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ABSTRACT 

 

 

 Microarray technology is a useful tool for studying the expression levels of 

thousands of genes or exons within a single experiment.  Data from microarray 

experiments present many challenges for researchers since costly resources often limit 

the experimenter to small sample sizes and large amounts of data are generated.  The 

researcher must carefully consider the appropriate statistical analysis to use that aligns 

with the experimental design employed.  In this work, statistical issues are investigated 

and addressed for a microarray experiment that examines how expression levels change 

over time as individuals are sleep deprived.  Over the course of 48 hours of sleep 

deprivation, RNA is collected from saliva samples of two study participants.  These 

samples were hybridized to exon microarrays to measure gene and exon expression at 

three different time points.  Five different statistical analyses are conducted to test for 

expression differences over time.  These analyses are carefully scrutinized and a thorough 

investigation is conducted on the microarray data.  The different analyses elicited 

different findings.  Several genes and exons are identified as differentially regulated over 

time and should be examined closer with regard to their relationship to sleep deprivation. 
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1. INTRODUCTION 

 

 

 

1.1 GENERAL OVERVIEW 

 

There are many different reasons why scientists study the human genome. The 

study of gene expression has commonly focused on detecting significant differences in 

the expression patterns of genes [1]. These differences are then explored further and 

studied in conjunction with diseases or inherited traits. Through the use of gene 

expression studies specific genes have been linked to certain diseases. Also these patterns 

have greatly aided in predicting the outcomes for these epidemics as well as determining 

treatments and courses of action. Just as there are many different reasons one might want 

to study gene expression patterns, there are different tools used to obtain information 

about the genes. Figure 1.1 shows the different components of a gene. 

 

 

Figure 1.1 Exons Contained Within a Gene

 



 

 

A gene is a section of DNA located on a part of a chromosome containing 

chemical information necessary to specify certain proteins from RNA [2]. Genes contain 

relevant information that make each organism's cells and help to pass genetic information 

and traits to their offspring. Every living being has many different genes, each linked to 

various biological traits. There are approximately 20,000 genes in the human genome that 

are responsible for encoding proteins and RNA chains. In the genes of certain organisms 

that have a membrane bound nucleus, protein sequences are interrupted by stretches of 

DNA called introns. The introns are taken from the primary transcript during the 

formation of mRNA and the coding sequence that is left between the introns is called an 

exon. An exon is a sequence encoded by a gene that remains present within the final 

mature RNA product of that gene after introns have been removed via RNA splicing. The 

term exon refers to both the DNA sequence within a gene and to the corresponding 

sequence in RNA transcripts. Each gene contains many, different numbers of exons, 

hence there are more exons than there are genes as shown in Figure 1. 1. 

Just as there are many different reasons to study gene expression, there are also 

different methods that can be used to measure gene expression. Microarray analysis is a 

very popular method in which genes are studied. In a microarray analysis, mRNA is 

isolated from a tissue sample such as a saliva or blood sample; it is then copied several 

times through a process called PCR, or polymerase chain reaction [3]. Once a large 

quantity of mRNA has been made, it is chopped up into millions of short pieces. The 

short mRNA pieces are then labeled and loaded into a microarray for gene expression 

quantification as shown in Figure 1.2.  
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Figure 1.2 Microarray Technologies 

 

After the microarray data are collected, they are generally stored in .CEL files. A 

statistical software package R Bioconductor [4], more specifically the “Biobase” and 

“Oligo” libraries can be used to read the gene expression data. The RMA (Robust 

Multichip Average) method is used to preprocess the data into a usable format. The RMA 

process consists of three steps; background correction, quantile normalization and lastly 

summarization [5]. A background correction method adjusts the data for noise and cross 

hybridization. This step also scales the data appropriately for the analysis. Quantile 

normalization is the process of reducing unnecessary variation among the biological 

information. The arrayed data is scaled so that the quantiles of each probeset are equal 

and have the same distribution across all arrays within a treatment group. Lastly, the data 

is summarized as a gene expression measure and is sent to the output file i.e. multiple 

probes from the same gene are summarized so that we have one expression measurement 

per gene or exon.  
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1.2 MICROARRAY DATA 

Since gene expression measures help to study several biological variants in the 

human genome, it makes sense to think that a person’s sleeping pattern might affect the 

overall gene expression as well. The goals of the following analyses are to determine if 

any genes or exons are significantly expressed differently after sleep deprivation and 

identify the pattern, if any they follow over time. For the analysis, RNA from two human 

subjects was collected at three times: baseline prior to any sleep deprivation, after 24 

hours without sleep and finally after 48 hours of being sleep deprived. RNA was 

extracted from a saliva sample from each subject and hybridized to an Affymetrix Human 

Exon 1.0 ST microarray [6], resulting in expression data from six different microarrays. 

Table 1.1 shows the experimental set up where yij equals the expression level of subject j 

at time i for a particular gene or exon. 

 

Table 1.1 Experimental Observations 

Microarray Data 

 Baseline 24 Hours 48 Hours 

Subject 1 Y11 Y21 Y31 

Subject 2 Y12 Y22 Y32 

 

 

The objective is to detect genes/exons that are differentially expressed between 

the different times, giving a measure of which genes/exons may be associated with sleep 
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deprivation. The initial experiment examined 22,011 genes and 1,411,399 exons, 

however some of the biological units did not have reliable evidence supporting the 

transcription or mapping of the genomic sequence. Possible evidence levels included for 

the probe sets are core, extended and full. The most reliable evidence level obtained is 

classified as “core”. This classification refers to probe sets fully supported by RefSeq [7] 

and mRNA GenBank [8] or can be assigned reliably to a particular transcript cluster. 

Core was the only evidence level classification that was used for our analysis. After 

discarding the genes and exons whose evidence level was identified as extended or full 

we were left with 17,874 genes and 284,805 exons. A common theme throughout this 

study is testing the difference between the three time points, baseline, 24 and 48 hours. 

Several different tests were conducted to measure the difference between the three 

comparisons. This study deals with a few statistical issues as well. First of all there is a 

small sample size, and a lot of data being tested. Also there is a question of dependency 

in the biological units being compared. After both of these issues are combined into 

analyzing one set of data, tradeoffs are made in each test that is conducted. If one 

assumes that the data are dependent over time, fewer degrees of freedom are available 

with an already small sample. On the other hand, if the data is assumed to be independent 

over time, the variance will likely be inflated. Both of these options result in lowering the 

power of the tests conducted, so choosing an appropriate analysis is important. The study 

below analyzes the biological data at both the gene and exon level. As mentioned 

previously, there can be many exons per gene, so the exon level analysis is considerably 

lengthier. However the exon level data is specifically of interest because it is possible that 

in the saliva samples we may see cases where exons within the same gene show different 
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expression patterns. Also saliva degrades RNA, so specific exons may contain the most 

information. It is important to test at the exon level since the gene level analysis results 

may miss important differences, for example in a single exon when the probes are 

summarized across the whole gene.  
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2. STATISTICAL ANALYSIS - DEFINITIONS 

 

 

2.1 T-TEST 

The t-test is a statistical test that evaluates whether or not a population mean is 

equal to some value [9]. A t-test can be performed for one sample, two samples, and 

paired observations. In all three of these various t-tests, the true population mean and 

standard deviation are unknown. This is why a statistical test is conducted to test whether 

the true population mean is equal to some value. A one-sample t-test will test whether the 

population from which a sample was drawn has a mean value equal to a specific number 

thought to be the true mean. An independent two-sample t -test compares the means of 

two normally distributed populations. The two random samples taken from populations 

are assumed to be independent, meaning the first sample should not influence the second. 

Generally the test being conducted for an independent t-test is whether there is a 

difference between the two population means. The paired t-test on the other hand looks at 

the mean of the differences of two matched pairs or samples. In the paired t-test the 

population mean that is being tested is the mean difference or the average difference 

between the two sets of observations. Generally the hypothesis being tested for the paired 

t-test is that the mean difference is equal to zero. It is logical to assume that due to 

sampling error the sample mean will not be exactly equal to some theoretical value or the 

difference between two sample means will not be exactly zero even if this is true in the 

population. This is often due to random sampling error. The t-test tells us whether or not 

the true population mean differs from the value in question due to random sampling error 
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or due to true population differences. The main difference between the independent t-test 

and the paired t-test is that the paired test deals with how the data are collected on the 

statistical units in question. If the data measurements are taken on the same statistical 

units or we expect the data to have some correlation, a paired t-test is appropriate. If the 

difference being measured between the observations should not have any correlation or 

dependencies an independent t-test is the better analysis. 

2.1.1. Independent Two Sample T-Test: General Definition. An independent 

two sample t-test is a statistical test that measures the population mean difference 

between two independent populations [9]. In laymen’s terminology, this means that two 

different populations are being observed or analyzed, and the measured response in one 

group should not influence the response in the other group in any way. 

2.1.1.1 Assumptions. When performing an independent t-test, certain criteria 

should be met. The measured observations for each group should follow a normal 

distribution. This can be tested by looking at a normal probability plot and/or plotting a 

frequency histogram for the response variables. The normal probability plot that is 

observed should resemble an approximately straight line and the frequency histogram 

should be unimodal and fairly symmetric. Next, the measured observations must be 

obtained from different/unrelated statistical units. This should be the case for both the 

statistical units that are being compared to one another in different groups as well as the 

units in the same population group. Lastly, the variances for the two groups are assumed 

to be equal to one another. 

2.1.1.2 Hypothesis tests. The hypotheses being tested for the independent t-test 

are given below. 
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Null Hypothesis: The population means from the two unrelated groups are equal:   

Ho: µi - µi’ = 0.  

Alternative Hypothesis: The population means from the two groups are not equal:  

Ha: µi -  µi’ ≠ 0. 

Here we define yij to be the response value for the jth individual (j=1,…,n) under 

treatment i (i=1,2). 

2.1.1.3 Test statistic. The t-statistic for the independent t-test is computed by:

1 2

1 1
p

y y
T

s
n n






. Where we assume an equal sample size for the respective groups equal to 

n and 1y  and 2y are the sample means for the two independent groups respectively. sp is 

the pooled sample standard deviation for the data and s
2

p is the pooled sample variance 

for all of the data calculated by
2 2

2 1 2( 1) ( 1)

2
p

n s n s
s

n n

  


 
 . The pooled standard deviation 

is simply the square root of the pooled variance. The significant level of a hypothesis test 

represents the probability of committing a Type I error or a false positive result. 

Commonly, studies set the significance level alpha (α) to be 0.05 or 0.1 and obtain the t 

critical value by
,2( 1)nt 

. We compare the t-statistic to the t-critical value and reject the 

null hypothesis if |T| > t(α/2,2(n-1)). A p value is obtained after calculating the t-statistic. The 

p value represents the probability of obtaining a test statistic at least as extreme as what 

we did, if the null hypothesis is really true. We can think of the p value as the probability 

that the difference between the two sample means happened due to pure chance and not 

because there is a true difference. For example, a p-value of .05 suggests that there is a 
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5% probability that the difference between the means obtained from the sample was 

indeed random or by occurred chance. In other words, assuming that in the true 

population there was no difference in the means whatsoever, and this experiment was 

repeated one time after another, approximately one in every 20 replications might elicit a 

false positive claim that there is sample evidence to suggest a difference between 

population means. The smaller the p value the less likely we are to commit a Type I error. 

This is why we report p values rather than solely rejection conclusions. 

2.1.2. Independent Two Sample T-Test: Microarray Data. For this analysis, 

gene expression differences are examined between three time intervals. The expression 

measures are taken from the beginning of the trial (baseline), after 24 hours of sleep 

deprivation, and finally after each subject had gone 48 hours without sleep. An 

independent t-test is performed for each gene/exon three times. The first test compared 

the mean expression of the two subjects at baseline to that at 24 hours, the second test at 

baseline and 48 hours and the last at 24 and 48 hours. Although there is reason to believe 

the two samples are not independent since the data were collected on the same person, 

first an independent sample t-test is conducted to examine whether or not the genes and 

exons are correlated over time. It is logical to assume that some of the genes will be 

correlated while others may not. These results are compared to those of a paired t-test to 

examine this correlation. 

2.1.2.1 Assumptions. For our microarray data, we assume that the biological 

expressions of the two populations follow a normal distribution. Since the sample size is 

only two, we are not able to draw conclusions based on the appropriate tests for 

normality. We would always be able to draw a straight line between only two different 
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observations. However previous studies with larger sample sizes report that the gene 

expressions follow the normal distribution [10]. Furthermore, the t-test is robust against 

departures from normality. Our study examines expression measures for two individuals 

over a 48 hour time period of sleep deprivation. The data was analyzed looking at 

differences from the same individual amongst the times measured; however it is not 

unreasonable to assume that some genes and exons wouldn’t be related over time. Also 

one subject’s expression measure should not influence the others, thus the subjects are 

independent of one another. Finally, we assume that the variance is similar at the three 

different time points. 

2.1.2.2 Hypothesis tests. The specific hypotheses being tested for each gene or 

exon are given below. The expression measure is represented by yij for the jth subject 

(j=1, 2) at time i (i=1, 2, 3) for an individual gene or exon. The mean for each treatment 

time is calculated and compared to one another.  

