

Scholars' Mine

Masters Theses

Student Theses and Dissertations

Summer 2015

Day of the week effect in returns and volatility of the S&P 500 sector indices

Juan Liu

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Mathematics Commons, and the Statistics and Probability Commons Department:

Recommended Citation

Liu, Juan, "Day of the week effect in returns and volatility of the S&P 500 sector indices" (2015). *Masters Theses.* 7436. https://scholarsmine.mst.edu/masters_theses/7436

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

DAY OF THE WEEK EFFECT IN RETURNS AND VOLATILITY

OF THE S&P 500 SECTOR INDICES

by

JUAN LIU

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN APPLIED MATHEMATICS

2015

Approved by

V.A. Samaranayake, Advisor Gayla Olbricht Gregory Gelles

© 2015

Juan Liu All Rights Reserved

ABSTRACT

Previous studies have shown that returns associated with the stock market or foreign exchange's futures show variations across the day of the week. On such study, that employs a modified GARCH model for estimation, shows that returns associated with the S&P 500 stock index is highest on Wednesday and lowest returns on Monday. The same study shows that volatility is highest on Fridays and lowest on Wednesdays. In this study we investigate if this day-of-the-week effect on returns and volatility is present in the different sectors that constitute the S&P 500 index. The data set used provides daily returns from February 2005 to February 2015 and is more recent than the data used for the original study on the S&P index. Results show mixed outcomes with some days showing higher returns or volatilities on certain days of the week depending on the sector.

Keywords: Day-of-the-week-effect, GARCH, Heteroscedasticity, S&P 500-index

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my advisor, Dr. V. A. Samaranayake, in the Department of Mathematics and Statistics at the Missouri University of Science and Technology, for his insight inspiration and guidance, for his patience, motivation, enthusiasm and immense knowledge. I first joined the university to do a doctoral degree in computer science, but was ambivalent about pursuing a Ph.D. in that field. During that difficult time when I was confused about my choices and future objectives, Dr. Samaranayake encouraged me make a selection based on my own aspirations and was willing to share his experience in academic research and career success. His guidance helped me in throughout this research and in writing this thesis. I could not have imagined having a better advisor and mentor for my master's study.

I also would like to thank the rest of my committee members, Dr. Gayla Olbricht and Dr. Gregory Gelles, for their encouragement and insightful comments.

Last but not least, I would like to thank my dear parents. I am very thankful for their support and continuous encouragement throughout my life.

TABLE OF CONTENTS

Page
 iii

ABSTRACT	iii
ACKNOWLEDGMENTS	iv
LIST OF ILLUSTRATIONS	vi
LIST OF TABLES	vii
SECTION	
1. INTRODUCTION	1
1.1. LITERATURE REVIEW	3
1.2. INTRODUCTION TO ARCH AND GARCH MODELS	4
2. MODELS WITH TIME VARING MEAN AND UNCONDITIONAL VOLATILITY	9
2.1. AN AUTOREGRESSIVE- GARCH MODEL	9
2.2. OTHER ALTERNATIVE MODELS	11
3. STANDARD AND POOR'S 500 STOCK INDEX AND THE DATA	13
3.1. DESCRIPTION OF SECTORS OF S&P 500 INDEX	13
3.2. DESCRIPTION OF DATA	15
4. STATISTICAL MODELING OF S&P 500 SECTOR DATA	22
4.1. THE MODELING PROCEDURE	
4.2. DATA ANALYSIS AND RESULTS	
5. CONCLUSIONS	
APPENDICES	
A. TABLE	
B. SAS CODE FOR MODELLING	50
BIBLIOGRAPHY	53
VITA	

LIST OF ILLUSTRATIONS

Figure	Page
3.1. The Plot of Return by Time for Customer Discretionary Sector	16
3.2. The Plot of Return by Time for Customer Staples Sector	16
3.3. The Plot of Return by Time for Energy Sector	17
3.4. The Plot of Return by Time for Financial Sector	17
3.5. The Plot of Return by Time for Health Care Sector	18
3.6. The Plot of Return by Time for Industrials Sector	
3.7. The Plot of Return by Time for Information Technology Sector	19
3.8. The Plot of Return by Time for Materials Sector	19
3.9. The Plot of Return by Time for Telecommunication Services Sector	20
3.10. The Plot of Return by Time for Utilities Sector	

LIST OF TABLES

Table	Page
3.1. List of Industries Belonging to S&P 500 Sectors	14
4.1. Days of the Week with Significant Differences in Returns and Volatility	24
4.2. Analysis Results for Customer Discretionary Sector – Stationary Model	25
4.3. Analysis Results for Customer Staples Sector – Stationary Model	26
4.4. Analysis Results for Energy Sector – Stationary Model	27
4.5. Analysis Results for Financial Sector – Stationary Model	28
4.6. Analysis Results for Health Care Sector – Stationary Model	29
4.7. Analysis Results for Industrials Sector – Stationary Model	30
4.8. Analysis Results for Information Technology Sector – Stationary Model	31
4.9. Analysis Results for Materials Sector – Stationary Model	32
4.10. Analysis Results for Telecommunication Services Sector – Stationary Model .	33
4.11. Analysis Results for Utilities Sector – Stationary Model	34
4.12. Analysis Results for Customer Discretionary Sector – IGARCH Model	35
4.13. Analysis Results for Customer Staples Sector – IGARCH Model	36
4.14. Analysis Results for Energy Sector – IGARCH Model	37
4.15. Analysis Results for Financial Sector – IGARCH Model	38
4.16. Analysis Results for Health Care Sector – IGARCH Model	39
4.17. Analysis Results for Industrials Sector – IGARCH Model	40
4.18. Analysis Results for Information Technology Sector – IGARCH Model	41

4.19. Analysis Results for Materials Sector – IGARCH Model	42
4.20. Analysis Results for Telecommunication Services Sector – IGARCH Model	43
4.21. Analysis Results for Utilities Sector – IGARCH Model	44

ix

1. INTRODUCTION

Statistical modeling of stock returns has had a long history. One of the early attempts at statistically modeling returns was by Kendall (1953). He analyzed twenty two time series consisting of asset prices observed on a weekly basis. He concluded that "The series looks like a 'wandering' one, almost as if once a week the Demon of Chance drew a random number from a symmetrical population of fixed dispersion and added it to the current price to determine next week's price," Kendall (1953, p. 13). Kendall was talking about price when he referred to a "wandering" series, but when he referred to a "random number" he was referring to returns. Returns of an asset are usually computed either as the ratio of the change in the price of a commodity to its previous price or as the difference of the natural logarithm of the current price and the previous price. Kendall's observations makes sense if the price of an asset or the log price at time t is the value of a random walk consisting of the sum of independent identically distributed (*i.i.d.*) random variables computed from the beginning of the series to time t. In such a case, the returns are independent identically distributed random variables. You would see a similar behavior even if the returns are uncorrelated random variables, which are normally referred to as white noise. This noise component can be considered as the noise component of the process and is sometimes referred to as the innovations.

Standard time series models, such as the Autoregressive Moving Average (ARMA) formulation, assume that the underlying error process is either strictly stationary or second order (weakly) stationary. That is that the mean and the variance (as well as the autocovariances) of the process remains constant over time. The above formulations also assume that the conditional variance of this error process is a constant. In other words it

is assumed that the variance when conditioned on past values is homoscedastic. However, there are many empirical time series that display conditional heteroscedasticity. For example, financial time series such as stock returns and electricity prices show conditional variances that change over time. Stock returns in particular can show intermittent bursts of higher than normal volatility (variance) followed by calmer periods. One approach to modeling these types of time series is to use Autoregressive Conditional Heteroskedastic (ARCH) models proposed by Engle (1982) or the Generalized Conditional Heteroskedastic (GARCH) models suggested by Bollerslev (1986). These models allow conditional variance to change over time, with high volatility periods followed by periods of low volatility. The unconditional variance of ARCH and GARCH models, however, are constant over time.

Some authors, such as Cross (1973) contested the assumption that the mean returns would remain constant across the five days of the trading week. Others, such as Osborn and Smith (1989) as well as Harvey and Huang (1991), argued that the assumption of constant unconditional variance is violated by some empirical series. Of particular interest is a paper by Berument and Kiymaz (2001) who analyzed 6,409 daily observations from Standard and Poor's 500 (S&P 500) Index taken from January 3, 1973 through October 20, 1997. Their analysis showed volatility to be higher than normal on Fridays and lower than normal Wednesdays. In this study, daily returns from ten different sectors included in the S&P 500 Index are studied to determine if similar "day-of-the-week" effect exists in both means returns and their volatility in individual sectors and whether such patterns are consistent across sectors.

1.1. LITERATURE REVIEW

The day-of-the week effect can impact returns as well as volatility. The first study on the day-of-the-week effect on returns was carried out by Cross (1973). This study analyzed returns on the S&P 500 Index that covered the years 1953 through 1970. The findings indicate that the mean return on Friday is higher than that of Monday. French (1980) found a similar pattern on returns on the S&P 500 Index over the period 1953-1977. Gibbons and Hess analyzed 30 selected stocks from the Dow Jones Industrial Index and found negative returns for Mondays. Additional analysis was carried out by Keim and Stambaugh (1984), which found patterns similar to those found by the earlier studies.

Of particular interest to researchers was the Monday returns, which some suggested should be higher than for other days because of the gap that exist between Friday trading and Monday activities. For example French (1980) suggested that Monday returns should be higher than returns for other days. Other publications that investigated related issues are Gibbons and Hess (1981), Lakonishok and Levi (1982), and Rogalski (1984). In addition, Jaffe and Westerfield (1985) studied the day-of-the-week effect in stock markets in Australia, Canada, Japan, U.K. while and Solnik and Bousquet (1990) studied such effects for stocks traded in the Paris Bourse (a historic Paris stock exchange renamed Euronext Paris in 2000). The former study found the lowest returns for the Japanese and Australian stock markets to occur on Tuesdays. The latter study found negative returns on Tuesdays for the Paris market.

