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ABSTRACT

This thesis is to discuss the bilinear and 2D linear immersed finite element (IFE)

solutions generated from the algebraic multigrid solver for both stationary and moving

interface problems. In contrast to the body-fitting mesh restriction of the traditional

finite element methods or finite difference methods for interface problems, a number of

numerical methods based on structured meshes independent of the interface have been

developed. When these methods are applied to the real world applications, we often need

to solve the corresponding large scale linear systems many times, which demands efficient

solvers. The algebraic multigrid (AMG) method is a natural choice since it is independent

of the geometry, which may be very complicated in interface problems. However, for those

methods based on finite difference formulation and a structured mesh independent of the

interface, the stiffness matrix of the linear system is usually not symmetric positive-

definite, which demands extra efforts to design efficient multigrid methods. On the other

hand, the stiffness matrix arising from the IFE methods are naturally symmetric positive-

definite. Hence the IFE-AMG algorithm is proposed to solve the linear systems of the

bilinear and 2D linear IFE methods for both stationary and moving interface problems

after the IFE and multi-grid methods are reviewed respectively. The numerical examples

demonstrate the features of the proposed algorithm, including the optimal convergence

in both  L2 and semi-H1 norms of the IFE-AMG solutions, the high efficiency with proper

choice of the components and parameters of AMG, the influence of the tolerance and the

smoother type of AMG on the convergence of the IFE solutions for the interface problems,

and the relationship between the cost and the moving interface location.
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1. INTRODUCTION

In this thesis, we first consider the following second order elliptic interface problem:




−∇ ·

(
β∇u

)
= f(X), X ∈ Ω,

u(X) = g(X), X ∈ ∂Ω,
(1.1)

together with the jump conditions on the interface Γ:

[u] |Γ = 0, (1.2)
[
β
∂u

∂n

]
|Γ = 0. (1.3)

Here, see Figure 1.1, without loss of generality, we consider the case in which Ω ⊂ IR2 is

an open rectangular domain, and the interface curve Γ is defined by a smooth function

which separates Ω into two sub-domains Ω−, Ω+ such that Ω = Ω− ∪ Ω+ ∪ Γ, and the

coefficient β(X) is a positive piecewise constant function defined by

β(X) =





β−, X ∈ Ω−,

β+, X ∈ Ω+.

Ω

Ω−

Ω+

∂Ω

Γ

Figure 1.1. The sketch of domain Ω with the interface Γ.
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We will also consider the following parabolic moving interface problem:





ut −∇ · (β∇u) = f(t, X), X ∈ Ω, t ∈ (0, Tend],

u(t, X) = g(t, X), X ∈ ∂Ω, t ∈ (0, Tend],

u(0, X) = u0(X), X ∈ Ω,

(1.4)

with the jump condition on a moving interface Γ(t):

[u]|Γ(t) = 0, (1.5)
[
β
∂u

∂n

]∣∣∣∣
Γ(t)

= 0. (1.6)

Without loss of generality, we consider the case in which the interface curve Γ(t) is defined

by a smooth function Γ : [0, Tend] → Ω. At any time t ∈ [0, Tend], the interface Γ(t)

separates Ω into two sub-domains Ω+(t) and Ω−(t) such that Ω = Ω+(t) ∪ Ω−(t) ∪ Γ(t),

see Figure 1.2 for an illustration. The coefficient function β(t, X) is discontinuous across

the interface Γ(t). For simplicity, we assume β(t, X) is a piece-wise constant function as

follows:

β(t, X) =





β−, X ∈ Ω−(t),

β+, X ∈ Ω+(t).

Ω

Ω−(t)

Ω+(t)

∂Ω

Γ(t)

Figure 1.2. A sketch of the domain for the moving interface problem.
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The stationary interface problems (1.1)-(1.3) and the moving interface problem

(1.4)-(1.6) are involved in many applications of engineering and sciences, such as the

field injection problem [25, 81], flow problem [5, 15], electromagnetic problems[6, 10, 42],

shape/toplogy optimization problem [19, 9], and the Stefan problem [13, 61]. These in-

terface problems can be solved by conventional finite difference or finite element methods

with optimal convergence if a body-fitting mesh is utilized [7, 8, 11, 14, 37]. However,

there are many applications, such as Particle-In-Cell method for plasma particle simula-

tion [43, 59, 60, 74, 75] and moving interface problems [36], in which a structured mesh

independent of the interface is preferred for solving the interface problems.

Therefore, many efforts have been attempted to develop such numerical methods for

solving interface problems on structured meshes (Figure 1.3) independent of the interface

even if their geometries are non-trivial. In the finite difference formulation, the immersed

boundary method [28, 44, 54, 63, 64], immersed interface method [21, 22, 23, 49, 71, 80],

matched interface and boundary method [24, 82, 83, 84, 85], cut-cell method [39, 40], and

embedded boundary method [38, 41] have been developed.

Figure 1.3. Rectangular and triangular Cartesian meshes independent of the interface.



4

In real world applications, we often need to solve large scale linear systems arising

from these methods many times due to various realistic needs, such as the curse of the

dimensionality, the high accuracy requirement, and moving interface. This demands very

efficient solvers. The multigrid methods, which are well known for their efficiency and

natural preconditioning feature, perform efficiently on Cartesian meshes which can be

naturally provided by the aforementioned methods for interface problems. L. Adams and

Z. Li [48] designed a geometric multigrid method for the immersed interface method of

the second order elliptic interface problems. Furthermore, L. Adams and T. P. Chartier

[46] developed a new restriction operator and the corresponding interpolation operator

to guarantee that the coarse-grid matrices are M-matrices. R. D. Guy and B. Philip also

applied a multigrid method for an implicit immersed boundary equations [29]. Further-

more, L. Adams and T. P. Chartier [47] also utilized a similar idea in [46] to design the

corresponding algebraic multigrid method and compare it with the geometric one.

It is natural to consider the algebraic multigrid method [66, 70] since it is indepen-

dent of the geometry, which may be very complicated in interface problems. However,

extra efforts are usually needed in order to design efficient multigrid methods to solve

the non-symmetric linear systems arising from those methods based on finite difference

formulation and a structured mesh independent of the interface. On the other hand, the

immersed finite element (IFE) methods [3, 4, 12, 17, 16, 18, 20, 26, 27, 31, 32, 33, 34,

35, 36, 42, 45, 50, 51, 52, 53, 55, 56, 57, 58, 69, 73, 78, 76, 79], which are developed un-

der the general framework of finite elements and proposed by using piecewise local basis

functions according to the interface jump conditions while their meshes do not have to

be aligned with interfaces, naturally provide symmetric positive-definite matrices for the

above interface problems. While minimizing the extra efforts to modify the traditional

finite element packages, the IFE methods can also easily deal with complex interface with

optimal accuracy order. Hence we believe that the combination of the features of the

algebraic multigrid method (such as its efficiency, preconditioning capability and inde-

pendence of the geometry) and the features of the IFE methods (such as their symmetric
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positive-definite matrices, capability to handle the interface without using body-fitting

meshes, and optimal convergence rates) can generate very efficient and competitive nu-

merical methods for large-scale applications in which a structured mesh independent of

the interface is preferred for solving the interface problems.

The rest of this thesis is organized as follows. In chapter 2, we recall the definitions

of the bilinear and 2D linear IFE spaces. In chapter 3, we discuss the numerical scheme

with bilinear IFE for the stationary interface problem and the numerical scheme with 2D

linear IFE for the moving interface problem. In chapter 4, we recall the standard two-grid

method and the multigrid. In chapter 5, we propose the IFE-AMG based on the standard

multigrid techniques. In chapter 6, we provide the numerical experiments for both elliptic

stationary interface problem and parabolic moving interface problem. Finally, we gave a

summary of this thesis and the proposed further research in chapter 7.
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2. THE BILINEAR AND 2D LINEAR IMMERSED FINITE ELEMENTS

In this section, we briefly recall the bilinear IFE space [31, 55] and the 2D linear

IFE space [52, 53].

2.1. THE BILINEAR IMMERSED FINITE ELEMENTS

First, we consider a rectangular Cartesian mesh (see the left graph of Figure 1.3)

independent of the interface. Let Th denote the collection of all elements in a mesh with

parameter h. When h is small enough, most of elements in Th are non-interface elements

not intersecting with the interface Γ. Only those elements in the vicinity of Γ have the

possibility to be cut through by Γ and become the so-called interface elements. We will

use Tint to denote the collection of all interface elements of Th.

On each non-interface element T , we let the local finite element space Sh(T ) be

Snon
h (T ), which is spanned by the four standard bilinear nodal basis functions ψi(x, y), i =

1, 2, 3, 4 on a rectangular element. To describe the local IFE space on an interface element

T ∈ Tint, we assume that the vertices of T are Ai, i = 1, 2, 3, 4, with Ai = (xi, yi)
T . With-

out loss of generality, we assume that ∂T intersects with Γ at two points D = (x
D
, y

D
)T

and E = (x
E
, y

E
)T . When the mesh is fine enough, there are two types of rectangle

interface elements with 12 cases (Figure2.2-Figure2.13). Type I are those for which the

interface intersects with two of its adjacent edges; Type II are those for which the inter-

face intersects with two of its opposite edges, see the sketch in Figure 2.1.

Since the line DE separates T into two subsets T− and T+, we naturally form a

piecewise function by two bilinear polynomials defined in T− and T+, respectively. Then

by using the interface conditions (1.2)-(1.3), the bilinear immersed functions are defined
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A1 A2

A3A4

E

D

T−

T+

Γ

A1 A2

A3A4 D

E

T−

T+

Γ

Figure 2.1. Two typical rectangular interface elements. The element on the left is of
Type I while the one on the right is of Type II.

