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ABSTRACT

In this thesis, the pantograph equation in quantum calculus is investigated. The

pantograph equation is a famous delay differential equation that has been known since 1971.

Till the present day, the continuous and the discrete cases of the pantograph equation are

well studied. This thesis deals with different pantograph equations in quantum calculus. An

explicit solution representation and the exponential behavior of solutions of a pantograph

equation are proved. Furthermore, several pantograph equations regarding asymptotic

stability are considered. In fact, conditions for the asymptotic stability of the zero solution

are derived and subsequently illustrated by examples. Moreover, an explicit solution in

terms of the exponential function for a special pantograph equation is obtained.
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1. INTRODUCTION

In the 1960s, the British Railways wanted to make the electric locomotive faster.

An important construct was the pantograph, which collects current from an overhead wire.

Therefore, J. R. Ockendon and A. B. Tayler studied the motion of the pantograph head on

an electric locomotive in [16]. In the solution procedure of this problem, they came across

a special delay differential equation of the form

x′(t) = ax(t) + bx(λt), t > 0,

where a, b are real constants and 0 < λ < 1 for λ ∈ R. When the article was published in

1971, this kind of delay differential equation was called pantograph equation.

In the following years, the pantograph equation became a prime example for a

delay differential equation. The continuous and discrete cases of the pantograph equation

have been well studied over the last several decades. The continuous and discrete cases

denote different examples of time scales T that are arbitrary nonempty closed subsets of

real numbers. The general theory of calculus on time scales is described, e.g., in [3, 4]. In

the continuous case, which means the time scale of the real numbers T = R, the pantograph

equation is presented as a differential equation. This is studied, e.g., in [7, 10, 11, 14]. In

the discrete case, which means the time scale of the integers T = Z, here especially the

nonnegative integers T = N0, the pantograph equation is presented as a difference equation,

which is studied, e.g., in [11,12,15]. The present study focuses on the pantograph equation

in the quantum case, which is the time scale T = qN0 for q > 1. The general theory of

calculus on the time scale T = qN0 is also called quantum calculus.
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This thesis is structured as follows. Section 2 describes the origin of the pantograph

equation. For this purpose, the work of [16] is summarized. Section 3 introduces some

basics of stability theory for differential and difference equations. In Section 4, results of

the pantograph equation in the continuous case are discussed. Section 5 deals with findings

of the pantograph equation in the discrete case. Section 6 presents a short introduction to

quantum calculus. In Section 7, the pantograph equation in quantum calculus is studied.

First, an explicit solution representation and the exponential behavior of the solution of

a pantograph equation are proved. Second, asymptotic stability conditions of the zero

solution for different pantograph equations are derived. Third, an explicit solution for a

special pantograph equation is obtained. Section 8 concludes the thesis work with a brief

summary and an outlook on further research about this topic.
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2. ORIGIN OF THE PANTOGRAPH EQUATION

This section wishes to motivate the consideration of the pantograph equation. For

this purpose, the origin of the pantograph equation is described and summarized, which is,

in fact, the paper [16] from J. R. Ockendon and A. B. Tayler.

The British Railways wanted to develop a new type of electric locomotive in the

1960s. The goal was to make the trains faster. An important component for the new high

speed electric locomotive was the pantograph. The purpose of the pantograph is to collect

current from an overhead wire, which is necessary for the locomotive to be able to move;

see Figure 2.1.

(a) Pantograph [20] (b) Current collection system [18]

Figure 2.1. Pantograph and overhead wire system.

To make sure that the electric locomotive can move smoothly with high speed, it is

necessary that there are no interruptions in the current collection system. Therefore, the

pantograph should stay in contact with the overhead wire for the whole time, particularly

when the pantograph passes the supports of the overhead wire, which is a critical passage.

With this motivation and other questions about the pantograph, J. R. Ockendon and A. B.
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Tayler studied the problem to determine the motion of a pantograph head on an electric

locomotive in [16]. To this end, the goal is to build up a mathematical model of the current

collection system and find the solution of the motion of the pantograph head.

In the following, the mathematical model is based on the description in [1, 9, 16].

The mathematical model of this system includes modeling the motion of the wire connected

with the dynamics of the supports and modeling the dynamics of the pantograph. In Section

2.5, the results are based on the description in [16]. In the process to find the solution, the

authors come across a delay differential equation, and from that moment, this kind of delay

differential equation is known as the pantograph equation, which is still a research topic of

interest.

2.1. MATHEMATICAL MODEL

In the following, the system where the pantograph is collecting current from the

overhead wire is modeled to determine the motion of the pantograph head. First, the

overhead trolley wire is modeled. Second, the model of the pantograph is considered.

Lastly, a simplified formulation of the whole problem is derived. In this discussion, it is

assumed that the electric locomotive moves with constant speed U and passes the supports

of the overhead trolley wire as in Figure 2.2.

Figure 2.2. The movement of the electric locomotive [9].

2.2. MODEL OF THE OVERHEAD TROLLEYWIRE

The model of the overhead trolley wire is shown in Figure 2.3. The overhead wire
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Figure 2.3. Model of the overhead trolley wire [16].

is rigidly attached to the supports, which are modeled as equally spaced stiff springs with

spring constant S at distance L. The wire is stretched under constant tension T . The contact

force in the vertical direction between the pantograph, which is the rhombus in Figure 2.3,

and the overhead wire is P(t). Moreover, the contact force P(t) acts in the vertical direction

upwards, which means it is positive when the head of the pantograph and the wire are in

contact. Since it is assumed that the train moves with constant speed U, the pantograph and

the contact force do so as well.

The motion of the head of the pantograph is determined by the function Y (x, t),

which is the vertical displacement of the wire at position x and time t. It is assumed that

the overhead wire behaves as a thin beam under tension and the displacement is small and

only in the vertical direction. For this reason, we can use the Euler–Bernoulli beam theory

with the famous Euler–Bernoulli equation, namely

ρ
∂2Y
∂t2 + EI

∂4Y
∂x4 = q,

where ρ is the linear density (mass per unit length), EI is the flexural rigidity of the wire,

and q is the external force. Under consideration that the wire is under constant tension T ,

the equation

ρ
∂2Y
∂t2 + EI

∂4Y
∂x4 − T

∂2Y
∂x2 = q



6

follows; see [17]. If the flexural rigidity of the wire was neglected, the equation would

become the inhomogeneous wave equation. The external forces consist of, first, the grav-

itational force ρg. Second, the contact force P(t) acts at the point x = Ut where the

pantograph head passes the supports. Third, the spring force terms at the supports result

from the springs with spring constant S. Since this equation is in terms of the vertical force

per unit length of the wire, the point force is modeled by the Dirac delta function so that

the contact force term P(t)δ(x − Ut) and the spring force term S
∑∞

n=−∞Yδ(x − nL) are

connected with the Dirac delta function:

ρ
∂2Y
∂t2 + EI

∂4Y
∂x4 − T

∂2Y
∂x2 = P(t)δ(x −Ut) − ρg − S

∞∑
n=−∞

Yδ(x − nL).

In consideration of damping in the wire with damping coefficient η, the damping term η ∂Y
∂t

appears. Therefore, the vertical motion Y (x, t) of the wire is described by the equation

ρ

(
∂2Y
∂t2 + g

)
+ EI

∂4Y
∂x4 − T

∂2Y
∂x2 + η

∂Y
∂t
+ S

∞∑
n=−∞

Yδ(x − nL) = P(t)δ(x −Ut). (2.1)

2.3. MODEL OF THE PANTOGRAPH

The model of the pantograph is displayed in Figure 2.4 Although the geometry of

Figure 2.4. Model of the pantograph [16].
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the pantograph is complex, the pantograph can be simply modeled as a mass-spring-damper

system, where m1 is the mass of the pantograph head and m2 is the mass of the pantograph

frame. These masses (m1 and m2) are connected with each other by a spring with spring

constant k1 and a velocity damper with damping coefficient µ1. A velocity damper with

damping coefficient µ2 connects m2 to the train roof. It is assumed here that the vertical

motion of the train roof can be neglected. The constant force G0 represents stiff springs

attached between the train roof and the pantograph frame (m2). The contact force P(t),

which results from the contact between the overhead wire and the pantograph head, acts

downwards on the pantograph head. The vertical displacement from m1 is defined by y(t),

the vertical displacement from m2 is z(t).

To figure out the equation for themotion of the pantograph head, a free-body diagram

around m1 is considered. The following forces are included: the spring force k1(y − z) that

keeps the pantograph in contact with the wire, the damping force µ1( dydt −
dz
dt ), the dynamic

force (mass × acceleration) m1
d2y
dt2 , the gravitational force m1g, and the contact force P(t).

Using this free-body diagram and Newton’s first law of motion, y and z satisfy the equation

m1
d2y

dt2 + µ1

(
dy
dt
− dz

dt

)
+ k1(y − z) + P(t) + m1g = 0. (2.2)

Similarly, the equation for the motion of the pantograph frame m2 can be derived as

m2
d2z
dt2 + µ2

dz
dt
+ m2g = G0 + µ1

(
dy
dt
− dz

dt

)
+ k1(y − z) + P(t). (2.3)

Equation (2.3) can be transformed by using (2.2) so that the system of second-order differ-

ential equations follows:

m1
d2y

dt2 + µ1

(
dy
dt
− dz

dt

)
+ k1(y − z) + P + m1g = 0 (2.4)

m1
d2y

dt2 + m2
d2z
dt2 + µ2

dz
dt
+ m1g + m2g + P = G0. (2.5)
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2.4. SIMPLIFIED FORMULATION OF THE PROBLEM

To complete the model, the condition that the pantograph and the wire are in contact

is considered; that is Y (Ut, t) = y(t) with P(t) > 0 and the initial conditions at t = 0, which

are not further described.

In the following, a few simplifications are done because small parameters are in-

volved after nondimensionalizing the problem. The values of the parameter are given from

the British Railways in [16]. Subtracting the static displacement Ys(x) from Y (x, t) and

nondimensionalizing the involved variables, the equations below for the static displacement

Ys and the dynamic displacement Y , which is measured relative to the static position of the

wire, follow from (2.1):
EI
L2T

d4Ys

dx4 −
d2Ys

dx2 +
ρgL2

Td
= 0 (2.6)

ρU2

T
∂2Y
∂t2 +

EI
L2T

∂4Y
∂x4 −

∂2Y
∂x2 +

ηLU
T

∂Y
∂t
+

LS
T

∞∑
n=−∞

Yδ(x − n) = P(t)δ(x − t). (2.7)

Now, only the interval −1 < x < 1 is considered. The flexural rigidity can be

ignored in both equations because the parameter in front of the terms d4Ys
dx4 and ∂4Y

∂x4 is

O(10−6), which is small compared to the other terms. Therefore, from (2.6) follows a

second-order differential equation, and the solution is

Ys = 4(x2 − |x |) + Ys0 +O
(
10−6 d4Ys

dx4

)
, (2.8)

where Ys0 = −8T/LS is the displacement of a support in equilibrium.

