 

 

 

The actual matched subtree pairs were detected manually; they are shown in 

Table 4. These numbers were used to identify the false positives yielded by each 

algorithm. 

5.2 Experimental Results 

This section describes the results of the experiments to compare clustering 

methods based on execution time and accuracy of similarity detection. 

5.2.1 Evaluation of clustering method 

To verify the effectiveness of clustering XML documents into subtrees, the 

clustering points and the number of clustered subtrees are shown in Table 5 for each 

algorithm. In XDoI, SIGMOD Record is clustered into three different levels, <issue>, 

<article>, and <authors> because the clustering method applies leaf-node parents directly 

without any filters. XDI-CSSK and XML-SIM employ the same concept using leaf-node 

parents, and they filter the clustered subtrees using instance statistics and information 

from key matching. For the fragmented DBLP documents, there was no difference among 

these three approaches because the structure of DBLP documents is shallow with only 

one level defined as the clustering point. Table 5 shows the results of clustering points 

and the number of clustered subtrees. 

5.2.2 Evaluation of execution time 

Experiments to determine how fast each algorithm identifies matching subtrees on 

each document pair were run using a threshold of value 0.5. In XDoI and XDI-CSSK, the 

threshold is used to measure the similarity of content but in XDI-SIM it is used to 

evaluate structural similarity. 



 

 

85 

Figure 13 shows the execution time for each approach in a base-10 logarithmic 

scale; it indicates that XDI-CSSK performs better than XDoI because it eliminates 

inappropriate subtrees using the key matching results. XML-SIM dramatically 

outperforms both earlier approaches, suggesting that comparison of structure in the early 

stage helps the system detect subtree similarity faster. Computation of similarity in the 

third pair took much more time than others because that pair had many more subtrees 

than other pairs. 

 

 

Table 5. Results: (a) the number of clustered subtrees based on the clustering points in 

SIGMOD Record.xml (b) the number of clustered subtrees based on the clustering points 

in DBLP1, DBLP2, and DBLP3 

 

(a) 

 Clustering points Number of  
clustered subtrees 

XDoI #/SigmodRecord#/issue 
#/SigmodRecord#/issue#/articles#/article 
#/SigmodRecord#/issue#/articles#/article#/authors 

67 
1504 
1504 

XDI-CSSK #/SigmodRecord#/issue#/articles#/article 1504 

XML-SIM #/SigmodRecord#/issue#/articles#/article 1504 

(b) 

 Clustering points in XDoI, XDI-CSSK, XML-SIM Number of  
clustered subtrees 

DBLP1   #/dblp#/inproceedings 769 

DBLP2 #/dblp#/inproceedings 

#/dblp#/proceedings 
 

803 
2 

DBLP3 #/dblp#/inproceedings 

#/dblp#/proceedings 
 

1421 
17 

 

 

5.2.3 Evaluation of Similarity Detection 

The effectiveness of the new approach was evaluated by determining the number 

of false positives and true positives it yielded. The false positive value is the ratio of the 



 

 

86 

number of incorrectly matched subtrees to the number of actual matched subtrees; a true 

positive value is the ratio of the number of correctly matched subtrees to the number of 

actual matched subtrees. The results show that XML-SIM outperforms XDI-CSSK [18] 

and XDoI [17], yielding no false positives among the three pairs of documents as shown 

in Figure14. This accuracy is possible because the semantic structural similarity is 

detected at an early stage. The results of path pair selection can also identify the matching 

structures in the two documents.  

 

  

 

Figure 13. Overall execution time in XDoI, XDI-CSSK, and XML-SIM 

 

 

 

Figure 14: Detection of true positive (TPs) and false positives (FPs)  

 

 

1st pair 2nd pair 3rd pair

XDoI-0.5 275487.53 301890.62 906474.83

XDI-CSSK-0.5 192615.42 218177.40 369877.67

XML-SIM-0.5 1465.88 1398.70 1933.35

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

Ti
m

e
 (

se
c)

Overall Execution Time of XDoI, XDI-CSSK and XML-SIM

1st pair 2nd pair 3nd pair

TP(XDoI&XDI-CSSK) 93.90581717 95.53571429 72.04301075

TP (XML-SIM) 100 100 100

FP(XDoI&XDI-CSSK) 6.094182825 4.464285714 27.95698925

FP (XML-SIM) 0 0 0

0
10
20
30
40
50
60
70
80
90

100

D
e

te
ct

io
n

 R
at

e
 (

%
)

True Positive (TP) and False Positive (FP)



 

 

87 

6. CONCLUSIONS AND FUTURE WORK 

This paper presents an improved algorithm, XML-SIM, based on XDoI and XDI-

CSSK to detect the semantic similarity between XML documents based on structure and 

content. This approach succeeds by determining similarity in content based on structural 

similarity, which is determined in turn using semantics. Experimental evaluations show 

that this approach outperforms XDoI and XDI-CSSK in terms of both execution time and 

false positive rates. Future work will seek to identify similarity among multiple versions 

of XML documents. 

 

 

7. REFERENCES 

[1] ACM SIGMOD Record in XML. http://www.acm.org/sigmod/record/xml 

(accessed March 2006). 

[2] Apostolico, A., and Z. Galil. Pattern matching algorithms. Oxford University 

Press, USA, 1997. 

[3] Augsten, N, M Bohlen, and Gamper J. "Approximate matching of hierarchical 

data using pq-grams." Proceedings of the 31st international conference on Very 

large data bases. VLDB Endowment, 2005. 301-312. 

[4] Bille, P. "Tree edit distance, alignment distance and inclusion." IT Univ. of 

Copenhagen TR-2003-23 (Citeseer), 2003. 

[5] Buneman, P., S. Davidson, W. Fan, C. Hara, and W.C. Tan. "Keys for XML." 

Computer Networks (Elsevier) 39, no. 5 (2002): 473-487. 

[6] Cobena, G., S. Abiteboul, A. Marian, and R. INRIA. "Detecting changes in 

XML documents." Proceedings. 18th International Conference on Data 

Engineering, 2002. 2002. 41-52. 

[7] Extensible Markup Language (XML). http://www.w3.org/XML/ (accessed 

March 2006). 

[8] Fellbaum, C., and others. WordNet: An electronic lexical database. MIT press 

Cambridge, MA, 1998. 



 

 

88 

[9] Jiang, JJ, and DW Conrath. "Semantic similarity based on corpus statistics and 

lexical ontology." Proc. of Int. Conf. Research on Comp. Linguistics X, Taiwan. 

1997. 

[10] Li, Y., ZA Bandar, and D. McLean. "An approach for measuring semantic 

similarity between words using multiple information sources." IEEE 

Transactions on knowledge and data engineering 15, no. 4 (2003): 871-882. 

[11] Liang, W., and H. Yokota. "A path-sequence based discrimination for subtree 

matching in approximate XML joins." In Proceedings. 22nd International 

Conference on Data Engineering Workshops, 2006., 23-28. 2006. 

[12] Liang, W., and H. Yokota. "SLAX: An Improved Leaf-Clustering Based 

Approximate XML Join Algorithm for Integrating XML Data at Subtree 

Classes." IPSJ Digital Courier (J-STAGE), 2006: 382-392. 

[13] Lin, D. "An information-theoretic definition of similarity. "Proceedings of the 

Fifteenth International Conference on Machine Learning. 1998. 296-304. 

[14] Pirro, G., and N. Seco. "Design, Implementation and Evaluation of a New 

Semantic Similarity Metric Combining Features and Intrinsic Information 

Content." Proceedings of the OTM 2008 Confederated International 

Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II on On the 

Move to Meaningful Internet Systems. Springer, 2008. 1271-1288. 

[15] Rada, R., H. Mili, E. Bicknell, and M. Blettner. "Development and application 

of a metric on semantic nets." IEEE transactions on systems, man and 

cybernetics 19, no. 1 (1989): 17-30. 

[16] Resnik, P. "Using information content to evaluate semantic similarity in a 

taxonomy." Proc. of IJCAI, 1995: 448–453. 

[17] Viyanon, W., and S.K. Madria. Technical report: XDI-CSSK, A System for 

Detecting XML Similarity on content and structure using relational database. 