A1 A2

A3A4

E

D
Γ

T−

T+

A1 A2

A3A4

E

D

Γ

T−

T+

A1 A2

A3A4

E

D Γ

T−

T+

A1 A2

A3A4

E

D

Γ
T−

T+

Figure 2.2. Case 1: f(A1) < 0, f(A2) ≥ 0, f(A3) > 0,f(A4) ≥ 0

A1 A2

A3A4

E

D
Γ

T+

T−

A1 A2

A3A4

E

D

Γ

T+

T−

A1 A2

A3A4

E

D Γ

T+

T−

A1 A2

A3A4

E

D

Γ
T+

T−

Figure 2.3. Case 2: f(A1) > 0, f(A2) ≤ 0, f(A3) < 0,f(A4) ≤ 0

as follows [31, 55]:

ψ(x, y) =





ψ−(x, y) = a−x + b−y + c− + d−xy, (x, y) ∈ T−,

ψ+(x, y) = a+x + b+y + c+ + d+xy, (x, y) ∈ T+,

ψ−(D) = ψ+(D), ψ−(E) = ψ+(E), d− = d+,

∫
DE

(
β− ∂ψ−

∂nDE
− β+ ∂ψ+

∂nDE

)
ds = 0.

. (2.7)
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A1 A2

A3A4 D

E
Γ

T−

T+

A1 A2

A3A4 D

E Γ
T−

T+

A1 A2

A3A4 D

E

Γ
T−

T+

A1 A2

A3A4 D

E

Γ

T−

T+

Figure 2.4. Case 3: f(A1) ≥ 0, f(A2) > 0, f(A3) ≥ 0,f(A4) < 0

A1 A2

A3A4 D

E
Γ

T+

T−

A1 A2

A3A4 D

E Γ
T+

T−

A1 A2

A3A4 D

E

Γ
T+

T−

A1 A2

A3A4 D

E

Γ

T+

T−

Figure 2.5. Case 4: f(A1) ≤ 0, f(A2) < 0, f(A3) ≤ 0,f(A4) > 0

A1 A2

A3A4

D

E

Γ
T−

T+

A1 A2

A3A4

D

E

Γ
T−

T+

A1 A2

A3A4

D

E

Γ T−

T+

A1 A2

A3A4

D

E

Γ

T−

T+

Figure 2.6. Case 5: f(A1) > 0, f(A2) ≥ 0, f(A3) < 0,f(A4) ≥ 0

A1 A2

A3A4

D

E

Γ
T+

T−

A1 A2

A3A4

D

E

Γ
T+

T−

A1 A2

A3A4

D

E

Γ T+

T−

A1 A2

A3A4

D

E

Γ

T+

T−

Figure 2.7. Case 6: f(A1) < 0, f(A2) ≤ 0, f(A3) > 0,f(A4) ≤ 0

A1 A2

A3A4

E

D

Γ
T+

T−

A1 A2

A3A4

E

D

Γ
T+

T−

A1 A2

A3A4
E

D

Γ
T+

T−

A1 A2

A3A4
E

D

ΓT+

T−

Figure 2.8. Case 7: f(A1) ≥ 0, f(A2) < 0, f(A3) ≥ 0,f(A4) > 0
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A1 A2

A3A4

E

D

Γ
T−

T+

A1 A2

A3A4

E

D

Γ
T−

T+

A1 A2

A3A4
E

D

Γ
T−

T+

A1 A2

A3A4
E

D

ΓT−

T+

Figure 2.9. Case 8: f(A1) ≤ 0, f(A2) > 0, f(A3) ≤ 0,f(A4) < 0

A1 A2

A3A4 D

E

Γ

T−

T+

Figure 2.10. Case 9: f(A1) < 0, f(A2) > 0, f(A3) > 0,f(A4) < 0

A1 A2

A3A4 D

E

Γ

T+

T−

Figure 2.11. Case 10: f(A1) > 0, f(A2) < 0, f(A3) < 0,f(A4) > 0

Now let ψi(X) be the bilinear IFE function described by (2.7) such that

ψi(xj , yj) =





1, if i = j,

0, if i 6= j,



10

A1 A2

A3A4

D

E

Γ

T+

T−

Figure 2.12. Case 11: f(A1) > 0, f(A2) > 0, f(A3) < 0,f(A4) < 0

A1 A2

A3A4

D

E

Γ

T−

T+

Figure 2.13. Case 12: f(A1) < 0, f(A2) < 0, f(A3) > 0,f(A4) > 0

for 1 ≤ i, j ≤ 4, and we call them the bilinear IFE nodal basis functions on an interface

element T . We then let Sint
h (T ) = span{ψi, i = 1, 2, 3, 4}.

In summery, for each element T ∈ Th, we define

Sh(T ) =





Snon
h (T ), if T is a non-interface element,

Sint
h (T ), if T is an interface element.

Let Nh = {Xi}Ni=1 denote the set of nodes in Th, N o
h = Nh ∩ Ω, N b

h = Nh ∩ ∂Ω, Ioh =

{i : Xi ∈ N o
h}, and Ibh = {i : Xi ∈ N b

h}. Define φi(X) (i = 1, · · · , N) to be a piecewise
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bilinear function such that

φi|T ∈ Sh(T ), ∀T ∈ Th and φi(Xj) = δij , ∀Xj ∈ Nh.

Then the bilinear IFE space on the whole domain Ω is defined as

SIFE
h (Ω) = span{φi(X) : 1 ≤ i ≤ N}.

We also define the subspace SIFE
h,0 (Ω) ⊂ SIFE

h (Ω) such that

SIFE
h,0 (Ω) = span{φi(X) : i ∈ Ioh}.

Remark 2.1. Here φi(X) is a global bilinear IFE basis function if Xi is a node of any

interface element. Otherwise, φi(X) is a standard global bilinear finite element basis func-

tion associated with the node Xi. Since IFE functions are discontinuous on the element

edges cut by the interface, the immersed finite elements are nonconforming [31, 55].

2.2. THE 2D LINEAR IMMERSED FINITE ELEMENTS

In the following we consider a triangular Cartesian mesh (see the right graph in

Figure 1.3) independent of the interface. On each of the non-interface element T , we

let the local finite element space Sh(T ) be Snon
h (T ) spanned by the three standard linear

nodal basis functions φi(x, y), i = 1, 2, 3 on T . For an interface element T with vertices

Ai = (xi, yi)
T , i = 1, 2, 3, without loss of generality, we assume that ∂T intersects with

Γ at two points D = (x
D
, y

D
)T and E = (x

E
, y

E
)T . There is only one type of triangle

interface elements, see the sketch in Figure 2.14.



12

A1

A2

A3

D
E

T−

T+

Γ

Figure 2.14. A typical triangular interface element.

Then by using the interface conditions (1.2)-(1.3), the 2D linear immersed finite

element function are defined as follows [52, 53]:

ψ(x, y) =





ψ−(x, y) = a−x + b−y + c−, (x, y) ∈ T−,

ψ+(x, y) = a+x + b+y + c+, (x, y) ∈ T+,

ψ−(D) = ψ+(D), ψ−(E) = ψ+(E),

β− ∂ψ−

∂nDE
− β+ ∂ψ+

∂nDE
= 0,

(2.8)

where nDE is the unit vector perpendicular to the line DE. We let ψi(X) be the linear

IFE function described by (2.8) such that

ψi(xj , yj) =





1, if i = j,

0, if i 6= j

for 1 ≤ i, j ≤ 3, and we call them the 2D linear IFE nodal basis functions on an interface

element T . We then let Sint
h (T ) = span{φi, i = 1, 2, 3}. Then we can use the same way as
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in the bilinear IFE space to define Sh(T ), φi(X), SIFE
h (Ω) and SIFE

h,0 (Ω) for the 2D linear

IFE space.

2.3. THE EXISTENCE AND UNIQUENESS OF IFE BASIS FUNCTIONS

In this subsection, we discuss the existence and uniqueness for the 2D linear and

bilinear IFE basis functions. As usual, we only need to dicuss the nodal linear IFE basis

functions φ̂i(X̂), i = 1, 2, 3, on the reference element T̂ with vertices Âi = (x̂i, ŷi)
T (Figure

2.15), i = 1, 2, 3:

Â1 =




0

0


 , Â2 =




1

0


 , Â3 =




0

1


 . (2.9)

and the intersection point D̂ and Ê:

D̂ =




0

b̂


 , Ê =




â

1− â


 . (2.10)

The interface element T is related to the corresponding reference element T̂ (Figure 2.15)

ŷ

x̂
Â1 Â2

Â3

D̂
Ê

T̂

Figure 2.15. The reference interface element.
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by the affine mapping (Figure 2.16):

X = F (X̂) = MX̂ +B, X =




x

y


 , X̂ =




x̂

ŷ


 , (2.11)

where

M =




xÃ2
− xÃ1

xÃ3
− xÃ1

yÃ2
− yÃ1

yÃ3
− yÃ1


 , B =




xÃ1

yÃ1


 . (2.12)

ỹ

x̃

Ã1
Ã2

Ã3

D̃

Ẽ

T̂

F

Mapping

F̂

ŷ

x̂
Â1 Â2

Â3

D̂
Ê

T̂

Figure 2.16. Affine mapping between the rotated local interface 2D linear element and
the corresponding reference element.

Let φ̂i(X̂), i = 1, 2, 3 be the 2D linear IFE nodal basis on the reference element T̂ (Fig-

ure.2.15) such that[52, 53]

φi(x̂, ŷ) =





â−i x̂+ b̂−i ŷ + ĉ−i , if (x̂, ŷ) ∈ T̂−,

â+i x̂+ b̂+i ŷ + ĉ+i , if (x̂, ŷ) ∈ T̂+,

(2.13)
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and





φ̂i(Âj) = δij =





1, if i = j,

0, if i 6= j,

φ̂−
i (D̂) = φ̂+

i (D̂), φ̂−
i (E) = φ̂+

i (Ê),

β− ∂φ̂−
i

∂n
D̂Ê

− β+ ∂φ̂+
i

∂n
D̂Ê

= 0.

(2.14)

By using the same idea in [30], we can reproof the following existence and uniqueness

result for 2D linear IFE basis functions:

Theorem 2.1. [52, 53] Given the reference triangle△Â1Â2Â3 as indicated in figure(2.14).

The piecewise linear basis functions φ̂i(x̂, ŷ) are uniquely determined by (2.14).

Proof. The C0 function consists of piecewise linear polynomials which have six degrees of

freedom. At the three vertices of the element, we specify the function values. The addi-

tional degrees of freedom are utilized to satisfy the approximation of the jump conditions.