Investigations on the relationship between returns and on volatility were carried out by French, Schwert, and Stambaugh (1987) unusual stock market returns are negatively corrected with unexpected volatility changes. Campbell and Hentschel (1992) suggest that increase in volatility lowers stock prices. Others who studied the relationship between stock returns and volatility are: Baillie and DeGennaro (1990), Chan, Karolyi, and Stulz (1992), Glosten, Jagannathan and Runkle (1993), Corhay and Rad (1994), and Theodossiou and Lee (1995). These studies do not directly study the presence of a dayof-the-week effect on stock market volatility but looked at the relationship between stock price and volatility.

As mentioned earlier, Berument and Kiymaz (2001) found a day-of-the-week effect that increased volatility of Fridays and lowered it on Wednesdays. Other investigations also found such effects. For example, Harvey and Huang (1991) who studied interest rate and foreign exchange futures market found higher volatilities on Fridays while Ederington and Lee (1993) found such effects in the bond and stock markets. Choudhry (2000) studied data from seven Asian stock markets and found evidence of day-of-the-week effects on volatility, but these effects were not alike across the countries under study. Rodriguez (2012) who studied volatilities in the Latin American stock markets found Monday to have lower than normal volatility with Friday showing a higher than normal effects.

1.2. INTRODUCTION TO ARCH AND GARCH MODELS

The ARCH and GARCH models introduced by Engle (1982) and Bollerslev (1986) are defined in the following paragraphs. Following that, variations of these models that account for non-constant mean and unconditional volatility, such as that those due to day-of-the-week effect are given in Chapter 2.

Definition 1.2.1: A time series $\{\varepsilon_t : t = 0, \pm 1, \pm 2,\}$ is said to be an Autoregressive Conditional Heteroskedastic Process of order *q* if it follows the formulation:

$$\varepsilon_t = \sigma_t e_t$$
, for $t = 0, \pm 1, \pm 2, \dots$, where $e_t \sim i.i.d. N(0,1)$

and

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^q \alpha_j \varepsilon_{t-j}^2 \text{ for } t = 0, \ \pm 1, \ \pm 2, \dots.$$
(1.2.1)

where $\sigma_t = \sqrt{\sigma_t^2}$, $\alpha_0 > 0$, $\alpha_j \ge 0$ for j = 1, 2, ..., q. The additional condition

 $\sum_{j=1}^{q} \alpha_j < 1$ is required for the time series $\{\varepsilon_t\}$ to be covariance stationary. Time series that satisfy the above condition are sometimes called by the acronym ARCH (q). The unconditional variance of a stationary ARCH (q) process can be easily derived, and is given in the following well-known theorem.

Theorem 1.2.1: Let the time series $\{\varepsilon_t : t = 0, \pm 1, \pm 2,\}$ satisfy the conditions given under Definition 1.2.1. Then,

$$E[\varepsilon_t] = 0 \text{ for all } t = 0, \pm 1, \pm 2, \dots \text{ and}$$
$$E[\varepsilon_t^2] = \frac{1}{1 - \sum_{i=1}^q \alpha_i} \text{ for all } t = 0, \pm 1, \pm 2, \dots$$

Proof: [This derivation is from Edirisinghe (2011).] First define $E[X_t | j < t]$ to denote the conditional expectation of any random variable X_t conditional on all its past values $X_{t-1}, X_{t-1}, X_{t-3}, \dots$.

Note that, $E_{\mathsf{F}_t}(\varepsilon_t^2) = E(e_t^2 \sigma_t^2)$

$$= E(E(e_t^2 \sigma_t^2 \mid j < t))$$
$$= E(E(e_t^2 (\alpha_0 + \sum_{j=1}^q \alpha_j \varepsilon_{t-j}^2) \mid j < t))$$
$$= E(\alpha_0 + \sum_{j=1}^q \alpha_j \varepsilon_{t-j}^2) E(e_t^2 \mid j < t).$$

Now, $E(e_t^2 | j < t) = E(e_t^2) = 1$ because e_t are independent identically distributed random variables with variance equal to one.

This implies,
$$E_{\mathsf{F}_t}(\varepsilon_t^2) = \alpha_0 + \sum_{j=1}^q \alpha_j E(\varepsilon_{t-j}^2).$$

Also,
$$E(\sigma_t^2) = \alpha_0 + \sum_{j=1}^q \alpha_j E(\varepsilon_{t-j}^2).$$

Which implies $E(\varepsilon_t^2) = E(\sigma_t^2)$ and hence, $E(\varepsilon_{t-1}^2) = E(\sigma_{t-1}^2)$.

Now,
$$E_{\mathsf{F}_t}(\varepsilon_t^2) = \alpha_0 + \sum_{j=1}^q E(\varepsilon_{t-1}^2).$$

Since $\{\varepsilon_t\}$ is covariance stationary, $E_{\mathsf{F}_t}(\varepsilon_t^2) = E_{\mathsf{F}_t}(\varepsilon_{t-1}^2)$.

Now,
$$E_{\mathsf{F}_t}(\varepsilon_t^2) = \alpha_0 + \sum_{j=1}^q \alpha_j E(\varepsilon_t^2).$$

Therefore,

$$E_{\mathsf{F}_t}(\varepsilon_t^2) = \frac{\alpha_0}{(1 - \sum_{j=1}^q \alpha_j)}.$$

The definition of the GARCH process introduced by Bollerslev (1986) is as follows:

Definition 1.2.2: A time series $\{\varepsilon_i : t = 0, \pm 1, \pm 2,\}$ is said to be a Generalized Autoregressive Conditional Heteroskedastic Process or orders *p* and *q* if it follows the formulation:

$$\varepsilon_t = \sigma_t e_t$$
, for $t = 0, \pm 1, \pm 2, \dots$, where $e_t \sim i.i.d. N(0,1)$

and

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^q \alpha_j \varepsilon_{t-j}^2 + \sum_{i=1}^p \beta_i \sigma_{t-i}^2 \quad \text{for} \quad t = 0, \ \pm 1, \ \pm 2, \dots$$

(1.2.2)

where
$$\sigma_t = \sqrt{\sigma_t^2}$$
, $\alpha_0 > 0$, $\alpha_j \ge 0$ for $j = 1, 2, ..., q$, and $\beta_i \ge 0$ for $i = 1, 2, ..., p$. The

additional condition $\sum_{j=1}^{q} \alpha_j + \sum_{i=1}^{p} \beta_i < 1$ is required for the time series $\{\varepsilon_i\}$ to be

covariance stationary. Time series that satisfy the above condition are sometimes called by the acronym GARCH (q, p). The unconditional variance of a stationary GARCH (q, p)process can be derived similar to that of the ARCH processes, and is given in the following well-known theorem.

Theorem 1.2.2: Let the time series $\{\varepsilon_t : t = 0, \pm 1, \pm 2,\}$ satisfy the conditions given under Definition 1.2.2. Then,

$$E[\varepsilon_t] = 0$$
 for all $t = 0, \pm 1, \pm 2, \dots$ and

$$E\left[\varepsilon_{t}^{2}\right] = \frac{1}{1 - \left[\sum_{j=1}^{q} \alpha_{j} + \sum_{i=1}^{p} \beta_{i}\right]} \text{ for all } t = 0, \ \pm 1, \ \pm 2, \dots$$

Proof: The proof is similar to that of Theorem 1.2.1 and hence is not given here.

Even though many empirical time series that are modeled as a GARCH process satisfies the covariance stationarity condition $\sum_{j=1}^{q} \alpha_j + \sum_{i=1}^{p} \beta_i < 1$, in some cases this may not be the case. Lindner (2009) states that "For real data one often estimates parameters α_j and β_i such that $\sum_{j=1}^{q} \alpha_j + \sum_{i=1}^{p} \beta_i < 1$ is close to one, when assuming noise variance 1."

where $\sum_{j=1}^{q} \alpha_j + \sum_{i=1}^{p} \beta_i = 1$. Such processes may still have strictly stationary solutions

according to Lindner (2009).

2. MODELS WITH TIME VARING MEAN AND UNCONDITIONAL VOLATILITY

As you can see from the results of Theorems 1.2.1 and 1.2.2, the unconditional variance of ARCH and GARCH processes are both independent of the time index *t* and hence are constant over time. Therefore, the day-of-the week effects observed in empirical time series by many researchers cannot be modeled using the standard ARCH and GARCH models. This is because if for example Fridays consistently have higher volatility than other days, then the average volatility observed for Fridays across many years must be higher than similar averages obtained for other days. This means that the unconditional volatility for Fridays must be higher than that for other days.

In addition, the mean of a GARCH process is zero. Also, unconditionally, the process is uncorrelated. Both these properties can be a drawback when using a GARCH process to model a time series with a non-zero mean and whose terms are correlated. This can be easily overcome by fitting a non-zero mean ARMA process to the time series, but under the assumption that the error terms are GARCH. The mean of the ARMA process can be allowed to vary, say according to the day of the week by introducing dummy variables.

