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ABSTRACT

Insurance claims caused by natural disasters exhibit spatial dependence with the

strength of dependence being based on factors such as physical distance and population

density, to name a few. Accounting for spatial dependence is therefore of crucial importance

whenmodeling these types of claims. In thiswork, we present an approach to assess spatially

dependent insurance risks using a combination of linear regression and factor copulamodels.

Specifically, in loss modeling, observed dependence patterns are highly nonlinear, thus

copula-based models seem appropriate since they can handle both linear and nonlinear

dependence. The factor copula approach for estimating the spatial dependence reduces a

complex dependence structure into a relatively easier task of estimating a spatial dependence

parameter. Hence, we use a weighted sum of radial basis functions to model a spatial

dependence parameter that determines the influence of each location. The methodology is

illustrated using a thunderstormwind loss dataset of Texas. Extensions toMatérn covariance

functions and spatiotemporal models are briefly discussed.
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1. INTRODUCTION

Risk can be defined as the possibility of loss, damage, injury, etc. Everyone of us

is exposed to some types of risks every day. Some of those risks are property loss related,

some are health related and another type of risk may be losing his or her job due to an

accident. To reduce the impact of those risks which ultimately will lead to financial losses,

we buy insurance policies such as property insurance, life insurance and health insurance.

The insurance transaction involves a policyholder (the person holding the insurance policy)

and an insurer (the insurance company). One usually pays some amount of money (called

premium) to the insurance company at a regularly scheduled interval in exchange for the

insurer’s promise to compensate the insured in the event of a loss. The loss may or may not

be of financial nature, but it must be reducible to financial terms, e.g. a broken leg is not of

financial nature but the cost for the operation is. An insurance risk is then represented by

the uncertainty of how much money needs to be paid out to the insured. In mathematical

terms, losses can be described by random variables, representing the amount of money that

needs to be paid out to the policyholder.

Consider a portfolio with n policyholders. Assume that they are located in different

regions such as zip codes, counties, cities and that they all have a property insurance. Of

course those policyholders are independent. However, their location may have some simi-

larities. The similarities between their locations can affect the event occurrences, thereby

claim filing. Modeling the similarity between these locations enters the jurisdiction of

spatial statistics because the similarity which occurs through space can be modeled with

spatial correlation. This work pertains to the modeling of losses affected through space.

Examples of space related losses are socio-economic factors or weather conditions. In the

former case, assume the economy in a certain region is extremely bad, then there can be a
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high correlation among unemployed people in nearby regions. This means, the portfolio of

people holding unemployment insurances exhibits a high dependence for regions within a

certain distance. In the latter case, a natural disaster in region A leading to policyholders

filing claims can affect region B nearby. Consequently the same disaster will hit region B

and claims at a similar magnitude will be filed as a result. So, accounting for spatial corre-

lation in the modeling and analysis of claims is important. Ignoring the spatial dependence

of such losses can result in wrong models and could lead to wrong estimates for reserves.

The consequence of such an outcome would be insurance companies being unable to fulfill

their promises of compensating the insured and can lead to ruin of the insurance company.

It is therefore very important to factor the spatial aspect of the loss data into the analysis.

Investigating spatial data has always been a daunting task. Spatial dependence is

expressed in terms of dependence between locations, so, it is a function of the distance.

Techniques to investigate spatial data with dependence patterns include covariance struc-

tures based on distance between locations (Hua et al. [2017]). Covariance function and

variogram (definition and details in Section 2) are two very popular approaches to do so.

These are distance-based functions describing the degree of spatial dependence of an as-

sumed underlying random field. Random fields are stochastic processes defined over a

parameter space of dimensionality greater or equal to 2 taking values in an Euclidean space.

Consider a family of random variables {X(t)}t∈T , where T ⊆ R is some one-dimensional

index set (usually time as a certain interval of the real line or a set of integers in the discrete

case), then X(t) is a random variable for each t ∈ T and we call {X(t)}t∈T a stochastic

process. In contrast, when T ⊆ Rp, p ≥ 2, {X(t)}t∈T is called random field. An example is

given when T = {(Latitude, Longitude)} is a set of locations, meaning that X(t), t ∈ T is

a random variable for each location. As a result, we obtain a "field" instead of a process.
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Traditionally, these covariance-based methods are widely used in Geostatistics to

describe spatial variability, e.g. to monitor groundwater quality, where nearby locations

exhibit similar properties or in this case composition of water, i.e. high spatial dependence

and for more distant locations we observe a much weaker (or even no) spatial dependence

(Bárdossy [2006]). According to the "ArcGIS Pro" website (http://pro.arcgis.com/en/pro-

app/help/analysis/geostatistical-analyst/what-is-geostatistics-.htm) "Geostatistics is a class

of statistics used to analyze and predict the values associated with spatial or spatiotemporal

phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data

within the analyses".

Geostatistics can provide descriptive tools such as semivariograms to characterize

the spatial pattern of continuous and categorical soil attributes (Goovaerts [1999]). In his

paper, Goovaerts [1999] illustrated concepts such as sample semivariograms and the choice

of an interpolation algorithm using multivariate soil data related to heavy metal contami-

nation of an area of the Swiss Jura. "The growing interest of soil scientists in geostatistics

arises because they increasingly realise that quantitative spatial prediction must incorporate

the spatial correlation among observations" (Goovaerts [1999]).

Goovaerts et al. [2005] examined spatial variability of arsenic concentrations in

groundwater in Michigan using a semivariogram approach. They showed a first step to-

wards the assessment of the risk associated with exposure to low levels of arsenic in drinking

water, specifically for the occurrence of bladder cancer. In addition, they used cross vali-

dation to assess the prediction performance. The disadvantage of this approach, however,

is the fact that covariance-based structures can only account for linear dependence, not

for nonlinear dependence. Moreover, the estimation of the variogram is a difficult task

and empirical (based on observed data) variograms are sensitive to outliers (Bárdossy and
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Kundzewicz [1990]). In a similar vein Yu et al. [2003] used variograms to assess concen-

trations of arsenic in water in Bangladesh to estimate arsenic-induced health effects.

Another application of (semi-) variograms is presented in Ly et al. [2011]. They

developed different algorithms of spatial interpolation for daily rainfall data that was col-

lected from 70 raingages within and surrounding the hilly landscape of the Ourthe and

Ambleve catchments in Belgium over 30 years (1976–2005). Several semivariograms were

fitted to daily rainfall data which were used to compare the interpolation performance of

these algorithms based on validation raingages and cross validation. For each day, several

variogram models were generated for all different raingages. One result of their study was

that the semi-variance increased with larger separation distance, which implies that nearby

rainfall data exhibits more similarity than those that are farther apart. This confirms the

assumption of spatial dependence. While some applications consider hourly time steps to

spatially interpolate with multivariate geostatistical method (Haberlandt [2007], Verworn

and Haberlandt [2011]), others considered only monthly or annual time steps for spatial

interpolation of precipitation (Goovaerts [2000]).