Therefore, we can get five linear equations as follows after substituting the coordinates of

the three vertices of the original element and two intersection points into (2.14):

1. For the vertex Â1(0, 0): By substituting the coordinates of the vertex Â1(0, 0) into

the basis function (2.13), we get

φ̂i(Â1) = 0a−1 + 0b−1 + c−1 + 0a+1 + 0b+1 + 0c+1 = δi1 (2.15)

2. For the vertex Â2(1, 0): By substituting the coordinates of the vertex Â2(1, 0) into

the basis function (2.13), we get

φ̂i(Â2) = a−1 + 0b−1 + c−1 + 0a+1 + 0b+1 + 0c+1 = δi2 (2.16)
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3. For the vertex Â3(0, 1): By substituting the coordinates of the vertex Â3(0, 1) into

the basis function (2.13), we get

φ̂i(Â3) = 0a−1 + 0b−1 + 0c−1 + 0a+1 + b+1 + c+1 = δi3 (2.17)

4. For the interface intersection point D(0, b̂): By substituting the coordinates of the

vertex D̂(0, b̂) into the basis function (2.13), we get

φ̂i(D̂) = 0a−1 + b̂b−1 + c−1 − 0a+1 − b̂b
+
1 − c

+
1 = 0 (2.18)

5. For the interface intersection point Ê(â, 1− â): By substituting the coordinates of

the vertex Ê(â, 1− â) into the basis function (2.13), we get

φ̂i(Ê) = âa−1 + (1− â)b−1 + c−1 − âa
+
1 − (1− â)b+1 − c

+
1 = 0 (2.19)

6. We can also get another linear function from the flux jump condition:

â−i α− b
−
i = ρ(â+i α− b

+
i ), (2.20)

where ρ = β+

β−
and the normal direction of the line D̂Ê is (α,−1) with α = (1− â−

b̂)/â.

Thus, the linear system arising from (2.14) for the unknowns â−i , b̂
−
i , ĉ

−
i , â

+
i , b̂

+
i , and ĉ+i is

given as follows:



17

A




â−i

b̂−i

ĉ−i

â+i

b̂+i

ĉ+i




= bi (2.21)

where

A =




0 0 1 0 0 0

1 0 1 0 0 0

0 0 0 0 1 1

0 b̂ 1 0 −b̂ −1

â 1− â 1 −â â− 1 −1

α −1 0 −αρ ρ 0




(2.22)

and

b1 =




1

0

0

0

0

0




,b2 =




0

1

0

0

0

0




,b3 =




0

0

1

0

0

0




. (2.23)

Direct calculations give us

rank(A) = 6.
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Thus from the theory of linear algebra, there is a unique solution for the linear sys-

tem(2.21).

The existence and uniqueness of the bilinear IFE basis functions have been proved

similarly in [30]. We would like to point out that the affine mapping between the local

element and the reference element (Figure.2.18) for the bilinear IFE is different from that

of the standard bilinear finite element. We need to do a rotation (Figure.2.17) before we

applying the affine mapping(Figure.2.18) to the bilinear IFE.

y

x

A1 A2

A3A4

E

D

T
y0

x0

Rotation

90o

y

xÃ1 Ã2

Ã3Ã4

Ẽ

D̃

T̃

y0

x0

Figure 2.17. The rotation of the local interface element.

In the following subsection, the relationship between the interface coefficient β and

the energy norm will be investigated.

2.4. UPPER BOUND OF THE IFE FUNCTIONS IN ENERGY NORM

It has been shown that the IFE basis functions and the IFE interpolation error have

uniform upper bounds independent of the interface and the jump coefficients in L2 and

H1 norms[30]. In this section, we will show that this is not true for the following energy
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y

xÃ1 Ã2

Ã3Ã4

Ẽ

D̃

T̃

y0

x0

F

Mapping

F̂

η

ξ
Â1 Â2

Â3Â4

D̂

Ê

T̂

Figure 2.18. Affine mapping between the rotated local interface bilinear element and the
corresponding reference element.

norms

||u− uI ||
2
0,β,T =

∫

T

β(u− uI)
2dxdy,

|u− uI |1,β,T = ||∇(u− uI)||0,β,T .

Since the traditional analysis framework of the geometric algebraic method does need the

uniform upper bounds independent of the jump coefficients in the energy norm, it is not

clear if the geometric algebraic method can be applied to the immersed finite elements

without any extra efforts.

Lemma 2.1. The constant C in the IFE interpolation error estimates

||u− uI ||0,β,T ≤ Ch2|u|2,β,T

|u− uI |1,β,T ≤ Ch|u|2,β,T

in the energy norms may depend on the jump coefficients.

Proof. In order to prove this lemma, we only need to provide one example. By solving the

linear system (2.21) for the specific intersection pointsD(0, 1/2), E(3/4, 1/4) (Figure.2.19-

Figure.2.20), and jump coefficients β+ = β1, β
− = β2, (without loss generality, we assume
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β1 > β2), we can get the specific basis functions φ̂1(x̂, ŷ), φ̂2(x̂, ŷ), φ̂3(x̂, ŷ) as follows:

φ̂1(x̂, ŷ) =





− x̂+
3β2 − 23β1
11β1 + 9β2

ŷ + 1, if (x̂, ŷ) ∈ T̂−,

−
3β1 + 17β2
11β1 + 9β2

x̂ +
β1 − 21β2
11β1 + 9β2

ŷ +
21β2 − β1
11β1 + 9β2

, if (x̂, ŷ) ∈ T̂+.

(2.24)

φ̂2(x̂, ŷ) =





x̂+
3β1 − 3β2
11β1 + 9β2

ŷ, if (x̂, ŷ) ∈ T̂−,

9β1 + 11β2
11β1 + 9β2

x̂ +
3β2 − 3β1
11β1 + 9β2

ŷ +
3β1 − 3β2
11β1 + 9β2

, if (x̂, ŷ) ∈ T̂+.

(2.25)

φ̂3(x̂, ŷ) =





20β1
11β1 + 9β2

ŷ, if (x̂, ŷ) ∈ T̂−,

6β2 − 6β1
11β1 + 9β2

x̂ +
2β1 + 18β2
11β1 + 9β2

ŷ +
9β1 − 9β2
11β1 + 9β2

, if (x̂, ŷ) ∈ T̂+.

(2.26)

Consider the function

u =





uT̂+ =
( 1
3
x̂+ŷ−1/2)2

β1
,

uT̂− =
( 1
3
x̂+ŷ−1/2)2

β2
.

(2.27)

So

u(Â1) =
1

4β2
, u(Â2) =

1

36β2
, u(Â3) =

1

4β1
, (2.28)

and the interpolation function will be

uI = u(Â1)φ̂1 + u(Â2)φ̂2 + u(Â3)φ̂3

=
−(18β2

1 x̂− 267β1β2 − 54β2
2 x̃− 6β2

1 ỹ − 162β2
2 ŷ + 6β2

1 + 81β2
2 + 196β1β2x̂+ 168β1β2ŷ)

(36β1β2(11β1 + 9β2))

=
(−18β2

1 + 54β2
2 − 196β1β2)x̂ + (6β2

1 + 162β2
2 − 168β1β2)ŷ + 267β1β2 − 6β2

1 − 81β2
2

36β1β2(11β1 + 9β2)
.
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Figure 2.19. The IFE basis and FE basis. The first row are the IFE basis and The second
row are the Standard FE basis.
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Figure 2.20. The figure of φ1. Left: β1 = 2, β2 = 1; Middle: β1 = 10, β2 = 1; Right:
β1 = 10000, β2 = 1.
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Therefore, the corresponding interpolation error in the energy norm on T̂+ is

||u− uI ||
2
0,β,T̂+

=

∫

T̂+

β1(u− uI)
2dx̂dŷ

=

∫ 1

1/2

(∫ 1−ŷ

0

β1(u− uI)
2dx̂

)
dŷ +

∫ 1/2

1/4

(∫ 1−ŷ

3/2−3ŷ

β1(u− uI)
2dx̂

)
dŷ

=
−(405β4

1 − 6777β3
1β2 + 2234β2

1β
2
2 − 837β1β

3
2 − 18225β4

2)

124416β1β2
2(11β1 + 9β2)2

(2.29)

Since β1 > β2 and the degree of the β1 in the numerator is greater than the degree in

denominator, so ||u− uI ||20,β,T̂+ cannot have an uniform upper bound independent of β1.

Therefore, the constant C in the upper bound of the interpolation error in the energy

norm ||u−uI ||20,β,T̂ may depend on the coefficient jump. Similar conclusion can be proved

for ‖u− uI‖1,β,T̂ in the same way.
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3. NUMERICAL SCHEMES FOR THE INTERFACE PROBLEMS

In this section we will first describe how to use the IFE function spaces to formulate

the linear system for the elliptic interface problems. And then we will apply the same

idea to a Crank-Nicolson-type IFE method for the parabolic moving interface problem.

3.1. NUMERICAL SCHEME FOR ELLIPTIC INTERFACE PROBLEM

To formulate the linear system arising from the IFE method of the elliptic interface

problem, we will first briefly recall the weak formulation and the IFE formulation [35,

53, 55]. Multiply the differential equation (1.1) by any v ∈ H1
0 (Ω) and integrate it over

Ωs(s = +,−) to have

−

∫

Ωs

∇ ·
(
βs∇u)v dxdy =

∫

Ωs

fv dxdy, ∀ v ∈ H1
0 (Ω).

Then a straightforward application of the Green’s formula leads to

∫

Ωs

βs∇u · ∇v dxdy −

∫

∂Ωs

βs ∂u

∂n
v ds =

∫

Ωs

fv dxdy, s = +,−, ∀ v ∈ H1
0 (Ω).

Summing the above equation over s and applying the flux jump condition (1.3) on the

interface, we obtain the weak formulation for the elliptic interface problem: find u ∈

H1(Ω) such that

∫

Ω

β∇u · ∇v dxdy =

∫

Ω

fv dxdy, ∀ v ∈ H1
0 (Ω).