Null Hypothesis: 

1.) There is no difference in mean expression measure between the baseline and 24 hours 

 of sleep deprivation: µ1 - µ2 = 0  

2.) There is no difference in mean expression measure between the baseline and 48 hours  

  of sleep deprivation: µ1 - µ3 = 0  

3.) There is no difference in mean expression measure between 24 and 48 hours of sleep  

  deprivation: µ2 - µ3 = 0 

Alternative Hypothesis: 

1.) There is a difference between the two means at baseline and 24 hours: µ1 - µ2  ≠ 0 

2.) There is a difference between the two means at baseline and 48 hours: µ1 - µ3 ≠ 0 
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3.) There is a difference between the two means at 24 and 48 hours: µ2 - µ3 ≠ 0 

2.1.2.3 Test statistic. A t-statistic is calculated multiple (17,874 times for the 

gene level analysis and 284,805 times for the exon level analysis) times. The two sample 

treatment means are subtracted from one another and compared to the pooled standard 

deviation or

2 2

1 2

2
p

s s
s




. In our study the sample size is two for all three treatments. 

This gives us two degrees of freedom. After the t-statistics are all computed, they are 

compared to the t-critical value T~t(α/2,2), or |T| > 4.303 for an alpha equal to 0.05. 

2.1.3. Paired T-Test: General Definition. A paired t-test is a statistical test that 

measures the population mean difference between two dependent populations [9]. In 

laymen’s terminology, this means that population difference that is observed or analyzed 

should be taken from related or similar statistical units. 

2.1.3.1 Assumptions. When performing a paired t-test, certain criteria should be 

met. First, one needs to assume that the paired differences follow a normal distribution. 

This can be tested by looking at a normal probability plot, and/or plotting a frequency 

histogram of the paired differences. Next, the matched differences must be obtained from 

the same statistical unit or a matched pair. This might mean looking at differences from 

the same person, plot of land, piece of machinery, etc. The key is that the two 

measurements should be related in some way or another. Finally, all of the paired 

differences should be independent of one another, meaning the difference of one 

statistical unit should not influence another. 

2.1.3.2 Hypothesis tests. The hypotheses being tested in the paired t-test are 

given below. 
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Null Hypothesis: The population mean difference is zero or Ho: µd = 0. 

Alternative Hypothesis: The population mean difference is not zero or Ha: µd ≠ 0. 

Here we define yij to be the response value for the jth individual (j=1,…,n) under 

treatment i (i=1,2). These can be used to calculate paired differences dj = y1j – y2j which 

represent the difference in response of the jth individual between treatments 1 and 2. In 

the hypothesis, µd represents the population mean of the differences. The paired t-test is 

actually a one-sample t-test on the paired differences. 

2.1.3.3 Test statistic. The t-statistic is computed by:
/d

d
T

s n


. Where d is the 

sample mean of the paired differences, computed by  d  =

1

n

j

j

d

n





, s2d is the sample 

variance of the paired difference, sd the sample standard deviation of the paired 

differences, calculated by 

2

1

( )

1

n

j

j

d

d d

s
n










  and n is the sample size. 

2.1.4. Paired T-Test: Microarray Data. For this analysis, differences in gene or 

exon expression were examined between three time intervals. Expression measures were 

obtained from the beginning of the trial (baseline), after 24 hours of sleep deprivation, 

and finally after each subject had gone 48 hours without sleep. A paired t-test is 

performed for each gene/exon three times. The first test compared the mean expression of 

the two subjects at baseline to that at 24 hours, the second test at baseline and 48 hours 

and the last at 24 and 48 hours. Since this part of the analysis looks to examine any 

differences between time points of the same subjects, a paired t-test was selected over an 
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independent, two-sample t-test. A degree of freedom is lost in performing this type of 

analysis, however if there is a positive correlation between the data collected on the same 

individual, there should also be less variance at the different time points. Because of the 

reduction in variance, the paired t-test can be more powerful than the independent t-test, 

especially in larger sample sizes when the correlation is moderately high. It is unclear 

from the data whether there will be such an improvement in variance reduction or not. 

The paired t-test will be compared to the independent t-test to examine this. 

2.1.4.1 Assumptions. For the microarray data, it is assumed that the paired 

differences follow a normal distribution. Since the sample size is only two, a test for 

normality cannot be conducted. However previous studies with larger sample sizes report 

that the paired differences follow this normal distribution [10]. This study examines 

expression measures for two individuals over a 48 hour time period of sleep deprivation. 

The data was analyzed looking at differences from the same individual amongst the times 

measured. The time points baseline, 24 and 48 hours should have some correlation in 

expression measure for the same individual. Lastly, one of the individual’s expression 

measures should not influence the other over the different times. 

2.1.4.2 Hypothesis test. The specific hypotheses being tested for each gene or 

exon are given below. The expression measure is represented by yij for the jth subject 

(j=1, 2) at time i (i=1, 2, 3) for an individual gene or exon. The paired differences are 

calculated by dij = yij – yi’j, which is the expression difference for the jth subject at time 

i and i’ (where i ≠ i’). In the hypotheses below, µdii’ represents the population mean of 

the differences at times i and i’. 

Null Hypothesis: 
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1.) There is no difference in mean expression measure between the baseline and 24 hours  

  of sleep deprivation: µd12 = 0. 

2.) There is no difference in mean expression measure between the baseline and 48 hours  

  of sleep deprivation: µd13 = 0. 

3.) There is no difference in mean expression measure between 24 and 48 hours of sleep  

  deprivation: µd23 = 0. 

Alternative Hypothesis: 

1.) There is a difference between the two means at baseline and 24 hours: µd12 ≠ 0. 

2.) There is a difference between the two means at baseline and 48 hours: µd13 ≠ 0. 

3.) There is a difference between the two means at 24 and 48 hours: µd23 ≠ 0. 

2.1.4.3 Test statistic. A t-statistic is calculated multiple (17,874 times for the 

gene level analysis and 284,805 times for the exon level analysis). The sample mean 

difference is calculated by summing the differences across time points from the 

individuals and dividing by the sample size. In our study the sample size is two, or n = 2. 

This leaves us with only one degree of freedom. A t-distribution with only one degree of 

freedom is also known as a Cauchy distribution. A comparison of the Cauchy distribution 

to a normal distribution is shown in Figure 2.1. Notice how the bell curve captures more 

observations around the mean while the Cauchy distribution has many observations 

falling under the thick right and left tails. After the t-statistics are all computed, they are 

compared to the t-critical value T~t(α/2,1), or |t| > 12.706 for an alpha equal to 0.05. 
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Figure 2.1 Normal vs. Cauchy Distribution 

 

2.2 ANALYSIS OF VARIANCE  

2.2.1. General Definition. A one-way analysis of variance (ANOVA) is similar to an 

independent two-sample t-test in that the test compares the population means for different 

treatment groups. A key difference between the two is that a one-way ANOVA allows for 

testing differences in population means when there are more than two treatment groups, 

and they are compared all at once. In general, ANOVA can test both main effects as well 

as interaction effects between the experimental variables [9]. The interaction effects looks 

at and tests a combination of variables, this is a multiplicative effect. In general, ANOVA 

allows for multiple main effects. These effects are additive. However for a one-way 

ANOVA, only one main effect is considered. A main effect measures the effect of one 

treatment variable against the response variable. It is different from the t-test because 
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here we can compare more than two means at one time. Also, the error degrees of 

freedom will increase and allows a better estimate of the error variance. Two different 

one-way ANOVA models can be considered: 

Factor Effects Model:   

Yij = µ + τi + εij   

Yij = Response for i
th

 treatment, j
th

 replicate i = 1, 2, …, a and j = 1, 2, …, n 

µ = Overall mean 

  τi = Treatment effect for i = 1, 2, …, a 

  εij = Error for i
th

 treatment, j
th

 replicate 
2~ (0, )

iid

ij N   

  and 
1

0
a

i

i

  since the model is over parameterized.  

Cell Means Model: 

Yij = µi + εij  

Yij = Response for i
th

 treatment, j
th

 replicate i = 1, 2, …, a and j = 1, 2, …, n 

  µi = Overall mean of treatment i, i =1, 2, …, a 

  εij = Error for i
th

 treatment, j
th

 replicate 
2~ (0, )

iid

ij N   

 

Table 2.1 ANOVA Table 

 

 

Source Degrees of Freedom Sums of Squares Mean Squared F Statistic Critical F Value

Treatment (a-1)

Error (N-a)

Total (N-1)

Anova

  
SSTreatment 

Yi

2

n


Y
2

Ni1

a



  

SSError  Yij  Y i 
2

j1

n


i1

a



  SSTotal  SSTreatment  SSError

 Treatment Treatment / 1  MS SS a 

 Error Error /MS SS N a 

Treatment Error/F MS MS 1,a N aF  
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Table 2.1 is summarized below: 

N is equal to a  n or the total number of observations. The total sum of squares can also 

be computed by: SSTotal = 2

1 1

( )
a n

ij

i j

Y Y 

 

 and can be thought of as the sums of squares 

composed of both error and the treatment. It is used to measure the overall variability of 

the data. Dividing the SS Total by the total degrees of freedom, you obtain the sample 

variance of the yij’s.  The total sum of squares can be thought of as being partitioned 

between a sum of squares differences between the treatment averages and grand mean 

(Sum of Squares Treatment) plus the sum of squares of the differences of observations 

within the treatments from the treatment average (Sum of Squares Error).  In the SS Error 

term, if we divide 2

1

( )
n

ij i

i

y y




  by (n – 1), this is the sample variance for the i
th

 

treatment. If we look at a (treatment levels) sample variances and combine them all 

together we obtain a single estimate of the population variance. This is equal to 

2

1 1

( )
a n

iij

i j

Y Y

N a



 






  or 

         

   
 , the Mean Squared Error, a pooled estimate of the variance 

across all of the treatments. If there aren’t differences between the treatment means, use 

the variation of the treatment averages subtracted from the grand mean to estimate the 

variance 

2

1

( )

1

a

i

i

n Y Y

a










 or 

            

   
, the Mean Squared Treatment. This is a valid 

estimate for the variance when the treatment means are equal. There are now two 

different ways to estimate the variance. One is based on variation within the treatments 

(MSE), the other looks at variability between the treatments (MSTreatments). When there is 
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no difference between the treatment means (the null hypothesis is true), the two mean 

squares should be very similar. If that is the case, the ratio between the two will elicit an 

F value near 1. Only if the F statistic is large enough relative to noise and signal in the 

data will we reject the null hypothesis in favor of the alternative. 

2.2.1.1 Assumptions. Some assumptions need to be met for the ANOVA model 

to be valid, mainly concerning the residuals of the error term, εij. These residuals are 

assumed to be normally, randomly distributed with a mean of zero and a common 

variance
2 . The residuals should be independent of one another, meaning the error from 

one observation should not influence another. Common types of residual plots are shown 

in Figure 2.2 The common variance assumption means that the residuals for the error 

term should be equal among all treatment groups, or the residuals are homogeneous.  

 

 

Figure 2.2 Diagnostic Plots for Residuals 
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Diagnostic tests are employed to evaluate these assumptions. One diagnostic test 

is a plot of the residuals versus the predicted values. Also the residuals can be plotted 

against the different treatment levels. The residual plots should look random and equally 

varied. If there is a clear trend in the plot of the residuals the model may need to be re-

evaluated. Another item to observe is the normal probability plot. This will test to see if 

the data is normally distributed. 

2.2.1.2 Overall f-test for equality of treatment means. The hypothesis being 

tested for the overall ANOVA is as follows (for the Factor Effects Model): 

Null Hypothesis: There is no difference between any of the population means for the 

treatment effects, or τ1 = τ 2 = … τ a = 0 (where a = number of treatment effects). 

Alternative Hypothesis: At least one of the population means for the treatment effects 

differs from one of the others, or τi ≠ 0 for at least one i. 

2.2.1.3 F-statistic. The F-Statistic is computed by: 

F0 = Treatments

Error

MS

MS
 or 

( 1)

( )

Treatment

Error

SS
a

SS
N a





 where a = the number of treatment groups and N = 

the total number of observations, or yij.. Commonly, studies chose alpha to be 0.05 or 0.1 

and obtain an F critical value by Fα, a-1, N-a as shown in Figure 2.3. This F critical value is 

compared to F0 and we reject the null hypothesis when F0 > Fα, a-1, N-a. After F0 is 

compared to the F critical value, if one decides to reject the null hypothesis that one of 

the treatment means is indeed different than the others, there are a few other tests that can 

be conducted to make statistical inferences regarding the differences in treatment means.  
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Figure 2.3 F Distribution with 2 Numerator and 3 Denominator Degrees of Freedom 

 

2.2.1.4 Contrasts for the ANOVA model. A contrast is a linear combination of 

the factor level population means defined as 1 1 ... a aL c c   
or 1

a

i i

i

c 



 where

1

0
a

i

i

c



. An orthogonal contrast is a contrast whose sum of the coefficients sum to zero 

[9]. Also the cross product of the coefficients should equal zero as well. The numbers of 

different orthogonal contrasts that can be observed are equal to the degrees of freedom 

for the treatment group, or the numerator degrees of freedom from the overall F test. 