For (2.7), in addition to the flexural rigidity term, the damping of the wire can

be neglected because the parameter connected to ∂Y
∂t is also small compared to the other

parameters. Moreover, assuming x , 0, the spring force term LS
T

∑∞
n=−∞Yδ(x − n) is 0 on

the interval−1 < x < 1. Furthermore, with c = (T/ρU2) 1
2 , (2.7) leads to an inhomogeneous
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wave equation

1
c2
∂2Y
∂t2 −

∂2Y
∂x2 = P(t)δ(x − t) +O

(
10−6 ∂

4Y
∂x4 , 10−3 ∂Y

∂t

)
. (2.9)

With the nondimensionalization of the variables from (2.4) and (2.5) and several

parameters with similar size listed in [16], the pantograph equation becomes

P = P0 − b1
dz
dt
− ε

(
d2z
dt2 + a1

d2y

dt2

)
(2.10)

y − z = −ε
(
a2P + b2

dy
dt
− b2

dz
dt

)
− a1a2ε

2 d2y

dt2 , (2.11)

where ε = O(10−2) and all the other coefficients are almost of similar size O(1).

The contact condition with nondimensional variables is

Y (t, t) = y(t) − Ys(t). (2.12)

It is assumed that Y is continuous, particularly at x = 0. At the point x = 0, the term ∂2Y
∂x2 is

equal to the spring force term with the Dirac delta function, so that ∂Y
∂x has a jump with this

magnitude at x = 0. Therefore, the boundary condition at the support x = 0 is

Kε
[
∂Y
∂x

] x=0+

x=0−
= Y, (2.13)

where K = −Ys0/8ε. Moreover, it is assumed that the pantograph motion is continuous and

cannot reach an infinite acceleration, so that y, z and the velocities dy
dt ,

dz
dt have no jumps.

Particularly at t = 0, the conditions

[y]0+0− = [z]
0+
0− =

[
dy
dt

]0+

0−
=

[
dz
dt

]0+

0−
= 0 (2.14)

follow.



10

Equations (2.8) to (2.14) with the initial conditions, which are not elaborated in

further detail, complete the model.

2.5. SOLUTION PROCEDURE

After completing the formulation of the problem, the goal is to find a solution for

the vertical displacement of the pantograph and the contact force. In the following, the

solution techniques are roughly described; more details can be found in [16].

This problem is a singular perturbation problem. Therefore, the first step is to

consider the solution for ε = 0; this solution is called the outer solution. The state is

reached as soon as the pantograph passed one support. That means this is a valid solution

for the case that the pantograph is not near a support. If near a support, it is not a uniformly

valid first approximation. The vertical displacement of the pantograph in each span, the area

between two supports, is independent of the vertical displacement in other spans. For that

reason, the general solution in this case is a periodic solution, and it is enough to consider

only the solution in one span, e.g., 0 < x < 1. The solution has different forms in different

areas of the x, t plane. These regions are bounded by the train path x = t, the so-called

characteristic x = ct, where c is the wavespeed (the motion can not travel faster than the

wavespeed), and the reflexions between the next support at x = 1, the previous support at

x = 0 and the train path x = t. These regions are shown in Figure 2.5.

The physical interpretation for this case is that the rigidity of the overhead wire and

the elasticity of the supports are neglected and the pantograph dynamics is simplified. That

is okay for this case, but these effects have to be considered when the pantograph is near a

support.

The second step is to find the solution for the motion of the pantograph near a

support. Therefore, it is considered ε , 0. This solution is called the inner solution. For

convenience, J. R. Ockendon and A. B. Tayler considered the inner solution in two parts;

see [16]. The process of finding the solution leads to a problem of solving a system of four
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Figure 2.5. The bounded regions of the x, t plane where the forms of the solutions are
different [16].

linear differential equations including one term with a stretched argument, which is a kind

of delay differential equation. At this point the so-called pantograph equation was born,

which is known as

y′(t) = ay(t) + by(λt),

where a, b are real constants and 0 < λ < 1 for λ ∈ R. In the following years, more

versions and modifications of the pantograph equation were created and researched. After

this discovery, much research concerning the pantograph equation has been completed.

Back to the process of finding the solution, using the matching condition, the

perturbation solution is obtained, which describes the motion of the pantograph head.

This solution can be used for pantograph problems where the physical parameters are

not significantly different from the parameters listed in [16]. Under this restriction, the

perturbation solution can be applied for many practical situations connected with the motion

of the pantograph, and the effects when the parameters are slightly changed can be observed.
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3. STABILITY THEORY

In this section, some basic concepts and ideas about stability of differential and

difference equations are introduced. The goal of stability theory is to understand the

behavior of the solution of differential or difference equations under small variations of the

initial conditions without computing the solution.

3.1. STABILITY THEORY OF DIFFERENTIAL EQUATIONS

First, we consider differential equations. The following is based on [8]. A scalar

autonomous differential equation is considered, which is given by the differential equation

x′(t) = f (x(t)) , (3.1)

where f is a given real-valued function f : R → R, x 7→ f (x) and x a real-valued

differentiable function x : I → R, t 7→ x(t) with I an open interval of R. Equation (3.1)

is called autonomous because f does not depend on t. Moreover, the differential equation

(3.1) together with the initial condition at the initial time t0,

x(t0) = x0, (3.2)

is called an initial value problem.

The function x is a solution of the initial value problem if x′(t) = f (x(t)) for all

t ∈ I and x(t0) = x0. There is no loss of generality if it is assumed that t0 = 0; see [8]. The

first important point to think about is the existence and uniqueness of solutions.
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Theorem 3.1.1. (i) If f : R→ R is continuous, then, for any x0 ∈ R, there is an interval

(possible infinite) Ix0 = (αx0, βx0) containing t0 = 0 and a solution x of the initial

value problem

x′(t) = f (x(t)) , x(0) = x0,

defined for all t ∈ Ix0 . Also, if αx0 is finite, then

lim
t→α+x0

|x(t)| = +∞

or, if βx0 is finite, then

lim
t→β−x0

|x(t)| = +∞.

(ii) If, in addition, the function f is continuously differentiable, meaning f is differentiable

and its first derivative is continuous, then the solution x is unique on Ix0 and x is

continuous in (t, x0) together with its derivative, meaning x is also continuously

differentiable.

An important role in stability theory is played by the so-called equilibrium points.

Definition 3.1.2. A point x̄ ∈ R is called an equilibrium point (also critical point, steady

state solution, etc.) of x′(t) = f (x(t)) if f (x̄) = 0.

Now, the concept of stability of an equilibrium point is considered. As stated in [8],

roughly speaking, we can say that an equilibrium point is stable if all solutions starting near

the equilibrium point x̄ stay near x̄. Moreover, if nearby solutions tend to x̄ as t →∞, then

x̄ is called asymptotically stable. The definitions for stable, unstable, and asymptotically

stable equilibrium points are given below.

Definition 3.1.3. (i) An equilibrium point x̄ of (3.1) is said to be stable if, for any given

ε > 0, there exists δ (ε) > 0, such that, for every x0, for which |x0 − x̄ | < δ, the

solution x of (3.1) through x0 at 0 satisfies the inequality |x(t) − x̄ | < ε for all t ≥ 0.
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(ii) An equilibrium point x̄ of (3.1) is said to be unstable if it is not stable.

(iii) An equilibrium point x̄ of (3.1) is said to be asymptotically stable if it is stable and, in

addition to that, there is an r > 0 such that the solution x of (3.1) through x0 satisfies

|x(t) − x̄ | → 0 as t → +∞ whenever |x0 − x̄ | < r .

3.2. STABILITY THEORY OF DIFFERENCE EQUATIONS

After considering differential equations, we look at difference equations. The fol-

lowing introduction into stability theory of difference equations is based on [6].

The following system of linear difference equations is given:

xn+1 = Axn, x(n0) = x0, (3.3)

where xn ∈ Rk and A is a k × k nonsingular matrix. Equation (3.3) is called autonomous

because A does not depend on n, similar to the continuous case. The first question that

comes up about the difference equation (3.3) is the existence and uniqueness of solutions.

Theorem 3.2.1. For each x0 ∈ Rk and n0 ∈ N0, there exists a unique solution xn of

difference equation (3.3) with x(n0) = x0.

Simultaneous to the stability theory of differential equations, we define equilibrium

points for difference equations.

Definition 3.2.2. A point x̄ ∈ Rk is called an equilibrium point of difference equation (3.3)

if Ax̄ = x̄.

It is often assumed that x̄ is the origin 0, called the zero solution. In the following

definition, stable, unstable, and asymptotically stable equilibrium points are defined.

Definition 3.2.3. An equilibrium point x̄ of difference equation (3.3) is said to be
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(i) stable if, given ε > 0 and n0 ≥ 0, there exists δ = δ(ε, n0), such that |x0 − x̄ | < δ

implies |xn − x̄ | < ε for all n ≥ n0.

(ii) unstable if it is not stable.

(iii) attracting if there exists µ = µ(n0), such that |x0 − x̄ | < µ implies limn→∞ xn = x̄.

(iv) asymptotically stable if it is stable and attracting.

For the linear autonomous system like (3.3), there exist the following stability results.

Theorem 3.2.4. The following statements hold:

(i) The zero solution of (3.3) is stable if and only if ρ(A) ≤ 1, where ρ(A) is the spectral

radius of matrix A, and the eigenvalues of unit modulus are semisimple; that is, the

corresponding Jordan block is diagonal.

(ii) The zero solution of (3.3) is asymptotically stable if and only if ρ(A) < 1.

If it is said that the zero solution of difference equation (3.3) is asymptotically stable

that means that all solutions of (3.3) converge to 0.

Consider the linear scalar difference equation of kth order

xn+k + a1xn+k−1 + a2xn+k−2 + · · · + ak xn = 0, (3.4)

where ai, i = 1, 2, . . . , k are real numbers. For this case, there exists a famous criterion to

see if the zero solution is asymptotically stable, that is, the Schur–Cohn criterion; see [6].

Theorem 3.2.5 (Schur–Cohn criterion). The zeros of the characteristic polynomial

P(ν) = νk + a1ν
k−1 + · · · + ak−1ν + ak

of the difference equation (3.4) lie inside the unit disk if and only if the following conditions

hold:
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(i) P(1) > 0,

(ii) (−1)k P(−1) > 0,

(iii) the (k − 1) × (k − 1) matrices

M±k−1 =

©­­­­­­­­­­­­«

1 0 · · · · · · 0

a1 1
. . .

...

...
. . .

. . .
. . .

...

ak−3
. . . 1 0

ak−2 ak−3 · · · a1 1

ª®®®®®®®®®®®®¬
±

©­­­­­­­­­­­­«

0 · · · · · · 0 ak

... . .
.

ak ak−1
... . .

.
. .
.

. .
. ...

0 ak . .
.

a3

ak ak−1 · · · a3 a2

ª®®®®®®®®®®®®¬
are positive innerwise; that is, the determinants of all its inners are positive.

Using the Schur–Cohn criterion (Theorem3.2.5), necessary and sufficient conditions

for asymptotic stability of the zero solution of difference equation (3.4) may be derived.
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4. THE PANTOGRAPH EQUATION - CONTINUOUS CASE

The pantograph equation has been well studied in the continuous case over the

last several decades. In this section, an overview of important results is given regarding

the pantograph equation as a differential equation. The goal is to consider some results

regarding asymptotic stability and asymptotic behavior of the pantograph equation.

The pantograph equation that is considered in the continuous case is

x′(t) = ax(t) + bx(λt), t > 0, (4.1)

where a, b are real or in some cases even complex constants and 0 < λ < 1 for λ ∈ R.

The differential equation (4.1) together with the initial condition (4.2) is an initial value

problem:

x(0) = 1. (4.2)

The first important thing when considering an initial value problem is to make sure that it

is well posed. For this purpose, the following results about the existence and uniqueness of

solutions of the pantograph equation are given below; see [14].