Technical Report, Dept of Computer Science, Missouri University of Science 

and Technology, 2009 (accepted for ACM CIKM 2009). 

  



 

 

89 

[18] Viyanon, W., S.K. Madria, and S.S. Bhowmick. "XML Data Integration Based 

on Content and Structure Similarity Using Keys." Proceedings of the OTM 2008 

Confederated International Conferences, CoopIS, 2008.. Springer, 2008. 484-

493. 

[19] Weis, M. "Fuzzy Duplicate Detection on XML Data." Proceedings of VLDB 

2005 PhD Workshop. 2005. 11. 

[20] XML Version of DBLP. http://dblp.uni-trier.de/xml/ (accessed May 2006). 

[21] Yoshikawa, M, T Amagasa, T Shimura, and S Uemura. "XRel: a path-based 

approach to storage and retrieval of XML documents using relational 

databases." ACM Transactions on Internet Technology 1, no. 1 (2001): 110-141. 

[22] Zhang, K, and D Shasha. "Simple fast algorithms for the editing distance 

between trees and related problems." SIAM journal on computing 18 (1989): 

1245. 

 

 

  



 

 

90 

IV. XML-SIM-CHANGE: Structure and Content Semantic Similarity Detection 

among XML Document Versions 

Waraporn Viyanon and Sanjay K. Madria 

Department of Computer Science 

Missouri University of Science and Technology 

Rolla, Missouri, USA 

{wvz7b@mst.edu, madrias@mst.edu}  

Abstract. XML documents from different sources may contain the same or 

similar information with respect to content and structure. Query systems and 

search engine demand that XML documents be integrated; however, the 

information contained in such documents changes periodically. Therefore, it 

is important changes from one version of an XML document to another be 

detectable. Information on changes can then be used to identify semantic 

similarity among XML documents. This paper introduces an approach to 

detect similarity between XML documents that uses the change detection 

mechanism to join XML document versions. In this approach, subtree keys 

play an important role, reducing the number of unnecessary subtree 

comparisons among different XML versions of the same document. It uses a 

relational database to store XML versions and applies SQL to detect 

similarities. Experiments show that this approach is highly scalable and 

more efficient in terms of execution time, and it provides results comparable 

in quality to those yielded by previous approaches. 

Keywords: XML Similarity, Change Detection, Keys, Join 

 



 

 

91 

1. INTRODUCTION 

XML has become the universal standard for data representation and semi-

structured data exchange due to its simplicity, platform independence, and ease of 

processing [7]. XML sources may have similar content, but this content may be described 

differently in each source using different tag names and structures. Such disparities are 

apparent in bibliographical data sources such as DBLP [19] and SIGMOD Record [1]. 

Not only is integrating similar XML documents from different data sources important to 

query systems and search engines, but it also gives users access to more complete and 

useful information. In an environment of frequently changing online information, the 

ability to quickly detect changes between two document versions is important for the 

maintenance of up-to-date integrated information. 

Because XML documents not only encode structure but also store data, accurate 

measurement of similarities among them requires evaluations of similarities in both 

content and structure. A simple count of the number of common occurrences of XML 

elements or PCDATA between two XML documents is enough to identify similarity of 

structure and content, but this method can be very time-consuming. There exist several 

methods [9, 10, 11, 15, 16, 17] to address this problem. This paper also proposes an 

efficient method called XML-SIM [15] to measure the semantic content and structural 

similarity of XML documents. This method uses information theory to identify semantic 

similarity and subtree keys for comparison. 

As XML documents change, a change detection mechanism can be used to 

perform an XML join. . This work developed an approach called XML-CHANGE, based 

on XRelChangeSQL [14], to detect changes between versions using SQL. This approach 

is much more efficient than comparison algorithms in main memory.  

This paper develops a technique called XML-SIM-CHANGE by incorporating 

XML-CHANGE and XML-SIM to find similarities of structure and content among XML 

documents. The differences found in the change detection phase are used to reduce the 

number of nodes requiring comparison between two versions. The objective was to 

design, implement, and evaluate the technique that can detect similarity both content and 

structure in XML documents that have been changed. The method introduced here uses a 



 

 

92 

similarity matching algorithm and evaluates the changes detected between two versions. 

The contributions of this paper can be summarized as follows: 

1. It proposes a framework called XML-SIM-CHANGE for detecting XML document 

similarity after documents have changed. It describes a method to detect changed 

subtrees and to match the changed subtrees using keys. 

2. It also describes experiments to evaluate the new framework and compare it with 

XML-SIM using DBLP and SIGMOD Record, two bibliographical data sets.The 

results show that the new approach combining XML-SIM and XML-CHANGE can 

detect XML document similarity among versions much faster than XML-SIM alone 

and provide results of comparable quality. 

 

 

2. RELATED WORK 

XML documents are considered collections of items represented in XML tree 

form. In most XML document matching algorithms [9, 10, 11, 15, 16, 17], an XML 

document is fragmented into small independent items, or entities, representing real-world 

objects called subtrees. Similarities between the subtrees of two XML documents are 

measured to determine which subtree pairs are similar beyond a given threshold. These 

subtrees are considered matched pairs, which can be integrated into a single XML 

document.  

XML documents can be similar in terms of structure alone or in terms of both 

content and structure. The structural similarity alone is used primarily in document 

clustering and in change detection. Most algorithms that identify structural similarity are 

based on tree-edit distance [5, 21]. Basically, such algorithms find the sequence of edit 

operations that can transform one tree into another at the lowest possible computational 

cost. However, tree-edit distance has not been used on a large scale due to its complexity 

and high computational cost. To integrate XML documents, similarities in both content 

and structure must be considered. Previous work [17] demonstrated that XML-SIM 

outperforms LAX [10] and SLAX [11]. The latter methods determine the degree of tree 

similarity based on the mean value of the degree of similarity between matched subtrees. 

The subtrees are clustered into subtrees based on the depth of the XML document and the 



 

 

93 

number of instances it contains. The subtrees are then used to calculate the similarity. 

Although LAX and SLAX outperform schemes based on edit distance, they ignore 

semantic information available such as keys and rely instead on the detection of subtrees 

or clustering points, which does not work for all types of XML data.   

Three approaches permit identification of similarity between elements: string 

matching, edit distance, and semantic similarity. These approaches are effective and 

widely used for measuring similarity. String matching is simple to implement, but it fails 

to detect some similar strings. As mentioned above, the tree-edit distance is time-

consuming and the results may not be semantically accurate [3, 21]. The longest common 

subsequence (LCS) approach is similar to the edit-distance method [2]. It finds the 

longest sequence of tokens common to two strings, but it may fail to identify connections 

between texts. Semantic similarity methods [8, 13] have been introduced capture the 

meaning of words. These methods are based on natural language processing (NLP) 

techniques that compute the degree of similarity between words (concepts). The 

similarity of two concepts is defined as the maximum of the information content of the 

concept that subsumes them in the taxonomic hierarchy.  

Keys are fundamental to data models and conceptual design. Along with semantic 

similarity, XML keys assist in the subtree matching [4]. Identification of keys can help in 

identify the real-world objects in XML documents, thus reducing dramatically the 

number of comparisons. Since most of the XML data is data-centric (i.e., derived from 

the relational data model), keys can best be used to improve evaluation of subtree 

similarity. Several previous studies [15, 16, 17] have describes the use of keys to find 

subtree matches. 

 

 

3. M-XRel 

To increase the scalability of XML document similarity and change identification, 

documents are stored in a relational schema using M-XRel, a modified version of XRel. 

XRel [20] is a method of storing and retrieving XML documents using relational 

databases. Most methods of detecting similarity in XML documents are focused on 

constructing document object model (DOM) trees. The tree comparison approach is not 



 

 

94 

efficient for handling large XML documents because the entire trees of both documents 

must reside in the main memory during the comparison process. XRel uses a model-

mapping approach to decompose an XML document into nodes on the basis of its tree 

structure and store it in relational tables according to the node type with information on 

the path from the root to each node, as shown in Figure 1a.  