2.1. AN AUTOREGRESSIVE- GARCH MODEL

One way to introduce a non-constant unconditional variance is to use the formulation adopted by Choudhry (2000) as well as by Berument and Kiymaz (2001). In this formulation, the constant term α_0 found in the ARCH and GARCH models (1.2.1)

and (1.2.2) respectively, is replaced by terms specific to each day. Thus, the modified GARCH model is as follows:

$$\mathcal{E}_t = \sigma_t e_t$$
, for $t = 0, \pm 1, \pm 2, \dots$, where $e_t \sim i.i.d. N(0,1)$

and

$$\sigma_t^2 = \sum_{k=1}^5 d_k + \sum_{j=1}^q \alpha_j \varepsilon_{t-j}^2 + \sum_{i=1}^p \beta_i \sigma_{t-i}^2 \text{ for } t = 0, \ \pm 1, \ \pm 2, \ \dots$$
(1.2.2)

where $\sigma_t = \sqrt{\sigma_t^2}$, $\alpha_0 > 0$, $\alpha_j \ge 0$ for j = 1, 2, ..., q, and $\beta_i \ge 0$ for i = 1, 2, ..., p, with the d_k representing a dummy variable for the k^{th} trading day of the week, k=1, 2, 3, 4, 5. The additional condition $\sum_{j=1}^q \alpha_j + \sum_{i=1}^p \beta_i < 1$ is required for the time series $\{\varepsilon_i\}$ to be

covariance stationary.

Given the closing value X_t of a stock on day t, it is common to compute the return, R_t , for day t by $R_t = \ln(X_t / X_{t-1})$. The above ARCH and GARCH processes are zero mean processes because it can be shown easily that $E[\varepsilon_t] = 0$ for all values of t and this may be too restrictive to model the returns of a given stock. Researchers such as Berument and Kiymaz (2001) as well as Rodriguez (2012) extended this model to an Autoregressive Model (AR) with a mean that varies with the day-of-the-week, with errors that are a GARCH process given by (1.2.2). Their formulation for R_t , the return observed on day t, is given by

$$R_{t} = \sum_{k=1}^{5} \gamma_{k} d_{k} + \sum_{l=1}^{m} \phi_{l} R_{t-l} + \varepsilon_{t}$$
(2.1.1)

with

$$\varepsilon_t = \sigma_t e_t$$
, for $t = 0, \pm 1, \pm 2, \dots$, where $e_t \sim i.i.d. N(0,1)$

and

$$\sigma_t^2 = \alpha_0 + \sum_{k=1}^4 \delta_k d_k + \sum_{j=1}^q \alpha_j \varepsilon_{t-j}^2 + \sum_{i=1}^p \beta_i \sigma_{t-i}^2 \qquad \text{for}$$

 $t = 0, \pm 1, \pm 2, \dots$

Observe that $\sigma_t = \sqrt{\sigma_t^2}$, $\alpha_0 > 0$, $\alpha_j \ge 0$ for j = 1, 2, ..., q, and $\beta_i \ge 0$ for i = 1, 2, ..., p, with the d_k representing a dummy variable for the k^{th} trading day of the week, k=1, 2, 3,

4, 5. The additional condition
$$\sum_{j=1}^{q} \alpha_j + \sum_{i=1}^{p} \beta_i < 1$$
 is required for the time series $\{\varepsilon_i\}$ to be

covariance stationary. Only four of the five d_k terms are included in the intercept term of the GARCH portion of Equation (2.1.1) because including all five dummy variables together with the constant term α_0 will result in collinearity. All five dummy variables were, however, fitted in the regression portion of Equation (2.1.1) which has no intercept.

The above formulation will be used in this study to model the returns computed from the S&P 500 sector indices. One advantage of the above formulation is that it allows the modeling of returns as an autoregressive process and also account for the conditional heteroskedasticity of the error process. It also accounts for any day-of-the-week effect on the returns as well as on volatility. Another advantage is that this model can be fitted to data using existing software such as the Statistical Analysis System (SAS[©]).

2.2. OTHER ALTERNATIVE MODELS

While there are advantages to using the above model, there are other models proposed by researchers. Edirisinghe (2011) in his doctoral dissertation proposed several models. In brief his models assumed an underlying process $\{\varepsilon_t\}$ given by the GARCH model (1.2.2) but assumed that the observed process $\{R_t\}$ is given by $Y_t = \gamma(t)\varepsilon_t$ where $\gamma(t)$ is a deterministic function that changes over time. Edirisinghe (2011) showed that the unconditional variance of this process equals

$$E\left[R_{t}^{2}\right] = \gamma(t)E\left[\varepsilon_{t}^{2}\right] = \gamma(t)\left\{\frac{1}{1-\left[\sum_{j=1}^{q}\alpha_{j}+\sum_{i=1}^{p}\beta_{i}\right]}\right\}$$
(2.2.1)

So if $\gamma(t)$ takes different values based on the day-of-the-week *t* fall into, then we have a process whose unconditional variance changes with time. A model similar to (2.2.1) above was independently proposed by Amado and Terasvirta (2013).

Another very similar approach to modeling day-of-the-week effects was implemented by Thilakaratne and Samaranayake (2013). In this formulation, the process $\{R_t\}$ is given by

$$R_t = \theta_{S(t)} \varepsilon_t \text{ for } t = 1, 2, ..., n$$
 (2.2.2)

where $\theta_{s(t)}$ are constants and s(t) takes values 1, 2, 3, 4, and 5 depending on which dayof-the-week *t* falls on. The authors assumed without loss of generality that $\theta_5 = 1$ and estimated the values of θ_i , I = 1, 2, 3, 4 by dividing the average of the returns for Monday through Thursday by the average of the Friday returns. Then they modeled the resulting scaled returns as a regular GARCH process. Their main aim was to obtain prediction intervals for returns and volatilities and the intervals they obtained using GARCH modeling were re-scaled by multiplying them by the estimated quantities $\hat{\theta}_i$, I =1, 2, 3, 4. They did not, however, come up with a procedure to test the null hypothesis that $\theta_1 = \theta_2 = \theta_3 = \theta_4 = 1$.

3. STANDARD AND POOR'S 500 STOCK INDEX AND THE DATA

The Standard and Poor's 500 (S&P 500) is based on the weighted stock prices of 500 large companies. The criteria for selection as one of the 500 companies include: (1) must be a U.S. Company, (1) have an unadjusted market capitalization of at or above \$5.3 billion, (2) the ratio of annual dollar value traded to float adjusted market capitalization should be 1.0 or greater and trade a minimum of 250,000 shares in each of the six months leading up to the evaluations date, (3) at least 50% of outstanding shares must be available for trading, (4) have positive as-reported earnings over the most recent quarter, (5) initial public offerings should be seasons for 6 to 12 months before being considered for addition to the index, (6) consist of highly tradable common stocks, with active and deep markets (quoted from S&P Dow Jones Indices: Index Methodology (2015)). Companies listed in the S&P 500 can be deleted if they no longer meet the above criteria but violations of a temporary nature may not result in deletion. The method of calculating the index and the mathematical details of determining the weights assigned to each company in the index is quite complicated and will not be discussed here. These details can be found at the website www.spdji.com.

3.1. DESCRIPTION OF SECTORS OF S&P 500 INDEX

The S&P 500 index consist of companies that can be broadly categorized into ten sectors: (1) Consumer Discretionary, (2) Consumer Staples, (3) Energy, (4) Financials, (5) Health Care, (6) Industrials, (7) Materials, (8) Technology, (9) Telecommunications Services, and (10) Utilities. Based on this standard, the above sectors consist of the industries given in Table 3.1 given below.

Sector	Industry
Consumer Discretionary	Auto Components, Automobiles, Household Durables, Leisure
	Equipment & Products, Textiles Apparel & Luxury Goods, Hotels,
	Restaurants & Leisure, Diversified Consumer Services, Media,
	Distributors, Internet and catalog Retail, Multiline Retail, Specialty
	Retail
Consumer Staples	Food staples and Retailing, Beverages, Food Products, Tobacco,
	Household products, Personal Products
Energy	Energy Equipment & Services, Oil, Gas, & Consumable Fuels
Financials	Commercial banks, Thrift & Mortgage Finance, Diversified financial
	services, Consumer Finance, Capital markets, Insurance, Real Estate
	(discontinued effective 04/30/2006), Real Estate Investment Trusts,
	Real Estate management & Development
Healthcare	Healthcare Providers & Services, Healthcare Equipment & Supplies,
	Healthcare Technology, Biotechnology, Pharmaceuticals, Life
	Sciences Tools & services
Industrials	Aerospace & Defense, Building Products, Construction &
	engineering, Electrical Equipment, Industrial Conglomerates,
	Machinery, Trading companies & Distributors, commercial services
	& Supplies, Professional Services, Air Freight & Logistics, Airlines,
	Marine, Road & Rail, Transportation Infrastructure
Information Technology	Internet Software & Services, IT Services, Software,
	Communications Equipment, Computers & Peripherals, Electronic
	Equipment & Components, Office Electronics, Semiconductor
	Equipment and Products (discontinued effective 04/30/2003),
	Semiconductors & Semiconductor Equipment
Materials	Chemicals, Construction Materials, Containers & Packaging, Metals
	& Mining, Paper & Forest Products
Telecommunications Services	Diversified Telecommunication Services, Wireless
	Telecommunication Services
Utilities	Electric Utilities, Gas Utilities, Multi-Utilities, Water Utilities,
	Independent Power Producers & Energy Traders

Table 3.1. List of Industries Belonging to S&P 500 Sectors

It is important to note that sometimes financial analysts consider Consumer Staples and Discretionary Sectors as one. Also some combine Materials and Industrial sectors. The ten-sector classification given above is defined based on the Global Industry Classification Standard (GICS[®]) which was jointly developed by Standard and Poor's and MSCI Barra in 1999 (S&P Indices (2008)).

3.2. DESCRIPTION OF DATA

The price data for each sector was obtained from the website <u>http://us.spindices.com/indices/equity/sp-500</u>. Sector breakdowns can be obtained from the same site. The index data provides prices computed using total returns, which include dividends and based on total net returns, which does not count dividends. The analysis conducted in this research used total net returns series. The website also provides data from other indices such as S&P 100, S&P Small Caps 600, S&P 900, S&P 1000 and S&P Composite 1500.