Bárdossy [2006] also dealt with a groundwater quality topic. He based his work

on data collected from a large-scale groundwater quality measurement network in Baden-

Württemberg (Germany). In contrast to covariance-based functions such as (semi-) vari-

ograms, he employed copulas to investigate the spatial dependence between four ground-

water quality parameters, chloride, sulfate, pH, and nitrate. In his book, Nelsen [2006]

describes copulas as functions that join multivariate distribution functions to their one-

dimensional marginal distribution functions. "Copula" is a latin word that roughly translates

to "link", "tie" or "bond". Alternatively, copulas can be seen as multivariate distribution

functions whose one-dimensional margins are uniform on the interval (0, 1).
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Furthermore, Bárdossy [2006] calculated empirical copulas for the four mentioned

groundwater parameter. For simulation and interpolation purposes, empirical copulas need

to be fitted by theoretical ones (Bárdossy [2006]), which is why he compared the above

computed empirical copulas to theoretical copulas and discovered that a non-Gaussian

copula suites the data better. Bivariate empirical copulas are attractive alternatives to

covariance-based functions, as corresponding rank correlations depict the strength of de-

pendence independently of the marginals. Abe Sklar (1959) was the first to use the word

copula in a mathematical or statistical sense (Nelsen [2006]). Copulas are specifically of

interest because they can account for nonlinear dependence and dependence of heavy-tail

random variables.

A very common familiy of copulas is the Gaussian copula. It is constructed from a

multivariate normal distribution with a given correlation matrix. Since there is no closed

formula for the cumulative distribution function (cdf) of the Normal distribution, the Gaus-

sian copula has no analytical formula either. Another important class of copulas is the so

called family of Archimedean copulas. Because of their simple form, the ease with which

they can be constructed, and their many nice proerties, Archimedean copulas frequently ap-

pear in discussions of multivariate distributions (Nelsen [2006]). They also allow modeling

dependence in arbitrary high dimensions, with only one parameter. Copulas have not been

used in spatial contexts very often. They primarily attract interest in the financial sector

(Embrechts et al. [2001]), where dependence between extremes can often be observed.

They describe the dependence structure between random variables without information on

the marginal distributions and are invariant to monotonic transformations of the marginals,

which include logarithmic and/or Box-Cox transformations. This is a major advantage of

copulas compared to the approaches using variograms, as those strongly depend on the

marginal distribution (Bárdossy [2006]).
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Other applications of copulas for spatial data include stochastic rainfall simulation

that was presented by Michele and Salvadori [2003] and extreme value statistics discussed

in Favre et al. [2004]. Based on the work of Joe [1996], Bedford and Cooke [2001], Bedford

and Cooke [2002], and Kurowicka and Cooke [2006], Aas et al. [2009] used a pair-copula

decomposition of a general multivariate distribution and propose a method for perform-

ing inference. Pair-copula decomposition is a procedure of decomposing a multivariate

probability density function (pdf) of dependent random variables into a product of bivariate

copulas. This decomposition is based on graphical models called vines and was introduced

by Bedford and Cooke [2001] and Bedford and Cooke [2002]. The pair-copula approach

in Aas et al. [2009] is applied to exhibit tail dependence in a financial dataset. Moreover,

Aas et al. [2009] proposed a maximum pseudo-likelihood approach and corresponding al-

gorithms for parameter estimation of the pair-copula decomposition.

Copulas offer an interesting opportunity to describe dependence structures for multi-

variate distributions (Bárdossy [2006]). Nevertheless, these copula-based approaches have

their limits. "While the bivariate case is quite well understood, the estimation of higher di-

mensional copulas, however, is still an elaborate procedure" (Gräler and Pebesmaa [2011]).

Some copulas can easily be extended to higher dimensions but many cannot. That is one

reason, why the pair-copula decomposition is a powerful tool, because it is solely based

on bivariate copulas which do not require higher dimensions. Built up on the pair-copula

decomposition approach suggested by Aas et al. [2009], Gräler and Pebesmaa [2011] con-

structed bivariate copulas from a convex combination of copulas accounting for different

distances by including the upper Fréchet-Hoeffding bound (which is a copula that describes

perfect positive dependence) and the product-copula (which describes independence). De-

pending on the distance, these two famous copulas contribute to the strength of dependence

that is assumed for the given distance. For smaller distancess the upper Fréchet-Hoeffding

boundwould play amajor role due to assumed high correlation. Likewise, for large distances
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the product-copula would contribute to the assumed independence. Another use of spatial

data exploration using copulas is illustrated by Erhardt et al. [2015] who used vine cop-

ulas to model the dependence of temperature data between observation stations in Germany.

Hua et al. [2017] recently proposed a copula-based approach for assessing spatially

dependent high dimensional risks using factor-copulas. Factor copula models for multivari-

ate data are a recent development. Krupskii and Joe [2013] provided a detailed introduction

to the topic and discussed several properties of factor copulas. They also talk about compu-

tational details and numerical issues for an implementation in the software R. Factor copula

models are based on bivariate copulas that link observed data to latent variables. Spatially

dependent data can exhibit very complex dependence structures. In contrast to commonly

used geostatistical methods tomodel spatial dependence such as the semivariogram, copulas

are especially able to capture nonlinear dependence. This is a major advantage of copulas.

Moreover, copulas are very suitable for modeling non-normally distributed data such as

insurance claims (McNeil et al. [2005]).

Insurance claims caused by natural disasters obviously exhibit high spatial depen-

dence because nearby locations are affected in a similar vein and locations farther away

may exhibit little to no effect of the same natural disaster. The strength of dependence may

not only be determined by physical distance but also by population density since densely

populated areas are more likely to exhibit more losses than sparsely populated areas. Hua

et al. [2017] claim, their approach facilitates the challenge of modeling a complex spatial de-

pendence structure into estimating a continuous function with spatial coordinates being the

arguments. A good approach of estimating such a continuous function is using a weighted

sum of radial basis functions that assigns a values to each location describing the influence
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or effect of each single location compared to the others. We may call such a function spatial

dependence parameter.

In their paper, they present two models, a spatial heterogeneity and a spatial de-

pendence model. The former model is constructed via linear regression using date and

population density as covariates. In addition, it also contains a spatial dependence param-

eter that is constructed via the discussed weighted sum of radial basis functions to explain

the effect of each location. Adding a spatial dependence parameter to the regression model

is necessary since linear models assume independent observations (which is obviously not

the case here). The latter model is a spatial heterogeneity model that is based on the factor-

copula approach. The proposedmodels are used to analyze a thunderstormwind loss dataset

consisting of insurance claims caused by thunderstorm winds in Texas (United States) in

the years from 1996-2011. In addition, they briefly present extensions to spatiotemporal

models and models for discrete data. In their main work, the value of the spatial depen-

dence parameter at each location is only determined by the location. However, the spatial

dependence parameter can be extended to have a spatial and a temporal component. This

implies that every location would be assigned a value for the dependence parameter every

time a loss occurred. A problem that may arise from this approach is the computational

efficiency since it is already computational expensive without the temporal component.