Theorem 4.0.1. If 0 < λ < 1, then, given any δ > 0, the problem defined by (4.1) and (4.2),

where a is a possibly complex constant, b is a real constant, has one and only one solution

in [0, δ], and this solution is in fact a solution for all t and is an integral function of t.

The proof is done in [14] with Picard’s method of successive approximations. In

fact, the theorem can be extended to complex constants a and b, which is proved in [10].

Hence, the initial value problem is also well posed for complex constants a and b. In

addition to that, it is shown in [14] that the initial value problem given by (4.1) and (4.2) is

not well posed if λ > 1.
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Theorem 4.0.2. Assume λ > 1, a is a possibly complex constant, and b is a real constant.

There is no solution of (4.1) and (4.2) that is analytic in a neighborhood of x = 0. However,

there are an infinite number of solutions, even of infinitely differentiable solutions, of (4.1)

and (4.2).

After considering the existence and uniqueness of solutions of (4.1) and (4.2), we

study the asymptotic stability of solutions of the pantograph equation. Some results can

be found in [11] for complex constants a and b. The first result is a rough estimation of

the domain for asymptotic stability. It is proved in [11] with classical techniques of direct

upper bounds.

Lemma4.0.3. The solution of the pantograph equation (4.1) and (4.2) tends to 0 ifRe(a) < 0

and |b| < −Re(a).

Furthermore, there is also a result in [11] for the general stability domain, which is

more precise.

Theorem 4.0.4. The zero solution of (4.1) and (4.2) is asymptotically stable if Re(a) < 0

and |b| < |a|.

The asymptotic behavior of perturbations solutions of the pantograph equation is

studied in [7], which means we consider a specific kind of pantograph equation with the

assumption that λ is very close to 1. To do so, we let λ = 1− ε, where ε > 0 is a very small

real number. The following pantograph equation is considered:

x′(t) = ax(t) + bx ((1 − ε)t) , t > 0, (4.3)

x(0) = 1. (4.4)
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During the proof of the following theorem about the asymptotic behavior of solutions of

(4.3) and (4.4), there are some asymptotic expansions and approximations done; see [7].

For this reason, the behavior when t = O(1/ε) is considered by putting t = τ/ε. In the

derivation, it is found that there exists a real solution for all τ > 0 as long as a > 0 or

a + b > 0.

Theorem 4.0.5. Let c be a real constant. The asymptotic behavior of the solution of (4.3)

and (4.4) as τ →∞ is:

(i) b > 0 and a > 0, then x ∼ c exp(aτ/ε).

(ii) b > 0 and a = 0, then x ∼ c exp
(
(log τ)2

2ε

)
.

(iii) b > 0 and a < 0, then x ∼ cτ−(1/ε) log(−a/b).

(iv) b < 0 and a + b > 0, then x ∼ c exp(aτ/ε).

(v) a > 0 > a + b, then x ∼ c exp(aτ/ε).

The following example confirms the result from Theorem 4.0.5, which is said to be

the favorite example of Leslie Fox, one of the authors in [7].

Example 4.0.6. It is considered that a = 0.95, b = −1, and λ = 1 − ε = 0.99, so that we

get the initial value problem

x′(t) = 0.95x(t) − x(0.99t), t > 0, (4.5)

x(0) = 1. (4.6)

The results of the numerical simulation in [7] are shown in Figure 4.1.
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Figure 4.1. The simulation results of (4.5) and (4.6) in [7].

Example 4.0.6 shows that it is dangerous to stop the simulation too early because

it seems that the solution tends to 0 as t → ∞, but in fact, it grows exponentially after a

certain point t∗, which can be really large. The behavior for large t is exponential as stated

by the analytical result in Theorem 4.0.5.
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5. THE PANTOGRAPH EQUATION - DISCRETE CASE

In this section, we consider discretizations of the pantograph equation (4.1). The

discrete case was a topic of interest in the last 20 years and is well studied. Important results

regarding asymptotic behavior and asymptotic stability are considered.

In the following, the results of [15] are shown. The initial value problem given by

(4.1) and (4.2) is considered with the assumptions

|a| + b < 0 and 0 < λ < 1, (5.1)

where λ is very close to 1. In the previous section, we considered in Theorem 4.0.5 the

case with the assumption a > 0 > a + b and the result that the asymptotic behavior of

the solution is x ∼ c exp(aτ/ε), which confirmed the result in Example 4.0.6. With the

assumption (5.1), we are in this case. In fact,

a > 0 > a + b

with a > 0⇒ |a| = a

with a + b < 0⇒ |a| + b < 0.

For this reason, it is expected to get similar results for the discretization as for the specific

pantograph equation (4.3). The discretization is done with the forward Euler method, which

is one of the basic but also most famous numerical methods to discretize a differential

equation:

x′(t) = ax(t) + bx(λt)

=⇒ xn+1 − xn

h
= axn + bxbλnc
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=⇒ xn+1 = (1 + ah)xn + bhxbλnc, n ∈ N0, (5.2)

where h > 0 is the stepsize, bxc is the integer floor function, x0 = 1, and xn is the numerical

approximation of x(hn). Hence, we get a difference equation with constant coefficients but

of variable order because of the floor function. Indeed, the order of the difference equation

(5.2) is increasing. For certain intervals the order is fixed. As stated in [15], for

n ∈
(
m + λ − 1

1 − λ ,
m + λ
1 − λ

)
, m ∈ N0

(5.2) is given by

xn+1 = (1 + ah)xn + bhxn−m, n ∈ N0 (5.3)

and is of constant order m + 1. More explanation about the increasing order is given in

Example 5.0.2. The characteristic polynomial of (5.3) is

Pm(ν) = νm+1 − (1 + ah)νm − bh.

If all the zeros of the corresponding characteristic polynomial are inside the open unit disk,

then the characteristic polynomial is of Schur type. Moreover, the solution xn tends to 0 as

n→∞ for any initial values x0, x1, . . . , xm if and only if the characteristic polynomial is of

Schur type.

It is shown in [15] that there is a critical value m∗ for the order of the difference

equation. Up to this order, the solution tends to 0 but while the order is increasing and

reaches the critical order m∗, the solution blows up. The following result is proved in [15].
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Proposition 5.0.1. Assume |a| + b < 0 and h < 1/(|a| + |b|). Then, there exists a critical

value m∗ = m∗(h) ∈ N0 for the order of the difference equation (5.3) such that Pm(ν) is of

Schur type if and only if m ≤ m∗. Furthermore,

lim
h→0

h m∗(h) =



min
{

1
(b2−a2)1/2 arctan (b

2−a2)1/2
a , 1

a

}
, a > 0,

π
2|b|, a = 0,

1
(b2−a2)1/2

(
π + arctan (b

2−a2)1/2
a

)
, a < 0.

Therefore, to see the correct asymptotic behavior of the solution, we cannot stop the

simulation too early. Because if it stops too early, we could conclude that the solution tends

to 0 as t →∞, which is wrong.

After this discovery was made, further research was done in [12] about this phe-

nomenon that the solution tends to 0 but after reaching a certain point, the solution blows

up. The result in [12] improves the result in [15] and shows a more general approach. In

the following, the approach of [12] is described. The discretization is done through the

backward Euler method:

x′(t) = ax(t) + bx(λt)

=⇒ xn+1 − xn

h
= axn+1 + bxbλ(n+1)c

=⇒ (1 − ah)xn+1 − xn − bhxbλ(n+1)c = 0

=⇒ xn+1 −
1

(1 − ah) xn +
−bh
(1 − ah) xbλ(n+1)c = 0, n ∈ N0 (5.4)

with the integer floor function bxc, the stepsize h > 0, x0 = 1, and xn as the numerical

approximation of x(hn). Due to bλ(n + 1)c, the order of the difference equation (5.4)

increases as n increases. An interval is considered, where the difference equation is of fixed

order. For

n ∈
(
m + λ − 1

1 − λ ,
m + λ
1 − λ

]
, m ∈ N0,
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(5.4) is given by

xn+1 − αxn + βxn−m = 0 (5.5)

with

α =
1

(1 − ah), β =
−bh
(1 − ah) . (5.6)

Thus, the order of the difference equation (5.5) is m + 1 for the interval above.

Example 5.0.2. This example is given to illustrate that the order of the difference equation

(5.4) increases. Consider λ = 0.99. Then, for m = 0 and

n ∈ (−1, 99] ,

(5.4) is given by

xn+1 −
1 + bh
(1 − ah) xn = 0

and is of order m + 1 = 1. For m = 1 and

n ∈ (99, 199] ,

(5.4) is given by

xn+1 −
1

(1 − ah) xn +
−bh
(1 − ah) xn−1 = 0

and is of order m + 1 = 2. All in all, if n is increasing, the order of the difference equation

is also increasing.

In [12], the Schur–Cohn criterion is used to find out the critical order m∗ of the

difference equation where it changes from the conditions for asymptotic stability holds to

the conditions does not hold any more. The Schur–Cohn criterion (see Theorem 3.2.5) is

especially formulated in [12] for the difference equation (5.5).
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Theorem 5.0.3. The zeros of the characteristic polynomial

Pm(ν) = νm+1 − ανm + β

of the difference equation (5.5) with α and β from (5.6) lie inside the unit disk if and only if

the following conditions hold:

(i) Pm(1) > 0,

(ii) (−1)m+1Pm(−1) > 0,

(iii) the m × m matrices

M±m =

©­­­­­­­­­­­­«

1 0 · · · · · · 0

−α 1
. . .

...

0
. . .

. . .
. . .

...

...
. . .

. . . 1 0

0 · · · 0 −α 1

ª®®®®®®®®®®®®¬
±

©­­­­­­­­­­­­«

0 · · · · · · 0 β

... . .
.

β 0
... . .

.
. .
.

. .
. ...

0 β . .
. ...

β 0 · · · · · · 0

ª®®®®®®®®®®®®¬
are positive innerwise.

With condition (i) and (ii) of Theorem 5.0.3, some conditions of the stepsize are

derived. Summarizing these conditions, only one condition remains, which is h < 2/(a +

|b|), and makes sure the condition (i) and (ii) from Theorem 5.0.3 are satisfied. With

condition (iii) from Theorem 5.0.3, it is found the critical order m∗ of the difference

equation up to that the condition holds and the solution tends to 0 but it is not valid anymore

for m > m∗ and this tendency disappears. All in all, the following theorem is proved in [12].
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Theorem 5.0.4. Let |a| + b < 0, h < 2
(a+|b|) , and let the values α and β be given by (5.6).

Then, all roots of the characteristic polynomial in Theorem 5.0.3 lie inside the unit disk if

and only if

m ≤ m∗ :=


bzc, z < N0,

z − 1, z ∈ N0,

where

z = 2 arctan

(
−
√

4α2 − (1 + α2 − β2)2
1 − β2 − α2 − 2αβ

) /
arcsin

(√
4α2 − (1 + α2 − β2)2

2α

)
.
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6. QUANTUM CALCULUS

Before we start to consider several pantograph equations in quantum calculus in

the next section, we want to give a short introduction to quantum calculus, which is based

on [13]. The quantum case, which means the set T = qN0 for q > 1, is in addition to the

continuous and discrete cases an important and famous example of a time scale (an arbitrary

nonempty closed subset of real numbers). The general theory of calculus on time scales

can be found, e.g., in [3, 4].

From now on, the following set is considered.