The graphs of the returns for each sector over a ten-year period from February 15, 2005 through February 12, 2015 are given in Figures 3.1 through 3.10. Note that the horizontal axis is labeled starting at one through 2,517 to reflect the 2,517 returns computed from 2,518 prices. Note that the return for the first day in the price series, namely February 14, 2005, could not be computed because the price of the index for the previous day was not available in the data set. Since the 2008/2009 financial crisis affected all stocks in some way or another, the behavior of the returns during that time may be of interest. September 2, 2008 corresponds to data point 894 (t=894). October 1, 2008 corresponds to t=915 and the corresponding t value for December 31, 2008 is 978.

Figure 3.1. The Plot of Return by Time for Customer Discretionary Sector

Customer Staples Sector

Figure 3.2. The Plot of Return by Time for Customer Staples Sector

Figure 3.3. The Plot of Return by Time for Energy Sector

Financial Sector

Figure 3.4. The Plot of Return by Time for Financial Sector

Health Care Sector

Figure 3.5. The Plot of Return by Time for Health Care Sector

Industrials Sector

Figure 3.6. The Plot of Return by Time for Industrials Sector

Figure 3.7. The Plot of Return by Time for Information Technology Sector

Materials Sector

Figure 3.8. The Plot of Return by Time for Materials Sector

Figure 3.9. The Plot of Return by Time for Telecommunication Services Sector

Utilities Sector

Figure 3.10. The Plot of Return by Time for Utilities Sector

The observation 1,000 corresponds to February 3, 2009. As expected, this period shows very high volatility across all sectors. For the Consumer Discretionary spending Sector, there are two other periods of smaller but yet prominent period of volatility centered around observation number 1,300 (April 14, 2010) and observation number 1,625 (July 27, 2011). Volatility levels seem to return to pre-2008 levels after observation number 1,750 (January 25, 2012). A similar pattern is observed for other sectors as well.

4. STATISTICAL MODELING OF S&P 500 SECTOR DATA AND RESULTS

The data obtained from the S&P website consisted of the date and the ending price for each sector index for that day based on total as well as net returns. The data set for each sector was first pre-processed to include the day of the week using an algorithm that used the calendar date to determine the day. The returns, R_t for day t was computed using the formula $R_t = \ln(P_t) - \ln(P_{t-1})$, where P_t is the price for day t.

4.1. THE MODELING PROCEDURE

The volatility was modeled using the Autoregressive-GARCH formulation given in Equation Set (2.1.1). The AUTOREG Procedure available in SAS (Version 9.4) was employed to carry out the model fitting. The conditions $\sum_{j=1}^{q} \alpha_j + \sum_{i=1}^{p} \beta_i < 1$, which is

sufficient to ensure the covariance stationary assumption was imposed and the assumption $e_t \sim i.i.d. N(0,1)$ was made for the underlying innovations e_t that drive the GARCH process. In addition, the orders of the GARCH process was assumed to be p=1 and q=1 as is commonly done. Inspection of the Akaike information criterion (AIC) and the corrected Akaike information criterion (AICC) showed that assuming the e_t to be independently distributed as t random variables gave a better fit except for one sector. Note that the AUTOREG procedure in SAS automatically determines the degrees of freedom associated with the t-distribution.

Fitting the full model created estimability problems because the model was overparameterized. Therefore, a step-by-step approach was employed to do the modeling. First Model (2.1.1) was fitted without the GARCH component. That is, the error terms were assumed to be conditionally homoscedastic. Then the insignificant terms in the

model
$$R_t = \sum_{k=1}^{5} \gamma_k d_k + \sum_{l=1}^{m} \phi_l R_{t-l} + \varepsilon_t$$
 were eliminated using significance level 0.05 as the

cut-off criteria. This elimination was done one term at a time, with the most insignificant term (that with the highest *p*-value) considered for eliminated first. When two terms had p-values close to one another, each of the terms were eliminated in two separate runs and the AIC values for each model were compared. The elimination that reduces the AIC by the most amount was then selected.

Once the model was reduced in this manner, the GARCH portion $\sigma_t^2 = \alpha_0 + \sum_{k=1}^4 \delta_k d_k + \sum_{j=1}^q \alpha_j \varepsilon_{t-j}^2 + \sum_{i=1}^p \beta_i \sigma_{t-i}^2$ of the model was added to the remaining Autoregressive (AR) part. The terms $\sum_{k=1}^4 \delta_k d_k$ were introduced into the model using the HETERO command available in SAS. Then the dummy variables d_k that were not significant at 0.05 level were eliminated. Fitting of these dummy variables sometimes caused identification problems. Therefore, these terms were fitted one at a time. First the significant term that reduced the AIC by the most amount was fitted. Then another term was considered for inclusion using the significance level and AIC value as criteria.

4.2. DATA ANALYSIS AND RESULTS

Results from the above described modeling process are listed in Tables 4.2 through 4.11. Three important conclusions can be made from the results. One fact the results revealed is that the sum of the ARCH and GARCH terms (i.e. $\alpha_j + \beta_i$) is very close to one. Therefore, as Lindner (2009) suggested, fitting an IGARCH model may be more appropriate. Results from the IGARCH models are given in Tables 4.12 through Table 4.21. Results of the stationary GARCH analysis are reported in Table 4.1.

Sector		Day of the Week							
beeksi		Monday	Tuesday	Wednesday	Thursday	Friday			
Customer	Percentage Change in Return			12.0482%	10.2609%				
Discretionary	Percentage Change in Volatility		20.2908%						
Customer Staples	Percentage Change in Return		10.6560%	11.1863%	13.0259%				
	Percentage Change in Volatility								
Energy	Percentage Change in Return		9.7971%			11.2659%			
	Percentage Change in Volatility								
Financial	Percentage Change in Return		6.5369%	9.2996%					
1 manciai	Percentage Change in Volatility		5.4219%						
Health Care	Percentage Change in Return		14.1262%	11.7858%	13.3321%				
	Percentage Change in Volatility		16.1218%						
Industrials	Percentage Change in Return			10.0121%	9.8537%	9.6108%			
	Percentage Change in Volatility		14.4586%						
Information	Percentage Change in Return		11.1687%	16.9764%	9.2860%				
Technology	Percentage Change in Volatility								
Materials	Percentage Change in Return			12.6571%		13.3500%			
	Percentage Change in Volatility		6.6704%						
Telecommunication	Percentage Change in Return				10.0708%				
Services	Percentage Change in Volatility		29.3133%						
Utilities	Percentage Change in Return		12.9303%			12.0616%			
	Percentage Change in Volatility								

Table 4.1. Days of the Week with Significant Differences in Returns and Volatility

Note: Percent change in returns computed as the ratio of change in return to mean total return multiplies by 100; percent change in volatility is computes as 100 times the coefficient of the respective dummy variable divided by the unconditional volatility.

Customer Discretionary Sector								
Stationary GARCH Estimates								
SSE				0.51392693	Observatio	ons	2516	
MSE				0.0002043	Uncond Va	ır	0.00003731	
Log Likelihoo	d			7802.12058	Total R-Sq	uare	0.0006	
SBC				-15549.428	AIC		-15590.241	
MAE				0.00947821	AICC		-15590.197	
MAPE				114.898256	HQC		-15575.429	
			Normality Test			Test	157.0012	
					Pr > ChiSo	I	<.0001	
				Parameter	Estimates			
Variable	DF]	Estimate	Standard E	rror	t Value	Approx Pr > t	
DW	1		0.001146	(0.000447	2.56	0.0104	
DH	1		0.000976	(0.000395	2.47	0.0135	
AR10	1		-0.0452		0.0198 -2.29		0.0220	
ARCH0	1		5.2577E-7	3.	4644E-7	1.52	0.1291	
ARCH1	1		0.0864	(0.008548	10.11	<.0001	
GARCH1	1		0.8995	().009454	95.15	<.0001	
HET DT	1		7.5705E-6	1.	.9486E-6	3.89	0.0001	

Table 4.2. Analysis Results for Customer Discretionary Sector – Stationary Model

Customer Staples Sector										
Stationary GARCH Estimates										
SSE				0.19502292	Observations			2516		
MSE				0.0000775	Uncond Var			0.0000645		
Log Likelihoo	d			8876.90851	Total R-Square			0.0159		
SBC				-17675.513	AIC			-17733.817		
MAE				0.00596693	AICC			-17733.729		
MAPE				121.396521	HQC			-17712.657		
-					Normality Test			408.4783		
					Pr > ChiSq		<.0001			
Parameter Estimates										
Variable	DF	Estima	te	Standard Error	t Value	Approx Pr > t Variable Labe				
DT	1	0.00	0643	0.000258	2.49		0.0129			
DW	1	0.00	0675	0.000263	2.57		0.0103			
DH	1	0.00	0786	0.000252	3.11		0.0019			
AR1	1	0.	0731	0.0213	3.43		0.0006			
AR4	1	0.	0493	0.0204	2.41		0.0158			
AR5	1	0.	0575	0.0204	2.83		0.0047			
ARCH0	1	1.588	7E-6	4.132E-7	3.84		0.0001			
ARCH1	1	0.	1038	0.0148	7.02		<.0001			
GARCH1	1	0.	8716	0.0180	48.41		<.0001			
TDFI	1	0.	1212	0.0179	6.77		<.0001	Inverse of t DF		