The basic M-XRel schema consists of the five relational schemas shown in Figure 

1b. They are similar to XRel schema but two additional columns, the ‗parentid‘ and 

parent ‗start‘ region, are added to the ‗Element‘ and ‗Text‘ tables. These extra fields 

improve the efficiency of the change detection process because comparisons of relational 

inequality can be replaced by equality comparisons in order to detect the parents of XML 

leaf nodes and nonleaf nodes.  

 

 
 

 

(a) 

 

Document(docID, document) 
Element(docID, pathID, start, end, index, reindex, parentid, pstart) 
Attribute(docID, pathID, start, end, value) 
Text(docID, pathID, start, end, value, parentid, pstart) 
Path(pathID, pathexp) 

(b) 

Figure 1. M-XRel storage: (a) storing XML documents (b) M-XRel schema 

 

 

The database attributes are described in Table 1. An occurrence of an element or a 

leaf node is identified by its region and stored in the relations ‗Element‘ and ‗Text‘. To 

identify each attribute node, the attribute name is stored as the suffix of the simple path 

expression of an attribute node, and the attribute value is stored in the relation ‗Attribute‘. 

<article> 

  <title>Annotated Bibliography on Data 

Design.</title> 

  <initPage>45</initPage> 

  <endPage>77</endPage> 

  <authors> 

    <author>Anthony I. Wasserman</author> 

    <author>Karen Botnich</author> 

   </authors> 

</article> 

M-XRel 



 

 

95 

The database attribute ―pathexp‖ in the relation Path stores simple path expressions. The 

ancestor-descendant relationships and the ordering of nodes can be found using 

‗parentid,‘ parent ‗start‘ region, and ‗index‘ value because these regions define the range 

of nodes (elements, leaf node, and attribute values) in the XML document. 

 

 

Table 1. M-XRel field descriptions 

 

Field descriptions 

docid Document ID 

Parentid Parent’s path expression ID 

pstart Parent’s start value of the region 

pathid  Path expression ID 

pathexp Path expressions of XML elements 

start Start value of the region 

end End value of the region 

index Forward index 

reindex Reverse index 

value Leaf node and attribute values 

 

 

4. XML-SIM 

Previous work [16] proposed XML-SIM for evaluating the similarity between 

XML documents. Two XML documents,      and     , are the base and target 

documents, respectively. They are stored in a relational database using M-XRel as 

described in Section 3. The following definitions apply to the XML document tree:  

Definition 1. XML Document tree: An XML document tree is a triple            , 

where   is the set of nodes,    is the root node, and   is the set of edges in the tree   . 

Let    be a base document tree from the base document     , and    be a target 

document tree from the target document     .  

Definition 2. Path expression: Any node    can be identified its location within a tree     

by a path expression or path signature    . This path expression consists of one node or a 

series of nodes from the node set   separated by "/". Path expressions are employed to 

measure semantic structural similarity. 



 

 

96 

The XML-SIM algorithm consists of three phases, illustrated in Figure 2: (1) 

subtree generation and validation, (2) key generation and subtree filtering and (3) 

similarity detection. 

 

 

 

 

Figure 2. XML-SIM framework 

 

 

4.1 Subtree generation and validation 

The first phase is to extract subtrees from XML documents because an XML 

document is considered a collection of items. Since data in XML documents are stored at 

the leaf nodes, they are retrieved by using parents of leaf nodes to group related 

information together as a subtree. The leaf node parent is described in Definition 3.  

Definition 3. Leaf-node Parent: For a document tree    with a node set   and an edge 

set  ,    is a leaf node parent, if      and           , where    is the parent of the 

leaf node   . Figure 3a shows leaf node parents in an XML document. The edges above 

the leaf node parents are considered clustering points; they will be removed to identify 

subtrees. 



 

 

97 

Extracted subtrees representing an independent object should contain nodes 

representing various types of information (e.g., author, title, and date), rather than a 

single type of information (e.g., an ―authors‖ list). Based on subtree element structure 

[18], the concept of instance statistics is applied to determine whether the leaf-node 

parent element and the leaf-node elements of its children preserve a loose one-to-one 

relationship. The extracted subtrees are stored in the subtree relation. The clustered 

subtrees are categorized into one of two groups: simple or complex. A simple subtree has 

only one leaf-node parent; a complex subtree contains more than one leaf-node parent. 

 

 

 

(a) 

  

Subtree (docID, ppathID, pstart, pend, pathid, start, end, value, key, subtreeid) 

(b) 

Figure 3. Subtree: (a) clustering by leaf-node parents and (b) relation 

 

 

4.2 Key generation and subtree filter 

This phase defines subtree keys. A subtree key is modeled as an XML attribute, 

which is one of leaf nodes in a subtree. It has a unique value and is able to identify other 

attributes in its subtree.  

Definition 4. Subtree key: A subtree key is a leaf node      that has a unique value 

compared with any leaf nodes    having the same path expression       , where       is the 

path expression of the node     . 



 

 

98 

The SQL query shown in Figure 5 identifies subtree keys for XML documents by 

retrieving from the text relation unique values that can be used to distinguish among 

items. 

 

 

SELECT docid, pathid, value  
FROM text  
GROUP BY docid, PathID,Value  
HAVING Count(Value) = 1 

 

Figure 4: SQL query to identify leaf nodes as keys 

 

 

The labels associated with the leaf nodes returned by the query in Figure 4 are 

considered subtree keys. On the matched records (according to their docid, pathid, and 

value) in the subtree relation, ―Y‖ is flagged as the attribute key.  

In the next step detection of subtree similarity using the subtree keys overlaps 

with subtree filtering. The subtree keys previously identified are used to match subtrees 

by comparing the subtrees whose leaf nodes (labels) are marked as keys and have 

identical values. Although this comparison disregards the structure of the leaf nodes; the 

matching results can be analyzed to determine which subtree level is inappropriate for 

comparison. The matching information is analyzed by comparing the number of subtree 

matches with the median number of alternate keys. This process is based on the 

assumption that a complex subtree may contain many simple subtrees that in turn contain 

alternate keys. Such subtrees may cause several inappropriate matches, and they are 

considered inappropriate. To eliminate the inappropriate subtrees, threshold is calculated 

from the median number of alternate subtree keys. The subtrees causing a number of 

multiple matchings higher than this threshold value are eliminated. 

4.3 Similarity detection 

The subtree keys found in the previous step are compared to detect appropriate 

matched subtree pairs. This comparison considers both the structure and content of the 

base and target XML subtrees. Unmatched subtrees will be compared in a later phase.  



 

 

99 

Notation: For any subtree               rooted by a distinct label of node   , let 

                   be a collection of leaf nodes in    if           If 

                   represents a collection of path expressions (see in Definition 2) of 

the leaf nodes in   , which has   elements.  

To determine the semantic similarity of two paths, all     in the base subtree 

where        are compared with all     in the target subtree where        and the 

terms    and    represent the number of leaf nodes in the base subtree    and the target 

subtree    respectively. Measurement of the similarity between paths     and     requires 

comparison of the node labels of both.  

Definition 5. Node Label Semantic Similarity Degree (NSSD). For each pair of path 

expressions     and    , let                   
  and                   

  denote a 

series of nodes in     and     respectively. The node label semantic similarity degree is 

based on methods of Jiang and Resnik [7, 12] and defined as 

                    
                                     

 
. 

(1) 

The    value is calculated by considering the negative log of the probability: 

                 (2) 

where      is the probability of having   in a given corpus and   is a concept in 

WordNet. The use of the negative likelihood is based on the notion that the more likely 

the appearance of a concept, the less information it coveys. 

The function            is evaluated by using the subsumer          of      : 

                             . 
(3) 

Definition 6. Path Semantic Similarity Degree (PSSD): A path semantic similarity 

degree is expressed by the ratio of the sum the average NSSD for each node    in the path 

expression    and the number of nodes in the path expression series. It can be expressed 

as: 

              
           

  
   

  
 

(4) 

where            is computed from: 



 

 

100 

           
                   

  
   

  
  (5) 

Definition 7. Matched Path Pair (MPP): A matched path pair is the pair with the 

highest PSSD value: 

                             
                  (6) 

Definition 8. Selected Path Pair: The selected path pair is the path expression with an 

MPP value greater that a given threshold    

At this point, all path expressions at the leaf-node levels have been evaluated and 

selected. The selected paths (see Definition 8) will be used to determine the similarity in 

subtree content. 