Contrasts are generally useful in analyzing pre-planned comparisons for the data, or 

comparing treatment groups that the experimenters might already suspect to have 

differences before analyzing data.  

There are many different hypotheses to test when examining contrasts. Generally, 

assume that the coefficients, ci sum to zero, a general way to write the hypothesis tests 
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are as follows: 

 H0: L =
1

0
a

i i

i

c 


  

 Ha: 
1

0
a

i i

i

c 


   

The test statistic for the different contrasts of a one-way ANOVA model each 

follows a t-distribution. The contrast is written in terms of the sample treatment averages, 

1

a

i i

i

c y 



 and is compared to the mean square error. The test statistic is as follows:

1
0

2

1

a

i i

i

a
E

i

i

c y

t
MS

c
n












. This test uses the same degrees of freedom as the denominator 

degrees of freedom (i.e. the error degrees of freedom) as the overall F test and the null 

hypothesis is rejected if |t0| > tα/2,N-a. 

2.2.1.5 Pairwise comparisons for the ANOVA model. In some cases, 

researchers might be interested in only comparing two treatments, or pairs of means to 

one another. These are called pairwise comparisons and can be essentially thought of as a 

special type of contrast where only two of the treatment means have coefficients that are 

not equal to zero. One of the ci’s of interest will be equal to one and the other negative 

one. These pairwise comparisons are orthogonal because the coefficients sum to zero. 

The pairwise comparisons are similar to an independent t-test in that we are comparing 

two of the treatment means at one time, however the variance is computed differently and 

degrees of freedom are gained. If the variance estimate is decreased then this test should 

detect more differences than what would be found in a two-sample independent t-test.  
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The hypothesis test for the pairwise comparisons are similar again to the 

hypothesis for the contrasts only more specific because it only tests the difference of two 

population means. The null and alternative hypothesis tests are as follows: 

 Ho: µi - µi’ = 0 or the two population treatment means are equal to one another. 

 Ha: µi - µi’ ≠ 0 or the two population treatment means are not equal to one another.  

Again, the test statistic for the pairwise comparisons is similar to that of the contrasts. It 

also follows a t-distribution and is written in terms of the treatment averages. However 

since it is only testing the difference between two means, the general form is t0 =

'

2

i i

En

y y

MS

 
 Again this test statistic is compared to a critical t-value that is equal to tα/2,N-a 

and we reject the null hypothesis when |t0| > tα/2,N-a. 

2.2.2. Microarray Data. The microarray data in this experiment was gathered at 

several different time points, so it makes sense to test differences between the means of 

the different times. Again, this is different from the independent t-test because multiple 

means at one time as opposed to two.  Table 2.2 gives a general overview of the 

expression measures for each gene/exon. 
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Table 2.2 Observations and Means for Microarray Data 

Microarray Data 

 Baseline 24 Hours 48 Hours 
Subject 

Means 

Subject 1 Y11 Y21 Y31 
1Y

 

Subject 2 Y12 Y22 Y32 
2Y

 

Treatment 

Means 1Y 
 

2Y 
 

3Y 
 

Y  

 

 

Each subject has expression measures collected over the different time points, 
ijY , 

iY  is the treatment mean for the i
th

 time point, jY   is the mean for the j
th

 subject and Y

is the overall mean across all subjects and time points. These treatment means are 

compared to one another and tested to see if there are any statistically significant 

differences at the population level. The two alternate formulations of the one-way 

ANOVA here are: 

Factor Effects Model:   

Yij = µ + τi + εij   

Yij = Expression for i
th

 treatment, j
th

 replicate i = 1, 2, 3; j = 1, 2 

µ = Overall mean 

 τi = Treatment effect, i = 1, 2, 3 

 εij = Error for i
th

 treatment, j
th

 replicate i = 1, 2, 3; j = 1, 2 εij ~
iid

 N(0,σ
2
)  
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 and 
3

1

0i

i

  since the model is over parameterized.  

Means Model: 

Yij = µi + εij   

Yij = Expression for i
th

 treatment, j
th

 replicate i = 1, 2, 3 j = 1, 2 

 µi = Overall mean of treatment i, i = 1, 2, 3 

 εij = Error for i
th

 treatment, j
th

 replicate i = 1, 2, 3 j = 1, 2 εij ~
iid

 N(0,σ
2
) 

Table 2.1 shows the general ANOVA table, but the degrees of freedom can be 

specifically updated given the number of different treatments and replicates in the study. 

The treatment degrees of freedom are generally computed as (a-1). For the microarray 

data this is equal to two. The error degrees of freedom are calculated as (N-a) where N is 

the total number of observed expressions. For this data set, N = 6 so the error degrees of 

freedom is 3. The total degrees of freedom can be figured by (N-1) or (a-1) + (N-a), 

which is equal to 5 total degrees of freedom. 

2.2.2.1 Assumptions. While certain assumptions should be met for the ANOVA 

model to be valid, just like in the independent t-test we assume that these assumptions 

hold true. It is difficult to test the residuals of the error term simply because we have a 

small sample size. We assume that the error terms are normally, randomly distributed 

around zero and that they are independent of one another. We will account for the 

potential dependence between observations on the same subject in a repeated measures 

model. The results of these two models will be compared to examine the potential 

correlation in the data. 

2.2.2.2 Overall f-test for equality of treatment means. The specific hypotheses 
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being tested for each gene or exon are given below. The treatment effect mean is 

represented by τi at time i (i=1, 2, 3) for an individual gene or exon when using the factor 

effects model. Alternatively, if the cell means model is employed, the treatment mean is 

represented by µi at time i (i=1, 2, 3). The null and alternative hypothesis are listed 

below: 

Null Hypothesis: τ1 = τ2 = τ3 = 0 or all of the treatment effects are equal to zero or 

µ1 = µ2 = µ3 the treatment means are all equal.  

Alternative Hypothesis: At least one of the τi’s is not equal to zero or not all µi’s 

are equal. 

2.2.2.3 F-statistic. The F-statistic is computed for each gene or exon after the 

ANOVA table from Table 2.1 is calculated for each individual biological unit. It is 

figured by F0 =
2

3

Treatment

Error

SS

SS
and is then compared to the critical f-value or F0.05, 2, 3, which 

is 9.55. When F0 is greater than 9.55 the null hypothesis is rejected because there is 

sufficient evidence to suggest that the population treatment means/effects are not all 

equal to one another. 

2.2.2.4 Contrasts and pairwise comparisons. For the microarray data all of the 

orthogonal contrasts were tested. Since there are three different treatment groups there 

are two degrees of freedom associated with the treatment effect. Therefore there are two 

different orthogonal contrasts to test. The first contrast compares the mean of one 

treatment group to that of the other two or 1
1 1 2 32

( )C      and this is done three 

times so that each mean is compared to the other two. The other orthogonal contrast 

compares only two of the means to each other. Again, this contrast can be thought of as a 
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pairwise comparison because it is comparing a set of paired data. 2 1 2C     is tested 

so that the each treatment mean is compared to the other. 

The hypothesis test for the first contrast, C1 for the microarray data is as follows: 

Ho1: 2µ1 - µ2 - µ3 = 0  Ha1: 2µ1 - µ2 - µ3 ≠ 0 

  Ho2: 2µ2 - µ1 - µ3 = 0  Ha2: 2µ2 - µ1 - µ3 ≠ 0 

Ho3: 2µ3 - µ1 - µ2 = 0  Ha3: 2µ3 - µ1 - µ2 ≠ 0 

The hypothesis that is being tested for C1 is whether the treatment means of group i is 

different than the average of the other two treatment means. Each null hypothesis posits 

that there is no difference between the population treatment means while the alternative 

states that there is difference. The hypothesis test for C2 or the pairwise comparisons are 

as follows: 

  Ho1: µ1 - µ2 = 0   Ha1: µ1 - µ2 ≠ 0 

  Ho2: µ1 - µ3 = 0   Ha2: µ1 - µ3 ≠ 0 

Ho3: µ2 - µ3 = 0   Ha3: µ2 - µ3 ≠ 0 

These hypotheses are testing to see if there is a difference between two of the treatments. 

Again, each null hypothesis states that there is no difference between the two population 

treatment means, the alternative stating that there is a difference in the means. For the 

contrast C1  a t-statistic is calculated for each gene and exon. For the pairwise 

comparisons, each gene and exon has a test statistic. After the t-statistics are all 

computed, they are compared to the t-critical value T~t(α/2,3), or |T| > 3.187. 

 

 

2.3 MIXED MODEL 
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2.3.1. General Definition. A mixed model examines a relationship between a 

response variable along with predictor variables that are observed or measured during the 

experiment [9]. A key difference between a mixed model and a fixed effect model such 

as the one way ANOVA previously described is a mixed model will treat at least one of 

the variables as fixed while another is treated as random. The fixed effects have levels 

that are of primary interest and could possibly be used again if the experiment were 

repeated. Random effects have levels that are generally not of primary interest, but rather 

are thought of as a random selection from a population. In the case of a repeated 

measures experiment where the same subjects are measured across treatments or times, 

generally subject effects will be the random effects, while different treatment levels are 

the fixed effects. The idea behind the repeated measures mixed model is that the fixed 

effects should tell how the population means differ between the set of treatments, while 

the random effects represent the variability among measurements collected on the same 

subjects or units. Another key difference between the ANOVA model and the repeated 

measures mixed model is the way each computes the variance. The ANOVA model uses 

moment estimators of the data to calculate the variance. It cannot work with missing data, 

which can often be a problem when a study looks at data over time. This is an advantage 

that the mixed model has over a general, one-way ANOVA. By default, the mixed model 

uses a restricted maximum likelihood to calculate variance. This is helpful when there are 

noise parameters or missing data. However, like the ANOVA model, the mixed model 

allows testing multiple means at once.  It is particularly useful when repeated 

measurements are made on the same statistical units, or where measurements are made on 

clusters of related statistical units since it incorporates any correlation between data 

http://en.wikipedia.org/wiki/Repeated_measures_design
http://en.wikipedia.org/wiki/Repeated_measures_design
http://en.wikipedia.org/wiki/Statistical_unit
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collected on the same subject into the variance calculation. Because of this, it draws 

similarities from both the paired t-test and the ANOVA model. The repeated measures 

mixed model can be defined as: 

Yij = µ + αi + ρj + εij. Where: 

Yij is the observed response at fixed effect level i = 1, 2, …, a and random effect 

 level j = 1, 2, …, n.  

µ is the overall mean response. 

αi is the fixed main effect of level i = 1, 2, …, a and 
1

0
a

i

i




  

ρj is the random effect of level j, 
2~ (0, )

iid

j N    

εij is a random error term 
2~ (0, )

iid

ij N    

 

The variance of the Yij is the total variance from the model and can be thought of as a 

combination of the variance from both the error in the model summed with the 

variance from the random effect. The proportion of the total variation in the response 

due to within subject variation is the correlation coefficient and is defined as

2

2 2



 




 



. The ANOVA table for a mixed model is similar to a one way ANOVA 

table, however rather than only having a treatment effect, both the random and fixed 

effect are included. 

2.3.1.1 Assumptions. Since the repeated measures mixed model draws 

similarities from both the ANOVA model and the paired t-test, there is a combination of 

assumptions that should be met. First like the paired t-test, the data should be collected on 
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the same statistical unit, or one should expect some correlation among the data. The 

observations between the fixed effects should be independent, or one should not 

influence another. The random subject should be normally distributed with a mean 

centered at zero and with an unknown, similar variance. Also, the residuals should be 

normally distributed, equally varying, and independent among one another. The same 

diagnostic tests can be conducted as from the ANOVA model. One assumption that 

largely differs from the general linear model is the sphericity assumption [9]. When the 

mixed model is conducted and a repeated measures analysis is appropriate, the data does 

not need to be assumed to have similar correlations between the treatments. While 

compound symmetry (the sphericity assumption) is an option, there are also other options 

for choosing a covariance structure that can improve the data analysis. 