Table 4.3. Analysis Results for Customer Staples Sector – Stationary Model

Energy Sector									
Stationary GARCH Estimates									
SSE				0.8343	31705	Observations			2516
MSE				0.000	03316	Uncond Var			0.00034906
Log Likelihoo	d			7098.8	88293	Total R-Square			0.0078
SBC				-1414	2.953	AIC			-14183.766
MAE				0.0123	35697	AICC			-14183.721
MAPE				117.82	26541	HQC			-14168.954
						Normality Test		220.9218	
						Pr > ChiSq		<.0001	
				Para	meter	Estimates			
Variable	DF	Esti	imate	Standard Er	ror	t Value	Approx	Pr > t	Variable Label
DT	1	0	0.001214	0.00	00531	2.29		0.0223	
DF	1	0	0.001396	0.00	00562	2.48		0.0131	
AR1	1		0.0466	0	0.0212	2.20		0.0279	
ARCH0	1	1.	9756E-6	6.93	52E-7	2.84		0.0045	
ARCH1	1		0.0762	0	0.0103	7.43		<.0001	
GARCH1	1		0.9181	0	0.0107	85.95		<.0001	
TDFI	1		0.0939	0	0.0164	5.72		<.0001	Inverse of t DF

Table 4.4. Analysis Results for Energy Sector – Stationary Model

Financial Sector										
Stationary GARCH Estimates										
SSE			1.28722734	Observations			2516			
MSE			0.0005116	Uncond Var			0.00010999			
Log Likelihoo	d		7308.36294	Total R-Square			0.0217			
SBC			-14530.591	AIC			-14594.726			
MAE			0.01308942	AICC			-14594.62			
MAPE			118.00104	HQC			-14571.45			
				Normality Test			287.7646			
				Pr > ChiSq			<.0001			
			Parameter	Estimates						
Variable	DF	Estimate	Standard Error	t Value	Approx	Pr > t	Variable Label			
DT	1	0.000866	0.000402	2.16		0.0310				
DW	1	0.001232	0.000419	2.94		0.0033				
AR1	1	0.0828	0.0209	3.95		<.0001				
AR4	1	0.0422	0.0200	2.11		0.0347				
AR5	1	0.0515	0.0199	2.60		0.0094				
AR6	1	0.0502	0.0196	2.57		0.0102				
ARCH0	1	1.154E-8	<10 ⁻²⁰	-		<.0001				
ARCH1	1	0.0935	0.0108	8.67		<.0001				
GARCH1	1	0.9064	0.0108	84.10		<.0001				
TDFI	1	0.1564	0.0191	8.20		<.0001	Inverse of t DF			
HET DT	1	5.9636E-6	1.7904E-6	3.33		0.0009				

Table 4.5. Analysis Results for Financial Sector – Stationary Model

Health Care Sector											
Stationary GARCH Estimates											
SSE 0.28305086						Observati	ons			2516	
MSE				0.	0001125	Uncond V	ar			0.00004369	
Log Likelihoo	d			839	99.47628	Total R-S	quare			0.0122	
SBC				-16	5720.648	AIC				-16778.953	
MAE				0.0	0714023	AICC				-16778.865	
MAPE				129	9.471419	HQC				-16757.792	
						Normality	Test			176.1272	
						Pr > ChiS	q		<.0001		
				Pa	arameter	Estimates					
Variable	DF	Esti	imate	Standard	Error	t Valı	ue	Approx	$\mathbf{Pr} > \mathbf{t} $	Variable Label	
DT	1	0.001014		(0.000334		3.04	0.0024			
DW	1	0	.000846	(0.000339		2.50		0.0125		
DH	1	0	.000957	().000336		2.85		0.0044		
AR1	1		0.0518		0.0217		2.39		0.0169		
AR2	1		0.0444		0.0206		2.16		0.0306		
ARCH0	1	1 1.1249E-6		7.	9629E-7		1.41	0.1			
ARCH1	1		0.1061		0.0148		7.19		<.0001		
GARCH1	1		0.8682		0.0174		49.88		<.0001		
TDFI	1		0.1343		0.0227		5.90		<.0001	Inverse of t DF	
HET DT	1	7.0	0436E-6	3.	5266E-6		2.00		0.0458		

Table 4.6. Analysis Results for Health Care Sector – Stationary Model

Industrials Sector														
Stationary GARCH Estimates														
SSE				0.5042	3657	Observations			2516					
MSE				0.000	2004	Uncond Var			0.0000444					
Log Likelihood				7801.0	8261	Total R-Square			0.0005					
SBC				-15531	1.691	AIC			-15584.165					
MAE				0.0094	3457	AICC			-15584.093					
MAPE				119.17	0277	HQC			-15565.121					
						Normality Test			214.9902					
						Pr > ChiSq			<.0001					
				Parameter Estimates										
			mate Standard Error											
Variable	DF	Estin	nate	Standard Err	ror	t Value	Approx I	Pr > t	Variable Label					
Variable DW	DF 1	Estin 0.0	nate 000948	Standard Err 0.00	ror 0385	t Value 2.46	Approx l	Pr > t 0.0139	Variable Label					
Variable DW DH	DF 1 1	Estin 0.0 0.0	nate 000948 000933	Standard Err 0.00 0.00	ror 0385 0379	t Value 2.46 2.46	Approx I	Pr > t 0.0139 0.0138	Variable Label					
Variable DW DH DF	DF 1 1 1 1	Estin 0.0 0.0	nate 000948 000933 000910	Standard Err 0.00 0.00 0.00	ror 0385 0379 0391	t Value 2.46 2.33	Approx I	$\frac{ \mathbf{r} }{0.0139}$ 0.0138 0.0200	Variable Label					
Variable DW DH DF AR5	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Estin 0.0 0.0	nate 000948 000933 000910 0.0408	Standard Err 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ror 0385 0379 0391 0199	t Value 2.46 2.33 2.05	Approx I	Pr > t 0.0139 0.0138 0.0200 0.0403	Variable Label					
Variable DW DH DF AR5 ARCH0	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Estin 0.0 0.0 3.6	nate 000948 000933 000910 0.0408 576E-7	Standard Err 0.00 0.00 0.00 0.00 0.00 0.00 0.3.959	ror 0385 0379 0391 0199 3E-7	t Value 2.46 2.33 2.05 0.92	Approx I	Pr > t 0.0139 0.0138 0.0200 0.0403 0.3556	Variable Label					
Variable DW DH DF AR5 ARCH0 ARCH1	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Estin 0.0 0.0 3.6	nate 000948 000933 000910 0.0408 576E-7 0.0890	Standard Err 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ror 0385 0379 0391 0199 3E-7 0124	t Value 2.46 2.33 2.05 0.92 7.16	Approx I	Pr > t 0.0139 0.0138 0.0200 0.0403 0.3556 <.0001	Variable Label					
Variable DW DH DF AR5 ARCH0 ARCH1 GARCH1	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Estin 0.0 0.0 3.6	nate 000948 000933 000910 0.0408 576E-7 0.0890 0.9028	Standard Err 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ror 0385 0379 0391 0199 3E-7 0124 0125	t Value 2.46 2.33 2.05 0.92 7.16 72.26	Approx I	Pr > t 0.0139 0.0138 0.0200 0.0403 0.3556 <.0001 <.0001	Variable Label					
Variable DW DH DF AR5 ARCH0 ARCH1 GARCH1 TDFI	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Estin 0.0. 0.0 3.6:	nate 0000948 000933 000910 0.0408 576E-7 0.0890 0.9028 0.1261	Standard Err 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ror 0385 0379 0391 0199 3E-7 0124 0125 0213	t Value 2.46 2.33 2.05 0.92 7.16 72.26 5.93	Approx I	Pr > t 0.0139 0.0138 0.0200 0.0403 0.3556 <.0001 <.0001	Variable Label					

Table 4.7. Analysis Results for Industrial Sector – Stationary Model

Information Technology Sector													
Stationary GARCH Estimates													
SSE			0.47743077	Observations			2516						
MSE			0.0001898	Uncond Var			0.0001544						
Log Likelihoo	d		7750.88706	Total R-Square			0.0038						
SBC			-15439.131	AIC			-15485.774						
MAE			0.00935689	AICC			-15485.717						
MAPE			127.739573	HQC			-15468.846						
-				Normality Test		201.6371							
-				Pr > ChiSq			<.0001						
		·	Parameter	Estimates									
Variable	DF	Estimate	Standard Error	t Value	Approx 1	Pr > t	Variable Label						
DT	1	0.001050	0.000432	2.43		0.0152							
DW	1	0.001596	0.000426	3.75		0.0002							
DH	1	0.000873	0.000419	2.09		0.0370							
AR10	1	-0.0420	0.0192	-2.18		0.0290							
ARCH0	1	2.3011E-6	6.7565E-7	3.41		0.0007							
ARCH1	1	0.0821	0.0119	6.88		<.0001							
GARCH1	1	0.9030	0.0136	66.22		<.0001							
TDFI	1	0.1261	0.0208	6.05		<.0001	Inverse of t DF						

Table 4.8. Analysis Results for Information Technology Sector – Stationary Model

Materials Sector													
Stationary GARCH Estimates													
SSE			0.70997991	Observations			2516						
MSE			0.0002822	Uncond Var			0.00010155						
Log Likelihoo	d		7323.56026	Total R-Square									
SBC			-14584.477	AIC			-14631.121						
MAE			0.01135964	AICC			-14631.063						
MAPE			119.106467	HQC			-14614.192						
				Normality Test		217.4533							
				Pr > ChiSq			<.0001						
		·	Parameter	Estimates									
Variable	DF	Estimate	Standard Error	t Value	Approx P	$ \mathbf{r} > \mathbf{t} $	Variable Label						
DW	1	0.001443	0.000486	2.97		0.0030							
DF	1	0.001522	0.000512	2.97		0.0029							
AR4	1	0.0416	0.0205	2.03		0.0425							
ARCH0	1	3.8518E-7	6.6913E-7	0.58		0.5649							
ARCH1	1	0.0870	0.0117	7.43		<.0001							
GARCH1	1	0.9092	0.0116	78.71		<.0001							
TDFI		0.1110	0.0108	5.60		< 0001	Inverse of t DF						
1011	1	0.1110	0.0198	5.00									