Definition 6.0.1. Let q > 1 be a real number and

T = qN0 = {qn : n ∈ N0} =
{
1, q, q2, . . .

}
.

The q-derivative is defined as follows.

Definition 6.0.2. The q-derivative of a function f : qN0 → R at t is given by

f ∆(t) = f (qt) − f (t)
(q − 1)t for all t ∈ qN0 .

Note that

lim
q→1

f ∆(t) = f ′(t),

if f : R→ R is differentiable.

Theorem 6.0.3. Assume that f , g : qN0 → R. The derivative of the product of f and g at t

is then given by the product rule in quantum calculus, which is

( f g)∆ (t) = f ∆(t)g(t) + f (qt)g∆(t).
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There exist multiple ways for the expression of the q-exponential function; see [13].

Here, we consider the definition of the q-exponential function in [4].

Definition 6.0.4. Let a ∈ R. The q-exponential function ea(t) is defined by

ea(t) =

logq(t)−1∏
i=0

(
1 + a(q − 1)qi

)
for all t ∈ qN0 .

The integral in quantum calculus is defined in the following way; see [4].

Definition 6.0.5. Let m, n ∈ N0 with m < n and f : qN0 → R. The q-integral is defined as

∫ qn

qm

f (t)∆t = (q − 1)
n−1∑
k=m

qk f
(
qk

)
.
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7. THE PANTOGRAPH EQUATION - QUANTUM CASE

In this section, we discuss the pantograph equation in quantum calculus. There are

multiple ways to display the differential pantograph equation (4.1) in quantum calculus. The

main goal is to do research on these pantograph equations in quantum calculus regarding

asymptotic stability and asymptotic behavior of their solutions.

7.1. ASYMPTOTICBEHAVIOROFSOLUTIONSOFTHEPANTOGRAPHEQUA-
TION IN QUANTUM CALCULUS

In this section, we consider the pantograph equation in quantum calculus in the form

x∆(t) = ax(t) + bx
(

t
qN

)
, t ∈ qN0, N ∈ N (7.1)

with the initial function

x(t) = f (t), t ∈ Ω := {q−N, q−N+1, . . . , q−1, 1}, (7.2)

where a and b are real numbers. The delay term x(λt) in the differential equation (4.1) is

represented in the probably most intuitive way in quantum calculus, in fact x
(

t
qN

)
, where

N ∈ N. Thus, λ, which is a real number between 0 and 1, is presented by 1
qN in quantum

calculus, so that the delay term t
qN ∈ qN0 ∪Ω for t ∈ qN0 . Therefore, a floor function is not

needed in (7.1). With the definition of the q-derivative (see Definition 6.0.2), we derive a

difference equation from the q-difference equation (7.1):

x∆(t) = ax(t) + bx
(

t
qN

)
=⇒ x(qt) − x(t)

(q − 1)t = ax(t) + bx
(

t
qN

)
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=⇒ x(qt) = (1 + a(q − 1)t) x(t) + b(q − 1)t x
(

t
qN

)
.

If we put tn := qn and tn+1 := tnq = qnq = qn+1, then

x(tn+1) = (1 + a(q − 1)tn) x(tn) + b(q − 1)tnx
(

tn
qN

)
.

It also holds that tn
qN =

qn

qN = qn−N = tn−N . Thus,

x(tn+1) = (1 + a(q − 1)tn) x(tn) + b(q − 1)tnx (tn−N ) .

Define xn := x(tn), xn+1 := x(tn+1), and xn−N := x(tn−N ). Hence,

xn+1 = (1 + a(q − 1)tn) xn + b(q − 1)tnxn−N .

Therefore, (7.1) reduces to the difference equation of order N + 1 and variable coefficients

xn+1 = αnxn + βnxn−N, n ∈ N0, (7.3)

where

αn = 1 + a(q − 1)tn, βn = b(q − 1)tn, (7.4)

and the values from the initial function (7.2)

x−N, x−N+1, . . . , x−1, x0 (7.5)

complete the initial value problem.
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7.1.1. An Explicit Solution Representation in Matrix Form. In this section, we

are interested in an explicit solution form of q-difference equation (7.1) and the initial

function (7.2). With (7.3), (7.4), and the initial values (7.5), the solution can be calculated

recursively.

It turns out that an explicit solution in matrix form can be obtained using the results

in [2]. In the following, the case N = 1 for (7.3) is considered, i.e.,

xn+1 = αnxn + βnxn−1, (7.6)

where αn and βn from (7.4) and with (7.5) the initial values

x−1, x0. (7.7)

Theorem 7.1.1. The solution of (7.6) and (7.7) can be represented as

©­­«
x2n−1

x2n

ª®®¬ = A2n−1 A2n−3 . . . A1
©­­«

x−1

x0

ª®®¬ , n ∈ N,

where

An =
©­­«

βn αn

αn+1βn βn+1 + αn+1αn

ª®®¬ .
Proof. The proof follows by using [2, Theorem 4.1].

Example 7.1.2. To verify the solution representation in Theorem 7.1.1, we first calculate

x1, x2, x3, x4 with the recursive relation (7.6) and second with the explicit solution represen-

tation in matrix form in Theorem 7.1.1:

x1 = α1x0 + β1x−1,

x2 = α2x1 + β2x0 = α2(α1x0 + β1x−1) + β2x0 = [α2α1 + β2] x0 + α2β1x−1,
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x3 = α3x2 + β3x1 = α3
{
[α2α1 + β2] x0 + α2β1x−1

}
+ β3

{
α1x0 + β1x−1

}
=

{
α3 (α2α1 + β2) + β3α1

}
x0 +

{
α3α2β1 + β3β1

}
x−1,

x4 = α4x3 + β4x2 = α4

{
[α3 (α2α1 + β2) + β3α1] x0 + [α3α2β1 + β3β1] x−1

}
+

β4

{
[α2α1 + β2] x0 + α2β1x−1

}
=

{
α4 [α3 (α2α1 + β2) + β3α1] + β4 [α2α1 + β2]

}
x0

+
{
α4 [α3α2β1 + β3β1] + β4α2β1

}
x−1.

With Theorem 7.1.1, the values x1, x2, x3, x4 are calculated as

©­­«
x1

x2

ª®®¬ = A1
©­­«

x−1

x0

ª®®¬ =
©­­«
β1 α1

α2β1 β2 + α2α1

ª®®¬
©­­«

x−1

x0

ª®®¬ =
©­­«

β1x−1 + α1x0

α2β1x−1 + [β2 + α2α1] x0

ª®®¬ ,©­­«
x3

x4

ª®®¬ = A3 A1
©­­«

x−1

x0

ª®®¬ =
©­­«
β3 α3

α4β3 β4 + α4α3

ª®®¬
©­­«
β1 α1

α2β1 β2 + α2α1

ª®®¬
©­­«

x−1

x0

ª®®¬ =©­­«
α3α2β1 + β3β1 α3 (α2α1 + β2) + β3α1

α4 [α3α2β1 + β3β1] + β4α2β1 α4 [α3 (α2α1 + β2) + β3α1] + β4 [α2α1 + β2]

ª®®¬
©­­«

x−1

x0

ª®®¬ .
We see that the solution expressions are the same.

7.1.2. The Exponential Behavior of Solutions. It is not only possible to observe

that the solution of (7.1), (7.2) has, under certain conditions on the constants a and b, a

turn around point; that is, the solution decreases and tends to 0 but after reaching the turn

around point, the solution blows up. Moreover, it is also possible to prove that the solution

of the pantograph equation (7.1) in quantum calculus behaves like a q-exponential function

as t →∞. To show this behavior, we follow the idea and work in [5].

Consider the q-difference equation

x∆(t) = ax(t), (7.8)
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which has no delay term. The solution ea of (7.8) satisfying ea(1) = 1 is given by the

q-exponential function (see Definition 6.0.4)

ea(t) =

logq(t)−1∏
i=0

(
1 + a(q − 1)qi

)
, t ∈ qN0 . (7.9)

Theorem 7.1.3. Let be given the q-difference equation

x∆(t) = ax(t) + bx
(

t
qN

)
, t ∈ qN0, N ∈ N,

where a and b are nonzero constants, and the initial function (7.2). Then, there exists a

constant C such that for any solution x of (7.1), we have

lim
t→∞

x(t)
ea(t)

= C.

Proof. Assume that x is a solution of (7.1). Then, we define

y(t) = x(t)
ea(t)

, for t ∈ qN0 . (7.10)

With the product rule in quantum calculus (see Theorem 6.0.3), i.e.,

( f g)∆ (t) = f ∆(t)g(t) + f (qt)g∆(t)

and using (7.10), x∆(t) becomes

x∆(t) = e∆a (t)y(t) + ea(qt)y∆(t) = aea(t)y(t) + ea(qt)y∆(t)

= aea(t)
x(t)
ea(t)

+ ea(qt)y∆(t) = ax(t) + ea(qt)y∆(t).
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Hence, the q-difference equation

x∆(t) = ax(t) + bx
(

t
qN

)
can be transformed to

x∆(t) = ax(t) + bx
(

t
qN

)
=⇒ ax(t) + ea(qt)y∆(t) = ax(t) + bx

(
t

qN

)
=⇒ y∆(t) = b

ea(qt)ea

(
t

qN

)
y

(
t

qN

)
=⇒ y∆(t) = b

ea

(
t

qN

)
ea(qt) y

(
t

qN

)
, t ≥ qN . (7.11)

Define tk := qk+N and Sk := sup{|y(tk q−p)| , p = 0, 1, . . . , k} for k ∈ N0. Consider (7.11)

y∆(tk) = b
ea

(
tk
qN

)
ea(qtk)

y

(
tk

qN

)
=⇒ y(tk+1) − y(tk)

(q − 1)tk
= b

ea

(
tk
qN

)
ea(qtk)

y

(
tk

qN

)
=⇒ y(tk+1) = y(tk) + (q − 1)tk b

©­­«
ea

(
tk
qN

)
ea(tk+1)

y

(
tk

qN

)ª®®¬ .
Using the definition of Sk , we get

|y(tk+1)| ≤ Sk
©­­«1 + (q − 1)tk |b|

�������
ea

(
tk
qN

)
ea(tk+1)

�������ª®®¬ .
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Now, consider the exponential term and use the expression in (7.9) to obtain�������
ea

(
tk
qN

)
ea(tk+1)

������� =
����� ea

(
qk )

ea(qk+1+N )

����� =
����� ∏k−1

i=0
(
1 + a(q − 1)qi )∏k+N

i=0
(
1 + a(q − 1)qi

) �����
=

N∏
p=0

1��1 + a(q − 1)qk+p
�� = O

(
q−k(N+1)

)
as k →∞. (7.12)

Sine N + 1 > 1 because N ∈ N, we get

|y(tk+1)| ≤ Sk

(
1 +O

(
q−rk)

))
as k →∞,

where r > 0 is a suitable constant. Thus,

Sk+1 ≤ Sk

(
1 +O

(
q−rk)

))
as k →∞.

Therefore, the sequence (Sk) is bounded as k →∞ and so |y(t)| ≤ M for a suitable positive

real number M and t ∈ qN0 .