Then the IFE formulation is to find uh ∈ SIFE
h (Ω) such that

∑

T∈Th

∫

T

β∇uh · ∇vh dxdy =
∑

T∈Th

∫

T

fvh dxdy, ∀ vh ∈ S
IFE
h,0 (Ω). (3.30)
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Based on the construction of the IFE space SIFE
h (Ω) and the given Dirichlet boundary

condition, the approximate solution to the elliptic interface problem (1.1)-(1.3) is taken

in the following form:

uh(X) =
∑

k∈Io
h

ukφk(X) +
∑

s∈Ib
h

g(Xs)φs(X). (3.31)

Plugging (3.31) into (3.30) and substituting φl ∈ SIFE
h,0 (Ω) for vh, the IFE formulation

becomes: find the coefficients uk (k ∈ Ioh) such that

∑

k∈Io
h

(
∑

T∈Th

∫

T

β∇φl · ∇φkdX

)
uk

=
∑

T∈Th

∫

T

φlfdX −
∑

s∈Ib
h

(
∑

T∈Th

∫

T

β∇φl · ∇φsdX

)
g(Xs), ∀l ∈ I

o
h.

Assume that the set Ioh has n elements. Define ki to be the ith element in Ioh. Then

∑

1≤j≤n

(
∑

T∈Th

∫

T

β∇φki · ∇φkjdX

)
ukj

=
∑

T∈Th

∫

T

φkifdX −
∑

s∈Ib
h

(
∑

T∈Th

∫

T

β∇φki · ∇φsdX

)
g(Xs), 1 ≤ i ≤ n.

Rewriting the above system in matrix formulation yields

Ah~uh = ~bh, (3.32)

where

• Ah = (aij)n×n is the stiffness matrix with

aij =
∑

T∈Th

∫

T

β∇φki · ∇φkjdX.
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• ~bh = (bi)n×1 is the source vector with

bi =
∑

T∈Th

∫

T

φkifdX −
∑

s∈Ib
h

(
∑

T∈Th

∫

T

β∇φki · ∇φsdX

)
g(Xs).

• ~uh = (uki)n×1 is the unknown vector.

Remark 3.1. It is straightforward to see that the stiffness matrix Ah arising from the IFE

method is symmetric positive definite, which is critical to the algebraic multigrid method.

The optimal convergence rates are also expected for the IFE solutions uh, which are second

order in L2 norm and first order in H1 semi-norm for the linear and bilinear IFEs. The

numerical experiments in the next section will verify this expectation.

3.2. NUMERICAL SCHEME FOR MOVING INTERFACE PROBLEM

Now we discuss the parabolic moving interface problem (1.4)-(1.6), for which we

will utilize a Crank-Nicolson-type IFE method [36] together with the above IFE-AMG

algorithm. The matrix formed at each time iteration step will be different from the one

from elliptic equation, but still symmetric positive definite.

At any time t, we define N i,t
h to be the set of nodes of all interface elements at the

time t and let N n,t
h = Nh/N

i,t
h denote the rest of the nodes. Let φt

j(X) denote the global

bilinear or linear IFE basis function, which has been discussed in Section 2, associated

with the node Xj ∈ N
i,t
h at the time t while φt

j(X) is a standard global linear finite

element basis function for Xj ∈ N
n,t
h . Then we look for an IFE approximate solution to

the parabolic interface problem (1.4) - (1.6) in the following form:

uh(t, X) =
∑

Xj∈Nh

uj(t)φ
t
j(X). (3.33)

From the above definitions, we know that if Xj ∈ N
i,t
h , then φt

j(X) depends on the

interface location, hence depends on the time t. On the other hand, φt
j(X) is independent
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of the time t for Xj ∈ N
n,t
h . Therefore,

∂uh(t, X)

∂t
=
∑

Xj∈Nh

∂uj(t)

∂t
φt
j(X) +

∑

Xj∈N
i,t
h

uj(t)
∂φt

j(X)

∂t
. (3.34)

Based on the following standard weak form at a given time t:

∫

Ω

v
∂u

∂t
dX +

∫

Ω

∇v · (β∇u)dX =

∫

Ω

vfdX, ∀ v ∈ H1
0 (Ω),

which is equivalent to

∑

T∈Th

∫

T

v
∂u

∂t
dX +

∑

T∈Th

∫

T

∇v · (β∇u)dX =

∫

Ω

vfdX, ∀ v ∈ H1
0 (Ω),

the following system can be obtained from the IFE semi-discretization [36]:

Mh(t)u′(t) +Kh(t)u(t) + Ah(t)u(t) = f(t), (3.35)

where

• Mh(t) = (mij(t)) is the mass matrix with mij =
∫
Ω
φt
iφ

t
jdX .

• Kh(t) = (kij(t)) with kij =
∫
Ω
φt
i

∂φt
j

∂t
dX .

• Ah(t) = (aij(t)) is the stiffness matrix with aij =
∫
Ω
∇φt

i ·
(
β∇φt

j

)
dX .

• f(t) = (fi(t)) is the source vector with fi(t) =
∫
Ω
φt
ifdX .

• u(t) is the vector whose entries are uj(t), i.e. u(t) = (uj(t)).

For the time discretization, without loss of generality, we use a uniform partition

0 = t0 < t1 < · · · < tN = T in time, where tn = nτ with τ = Tend/N . Then we look for

approximations such that

unh(X) =
∑

Xj∈Nh

unj φ
tn
j (X) ≈ uh(tn, X).
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In effect, we look for ~un = (unj ) ≈ ~u(tn), for n = 1, 2, · · · , N . Then applying the idea of

Crank-Nicolson type discretization to (3.35) leads to the following algorithm [36]:

(
M

n+ 1
2
,n+ 1

2
h +

τ

2
A

n+ 1
2
,n+ 1

2
,n+ 1

2
h +

τ

2
K

n+ 1
2
,n+ 1

2
h

)
~un+1

=
(
M

n+ 1
2
,n+ 1

2
h −

τ

2
A

n+ 1
2
,n+ 1

2
,n+ 1

2
h −

τ

2
K

n+ 1
2
,n+ 1

2
h

)
~un + τ ~fn+ 1

2
,n+ 1

2 .

where

• Mnv ,nu

h =
(
mnv,nu

ij

)
is the mass matrix, where mnv ,nu

ij =
∫
Ω
φ
tnv

i φ
tnu

j dX .

• A
nβ ,nv,nu

h =
(
a
nβ ,nv,nu

ij

)
is the stiffness matrix, where a

nβ ,nv,nu

ij =
∫
Ω
∇φtnv

i ·(β
tnβ∇φtnu

j )dX .

• Knv,nu

h =
(
knv,nu

ij

)
, where knv,nu

ij =
∫
Ω
φ
tnv

i

(
∂
∂t
φ
tnu

j

)
dX .

• fnv,nf =
(
f
nv,nf

i

)
is right hand side vector, where f

nv,nf

i =
∫
Ω
φ
tnv

i f tnf dX .

Here nv, nu, nβ , and nf denote the time levels for the test function v, trial function u,

coefficient function β, source function f , respectively.

The matrixM
n+ 1

2
,n+ 1

2
h + τ

2
A

n+ 1
2
,n+ 1

2
,n+ 1

2
h + τ

2
K

n+ 1
2
,n+ 1

2
h is not symmetric since K

n+ 1
2
,n+ 1

2
h

is not symmetric. However, a simplified algorithm has been proposed based on Theorem

3.1 in [36] and numerically illustrated to be optimally convergent in [36]:

(
M

n+ 1
2
,n+ 1

2

h +
τ

2
A

n+ 1
2
,n+ 1

2
,n+ 1

2

h

)
~un+1 =

(
M

n+ 1
2
,n+ 1

2

h −
τ

2
A

n+ 1
2
,n+ 1

2
,n+ 1

2

h

)
~un + τ ~fn+ 1

2
,n+ 1

2 .

In this algorithm, the matrix M
n+ 1

2
,n+ 1

2
h + τ

2
A

n+ 1
2
,n+ 1

2
,n+ 1

2
h is symmetric positive definite

matrix, which is critical to the AMG method. Then the IFE-AMG algorithm proposed

in the following can be utilized to solve the linear system at each time iteration step with

A1
h = M

n+ 1
2
,n+ 1

2
h +

τ

2
A

n+ 1
2
,n+ 1

2
,n+ 1

2
h ,

~b1h =
(
M

n+ 1
2
,n+ 1

2
h −

τ

2
A

n+ 1
2
,n+ 1

2
,n+ 1

2
h

)
~un + τ ~fn+ 1

2
,n+ 1

2 .
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4. TWO GRID AND MULTI-GRID METHODS

The multigird method can be considered as the recursion of the two-grid method.

Therefore, in this section, we will first review some basic principles of two-grid method

and then briefly introduce the multi-grid method. Suppose at the finest grid a mesh-size

of h is used and the resulting problem we are trying to solve is

Ah~uh = ~bh. (4.36)

Let ~uh and ~̃uh to be the approximation solution and the exact solution respectively.

Then error in ~̃uhh is

eh = ~uh − ~̃uh. (4.37)

and the residual is

rh = ~bh −Ah~uh. (4.38)

Since Ah is linear, by the definition of the error (4.37) and the residual (4.38), the

error satisfies

Aheh = rh.

It is known that the high frequencies of the error can be reduced in a few iterations,

but low frequencies are reduced very slowly(Figure.4.1-Figure.4.5). Therefore, the ex-

tremely effective multigrid idea is to change the low frequencies to a coarse grid, on which

the “smooth becomes rough” and the low frequencies act like higher frequencies. The

classical iterative methods, such as Jacobi or Gauss-Seidel[68],[67], can be used to pro-
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duce smooth errors on each grid level. In the following we recall some common smoother

operators.

0
20

40
60

0

20

40

60
−4

−2

0

2

4

Initial error

0
20

40
60

0

20

40

60
0

200

400

600

800

Absolute value of initial error in Fourier space

Figure 4.1. The initial error and the absolute value of initial error in Fourier space.

4.1. THE SMOOTHING OPERATOR

First, we start with the following decomposition

A = D − L− U, (4.39)

where D is the diagonal of A, −L and −U are the strict lower part and the strict upper

part, respectively, as illustrated in (Figure.4.6). In the following, ξ
(k)
i denotes the i-th

component of the iterate ~uk and βi is the i-th component of the right hand side ~b.