Table 4.9. Analysis Results for Materials Sector – Stationary Model

Telecommunication Services Sector												
Stationary GARCH Estimates												
SSE				0.42565402	Observations			2516				
MSE				0.0001692	Uncond Var			0.00003329				
Log Likelihoo	d			7965.34595	Total R-Square			0.0003				
SBC				-15883.709	AIC			-15918.692				
MAE				0.0086601	AICC			-15918.658				
MAPE				103.483944	HQC		-15905.996					
					Normality Test			188.0245				
					Pr > ChiSq			<.0001				
				Paramete	r Estimates							
Variable	DF	Esti	imate	Standard Error	t Value	Approx	$\mathbf{Pr} > \mathbf{t} $	Variable Label				
DH	1	0	0.000873	0.000393	2.22		0.0262					
ARCH0	1	6.	8118E-7	6.3332E-7	1.08		0.2821					
ARCH1	1		0.0835	0.0129	6.45		<.0001					
GARCH1	1		0.8960	0.0153	58.67		<.0001					
TDFI	1 0.1290 0.0205				6.30		<.0001	Inverse of t DF				
HET DT	1	9.'	7584E-6	3.7621E-6	2.59		0.0095					

Utilities Sector											
				Station	ary GAR	RCH Estimat	es				
SSE			0.3532221			Observatio	ons			2516	
MSE				0.0	0001404	Uncond Va	ar			0.00013081	
Log Likelihoo	ikelihood 8181.23727						quare				
SBC	-16315.492									-16350.475	
MAE				0.00	0802491	AICC				-16350.441	
MAPE	APE				.858475	HQC			-16337.77		
						Normality Test				112.9219	
						Pr > ChiSo	9			<.0001	
			•	Pa	rameter	Estimates					
Variable	DF	Esti	imate	Standard I	Error	t Valu	ie	Approx	Pr > t	Variable Label	
DT	1	0	0.001042	0.	.000371		2.81		0.0050		
DF	1	0	0.000972	0.	.000387		2.51		0.0121		
ARCH0	1	1.	7273E-6	4.8	3329E-7		3.57		0.0004		
ARCH1	1		0.0971		0.0123		7.91		<.0001		
GARCH1	ARCH1 1 0.8897				0.0136		65.36		<.0001		
TDFI	1		0.0940		0.0185		5.07		<.0001	Inverse of t DF	

Table 4.11. Analysis Results for Utilities Sector - Stationary Model

Customer Discretionary Sector												
Integrated GARCH Estimates												
SSE				0.51395338	Observations	2516						
MSE				0.0002043	Uncond Var							
Log Likelihoo	Log Likelihood			7794.96916	Total R-Square	0.0006						
SBC	BC			-15550.786	AIC	-15579.938						
MAE				0.00947885	AICC	-15579.914						
MAPE				114.539363	HQC	-15569.358						
-					Normality Test	200.8201						
-					Pr > ChiSq	<.0001						
				Parameter 1	Estimates							
Variable	DF	Est	imate	Standard Error	t Value	Approx Pr > t						
DW	1		0.001189	0.000449	2.65	0.0081						
DH	1		0.000934	0.000387	2.41	0.0159						
AR10	1		-0.0434	0.0209	-2.08	0.0380						
ARCH1	1		0.0996	0.008792	11.33	<.0001						
GARCH1	1		0.9004	0.008792	102.41	<.0001						
HET DT	1	6	.6709E-6	1.1225E-6	5.94	<.0001						

Table 4.12. Analysis Results for Customer Discretionary Sector – IGARCH Model

Customer Staples Sector													
Integrated GARCH Estimates													
SSE				0.19517721	Observations			2516					
MSE				0.0000776	Uncond Var			•					
Log Likelihood				8792.48935	Total R-Square			0.0151					
SBC				-17522.335	AIC			-17568.979					
MAE				0.00597165	AICC			-17568.921					
MAPE				119.501787	HQC			-17552.05					
					Normality Test			1345.1505					
					Pr > ChiSq	Pr > ChiSq							
				Paramete	r Estimates								
Variable	DF	Esti	imate	Standard Error	t Value	Approx	Pr > t	Variable Label					
dt	1	0	0.000112	0.000156	0.72		0.4711						
dw	1	0	0.000863	0.000227	3.80		0.0001						
dh	1	0	0.000570	0.000203	2.81		0.0050						
AR1	1		0.0834	0.0189	4.40		<.0001						
AR4	1		0.0304	0.0176	1.73		0.0843						
AR5	1		0.0462	0.0180	2.57		0.0102						
ARCH1	1		0.0743	0.004403	16.88		<.0001						
GARCH1	1		0.9257	0.004403	210.23		<.0001						
TDFI	1	1.	0537E-8	C	Infty		<.0001	Inverse of t DF					

Table 4.13. Analysis Results for Customer Staples Sector – IGARCH Model

Energy Sector												
Integrated GARCH Estimates												
SSE				0.834	439667	Observations		2516				
MSE				0.00	003316	Uncond Var						
Log Likelihoo	d			7063	8.06457	Total R-Square			0.0077			
SBC				-140	86.977	AIC			-14116.129			
MAE				0.012	235844	AICC			-14116.105			
МАРЕ				113.7	777301	HQC		-14105.549				
						Normality Test			231.7022			
						Pr > ChiSq			<.0001			
				Par	rameter	Estimates						
Variable	DF	Esti	imate	Standard E	Error	t Value	Approx	Pr > t	Variable Label			
DT	1	0	0.000881	0.0	000458	1.93		0.0541				
DF	1	0	0.001125	0.0	000478	2.35		0.0187				
AR1	1		0.0437		0.0194	2.25		0.0245				
ARCH1	1	0.0621		0.0	004568	13.59		<.0001				
GARCH1	1		0.9379	0.0	004568	205.31		<.0001				
TDFI	1	1.	0537E-8		0	Infty		<.0001	Inverse of t DF			

Table 4.14. Analysis Results for Energy Sector – IGARCH Model

Financial Sector													
Integrated GARCH Estimates													
SSE			1.28728689	Observations			2516						
MSE			0.0005116	Uncond Var									
Log Likelihoo	d		7305.11277	Total R-Square			0.0217						
SBC			-14539.752	AIC			-14592.226						
MAE			0.01308959	AICC			-14592.154						
MAPE			118.167531	HQC			-14573.181						
				Normality Test			290.4599						
				Pr > ChiSq			<.0001						
Parameter Estimates													
Variable	DF	Estimate	Standard Error	Pr > t	Variable Label								
DT	1	0.000891	0.000402	2.22		0.0265							
DW	1	0.001254	0.000420	2.99		0.0028							
AR1	1	0.0829	0.0210	3.95		<.0001							
AR4	1	0.0427	0.0200	2.14		0.0324							
AR5	1	0.0513	0.0198	2.59		0.0097							
AR6	1	0.0506	0.0195	2.59		0.0095							
ARCH1	1	0.0984	0.0112	8.78		<.0001							
GARCH1	1	0.9016	0.0112	80.44		<.0001							
TDFI	1	0.1614	0.0191	8.44		<.0001	Inverse of t DF						
HET DT	1	6.5299E-6	1.9214E-6	3.40		0.0007							

Table 4.15. Analysis Results for Financial Sector – IGARCH Model

Health Care Sector												
Integrated GARCH Estimates												
SSE				0.28311325	Observations			2516				
MSE				0.0001125	Uncond Var			•				
Log Likelihood				8395.79984	Total R-Square			0.0119				
SBC				-16728.956	AIC			-16775.6				
MAE				0.00714018	AICC			-16775.542				
MAPE				129.507921	HQC			-16758.671				
					Normality Test			208.7595				
					Pr > ChiSq	Pr > ChiSq						
	Parameter Estimates											
Variable	DF	Esti	imate	Standard Error	t Value	Approx	Pr > t	Variable Label				
DT	1	0	.001012	0.000333	3.04		0.0024					
DW	1	0	.000858	0.000335	2.56		0.0104					
DH	1	0	.000968	0.000330	2.94		0.0033					
AR1	1		0.0504	0.0223	2.26		0.0239					
AR2	1		0.0437	0.0212	2.06		0.0392					
ARCH1	1		0.1235	0.0153	8.09		<.0001					
GARCH1	1		0.8765	0.0153	57.39		<.0001					
TDFI	1		0.1563	0.0208	7.52		<.0001	Inverse of t DF				
HET DT	1	7.0	6491E-6	1.9992E-6	3.83		0.0001					

Table 4.16. Analysis Results for Health Care Sector – IGARCH Model

Industrials Sector													
Integrated GARCH Estimates													
SSE			0.50388383	Observations			2516						
MSE			0.0002003	Uncond Var									
Log Likelihoo	d		7765.39479	Total R-Square			0.0012						
SBC			-15475.977	AIC			-15516.79						
MAE			0.00943725	AICC			-15516.745						
MAPE			115.769342	HQC			-15501.977						
				Normality Test		217.5449							
				Pr > ChiSq			<.0001						
			Parameter	Estimates									
Variable	DF	Estimate	Standard Error	t Value	Approx I	Pr > t	Variable Label						
DW	1	0.000844	0.000409	2.06		0.0394							
DH	1	0.000669	0.000376	1.78		0.0749							
DF	1	0.000737	0.000402	1.83		0.0670							
AR5	1	0.0432	0.0217	1.99		0.0468							
ARCH1	1	0.0975	0.008929	10.92		<.0001							
GARCH1	1	0.9025	0.008929	101.07		<.0001							
TDFI	1	1.0537E-8	<10 ⁻²⁰	-		<.0001	Inverse of t DF						
HET DT	1	6.3957E-6	1.1909E-6	5.37		<.0001							