Now, we finally prove the statement of Theorem 7.1.3 by showing that y has a (finite)

limit. Let ε > 0 and let tl, tn ∈ qN0 , qN < tl < tn. Consider (7.11) and integrate both sides

y∆(t) = b
ea

(
t

qN

)
ea(qt) y

(
t

qN

)
=⇒

∫ tn

tl

y∆(t)∆t =

∫ tn

tl

b
ea

(
t

qN

)
ea(qt) y

(
t

qN

)
∆t

=⇒ y(tn) − y(tl) =

∫ tn

tl

b
ea

(
t

qN

)
ea(qt) y

(
t

qN

)
∆t.
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With the observations above,

|y(tn) − y(tl)| ≤ M |b|

∫ tn

tl

�������
ea

(
t

qN

)
ea(qt)

�������∆t.

Using (7.12), we can estimate the integral and observe its convergence as tn →∞. For tl, tn

large enough

|b|

∫ tn

tl

�������
ea

(
t

qN

)
ea(qt)

�������∆t ≤ ε

M
.

Therefore, |y(tn) − y(tl)| ≤ ε and y is convergent to a finite limit C, which completes the

proof.

Example 7.1.4. Consider the pantograph equation

x∆(t) = 3x(t) + 0.5x
(

t
q

)
with the initial values

x−1 = 1, x0 = 1.

With Theorem 7.1.3, the asymptotic behavior of the solution is exponential. Using the

programming language Matlab and let q = 1.01, the solution of the pantograph equation

together with the q-exponential function is illustrated in Figure 7.1. It seems that the

solution of the pantograph equation behaves exponential, which supports the result from

Theorem 7.1.3. The x-axis is in terms of n instead of qn because the result is better visible

in this way.
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Figure 7.1. The exponential behavior of solutions of the pantograph equation (7.1) with
N = 1, a = 3, b = 0.5, and q = 1.01.

7.2. STABILITY ANALYSIS OF DIFFERENT PANTOGRAPH EQUATIONS IN
QUANTUM CALCULUS

This section discusses a different type of the pantograph equation in quantum cal-

culus. The goal in this section is to find some conditions for the asymptotic stability of the

zero solution for this kind of pantograph equation. Three variants of this kind of pantograph

equation are considered, they are only different in the delay term.

7.2.1. The Pantograph Equation of the Form x∆(t) = a
t x(t) +

b
t x

(

t
qN

)

. The

coefficients a and b in the pantograph equation (4.1) are constants. To get also constant

coefficients for the difference equation that is derived from the corresponding q-difference

equation, we consider a pantograph equation in quantum calculus with variable coefficients.

For this purpose, we consider the pantograph equation

x∆(t) = a
t

x(t) + b
t

x
(

t
qN

)
, t ∈ qN0, N ∈ N (7.13)

with the same initial function as in (7.2)

x(t) = f (t), t ∈ Ω.
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With the q-derivative (see Definition 6.0.2), a corresponding difference equation is derived

as

x∆(t) = a
t

x(t) + b
t

x
(

t
qN

)
=⇒ x(qt) − x(t)

(q − 1)t =
a
t

x(t) + b
t

x
(

t
qN

)
=⇒ x(qt) = (1 + a(q − 1)) x(t) + b(q − 1)x

(
t

qN

)
.

If we put tn := qn and tn+1 := tnq = qnq = qn+1, then

x(tn+1) = (1 + a(q − 1)) x(tn) + b(q − 1)x
(

tn
qN

)
.

It also follows that tn
qN =

qn

qN = qn−N = tn−N . Hence

x(tn+1) = (1 + a(q − 1)) x(tn) + b(q − 1)x (tn−N ) .

Define xn := x(tn), xn+1 := x(tn+1), and xn−N := x(tn−N ). Then,

xn+1 = (1 + a(q − 1)) xn + b(q − 1)xn−N .

Therefore, (7.13) reduces to the difference equation of order N + 1 and constant coefficients

xn+1 = αxn + βxn−N, n ∈ N0, (7.14)

where

α = 1 + a(q − 1), β = b(q − 1). (7.15)

The given values x−N, x−N+1, . . . , x−1, x0 from the initial function in (7.2) complete the

initial value problem.
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Because the difference equation (7.14) has constant coefficients and order N +1, the

Schur–Cohn criterion (see Theorem 3.2.5) can be applied to look for asymptotic stability

conditions. For completeness, we state the following theorem, that is, the Schur–Cohn

criterion applied to the difference equation (7.14) with (7.15).

Theorem 7.2.1. The zeros of the characteristic polynomial

PN (ν) = νN+1 − ανN − β (7.16)

with

α = 1 + a(q − 1), β = b(q − 1)

of the difference equation (7.14) lie inside the unit disk if and only if the following conditions

hold:

(i) PN (1) > 0,

(ii) (−1)N+1PN (−1) > 0,

(iii) the N × N matrices

M±N =

©­­­­­­­­­­­­«

1 0 · · · · · · 0

−α 1
. . .

...

0
. . .

. . .
. . .

...

...
. . .

. . . 1 0

0 · · · 0 −α 1

ª®®®®®®®®®®®®¬
±

©­­­­­­­­­­­­«

0 · · · · · · 0 −β
... . .

. −β 0
... . .

.
. .
.

. .
. ...

0 −β . .
. ...

−β 0 · · · · · · 0

ª®®®®®®®®®®®®¬
are positive innerwise.

First, the case N = 1 is considered. From now on, assume that |a| + b < 0. The

difference equation (7.14) becomes

xn+1 = αxn + βxn−1, n ∈ N0
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with α and β in (7.15). From Condition (i) of Theorem 7.2.1, we obtain

P1(1) > 0

=⇒ 1 − α − β > 0

=⇒ 1 − (1 + a(q − 1)) − b(q − 1) > 0

=⇒ −(a + b)(q − 1) > 0

=⇒ a + b < 0, since q − 1 > 0.

This is satisfied by the assumption |a| + b < 0. Condition (ii) of Theorem 7.2.1 leads to

(−1)2P1(−1) > 0

=⇒ 1 + α − β > 0

=⇒ 1 + (1 + a(q − 1)) − b(q − 1) > 0

=⇒ 2 + (a − b)(q − 1) > 0

=⇒ q − 1 >
−2

a − b
, since a − b > 0 from |a| + b < 0,

which is always true because the right-hand side is negative. Condition (iii) of Theorem

7.2.1 implies

det
(
M±1

)
= det (1 ± (−β)) = 1 ± β > 0

=⇒ 1 + β > 0 and 1 − β > 0.

From the first inequality 1 + β > 0, we get

1 + β > 0

=⇒ 1 + b(q − 1) > 0

=⇒ q − 1 <
−1
b
, since b < 0 from |a| + b < 0



41

=⇒ q < 1 − 1
b
.

Since b < 0, the right-hand side is always greater than 1. The second inequality 1 − β > 0

leads to

1 − β > 0

=⇒ 1 − b(q − 1) > 0

=⇒ q − 1 >
1
b
, since b < 0 from |a| + b < 0.

This condition is always true because b < 0. All in all, we only need the condition q < 1− 1
b

to obtain the asymptotic stability of the zero solution for N = 1.

Theorem 7.2.2. Let |a| + b < 0 and α, β be given by (7.15). Then, the zeros of the

characteristic polynomial (7.16) for N = 1 lie inside the unit disk if and only if

q < 1 − 1
b
.

Proof. The proof is given as derivation right before this theorem by using Theorem 7.2.1.

Example 7.2.3. Let N = 1, a = 0.1, and b = −0.5. Thus, consider the pantograph equation

x∆(t) = 0.1
t

x(t) − 0.5
t

x
(

t
q

)
with the initial values

x−1 = 1, x0 = 1.

With Theorem 7.2.2, the zero solution is asymptotically stable if and only if

q < 1 − 1
b
= 3.
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First, we consider q = 2.9 meaning that, by Theorem 7.2.2, the zero solution is asymptoti-

cally stable. Using the programming language Matlab (see appendix, Listing 9.1), we get

Figure 7.2, which supports our result in Theorem 7.2.2. The x-axis is in terms of n instead

of qn because the result is better visible in this way.

Figure 7.2. The solution of the pantograph equation (7.13) with N = 1, a = 0.1, b = −0.5,
and q = 2.9.

Now, we consider q = 3.1. Therefore, the zero solution is not asymptotically stable

anymore with Theorem 7.2.2. This is also illustrated in Figure 7.3 using Matlab (see

appendix, Listing 9.1). The solution is oscillating with an increasing amplitude as n is

increasing.

Figure 7.3. The solution of the pantograph equation (7.13) with N = 1, a = 0.1, b = −0.5,
and q = 3.1.
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Lastly, we consider q = 3. That is exactly the critical value of q for which, with

Theorem 7.2.2, the statement changes from the zero solution is asymptotically stable to

the zero solution is not asymptotically stable. Hence, the zero solution could be stable or

unstable for q = 3. It seems that the zero solution is stable, which is illustrated in Figure

7.4 using Matlab (see appendix, Listing 9.1).

Figure 7.4. The solution of the pantograph equation (7.13) with N = 1, a = 0.1, b = −0.5,
and q = 3.

Second, consider the case N = 2. Furthermore, it is still assumed that |a| + b < 0.

The difference equation (7.14) becomes

xn+1 = αxn + βxn−2, n ∈ N0

with α and β in (7.15). Condition (i) of Theorem 7.2.1 is the same as in the previous case

for N = 1, i.e.,

P2(1) > 0

=⇒ 1 − α − β > 0

=⇒ a + b < 0,
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which is satisfied by the assumption |a| + b < 0. Condition (ii) of Theorem 7.2.1 implies

(−1)3P2(−1) > 0

=⇒ 1 + α + β > 0

=⇒ 1 + (1 + a(q − 1)) + b(q − 1) > 0

=⇒ 2 + (a + b)(q − 1) > 0

=⇒ q − 1 <
−2

a + b
, since a + b < 0 from |a| + b < 0

=⇒ q < 1 − 2
a + b

.

Since a + b < 0, the right-hand side is always greater than 1. Condition (iii) of Theorem

7.2.1 leads to

det
(
M+2

)
= det

©­­«
1 −β

−α − β 1

ª®®¬ > 0

=⇒ 1 − β(α + β) > 0

and

det
(
M−2

)
= det

©­­«
1 β

−α + β 1

ª®®¬ > 0

=⇒ 1 + β(α − β) > 0.

The first inequality 1 − β(α + β) > 0 becomes

1 − β(α + β) > 0

=⇒ 1 − b(q − 1)
(
1 + a(q − 1) + b(q − 1)

)
> 0

=⇒ 1 − b(q − 1) − (ab + b2)(q − 1)2 > 0.
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If we put z = q−1, then a quadratic equation is given on the left-hand side. Set the left-hand

side equal to 0, find the roots of this equation, and therefore find the critical value q∗ up to

which the inequality holds, i.e.,

1 − bz − (ab + b2)z2 = 0

=⇒ z1,2 =
b ±

√
b(5b + 4a)

−2b(a + b) .

Since q > 1 implies q−1 > 0 and for q→ 1, we have z → 0 and thus 1−bz−(ab+b2)z2 → 1.

That means the quadratic equation is positive for q close to 1, and since the quadratic map is

continuous, the smallest root greater than 0 is the critical value q∗ up to which the condition

holds. Moreover, −(ab + b2) = −b(a + b) < 0 because |a| + b < 0. For this reason,

the quadratic equation is a parabola that opens downwards. This implies that one root is

smaller than 0 and one root is greater than 0. For our purpose, only the root greater than 0

is relevant. Therefore, we consider only the inequality

q <
b −

√
b(5b + 4a)

−2b(a + b) + 1.