Another possible extension are so called "hurdle models" which are based on counting

processes. The original approach ignores loss amounts of zero, however, one could use

a Bernoulli random variable and a counting process to determine if and how many losses

occur at given locations. More details about factor copula models are provided in Section

3.
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The thesis is organized as follows. Section 2 introduces the mathematical concepts

of copulas, spatially dependent data along with the theory of covariance-based estimators

such as variograms, and other useful theory to facilitate the follow up of the thesis. The

subsequent Section presents information on the thunderstorm dataset and a detailed analysis

of the paper on which the work is based on. Concluding, a new approach based on Matérn

covariance function will be briefly presented as a possible extension to investigate spatial

data. Further extensions are given in Section 4, followed by a summary in Section 5.
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2. METHODOLOGY

This section pertains to an introduction of some mathematical concepts as well as

basic actuarial science concepts needed to facilitate the reading of this thesis. In the first

section, we discuss terms such as risk, insurance policy, and insurance claim.

2.1. BASIC ACTUARIAL SCIENCE CONCEPTS

A risk is anything that has potential to lead to an unexpected adverse event or loss.

So, a loss or severity is a random variable.

Definition 2.1.1 (Loss)

Let (Ω, F , P) be a probability space. A loss is a random variable X : Ω→ R which assigns

a scenario ω ∈ Ω to a real value X(ω) ∈ R.

Entities such as people or corporations buy insurance policies to safeguard against all

or part of the financial losses that result from the occurrences of unexpected adverse events.

Such unexpected events include fire, traffic accident, major illness, or natural disasters, e.g.

hurricanes or tornados.

Definition 2.1.2 (Insurance policy)

An insurance policy is a contract between the insurer and the insured, known as the

policyholder, which determines the claims which the insurer is legally required to pay in

exchange for periodic payment, known as premium or insurance tariff.

Insurance is a way of redistributing the society’s assets, which (in case when the

party that suffered loss has an insurance policy) will help the suffered party, covering their

loss on the credit of those policyholders who did not suffer the loss. Insurance policy

provides a guarantee of full or partial compensation for specified losses, illness, damage, or
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sudden death in return for a periodic payment commonly known as premium, as stated in the

terms of the contract. Insurance policies insuring properties are called non-life insurance

policies, whereas those insuring human beings for their health or sudden death are called

life insurance policies. In this work, we will only focus on non-life insurance. In non-life

insurance, people commonly insure their cars, homes, or business, as well as other types of

properties.

Definition 2.1.3 (Insurance claim & loss)

• An insurance claim is a random variable X such that P(X ≥ 0) = 1. It is either filed

by the policyholder addressing the insurer or filed by the insurance company (as the

insured) addressing the reinsurance company.

• The term loss is used to denote the payment that the insurer makes to the policyholder

for the damage covered under the policy. Thus, whenever we say that there was a

“loss” under a policy, we mean that the policyholder received a payment from the

insurer.

The financial operations of an insurer can be viewed in terms of a series of cash

inflow and outflow. The inflow components are added to the reservoir of assets, while the

reservoir is depleted by the outflow components. On the one hand, main inflow components

for an insurance company are premiums paid by the policyholders. On the other hand, the

main outflow components are insurance claims, reinsurance premiums and other operating

costs. A very basic surplus model of the insurer at time t is given by

U(t) = u + π(t) − S(t), t ≥ 0,
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where,

• u = U(0) is the starting capital

• π(t) is the aggregate premium income up to time t

• S(t) = X1 + · · · + XN(t) is the aggregate claim, where N(t) is the number of claims

observed in [0, t], and Xi is the random variable representing the claim amount of the

ith claim.

Definition 2.1.4 (Ruin)

Ruin occurs if the surplus is negative, i.e. for this specific model if U(t) < 0.

To avoid ruin, actuaries, who work for insurance companies develop insurance

models for the likelihood of occurrence of events and statistical models for fair premiums

needed to fulfill their commitment towards the policyholder when the underlying event in

the insurance contract occurs. Establishing fair premiums begins with risk classification,

which involves the grouping of risks into various classes that share a homogeneous set

of characteristics allowing the actuary to reasonably obtain fair pricing for each category

(Antonio and Valdez [2010]). Everything that is insured must be classified. Insurance

companies do this because they want to be as accurate as possible when setting up a

premium. If the premium is too high, policyholders that have few risky characteristics

may drop their policy and the company would only be insuring risky policyholders. If it

is too low, the company may not be able to pay out claims, when unexpected events arise.

Risk classification may be based on age, gender, type of car, zip code, previous driving

record in the car insurance for example to name a few. Common approaches to estimate

money needed to sustain adverse outcome such as ruin is the simple and double chain ladder

method.
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In this thesis, copulas are used to assess association between losses in different

regions. Therefore, we discuss various copula results in the next section.

2.2. COPULA

The concept of copulas in a mathematical or statistical sense was first employed by

Sklar [1959] (Nelsen [2006]). A copula is defined as a function that "joins together" one-

dimensional distribution functions to formmultivariate distribution functions (see Theorem

2.2.3). This theory was further developed by many authors such as Dall’Aglio et al. [1991]

and Schweizer [1991]. Following Nelsen [2006], a bivariate copula can be defined as

follows.

Definition 2.2.1 (Copula)

Let I = [0, 1] denote the unit interval. A bivariate copula C : I2 → I is a function that

fulfills the following properties:

1. For every u, v ∈ I,

C(u, 0) = 0 = C(0, v)

and

C(u, 1) = u and C(1, v) = v

2. For every u1, u2, v1, v2 ∈ I with u1 ≤ u2 and v1 ≤ v2,

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0.

Since copulas map their values to the unit interval I, they are obviously defined on

[0, 1]. The French mathematician Maurice Fréchet and Finnish-born statistician Wassily

Hoeffding independently from each other obtained the basic best-possible bounds inequality

for these functions. This result is given in the next theorem just below.
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Theorem 2.2.2 (Fréchet-Hoeffding bounds)

Let C : I2 → I be a Copula and let (u, v) ∈ I2. Define W(u, v) = max(u + v − 1, 0) and

M(u, v) = min(u, v). Then,

W(u, v) ≤ C(u, v) ≤ M(u, v). (2.1)

Proof: Nelsen [2006], theorem 2.2.3.

The bounds in (2.1) are copulas themselves and are calledFréchet-Hoeffding bounds,

named after the above mentioned people. Another important copula that is frequently

encountered is the product copula Π(u, v) = uv. A simple way of presenting the graph of a

copula is with a contour diagram, i.e. with graphs of its level sets
{
(u, v) ∈ I2 | C(u, v) = t

}
for selected constants t ∈ I. Note that the points (t, 1) and (1, t) are each members of the

level set. Thus, there is no need to label the level sets in the diagram, as C(t, 1) = t = C(1, t)

already provide the constant for each level set (Nelsen [2006]). Figure 2.1 shows the contour

diagram of the copulas M(·, ·), Π(·, ·) and W(·, ·).

Figure 2.1. Contour diagrams of the copulas M(·, ·),Π(·, ·),W(·, ·)

One may wonder how any of the above is related to probability theory, since ev-

erything so far is just deterministic. However, these results can be adopted to a statistical

framework using random variables and distribution functions. In the statistical sense, a
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random variable is a variable quantity whose values depend on chance and for which there

exists a distribution function (Gnedenko [1962]). In what follows, random variables will be

denoted by capital letters.