Definition 9. Subtree Similarity based on structure and content: The PCDATA value 

of each subtree             (content approach) is compared with those of the 

subtrees             based on the selected path (structure approach) to identify the 

proper matched subtree pair (MSP).  

Such a comparison based on content and structure can be done simply using 

loops, but this method is time consuming if there are many subtrees. Instead of loops, the 

approach introduced here uses an SQL query to retrieve subtree pairs, a much faster 

process. The subtree pairs thus identified, which are based on the same leaf-node parent, 

intersect to find the subtree pair that best satisfies the conditions, which have the same PC 

data content and a similar structure. The matched subtree pairs are stored in a relation 

called matching, the schema of which is shown in Figure 5. 

 

 

Matching (base_docid, base_ppathid, base_subtreeid, target_docid, target_ppathid, target_subtreeid) 

 

Figure 5: Matching relation 

 

 



 

 

101 

5. XML-SIM-CHANGE Framework 

This work proposes a time-efficient technique to detect subtree similarity between 

two versions of the same XML document, not by running full pair-wise comparisons but 

by comparing the changes with the previous matching results. The framework of this 

XML-SIM-CHANGE approach is described here, followed by additional definitions, the 

details of each component, and the algorithm. 

5.1 Overview of XML-SIM-CHANGE 

This approach permit similarity detection using the results of change detection for 

two versions of an XML document and the semantic similarity described in Section 4.  

Figure 6 shows the initial step in this approach, comparing two XML documents, 

       and       , with some similar content from two heterogeneous data sources 

(referred as the base and target data sources). XML-SIM clusters the documents into 

subtrees using the leaf-node parents and compares the clustered subtrees using subtree 

keys and degrees of semantic similarity. This process yields matched subtree pairs,which 

can be joined in order to integrate the XML documents.  

 

 

 

 

Figure 6: Overview of XML-SIM-CHANGE 

 

DocbV1 DoctV1 

DocbV2 DoctV2 

Matched subtrees 

XML-SIM:  

Similarity detection 

XML-SIM-CHANGE: 

Similarity detection 

XML-SIM-CHANGE:  

Change detection 

 

XML-SIM-CHANGE: 

 Change detection 

 

XML  

delta  

XML  

delta  

Matched subtrees between  

DocbV2 and DoctV2 



 

 

102 

When one or both XML documents have been altered (from        to        or 

from        to       ) after integration, the changes are detected by identifying deleted 

and inserted nonleaf nodes and leaf-node changes (i.e., delete, insert, and update). These 

changes, along with the results of XML-SIM, are used to compute the similarity between 

the two versions of the XML documents. 

5.2 Finding XML document changes  

Two documents        and        from the same data source      are stored in 

a relational database using M-XRel (as discussed in Section 3), and changes have been 

detected in each. To compare the two, this approach follows the three steps shown in 

Figure 7: (1) finding matching subtrees, (2) detecting deleted and inserted nonleaf nodes, 

and (3) detecting leaf node changes. The results will reveal the changes. 

5.2.1 Finding Matching subtrees 

First, subtrees    from the old version of an XML document and    from the new 

version are compared, where (i)         and (ii)         by matching leaf-node 

parents among subtree keys    (unique leaf-node value) in        and       . 

Definition 10. Subtree pairs matched by subtree keys (SMK): Each subtree        

     in        is compared with the subtrees              in         using their subtree 

key (see Definition 2). The subtrees are matched if:  

(i) their leaf-node parents have the same path expression, i.e.,           
               

   

and 

(ii) there exist leaf nodes designated as subtree keys and having values common in both 

the versions such that              
                 

   and                             
  . 

Definition 10 identifies the best match between leaf-node parents and avoids 

unnecessary comparisons between duplicates later. The unmatched subtrees are compared 

using degrees of subtree similarity as discussed below. 

 

 



 

 

103 

 

 

Figure 7: Framework for identifying changes between two versions 

 

 

Definition 11. Subtree Similarity Degree (SSD): Assume   is the number of leaf nodes 

having the same PCDATA value and the same pathid. Let    represent the number of leaf 

nodes in subtree   , and let    represent the number of leaf nodes in subtree   : 

           
   

     
  

(7) 

SSDs having values higher than a defined threshold are stored in the relational database. 

These values will be used in the next step. 

Definition 12. Subtree pairs Matched by SSD (SMS): The matched subtree pair    and 

   is the pair that has the maximum degree of subtree similarity as defined above 

(Definitions 11): 

                          
(8) 

The subtree matches including SMK and SMS are then distinguishable from 

unmatched subtrees.  



 

 

104 

5.2.2 Detecting deleted and inserted nonleaf nodes 

The deleted and inserted subtrees is sets of matched subtrees are detected as 

follows: 

Definition 13. Deleted and inserted nonleaf nodes: Let    and    be the sets of all 

subtrees from the XML document version        and the XML document version        

respectively. Assume      and      are the sets of matched subtrees           from 

       and       . The set                   is then the set of deleted nonleaf nodes, and 

the set                   is the set of inserted nonleaf nodes. 

Since all leaf-node parents were matched in the previous step, the unmatched leaf-

node parents in the first version can be identified deleted nonleaf nodes, and the 

unmatched leaf-node parents in the second version must be inserted nonleaf nodes. 

5.2.3 Detecting leaf-node changes 

The deleted and inserted leaf nodes are those whose parents have been identified 

as matched subtrees but whose values are not matched with any leaf-node values in the 

matched subtree. The deleted and inserted leaf nodes are identified as follows: 

Definition 14. Deleted and inserted leaf nodes: Let     and     be the sets of all exactly 

matched leaf nodes. Let     and     denote the sets of all matched leaf nodes from the 

subtree matching step. The deleted leaf nodes can be identified by the set               , 

and the inserted nodes can be detected by the set               . 

The results of Definition 14 provide the updated leaf nodes. Among inserted and 

deleted leaf nodes, those with the same signature and the same matching parent are 

considered updated. 

Definition 15. Updated leaf nodes: Let      denote the set of updated nodes, which can 

be found if there exist leaf nodes         and        , such that (i)                      , 

(ii)                                      , and (iii)                     . 

This step reveals the change that is set                              . This change 

will be used in the next step. 



 

 

105 

5.3 Detecting subtree similarity between new versions of XML documents  

The base XML document        and target XML document        are analyzed 

using XML-SIM to find the best-matched subtree pairs (MSP). When the XML 

documents        and        are modified to        and        respectively, the old and 

new versions are detected in order to identify the changes in each document.  

The XML-SIM-CHANGE approach uses the matching results from XML-SIM 

and the results of change detection to find the best-matched pair in the new version of the 

XML document. This procedure is split into two steps: preprocessing and comparing the 

matched subtree pairs with the changes. 

5.3.1 Preprocessing 

Once the subtrees obtained by XML-SIM are filtered, the new versions of both 

documents are clustered into subtrees using the selected leaf-node parents.The changes 

identified by XML-CHANGE are then mapped to the clustered subtrees. The mapping 

can simply use the region elements (the start and end attributes) defined in M-XRel.  

The subtrees matched with the changes are marked as ‗updated leaf node,‘ 

‗deleted leaf node,‘ inserted leaf node,‘ ‗deleted internal node,‘ or ‗inserted internal 

node‘. These subtree flags identify the subtree level changed.  

5.3.2 Comparing the matching with the change 

This section explains how to find similarity in the new versions of XML 

documents. Figure 8 shows the algorithm of XML-SIM-CHANGE. First, a match is 

found between the subtrees marked ‗update‘ and those from previous matching results by 

comparing the path signature of the root of subtrees, the path signature of the node 

identified as a subtree key, and the value of the subtree key. If a match is found, the 

subtree from the matching results is updated by its change type. Next, the deleted 

subtrees are addressed; they have either a deleted leaf nodes or deleted internal nodes. If a 

match is found between deleted subtrees and the set of matched subtrees, the next step is 

to determine whether the deleted node is the root of the subtree or a nonroot node. If it is 

the root, the subtree is removed from the matching set. If not, only the deleted node is 

removed. 