Table 4.17. Analysis Results for Industrials Sector – IGARCH Model

Information Technology Sector											
Integrated GARCH Estimates											
SSE			0.47698863			Observations		2516			
MSE			0.0001896			Uncond Var					
Log Likelihoo	d		7695.25071			Total R-Square		0.0047			
SBC			-15343.519			AIC		-15378.501			
MAE			0.00936933			AICC		-15378.468			
MAPE			119.511637			HQC		-15365.805			
						Normality Test		254.0921			
						Pr > ChiSq		<.0001			
				Para	meter]	Estimates					
Variable	DF	Est	imate	Standard Err	ror	t Value	Approx	Pr > t	Variable Label		
DT	1	C	0.000677	0.000355 1.90			0.0569				
DW	1	C	0.001283	0.00	0383	3.35		0.0008			
DH	1	0.000298		0.00	0352	0.85	0.397				
AR10 1		-0.0529		.0186	-2.84	0.0045					
ARCH1	1	0.0630		0.00	4261	14.78	<.000				
GARCH1	1		0.9370	0.00	4261	219.90		<.0001			
TDFI	1	1.	0537E-8	<	<10 ⁻²⁰	-		<.0001	Inverse of t DF		

Table 4.18. Analysis Results for Information Technology Sector – IGARCH Model

Materials Sector											
Integrated GARCH Estimates											
SSE				0.70998	8577	Observations		2516			
MSE			0.0002822			Uncond Var					
Log Likelihoo	d		7322.50514			Total R-Square					
SBC			-14598.028 AIC			AIC			-14633.01		
MAE			0.01135983 AICC					-14632.977			
MAPE			119.149861 HQC				-14620.314				
			Normality Test					229.3117			
						Pr > ChiSq		<.0001			
				Paran	meter]	Estimates					
Variable	DF	Esti	imate	Standard Err	ror	t Value	Approx	Pr > t	Variable Label		
DW	1	0	0.001447	0.00	0486	2.98		0.0029			
DF	1	0	.001507	0.00	0509	2.96	0.0031				
AR4	1	0.0420		0.0	0207	2.03	0.0427				
ARCH1 1		0.0910	0.0113		8.05	<.0001					
GARCH1	1	0.9090		0.0	0113	80.42	<.0001				
TDFI	1		0.1164	0.0	0184	6.33		<.0001	Inverse of t DF		
HET DT	1	7.3	3048E-6	2.159	1E-6	3.38		0.0007			

Table 4.19. Analysis Results for Materials Sector - IGARCH Model

Telecommunication Services Sector											
Integrated GARCH Estimates											
SSE			0.42566389 Observations						2516		
MSE				0	0.0001692	Uncond Var					
Log Likelihoo	d		7960.31677			Total R-Square			0.0003		
SBC				-1	5889.312	AIC			-15912.634		
MAE			0.00865999			AICC			-15912.618		
MAPE			103.650218			HQC			-15904.169		
						Normality Test			222.4875		
			Pr			Pr > Ch	iSq			<.0001	
				F	Parameter 1	Estimates					
Variable	DF	Esti	imate	Standard	l Error	t Va	alue	Approx 1	Pr > t	Variable Label	
DH	1	0.000905			0.000391		2.31		0.0207		
ARCH1	ARCH1 1		0.0971 0.0136		0.0136		7.13	<.0001			
GARCH1	1	0.9029			0.0136		66.26	<.0001			
TDFI	1	0.151			0.0204		7.39		<.0001	Inverse of t DF	
HET DT	1	7.	4127E-6	2	2.2157E-6		3.35		0.0008		

Table 4.20. Analysis Results for Telecommunication Services Sector – IGARCH Model

Utilities Sector												
Integrated GARCH Estimates												
SSE			0.3525126 Observations							2516		
MSE				0	.0001401	Uncond Var						
Log Likelihoo	d		8139.26909			Total R-Square			0.0015			
SBC			-16247.216 AIC					-16270.538				
MAE			0.00803907			AICC			-16270.522			
MAPE			102.923986			HQC			-16262.074			
						Normality Test			109.6404			
			Pr > ChiSq				<.0001					
				Р	arameter	Estimates						
Variable	DF	Esti	imate	Standard	l Error	t Value		Approx I	Pr > t	Variable Label		
DT	1 (0.000821		0.000302	2.	.71	0.0067				
AR5	R5 1		0.0386		0.0177	2.	.18	0.0295				
ARCH1	1	0.0791			0.004771	16.	.58	<.0001				
GARCH1	1 0.		0.9209		0.004771	193.	.04	<.0001				
TDFI	1	1.	0537E-8		<10 ⁻²⁰		-		<.0001	Inverse of t DF		

Table 4.21. Analysis Results for Utilities Sector – IGARCH Model

The summary statistics given in Table 4.1.1 shows the statistically significant Day-of-the-Week effects in returns and volatility for each sector. The effect on returns is computed as Percent Change in Return = [Estimated coefficient of day dummy in the regression portion of Model 2.1.1/Sample mean return]×100. The effect on volatility is defined as Percent Change in Volatility = [Estimated Coefficient of day dummy in GARCH formulation of Model 2.1.1/Estimated unconditional volatility] ×100. In the regression formulation no intercept term was fitted and hence all dummy variables for the five days were included in the model. Note percent change in volatility for the IGARCH Model cannot be computed because the unconditional variance for this model is infinity.

The statistically significant dummy variables d_k all had positive coefficients, suggesting that the corresponding days had higher returns than the other days of the

week, which acted as the base-line return in the estimated regression model. This is similar to the results Berument and Kiymaz (2001) obtained, where all the significant dummy variables has positive coefficients. Thus, Monday, for example, was not associated with returns higher than the baseline-level. So is Tuesday and Friday for Customer Discretionary Sector. This sector showed higher than base-line return for Wednesdays and Thursdays. Tuesday had a positive effect on returns on five out of the ten sectors, with the highest effect at 14% for the Healthcare Sector. Wednesdays affected seven out of the ten sectors producing higher than base-line returns, the highest being an almost 17% increase for the Information Technology Sector. Thursdays affected six of the ten sectors, increasing their returns while Friday affected only four of the sectors. The reasons why certain days had more impact on some sectors and not on others is a question that needs insight into the trading strategies and how various markets react to events and is best left to researchers with more familiarity with such issues. One major observation that can be made based on this research results is that Monday had no positive effect on the returns of any sector and Wednesday seems to affect the returns positive for most sectors. This is somewhat similar to the results obtained by Berument and Kiymaz (2001) who studied the S&P 500 returns (aggregated over all sectors) from January 1973 through October 1997 and found lowest returns on Monday and highest on Wednesday. They, however, found a different pattern when data from October 1987 to October 1997 were studied.

As for volatility, six of the ten sectors had higher volatility on Tuesdays, with Telecommunications sector showing a 29% increase in volatility on Tuesdays. Mondays Wednesdays, Thursdays and Fridays did not increase the volatility level over the baseline. This is contrary to the results of Berument and Kiymaz (2001) who found higher volatility on Fridays. However, when the above authors studied the data for the period January 1973 through October 1987, they found highest volatility on Tuesdays. The difference in the results may be due to the time period under study. The period over which the present research was conducted included the recession of 2008/2009 which may have changed the way the market reacts to economic shocks.

5. CONCLUSIONS

This thesis examined the ten sectors of S&P 500 indices for the presence of the day-of-the-week effect on returns and volatility. Period of the study spans from the February 2005 to the February 2015. None of the sectors has been observed a significance change in return or volatility on Monday but a clear day-of-the-week effect on Tuesday, both on returns and volatility. The effect of each day of the week differs across the type of sector studied.

Overall, the results obtained in this study points to Tuesday as having the most influence on returns and volatility. One would have expected Monday to have a significant positive effect on volatility because investors would have had no chance to react to financial information that occurred from Friday closing to opening of trading on Monday. Results of the current study shows that there is a one-day delay in this hypothesized effect of information accumulation over the weekend. It may be that the sector indices of the S&P 500 do not react the way individual stocks would react to buildup of information over the weekend. Companies included in the S&P 500 index are financially stable and may not be influenced by market shocks immediately as would individual stocks of smaller or newer companies and are affected only after the rest of the stock market reacts to an incident. Further studies on this are needed to come to a definitive conclusion as to why Tuesday seems to be associated with high volatility.

Future analysis may look into using more general GARCH models rather than GARCH (1, 1) and also study volatility and returns over different time periods. Another suggestion would be to use a GARCH model that incorporate fractional integration (fractional unit root) rather than a unit root as is the case with the IGARCH Model. APPENDIX A.