Consider a pair of random variables, X and Y , with cdfs FX(x) and FY (y), respec-

tively, and joint distribution function H(x, y). To each pair of real numbers (x, y), we can

associate three quantities: FX(x), FY (y), and H(x, y). In other words, each pair (x, y) leads

to a point (FX(x), FY (y)) in the unit square I2, which corresponds to a number H(x, y) in

the unit interval I. This correspondence, which assigns the value of the joint distribution

function to each ordered pair of values of the individual distribution functions, is indeed

a function. Such functions are copulas (Nelsen [2006]). More useful than the formal

definition of copulas is the link that can be established between copulas and distribution

functions. This result is given in Sklar’s theorem (Sklar [1959]).

Theorem 2.2.3 (Sklar, 1959)

Let H(·, ·) be a joint distribution function with margins F(·) and G(·). Then there exists a

copula C(·, ·) such that for all x, y ∈ R ,

H(x, y) = C(F(x),G(y)). (2.2)

If F(·) and G(·) are continuous, then C(·, ·) is unique: otherwise, C(·, ·) is uniquely deter-

mined on the space spanned by the range of F(·) and the range of G(·), i.e. Range(F) ×

Range(G) .

Proof: Nelsen [2006], theorem 2.3.3.

From now on, assume F(·) and G(·) to be continuous. Equation (2.2) gives an

expression for a joint distribution function in terms of a bivariate copula and two univariate

distribution functions. Inverting this equation yields an expression of a copula in terms of
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a joint distribution function and the inverses of its corresponding univariate margins. This

means, a bivariate copula can be viewed as a joint distribution function of two random

variables.

Corollary 2.2.4

Let H(·, ·), F(·), G(·) and C(·, ·) be as in the preceding theorem (Sklar) and let F−1(·) and

G−1(·) be the inverse functions of F(·) and G(·), respectively. Then for any (u, v) ∈ I2,

C(u, v) = H(F−1(u),G−1(v)). (2.3)

Instead of working with the copula itself, one might rather consider its density. The

copula itself does not allow an easy visualisation of the dependence , yet its density reveals

the characteristics of the dependence (Bárdossy [2006]). The corresponding (bivariate)

copula density is given by

c(u, v) =
∂C(u, v)
∂u∂v

,

or in terms of their corresponding probability density functions (pdf) and cdf

c(u, v) =
h(F−1(u),G−1(v))

f (F−1(u))g(G−1(v))
,

where h(·, ·) is the joint density of X and Y , and f (·), g(·) are the univariate marginal

densities of X and Y , respectively. Using the results from Sklar and Corollary 2.2.4, we

show in an example how an expression of a bivariate copula of two random variable X and

Y can be obtained, given the joint cdf H(·, ·) of X and Y .

Example 2.2.5 (Gumbel’s bivariate exponential distribution, (Gumbel [1960a]))

Let Hθ be the joint distribution function given by

Hθ(x, y) =


1 − e−x − e−y + e−(x+y+θxy) , x ≥ 0, y ≥ 0,

0 , otherwise;



17

where θ ∈ I is a parameter. Then, for the marginal distribution functions we have

F(x) = Hθ(x,∞) = 1 − e−x and analogously

G(y) = Hθ(∞, y) = 1 − e−y.

Therefore the margins are exponential with inverse functions F−1(u) = − log(1 − u) and

G−1(v) = − log(1 − v) for u, v ∈ I. Hence, the corresponding copula is given by

Cθ(u, v) = Hθ(F−1(u),G−1(v)) = u + v − 1 + (1 − u)(1 − v)e−θ log(1−u) log(1−v).

In the following theorem, we show that independent continuous random variables

are characterized by the product copula Π(u, v) = uv. Its proof follows from equation (2.3)

and the fact that X and Y are independent if and only if H(x, y) = F(x)G(y).

Theorem 2.2.6 (Independence)

Let X and Y be continuous random variables. Then X and Y are independent if and only if

their copula is identical to the product copula, i.e. CXY (·, ·) = Π(·, ·).

Consider again the preceding Example. Using the independence theorem, we can

easily see that X and Y are not independent because their copula differs from the product

copula Π(·, ·). In Section 1, we mentioned a major advantage of copulas compared to

covariance-based methods, that is the invariance under strict monotonic transformation of

the random variables. The following theorem describes this property in more details.

Theorem 2.2.7 (Monotonic transformation)

Let X and Y be continuous random variables with copula CXY (·, ·). If α and β are strictly

increasing on Range(X) and Range(Y ), respectively, then Cα(X)β(Y )(·, ·) = CXY (·, ·). Thus,

CXY (·, ·) is invariant under strictly increasing transformations of X and Y .

Proof: Nelsen [2006]
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2.3. IMPORTANT CLASSES OF COPULAS

In this section, we present two very important classes of copulas: the Archimedean

copulas and the Gaussian copulas. The former class contains a great variety of easily

constructable copulas with many nice properties that we are going to see in the subsequent

subsection, whereas the latter class consists of copulas that are rather complicated to handle

because there exists no analytic closed form expression of these copulas. However, Gaus-

sian copulas are important because they are constructed from the widely used multivariate

Normal distribution and therefore describe the dependence structure of the multivariate

Normal distribution.

2.3.1. Archimedean Copulas. Archimedean copulas are an important class of

copulas that has a wide range of applications in finance and insurance due to a number

of reasons: (1) They can easily be constructed and (2) the class subsumes many families

of copulas, such as the Clayton, Frank, and Gumbel families, and (3), they possess nice

properties (Nelsen [2006]). The class of Archimedean copulas allows for a great variety

of different dependence structures including tail dependence, which is common in finance

and insurance. They are also used in the field of Survival Analysis, where survival copulas

in proportional hazard models are Archimedean (Segers [2013]) and in assessing portfolio

credit risk (McNeil et al. [2005]). Furthermore, all commonly encountered Archimedean

copulas have closed form expressions. For the definition of such a copula, we first need the

concept of pseudo-inverse:

Definition 2.3.1 (Pseudo-inverse)

Let ϕ : I → [0,∞) be a continuous, strictly decreasing function such that ϕ(1) = 0. The

pseudo-inverse of ϕ is the function ϕ[−1] : [0,∞] → I given by
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ϕ[−1](t) =


ϕ−1(t) , 0 ≤ t ≤ ϕ(0),

0 , ϕ(0) ≤ t ≤ ∞.
(2.4)

Note that ϕ[−1] is continuous and nonincreasing on [0,∞], and strictly decreasing on

[0, ϕ(0)]. Moreover, ϕ[−1](ϕ(u)) = u on I and

ϕ(ϕ[−1](t)) =


t , 0 ≤ t ≤ ϕ(0),

ϕ(0) , ϕ(0) ≤ t ≤ ∞,

= min(t, ϕ(0)).

Finally, if ϕ(0) = ∞, then ϕ[−1](·) = ϕ−1(·).

Lemma 2.3.2 (Archimedean copula)

Let ϕ : I → [0,∞] be a continuous, strictly decreasing function such that ϕ(1) = 0 and let

ϕ[−1] be the pseudo-inverse of ϕ defined by (2.4). Let C : I2 → I be given by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)). (2.5)

Then, C is a copula if and only if ϕ is convex.

Proof: Nelsen [2006], lemma 4.1.2 and theorem 4.1.4.

Copulas of the form (2.5) are called Archimedean copula with generator ϕ. The

importance of this result is the characterization of the copula only through its generator.