 



 

 

106 

Algorithm XML-SIM-CHANGE 
 
Input:                  //Matching result from measuring the similarity of        and        
                                       //the change 
Output:                        //Matching result from measuring the similarity of         and 
       

 

//***Pre-processing*** 
//Clustering an XML document by the selected leaf-node parent in XML-SIM 
       Cluster(      ); //      is the set of subtrees in        
       Cluster(      ); //      is the set of subtrees in        
 

//Matching the subtrees with the change 
    changeMatching(     ,         )   //  is the set of subtrees having some change 
 

//***Detecting the matching for the documents         and       *** 
for each    having the flag as ‘update’ in    
  { if (matchSubtree(    the set of all subtrees in     ))  //check for a subtree match 
      update    to the matched subtree in     ; 
   } 
} 
for each    having the flag as ‘delete’ in    
   {if (matchSubtree(    the set of all subtrees in     )) 
      {if (flag == ‘deleted internal node’ && deleted node == the root of   ) 
      {   delete a pair having   as a match from     ;} 
      else{ Remove the deleted node from subtree in     ; } 
   } 
} 
for each    in        having the flag as ‘insert’ in    
  { if (matchSubtree(        )  
     { insert a pair of (          into the set of      }; 
   } 
for each    in        having the flag as ‘insert’ in    
   {if (matchSubtree(        )  
     { insert a pair of (          into the set of      }; 
   } 
 

Module: matchSubtree(subtree   , setOfSubtree   ){ 
   rs = select count(*) from     
          where                              and                                  
                      and                                
    if (rs == 1){     //found a match 
      return true; 
   } 
   return false; 
} 

 

Figure 8: XML-SIM-CHANGE algorithm 

 

 

For the inserted nodes, the document must be compared with unmatched subtrees 

in previous version. If a match is found, the matched subtree pair from the previous 

version and the inserted subtree is added to the matching set. After processing the 

algorithm, the matched subtree pairs are up to date with the new versions. 



 

 

107 

6. XML-SIM-CHANGE Performance Evaluation 

This work evaluated the efficiency and effectiveness of XML-SIM-CHANGE 

algorithm compared with the pure XML-SIM algorithm. (Previous work [15] has shown 

it outperforms other comparable approaches.)  

6.1 Experimental setup and data sets 

Experiments were conducted using an Intel Core 2 Duo 2.20GHz CPU processor 

with 4GB of RAM running on Windows XP Professional with Sun JDK 1.6.0_02 and an 

Oracle Database 10g Standard Edition. M-XRel was used to store the XML documents 

on the Oracle 10g. Implementation was tested using the real data sets Sigmod Record and 

DBLP, which were modified to create new versions of the documents with various 

degrees of changes. The data sets were divided into three groups: large, medium, and 

small. Each group included documents with three different levels of change: 25%, 50%, 

and 75%. For simplicity, the changes in leaf nodes or internodes were divided into two 

groups: deletion and insertion, because update operations here were considered a 

combination of a deletion and an insertion. 

This experiment used XML documents from SIGMOD Record [1] (referred to as 

doc1) and DBLP [19] (referred to as doc2). The term doc1.V1 represents the XML 

document from doc1 before any changes, and doc1.V2 represents the XML document 

from doc1 after changes. Tables 2 and Table 3 describe the data sets. Each XML 

document contains a collection of items or subtrees; in this case, the items from doc1 

represent <article> in SIGMOD Record and those in doc2 represent <inproceedings>, 

<incollection>, <book>, <article>, <www>, <masterthesis>, <phdthesis>, or 

<proceedings> in DBLP. Doc2.V2 is represented by its size and the percentage of 

changes for each data set. 

6.2 Experimental results 

Previous work has compared XML-SIM to existing approaches [15, 16, 17], 

demonstrating that it outperforms XDI-CSSK and XDoI, both of which perform better 

than LAX and SLAX [10, 11]. This section presents the results of the experiments 

described here including execution time and accuracy of the similarity detection. First, 

the speed of XML-SIM-CHANGE was evaluated by comparing it with pure XML-SIM. 

The similarity threshold   was 0.7 in both approaches.  



 

 

108 

Table 2. Controlled data sets 

 

Document Small document Medium document Large document 

File size 
(KB) 

# of 
subtrees 

File 
size(KB) 

# of 
subtrees 

File size 
(KB)  

# of 

subtrees 

Doc1.V1 7 20 482 1504 482 1504 

Doc1.V2* 7 20 482 1504 482 1504 

Doc2.V1 12 11 679 1337 10 MB 31016 

 

*Note: the Doc1.V1 and Doc1.V2 are the same because there was no change in the first 

document (Doc1). 

 

 

Table 3. Data set descriptions for Doc2.V2 

 

Group/Change Data set 
(size-% change) 

File size 
(KB) 

# of subtrees  

Large/Delete L25D 8 MB 25997 

L50D 5 MB 9199 

L75D 3 MB 8997 

Large/Insert L25I 12MB 32944 

L50I 15MB 41074 

L75I 18MB 46092 

Medium/Delete and Insert M25 683  774 

M50 678  768 

M75 669 772 

Medium/Delete only M25D 487 564 

M50D 299 350 

M75D 114 131 

Medium/Insert only M25I 812 919 

M50I 1006 1154 

M75I 1166 1338 

Small/Delete and Insert S25 14 11 

S50 13 11 

S75 12 11 

 

 

Figure 9 shows how well XML-SIM-CHANGE detected similarity in content and 

semantic structure in the new version of Sigmod Record and DBLP. Figure 9(a) shows 

the execution time. Here, the pure XML-SIM approach performed better than XML-SIM-

CHANGE for changes in small documents because the overhead involved in detecting 



 

 

109 

the changed nodes is higher for small documents in which few subtrees require 

comparison. However, XML-SIM-CHANGE dramatically outperformed XML-SIM for 

larger XML documents. Figure 9(a) shows that for a small document with 25% change, a 

file size 14KB (making it largest file among the small documents) significantly affected 

the execution time for both the approaches. As indicated in Figure 9(c) and (e), for 

medium and large documents, if fewer than 50% of nodes had been changed then the 

execution time for XML-SIM-CHANG was much better than for pure XML-SIM 

approach. Figure 9(b) shows the execution time for medium-size documents with both 

insertion and deletion. Since the document sizes (Medium-25%, Medium-50%, and 

Medium-75%) were almost the same as those shown in Table 2, the execution times for 

each pair in XML-SIM did not vary. Figure 9(c) and (e) show when nodes in the old 

document version have been deleted, the size of the new version becomes smaller, which 

decreases the execution time of XML-SIM. Similarly, Figure 9(d) and (f) show that when 

nodes have been added, the size of the new version grows, which prolongs the execution 

of XML-SIM. However, XML-SIM-CHANGE performs better because it benefits from 

the change results and thus avoids unnecessary comparisons of all pairs in both XML 

documents. The change detection process is quick compared to the matching process in 

XML-SIM because it uses regions stored by M-XRel in the DBMS. Thus, the new 

approach is much more scalable and thus able to handle very large documents with both 

insertion and deletion of nodes.  

The quality of the matching results was also evaluated. Subtree matching was 

evaluated as      , where Sn is the number of subtrees matched by a given approach 

and An is the number of actual matched subtrees. Figure 10 shows the quality of results 

for both approaches. The results of both XML-SIM and XML-SIM-CHANGE are the 

same because both use the same matching method. They are able to identify the matched 

path pair and subtree keys for both the XML documents by taking advantage of subtree 

keys and filters. The quality of results for XML-SIM-CHANGE is based on the matching 

subtree in the change detection phase, which relies mainly on leaf-node value matches.  