TABLE OF COMPUTATIONS FOR RETURN AND VOLATILITY CHANGE

Sector		Day of the Week									
Sector		Monday	Tuesday	Wednesday	Thursday	Friday					
Customer	$Return(\frac{coefficient}{mean \ abs \ return})$			$\frac{0.001146}{0.00951183}$	$\frac{0.000976}{0.00951183}$						
Discretionary	Variance(<u>coefficient</u>) unconditional variance		$\frac{0.0000075705}{0.00003731}$								
Customer	Return(<u>coefficient</u>) mean abs return		$\frac{0.000643}{0.00603414}$	$\frac{0.000675}{0.00603414}$	$\frac{0.000786}{0.00603414}$						
Staples	Variance(<u>coefficient</u>) unconditional variance)										
Energy	$\frac{coefficient}{mean \ abs \ return})$		$\frac{0.001214}{0.01239142}$			$\frac{0.001396}{0.01239142}$					
	Variance(<u>coefficient</u>) unconditional variance)										
Financial	$Return(rac{coefficient}{mean \ abs \ return})$		$\frac{0.000866}{0.01324785}$	$\frac{0.001232}{0.01324785}$							
	Variance(<u>coefficient</u>) unconditional variance)		0.0000059636 0.00010999								
Health Care	$\frac{coefficient}{mean \ abs \ return})$		$\frac{0.001014}{0.00717815}$	$\frac{0.000846}{0.00717815}$	0.000957 0.00717815						
	Variance(<u>coefficient</u>) unconditional variance)		$\frac{0.0000070436}{0.00004369}$								
Industrials	$Return(rac{coefficient}{mean \ abs \ return})$			$\frac{0.000948}{0.00946853}$	0.000933 0.00946853	0.000910 0.00946853					
	Variance(<u>coefficient</u>) unconditional variance		$\frac{0.0000064196}{0.0000444}$								
Information	Return(<u>coefficient</u>) mean abs return		$\frac{0.001050}{0.00940127}$	$\frac{0.001596}{0.00940127}$	$\frac{0.000873}{0.00940127}$						
Technology	Variance(<u>coefficient</u>) unconditional variance)										
Materials	Return(<u>coefficient</u>) mean abs return			$\frac{0.001443}{0.01140074}$		$\frac{0.001522}{0.01140074}$					
	Variance(<u>coefficient</u>) unconditional variance)		$\frac{0.0000067738}{0.01140074}$								
Telecommunication	$\frac{coefficient}{mean \ abs \ return}$				0.000873 0.00866861						
Services	Variance(<u>coefficient</u>) unconditional variance)		0.0000097584 0.00003329								
Utilities	$Return(\frac{coefficient}{mean \ abs \ return})$		$\frac{0.001042}{0.00805862}$			$\frac{0.000972}{0.00805862}$					
	Variance(<u>coefficient</u>) unconditional variance)										

Table A.1. Return and Volatility Change Computations in GARCH Stationary Model

APPENDIX B. SAS CODE FOR MODELLING

```
/* Following code is for the GARCH stationary model */
options ls=78 nodate;
data sp;
filename sp '\file path';
infile sp dlm=',';
length date $10;
input weekday date $ totalRetuan priceReturn;
Day=_n_;
data sp; set sp;
dm=0; dt=0; dw=0; dh=0; df=0;
if weekday=1 then dm=1;
if weekday=2 then dt=1;
if weekday=3 then dw=1;
if weekday=4 then dh=1;
if weekday=5 then df=1;
data sp; set sp;
retain pclose;
If Day = 1 then pclose=priceReturn;
else do;
return = log(priceReturn/pclose);
output;
pclose = priceReturn;
end;
data sp; set sp;
absReturn = abs(Return);
proc univariate data=sp;
var Return absReturn;
proc autoreg data=sp;
model Return = dm dt dw dh df /nlag=(1 2 3 4 5 6 7 8 9 10 11 12) dist=t
garch=(q=1, p=1, type=stationary) maxiter=1000 noint;
hetero dm dt dw dh;
proc gplot data=sp;
plot Return*Day /vref=0 haxis=0 to 2550 by 100 vaxis=-0.2 to 0.2 by
0.01;
title "Sector";
symbol1 i=joint;
run;
```

```
/* Following code is for the IGARCH model */
options ls=78 nodate;
data sp;
filename sp '\file path';
infile sp dlm=',';
length date $10;
input weekday date $ totalRetuan priceReturn;
Day=_n_;
data sp; set sp;
dm=0; dt=0; dw=0; dh=0; df=0;
if weekday=1 then dm=1;
if weekday=2 then dt=1;
if weekday=3 then dw=1;
if weekday=4 then dh=1;
if weekday=5 then df=1;
data sp; set sp;
retain pclose;
If Day = 1 then pclose=priceReturn;
else do;
return = log(priceReturn/pclose);
output;
pclose = priceReturn;
end;
data sp; set sp;
absReturn = abs(Return);
proc univariate data=sp;
var Return absReturn;
proc autoreg data=sp;
model Return = dm dt dw dh df /nlag=(1 2 3 4 5 6 7 8 9 10 11 12) dist=t
garch=(q=1, p=1, type= type=integrated, noint) maxiter=1000 noint;
hetero dm dt dw dh;
proc gplot data=sp;
plot Return*Day /vref=0 haxis=0 to 2550 by 100 vaxis=-0.2 to 0.2 by
0.01;
title "Sector";
symbol1 i=joint;
run;
```

BIBLIOGRAPHY

- [1] Amado, C. and Terasvirta, T. (2013). "Modeling volatility by variance decomposition," *Journal of Econometrics*, 175, 142-153.
- [2] Baillie, R.T. and DeGennaro, R.P. (1990). "Stock Returns and Volatility," *Journal of Quantitative and Financial Analysis*, 25, 203-214.
- [3] Berument, H. and Kiymaz, H. (2001). "The Day of the Week Effect on Stock Market Volatility," *Journal of Economics and Finance*, 25(2), 181-193.
- [4] Bollerslev, T. (1986). "Generalized Autoregressive Conditional Heteroscedasticity," *Journal of Econometrics*, 31, 307-327.
- [5] Campbell, J. Y., and Hentschel, L. (1992). "No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," *Journal of Financial Economics*, 31, 281-318.
- [6] Chan, K.C., Karolyi, A., and Stulz, R.M. (1992). "Global financial markets and the risk premium on U.S. equity," *Journal of Financial Economics*, 32, 137-167.
- [7] Choudhry, T. (2000). "Day of the week effect in emerging Asian stock markets: evidence from the GARCH model," *Applied Financial Economics*, 10, 235-242.
- [8] Corhay, A., and Rad, A.T. (1994). "Statistical Properties of Daily Returns: Evidence from European Stock Markets," *Journal of Business Finance and Accounting*, 21, 271-282.
- [9] Cross, F. (1973). "The Behavior of Stock Prices on Fridays and Mondays," *Financial Analysts Journal*, 29: 67-69.
- [10] Ederington, L. H., and Lee, J.H. (1993). "How Markets Process Information: News Releases and Volatility," Journal *of Finance*, 48: 1161-1191.
- [11] Edirisinghe, A. (2011). *Modeling Hourly Electricity Prices: A Structural Time Series Approach Incorporating Modified GARCH Innovations [dissertation]*, Missouri University of Science and Technology, Rolla, MO.
- [12] Engle, R. (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," *Econometrica*, 50, 987-1007.

- [13] French, K. R. (1980). "Stock Returns and The Weekend Effect," *Journal of Financial Economics*, 8, 55-69.
- [14] French, K. R., Schwert, G. W., and Stambaugh, R. F. (1987). "Expected Stock Returns and Volatility," *Journal of Financial Economics*, 19, 3-29.
- [15] Gibbons, M. and Hess, P. (1981). "Day of the Week Effects and Asset Returns," *Journal of Business*, 54, 579-596.
- [16] Harvey, C., and R. Huang. (1991). "Volatility in Foreign Exchange Futures Markets," *Review of Financial Studies*, 4, 543-570.
- [17] Jaffe, J. and Westerfield, R. (1985). "The Weekend Effect in Common Stock Returns: The International Evidence," *Journal of Finance*, 40, 433-454.
- [18] Glosten, L.R., Jagannathan, R., and Runkle, D.E. (1993). "On the Relation between the Expected value and the Volatility of the nominal Excess Return on Stocks," *The Journal of Finance*, 48(5), 1779-1801.
- [19] Kendall M. G. (1953). "The Analysis of Economic Time-Series-Part I: Prices," *Journal of the Royal Statistical Society*, Series A (General), 116(1), 11-34.
- [20] Keim, D. B., and Stambaugh, F. (1984). "A Further Investigation of Weekend Effects in Stock Returns," *Journal of Finance*, 39, 819-840.
- [21] Lakonishok, J., and Levi, M. (1982). "Weekend Effects on Stock Returns: A Note," *Journal of Finance*, 37, 883-889.
- [22] Lindner, A. M. (2009). "Stationary, Mixing, Distributional Properties and Moments of GARCH (*p*, *q*) Processes," Handbook *of Financial Time Series*, Springer-Verlag, Berlin Heidelberg.
- [23] Osborn, D.R. and Smith, J.P. (1989). "The Performance of Periodic Autoregressive Models in Forecasting Seasonal U.K. Consumption," *Journal of Business and Economic Statistics*, 7, 117-127.
- [24] Rodriguez, W.K. (2012). "Day of the week effect in Latin American stock markets," *Revista de Análisis Económico*, 27(1), 71-89.
- [25] Rogalski, R. J. (1984). "New Findings Regarding Day-of-the-Week Returns over Trading and Non-Trading Periods: A Note," *Journal of Finance*, 35, 1603-1614.

- [26] Solnik, B. and Bousquet, L. (1990). "Day-of-the-Week Effect on the Paris Bourse," *Journal of Banking and Finance*, 14, 461-468.
- [27] Theodossiou, P., and Lee, U. (1995). "Relationship between Volatility and Expected Returns Across International Stock Markets," *Journal of Business Finance and Accounting*, 22, 289- 300.
- [28] Thilakaratne, M. and Samaranayake, V.A. (2013). "Bootstrap Prediction Intervals for Conditional Heteroscedastic Models with Seasonally Varying Unconditional Variance," ASA Proceedings of the Joint Statistical Meetings, American Statistical Association (Montreal, Canada), 2967-2981.

VITA

Juan Liu was born in Changsha, Hunan, China which has been her home before moving to the United States for education. She earned her B.S. and M.S. in Computer Science in Hunan Normal University, Changsha, Hunan, China. Then she went to become a graduate student in Mathematics Department and in August, 2015 received her M.S. in Applied Mathematics from Missouri University of Science and Technology, Rolla, Missouri, USA.