The behaviour of Archimedean copulas is completely determined through its generator.

Hence, many properties and results of these copulas are only formulated in terms of the

generator, rather than in terms of the copula itself. This often simplifies calculations. In the
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following example, we show how to obtain an Archimedean copula from its generator ϕ.

We only need to find the pseudo-inverse of the given generator followed by an application

of equation (2.5).

Example 2.3.3

Let ϕ(t) = − log t, t ∈ I. Because ϕ(0) = ∞, ϕ[−1](t) = ϕ−1(t) = exp(−t). Using notation

(2.5) yields

C(u, v) = exp
(
−

[
(− log u) + (− log v)

] )
= uv = Π(u, v).

Thus, the product copula Π(·, ·) is an Archimedean copula.

In the same way, one can show that the lower Fréchet-Hoeffding boundW(u, v) is an

Archimedean copula as well. The corresponding generator is given by ϕ(t) = 1 − t, t ∈ I.

As we can see, constructing Archimedean copulas is straightforward. We only need to

find suitable generator functions fulfilling all the necessary properties. Theoretically any

function ϕ(·) that fulfills the generator properties (such as continuity, strictly decreasing, etc.

as given in the definition of Archimedean copula) can be used as a generator. However, not

all of them may be usefull. We refer to Nelsen [2006] for a list of important Archimedean

copulas including their generator functions. Many generator functions involve a parameter

which gives them some flexibility. Examples of important one-parameter families of

Archimedean copulas are (Nelsen [2006]):

• Clayton family:

Cθ(u, v) =
[
max

(
u−θ + v−θ − 1, 0

) ]− 1
θ , ϕθ(t) = 1

θ

(
t−θ − 1

)
, θ ∈ [−1,∞)\{0}.

The Clayton copula was first introduced by Clayton [1978]. It is mostly used to

study correlated risks because of their ability to capture lower tail dependence. Tail

dependence is a dependence measure that looks at the concordance (see section 2.4)

between extreme values (tail of the joint distribution) of the random variables X and

Y. Special cases are C−1(·, ·) = W(·, ·), C0(·, ·) = Π(·, ·) and C∞(·, ·) = M(·, ·).
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• Gumbel family:

Cθ(u, v) = exp
(
−

[
(− log u)θ + (− log v)θ

] 1
θ

)
, ϕθ(t) = (− log t)θ , θ ∈ [1,∞]

The Gumbel copula (Gumbel [1960b]) is used to model asymmetric dependence in

the data. If outcomes are expected to be strongly correlated at high values but less

correlated at low values, then the Gumbel copula is an appropriate choice. The

Gumbel family is often used in stock market analysis (Mahfoud [2012]). Special

cases are C1(·, ·) = Π(·, ·) and C∞(·, ·) = M(·, ·).

• Frank family:

Cθ(u, v) = −1
θ log

(
1 + (e

−θu−1)(e−θv−1)
e−θ−1

)
, ϕθ(t) = − log

(
e−θt−1
e−θ−1

)
, θ ∈ R\{0}.

The Frank copula is suitable for modeling data characterized byweak tail dependence.

This family can be used to fit bivariate loss distributions (Bouyé et al. [2000]). Special

cases are C−∞(·, ·) = W(·, ·), C0(·, ·) = Π(·, ·) and C∞(·, ·) = M(·, ·).

Unlike Archimedean copulas, the Gaussian copulas do not have a closed form expression

because it involves the inverse of the cdf of the standard Normal distribution. The next

subsection gives more details on Gaussian copulas.

2.3.2. Gaussian Copulas.

Definition 2.3.4 (Gaussian copula)

Let u = (u1, . . . , ud) ∈ Id . The copula of the d-variate normal distribution is given by

C(u) = Φd(Φ
−1(u1), . . . ,Φ

−1(ud)),

where Φ−1 is the inverse of the univariate cdf of the standard normal distribution and

Φd(x1, . . . , xd) =

∫ x1

−∞

· · ·

∫ xd

−∞

1√
(2π)d det Σ

exp
(
−

1
2
(y − µ)>Σ−1(y − µ)

)
dy,
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with det Σ being the determinant of Σ, denotes the joint distribution function of the gen-

eral d-variate standard normal distribution with y = (y1, . . . , yd), expectation vector

µ = (µ1, . . . , µd) and covariance matrix Σ. In the bivariate case the copula expression

can be written as

C(u, v; ρ) = Φ2(Φ
−1(u),Φ−1(v); ρ)

=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1
2π

√
1 − ρ2

exp
(
−

x2 − 2ρxy + y2

2(1 − ρ2)

)
dxdy,

where ρ is the usual linear correlation coefficient of the corresponding bivariate normal

distribution.

2.4. DEPENDENCE CONCEPTS

Copulas provide a natural way to assess dependence between 2 random variables X

and Y. Linear correlation (or Pearson’s correlation) is most frequently used in practice to

quantify dependence. However, since linear correlation is not a copula-based measure of

dependence, it can often be misleading and should not be taken as the canonical quantity

(Embrechts et al. [2001]). In the following, we are going to explore some copula-based

measures of the degree of monotonic dependence between X and Y, also known as "measure

of association" such as Kendall’s tau and Spearman’s rho. Both quantities are defined in

terms of concordance and discordance. An explanation of concordance is given in the next

definition.

Definition 2.4.1 (Concordance)

A pair of random variables (X,Y ) is said to be concordant if large values of X tend to be

paired with large values of Y and small values of X to be paired with small values of Y. To be
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more precise, let (xi, yi) and (x j, y j) be two observations from a pair of continuous random

variables (X,Y ). Then, these two pairs of observations are concordant if (xi−x j)(yi−y j) > 0

and discordant if (xi − x j)(yi − y j) < 0

The measure of association known as Kendall’s tau is named after the British

statistician Maurice Kendall, who developed it in 1938. As we will see in the definition

below, it can be interpreted as the probability of concordance minus the probability of

discordance.

Definition 2.4.2 (Kendall’s tau)

Let {(x1, y1), . . . , (xn, yn)} be a random sample of n observations from a pair of continuous

random variables (X,Y ). There are
(n
2
)
distinct pairs (xi, yi) and (x j, y j), i , j, of observa-

tions in the sample, and each pair is either concordant or discordant. The sample version

of Kendall’s tau is defined as

t =
Nc − Nd

Nc + Nd
=

Nc − Nd(n
2
) ,

where Nc denotes the number of concordant pairs and Nd the number of discordant pairs.

The corresponding population version for pairs of continuous independent and identically

distributed (iid) random variables (X1,Y1) and (X2,Y2) is defined as the probability of

concordance minus the probability of discordance:

τX,Y = P
[
(X1 − X2)(Y1 − Y2) > 0

]
− P

[
(X1 − X2)(Y1 − Y2) < 0

]
, (2.6)

where obviously −1 ≤ τX,Y ≤ 1.