4.1.1. Jacobi Iteration Method. The Jacobi iteration determines the i-

th component of the next approximation so as to annihilate the i-th component of the

residual vector. Based on

(b− Axk+1)i = 0,



30

0
20

40
60

0

50
−10

−5

0

5

Error after coarse grid correction, iter = 1

0
20

40
60

0

50
0

500

1000

1500

2000

Absolute value of error in Fourier space

0
20

40
60

0

50
−6

−4

−2

0

2

Error after post−smoothing, iter = 1

0
20

40
60

0

50
0

500

1000

1500

2000

Absolute value of error in Fourier space

Figure 4.2. The error after 1st coarse grid correction and post-smoothing with the absolute
value of error in Fourier space.

in which (∗)i represents the i-th component of the column vector ∗, we have

aiiξ
(k+1)
i = −

n∑

j=1,j 6=i

aijξ
(k)
i + βi

or

ξ
(k+1)
i =

1

aii

(
βi −

n∑

j=1,j 6=i

aijξ
(k)
i

)
, i = 1, . . . , n. (4.40)
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Figure 4.3. The error after 2nd coarse grid correction and post-smoothing with the abso-
lute value of error in Fourier space.

The above equation (4.40) can be used to rewrite the Jacobi iteration in the vector

form as

xk+1 = D−1(L+ U)xk +D−1b. (4.41)

4.1.2. Gauss-Seidel Iteration Method. Similarly, the Gauss-Seidel iteration

corrects the i-th component of the current approximate solution, again to annihilate the

i-th component of the residual. However, the approximate solution of the Gauss-Seidel

iteration is updated immediately after the new component is determined. The newly

computed components ξki can be changed within a working vector which is redefined at
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Figure 4.4. The error after 3rd coarse grid correction and post-smoothing with the absolute
value of error in Fourier space.

each relaxation step. Thus, the result at i-th step is

βi −
i−1∑

j=1

aijξ
k+1
j − aiiξ

k+1
i −

n∑

j=i+1

aijξ
k
j = 0, (4.42)

which leads to the iteration,

ξk+1
i =

1

aii

(
βi −

i−1∑

j=1

aijξ
k+1
j −

n∑

j=i+1

aijξ
k
j

)
, (4.43)

The equation (4.42) can be rewritten as

b+ Lxk+1 −Dxk+1 + Fxk = 0,
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Figure 4.5. The error after 4th coarse grid correction and post-smoothing with the absolute
value of error in Fourier space.

So, the vector form of the Gauss-Seidel iteration is obtained as following

xk+1 = (D − L)−1Uxk + (D − L)−1b.

4.1.3. Incomplete LU Factorizations. Based on the LU decomposition

(Figure.4.7) (an upper triangular matrix in U and a “psychologically lower triangular

matrix in L, i.e, A is decomposed to a product of a lower triangular and a permutation

matrices), another simple different way is to perform an Incomplete LU factorization

(Figure.4.8) of the original matrix A. This entails a decomposition of the form

A = LU − R (4.44)



34

D

−L

−U

Figure 4.6. The initial decomposition of matrix A.
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Figure 4.7. The graph of the matrix and the graph of the LU decomposition matrix.

where L and U have the same nonzero structure as the lower and upper parts of A

respectively, and R is the residual or error of the factorization.



35

0 100 200 300 400

0

100

200

300

400

nonzeros=7551 (3.291%)

A Sparse Symmetric Matrix

0 100 200 300 400

0

100

200

300

400

nz = 3202

The graph of L from ILU

0 100 200 300 400

0

100

200

300

400

nz = 3984

The graph of U from ILU

0 100 200 300 400

0

100

200

300

400

nz = 479

The graph of R from ILU 

Figure 4.8. The graph of the matrix and the graph of the ILU decomposition matrix.

In general, the ILU factorizations require fewer iterations to converge, but the pre-

processing cost for computing the factors is higher.

4.2. THE INTERPOLATION AND RESTRICTION IN 2-DIMENSIONS

Two-grid method requires going back and forth between fine grid Ωh and coarse grid

ΩH , (in the following we will take H = 2h, but other choices are possible) as illustrated

in Figure (4.9).
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Coarse Mesh : ΩH

Figure 4.9. Mesh on the fine and coarse grid of the two-grid method.

4.2.1. The Interpolation Operation. The interpolation operation takes a

vector from coarse grid ΩH to fine grid Ωh.

IhH : ΩH → Ωh.

The simplest way to define a interpolation operator is through linear interpolation.

1. 1-D case

Let x0, x1, . . . , xn+1 be the nodes of 1-D partition, where the x0, xn+1 are boundary

points and the number of the internal nodes n is assumed to be odd. Given a vector

(rHi )i=0,...,(n+1)/2, the vector rh = IhHr
HIHh of Ωh is defined as follows





rh2j = rHj

rh2j+1 = (rHj + rHj+1)/2

for j = 0, . . . ,
n + 1

2
. (4.45)
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The one-dimensional stencil can be denoted by

p =
1

2

]
1 2 1

[
(4.46)

2. 2-D case

In 2-D, the linear interpolation can be defined in an extended manner from the

1-D case. The simplest way to define a prolongation operator is through the bilin-

ear interpolation. Let IhH,x and IhH,y denote the interpolation in x and y direction

respectively. So the interpolation in x direction can be written as

rh,x = IhH,xr
H ,

where,





rh,x2i,: = rHi,:

rh,x2i+1,: = (rHi,: + rHi+1,:)/2

for i = 0, . . . ,
m + 1

2
. (4.47)

Then by using the above semi-interpolated result rh,x, we can get the interpolation

value with respect to y variable:

rh = IhH,yr
h,x,

where





rh:,2j = rH,x
:,j

rh:,2j+1 = (rH,x
:,j + rH,x

:,j+1)/2

for j = 0, . . . ,
n + 1

2
. (4.48)

Therefore, the (4.47) and (4.48) give the following 2-D interpolation formulas from

an element rH in ΩH to the corresponding element rh = IhHr
HIHh in Ωh,
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rh2i,2j = rHi,j

rh2i+1,2j = (rHi,j + rHi+1,j)/2

rh2i,2j+1 = (rHi,j + rHi,j+1)/2

rh2i+1,2j+1 = (rHi,j + rHi+1,j + rHi,j+1 + rHi+1,j+1)/4

for





i = 0, . . . ,
m + 1

2

j = 0, . . . ,
n + 1

2

(4.49)

This derivation shows that the 2-D interpolation can be represented as the tensor

product of the two one-dimensional interpolation, i.e,

IhH = IhH,y ⊗ I
h
H,x, (4.50)

and the stencil for 2-D linear interpolation is

p =
1

4




1 2 1

2 4 2

1 2 1




(4.51)

4.2.2. The Restriction Operation. The restriction operation is the reverse of

interpolation, i.e

IHh = (IhH)T . (4.52)

4.3. TWO-GRID V-CYCLE

When a smoother is applied to a linear system at a fine level, the residual(Figure(4.1))

~rh = ~bh − Ah~uh
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obtained at the end of the smoothing step will typically still be large (Figure4.2). However,

it will have small components in the space associated with the high-frequency modes. If

these components are removed by solving the above system (exactly) at the lower level,

then a better approximation should result. Two-grid methods (Figure.4.10) are rarely

practical because the coarse-mesh problem may still be too large to be solved exactly.

However, they are useful from a theoretical point of view and provide a pathway to the

more practical multi-grid method.

Algorithm 1 Two-Grid cycle

Input: Matrix Ah,~bh, Initial value ~u0h , Smooth parameters (ν1, ν2)
Output: Approximation solution ~uh.
Metode:

1: Pre-smooth: ~uh :=smooth(Ah, ~uh,~b, ν1)

2: Residual: ~rh = ~bh −Ah~uh
3: Coarsening: ~rH = IHh ~rhI

h
H , AH = IHh AhI

h
H

4: Solve: AHδ
H = ~rH

5: Correction: ~uh = ~uh + IhHδ
HIHh

6: Post-smooth: ~uh :=smooth(Ah, ~uh,~bh, ν2)

IHh IhH

Ωh

ΩH

~uh ~uh

~δH

Relaxtion

Restriction

Prolongation

Exactly solve

Figure 4.10. Two level method.
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In the following subsection, the relationship between the two-gird and multigrid will

be investigated.

4.4. FROM TWO-GRID TO MULTIGRID

The recursively defined multigrid cycle is as follows: apply the 2-grid cycle recur-

sively until a coarse enough level is reached and then solve the corresponding system

exactly (typically use a direct solver). We now introduce the general multigrid cycle

which generalizes the V-cycle mentioned above. This gives the algorithms described be-

low, called the V-cycle multigrid (Algorithm2) and W-cycle multigrid (Algorithm3). Once

more, the implementation of the multigrid cycle is of a recursive nature.

4.4.1. V-cycle of Multigrid. A V-cycle multigrid method is obtained when

the coarse problem is solved approximately with 1 iteration of the two-grid scheme on

that level, and so on, until the coarsest level on which an exact solver is performed as

illustrated in Figure 4.11 and Algorithm 2.

~umh
Ω1

Ω2

ΩM−1

ΩM

~umh

Figure 4.11. V-Cycle of the Multigrid method.



41

Algorithm 2 The V-cycle Multigrid Algorithm: ~umh = V − cycle(Am
h , ~u

m
0 ,
~bmh , ν1, ν2)

Input: Matrix Ah, ~uh, Initial value ~um0 , Smooth parameters (ν1, ν2)
Output: Approximation solution ~umh .
Metode:

1: Pre-smooth: ~umh :=smooth(Am
h , ~u

m
0 ,
~bmh , ν1)

2: Residual: ~rm = ~bmh − A
m
h ~u

m
h

3: Coarsening: ~rm+1 = Im+1
m ~rmImm+1, A

m+1
h = Im+1

m Am
h I

m
m+1

4: if (m==M) then

5: Solve: Am+1
h δm+1 = ~rm+1

6: else

7: Recursion: δm+1 = V − cycle(Am+1
h , 0, ~rm+1, ν1, ν2)

8: end if

9: Correction: ~umh = ~umh + Imm+1δ
m+1Im+1

m

10: Post-smooth: ~umh :=smooth(Am
h , ~u

m
h , F

m, ν2)

4.4.2. W-cycle of Multigrid. The W-cycle based on two stationary iterations

at each level as illustrated in Figure 4.12 and Algorithm 3.