From the second inequality 1 + β(α − β) > 0, we obtain

1 + β(α − β) > 0

=⇒ 1 + b(q − 1)
(
1 + a(q − 1) − b(q − 1)

)
> 0

=⇒ 1 + b(q − 1) + (ab − b2)(q − 1)2 > 0.

If we put z = q−1, then a quadratic equation on the left-hand side is given. Set the left-hand

side equal to 0 again, find the roots of this equation, and thus find the critical value q∗ up to

which the inequality holds, i.e.,

1 + bz + (ab − b2)z2 = 0
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=⇒ z1,2 =
−b ±

√
b(5b − 4a)

2b(a − b) .

With the same explanation as before because the leading coefficient is negative, that is

b(a − b) < 0, only the root greater than 0 is relevant. Therefore, we consider only the

inequality

q <
−b −

√
b(5b − 4a)

2b(a − b) + 1.

Now, we can state the theorem about the asymptotic stability of the zero solution for N = 2.

Theorem 7.2.4. Let |a| + b < 0 and α, β be given by (7.15). Then, the zeros of the

characteristic polynomial (7.16) for N = 2 lie inside the unit disk if and only if

q < min

{
1 − 2

a + b
,

b −
√

b(5b + 4a)
−2b(a + b) + 1,

−b −
√

b(5b − 4a)
2b(a − b) + 1

}
.

Proof. The proof is given as derivation right before the theorembyusingTheorem7.2.1.

Example 7.2.5. Let N = 2, a = 0.45, and b = −0.5. We consider

x∆(t) = 0.45
t

x(t) − 0.5
t

x
(

t
q2

)
with the initial values

x−2 = 1, x−1 = 1, x0 = 1.

Theorem 7.2.4 says that the zero solution for this equation above is asymptotically stable if

and only if

q < min {41, 22.8322, 2.0171} = 2.0171.

Let us consider q = 2.01. With Theorem 7.2.4, the zero solution is asymptotically stable,

which is illustrated in Figure 7.5 using Matlab (see appendix, Listing 9.1).
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Figure 7.5. The solution of the pantograph equation (7.13) with N = 2, a = 0.45, b = −0.5,
and q = 2.01.

If we consider q = 2.02, which is a little bit greater than 2.0171, the zero solution

is, by Theorem 7.2.2, not asymptotically stable anymore. This is also supported in Figure

7.6 using Matlab (see appendix, Listing 9.1). The solution is oscillating with an increasing

amplitude as n is increasing.

Figure 7.6. The solution of the pantograph equation (7.13) with N = 2, a = 0.45, b = −0.5,
and q = 2.02.

Third, consider the case N = 3. It is still assumed that |a| + b < 0. The difference

equation (7.14) becomes

xn+1 = αxn + βxn−3, n ∈ N0
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with α and β in (7.15). Condition (i) of Theorem 7.2.1 is the same as in the two previous

cases for N = 1, 2, namely

P3(1) > 0

=⇒ 1 − α − β > 0

=⇒ a + b < 0.

This is satisfied by the assumption |a| + b < 0. From Condition (ii) of Theorem 7.2.1, we

get

(−1)4P3(−1) > 0

=⇒ 1 + α − β > 0

=⇒ 1 + (1 + a(q − 1)) − b(q − 1) > 0

=⇒ 2 + (a − b)(q − 1) > 0

=⇒ q − 1 >
−2

a − b
, since a − b > 0 from |a| + b < 0.

Since the right-hand side is negative, this condition is always satisfied. Condition (iii) of

Theorem 7.2.1, which says that all determinants of the matrix inners have to be positive,

implies

det
(
M+3

)
= det

©­­­­­«
1 0 −β

−α 1 − β 0

−β −α 1

ª®®®®®¬
> 0

=⇒ 1 − β − α2β − β2(1 − β) > 0
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and

det
(
M−3

)
= det

©­­­­­«
1 0 β

−α 1 + β 0

β −α 1

ª®®®®®¬
> 0

=⇒ 1 + β + α2β + β2(1 − β) > 0.

In addition to that, the determinant of the matrix inners leads to the inequalities

det (1 ± β) > 0

=⇒ 1 + β > 0 and 1 − β > 0.

The last two inequalities are the same as in the case N = 1. Thus, the inequality 1 + β > 0

becomes

1 + β > 0

=⇒ q < 1 − 1
b
.

Since b < 0, the right-hand side is always greater than 1. From the other inequality 1−β > 0,

we get

1 − β > 0

=⇒ q − 1 >
1
b
,
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which is always true because b < 0. All in all, we get the condition q < 1 − 1
b from the

determinant of the matrix inners. Moreover, the first inequality 1− β−α2β− β2(1− β) > 0

leads to

1 − β − α2β − β2(1 − β) > 0

=⇒ 1 − 2b(q − 1) − (2ab + b2)(q − 1)2 + (b3 − ba2)(q − 1)3 > 0.

If we put z = q − 1, then it is given a cubic equation on the left-hand side. Set the left-hand

side equal to 0, find the roots of this equation with Vieta’s substitution, and thus find the

critical value q∗ up to which the inequality holds, namely

1 − 2bz − (2ab + b2)z2 + (b3 − ba2)z3 = 0.

Define the coefficients as c1 := b3 − ba2, c2 := −2ab − b2, c3 := −2b, c4 := 1. Then, we

follow the idea of Vieta’s substitution, which can be found in [19]. Dividing the equation

by c1 and substituting z = y − c2
3c1

, we get the so-called depressed cubic equation

y3 + py + q = 0,

where

p =
3c1c3 − c2

2

3c2
1

,

q =
2c3

2 − 9c1c2c3 + 27c2
1c4

27c3
1

.

Then, make the substitution y = w − p
3w , which is known as Vieta’s substitution, i.e.,

w3 + q − p3

27w3 = 0.
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Multiplying this equation by w3, it follows that

w6 + qw3 − p3

27
= 0

=⇒
(
w3

)2
+ q

(
w3

)
− p3

27
= 0.

Solve this quadratic equation now for w3 to obtain

w3
1,2 =

−q ±
√

q2 + 4
27 p3

2
.

Choose one of the roots, here

w3
1 =
−q +

√
q2 + 4

27 p3

2

and get

w1 =
3

√√√
−q +

√
q2 + 4

27 p3

2
.

Then, the three roots can be expressed with ξ = −1
2 +

1
2
√

3i, so that

y1 = w1 −
p

3w1
, y2 = ξw1 −

p
3ξw1

, y3 = ξ
2w1 −

p
3ξ2w1

,

and therefore

z1 = y1 −
c2

3c1
, z2 = y2 −

c2
3c1

, z3 = y3 −
c2

3c1
.

Finally, we get the three inequalities

q < z1 + 1, q < z2 + 1, q < z3 + 1
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but not every inequality is relevant. Only the inequalities where the roots are real numbers

and the right-hand side is greater than 1 are relevant. Therefore, we consider only the

inequalities

q < zi + 1, where zi ∈ R and zi + 1 > 1 for i = 1, 2, 3

and define

η := min {zi + 1 : zi ∈ R and zi + 1 > 1 for i = 1, 2, 3} . (7.17)

Since q > 1 implies q − 1 > 0 and for q → 1, we have z → 0 and hence 1 − 2b(q − 1) −

(2ab + b2)(q − 1)2 + (b3 − ba2)(q − 1)3 → 1. That means the cubic equation is positive

for q close to 1, and since the cubic map is continuous, the smallest real root greater

than 0 is the critical value q∗ up to which the condition holds. From the second equation

1 + β + α2β + β2(1 − β) > 0, we obtain

1 + β + α2β + β2(1 − β) > 0

=⇒ 1 + 2b(q − 1) + (2ab − b2)(q − 1)2 + (a2b − b3)(q − 1)3 > 0.

If we put z̃ = q − 1, then a cubic equation on the left-hand side is given. Set the left-hand

side equal to 0, find the roots of this equation with Vieta’s substitution, and thus find the

critical value q∗ up to which the inequality holds, namely

1 + 2bz̃ + (2ab − b2)z̃2 + (a2b − b3)z̃3 = 0.
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Define the coefficients as d1 := a2b − b3, d2 := 2ab − b2, d3 := 2b, d4 := 1. Then, we

follow again the idea of Vieta’s substitution and do the same procedure as above. Dividing

the equation by d1 and substituting z̃ = y − d2
3d1

, we get the depressed cubic equation

y3 + p̃y + q̃ = 0,

where

p̃ =
3d1d3 − d2

2

3d2
1

,

q̃ =
2d3

2 − 9d1d2d3 + 27d2
1 d4

27d3
1

.

As a next step, make the substitution y = w − p̃
3w to obtain

w3 + q̃ − p̃3

27w3 = 0.

Multiplying this equation by w3 leads to

w6 + q̃w3 − p̃3

27
= 0

=⇒
(
w3

)2
+ q̃

(
w3

)
− p̃3

27
= 0.

Solve the quadratic equation now for w3 to get

w3
1,2 =

−q̃ ±
√

q̃2 + 4
27 p̃3

2
.

Choose one of the roots, here

w3
1 =
−q̃ +

√
q̃2 + 4

27 p̃3

2
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and get

w1 =
3

√√√
−q̃ +

√
q̃2 + 4

27 p̃3

2
.

Then, the three roots can be expressed with ξ = −1
2 +

1
2
√

3i, so that

y1 = w1 −
p̃

3w1
, y2 = ξw1 −

p̃
3ξw1

, y3 = ξ
2w1 −

p̃
3ξ2w1

,

and therefore

z̃1 = y1 −
d2

3d1
, z̃2 = y2 −

d2
3d1

, z̃3 = y3 −
d2

3d1
.

We get the three inequalities

q < z̃1 + 1, q < z̃2 + 1, q < z̃3 + 1

but only the inequalities where the roots are real numbers and the right-hand side is greater

than 1 are relevant. Therefore, we consider only the inequalities

q < z̃i + 1, where z̃i ∈ R and z̃i + 1 > 1 for i = 1, 2, 3

and define

ϑ := min { z̃i + 1 : z̃i ∈ R and z̃i + 1 > 1 for i = 1, 2, 3} . (7.18)

Since q > 1 implies q − 1 > 0 and for q → 1, we have z̃ → 0 and hence 1 + 2b(q − 1) +

(2ab − b2)(q − 1)2 + (a2b − b3)(q − 1)3 → 1. That means the cubic equation is positive for

q close to 1, and since it is continuous, the smallest real root greater than 0 is the critical

value q∗ up to which the condition holds.

Finally, we can formulate the theorem about the asymptotic stability of the zero

solution for N = 3.
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Theorem 7.2.6. Let |a| + b < 0 and α, β be given by (7.15). Then, the zeros of the

characteristic polynomial (7.16) for N = 3 lie inside the unit disk if and only if

q < min
{
1 − 1

b
, η, ϑ

}
with η from (7.17) and ϑ from (7.18).

Proof. The proof is given as derivation right before the theorembyusingTheorem7.2.1.

Example 7.2.7. Let N = 3, a = 0.95, and b = −1. We consider the pantograph equation

x∆(t) = 0.95
t

x(t) − 1
t

x
(

t
q3

)
with the initial values

x−3 = 1, x−2 = 1, x−1 = 1, x0 = 1.

Theorem 7.2.4 says that the zero solution for this equation is asymptotically stable if and

only if

q < min
{
1 − 1

b
, η, ϑ

}
= min {2, 12.1525, 1.3371} = 1.3371.