For τX,Y = 1, we have perfect positive monotonic correlation, i.e. Y = f (X) for some

monotonic increasing function f, and for τX,Y = −1 we have perfect negative monotonic

correlation, i.e. Y = f (X), where f is some monotonic decreasing function. In order

to demonstrate the role that copulas play in concordance and measures of association,
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we first define a "concordance function" Q, which is the difference of the probabilities

of concordance and discordance between two vectors (X1,Y1) and (X2,Y2) of continuous

random variables with possibly different joint distributions H1 and H2, but with common

margins F and G. We then show that this functions depends on the distribution of (X1,Y1)

and (X2,Y2) only through their copulas (Nelsen [2006]).

Theorem 2.4.3 (Concordance function)

Let (X1,Y1) and (X2,Y2) be independent vectors of continuous random variables with joint

distribution functions H1 and H2, respectively, with common margins F (for X) and G

(for Y ). Let C1 and C2 denote the copulas of (X1,Y1) and (X2,Y2), respectively, so that

H1(x, y) = C1(F(x),G(y)) and H2(x, y) = C2(F(x),G(y)). Let Q denote the difference

between the probabilities of concordance and discordance of (X1,Y1) and (X2,Y2), i.e.,

Q = P
[
(X1 − X2)(Y1 − Y2) > 0

]
− P

[
(X1 − X2)(Y1 − Y2) < 0

]
Then

Q = Q(C1,C2) = 4
∬

I2
C2(u, v)dC1(u, v) − 1 (2.7)

Proof: Nelsen [2006], theorem 5.1.1.

Using the preceding theorem, we can now formulate Kendall’s tau in terms of

copulas. Because (X1,Y1) and (X2,Y2) in (2.6) are identically distributed, both random

vectors have the same copula C. The following theorem gives an expression of Kendall’s

tau for a pair of continuous random variables (X,Y ) in terms of their copula.

Theorem 2.4.4 (Copula expression of Kendall’s tau)

Let X and Y be continuous random variables with copula C. Then, the population version

of Kendall’s tau for X and Y (denoted by either τX,Y or τC) is given by

τX,Y = τC = Q(C,C) = 4
∬

I2
C(u, v)dC(u, v) − 1. (2.8)
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Note that the integral in (2.8) can be expressed as the expected value of the functionC(U,V),

where U,V ∼ U(0, 1) with joint distribution function C, i.e.

τX,Y = τC = 4E(C(U,V)) − 1.

Proof: Nelsen [2006], theorem 5.1.1.

In general, evaluating Kendall’s tau in (2.8) requires the evaluation of the double

integral. For Archimedean copulas, however, a close form expression is provided in the

next corollary:

Corollary 2.4.5

Let X and Y be random variables with an Archimedean copula C generated by ϕ. Then, the

population version τC of Kendall’s tau for X and Y is given by

τC = 1 + 4
∫ 1

0

ϕ(t)
ϕ′(t)

dt . (2.9)

One of the reasons, Archimedean copulas are easy to work with is that expressions are often

formulated in terms of the generator rather than in terms of the copula (Nelsen [2006]). The

following example shows how to compute Kendall’s tau for the Clayton family.

Example 2.4.6

Let Cθ be a member of the Clayton family of Archimedean copulas with generator ϕθ(t) =
1
θ

(
t−θ − 1

)
. Then for θ ≥ −1,

ϕθ(t)
ϕ′θ(t)

=
tθ+1 − t

θ
when θ , 0, and

ϕ0(t)
ϕ′0(t)

= t log t;

so that (using (2.9))

τθ =
θ

θ + 2
.
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Spearman’s rho, named after the English psychologist Charles Spearman is a non-

parametric measure of rank correlation (statistical dependence between the rankings of

two variables). Just like Kendall’s tau, it assesses how well the relationship between two

variables can be described using a monotonic function. As with Kendall’s tau, the measure

of association known as Spearman’s rho is also based on concordance and discordance

(Nelsen [2006]).

Definition 2.4.7 (Spearman’s rho)

Let (X1,Y1), (X2,Y2) and (X3,Y3) be three independent random vectors with a common joint

distribution function H (whose margins are F and G) and copulaC. The population version

ρX,Y of Spearman’s rho is defined to be proportional to the probability of concordance minus

the probability of discordance for the two vectors (X1,Y1) and (X2,Y3) (the pair (X3,Y2) could

also be used equally as well), i.e. a pair of vectors with the same margins, but one vector

has distribution function H, while the components of the other are independent:

ρX,Y = 3
(
P
[
(X1 − X2)(Y1 − Y3) > 0

]
− P

[
(X1 − X2)(Y1 − Y3) < 0

] )
Moreover, −1 ≤ ρX,Y ≤ 1.

Note that while the joint distribution function of (X1,Y1) is H(x, y), the joint dis-

tribution function of (X2,Y3) is F(x)G(x) (because X2 and Y3 are independent). Thus, the

copula of X2 and Y3 is the product copula Π(·, ·). Similar to Kendall’s tau, using (2.7), this

measure of association can also be expressed in terms of the corresponding copula (Nelsen

[2006]).
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Theorem 2.4.8

Let X and Y be continuous random variables with copula C. Then, the population version

of Spearman’s rho for X and Y is given by

ρX,Y = ρC = 3Q(C,Π) = 12
∬

I2
uvdC(u, v) − 3 (2.10)

= 12
∬

I2
C(u, v)dudv − 3. (2.11)

AswithKendall’s tau, Spearman’s rho can also be expressed in terms of Expectation.

Furthermore, it can be related to Pearson’s correlation coefficient.

Corollary 2.4.9

Let X ∼ F and Y ∼ G, and let U = F(X) and V = G(Y ). Obviously U,V ∼ U(0, 1). Then,

(2.10) can be written as

ρX,Y = ρC = 12E(UV) − 3 =
E(UV) − 1

4
1
12

=
E(UV) − E(U)E(V)√

var(U)
√
var(V)

=
cov(U,V)√

var(U)
√
var(V)

= ρ(F(X),G(Y )),

where ρ denotes Pearson’s correlation coefficient. As a consequence, Spearman’s rho for

a pair of continuous random variables coincides with Pearson’s correlation coefficient for

the random variables U = F(X) and V = G(Y ).

In fact, (2.11) can be rewritten as

ρC = 12
∬

I2
[C(u, v) − uv]dudv, (2.12)
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which means ρC in (2.12) is proportional to the signed volume between the graphs of the

copula C(·, ·) and the product copula Π(·, ·). Thus, ρC is a measure of "average distance"

between the distribution of X and Y (represented by C(·, ·)) and independence (represented

by Π(·, ·)) (Nelsen [2006]). One last useful theorem in this context talks about perfect

correlation in terms of Kendall’s tau or Spearman’s rho.

Theorem 2.4.10

Let X and Y be continuous random variables with copula C, and let κ denote Kendall’s tau

or Spearman’s rho. Then the following are true:

1. κ(X,Y ) = 1⇔ C(·, ·) = M(·, ·).

2. κ(X,Y ) = −1⇔ C(·, ·) = W(·, ·).

Proof: Embrechts et al. [1999].

For more details and information on copulas, we refer to Nelsen [2006].