Algorithm 3 The General Multigrid Algorithm:~umh = MG(Am
h , ~u

m
0 ,
~bmh , ν1, ν2, γ)

Input: Matrix Ah,~bh, Initial value ~um0 , Smooth parameters (ν1, ν2),iteration (γ)
Output: Approximation solution ~umh .
Metode:

1: pre-smooth: ~umh :=smooth(Am
h , ~u

m
h ,
~bm, ν1)

2: Residual: ~rm = ~bmh − A
m
h ~u

m
h

3: Coarsening: ~rm+1 = Im+1
m ~rmImm+1, A

m+1 = Im+1
m Am

h I
m
m+1

4: if m==M then

5: Solve: Am+1
h δm+1 = ~rm+1

6: else

7: Recursion: δm+1 = MG(Am+1
h , 0, ~rm+1, ν1, ν2, γ)

8: end if

9: Correction: ~umh = ~umh + Imm+1δ
m+1Im+1

m

10: Post-smooth: ~umh :=smooth(Am
h , ~u

m
h ,
~bm, ν2)

The new parameter,γ, determines how many times MG is iterated. The case γ = 1

yields the V-cycle multigrid(Figure(4.11)) . The case γ = 2 is known as the W-cycle

multigrid as illustrate in Figure (4.12).
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~umh
Ω1

Ω2

ΩM−1

ΩM

~umh

Figure 4.12. W-Cycle of the Multigrid method.
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5. THE IFE-AMG ALGORITHM

In the following we will introduce the AMG method [65, 66, 72, 77] that is appropri-

ate for solving the linear system (3.32) which arises from the IFE method. Let A1
h = Ah,

~u1h = ~uh, ~b1h = ~bh. Then in one V-cycle a sequence of linear systems

Am
h ~u

m
h = ~bmh , m = 1, · · · ,M,

can be generated from different grid levels. Here Am
h =

(
amij
)
nm×nm

, ~bh = (bmi )nm×1,

~uh = (umi )nm×1, and n = n1 > n2 > · · · > nm. Now we discuss two main phases of the

AMG algorithm: setup phase and solution phase [65].

5.1. SETUP PHASE OF AMG

5.1.1. Construction of the Coarser Grid. In the setup phase, let Ωm denote

the set of unknowns umi (1 ≤ i ≤ nm) of the mth grid level. And the coarser grid Ωm+1 is

chosen as a subset of Ωm, which is denoted as Cm in the mth grid level. The remaining

subset Ωm − Cm will be denoted by Fm. A point umi is said to be strongly connected to

umj , if

|amij | ≥ η ·max
i 6=j
|amij |, 0 < η ≤ 1. (5.53)

Let Sm
i denote the set of all strongly connection points of umi and let the coarse

interpolatory set Cm
i = Cm ∩ Sm

i . In general, Cm and Fm are chosen by the following

criteria:

(C1) For each umi ∈ Fm, each point umj ∈ Sm
i should be either in Cm

i itself or should

strongly connected to at least one point in Cm
i ;

(C2) Cm should be maximal subset of all points with the property that no two C-points
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are strongly connected to each other.

Define the set of points which are strongly connected to umi to be

Sm,T
i ≡ {umj : umi ∈ S

m
j }. (5.54)

For a set P , let |P | denote the number of the elements in P . Then Algorithm 4 is proposed

by Ruge and Stüben in [66, 70] can be used to chose the coarse grid Ωm+1 = Cm and Fm.

Algorithm 4 The construction of coarse grid
Input: Ωm.
Output: Cm and Fm.
Method:

1: Cm ← ∅, Fm ← ∅, ~umh ← Ωm and λmk = |Sm,T
k | (1 ≤ k ≤ nm)

2: for (1 ≤ i ≤ nm) do

3: if (~umh 6= ∅) then

4: Pick the umi ∈ ~u
m
h such that λmi = max

1≤k≤nm

λmk , and set Cm = Cm ∪ {umi }, ~u
m
h =

~umh − {u
m
i }

5: for (all umj ∈ S
m,T
i ∩ ~umh ) do

6: Set Fm = Fm ∪ {j} and ~umh = ~umh − {j}
7: for (all uml ∈ S

m
j ∩ ~u

m
h ) do

8: set λml = λml + 1
9: end for

10: end for

11: for (all umj ∈ S
m
i ∩ ~u

m
h ) do

12: set λmj = λmj − 1
13: end for

14: else

15: Stop.
16: end if

17: end for

5.1.2. The Interpolation and Restriction Operators. Once the coarse

grid Ωm+1 is chosen, the interpolation operators Imm+1, restriction operators Im+1
m and the

coarse grid equation can be constructed as follows. Let Nm
i = {umj ∈ Ωm : j 6= i, amij 6= 0}
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denote the neighborhood of a point umi ∈ Ωm, and Dm
i = Nm

i − C
m
i . Then the set of the

fine grid neighborhood points which are strong connected to umi will be Dm,s
i = Dm

i ∩S
m
i ,

and the rest set of the neighborhood points which are weakly connected (non-strong

connected) to i will be Dm,w
i = Dm

i −D
m,s
i . Each umi ∈ C

m can be directly interpolated

from the corresponding variable in Ωm+1 with unity weight. Each umi ∈ Fm can be

interpolated as a weighted summation of the points in the coarse interpolatory set Cm
i .

Assume umi ∈ Cm is corresponding to um+1
ki

∈ Ωm+1. Ruge and Stüben proposed the

corresponding interpolation formula [66]:

Imm+1{u
m+1
k }nm+1

k=1 =





um+1
ki

∀umi ∈ C
m

∑

{j:um
j ∈Cm

i }

wm
iju

m+1
kj

∀umi ∈ F
m (5.55)

where

wm
ij = −

1

amii +
∑

{r:um
r ∈Dm,w

i }

amir


amij +

∑

{r:um
r ∈Dm,s

i }

amira
m
rj

/
∑

{l:um
l
∈Cm

i }

amil


 (5.56)

The Galerkin type method in [66] is a simple approach to define the restriction

operator Im+1
m

Im+1
m = (Imm+1)

T (5.57)

and

Am+1
h = Im+1

m Am
h I

m
m+1,

~bm+1
h = Im+1

m
~bmh I

m
m+1.

5.2. SOLUTION PHASE OF AMG

In the solution phase, the smoothing operator needs to be chosen with proper param-

eters ν1 and ν2, which are the number of the pre-smoothing and post-smoothing steps. In

the next chapter, we will investigate the influence of the type of the operator (Gauss-Seidel
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and incomplete LU) and these two parameters. Furthermore, we will consider V-cycle

only with the maximum number of levels M in this article. Another critical component

of AMG is the stopping tolerance, which may have significant effect on the accuracy.

Our study in the next chapter shows that the tolerance needs to be small enough for the

chosen mesh size. Once all the above components are specified, the recursively defined

IFE-AMG algorithm (Algorithm 5) with V-cycle can be proposed in the usual framework

as follows [66].

Remark 5.1. For the moving interface case, the IFE-AMG algorithm proposed above can

be utilized to solve the linear system at each time iteration step with

Ah = M
n+ 1

2
,n+ 1

2
h +

τ

2
A

n+ 1
2
,n+ 1

2
,n+ 1

2
h ,

~bh =
(
M

n+ 1
2
,n+ 1

2
h −

τ

2
A

n+ 1
2
,n+ 1

2
,n+ 1

2
h

)
~un + τ ~fn+ 1

2
,n+ 1

2 .
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Algorithm 5 The IFE-AMG algorithm of the elliptic interface problem

Input: Model parameters and AMG parameters
Output: IFE-AMG approximation solution ~uh.
Method:

1: Assemble the matrix from the IFE formulation: Ah = (aij)n×n with aij =∑
T∈Th

∫
T
β∇φki · ∇φkjdX where φki, φkj ∈ S

IFE
h,0 (Ω)

2: Assemble the vector from the IFE formulation: ~bh = (fi)n×1 with fi =

∑
T∈Th

∫
T
φkifdX −

∑
s∈Ib

h

(
∑

T∈Th

∫
T
β∇φki · ∇φsdX

)
g(Xs) where φki ∈ SIFE

h,0 (Ω) and

φs ∈ SIFE
h (Ω)

3: relative residual= 1, ~uh = 0
4: while relative residual>tolerance do

5: m = 1, A1
h = Ah, ~b1h = ~bh, ~u1h = ~uh

6: Call algorithm MG(Am
h , ~u

m
h ,
~bmh ,Ω

m, ν1, ν2, m) as follows:
7: Call Algorithm 4 with Ωm to obtain the Cm and Fm

8: Set Ωm+1 = Cm

9: Define Imm+1, I
m+1
m = (Imm+1)

T

10: Pre-smooth: ~umh :=smooth(Am
h , ~u

m
h ,
~bmh , ν1)

11: Residual: ~rmh = ~bmh − A
m
h ~u

m
h

12: Coarsening: ~rm+1
h = Im+1

m ~rmh I
m
m+1, Am+1

h = Im+1
m Am

h I
m
m+1,

~bm+1
h =

Im+1
m

~bmh I
m
m+1

13: If m==M
14: Solve: Am+1

h δm+1 = ~rm+1
h

15: Else
16: Recursion: δm+1 = MG(Am+1

h , 0, ~rm+1
h ,Ωm+1, ν1, ν2, m+ 1)

17: EndIf
18: Correction: ~umh = ~umh + Imm+1δ

m+1Im+1
m

19: Post-smooth: ~umh :=smooth(Am
h , ~u

m
h ,
~bmh , ν2)

20: END of MG
21: ~uh = ~u1h
22: relative residual =

∥∥∥~bh − Ah~uh

∥∥∥ /
∥∥∥~bh
∥∥∥

23: end while
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6. NUMERICAL EXPERIMENTS

In this section, we present numerical examples to illustrate the features of bilinear

and linear immersed finite element methods with algebraic multigrid solvers for both the

stationary and moving interface problems. We set the initial vector u0 to be 0 and the

strongly connection threshold η = 0.25. We denote number of V-cycles by V’s, the size

of the coarsest mesh by Nc, and the stopping tolerance on residual by tol. The Gauss-

Seidel (GS) and incomplete LU (ILU) iterations are compared as the pre-soothing and

post-smoothing operations.

6.1. EXPERIMENTS FOR STEADY INTERFACE PROBLEM

We consider the steady interface problem defined by (1.1)-(1.3) on the typical rectan-

gular domain Ω = [−1, 1]×[−1, 1]. The interface curve Γ is a circle with radius r0 = π/6.28

that separates Ω into two sub-domains Ω− and Ω+ with Ω− = {(x, y) | x2 + y2 ≤ r20}.