First, consider q = 1.33. With Theorem 7.2.6, the zero solution is asymptotically stable,

which is supported in Figure 7.7 using Matlab (see appendix, Listing 9.1).

Second, consider q = 1.34, which is a little bit greater than 1.3371. The zero

solution is not asymptotically stable anymore with Theorem 7.2.6, which is also illustrated

in Figure 7.8 using Matlab (see appendix, Listing 9.1). The solution is oscillating with an

increasing amplitude as n is increasing.
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Figure 7.7. The solution of the pantograph equation (7.13) with N = 3, a = 0.95, b = −1,
and q = 1.33.

Figure 7.8. The solution of the pantograph equation (7.13) with N = 3, a = 0.95, b = −1,
and q = 1.34.

7.2.2. The Pantograph Equation of the Form x∆(t) = a
t x(t) +

b
t x

(

⌊

t
qλ

⌋

q

)

.

In the previous section, the delay term, in particular, the delay parameter 0 < λ < 1

for the continuous case is presented as 1/qN in the quantum case, which makes sure that

t/qN ∈ qN0 ∪ Ω for t ∈ qN0 . In this case, the delay term t/qN is somehow “smooth”

compared to the discrete case, where the delay term is presented by the floor function. Now,

we want to generalize the delay term and thus consider the delay parameter 1/qλ with λ > 0

for λ ∈ R. But for this delay parameter, it does not have to be true that t/qλ ∈ qN0 ∪ Ω for
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t ∈ qN0 . Hence, we define the floor function in quantum calculus as

bscq := sup
{
t ∈ qN0 : t ≤ s

}
for s ∈ R. (7.19)

We consider the q-difference equation

x∆(t) = a
t

x(t) + b
t

x

(⌊
t

qλ

⌋
q

)
, t ∈ qN0, λ > 0. (7.20)

With the definition of the q-derivative (see Definition 6.0.2), a corresponding difference

equation is derived as

x∆(t) = a
t

x(t) + b
t

x

(⌊
t

qλ

⌋
q

)
=⇒ x(qt) − x(t)

(q − 1)t =
a
t

x(t) + b
t

x

(⌊
t

qλ

⌋
q

)
=⇒ x(qt) = (1 + a(q − 1)) x(t) + b(q − 1)x

(⌊
t

qλ

⌋
q

)
.

If we put tn := qn and tn+1 := tnq = qnq = qn+1, then

x(tn+1) = (1 + a(q − 1)) x(tn) + b(q − 1)x
(⌊

tn
qλ

⌋
q

)
.

x
(⌊

tn
qλ

⌋
q

)
= x

( ⌊
qn−λ⌋

q

)
= x

(
qbn−λc

)
, where bn − λc is the normal integer floor function(

bxc = max {m ∈ Z : m ≤ x} for x ∈ R
)
. Thus,

x(tn+1) = (1 + a(q − 1)) x(tn) + b(q − 1)x
(
qbn−λc

)
.

Define xn := x(tn), xn+1 := x(tn+1) and with qbn−λc = tbn−λc , we get x
(
tbn−λc

)
= xbn−λc =

xn−dλe because n ∈ N and λ > 0 for λ ∈ R, where dxe is the integer ceiling function(
dxe = min {m ∈ Z : m ≥ x} for x ∈ R

)
. If we put N := dλe, then xn−dλe = xn−N and we
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end up for the pantograph equation (7.20) in the same case as for (7.13)

xn+1 = αxn + βxn−N, n ∈ N0, (7.21)

where

N = dλe, α = 1 + a(q − 1), β = b(q − 1). (7.22)

The initial values x−N, x−N+1, . . . , x−1, x0 complete the initial value problem.

Example 7.2.8. We consider

x∆(t) = −0.1
t

x(t) − 1
t

x

(⌊
t

q2.1

⌋
q

)
with the initial values

x−3 = 1, x−2 = 1, x−1 = 1, x0 = 1

because

λ = 2.1 =⇒ N = dλe = 3.

Apply the asymptotic stability conditions from the previous case for (7.13) with N = 3. With

Theorem 7.2.6, the zero solution is asymptotically stable if and only if

q < min
{
1 − 1

b
, η, ϑ

}
= min {2, 2.1924, 1.4634} = 1.4634.

For q = 1.05, the solution is given in Figure 7.9 using Matlab (see appendix, Listing 9.1).

For q = 1.5, the zero solution is not asymptotically stable anymore with Theorem

7.2.6, which is illustrated in Figure 7.10 using Matlab (see appendix, Listing 9.1).
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Figure 7.9. The solution of the pantograph equation (7.20) with λ = 2.1, a = −0.1, b = −1,
and q = 1.05.

Figure 7.10. The solution of the pantograph equation (7.20) with λ = 2.1, a = −0.1,
b = −1, and q = 1.5.

7.2.3. The Pantograph Equation of the Form x∆(t) = a
t x(t) +

b
t x

(

bλ tcq
)

. In

Section 7.2.2, we discussed the delay term
⌊

t
qλ

⌋
q
. To make it even more general and similar

to the continuous case, the delay term bλtcq with 0 < λ < 1 for λ ∈ R is considered,

where bxcq is again the floor function in quantum calculus from (7.19). We consider the

q-difference equation with the most general delay term of the form

x∆(t) = a
t

x(t) + b
t

x
(
bλtcq

)
, t ∈ qN0, 0 < λ < 1. (7.23)
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Using the definition of the q-derivative (see Definition 6.0.2), a corresponding difference

equation is derived as

x∆(t) = a
t

x(t) + b
t

x
(
bλtcq

)
=⇒ x(qt) − x(t)

(q − 1)t =
a
t

x(t) + b
t

x
(
bλtcq

)
=⇒ x(qt) = (1 + a(q − 1)) x(t) + b(q − 1)x

(
bλtcq

)
.

If we put tn := qn and tn+1 := tnq = qnq = qn+1, then

x(tn+1) = (1 + a(q − 1)) x(tn) + b(q − 1)x
(
bλtncq

)
. (7.24)

Consider x
(
bλtncq

)
or in particular bλtncq = bλqncq. First, we want to know for which

condition λqn is still greater than or equal to the next smaller number of qn in qN0 , which

is qn−1:

λqn ≥ qn−1

=⇒ λq ≥ 1

=⇒ q ≥ λ−1

=⇒ log (q) ≥ log
(
λ−1

)
=⇒ 1 ≥ − log (λ)

log (q) = − logq(λ)

The right-hand side is positive because 0 < λ < 1 and thus − log (λ) > 0. Note that

λqn < qn is always true. Thus, in this case, x
(
bλtncq

)
= xn−1. In the following, we see

why it is better to use the logarithmic function for the inequality above. Now, we look for

which condition λqn is still greater than or equal to the second next smaller number of qn
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in qN0 , which is qn−2:

λqn ≥ qn−2

=⇒ λq2 ≥ 1

=⇒ q2 ≥ λ−1

=⇒ log
(
q2

)
≥ log

(
λ−1

)
=⇒ 2 ≥ − log (λ)

log (q) = − logq(λ)

and

λqn < qn−1

=⇒ λq < 1

=⇒ q < λ−1

=⇒ log (q) < log
(
λ−1

)
=⇒ 1 <

− log (λ)
log (q) = − logq(λ).

Hence, x
(
bλtncq

)
= xn−2 if 2 ≥ − logq(λ) > 1. Now, consider the general case qn−N ≤

λqn < qn−N+1 for N < n, N ∈ N:

λqn ≥ qn−N

=⇒ λqN ≥ 1

=⇒ qN ≥ λ−1

=⇒ log
(
qN

)
≥ log

(
λ−1

)
=⇒ N ≥ − log (λ)

log (q) = − logq(λ)
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and

λqn < qn−N+1

=⇒ λqN−1 < 1

=⇒ qN−1 < λ−1

=⇒ log
(
qN−1

)
< log

(
λ−1

)
=⇒ N − 1 <

− log (λ)
log (q) = − logq(λ).

Therefore, x
(
bλtncq

)
= xn−N if N ≥ − logq(λ) > N − 1 or N =

⌈
− logq(λ)

⌉
.

All in all, (7.24) becomes

xn+1 = αxn + βxn−N, n ∈ N0, (7.25)

where

N =
⌈
− logq(λ)

⌉
, α = 1 + a(q − 1), β = b(q − 1). (7.26)

The initial values x−N, x−N+1, . . . , x−1, x0 complete the initial value problem. Moreover, we

end up again for the pantograph equation (7.23) in the same case as for (7.13). Thus, we can

apply the results from Section 7.2.1 to determine if the zero solution is asymptotically stable

or not. But in this case, N depends also on q, which means if we change q, it is possible that

the order of the difference equation (7.25) changes and therefore we have to consider the

conditions for the new order of the difference equation to determine the asymptotic stability

of the zero solution.

Example 7.2.9. We consider the pantograph equation

x∆(t) = 0.9
t

x(t) − 1
t

x
(
b0.9 tcq

)
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with the initial values

x−2 = 1, x−1 = 1, x0 = 1

because

λ = 0.9, q = 1.1 =⇒ N =
⌈
− logq(λ)

⌉
= d1.1055e = 2.

Apply the asymptotic stability conditions from the previous case for (7.13) with N = 2.

Theorem 7.2.4 says that the zero solution for this pantograph equation is asymptotically

stable if and only if

q < min {21, 11.9161, 1.5086} = 1.5086.

Since q = 1.1, the zero solution is asymptotically stable, which is supported in Figure 7.11

using Matlab (see appendix, Listing 9.1).

Figure 7.11. The solution of the pantograph equation (7.23) with a = 0.9, b = −1, λ = 0.9,
q = 1.1, and thus N = 2.

Now, consider q = 2.1. Since we change q, it is also possible that the order of the

difference equation changes:

λ = 0.9, q = 2.1 =⇒ N =
⌈
− logq(λ)

⌉
= d0.1420e = 1.



64

With the results from Section 7.2.1, particularly from Theorem 7.2.2, the zero solution is

asymptotically stable if and only if

q < 1 − 1
b
= 2.

Therefore, the zero solution is not asymptotically stable, which is illustrated in Figure 7.12

using Matlab (see appendix, Listing 9.1).

Figure 7.12. The solution of the pantograph equation (7.23) with a = 0.9, b = −1, λ = 0.9,
q = 2.1, and thus N = 1.

7.3. AN EXPLICIT SOLUTION FOR A SPECIAL PANTOGRAPH EQUATION IN
QUANTUM CALCULUS

In Section 7.1 and 7.2, we considered the asymptotic behavior of solutions and de-

rived asymptotic stability conditions of the zero solution for different pantograph equations.

With these results, we know something about the solution without computing the solution.

Since it is often not easy or even not possible to find an explicit analytic solution, we can

use the results from Section 7.1 and 7.2 to discuss the behavior of solutions. But sometimes

it is possible to find a nice explicit solution, which is even better.
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In this section, we consider a special kind of pantograph equation in quantum

calculus, where the coefficient of the delay term is modified. For this pantograph equation,

we obtain an explicit solution.