2.5. SPATIAL DEPENDENCE

Before talking about spatial dependence, we first need to clarify what spatial (or

spatio-temporal) data are. Spatio-temporal data are data provided with a geographical and

a time component. The geographical component is usually given in form of coordinates

(Latitude and Longitude) and the time as a date. However, spatial datasets that do not have

a temporal dimension can occur in many areas of science, e.g. the spatial data may be

from a “snapshot” in time (e.g., liver-cancer rates in U.S. counties in 2009, groundwater

quality in Michigan in October 2005, etc.), or they may be taken from a process that is

not evolving in time. One fundamental scientific problem that arises is understanding the

evolution of processes over time, particularly in environmental studies (e.g., the evolution

of sea-ice coverage in the Arctic and/or changes in sea level) (Cressie and Wikle [2011]).
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Many models in various fields are built after analysing past data. For instance, insurance

risks for extreme weather conditions such as floods or hurricanes can only be estimated

after analysing data from the previous years. Moreover, insurance policies from the same

region can be highly dependent, because such weather conditions in one region affect many

people in the same way.

In the environmental sciences, proximity in space and time is a particularly relevant

factor. “Nearby” is a relative notion, relative to the spatial and temporal scales of the

phenomenon under study. For example, in the spatial case, a toxic-waste-disposal site may

directly affect a neighbourhood of a few square kilometers; a coal-burning power plant may

directly affect a heavily populated region of many tens of square kilometers, and an increase

in greenhouse gases will affect the whole planet (Cressie and Wikle [2011]). To paraphrase

a famous geographer named Waldo Tobler, while everything is related to everything else,

things that are close together tend to be more related than things that are far apart. Ter-

rain elevations, soil types, and surface air temperatures, for instance, are more likely to

be similar at points two meters apart than at points two kilometers apart ("https://www.e-

education.psu.edu/natureofgeoinfo/c1_p18.html"). This is called spatial dependence.

In the following we present a few functions that are commonly used to assess spatial

dependence. First, we present a model-based measure of the spatial statistical dependence

in a geostatistical process, called variogram.

Definition 2.5.1 (Variogram)

Let h = (h1, . . . , hd) ∈ R
d and let

{
Y (s) | s ∈ D ⊂ Rd

}
be a real-valued spatial process

defined on a domain D of the d-dimensional Euclidean space Rd , and suppose that differ-

ences of variables that are h units apart, vary in a way that depends only on h. Specifically,



30

suppose that

2γY (h) = var
(
Y (s + h) − Y (s)

)
, f or all s, s + h ∈ D.

The qunatity 2γY (h), which is a function only of the difference h between the spatial locations

s and (s + h), is called stationary variogram.

If 2γY (h) can be written as a function of the euclidean norm of h (denoted as ‖h‖2),

the variogram is said to be isotropic. Isotropic variograms are functions purely of the

distance between two spatial locations, regardless of the direction, i.e. it does not matter if

one location is east, west, etc. of the other. The only aspect that matters is the difference

between the two locations. A semivariogram (i.e. one half the variogram) of Y (·) is given

by γY (h). Another common function in this context is the so called covariance function.

Definition 2.5.2 (Covariance function)

Under the same assumptions as in the preceding definition, we can define the covariance

function CY (·) as

CY (h) = cov
(
Y (s + h),Y (s)

)
, f or all s, s + h ∈ D, (2.13)

and specify the mean function to be constant, i.e.

E
(
Y (s)

)
= µ, f or all s, s + h ∈ D. (2.14)

The restrictions (2.13) and (2.14) define the class of second-order stationary processes in

D, with stationary covariance function CY (·).

Instead of the covariance function CY (·), researchers often prefer working with the

correlation function ρY (·) given by

ρY (·) =
CY (·)

CY (0)
.
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There exists a relationship between the semivariogram and the covariance func-

tion. Assuming the existence of the stationary covariance function given in (2.13), the

seminvariogram of Y (·) exists and is given by

2γY (h) = var
(
Y (s + h) − Y (s)

)
= var

(
Y (s + h)

)
+ var

(
Y (s)

)
− 2cov

(
Y (s + h),Y (s)

)
= 2var

(
Y (s)

)
− 2cov

(
Y (s + h),Y (s)

)
= 2CY (0) − 2CY (h)

⇔ γY (h) = CY (0) − CY (h), h ∈ Rd .

This implies, that theoretically γY (0) = 0. However, at an infinitesimally small

separation distance, the semivariogram often exhibits a value greater than 0, that is γ(h) →

c0 > 0 as h → 0. c0 has been called nugget effect by Matheron [1962]. It is believed by

geostatisticians that this discontinuity can be made up of both measurement error and spatial

dependence at scales smaller than the available distances between observations (Cressie and

Wikle [2011]). In practice nothing can be said about the variogram at distances smaller

than min
( 

si − s j



 )
for 1 ≤ i < j ≤ n. For more information on spatial statistics, we refer

to Cressie and Wikle [2011].
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3. REGRESSION MODELS FOR SPATIAL DATA

In Section 2, we introduced copulas, discussed some nice properties of these func-

tions and discussed spatial dependence that comes along with spatial data. Moreover, we

introduced spatial data as data that involves a geographical location usually in terms of

Latitude and Longitude. Insurance risks such as thunderstorm winds contain a high level

of spatial dependence as population density and geographical distance significantly affect

the insurance losses (Hua et al. [2017]). One would assume that more insurance claims are

filed at densely populated locations than at locations with lower populations densities. In

addition, we can assume that if an insurance claim due to thunderstorm winds is filed at a

given location s, it is very likely that other claims within a "small" distance to the location s

are filed as well. In this context, "small" is a relative notion. Generally speaking, locations

closer to s exhibit a higher probability of also filing a claim than locations further away

from s. This implies that proximity in space yields a higher correlation and we therefore

experience spatial dependence in the thunderstorm wind dataset that we are going to ana-

lyze. Assuming independent insurance claims for spatial data would not correctly reflect

the reality and will therefore not be a good assumption.

In this Section we will discuss two approaches of modeling spatial data (beside the

covariance based methods discussed in Section 2), a spatial heterogeneity and a spatial

dependence model. The former model is based on a linear regression model and therefore

models the expected loss at each location, while the latter uses a factor-copula approach to

account for the dependence among losses at different geographic locations. The advantage

of a copula-based model over a covariance-based model, is the accountability for nonlinear

dependence (Hua et al. [2017]). The main challenge for modeling the spatial dependence

among random losses at different locations is to construct feasible dependence structures.
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Assume Y (s), s ∈ D, where D is the domain of locations s, is a random variable describing

the loss at location s. The dependence structure between losses Y (si) at different locations

can be very complex. We will model a spatial dependence parameter based on radial basis

functions (see section 3.2) to account for the spatial effects. The radial basis function

approach assigns a higher importance to closer locations and therefore models the spatial

dependence because random variables at locations close to each other should interact. Con-

clusively, the spatial dependence parameter describes the influence of a location compared

to all other locations. This spatial dependence parameter can be estimated directly from the

data.

Since linear regression models assume independence among different observations

(which is obviously not given in our data), we may include a spatial dependence parameter

into the regression model to account for this dependence. Assume s is a geographical

location and θ(s) is a spatial dependence parameter describing the influence of location s.

In this context, a general regression model is given by

µ = E[Y |s, t, x] = θ(s) + β>X(t, x),

where Y is a random variable denoting the losses, s = (Latitude, Longitude) is a geograph-

ical location, t is a time index (e.g. date) and x denotes the population density. The design

matrix X(t, x) contains the covariates "time" and "population density" and β = (β0, . . . , βp)
>

is the parameter vector to be estimated.