The coefficient function is

β(x, y) =





β−, (x, y) ∈ Ω−,

β+, (x, y) ∈ Ω+.

where β− = 1 and β+ = 10 are chosen in this example. The boundary condition function

g(x, y) and the source term f(x, y) are chosen such that the following function u is the

exact solution.

u(x, y) =





rα

β− , if r ≤ r0,

rα

β+ +

(
1
β− −

1
β+

)
rα0 , otherwise,

(6.58)

with α = 5, r =
√
x2 + y2. We use the bilinear immersed finite elements in this numer-

ical experiment.
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6.1.1. The Experiments for the Optimal Convergence Rate. The errors

of the IFE-AMG solutions with Gauss-Seidel smoother and various step size are given in

Table 6.1 and Table 6.2 . Using linear regression, we can also see that the errors in those

table obey the following results:

• Linear regression for Table 6.1

‖u− uh‖L2 ≈ 0.4354h2.0104,

|u− uh|H1 ≈ 0.9115h0.9895.

• Linear regression for Table 6.2

‖u− uh‖L2 ≈ 0.4381h2.0124,

|u− uh|H1 ≈ 0.9115h0.9895.

Table 6.1. Errors of the bilinear IFE-AMG solution for the elliptic interface problem with

GS smoother, tol = 10−8, and (ν1, ν2) = (1, 1).

h Nc ‖u− uh‖L2 |u− uh|H1 ‖u− uh‖l∞ V’s

1/16 52 1.65383× 10−3 5.88161× 10−2 9.50028× 10−4 9

1/32 262 4.10020× 10−4 2.94836× 10−2 4.85354× 10−4 22

1/64 972 1.01550× 10−4 1.48173× 10−2 3.25858× 10−4 22

1/128 3472 2.53035× 10−5 7.52028× 10−3 1.59749× 10−4 45
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Table 6.2. Errors of the bilinear IFE-AMG solution for the elliptic interface problem with

GS smoother, tol = 10−8, and (ν1, ν2) = (2, 2).

h Nc ‖u− uh‖L2 |u− uh|H1 ‖u− uh‖l∞ V’s

1/16 52 1.65383× 10−3 5.88161× 10−2 9.50035× 10−4 7

1/32 262 4.09991× 10−4 2.94836× 10−2 4.85435× 10−4 19

1/64 972 1.01487× 10−4 1.48173× 10−2 3.25996× 10−4 19

1/128 3472 2.51954× 10−5 7.52028× 10−3 1.60087× 10−4 39

The errors of the IFE-AMG solutions with incomplete LU smoother and various

step size are given in Table 6.3 and Table 6.4. Using linear regression, we can also see

that the errors in those table obey the following results:

• Linear regression for Table 6.3

‖u− uh‖L2 ≈ 0.4432h2.0158,

|u− uh|H1 ≈ 0.9115h0.9895.

• Linear regression for Table 6.4

‖u− uh‖L2 ≈ 0.4383h2.0126,

|u− uh|H1 ≈ 0.9115h0.9895.
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Table 6.3. Errors of the bilinear IFE-AMG solution for the elliptic interface problem with

ILU smoother, tol = 10−8, and (ν1, ν2) = (1, 1).

h Nc ‖u− uh‖L2 |u− uh|H1 ‖u− uh‖l∞ V’s

1/16 52 1.65383× 10−3 5.88161× 10−2 9.50021× 10−4 2

1/32 262 4.10047× 10−4 2.94836× 10−2 4.85274× 10−4 3

1/64 972 1.01640× 10−4 1.48173× 10−2 3.25641× 10−4 4

1/128 3472 2.49837× 10−5 7.52027× 10−3 1.60422× 10−4 7

Table 6.4. Errors of the bilinear IFE-AMG solution for the elliptic interface problem with

ILU smoother, tol = 10−8, and (ν1, ν2) = (2, 2).

h Nc ‖u− uh‖L2 |u− uh|H1 ‖u− uh‖l∞ V’s

1/16 52 1.65383× 10−3 5.88161× 10−2 9.50022× 10−4 1

1/32 262 4.10048× 10−4 2.94836× 10−2 4.85274× 10−4 2

1/64 972 1.01303× 10−4 1.48173× 10−2 3.26107× 10−4 2

1/128 3472 2.51978× 10−5 7.52028× 10−3 1.59894× 10−4 5

These linear regressions indicate that the bilinear IFE-AMG solutions with Gauss-

Seidel or incomplete LU smoothers can converge in the optimal rates, which are second

order in L2 norm and first order in H1 semi-norm.

6.1.2. The Experiments for the Influence of the Smoother on V-cycle.

The smoother usually has significant impact on the efficiency and accuracy of the solu-

tion. From Table 6.2 and Table 6.4, it can be also easily observed that the incomplete LU

smoother significantly reduces the number of V-cycles, which dramatically improve the
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efficiency of the IFE-AMG method. Furthermore, from Table 6.5, we can also see that

the increase of the number of smoothing steps may decrease the the number of V-cycles

while it increases the cost in smoothing phase. Hence the number of smoothing steps

needs to be chosen properly in order to balance the total cost.

Table 6.5. Number of V-cycles of the bilinear IFE-AMG solution for the elliptic interface

problem with tol = 10−8, (ν1, ν2) = (2, 2).

GS smoother ILU smoother

h #s = 1 #s = 2 #s = 3 #s = 1 #s = 2 #s = 3

1/16 9 7 6 2 1 1

1/32 22 19 17 3 2 1

1/64 22 19 18 4 2 2

1/128 45 39 36 7 5 4

6.1.3. The Experiments for the Influence of the Tolerance on the Con-

vergence. In the following we will investigate the influence of the tolerance on the

convergence of the IFE solutions for the interface problems. From Table 6.2 and Table

6.4, we can see that the bilinear IFE-AMG solutions with both Gauss-Seidel and incom-

plete LU smoothers converge in the optimal rates when tol = 10−8. However, from Table

6.6-6.9, we can see that when tol = 10−5, tol = 10−6 the bilinear IFE-AMG solutions

do not perform optimally any more. This indicates that the tolerance needs to be small

enough for the chosen mesh size in order to keep the optimal convergence.
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Table 6.6. Errors of the bilinear IFE-AMG solution for the elliptic interface problem with

GS smoother and tol = 10−5, (ν1, ν2) = (2, 2).

h Nc ‖u− uh‖L2 |u− uh|H1 ‖u− uh‖l∞ V’s

1/16 52 1.64796× 10−3 5.88162× 10−2 9.58376× 10−4 4

1/32 262 3.77347× 10−4 2.94853× 10−2 6.18271× 10−4 9

1/64 972 4.15913× 10−4 1.48661× 10−2 7.18952× 10−4 8

1/128 3472 6.82136× 10−4 7.71096× 10−3 8.25904× 10−4 15

Table 6.7. Errors of the bilinear IFE-AMG solution for the elliptic interface problem with

ILU smoother and tol = 10−5, (ν1, ν2) = (2, 2).

h Nc ‖u− uh‖L2 |u− uh|H1 ‖u− uh‖l∞ V’s

1/16 52 1.65383× 10−3 5.88161× 10−2 9.50022× 10−4 1

1/32 262 4.08628× 10−4 2.94836× 10−2 4.87086× 10−4 1

1/64 972 3.87171× 10−4 1.48596× 10−2 5.46570× 10−4 1

1/128 3472 9.83024× 10−4 7.90898× 10−3 1.17598× 10−3 2
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Table 6.8. Errors of the bilinear IFE-AMG solution for the elliptic interface problem with

GS smoother and tol = 10−6, (ν1, ν2) = (2, 2).

h Nc ‖u− uh‖L2 |u− uh|H1 ‖u− uh‖l∞ V’s

1/16 52 1.65322× 10−3 5.88161× 10−2 9.51021× 10−4 5

1/32 262 4.03984× 10−4 2.94836× 10−2 5.03028× 10−4 12

1/64 972 9.35785× 10−5 1.48173× 10−2 3.56913× 10−4 12

1/128 3472 6.39989× 10−5 7.52157× 10−3 2.28196× 10−4 36

Table 6.9. Errors of the bilinear IFE-AMG solution for the elliptic interface problem with

ILU smoother and tol = 10−6, (ν1, ν2) = (2, 2).

h Nc ‖u− uh‖L2 |u− uh|H1 ‖u− uh‖l∞ V’s

1/16 52 1.65383× 10−3 5.88161× 10−2 9.50022× 10−4 1

1/32 262 4.08628× 10−4 2.94836× 10−2 4.87086× 10−4 1

1/64 972 1.01303× 10−4 1.48173× 10−2 3.26107× 10−4 2

1/128 3472 7.94820× 10−5 7.52023× 10−3 2.26107× 10−4 3

In the last experiments, the results show that the stop tolerance will affect the

convergence rate of the IFE solutions for the interface problems.

6.2. EXPERIMENTS FOR THE MOVING INTERFACE PROBLEM

We consider the moving interface problem defined by (1.4)-(1.6) on Ω × [0, Tend],

where Ω = (−1, 1)× (−1, 1) and Tend = 1. The interface Γ(t) is a moving circle centered

at origin with radius r(t) which separates Ω into two sub-domains Ω−(t) = {(x, y) ∈ Ω :

x2 + y2 < r(t)2}, and Ω+(t) = {(x, y) ∈ Ω : x2 + y2 > r(t)2}. Let β− = 1 and β+ = 10.
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The exact solution is chosen as:

u(t, x, y) =





rα

β−
cos(t), r(t) ∈ Ω−(t),

rα

β+ cos(t) +
(

1
β−
− 1

β+

)
r(t)α cos(t), r(t) ∈ Ω+(t).

(6.59)

In all the numerical examples presented below, the radius change is governed by r(t) =

r0

(
sin(t)+3

4

)
with r0 = π

6.28
, and we use triangular Cartesian meshes Th which are formed

by partitioning Ω with Ns × Ns rectangles of size h = 2/Ns and then cutting each rect-

angle into two triangles alone one of its diagonal line. For time discretization, we denote

its step size by τ and define tn = nτ , with n = 1, 2, · · · , N . We use the linear immersed

finite elements in this numerical experiment.