2.3.1.2 Compound symmetry vs. autoregressive model. If a mixed model is an 

appropriate analysis for the data in question, it can be more powerful than a general linear 

model because it can better account for missing data and also we can vary the covariance 

matrix. Whenever a repeated measures mixed model is appropriate (that is, more than one 

observation has been collected from a subject) choosing a within subject covariance 

matrix is an important part of the analysis. The size of this matrix is determined by the 

number of observations collected from the data. For example, if one measurement is 

obtained at two different times, this will generate a 2x2 covariance matrix. If 

measurements from 4 different treatments are applied to each subject, this will elicit a 

4x4 matrix. The structure of this matrix is also crucial. The variance of the difference in 

two within-subject means is calculated by:

1 2 1 2 1 2( ) ( ) ( ) 2 ( , )Var Y Y Var Y Var Y Cov Y Y         . The covariance term will make the 
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within subject comparisons more powerful than the between subject comparisons, since 

this term is generally positive. The value of the covariance is determined by which 

covariance matrix chosen. This is why it is very important to choose the correct 

covariance structure for the analysis. The mixed model allows for many different types of 

covariance matrices, but one common, simple type is called compound symmetry. This 

covariance structure implies that each measured statistical unit is equally correlated with 

one another and the total variation, 
2 2 2

y     
, can be partitioned into the shared, 

within unit component, 
2

 , and the unshared, or error component, 
2

 . The correlation 

coefficient 

2

2 2



 




 



is assumed to be equal across all fixed effects and they all share a 

common error variance
2

 . The compound symmetry within subject variance covariance 

matrix is given below: 

2

1

1

1

1



  

  


  

  

 
 
 
 
 
 

 

One other type of covariance structure that can be used in a mixed model is called the 

autoregressive model, or AR(1). Autoregressive is a term from times series analysis 

which assumes observations are related to their own past values through the number of 

lags between them [11]. An autoregressive structure implies that two observations closer 

to each other over time or space should be more highly correlated than two observations 

that are farther apart. The correlation coefficient between observations decreases (or 

regresses) as difference between the observations become further apart. The AR(1) within 
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subject covariance matrix is given below: 

2 3

2

2

2

3 2

1

1

1

1



  

  


  

  

 
 
 
 
 
 

 

There are tests that can be conducted to help choose the best covariance structure for the 

data. A likelihood ratio test can be conducted as well as observing two different 

information criteria tests. The statistic that is observed for the likelihood ratio test is 

called a -2log Likelihood statistic. This ratio test is used to calculate two information 

criteria tests called the AIC (Akaike Information Criteria) and BIC (Bayesian Information 

Criteria) statistics. Smaller AIC and BIC scores are ideal, so choosing the structure that 

lowers these is a good idea. 

2.3.1.3 Hypothesis tests for overall effects. The hypothesis test for the mixed 

model is similar of that for the ANOVA model. The hypothesis being tested for the fixed 

effects is: 

Null Hypothesis: There is no difference between any of the population means for the 

fixed effect levels, or α1 = α 2 = …= α a = 0 (where a = number of levels of the 

fixed effect) 

Alternative Hypothesis: At least one of the population means for the fixed effect levels 

differs  from the others, or α i ≠ 0 for at least one i.  

The mixed model can also test whether there is significant within subject 

variation. The tests are as follows: 

Null Hypothesis: 
2 0 
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Alternative Hypothesis: 
2 0 

 

2.3.1.4 Test statistic. The test for the fixed effect is typically the primary test of 

interest and the test statistic for this test is: F0 = Fixed

Error

MS

MS
 or 

( 1)

( 1)( 1)

Fixed

Error

SS
a

SS
a n



 

 where a 

is the number of levels of the fixed effects and n is the total number of levels of the 

random effect. Commonly, studies chose alpha to be 0.05 and obtain an F critical value 

by Fα, a-1,(a-1)(n-1). This F critical value is compared to F0 and we reject the null hypothesis 

when F0 > Fα, a-1,(a-1)(n-1). After F0 is compared to the F critical value, if one decides to 

reject the hull hypothesis that one of the treatment means is indeed different than the 

others, there are a few other tests that can be conducted to make statistical inferences 

regarding the differences in treatment means. 

2.3.1.5 Contrasts and pairwise comparisons. A contrast is a preplanned 

comparison of the treatment means for some data set where 1 1 ... a aL c c    or 
1

a

i i

i

c 




and L is a linear combination of the treatment means, µi. An orthogonal contrast is a 

contrast whose coefficients sum to zero. The sum of these cross products should also 

equal zero. The numbers of different orthogonal contrasts that can be observed are equal 

to the degrees of freedom for the treatment group, or the numerator degrees of freedom 

from the overall F test for fixed effects. Contrasts are generally useful in analyzing pre-

planned comparisons for the data, or comparing treatment groups that the experimenters 

might already suspect to have differences before analyzing data. The contrasts for the 

mixed model are very similar to the contrasts for the ANOVA model. The difference 
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between the two lies in the degrees of freedom. The degrees of freedom for the two tests 

are different which results in the two tests having a different mean squared error as well.  

There are many different hypotheses to test when examining contrasts. Assume 

that the coefficients, ci sum to zero, a general way to write the hypothesis tests are as 

follows: 

 H0: 
1

0
a

i i

i

c 


  

 Ha: 
1

0
a

i i

i

c 


   

The test statistic for the different contrasts of a one-way ANOVA model each 

follows a t-distribution. The estimate for the contrast is written in terms of the sample 

treatment averages, 
1

a

i i

i

c y 



 and is compared to the mean square error. The test statistic is 

as follows: 1
0

2

1

a

i i

i

a
E

i

i

c y

t
MS

c
n












. This test uses the same degrees of freedom as the 

denominator degrees of freedom from the overall F test for fixed effects and the null 

hypothesis is rejected if |t0| > tα/2,(a-1)(n-1). The main difference in the contrasts and pairwise 

comparisons from the ANOVA model and the mixed model is in the number of degrees 

of freedom that are available. This changes the MSE as well as the entire ANOVA table. 

The test statistic for the pairwise comparisons is similar to that of the contrasts. It also 

follows a t-distribution and is written in terms of the treatment averages. However since it 

is only testing the difference between two means, the general form is t0 =
'

2

i i

En

y y

MS

 
. Again 
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this test statistic is compared to a critical t-value that is equal to tα/2,(a-1)(n-1) and we reject 

the null hypothesis when |t0| > tα/2,(a-1)(n-1). 

2.3.2. Microarray Data. The microarray data involves both a random (subject) 

and fixed (time) effect, so a mixed model will hopefully elicit the best results due to the 

correlation between the subjects over time. Because a new parameter is introduced into 

the model (the random subject effect), the mixed model will have different degrees of 

freedom than the one-way fixed effect ANOVA, particularly in the error term. One 

degree of freedom is lost to the subject effect. The subject effect will have (n-1), or 1 

degree of freedom. The fixed time effect still has 2 degrees of freedom, or (a-1). This 

only leaves 2 degrees of freedom left for the error or (a-1)(n-1). This leaves less degrees 

of freedom from the one-way ANOVA model, but since the data is measured over time, 

the assumption that the data has some correlation over time will hopefully overcome that.  

The repeated measures mixed model for the microarray data can be defined as: 

Yij = µ + αi + ρj + εij. Where: 

Yij is the expression level at time point i = 1, 2, 3 and subject j = 1, 2.  

µ is the overall mean expression. 

αi is the fixed effect, time at level i = 1, 2, 3. 

ρj is the random subject effect of level j = 1, 2 
2~ (0, )

iid

j N    

εij is a random error term 
2~ (0, )

iid

ij N    

Normally there is an interaction term between the fixed and random variable that could 

be considered in the model. However since our sample is very small, we could not afford 

the degrees of freedom to include this in our analysis. Therefore we only examine main 



36 

 

effects of subject and time.  

2.3.2.1 Assumptions. For the mixed model to be a valid option for the microarray 

data, several assumptions must be met. The data is collected on the same two individuals 

over time since we are expecting some correlation or dependencies over time. However 

the two individuals should not bear any influence on each other’s biological expression, 

the different subjects should be independent of one another. The measured expressions 

and the error are assumed to be normally distributed with a mean of zero and an unknown 

variance. This assumption should also hold for the subject effect as well.  

2.3.2.2 Hypothesis tests for overall effects. The hypotheses being tested for the 

microarray data for the repeated measures mixed model for the fixed effects is as follows: 

Null Hypothesis: There is no difference between any of the population means for the 

 fixed effect time, or α1 = α 2 = α 3 = 0 

Alternative Hypothesis: At least one of the population means for the fixed effect time, 

 differs from the others, or α i ≠ 0 for at least one i where i = 1, 2, 3.  

2.3.2.3 Test statistic. F0 = Fixed

Error

MS

MS
 or 2

2

Fixed

Error

SS

SS
 . The F critical value is 

represented by Fα, 2,2 and is equal to 19.0. This F critical value is compared to F0 and we 

reject the null hypothesis when F0 > 19. After F0 is compared to the F critical value and a 

rejection decision has been made the contrasts and pairwise comparisons are conducted.  

2.3.2.4 Contrasts and pairwise comparisons. For the microarray data all 

possible orthogonal contrasts were tested. Since there are three different treatment groups 

being considered, this leaves two degrees of freedom associated with the treatment effect. 
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Therefore there are two different orthogonal contrasts to test. The first contrast for the 

microarray data compares the mean of one treatment group to that of the other two or

1
1 1 2 32

( )C      . This is done three times so that each mean is compared to the other 

two. The other orthogonal contrast compares only two of the means to each other. Again, 

this contrast can be thought of as a pairwise comparison because it is comparing a set of 

paired data. 2 1 2C     is an example of one of the three paired comparisons for the 

microarray data. A general form for the second orthogonal contrast is 2 'i iC    . 

The hypothesis test for the first contrast, C1 for the microarray data is as follows: 

 Ho1: 2µ1 - µ2 - µ3 = 0  Ha1: 2µ1 - µ2 - µ3 ≠ 0 

 Ho2: 2µ2 - µ1 - µ3 = 0  Ha2: 2µ2 - µ1 - µ3 ≠ 0 

Ho3: 2µ3 - µ1 - µ2 = 0  Ha3: 2µ3 - µ1 - µ2 ≠ 0 

The hypothesis that is being tested for C1 is, whether the treatment means of group i 

differs from the average of the other two treatment means. Each null hypothesis posits 

that there is no difference between the population treatment means while the alternative 

states that there is difference. The hypothesis test for C2 or the pairwise comparisons are 

as follows: 

 Ho1: µ1 - µ2 = 0   Ha1: µ1 - µ2 ≠ 0 

 Ho2: µ1 - µ3 = 0   Ha2: µ1 - µ3 ≠ 0 

Ho3: µ2 - µ3 = 0   Ha3: µ2 - µ3 ≠ 0 

These hypotheses are testing to see if there is a difference between two of the treatments. 

Again, each null hypothesis states that there is no difference between the two population 

treatment means, the alternative stating otherwise.  
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For the contrast C1 a t-statistic is calculated for each gene and exon. For the 

pairwise comparisons, each gene and exon has a test statistic value. After the t-statistics 

are all computed, they are compared to the t-critical value T~t(α/2,2), or |t| > 4.303. The 

null hypothesis is rejected when the t-statistic is greater than the t-critical value. 

 

 

2.4 EMPIRICAL BAYES 

2.4.1. General Definition. The empirical Bayes or moderated t-test has 

similarities to the independent t-test. Both of the tests analyze response measures from 

two different populations. Just like comparing the paired and independent t-tests, inherent 

differences exist for the empirical Bayes in how the degrees of freedom are calculated as 

well as the variance for the data. The moderated t-test draws information from all of the 

genes or exons contained in the analysis to improve the power of the t-test [12]. Rather 

than estimating the variance for each gene or exon, the moderated t uses all genes/exons 

to estimate the variance. The power of the test will increase because often times we are 

able to gain a substantial amount of degrees of freedom as compared to both the 

independent and paired t-test.  

2.4.1.1 Assumptions. The assumptions for the moderated t-test are similar to that 

of the independent t-test. The data collected should be from two different populations 

should follow a normal distribution with equal variances. The populations should be 

 

independent of one another and the observations within the populations should also be 

independent.  
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2.4.1.2 Hypothesis test. The moderated t-test has similar hypothesis tests to the 

independent t-test as well. The test that is being conducted is still testing to see if there is 

a difference between the two different population means.  

 Ho: There is no difference between the two population means or µi - µi’ = 0 

 Ha: There is a difference between the two population means or µi - µi’ ≠ 0 

2.4.1.3 Test statistic. The moderated t-test is available in the Limma package 

from Bioconductor in R. The Limma package is used for analyzing expression measures 

for microarray data, or specifically experiments involving comparisons of many RNA 

samples at the same time. Limma uses linear models to analyze the microarray 

experiments. 

This approach requires two matrices to be specified; a design matrix and a 

contrast matrix. The design matrix provides a representation of the different RNA targets 

hybridized to the arrays. The contrast matrix allows the coefficients defined by the design 

matrix to be combined into contrasts of interest. Each contrast corresponds to a paired 

comparison of interest between the RNA targets [12]. The expected value or mean as 

well as the variance for each gene are computed via these matrices. A weight of the 

matrix is used in conjunction with the variance of the biological expression. From these 

two measurements the test statistic is calculated by 
gj

gj

g gj

t
s




  where g = the gene or 

exon index and j = the specific contrast of interest. This test statistic is compared to the t 

critical value and we reject the null hypothesis if |T| > t(α/2,dg + do).  The gj  is equivalent to 

'i i
y y  from the regular, independent t-test and the gj  is 2

n
 when the sample sizes are 
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equal. If the gene or exon is not differentially expressed, the difference between the two 

population means will be zero. The sg is estimated via empirical Bayes method. From 

Bayes’ theorem we assume a prior probability, p(θ|α) for 2

g that is based off of some 

prior knowledge before any data has been collected. The parameters of the prior 

probability are called hyperparameters, for 2

g these are do and so
2

 (degrees of freedom 

and variance respectively). Some information is obtained strictly from the data as well. 