  



 

 

110 

 

 

(a)                                                                               (b) 

 

(c)                                                                               (d) 

 

(e)                                                                               (f) 

 

Figure 9: Execution time of: (a) small data sets with the change of insertions and 

deletions  (b) medium data sets with the change of insertions and deletions  (c) medium 

datasets with the change of deletions  (d) medium data sets with the change of insertions  

(e) large datasets with the change of deletions  (f) large data sets with the change of 

insertions 

0

1000

2000

3000

4000

5000

Small-25% Small-50% Small-75%

m
s

Execution time

XML-SIM XML-SIM-CHANGE

0

50000

100000

150000

Medium-25% Medium-50% Medium-75%

m
s

Execution time

XML-SIM XML-SIM-CHANGE

0

20000

40000

60000

80000

100000

Medium-D-25% Medium-D-50% Medium-D-75%

m
s

Execution time 

XML-SIM XML-SIM-CHANGE

0

100000

200000

300000

400000

Medium-I-25% Medium-I-50% Medium-I-75%

m
s

Execution time

XML-SIM XML-SIM-CHANGE

1

100

10000

1000000

Large-D-25% Large-D-50% Large-D-75%

m
s

Execution time

XML-SIM XML-SIM-CHANGE

1

100

10000

1000000

100000000

Large-I-25% Large-I-50% Large-I-75%

m
s

Execution time

XML-SIM XML-SIM-CHANGE



 

 

111 

 

 

Figure 10: Result quality 

 

 

7. CONCLUSIONS AND FUTURE WORK 

This work has proposed a technique called XML-SIM-CHANGE for finding 

XML document similarity after such documents have been changed. The technique relies 

on collaboration between the change detection method and subtree matching. It avoids 

unnecessary comparisons by taking advantage of subtree keys and filters in XML-SIM 

and thus comparing only subtrees with changes in order to find the best matched subtree 

pairs in the new versions. Future work will consider different types of XML documents 

(e.g., shallow, semi-shallow, deep) and apply this technique to measure the impact of 

these types of XML schema.  

 

 

8. REFERENCES 

[1] ACM SIGMOD Record in XML. (n.d.)., http://www.acm.org/sigmod/record/xml  

[2] Apostolico, A., & Galil, Z.:  Pattern Matching Algorithms. Oxford University 

Press, USA. (1997) 

[3] Bille, P.: Tree edit distance, alignment distance and inclusion. Citeseer: IT 

Univ. of Copenhagen. (2003) 

0
0.2
0.4
0.6
0.8

1
1.2

R
at

io
 (

Q
)

Result Quality

XML-SIM XML-SIM-CHANGE



 

 

112 

[4] Buneman, P., Davidson, S., Fan, W., Hara, C., & Tan, W.: Keys for XML. 

Computer Networks , 473-487. (2002) 

[5] Chawathe, S.: Comparing hierarchical data in external memory, pp. 90-101. 

Citeseer. (1999) 

[6] Christiane, F.: WordNet: An Electronic Lexical Database. MA: MIT press 

Cambridge. (1998) 

[7] Extensible Markup Language (XML). In: World Wide Web Consortium (W3C): 

http://www.w3.org/XML/  

[8] Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical 

taxonomy. Jiang, J.J. and Conrath, D.W. , 19-33. (1997) 

[9] Liang, W., Yokota, H.: A path-sequence based discrimination for subtree 

matching in approximate XML joins. Proceedings of the 22nd International 

Conference on Data Engineering Workshops (ICDEW’06), pp. 23-28. (2006) 

[10] Liang, W., Yokota, H.: LAX: An Efficient Approximate XML Join Based on 

Clustered Leaf Nodes for XML Data Integration. Proceedings Of BNCOD 

2005, pp. 82-97. (2005) 

[11] Liang, W., Yokota, H.: SLAX: An Improved Leaf-Clustering Based 

Approximate XML Join Algorithm for Integrating XML Data at Subtree 

Classes. IPSJ Digital Courier , 2, 382-392. (2006) 

[12] Pirro, G., Seco, N.: Design, Implementation and Evaluation of a New Semantic 

Similarity Metric Combining Features and Intrinsic Information Content. 

Proceedings of the OTM 2008 Confederated International Conferences, 

CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II on On the Move to 

Meaningful Internet Systems, pp. 1271-1288. Springer. (2008) 

[13] Resnik, P.: Using information content to evaluate semantic similarity in a 

taxonomy. Proceedings of the 14th Internaltional Joint Conference on Artificial 

Intelligence , 448-453. (1995) 

[14] Sathyanarayanan, S., Sanjay, M.: XREL_CHANGE_SQL:A Change Detection 

System for Unordered XML documents. Rolla, MO: University of Missiouri-

Rolla. (2005) 



 

 

113 

[15] Viyanon, W., & Madria, S.: A System for Detecting XML Similarity in Content 

and Structure Using Relational Database. 18thACM International Conference 

on Information and Knowledge Management (ACM CIKM 2009), 1197-1206. 

(2009) 

[16] Viyanon, W., & Madria, S.: XML-SIM: Structure and Content Semantic 

Similarity Detection using Keys. Proceeding of the 8th International 

Conference on Ontologies, DataBases, and Applications of Semantics 

(ODBASE 2009), 1183-1200. (2009) 

[17] Viyanon, W., Madria, S. K., & S, B. S.: XML Data Integration Based on 

Content and Structure Similarity Using Keys . Proceedings of the OTM 2008 

Confederated International Conferences, CoopIS, DOA, GADA, IS, and 

ODBASE 2008. Part I on On the Move to Meaningful Internet Systems , 484-

493. (2008) 

[18] Weis, M.: Fuzzy Duplicate Detection on XML Data. Proceedings of VLDB 

2005 PhD Workshop, (p. 11). (2005) 

[19] XML Version of DBLP. (n.d.). Retrieved May 2006, from http://dblp.uni-

trier.de/xml/ 

[20] Yoshikawa, M., Amagasa, T., Shimura, T., & Uemura, S.: XRel: a path-based 

approach to storage and retrieval of XML documents using relational databases. 

ACM Transactions on Internet Technology , 1 (1), 110-141. (2001) 

[21] Zhang, K., & D, S.: Simple fast algorithms for the editing distance between 

trees and related problems. SIAM journal on computing , 1245. (1989) 

 

 

  



 

 

114 

3. CONCLUSION 

This dissertation presents a series of algorithms for detection of similarity in 

structure and content between XML documents. These algorithms generate more 

complete information by integrating similar documents.  

The first algorithm, XDoI, offers a data-centric approach to clustering XML 

documents into subtrees using leaf-node parents. It introduces subtree keys to reduce 

dramatically the number of subtrees to be matched, thus improving the degree of 

similarity by reducing false positives. To increase scalability and circumvent the 

difficulty of loading very large XML trees into the main memory, XML documents are 

stored in a relational database using XRel.  

The second algorithm is XDI-CSSK, which introduces filtering methods to prune 

the unnecessary clustered subtrees that are primarily responsible for the high computation 

costs of similarity measurement in XDoI. The algorithm uses leaf-node parents as 

clustering points and validates them using the concept of instance statistics, along with a 

taxonomic analyzer. The information thus required is used to purge subtrees in one 

document that are unrelated to those in the other document. The execution time for this 

approach is better than that of XDoI because semantic similarity plays a crucial role in 

precise computational similarity measures.  

XML-SIM is an improvement over XDoI and XDI-CSSK. It focuses on the 

semantics associated with the child nodes in a subtree, thus reducing the number of 

subtree comparisons to be made. The main improvement of this approach is that it 

determines content similarity based on structural similarity, which in turn is determined 

using semantics. The execution time for XML-SIM makes it a dramatic improvement 

over XDI-CSSK and XDoI. 

XML-SIM-CHANGE is addresses the challenges posed by changes in the content 

of XML documents. It combines a change detection mechanism with the results of 

subtree matching from XML-SIM to avoid unnecessary comparisons of subtrees within 

different XML versions of the same document. The results of XML-SIM can be 

categorized into two groups, matched and unmatched subtrees. It compares the changes 

that result from updates and deletions with the matched subtree group. Changes resulting 



 

 

115 

from additions are compared with subtrees from the unmatched subtree group. The 

experimental results show that this approach is faster and yields results comparable in 

quality to those of XDoI and XDI-CSSK.  