For the following consideration, we use the q-exponential function from Definition

6.0.4. For t = qn and λ ∈ R, we get

eλ(t) = eλ(qn) =
n−1∏
k=0

(
1 + λ(q − 1)qk

)
. (7.27)

Assuming x(t) = eλ(t) and using (7.27), we obtain

x∆(t) = x(qt) − x(t)
(q − 1)t =

x(qn+1) − x(qn)
(q − 1)qn

=

∏n
k=0

(
1 + λ(q − 1)qk ) −∏n−1

k=0
(
1 + λ(q − 1)qk )

(q − 1)qn

=
(1 + λ(q − 1)qn − 1)∏n−1

k=0
(
1 + λ(q − 1)qk )

(q − 1)qn

=
λ(q − 1)qn

(q − 1)qn

n−1∏
k=0

(
1 + λ(q − 1)qk

)
= λ

n−1∏
k=0

(
1 + λ(q − 1)qk

)
= λx(t). (7.28)

We claim that for a special kind of pantograph equation in quantum calculus we know an

explicit solution representation in terms of the exponential function.

Theorem 7.3.1. Let N ∈ N. For the pantograph equation

x∆(t) = ax(t) + b ©­«
N∏

j=1

(
1 + (a + b)(q − 1) t

q j

)ª®¬ x
(

t
qN

)
, t = qn, (7.29)

the solution is given by

x(t) = ea+b(t).
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Proof. Plug x(t) = ea+b(t) with t = qn into (7.29) and use (7.27) together with the property

(7.28). Then,

x∆(t) = ax(t) + b ©­«
N∏

j=1

(
1 + (a + b)(q − 1) t

q j

)ª®¬ x
(

t
qN

)
=⇒ x∆(t) = ax(t) + b

(
n−1∏

j=n−N

(
1 + (a + b)(q − 1)q j

)) (n−(N+1)∏
k=0

(
1 + (a + b)(q − 1)qk

))
=⇒ (a + b)x(t) = ax(t) + b

n−1∏
k=0

(
1 + (a + b)(q − 1)qk

)
=⇒ (a + b)x(t) = ax(t) + bx(t),

which completes the proof.

For the case N = 1, we obtain the following result from Theorem 7.3.1.

Corollary 7.3.2. For the pantograph equation

x∆(t) = ax(t) + b
(
1 + (a + b)(q − 1) t

q

)
x
(

t
q

)
, t = qn,

the solution is given by

x(t) = ea+b(t).

All in all, for the special pantograph equation (7.29) it is possible to find a nice

explicit solution, which is the q-exponential function. But also for pantograph equations,

where it is not easy or even not possible to find an explicit analytic solution, we obtained

some results about the asymptotic behavior and the asymptotic stability of solutions in this

section.
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8. CONCLUSION

The pantograph equation is a well-studied equation in the continuous and discrete

cases. Some important results about the pantograph equation in these cases regarding

asymptotic behavior and asymptotic stability are presented in Section 4 and 5. After

considering what is already done in the continuous and discrete cases, we investigated the

pantograph equation in quantum calculus in Section 7.

A topic of interest was how to present the coefficients of the pantograph equation

in quantum calculus. Using constant coefficients for the q-difference equation, we derived

a difference equation with fixed order but variable coefficients. In this case, we found an

explicit solution representation in matrix form and, moreover, we proved the exponential

behavior of solutions for this pantograph equation in Section 7.1.

Another possibility is to use variable coefficients for the pantograph equation in

quantum calculus. For this case, we also discussed an additional interesting question

regarding the pantograph equation in quantum calculus: How does the delay term look

like in quantum calculus? For this purpose, we considered different pantograph equations

with different delay terms and derived asymptotic stability conditions of the zero solution

for special cases in Section 7.2. The general idea through this discovery was to derive

a difference equation from the the q-difference equation that gave us an equivalent initial

value problem. Using the Schur–Cohn criterion for the difference equation, conditions for

the asymptotic stability of the zero solution of the q-difference equation were derived.

It is always our purpose to find an explicit solution for an equation. To this end,

we considered in Section 7.3 a pantograph equation in quantum calculus with a modified

variable coefficient of the delay term. Moreover, we found an explicit solution for this

pantograph equation, which is the q-exponential function.
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Further research should be done to generalize the results about the pantograph

equation to the time scales theory. Combining the continuous, the discrete, and the quantum

cases is an challenging task for the future. In addition to that, generalizing the results in

Section 7.2 about the asymptotic stability of the zero solution of pantograph equations in

quantum calculus is also an research topic for the future. In particular, to generalize the

results for an arbitrary N and for more general variable coefficients is an interesting research

topic for the future.
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APPENDIX

MATLAB CODE TO COMPUTE THE SOLUTION OF THE PANTOGRAPH

EQUATION

The following code is written in the programming language Matlab. The purpose

of this code is to compute the solution of pantograph equations in quantum calculus, which

is used to plot the solutions and to illustrate the analytical results.

Listing 9.1. Solution of the pantograph equation in quantum calculus.

1 %pan t og r aph e q u a t i o n i n quantum c a l c u l u s

2 c l e a r a l l ; c l o s e a l l ; c l c ;

3

4 %% Example 1

5 a = 0 . 1 ;

6 b = −0 .5 ;

7 q = 2 . 9 ; %2 . 9 %3.1

8 N = 1 ;

9

10 i t e r = 220 ;

11

12 %% Example 2

13 % a = 0 . 4 5 ;

14 % b = −0 .5 ;

15 % q = 2 . 0 2 ; $2 . 01 %2.02

16 % N = 2 ;
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17 %

18 % i t e r = 1600 ;

19

20 %% Example 3

21 % a = 0 . 9 5 ;

22 % b = −1;

23 % q = 1 . 3 3 ; %1.33 %1.34

24 % N = 3 ;

25 %

26 % i t e r = 1200 ;

27 %

28 %% Example 4

29 % a = −0 .1 ;

30 % b = −1;

31 % q = 1 . 0 5 ; %1.05 %1.5

32 % N = 3 ; %lambda =2 .1

33 %

34 % i t e r = 230 ;

35

36 %% Example 5

37 % a = 0 . 9 ;

38 % b = −1;

39

40 % q = 1 . 1 ; %lambda =0 .9

41 % %N depends on q and lambda , h e r e we g e t N=2

42 % N = 2 ;

43 % i t e r = 500 ;
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44

45 % q = 2 . 1 ; %lambda =0 .9

46 % %N depends on q and lambda , h e r e we change q and t h e r e f o r e

t h e o r d e r o f t h e d i f f e r e n c e e q u a t i o n a l s o changes N=1

47 % N = 1 ;

48 % i t e r = 600 ;

49

50 %% Cond i t i o n s on q f o r a s ymp t o t i c s t a b i l i t y o f t h e z e r o

s o l u t i o n

51

52

53 %co n d i t i o n s f o r N=1

54 c r i t _ v a l u e _q_N1 = ( −1 / ( b ) ) +1 ;

55

56

57 %co n d i t i o n s f o r N=2

58 c r i t _ v a l u e _ q _N2_ c o nd _ i i = ( −2 / ( a+b ) ) +1 ;

59

60 c r i t _ v a l u e _ q _N2_ c o n d _ i i i _ 1 = ( b+ s q r t ( b ∗(5∗ b+4∗a ) ) ) / ( −2∗ b ∗( a+

b ) ) +1 ;

61 c r i t _ v a l u e _ q _N2_ c o n d _ i i i _ 2 = ( b− s q r t ( b ∗(5∗ b+4∗a ) ) ) / ( −2∗ b ∗( a+

b ) ) +1 ;

62 c r i t _ v a l u e _ q _N2_ c o n d _ i i i _ 3 = (−b+ s q r t ( b ∗(5∗b−4∗a ) ) ) / ( 2 ∗ b ∗( a−

b ) ) +1 ;

63 c r i t _ v a l u e _ q _N2_ c o n d _ i i i _ 4 = (−b− s q r t ( b ∗(5∗b−4∗a ) ) ) / ( 2 ∗ b ∗( a−

b ) ) +1 ;

64
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65

66 %co n d i t i o n s f o r N=3

67 c r i t _ v a l u e _q_N3 = ( −1 / ( b ) ) +1 ;

68

69 f i r s t _ c o e f _N3_1 = b^3−a ^2∗b ;

70 second_coef_N3_1 = −2∗a∗b−b ^2 ;

71 t h i r d_coe f _N3_1 = −2∗b ;

72 f ou r t h_coe f_N3_1 = 1 ;

73 r_N3_1 = r o o t s ( [ f i r s t _ c o e f _N3_1 second_coef_N3_1

t h i r d_coe f _N3_1 fou r t h_coe f_N3_1 ] ) ;

74

75 c r i t _va l u e_q_N3_1_1 = r_N3_1 ( 1 ) +1;

76 c r i t _va l u e_q_N3_1_2 = r_N3_1 ( 2 ) +1;

77 c r i t _va l u e_q_N3_1_3 = r_N3_1 ( 3 ) +1;

78

79 f i r s t _ c o e f _N3_2 = −b^3+a ^2∗b ;

80 second_coef_N3_2 = 2∗a∗b−b ^2 ;

81 t h i r d_coe f _N3_2 = 2∗b ;

82 f ou r t h_coe f_N3_2 = 1 ;

83 r_N3_2 = r o o t s ( [ f i r s t _ c o e f _N3_2 second_coef_N3_2

t h i r d_coe f _N3_2 fou r t h_coe f_N3_2 ] ) ;

84

85 c r i t _va l u e_q_N3_2_1 = r_N3_2 ( 1 ) +1;

86 c r i t _va l u e_q_N3_2_2 = r_N3_2 ( 2 ) +1;

87 c r i t _va l u e_q_N3_2_3 = r_N3_2 ( 3 ) +1;

88

89 %% s o l t u i o n of t h e p an t og r aph e q u a t i o n
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90

91 x = z e r o s ( i t e r , 1 ) ;

92 t = z e r o s ( i t e r , 1 ) ;

93

94 %i n i t a l v a l u e s

95 f o r k =1:N+1

96 t ( k ) = 1 / q ^ (N+1−k ) ;

97 x ( k ) = 1 ;

98 end

99

100 %r e c u r s i v e s o l u t i o n c a l c u l a t i o n

101 f o r k=N+1: i t e r −1

102 x ( k+1) = (1+ a ∗( q−1) ) ∗x ( k ) + b ∗( q−1)∗x ( k−N) ;

103 t ( k +1) = q∗ t ( k ) ;

104 end

105

106 f i g u r e ( 1 )

107 p l o t (−N: i t e r −N−1 ,x , ’ ∗ ’ ) ;

108 t i t l e ( ’ The pan t og r aph e q u a t i o n $$x ^{ \ De l t a } ( t ) = \ f r a c { a }{ t }

x ( t ) + \ f r a c {b}{ t }x \ l e f t ( \ f r a c { t }{q^N} \ r i g h t ) $$ ’ , ’

i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fon tS i z e ’ , 24 )

109 x l a b e l ( ’ n ’ , ’ Fon tS i z e ’ , 2 8 )

110 y l a b e l ( ’ x_n ’ , ’ Fon tS i z e ’ , 28 )

111

112 f i g u r e ( 2 )

113 p l o t ( t , x , ’ ∗ ’ ) ;



74

114 t i t l e ( ’ The pan t og r aph e q u a t i o n $$x ^{ \ De l t a } ( t ) = \ f r a c { a }{ t }

x ( t ) + \ f r a c {b}{ t }x \ l e f t ( \ f r a c { t }{q^N} \ r i g h t ) $$ ’ , ’

i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fon tS i z e ’ , 24 )

115 x l a b e l ( ’ q^n ’ , ’ Fon tS i z e ’ , 28 )

116 y l a b e l ( ’ x_n ’ , ’ Fon tS i z e ’ , 28 )
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