This information is based off the likelihood, p(x|θ) and marginal likelihood, p(x|α) from 

the data. The posterior probability p(θ|x,α) is a conditional probability of the parameters 

given the prior knowledge and updated knowledge given from the data being analyzed. 

The posterior distribution is calculated by
( | ) ( | )

( | , )
( | )

p x p
p x

p x

  
 


 . Assuming the 

posterior distribution of 2

g  follows some distribution, a mean and variance can be 

estimated. The common variance estimated from the mean of the posterior 2

g is 

calculated by 

2 2

2 o o g g

g

o g

d s d s
s

d d







where do, so
2
 are the hyperparameters and sg

2
 and dg are 

the sample variance and degrees of freedom equivalent to the one-way ANOVA. The 

square root of this is used as the standard deviation in the moderated t-test. Truly 

Bayesian statistics would allow the user to define the values of the hyperparameters do 

and so
2
. However empirical Bayes methods estimate the hyperparameters from the data 

and ultimately draw information from all of the genes or exons in doing so. 

2.4.2. Microarray Data. The data being analyzed from this experiment does 

come from a microarray experiment. RNA was collected from saliva samples resulting in 
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numerous genes and exon expression measurements. This should be beneficial to the 

analysis because the variance will be computed differently based on all of the genes and 

exons as opposed to treating each one as its own entity. Also recalling the independent 

and paired t-test, simply adding in one degree of freedom changed the critical t-value 

immensely, allowing for more power in the test. We can expect to see an increase in the 

degrees of freedom by using information from all of the genes or exons which should 

allow for more of the tests to become significant when there are true differences in 

expression.  

2.4.1.1 Assumptions. As mentioned previously, the data does come from a 

microarray experiment. The data comes from two normal populations, and the 

observations are assumed to be independent from one another.  

2.4.1.2 Hypothesis test. Again, the hypothesis test is similar to the independent t-

test. 

Null Hypothesis: 

1.) There is no difference in expression measure between the baseline    

  and 24 hours of sleep deprivation: µ1 - µ2 = 0  

2.) There is no difference in expression measure between the baseline    

  and 48 hours of sleep deprivation: µ1 - µ3 = 0  

3.) There is no difference in expression measure between 24 and 48 hours of   

  sleep deprivation: µ2 - µ3 = 0 

 

Alternative Hypothesis 

1.) There is a difference between the means at baseline and 24 hours: µ1 - µ2  ≠ 0 
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2.) There is a difference between the means at baseline and 48 hours: µ1 - µ3 ≠ 0 

3.) There is a difference between the means at 24 and 48 hours: µ2 - µ3 ≠ 0  

2.4.1.3 Test statistic. The test statistic from Formula (?) is calculated for each 

gene and exon. The dg and sg are actually calculated the same way as we calculated the 

degrees of freedom and MSE from the paired comparison in the ANOVA model. This 

gives us three degrees of freedom for dg and a way to calculate sg. The do and so
2
 are a bit 

more challenging to calculate however. The zj = log(sj
2
) follows a Fishers Z Distribution, 

with mean and variance functions E(zj) = log so
2
 + ψ(dg/2) – ψ(do/2) + log(do/dg) and 

Var(zj) = ψ’(dg/2) + ψ’(do/2) where ψ and ψ’ are the first and second derivatives of the 

log of the gamma function. The final estimates for do and so are: 

 1 2

1

1
2 ' ( ) '( / 2)

1

J

o j g

j

d z z d
J

 



 
   

 
 and  

 
2

exp ( / 2) ( / 2) log( / )o o og gs z d d d d     . For the microarray data gene level 

analysis, do ≈ 2.15 and in the exon level analysis do ≈ 4.88. For the microarray data in 

question, the total degrees of freedom for the gene level analysis is equal to 5.15. For the 

exon level data the total degrees of freedom is equal to 7.88. The t-statistic is compared to 

the critical t value and the null hypothesis is rejected when | tgi | > T~tα/2, do+dg or 2.571 for 

the gene level analysis and 2.365 for the exon level analysis. 
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3. REPEATED MEASURES VS INDEPENDENT TESTS 

 

 

When conducting the above tests, there are several costs and benefits to choosing 

to use an independent test versus a dependent test. In the independent tests, one assumes 

that the data are completely independent within the subjects. The dependent tests assume 

that there is some correlation in the data within the subjects. One thing that changes when 

we make these different assumptions is the degrees of freedom. When the assumption is 

that there is some correlation over time for the subjects, we lose a degree of freedom to 

estimating this. However, the thought is that this degree of freedom can be made up for 

by hopefully observing a smaller variance in the data when we assume this correlation. 

Table 3.1 summarizes the analysis considered for these data. 

 

Table 3.1 Dependent vs. Independent Measures 

Independent Tests Dependent Tests 

Test DFE Critical 

Values 

Test 
DFE 

Critical 

Values 

Independent T-Test 2 4.303 Dependent T-Test 1 12.706 

One-Way ANOVA 3 3.182 Repeated Measures 

Mixed 
2 

4.303 

Moderated T-Test 5.15 

(gene) 

7.87 

(exon) 

2.571 

2.365 
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In observing the degrees of freedom from each test, it is very apparent that adding 

degrees of freedom immensely improves the power analysis. However, what cannot be 

seen in the tests above is what the variance estimates look like. For the t-tests the 

variance is calculated in pairs for each comparison, or only two of the times are used to 

compute the variance. Both the one-way ANOVA and repeated measures mixed model 

draw information from all three time points to calculate the variance for each individual 

gene or exon. The moderated t-test uses all of the time effects as well as all of the genes 

or exons to calculate the variance. Tables 3.2 and 3.3 detail the variance parameter 

estimates as well as the tradeoffs between the models. 
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Table 3.2 Variance Estimators 

Test Variance Parameter Estimate Brief Explanation 

Independent 

T-Test 

2 2

1 2( 1) ( 1)

2

n s n s

n n

  

 
 

Variance is likely larger since 
we are not accounting for 
repeated measures. Variance 
estimates come from only the 
two treatments being tested.  

Paired 

T-Test 

2

1

( )

1

n

j

j

d d

n








 

Variance is likely smaller 
since data should have within 
subject correlation. Variance 
estimates come from only the 
two treatments being tested. 

One-Way 

ANOVA 

2

1 1

( )
a n

iij

i j

Y Y

N a



 






 

Variance estimate should be 
larger since this test does not 
account for within subject 
correlation. Variance 
estimates come from all 
treatments as opposed to 
two. 

Repeated 
Measures 

Mixed Model 

2

| |
1 1

( )

(1 )
( 1)( 1)

a n

iij
i j

i j

Y Y

a n





 




 


 

Variance estimate should be 
smaller because this test 
accounts for within subject 
correlation. Also the variance 
estimate uses information 
from all treatments as 
opposed to two.  

Moderated 

T-Test 
 exp ( / 2) ( / 2) log( / )o og gz d d d d     

Variance estimate does not 
account for within subject 
correlation. However the 
estimate uses all of the data 
to generate a variance 
estimate. This estimate could 
be larger or smaller than the 
estimate calculated in the 
independent two sample t-
test because the variance is 
normalized.  
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Table 3.3 Model Tradeoffs 

 

 

Table 3.3 details the variance parameter estimates and true variance as well. It can 

be seen that when there is indeed a positive correlation in the data, the repeated measures 

models are beneficial. However when there is a negative correlation in the data, a 

repeated measures analysis would not benefit the model. The variance for independent 

two-sample t-test and paired t-test are plotted against each other below. The x-axis is the 

pooled standard deviation (independent) and the y-axis is the paired standard deviation 

(dependent). 

 

2 2

1 2( 1) ( 1)

2

n s n s

n n

  

 

2

1

( )

1

n

j

j

d d

n









2

1 1

( )
a n

iij

i j

Y Y

N a



 







2

| |
1 1

( )

(1 )
( 1)( 1)

a n

iij
i j

i j

Y Y

a n





 




 



22
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

22
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
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(1 )
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


2
| |2

(1 )i j

n


 
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Figure 3.1 Variance Comparison from Baseline to 24 Hours 

 

Figure 3.1 compares the variance between baseline and 24 hours for the 

dependent and independent measures t-tests. The variance is smaller in 62.7% of the data 

for the dependent measures tests.  
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Figure 3.2 Variance Comparison from Baseline to 48 Hours 

 

Figure 3.2 compares the variance between baseline and 48 hours for the 

dependent and independent measures t-tests. The variance is actually smaller for the 

independent measures tests in 51.8% of the data. For the test comparing these time 

points, the model is not improved at all using a dependent measures test.   
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Figure 3.3 Variance Comparison from 24 to 48 Hours 

 

Figure 3.3 compares the variance between 24 and 48 hours for the dependent and 

independent measures t-tests. The variance is smaller for the dependent measures test for 

61.6% of the data.  

These graphs shown above in Figures 3.1-3.3 are shown simply to illustrate how 

the variance changes when independent versus repeated measures are considered. In tests 

that are closer in time the data has slightly less variation when a repeated measure is 

used. For the test that compares times that are farther apart there is more variation when a 

repeated measure is used. 
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4. MULTIPLE TESTING CORRECTIONS 

 

 

4.1 GENERAL DEFINITION 

In statistics there are two types of errors that can be committed, type I and type II 

error, both detailed in Figure 4.1. 

 

 

Figure 4.1 Types of Statistical Errors 

 

Type I error can be defined as rejecting the null hypothesis when it is indeed true. 

In statistics, we assume that there will be some error in our analysis, but we can control 

this error by setting a cutoff for the amount of error we are comfortable allowing. We call 

this an alpha or significance level and it is thought of as the probability of making a type I 

error. Type II error is the error that is committed when we fail to reject a false null 
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hypothesis. This can be better controlled for by decreasing the noise or variability in the 

data and increasing the sample size. The alpha level (from the type I error) can be kept 

constant when conducting only one test. A problem occurs when more than one test is 

being conducted on the data and the probability of making at least one type I error (across 

all tests) is considered. This is called a multiple testing problem and it needs to be 

controlled. The multiple corrections procedure looks at the issue of multiple testing by 

adjusting the p-value from a family of hypothesis tests. An adjusted p-value is obtained 

and is defined as the smallest significance level where the null hypothesis would be 

rejected when the entire set of tests is considered [13]. After controlling for a family wise 

error rate an alpha value is obtained and will be rejected if the adjusted p-value is less 

than that alpha. The family wise error rate can be obtained by  {per comparison}1 1 .
n

   

A popular test that uses FWER (family wise error rate) is a Bonferroni Correction [13]. 

This examines the probability of committing a type I error for any one of the m tests 

being conducted on the data. This ends up resulting in the probability of committing a 

type I error being less than or equal to the number of tests being conducted, m times the 

alpha chosen (generally 0.05). We adjust the individual alpha, let this be α'. α' is equal to 

the original, raw alpha over m or α'/m. This makes the resulting FWER extremely 

conservative. Another popular type of corrections test that can be used is called False 

Discovery Rate. The False Discovery Rate controls the expected proportion of false 

positive among the significant tests [13]. For this type of correction one would compile 

all of our paired hypothesis tests (H1, H2,…, Hm) with their corresponding raw p-values 

(P1, P2,…, Pm) into one file, and arrange them in order from smallest to largest (P(1) ≤ P(2) 
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≤ …≤ P(m))s. We let k equal the largest i where ( )i

i
P

m
 , and reject all H(i) i = 1, 2, …, k.  

The FDR test assumes that all of the tests being conducted are independent of one 

another.  

 

 

4.2 MICROARRAY DATA 

For the microarray data, thousands of genes and exons are being tested. For all of 

the analysis above (t-tests, ANOVA, mixed model, and the moderated t-test) only raw p-

values were computed. Since so many analysis are being conducted, the type I error 

cannot be kept at a constant level of alpha equal to 0.05. If we consider the gene level 

analysis where over 17,000 genes made it into the final analysis, this makes the 

probability of committing at least one type I error approximately equal to (1 – (1 – 

0.05)17,000) ≈1. This makes the probability of rejecting the null hypothesis when it is 

actually true extremely likely for at least one of our tests. If we consider the Bonferroni 

Correction, the p-value will need to be less than 0.000003. The raw p-value for the exon 

level analysis would be even smaller. For most microarray data there are generally 

thousands of tests being conducted and this experiment is not an exception. Therefore 

using the Bonferroni Correction can be considered a little bit too conservative. We opt for 

using the False Discovery Rate option for the multiple testing corrections problem. All of 

the hypothesis tests are aligned with their corresponding raw p-values. The p-values are 

sorted from smallest to largest. The smallest raw p-value will be the first p-value given 

and the largest raw p-value is the mth p-value (m tests are conducted). Somewhere in 
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these thousands of tests, there is an i such that 
( )i

i
P

m


. When this i is found, all of the 

p-values that are smaller than this value are declared significant. For the microarray data, 

we chose the corrected p-value to reject the null hypothesis to be 0.1 since this is 

common in microarray studies.  