Future research will seek to exploit semantic similarity to compare not only the 

structure of XML documents (i.e., elements, attributes, and labels), but also their content 

(i.e., the values of elements and attributes). Further, they will consider various types of 

XML documents (e.g., shallow, semi-shallow, and deep) in multiple domains and use this 

new technique to measure the impact of various types of XML schema. 

  



 

 

116 

BIBLIOGRAPHY 

[1] Abiteboul, S. (2001, March 27). Xyleme, a Dynamic Warehouse for XML Data of 

the Web. Retrieved March 2010, from Institut National De Recherche En 

Informatique Et En Automatique: 

http://www.inria.fr/MULTIMEDIA/Didactheque/4-Docmnt-

Didact/0004/XYLEMEP.HTM 

[2] ACM SIGMOD Record in XML. (n.d.). Retrieved March 2006, from 

http://www.acm.org/sigmod/record/xml 

[3] Aguilera, V., Cluet, S., Veltri, P., Vodislav, D., & Wattez, F. (2000). Querying 

XML documents in Xyleme. Proceedings of the ACM-SIGIR 2000 Workshop on 

XML and Information Retrieval. Athens, Greece. 

[4] Altinel, M., & Franklin, M. (2000). Efficient filtering of XML documents for 

selective dissemination of information. Proceedings of the 26th International 

Conference on Very Large Data Bases, (pp. 53-64). 

[5] Apostolico, A., & Galil, Z. (1997). Pattern matching algorithms. Oxford 

University Press, USA. 

[6] Augsten, N., Bohlen, M., & J, G. (2005). Approximate matching of hierarchical 

data using pq-grams. Proceedings of the 31st international conference on Very 

large data bases (pp. 301-312). VLDB Endowment. 

[7] Baeza-Yates, R., Navarro, G., Vegas, J., & De La Fuente, P. (2002). A model and 

a visual query language for structured text. String Processing and Information 

Retrieval: A South American Symposium, 1998. Proceedings (pp. 7-13). IEEE. 

[8] Bertino, E., Guerrini, G., & Mesiti, M. (2004). A matching algorithm for 

measuring the structural similarity between an XML document and a DTD and its 

applications* 1. Information Systems , 23-46. 

[9] Bille, P. (2003). Tree edit distance, alignment distance and inclusion. IT Univ. of 

Copenhagen TR-2003-23 . 

[10] Boag, S., Chamberlin, D., Fernández, M., Florescu, D., Robie, J., Siméon, J., et al. 

(2002). XQuery 1.0: An XML Query Language. W3C working draft . 



 

 

117 

[11] Bouchachia, A., & Marcus, H. (2007). Classification of XML Documents. IEEE 

Symposium on Computational Intelligence and Data Mining, 2007. CIDM 2007, 

(pp. 390-396). 

[12] Bourret, R. (2005, September). XML and Databases. Retrieved March 2010, from 

Ronald Bourret: http://www.rpbourret.com/xml/XMLAndDatabases.htm 

[13] Buneman, P., Davidson, S., Fan, W., Hara, C., & Tan, W. (2002). Keys for XML. 

Computer Networks , 39 (5), 473-487. 

[14] Buttler, D. (2004). A short survey of document structure similarity algorithms. 

Citeseer. 

[15] Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S., & Tanca, L. (1999). 

XML-GL: a graphical language for querying and restructuring XML documents. 

Computer Networks-the International Journal of Computer and 

Telecommunications Networking , 1171-1188. 

[16] Chawathe, S. (1999). Comparing hierarchical data in external memory. 

Proceedings of the International Conference on Very Large Data Bases (pp. 90-

101). Citeseer. 

[17] Christiane, F. (1998). WordNet: An Electronic Lexical Database. MA: MIT press 

Cambridge. 

[18] Cobena, G., Abiteboul, S., Marian, A., & INRIA, R. (2002). Detecting changes in 

XML documents. Proceedings. 18th International Conference on Data 

Engineering, 2002., (pp. 41-52). 

[19] CVS: Concurrent Version System. (n.d.). Retrieved March 2010, from CVS: 

http://www.cvshome.org/eng/ 

[20] Dalamagas, T., Cheng, T., Winkel, K., & Sellis, T. (2006). A methodology for 

clustering XML documents by structure. Information Systems , 187-228. 

[21] Daly, P. (2003, December 8). XML Basics and Benefits. Retrieved August 4, 2010, 

from Intranet Jounal: Building the Corporate Enterprise: 

http://www.intranetjournal.com/articles/200312/ij_12_08_03a.html 

[22] de Keijzer, A. (2006). Probabilistic XML in Information Integration. Proceedings 

of the VLDB2006 Ph. D. Workshop. Seoul, Rep of Korea: Citeseer. 



 

 

118 

[23] Deutsch, A., Fernandez, M., Florescu, D., Levy, A., & Suciu, D. (1998). Xml-ql: A 

query language for xml. Retrieved March 2010, from 

http://www.w3.org/TR/NOTE-xml-ql/ 

[24] Dorneles, C., Heuser, C., Lima, A., da Silva, A., & de Moura, E. (2004). 

Measuring similarity between collection of values. Proceedings of the 6th annual 

ACM international workshop on Web information and data management (pp. 56-

63). ACM. 

[25] Extensible Markup Language (XML). (n.d.). Retrieved March 2010, from World 

Wide Web Consortium (W3C): http://www.w3.org/xml 

[26] Fellbaum, C., & others. (1998). WordNet: An electronic lexical database. MIT 

press Cambridge, MA. 

[27] Fuhr, N., & Großjohann, K. (2001). XIRQL: A query language for information 

retrieval in XML documents. Proceedings of the 24th annual international ACM 

SIGIR conference on Research and development in information retrieval (pp. 172-

180). ACM. 

[28] Ghosh, S., & Mitra, P. (2008). Combining Content and Structure Similarity for 

XML Document Classification using Composite SVM Kernels., (pp. 1-4). 

[29] Gong, X., Qian, W., Yan, Y., & Zhou, A. (2005). Bloom filter-based XML packets 

filtering for millions of path queries. 21st International Conference on Data 

Engineering, 2005. ICDE 2005. Proceedings (pp. 890-901). IEEE. 

[30] Guo, L., Shao, F., Botev, C., & Shanmugasundaram, J. (2003). XRANK: Ranked 

keyword search over XML documents. Proceedings of the 2003 ACM SIGMOD 

international conference on Management of data (p. 27). ACM. 

[31] Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion 

des Alpes et des Jura.[A study comparing the distribution of flora in a portion of 

the Jura Alps] Bulletin. Societe Vaudoise des Sciences Natirelles , 547-579. 

[32] Jiang, J., & Conrath, D. (1997). Semantic similarity based on corpus statistics and 

lexical ontology. Proc. of Int. Conf. Research on Comp. Linguistics X, Taiwan.  

[33] Kade, A., & Heuser, C. (2008). Matching XML documents in highly dynamic 

applications. Proceeding of the eighth ACM symposium on Document engineering 

(pp. 191-198). Brazil: ACM. 



 

 

119 

[34] Kim, J., Peng, Y., Kulvatunyou, S., Ivezic, N., & Jones, A. (2008). A layered 

approach to semantic similarity analysis of XML schemas. IEEE International 

Conference on Information Reuse and Integration, 2008. IRI 2008 (pp. 274-279). 

IEEE. 

[35] Kriegel, H., & Schönauer, S. (2003). Similarity search in structured data. Data 

Warehousing and Knowledge Discovery , 309-319. 

[36] Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet 

similarity for word sense identification. WordNet: An electronic lexical database , 

265-283. 

[37] Leitão, L., Calado, P., & Weis, M. (2007). Structure-based inference of xml 

similarity for fuzzy duplicate detection. Structure-based inference of xml similarity 

for fuzzy duplicate detection (pp. 293-302). ACM. 

[38] Li, Y., Bandar, Z., & McLean, D. (2003). An approach for measuring semantic 

similarity between words using multiple information sources. IEEE Transactions 

on knowledge and data engineering , 15 (4), 871-882. 