The errors of the IFE-AMG solutions with Gauss-Seidel smoother and various step

size are given in Table 6.10. Using linear regression, we can also see that the errors in

this table obey

‖u− uh‖L2 ≈ 0.6882h1.9381,

|u− uh|H1 ≈ 0.6709h0.9234.

The errors of the IFE-AMG solutions with incomplete LU smoother and various step size

are given in Table 6.11. Using linear regression, we can also see that the errors in this

table obey

‖u− uh‖L2 ≈ 0.6883h1.9382,

|u− uh|H1 ≈ 0.6709h0.9234.
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Table 6.10. Errors of the bilinear IFE-AMG solution for the moving interface problem

with GS smoother, tol = 10−8, and (ν1, ν2) = (2, 2).

h Nc ‖u− uh‖L2 |u− uh|H1 ‖u− uh‖l∞ V’s

1/16 72 3.2659× 10−3 5.2764× 10−2 1.5801× 10−3 6

1/32 152 8.1519× 10−4 2.6920× 10−2 9.2506× 10−4 7

1/64 772 2.1175× 10−4 1.4116× 10−2 4.5706× 10−4 14

1/128 2632 5.8132× 10−5 7.7486× 10−3 2.5078× 10−4 18

Table 6.11. Errors of the bilinear IFE-AMG solution for the moving interface problem

with ILU smoother and tol = 10−8.

h Nc ‖u− uh‖L2 |u− uh|H1 ‖u− uh‖l∞ V’s

1/16 72 3.2659× 10−3 5.2764× 10−2 1.5801× 10−3 1

1/32 152 8.1519× 10−4 2.6920× 10−2 9.2506× 10−4 1

1/64 772 2.1175× 10−4 1.4116× 10−2 4.5711× 10−4 1

1/128 2632 5.8122× 10−5 7.7486× 10−3 2.5078× 10−4 2

These linear regressions indicate that the bilinear IFE-AMG solutions with Gauss-

Seidel or incomplete LU smoothers can converge in the optimal rates, which are second

order in L2 norm and first order in H1 semi-norm. From Table 6.10 and Table 6.11, it

can be also easily observed that the incomplete LU smoother significantly reduces the

number of V-cycles, which dramatically improve the efficiency of the IFE-AMG method.

It is also clearly showed in Fig 6.1 that the algebraic multigrid solvers are stable

and efficient for the linear systems arising from the IFE methods since the residual error
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quickly decreases to a small magnitude.
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Figure 6.1. Residual after each iteration of V-cycle at t = 1 when GS smoother is used.

Furthermore, Tables 6.12 and 6.13 provide the number of V-cycles of the linear IFE-

AMG solution at different time steps when the interface locations are different. We can

observe that the number of V-cycles for Gauss-Seidel smoother depend on the moving

interface locations but not very severely. The incomplete LU smoother can reduce the

dependence of the number of V-cycles on the moving interface since it needs much less

number of V-cycles than the Gauss-Seidel smoother.

Table 6.12. Number of V-cycles of the linear IFE-AMG solution at different time steps

for the moving interface problem with GS smoother and tol = 10−8.

h t = △t t = 1
4

t = 1
2

t = 3
4

t = 1

1/32 8 8 13 8 7

1/64 8 8 12 8 14

1/128 9 13 19 15 18
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Table 6.13. Number of V-cycles of the linear IFE-AMG solution at different time steps

for the moving interface problem with ILU smoother and tol = 10−8.

h t = △t t = 1
4

t = 1
2

t = 3
4

t = 1

1/32 1 1 1 1 1

1/64 1 1 1 1 1

1/128 1 2 2 2 2
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7. CONCLUSIONS AND FUTURE WORK

7.1. CONCLUSIONS

In this thesis, we discussed the bilinear and linear immersed finite element (IFE)

solutions from the algebraic multigrid solver for both stationary and moving interface

problems. The feature of the symmetric positive-definite matrices from the IFE meth-

ods naturally matches the corresponding need of the algebraic multigrid solver in order

to guarantee its efficiency. Furthermore, the combination of the other features of the

algebraic multigrid method and the IFE methods, such as the preconditioning property,

independence of geometry, optimal convergence rates, flexibility to handle the interface

on structured meshes instead of body-fitting meshes, can dramatically improve the ef-

ficiency of the proposed methods when the IFE-AMG method is applied to real world

applications. The numerical experiments are performed to demonstrate these features as

well as the influence of the tolerance and the smoother on the efficiency and convergence.

7.2. FUTURE WORK: IFE-AGMG SOLVER

We will investigate the immersed finite elements with aggregation-based algebraic

multigrid method (IFE-AGMG) in the future. The AGMG[62] and the AMG is the

algorithm for coarsening.In this section, we will recall the aggregation-based coarsening

algorithm. More Detailed descriptions may ne found in[2],[62] and [1].

Coarsening by aggregation works differently from the classical AMG. It needs to

define aggregates Gi, which are some disjoint subsets of the set of variables. The number

of coarse variables nc is the number of such subsets, and Ac = P TAP , where P is given

by

Pij =





1 if i ∈ Gj

0 otherwise
(1 ≤ i ≤ n, 1 ≤ j ≤ nc). (7.60)
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If ∪iGi = [1, n], P is a Boolean matrix with exactly one nonzero entry per row. Details

are given in Algorithm (6) and Algorithm (7). Similar to the classical AMG coarsening,

the AGMG is also based on the strong negative couplings. One defines the set of nodes

Si to which i is strongly negatively coupled, using the Strong/Weak coupling threshold

β:

Si = {j 6= i|aij < −βmaxaik<0|aik|}. (7.61)

Then, one picks up an unmarked node i at a time, giving the priority to nodes with

minimal mi, where mi is the number of unmarked nodes that are strongly negatively

coupled to i.

Algorithm 6 Pairwise aggregation

Input: Matrix A = (aij) with n rows, Strong/ Weak coupling threshold β, Logical
parameter CheckDD
Output: Number of coarse variables nc and subset (aggregates) Gi, i = 1 . . . , nc,(such
that Gi ∩Gj = ∅ for i 6= j)
Metode:

1: if (CheckDD) then

2: U = [1, n]\{i|aii > 5
∑

j 6=i |aij|}
3: else

4: U = [1, n]
5: end if

6: for (all i) do

7: Si = {j ∈ U\{i}|aij < −βmaxaik<0|aik|}, mi = |{j|i ∈ Sj}|; nc = 0
8: end for

9: while U 6= ∅ do
10: Select i ∈ U with minimal mi;nc = nc + 1
11: Select j ∈ U such that aij = mink∈Uaik
12: if (j ∈ Si) then

13: Gnc
= i, j

14: else

15: Gnc
= i

16: end if

17: U = U\Gnc

18: for (k ∈ Gnc
,l ∈ Sk) do

19: l = ml − 1
20: end for

21: end while
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Algorithm 7 Double pairwise aggregation

Input: Matrix A = (aij) with n rows, Strong/ Weak coupling threshold β, Logical
parameter CkDD
Output: Number of coarse variables nc and subset (aggregates) Gi, i = 1 . . . , nc,(such
that Gi ∩Gj = ∅ for i 6= j)
Metode:

1: Apply Algorithm (6) to A with threshold β and CheckDD = CkDD

2: Output: nc1, and G
(1)
i , i = 1, . . . , nc1

3: Compute the nc1 × nc1 auxiliary matrix A1 = (a
(1)
ij ) with

4: a
(1)
ij =

∑
k∈G

(1)
i

∑
l∈G

(1)
j

akl

5: Apply Algorithm (6) to A1 with threshold β and CheckDD = false

6: nc1, and G
(2)
i , i = 1, . . . , nc1

7: For i = 1, . . . , nc : Gi = ∪
j∈G

(2)
i

G
(1)
j

Once the five components Ωm, Im+1
m , Imm+1, A

m and Gm (the smoothing operator) are

defined, the recursively defined IFE-AGMG cycle is as algorithm (8). We will investigate

the properties of IFE-AGMG and then compare them with the IFE-AMG’s in the future.
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Algorithm 8 The Immersed Finite Element with Aggregation-based Algebraic Multigrid
Algorithm

Input: Matrix A, F , Initial value U0
h , Smooth parameters (ν1, ν2)

Output: Approximation solution Ũh.
Metode:

1: Assemble the matrix from the IFE formulation: Ah = (aij)n×n with aij =∑
T∈Th

∫
T
β∇φki · ∇φkjdX where φki, φkj ∈ S

IFE
h,0 (Ω)

2: Assemble the vector from the IFE formulation: ~bh = (fi)n×1 with fi =

∑
T∈Th

∫
T
φkifdX −

∑
s∈Ib

h

(
∑

T∈Th

∫
T
β∇φki · ∇φsdX

)
g(Xs) where φki ∈ SIFE

h,0 (Ω) and

φs ∈ SIFE
h (Ω)

3: relative residual= 1, ~uh = 0
4: while relative residual>tolerance do

5: m = 1, A1
h = Ah, ~b1h = ~bh, ~u1h = ~uh

6: Call algorithm MG(Am
h , ~u

m
h ,
~bmh ,Ω

m, ν1, ν2, m) as follows:
7: Call Algorithm 7 with Ωm to obtain the Cm and Fm

8: Set Ωm+1 = Cm

9: Define Imm+1, I
m+1
m = (Imm+1)

T

10: Pre-smooth: ~umh :=smooth(Am
h , ~u

m
h ,
~bmh , ν1)

11: Residual: ~rmh = ~bmh − A
m
h ~u

m
h

12: Coarsening: ~rm+1
h = Im+1

m ~rmh I
m
m+1, Am+1

h = Im+1
m Am

h I
m
m+1,

~bm+1
h =

Im+1
m

~bmh I
m
m+1

13: If m==M
14: Solve: Am+1

h δm+1 = ~rm+1
h

15: Else
16: Recursion: δm+1 = MG(Am+1

h , 0, ~rm+1
h ,Ωm+1, ν1, ν2, m+ 1)

17: EndIf
18: Correction: ~umh = ~umh + Imm+1δ

m+1Im+1
m

19: Post-smooth: ~umh :=smooth(Am
h , ~u

m
h ,
~bmh , ν2)

20: END of MG
21: ~uh = ~u1h
22: relative residual =

∥∥∥~bh − Ah~uh

∥∥∥ /
∥∥∥~bh
∥∥∥

23: end while
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