The false discovery rate multiple corrections test assumes that all of the tests for 

the genes or exons are independent of one another. This can be difficult because some of 

the genes/exons can be dependent while others are independent, but is commonly 

assumed anyway.  
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5. GENE LEVEL ANALYSIS RESULTS 

 

 

Figures 5.1-5.3 show volcano plots that are a common graphical summary for 

microarray data. Data between the different time points are plotted using results from the 

paired t-test without multiple testing corrections. The x-axis is the mean difference of the 

time points while the y-axis is the standard deviation between the two times. The red 

markers indicate that the gene was significantly differentially expressed from the two 

time points while the grey shows non-significance. These graphs represent a way to 

visualize how the size of the mean difference and the variation in the data affect 

significance. Similar plots could be created for all of the analyses but these are shown for 

demonstrative purposes.  

 

Figure 5.1 Volcano Plot from Baseline to 24 Hours 
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Figure 5.2 Volcano Plot from Baseline to 48 Hours 

 

 

Figure 5.3 Volcano Plot from 24 to 48 Hours 
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Figures 5.4-5.6 are another way to visualize the results by showing the log fold 

change for the genes compared at the two time points using the paired t-test. The x-axis is 

an ID variable that lists all of the genes. The y axis is the logfold change between the two 

time points given. Again, the red points indicate that the gene was significantly 

differentially expressed (for the raw p-value). We could have constructed these graphs for 

other analyses too. These give an idea about logfold  change  and variance related to 

significance. 

 

Figure 5.4 Log Fold Change from Baseline to 24 Hours 
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Figure 5.5 Log Fold Change from Baseline to 48 Hours 

 

 

Figure 5.6 Log Fold Change from 24 to 48 Hours 
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5.1 INDEPENDENT T-TEST  

 

 Table 5.1 gives the number of genes significantly, differentially expressed along 

with the whether or not the gene was up or down regulated for the paired t-test without 

multiple testing corrections. If a gene is up regulated it means that the expression 

measure started lower and was measured significantly higher at the later time point.  

 

Table 5.1 Significant Genes from the Independent T-Test 

Independent T-Test Gene Level Data without Multiple Testing Corrections 

Test 

Number 

Significant 

Number Down 

Regulated 

Number Up 

Regulated 

Baseline to 24 

Hours 1127 597 530 

Baseline to 48 

Hours 1475 720 755 

24 to 48 Hours 

 912 505 407 

  

  

 Figure 5.7 is a venn diagram showing the number of significant genes at the different 

testing times for the independent t-test. Here all genes are considered from the analysis. 
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Figure 5.7 Venn Diagram for Independent T-Test 

 

            After running the independent two sample t-tests, 3,514 significant differences were 

obtained among the three different comparisons. Of these 1,822 were down regulated and 1,692 

were up regulated. A total of 62 genes were significant in all three comparisons and 478 of them 

were significant in two. However since so many (17,874) comparisons are performed on the same 

data set, there is a greater chance of finding false significant differences. To address this problem, 

the raw p values were entered into SAS and a multiple corrections procedure was performed. 

            Two of the results were significant after controlling for the multiple tests that were run on 

the data at the alpha = 0.05 level. The genes that were significant were gene ID 3,130,823 and 

2,470,165 and they were both significantly down regulated from 24 to 48 hours of sleep 

deprivation. There was also one additional test that was significant at the alpha =0.1 level. Gene 

ID 2,551,924 was up regulated from the test measuring from baseline to 48 hours.  
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5.2 PAIRED T-TEST  

 Table 5.2 gives the number of genes significantly, differentially expressed along 

with the whether or not the gene was up or down regulated for the paired t-test without 

multiple testing corrections. If a gene is up regulated it means that the expression 

measure started lower and was measured significantly higher at the later time point.  

 

Table 5.2 Significant Genes from the Paired T-Test 

 

Paired T-Test Gene Level Data without Multiple Testing Corrections 

Test 

Number 

Significant 

Number Down 

Regulated 

Number Up 

Regulated 

Baseline to 24 

Hours 1003 474 529 

Baseline to 48 

Hours 1244 662 582 

24 to 48 Hours 

 987 489 498 

 

 

Figure 5.8 shows the number of significant genes significant at the different 

testing times for the paired t-test. Here all genes are considered from the analysis. 
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Figure 5.8 Venn Diagram for Paired T-Test 

 

After running the three paired t-tests, 3,234 significant differences among the 

three different tests were found. Of these 1,625 were down regulated and 1,609 were up 

regulated. A total of 45 genes were significant in all three comparisons and 131 of them 

were significant in two. However since so many (17,874) tests were run on the same data 

set, there is a greater chance of finding false significant differences. To address this 

problem, the raw p values were entered into SAS and a multiple corrections test was 

conducted. 

None of the results were significant after controlling for the multiple tests that 

were run on the data at the alpha = 0.05 level or the alpha = 0.1 level.  
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5.3 ANALYSIS OF VARIANCE  

Table 5.3 gives the number of genes significant for the one-way ANOVA 

analysis. It is important to note that the tests for the pairwise comparisons only include 

the data from the tests that were significant in the overall f test.  

 

Table 5.3 Significant Genes from ANOVA Model 

ANOVA Gene Level Data without Multiple Testing 

Corrections 

  
Number 

Significant 

Overall F 1,257 

Contrast Baseline (different from 24 or 48) 930 

Contrast 24 Hours (different from 24 or 48) 638  

Contrast 48 Hours (different from 24 or 48) 875 
Up 

Regulated 

Down 

Regulated 

BS is Different than 24 46 20 26 

BS is Different than 48 66 35 31 

24 is Different than 48 25 14 11 

 

 

Figure 5.9 shows a Venn Diagram comparing the tests for the pairwise 

comparisons for the one-way ANOVA model. Only the genes that were significant for 

the overall f test were considered for the comparisons.  
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Figure 5.9 Venn Diagram for ANOVA Model 

 

From the Table 5.3 it is seen that there were 1,257 genes were significant for the 

overall f test. Therefore, only the results for those 1,257 genes are listed for the pairwise 

comparisons above in Table 5.3. The pairwise mean comparisons for the ANOVA model 

show that of the 1,257 genes from the overall f test, 17 genes were differentially 

expressed from baseline to 24 hours, 34 from baseline to 48 and 7 genes are significantly 

different from 24 to 48 hours. Figure 5.9 shows the break down of how these genes were 

differentially expressed. Five of the genes have significant paired comparisons  for all 

three of the comparisons while 1,162  were not significant for any of the paired 

comparisons. 

After the multiple testing corrections, there weren’t any siginificant genes at the 
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alpha equals 0.05 level for the pairwise comparisons. Only one gene was significant at 

the alpha = 0.1 level. Gene ID 2,844,453 was significantly down regulated from baseline 

to 48 hours.  

 

 

5.4 REPEATED MEASURES MIXED MODEL  

Table 5.4 gives the number of genes significant for the repeated measures 

analysis. It is important to note that the tests for the pairwise comparisons only include 

the data from the tests that were significant in the overall f test. 

 

Table 5.4 Significant Genes from Mixed Model 

Mixed Model Gene Level Data without Testing 

Corrections  

  
Number 

Significant 

Compound Symmetry 1,688 

Autoregressive Model 2,092 

Contrast Baseline (AR1) 1,366 

Contrast 24 Hours (AR1) 1,150 

Contrast 48 Hours (AR1) 1,225 
Up 

Regulated 

Down 

Regulated 

BS is Different than 24 (AR1) 892 470 422 

BS is Different than 48 (AR1) 1,021 593 428 

24 is Different than 48 (AR1) 728 362 366 

 

 

Table 5.4. gives some information about the significant genes from the mixed 

model analysis. Overall, when the compound symmetry covariance matrix was 

implemented in the analysis, 1,688 genes had significant findings. The autoregressive 
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model found more significant genes, however 1,464 were significant for both analyses as 

shown in Figure 5.10.  

 

 

Figure 5.10 Covariance Matrix Comparison 
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Figure 5.11 Venn Diagram for Repeated Measures Mixed Model 

 

Since the autoregressive model found 2,092 significant genes for the overall f test 

and the AIC found it to be a better fit for a larger percentage of the genes, only these 

genes were examined for the pairwise comparisons. Of those 2,092 genes, 198 were 

significant for all comparisons and 625 were not significant for any of the tests.  

After the multiple testing corrections, none of genes were significant at the alpha equals 

0.05 level for the pairwise comparisons. When alpha was raised to 0.1, the test comparing 

baseline to 24 hours found two genes significantly differentially expressed. The test 

comparing baseline to 48 hours found eight significant genes. The test comparing 24 to 

48 hours found 3 significant genes.  
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5.5 EMPIRICAL BAYES 

Table 5.5 shows the number of genes that were significantly, differentially 

expressed at the different testing times along with whether the gene was up or down 

regulated.  

 

Table 5.5 Significant Genes for Moderated T-Test 

Moderated T-Statistic Gene Level Data without Multiple Testing Corrections 

  

Number 

Significant 

Number Down 

Regulated 

Number Up 

Regulated 

Baseline to 24 Hours 1,579 940 639 

Baseline to 48 Hours 1,986 1,202 784 

24 to 48 Hours 1,205 553 652 

 

 

Figure 5.12 is a Venn diagram that shows the number of genes significantly 

differentially expressed for the moderated t-test. 

 



68 

 

 

 

Figure 5.12 Venn Diagram for Moderated T-Test 

 

As seen in Figure 5.12, 107 of the genes were significant for all three of the 

moderated t-tests. 14,686 of the genes were not significant for any of the tests. 1,475 of 

the tests were significant for at least two of the comparisons. To address the issue of a 

multiple testing problem, a multiple corrections procedure is performed on the raw p-

values.  

After running a multiple testing correction on the raw p-values for the moderated 

t-statistic, there were 131 genes significant after allowing the alpha level to reach 0.1 

from baseline to 48 hours. Of these 113 were down regulated and 18 were up regulated.  

None of the other comparisons showed significant results for the multiple testing 

corrections. 

550 

 

 

400 763 

     670  252 

Baseline to 24 Hours 

107 

     Baseline to 48 Hours    24 to 48 Hours 

446 

14,686 



69 

 

6. EXON LEVEL ANALYSIS RESULTS 

 

 

6.1 INDEPENDENT T-TEST 

 Table 6.1 gives the number of genes significantly, differentially expressed along 

with the whether or not the gene was up or down regulated for the paired t-test without 

multiple testing corrections. If a gene is up regulated it means that the expression 

measure started lower and was measured significantly higher at the later time point.  

 

Table 6.1 Significant Exons for Independent T-Test 

Independent T-Test Exon Level Data without Multiple Testing Corrections 

Test 

Number 

Significant 

Number Down 

Regulated 

Number Up 

Regulated 

Baseline to 24 

Hours 19,460 8,975 10,485 

Baseline to 48 

Hours 22,129 8,937 13,192 

24 to 48 Hours 15,594 7,171 8,423 

 

 

 Figure 6.1 shows the number of significant genes significant at the different 

testing times for the independent t-test.  
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Figure 6.1 Venn Diagram for Independent T-Test 

 

            After running the three independent t-tests, 57,183 significant differences were found 

among the three different tests. Of these 25,083 were down regulated and 32,100 were up 

regulated. A total of 1,163 exons were significant in all three comparisons and 8,765 of them 

were significant in two. However since so many tests are performed on the same data set, there is 

a greater chance of finding false significant differences. To address this problem, the raw p values 

were entered into SAS and a multiple corrections test was conducted. 

            None of the results from the multiple testing corrections were significant at either the 

alpha equals 0.05 or alpha equals 0.1 significance levels. 

 

6.2 PAIRED T-TEST 

Table 6.2 shows the number of exons both up and down regulated for the paired t-
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test.  

 

Table 6.2 Significant Exons for Paired T-Test 

Paired T-Test Exon Level Data without Multiple Testing Corrections 

Test 

Number 

Significant 

Number Down 

Regulated 

Number Up 

Regulated 

Baseline to 24 

Hours 16,963 7,851 9,112 

Baseline to 48 

Hours 18,329 8,383 9,946 

24 to 48 Hours 15,960 7,433 8,527 

 

 

Figure 6.2 is a venn diagram that shows the number of significant genes 

significant at the different testing times for the paired t-test.  
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Figure 6.2 Venn Diagram for Paired T-Test 

 

After running the three paired t-tests, 51,252 significant differences were found 

among the three different tests. Of these 23,667 were down regulated and 27,585 were up 

regulated. A total of 1,028 exons were significant in all three comparisons and 8,469 of 

them were significant in two. However since so many tests are being ran on the same data 

set, there is a greater chance of finding false significant differences. To address this 

problem, the raw p values were entered into SAS and a multiple corrections test was 

conducted. 