[39] Lian, W., Cheung, D. W.-l., Mamoulis, N., & Yiu, S.-M. (2004). An Efficient and 

Scalable Algorithm for Clustering XML Documents by Structure. IEEE 

Transactions on Knowledge and Data Engineering , 16 (1), 82-96. 

[40] Liang, W., & Yokota, H. (2006). A path-sequence based discrimination for subtree 

matching in approximate XML joins. Proceedings of the 22nd International 

Conference on Data Engineering Workshops (ICDEW’06), (pp. 23-28). 

[41] Liang, W., & Yokota, H. (2005). LAX: An Efficient Approximate XML Join 

Based on Clustered Leaf Nodes for XML Data Integration. Proceedings Of 

BNCOD 2005, (pp. 82-97). 

[42] Liang, W., & Yokota, H. (2006). SLAX: An Improved Leaf-Clustering Based 

Approximate XML Join Algorithm for Integrating XML Data at Subtree Classes. 

IPSJ Digital Courier , 2, 382-392. 

[43] Lin, D. (1998). An information-theoretic definition of similarity. Proceedings of 

the 15th International Conference on Machine Learning (pp. 296-304). Citeseer. 

[44] Maier, D. (1978). The complexity of some problems on subsequences and 

supersequences. Journal of the ACM (JACM) , 322-336. 



 

 

120 

[45] Malik, S., Trotman, A., Lalmas, M., & Fuhr, N. (2007). Overview of INEX 2006. 

Comparative Evaluation of XML Information Retrieval Systems , 1-11. 

[46] Manning, C., Raghavan, P., & Schütze, H. (2008). An introduction to information 

retrieval. Cambridge University Press. 

[47] Marian, A., Abiteboul, S., Cobena, G., & Mignet, L. (2001). Change-centric 

management of versions in an XML warehouse. Proceedings of the international 

conference on Very Large Data Bases (pp. 581-590). Citeseer. 

[48] Nierman, A., & Jagadish, H. (2002). Evaluating structural similarity in XML 

documents. Proceedings of the Fifth International Workshop on the Web and 

Databases (WebDB 2002) (pp. 61-66). Citeseer. 

[49] Pirro, G., & Seco, N. (2008). Design, Implementation and Evaluation of a New 

Semantic Similarity Metric Combining Features and Intrinsic Information Content. 

Proceedings of the OTM 2008 Confederated International Conferences, CoopIS, 

DOA, GADA, IS, and ODBASE 2008. Part II on On the Move to Meaningful 

Internet Systems (pp. 1271-1288). Springer. 

[50] Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and 

application of a metric on semantic nets. IEEE transactions on systems, man and 

cybernetics , 19 (1), 17-30. 

[51] Rafiei, D., & Mendelzon, A. (1998). Fourier transform based techniques in 

efficient retrieval of similar time sequences. PhD thesis, University of Toronto . 

[52] Rafiei, D., Moise, D., & Sun, D. (2006). Finding syntactic similarities between xml 

documents. Proceedings of the 17th International Conference on Database and 

Expert Systems Applications (pp. 512-516). Citeseer. 

[53] Resnik, P. (1995). Using information content to evaluate semantic similarity in a 

taxonomy. Proceedings of the 14th Internaltional Joint Conference on Artificial 

Intelligence , 448-453. 

[54] Robie, J., Lapp, J., & Schach, D. (1999, August). XQL (XML Query Language). 

Retrieved April 2010, from ibiblio: the public's library and digital archive: 

http://www.ibiblio.org/xql/xql-proposal.html 

[55] Salton, G. a. (1975). A vector space model for automatic indexing. 

Communications of the ACM , 18, 620. 



 

 

121 

[56] Salton, G., & McGill, M. (1983). Introduction to modern information retrieval. 

McGraw-Hill New York. 

[57] Schlieder, T., & Meuss, H. (2002). Querying and ranking XML documents. 

Journal of the American Society for Information Science and Technology , 489-

503. 

[58] Shasha, D. a. (1995). Approximate tree pattern matching. Pattern Matching in 

Strings, Trees and Arrays , 341-371. 

[59] Tai, K. (1979). The tree-to-tree correction problem. Journal of the ACM (JACM) , 

433. 

[60] Tekli, J., Chbeir, R., & Yetongnon, K. (2009). An overview on XML similarity: 

Background, current trends and future directions. Computer Science Review , 3 (3), 

151-173. 

[61] Tekli, J., Chbeir, R., & Yetongnon, K. (2007). Efficient XML Structural Similarity 

Detection using Sub-tree Commonalities. SBBD and SIGMOD DiSC . 

[62] Tekli, J., Chbeir, R., & Yetongnon, K. (2007). Structural similarity evaluation 

between XML documents and DTDs. LECTURE NOTES IN COMPUTER 

SCIENCE , 4831, 196. 

[63] The Information and Content Exchange (ICE) Protocol. (1998, October 27). 

Retrieved March 2010, from World Wide Web Consortium (W3C): 

http://www.w3.org/TR/NOTE-ice 

[64] Theobald, A., & Weikum, G. (2002). The XXL search engine: Ranked retrieval of 

XML data using indexes and ontologies. Proceedings of the 2002 ACM SIGMOD 

international conference on Management of data (p. 615). ACM. 

[65] Viyanon, W., & Madria, S. (2009). A System for Detecting XML Similarity in 

Content and Structure Using Relational Database. Proceeding of the 18th ACM 

conference on Information and knowledge management (pp. 1197-1206). Hong 

Kong, China: ACM. 

[66] Viyanon, W., & Madria, S. (2009). XML-SIM: Structure and Content Semantic 

Similarity Detection using Keys. Proceeding of the 8th International Conference 

on Ontologies, DataBases, and Applications of Semantics (ODBASE 2009) (pp. 

1183-1200). Vilamoura, Algarve-Portugal: Springer. 



 

 

122 

[67] Viyanon, W., Madria, S., & Bhowmick, S. (2008). XML Data Integration Based 

on Content and Structure Similarity Using Keys. Proceedings of the OTM 2008 

Confederated International Conferences, CoopIS, DOA, GADA, IS, and ODBASE 

2008. Part I on On the Move to Meaningful Internet Systems: (pp. 484-493). 

Springer. 

[68] Weis, M. (2005). Fuzzy Duplicate Detection on XML Data. Proceedings of VLDB 

2005 PhD Workshop, (p. 11). 

[69] Weis, M., & Naumann, F. (2005). DogmatiX tracks down duplicates in XML. 

Proceedings of the 2005 ACM SIGMOD international conference on Management 

of data (pp. 431-442). USA: ACM. 

[70] Wen, L., Amagasa, T., & Kitagawa, H. (2009). An approach for XML similarity 

join using tree serialization. Proceedings of the 13th international conference on 

Database systems for advanced applications (pp. 562-570). Springer-Verlag. 

[71] XML Version of DBLP. (n.d.). Retrieved May 2006, from http://dblp.uni-

trier.de/xml/ 

[72] Yan, T., & Garcia-Molina, H. (1999). The SIFT information dissemination system. 

ACM Transactions on Database Systems (TODS) , 565. 

[73] Yoshikawa, M., Amagasa, T., Shimura, T., & Uemura, S. (2001). XRel: a path-

based approach to storage and retrieval of XML documents using relational 

databases. ACM Transactions on Internet Technology , 1 (1), 110-141. 

[74] Zhang, K., & Shasha, D. (1989). Simple fast algorithms for the editing distance 

between trees and related problems. SIAM journal on computing , 18, 1245. 

 



 

 

123 

VITA 

Waraporn Viyanon was born in Bangkok, Thailand, on June 26, 1975. She 

completed a bachelor‘s degree in computer science from Srinakharinwirot University, 

Bangkok, Thailand, in 1997. In 2001, she received her master of science in applied 

computer science from Illinois State University, Normal, Illinois.  

She enrolled at Missouri University of Science and Technology (formerly 

University of Missouri-Rolla) in 2006 to pursue a doctorate in philosophy in computer 

science. She received her Ph.D. from the Department of Computer Science in December 

2010. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