Several of the results were significant after controlling for the multiple tests that 

were run on the data at the alpha = 0.05 level. The exons that were significant and up 

regulated for the comparison from baseline to 24 hours were probe set ID 3,031,827 and 

2,640,916. None of the exons were significantly differentially expressed from baseline to 

48 hours. Five exons were significantly down regulated from 24 to 48 hours, they are 

probe set ID’s 3,525,655 2,665,526 3,718,502 2,443,537 and 3,130,823. Probe set ID 

3,642,707 was significantly up regulated for this comparison as well. When alpha is 

allowed to equal 0.1, two more exons are differentially expressed for that comparison as 

well. They are probe set ID’s 3,922,793 and 2,995,476. No other tests were significant at 

this level.  

 

 

6.3 ANALYSIS OF VARIANCE 

Table 6.3 gives the number of exons significantly expressed for each test 
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conducted for the one-way ANOVA model. The only exons whose pairwise comparisons 

were conducted were the 22,072 significant exons from the overall f test.  

 

Table 6.3 Significant Exons for ANOVA Model 

 

ANOVA Exon Level Data without Multiple Testing 

Corrections 

  
Number 

Significant 

Overall F 22,072 

Contrast Baseline (different from 24 or 48) 15,684 

Contrast 24 Hours (different from 24 or 48) 15,930 

Contrast 48 Hours (different from 24 or 48) 14,654 
Up 

Regulated 

Down 

Regulated 

BS is Different than 24 837 402 435 

BS is Different than 48 969 509 460 

24 is Different than 48 751 397 354 

 

Figure 6.3 compares the pairwise comparisons for significant exons.  
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Figure 6.3 Venn Diagram for ANOVA Model 

 

 As seen in Figure 6.3, 83 of the exons were significant for all of the pairwise 

comparisons. 722 of the comparisons were significant in two of the tests. 20,403 were not 

significant in any of the comparisons. It is likely that these had other significant contrasts. 

Because the pairwise comparisons were tested so many (284,805) times, a multiple 

corrections test was conducted.  

 None of the pairwise comparisons were significant when for the multiple testing 

corrections when alpha was equal to 0.05 or 0.1.  

6.4 MIXED MODEL 

Table 6.4 gives the number of exons significantly expressed for each test 

conducted for the repeated measures mixed model. The only exons whose pairwise 
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comparisons were conducted were the 25,739 significant exons from the overall f test.  

 

Table 6.4 Significant Exons for Mixed Model 

Mixed Model Exon Level Data without Multiple 

Testing Corrections  

  Number Significant  

Autoregressive Model 25,739 

Contrast Baseline (AR1) 18,920 

Contrast 24 Hours (AR1) 19,583 

Contrast 48 Hours (AR1) 17,061 
Up 

Regulated 

Down 

Regulated 

BS is Different than 24 (AR1) 1,332 679 653 

BS is Different than 48 (AR1) 1,340 701 639 

24 is Different than 48 (AR1) 1,007 518 489 

 

 

Figure 6.4 shows a Venn diagram of the pairwise comparisons for the mixed 

model analysis. 
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Figure 6.4 Venn Diagram for Repeated Measures Mixed Model 

 

 Figure 6.4 shows that 188 of the exons were significant for all three of the 

pairwise comparisons. 23,070 were not significant for any of the pairwise comparisons. 

While there were 2,309 significant pairwise comparisons, a multiple corrections test 

should be conducted since there are 284,805 tests being conducted on the data.  

 After running the multiple testing corrections on the data from the repeated 

measures mixed model analysis, none of the exons were significant at either the 0.05 or 

0.1 alpha levels.  
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6.5 EMPIRICAL BAYES 

Table 6.5 gives the number of exons significant for the moderated t-test for each 

comparison. Also in the table is whether or not the exon was down or up regulated. 

 

Table 6.5 Significant Exons for Moderated T-Test 

Moderated T-Statistic Exon Level Data without Multiple Testing Corrections 

  

Number 

Significant 

Number Down 

Regulated 

Number Up 

Regulated 

Baseline to 24 Hours 24,385 14,257 10,128 

Baseline to 48 Hours 27,591 17,793 9,798 

24 to 48 Hours 20,210 8,563 11,647 

 

 

Figure 6.5 shows a Venn diagram comparing the moderated t-tests different 

comparisons.  
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Figure 6.5 Venn Diagram for Moderated T-Test 

 As seen in Figure 6.5, 977 of the exons were differentially expressed in all of the 

tests. Tens of thousands of the tests were significant for more than one of the 

comparisons. Because so many tests are being conducted on the same data set, a multiple 

testing corrections test is ran to control for type I error. 

 When the alpha level is set at 0.05 for the multiple testing corrections one exon 

was significant. Probe set ID 2,614,423 was significantly up regulated from baseline to 

24 hours. When the alpha level increases to 0.1, hundreds of exons are significant. 739 

are significant when comparing baseline to 48 hours. 608 of them were down regulated 

and 131 were up regulated. Three additional exons were up regulated from baseline to 24 

hours when alpha equals 0.1. Figure 6.6 compares the exons that are significant after 

multiple testing corrections. 
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Figure 6.6 FDR Significant Exons for Moderated T-Test 
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7. CLUSTERING RESULTS 

 

 

After running the different analyses, it was of interest to observe the relationship 

pattern of the significantly expressed genes. Table 7.1 lists the genes that were 

significantly expressed according to whether or not they were up or down regulated from 

the paired t-test analysis. For example, gene ID 2,374,956 was significantly down 

regulated from baseline to 24 hours and then again down regulated from 24 to 48 hours. 

13 genes followed the down, down regulated pattern, 28 followed the up, up pattern, 25 

were down regulated then up regulated and 31 went up and then down. 
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Table 7.1 Significant Clustering Patterns for Genes 

Down, Down Up, Up Down, Up Up, Down 

2374956 2356115 2497018 2344393 

2403099 2362394 2536476 2438125 

2404377 2363689 2643217 2499158 

2527196 2391840 2646327 2565119 

2844453 2434575 2674335 2840768 

3065546 2526980 2841472 2949043 

3135156 2527606 2844335 3159330 

3212350 2599303 2876046 3165957 

3284882 2738928 2945518 3272106 

3403539 2982319 3091848 3301609 

3737677 3114649 3161167 3316987 

3753220 3167220 3186207 3361031 

3980964 3372174 3256279 3364747 

  3377044 3364739 3413456 

  3377892 3455426 3453384 

  3392924 3474940 3464417 

  3393670 3477967 3525655 

  3569754 3620276 3556214 

  3635125 3757970 3592109 

  3676674 3764103 3638607 

  3728889 3841777 3672059 

  3739859 3861243 3683050 

  3819745 3958329 3696666 

  3837895 3959654 3699133 

  3844978 4016572 3727499 

  3854066   3749546 

  3860137   3800834 

  3869237   3822049 

      3918574 

      3959744 

      4052881 
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Table 7.2 shows a truncated table of the clustering patterns for the significant 

exons from the paired t-test. 112 followed a down, down pattern, 204 followed the up, up 

pattern, 551 followed a down up pattern and 494 went up and then down.  

 

Table 7.2 Truncated Significant Clustering Patterns for Exons 

 

 

 

 

 

Down DownUp Up Down Up Up Down

2331704 2317447 2316462 2319149

2348680 2331556 2319855 2319451

2348905 2334705 2320641 2321257

2348965 2355671 2321044 2323094

2377042 2356117 2322293 2326361

2384716 2356127 2322883 2327552

2385261 2356136 2324400 2330120

2389037 2360040 2326860 2331474

2406985 2361423 2327020 2331683

2408012 2371023 2327348 2333266

2408546 2372879 2327632 2335173

2409978 2375675 2327831 2347177

2434978 2377271 2327836 2348096

2436304 2404161 2331426 2350505

2454210 2408269 2333654 2352313

2469571 2435866 2338529 2359038

2476245 2440478 2343100 2360114

2494777 2447461 2344435 2360713

2527977 2464529 2345007 2361425

2581019 2486986 2345102 2361847

2585364 2492026 2347098 2363542

2585370 2501229 2353507 2365876

2598264 2522646 2358972 2379904

2618530 2524019 2361845 2381044
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8. CONCLUSIONS 

 

 

Since several genes and exons were significant after multiple testing corrections, 

an obvious question is, whether any of the genes and exons are significant in more than 

one test. A few of the genes were significant for two tests. Table 8.1 shows genes and 

exons that are significant after multiple testing corrections, the comparison that it was 

significant for, which test found it significant and whether it was up or down regulated.  

 

Table 8.1 FDR Significant Genes and Exons 

 

 

 

 

 

BS - 24 Test Regulation BS - 48 Test Regulation 24 - 48 Test Regulation

3,031,827 PAIRED UP 3,525,655 PAIRED DOWN

2,640,916 PAIRED UP 2,665,526 PAIRED DOWN

3,718,502 PAIRED DOWN

2,443,537 PAIRED DOWN

3,130,823 PAIRED DOWN

3,642,707 PAIRED UP

Exons

BS - 24 Test Regulation BS - 48 Test Regulation 24 - 48 Test Regulation

3,373,420         RMMM UP 2,551,924 INDEPENDENT T UP 3,130,823 INDEPENDENT T DOWN

4,047,607         RMMM UP 2,844,453 ANOVA DOWN 2,470,165 INDEPENDENT T DOWN

3,167,220 RMMM DOWN 3,166,718         RMMM UP

3,166,718 RMMM DOWN 3,942,007         RMMM UP

3,556,556 RMMM DOWN 3,840,194         RMMM DOWN

3,564,790 RMMM DOWN

2,847,229 RMMM DOWN

3,592,023 RMMM DOWN

3,854,066 RMMM DOWN

Genes 

*Denotes Significant in Moderated t -test



84 

 

The 739 exons that were significant from the moderated t-test belonged to 568 

different genes. Of those 568 genes, 61 of those were significant from the gene level 

moderated t-test analysis. All of them were down regulated from baseline to 48 hours and 

each gene is listed below in Table 8.2. 

 

Table 8.2 Mapping Significant Exons to Significant Genes 

 

 

When only examining raw p-values, thousands of genes and exons are 

significantly differentially expressed. However because thousands of tests are conducted 

on the same data set, the type I error rate must be controlled. Several of these were 

significant after a multiple testing procedure as well. These genes and exons should be 

examined closely to see if they play any role in sleep patterns or cycles. In order to claim 

there is a causal relationship between these genes and exons and sleep, more microarray 

 

2356115 3445786 3126087 3680953

2394680 3453837 3146433 3684486

2512930 3475794 3153328 3688311

2599303 3488985 3166718 3734379

2682271 3557947 3167220 3752258

2705706 3563317 3175119 3757078

2730173 3564790 3212294 3766893

2730194 3580179 3238761 3815243

2903401 3592023 3293762 3816380

2948887 3592511 3315675 3846831

2948926 3603408 3316208 3847005

2974635 3608113 3385175 3850261

3057955 3638411 3400625 3861948

3098977 3678462 3410384 3862018

3443891 3907190 3417457 3883971

4035833
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experiments should be conducted. Ideally the data would be collected on more 

participants, possibly at smaller time intervals. 

Finally for future analysis on this microarray data, perhaps it is not advantageous 

to assume that the data is dependent. The dependence assumption forfeits a degree of 

freedom and doesn’t show a large reduction in variance. It is important to note that this is 

not the case for all microarray data. With a larger sample size, it would be possible to 

investigate the correlation between expression measurements on the same individual 

more in depth.  However, for the data available in this study, it might be of interest to 

conduct an analysis that treats some of the data as dependent and others as independent. 

Perhaps conducting an analysis like this might result in more significant findings after 

multiple testing corrections.  
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APPENDIX  

COMMENTED SAS CODE 

 

/* importing gene level csv file into SAS obtained from RMA method */ 

 

PROC IMPORT OUT= SASUSER.GENESHORTDATA  

            DATAFILE= "home\sb6xb\geneleveldata_short.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

 

/* transforming data into a different format */ 

 

data repeated; 

set SASUSER.GENESHORTDATA; 

exprs = exprsbsa; time = 1; sub = 1; output; 

exprs = exprsbsb; time = 1; sub = 2; output; 

exprs = exprs24a; time = 2; sub = 1; output; 

exprs = exprs24b; time = 2; sub = 2; output; 

exprs = exprs48a; time = 3; sub = 1; output; 

exprs = exprs48b; time = 3; sub = 2; output; 

drop exprs24a exprs24b exprs48a exprs48b exprsbsa exprsbsb; 

proc sort data = repeated; 

by gene; 

run; 

 

/* creating data sets by time points; baseline, 24 hours, and 48 hours 

*/ 

 

data time1; 

/* baseline */ 

set repeated; 

if time = 1; 

drop obs; 

rename time=time1; 

rename exprs=exprs1; 

run; 

 

data time2; 

/* 24 hours */ 

set repeated; 

if time = 2; 

drop obs; 

rename time=time2; 

rename exprs=exprs2; 

run; 

 

data time3; 

/* 48 hours */ 

set repeated; 

if time = 3; 

drop obs; 



87 

 

rename time=time3; 

rename exprs=exprs3; 

run; 

 

/* merging time point data together, necessary to perform t tests */ 

 

data ttestdata; 

merge time1 time2 time3; 

by gene; 

run; 

 

/* turning off the output window in SAS */ 

 

ODS LISTING CLOSE; 

 

/* creating a csv file path for t test comparing baseline to 24 hours 

*/ 

 

ODS HTML FILE="E:\Thesis\exprs1exprs2.csv"; 

 

/* running t test comparing baseline to 24 hours */ 

 

proc ttest data=ttestdata; 

paired exprs1*exprs2; 

by gene; 

 

/* creating ODS table name for t test data /* 

 

ods output Ttests=ttest_output; 

run; 

 

/* printing the t test output to the csv file */ 

 

proc print data=ttest_output; 

run; 

 

/* creating a csv file path for t test comparing baseline to 48 hours 

*/ 

 

ODS CSV FILE="E:\Thesis\exprs1exprs3.csv";    

 

/* running t test comparing baseline to 48 hours */ 

 

proc ttest data=ttestdata; 

paired exprs1*exprs3; 

by gene; 

 

/* creating ODS table name for t test data /* 

 

ods output Ttests=ttest_output; 

run; 

 

/* printing the t test output to the csv file */ 

 

proc print data=ttest_output; 
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run; 

 

/* creating a csv file path for t test comparing 24 to 48 hours */ 

 

ODS CSV FILE="E:\Thesis\exprs2exprs3.csv"; 

 

/* running t test comparing 24 to 48 hours */ 

 

proc ttest data=ttestdata; 

paired exprs2*exprs3; 

by gene; 

 

/* creating ODS table name for t test data /* 

 

ods output Ttests=ttest_output; 

run; 

 

/* printing the t test output to the csv file */ 

 

proc print data=ttest_output; 

run; 

 

/* creating ODS table names for GLM procedures */ 

 

ods output overallANOVA=anova Contrasts=contr lsmeans=means diff=diff; 

 

/* running proc glm in SAS */ 

 

proc glm data = repeated; 

class sub time; 

model exprs = time sub; 

by gene; 

 

/* creating contrasts comparing the time points */ 

 

contrast 'Baseline VS 24 and 48' time 2 -1 -1 / est; 

contrast '24 VS Baseline and 48' time -1 2 -1 / est; 

contrast '48 VS Baseline and 24' time -1 -1 2 / est; 

 

/* creating comparison matrices for the time points */ 

 

lsmeans exprs / pdiff; 

means exprs / tukey lsd; 

run; 

 

/* creating file path for contrast data */ 

 

ods csv file='E:\Thesis\contrasts.csv'; 

 

/* printing contrast table to csv file */ 

 

proc print data=contr; 

run; 

 

/* creating file path for p values and anova table data */ 
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ods csv file='E:\Thesis\anovafvalues.csv'; 

 

/* printing p values and anova table data to csv file*/ 

 

proc print data=anova; 

run 

/* creating file path for difference matrix data */ 

 

ods csv file='E:\Thesis\pdiff.csv'; 

 

/* printing difference matrices to csv file */ 

 

proc print data=diff; 

run 

/* creating ODS table names for mixed procedures */ 

 

ods output covparms=cp asycov=asy infocrit=aic tests1=tests1 

contrasts=contr diff=diff; 

 

/* running the mixed procedure in SAS */ 

 

proc mixed data=repeated covtest asycov ic;  

class sub time; 

model exprs = time / s htype=1; 

by gene; 

 

/* creating contrasts comparing the time points */ 

 

contrast 'BS VS 24 and 48' time 2 -1 -1 / est; 

contrast '24 VS BS and 48' time -1 2 -1 / est; 

contrast '48 VS BS and 24' time -1 -1 2 / est; 

 

/* creating comparison matrices for the time points */ 

 

lsmeans time / pdiff=all; 

repeated time / TYPE = AR(1) subject=sub r; 

run; 

 

/* specifying file path for ODS table data, difference matrices */ 

 

ods csv file="E:\Thesis\pdiffmixed.csv"; 

 

/* printing csv file, difference matrices */ 

 

proc print data=diff; 

run; 

 

/* specifying file path for ODS table data, AIC scores */ 

 

ods csv file="E:\Thesis\geneaicscorear1.csv"; 

 

/* printing csv file, AIC score */ 
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proc print data=aic; 

run; 

 

/* specifying file path for ODS table data, p values and anova tables 

*/ 

 

ods csv file="E:\Thesis\genemixedpvaluesar1.csv"; 

 

/* printing csv file, pvalues and anova tables */ 

 

proc print data=tests1; 

run; 

 

/* specifying file path for ODS table data, residual variances */ 

 

ods csv file="E:\Thesis\mixedwresidualar1.csv"; 

 

data res; 

set cp; 

if subject = 'sub' then 

delete; 

run; 

 

/* printing csv file, residual variances */ 

 

proc print data=res; 

run; 

 

/* specifying file path for ODS table data, subject variances */ 

 

ods csv file="E:\Thesis\mixedwsubjectar1.csv"; 

 

data sub; 

set cp; 

if subject = ' ' then 

delete; 

run; 

 

/* printing csv file, subject variances */ 

 

proc print data=sub; 

run;  

 

/* importing in raw p value data from t tests */ 

 

PROC IMPORT OUT= SASUSER.GENEMULTTEST  

            DATAFILE= "E:\Thesis\genemulttest.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

 

/* cutting data to only include necessary p values from first t test */ 
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data multtest1; 

set sasuser.genemulttest; 

rename probt12=Raw_P; 

drop prob13; 

drop prob23; 

run; 

 

/* specifying file path for output table to print to */ 

 

ods csv file="E:/Thesis/ttestgenemulttest12.csv"; 

 

/* running the multiple testing corrections adjustment in SAS using fdr 

*/ 

 

proc multtest inpvalues=multtest1 fdr; 

run; 

 

/* cutting data to only include necessary p values from second t test 

*/ 

 

data multtest2; 

set sasuser.genemulttest; 

rename prob13=Raw_P; 

drop probt12; 

drop prob23; 

run; 

 

/* specifying file path for output table to print to */ 

 

ods csv file="E:/Thesis/ttestgenemulttest13.csv"; 

 

/* running the multiple testing corrections adjustment in SAS using fdr 

*/ 

 

proc multtest inpvalues=multtest2 fdr; 

run; 

 

/* cutting data to only include necessary p values from third t test */ 

 

data multtest3; 

set sasuser.genemulttest; 

rename prob23=Raw_P; 

drop prob13; 

drop probt12; 

run; 

 

/* specifying file path for output table to print to */ 

 

ods csv file="E:/Thesis/ttestgenemulttest23.csv"; 

 

/* running the multiple testing corrections adjustment in SAS using fdr 

*/ 

 

proc multtest inpvalues=multtest3 fdr; 

run; 
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/*Multiple testing corrections file for ANOVA, MIXED, and MOD T*/ 

 

/* importing data into SAS on the NIC Cluster */ 

 

PROC IMPORT OUT= SASUSER.EXONSHORTdata  

            DATAFILE= "home\sb6xb\exonleveldata_short.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

 

/* transforming data into a different format */ 

 

data ttest; 

set sasuser.exonshortdata; 

exprs = bsa_cel; time = 1; sub = 1; output; 

exprs = bsb_cel; time = 1; sub = 2; output; 

exprs = x24a_cel; time = 2; sub = 1; output; 

exprs = x24b_cel; time = 2; sub = 2; output; 

exprs = x48a_cel; time = 3; sub = 1; output; 

exprs = x48b_cel; time = 3; sub = 2; output; 

drop bsa_cel bsb_cel x24a_cel x24b_cel x48a_cel x48b_cel; 

proc sort data = ttest; 

by probesetid; 

run; 

 

/* creating data sets by time points; baseline, 24 hours, and 48 hours 

*/ 

 

data time1; 

/* baseline */ 

set repeated; 

if time = 1; 

drop obs; 

rename time=time1; 

rename exprs=exprs1; 

run; 

 

data time2; 

/* 24 hours */ 

set repeated; 

if time = 2; 

drop obs; 

rename time=time2; 

rename exprs=exprs2; 

run; 

 

data time3; 

/* 48 hours */ 

set repeated; 

if time = 3; 

drop obs; 

rename time=time3; 

rename exprs=exprs3; 



93 

 

run; 

 

/* merging time point data together, necessary to perform t tests */ 

 

/* creating a csv file path for t test comparing baseline to 24 hours 

*/ 

 

ODS HTML FILE="E:\Thesis\exprs1exprs2.csv"; 

 

/* running t test comparing baseline to 24 hours */ 

 

proc ttest data=ttestdata; 

paired exprs1*exprs2; 

by probesetid; 

 

/* creating ODS table name for t test data /* 

 

ods output Ttests=ttest_output; 

run; 

 

/* printing the t test output to the csv file */ 

 

proc print data=ttest_output; 

run; 

 

/* creating a csv file path for t test comparing baseline to 48 hours 

*/ 

 

ODS CSV FILE="E:\Thesis\exprs1exprs3.csv";    

 

/* running t test comparing baseline to 48 hours */ 

 

proc ttest data=ttestdata; 

paired exprs1*exprs3; 

by probesetid; 

 

/* creating ODS table name for t test data /* 

 

ods output Ttests=ttest_output; 

run; 

 

/* printing the t test output to the csv file */ 

 

proc print data=ttest_output; 

run; 

 

/* creating a csv file path for t test comparing 24 to 48 hours */ 

 

ODS CSV FILE="E:\Thesis\exprs2exprs3.csv"; 

 

/* running t test comparing 24 to 48 hours */ 

 

proc ttest data=ttestdata; 

paired exprs2*exprs3; 

by probesetid; 
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/* creating ODS table name for t test data /* 

 

ods output Ttests=ttest_output; 

run; 

 

/* printing the t test output to the csv file */ 

 

proc print data=ttest_output; 

run; 

 

/* creating ODS table names for GLM procedures */ 

 

ods output overallANOVA=anova Contrasts=contr lsmeans=means diff=diff; 

 

/* running proc glm in SAS */ 

 

proc glm data = repeated; 

class sub time; 

model exprs = time sub; 

by probesetid; 

 

/* creating contrasts comparing the time points */ 

 

contrast 'Baseline VS 24 and 48' time 2 -1 -1 / est; 

contrast '24 VS Baseline and 48' time -1 2 -1 / est; 

contrast '48 VS Baseline and 24' time -1 -1 2 / est; 

 

/* creating comparison matrices for the time points */ 

 

lsmeans exprs / pdiff; 

means exprs / tukey lsd; 

run; 

 

/* creating file path for contrast data */ 

 

ods csv file='E:\Thesis\exoncontrasts.csv'; 

 

/* printing contrast table to csv file */ 

 

proc print data=contr; 

run; 

 

/* creating file path for p values and anova table data */ 

 

ods csv file='E:\Thesis\exonanovafvalues.csv'; 

 

/* printing p values and anova table data to csv file*/ 

 

proc print data=anova; 

run 

/* creating file path for difference matrix data */ 

 

ods csv file='E:\Thesis\exonpdiff.csv'; 



95 

 

 

/* printing difference matrices to csv file */ 

 

proc print data=diff; 

run; 

/* creating ODS table names for mixed procedures */ 

 

ods output covparms=cp asycov=asy infocrit=aic tests1=tests1 

contrasts=contr diff=diff; 

 

/* running the mixed procedure in SAS */ 

 

proc mixed data=repeated covtest asycov ic;  

class sub time; 

model exprs = time / s htype=1; 

by probesetid; 

 

/* creating contrasts comparing the time points */ 

 

contrast 'BS VS 24 and 48' time 2 -1 -1 / est; 

contrast '24 VS BS and 48' time -1 2 -1 / est; 

contrast '48 VS BS and 24' time -1 -1 2 / est; 

 

/* creating comparison matrices for the time points */ 

 

lsmeans time / pdiff=all; 

repeated time / TYPE = AR(1) subject=sub r; 

run; 

 

/* specifying file path for ODS table data, difference matrices */ 

 

ods csv file="E:\Thesis\exonpdiffmixed.csv"; 

 

/* printing csv file, difference matrices */ 

 

proc print data=diff; 

run; 

 

/* specifying file path for ODS table data, AIC scores */ 

 

ods csv file="E:\Thesis\exongeneaicscorear1.csv"; 

 

/* printing csv file, AIC score */ 

 

proc print data=aic; 

run; 

 

/* specifying file path for ODS table data, p values and anova tables 

*/ 

 

ods csv file="E:\Thesis\exonmixedpvaluesar1.csv"; 

 

/* printing csv file, pvalues and anova tables */ 
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proc print data=tests1; 

run; 

 

/* specifying file path for ODS table data, residual variances */ 

 

ods csv file="E:\Thesis\exonmixedwresidualar1.csv"; 

 

data res; 

set cp; 

if subject = 'sub' then 

delete; 

run; 

 

/* printing csv file, residual variances */ 

 

proc print data=res; 

run; 

 

/* specifying file path for ODS table data, subject variances */ 

 

ods csv file="E:\Thesis\exonmixedwsubjectar1.csv"; 

 

data sub; 

set cp; 

if subject = ' ' then 

delete; 

run; 

 

/* printing csv file, subject variances */ 

 

proc print data=sub; 

run;  
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