In the spatial dependence model we use latent factors to account for the complex

spatial dependence among locations. Latent factors are variables that are not directly ob-

served, e.g. quality of life or happiness in economics. Assume the random variable V

to be a latent factor that is connected with each Y (s), then the dependence between the
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two random variables Y (s) and V can be modeled through a bivariate copula C(u, v; θ(s)),

with θ(s) being the spatial dependence parameter for location s. Then, we can assume that

random variables at different geographic locations Y (s) to be independent conditional on

V , which implies that the dependence structure among Y (s) can be obtained by integrating

over the support of V . As a result, the factor copula approach does not model complex

connections directly, but models each specific location separately and the latent factor V

takes care of the interdependence among the locations (Hua et al. [2017]). After introducing

both models, we are going to present a maximum likelihood estimation based on the joint

likelihood function of the spatial heterogeneity and spatial dependence model in order to

obtain optimal parameters.

In order to obtain a better fit for the data, we have to account for inflation and remove

any potential outliers that may significantly affect the model.

3.1. THE DATA

The thunderstorm wind loss dataset we consider contains property damage losses

due to thunderstorm winds in Texas, United States, from 1996 to 2013. These data are

obtained from the National Climatic Data Centre (NCDC) of the National Oceanic and

Atmospheric Administration (NOAA). According to the NOAA National Severe Storms

Laboratory (NSSL) (a federal research laboratory under NOAA’s Office of Oceanic and

Atmospheric Research), a thunderstorm is a rain shower including thunder and lightning.

There are several kinds of property damages associated with thunderstorm winds (NSSL):

• Flash flooding as a result of rainfall

• Fires caused by lightnings

• Car and window damages due to hail
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• Strong winds (up to more than 120 mph) responsible for knocked down trees, power

lines and mobile homes

The loss amounts (in US Dollars (USD)) are adjusted by the consumer price index

(cpi) to the 2013 level to minimize the inflation effect. More specifically, denote the

losses of each year by X1, . . . , X18, where X1 = (X11, X12, . . . , X1n1) corresponds to the n1

losses in 1996, X2 = (X21, X22, . . . , X2n2) corresponds to the n2 losses in 1997, etc., and let

α = (α1, . . . , α18) be the consumer price index to the 2013 level (e.g. α1 = 1.485 for an

inflation increase of 48.5% from 1996 to 2013). Then, we adjust the losses as Yi = αi Xi.

This transformation does not change the underlying distribution of the losses since it is

linear. In general, let c > 0 and let FX(x) be the cdf of the random variable X . Furthermore,

assume a new random variableY is created by multiplying X by a constant c, i.e. byY = cX .

Then,

FY (y) = P(Y ≤ y) = P(cX ≤ y) = P(X ≤ y/c) = FX(y/c)

and hence,

fY (y) =
1
c

fX(y/c).

Therefore, multiplying random variables by a constant does not change the underlying dis-

tribution aswe stay in the same family of distributions. However, the parametersmay change.

Loss severities of zero are excluded from the dataset, i.e. we only consider nonzero

losses. We also excluded observations from February 10, 1998 as Texas experienced a series

of rare winter storms. These high amounts of property damage losses are very untypical

for February in the remaining data (Hua et al. [2017]). The first few observations of the cpi

adjusted data can be seen in Table 3.1 with property damages being displayed in thousand

USD. If not otherwisementioned, we always refer to property damage in thousandUSD. The

data consists of information on the County and City, where the property damage occurred,

as well as the exact geographic location given as coordinates (Latitude and Longitude). For
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coding convenience, the date is given in the yyyy/mm/dd format, where yyyy is the year, e.g.

yyyy = 1996, mm corresponds to the month, e.g. mm = 01 for January and dd represents

the day of the month, e.g. dd = 17 for the 17th day of the corresponding month. For

instance, 1996/01/17 in Table 3.1 refers to January 17, 1996. This is not a common date

format in daily life, but since we are rather interested in the year and month of the insurance

claim instead of the day, it is more convenient to have the date available in this format.

Table 3.1. Thunderstorm Wind Loss Dataset

County City Date Property damage Latitude Longitude
Hood Co. Cresson 1996/01/17 7.425 32.53 -97.63
Hill Co. Lake Whitney 1996/01/17 37.125 31.90 -97.38
Johnson Co. Burleson 1996/01/17 111.375 32.53 -97.32
Tarrant Co. Crowley 1996/01/17 7.425 32.58 -97.32
McLennan Co. Waco 1996/01/17 37.125 31.55 -97.15
McLennan Co. Waco 1996/01/17 2.970 31.55 -97.15
Hill Co. Hillsboro 1996/01/17 22.275 32.00 -97.13
Tarrant Co. Arlington 1996/01/17 22.275 32.73 -97.12

Table 3.2 shows a summary of the cpi adjusted property losses (without the already

excluded rare February winter storms from 1998). We notice that the 3rd quantile is rel-

atively small and therefore at least 75% of the data is concentrated close to zero, yet the

maximum is 400000. This implies that we are dealing with highly right skewed data, which

are typical for insurance claims (McNeil et al. [2005]), especially with thunderstorm data

that result in high claims.

Table 3.2. Summary of Loss Amounts in Thousands

Sample size Min. 1st quantile Median Std. Dev Mean 3rd quantile Maximum
7554 0.01 4.29 10.82 4709.27 144.31 32.04 400000
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Figure 3.1. Summary of Loss Amounts in Thousands. Left: complete dataset. Centre:
excluding outliers. Right: zoomed in to show majority of data.

We suspect the data contains some outliers and decided to exclude them to facilitate

modeling. In order to clean the data, we generate the boxplot given in Figure 3.1 to visualize

the distribution of the property damages. The boxplot on the left shows the complete dataset

(without the winter storms from 1998), i.e. the same as the summary given in Table 3.2.

We notice that the maximum observation is a lot larger than all other observations

and can be considered an outlier. Thus, we may want to exclude this specific observation

to allow for a good model fit. Excluding this single observation results in a distribution of

claims displayed in the boxplot in the middle in Figure 3.1. It is still impossible to even see

the box that contains 50% of the data. As already mentioned, these data are highly skewed

to the right and most observations are located somewhere close to zero (≤ 70).
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After having excluded the large observation, we can zoom in to obtain the boxplot

on the right to illustrate where the majority of the data can be found. As it is common

for boxplots, the lower bound of the box corresponds to the 1st sample quartile (Q25), the

horizontal line inside the box displays the sample median, whereas the 3rd sample quartile

(Q75) is shown as the upper bound of the box. The black dots display observations that

fall outside the interval [Q25 − 1.5IQR, Q75 + 1.5IQR], where IQR = Q75 − Q25 is the

interquartile range. In this case, values not belonging to the aforementioned interval only

occur in the right tail of the distribution, which is common for insurance data [McNeil et

al., 2005]. From now we will work with the dataset obtained after having excluded outliers.

The newly obtained data is now summarized in Table 3.3. Excluding this single largest

observation obviously significantly affects the mean and standard deviation but has little to

no effect on the quartiles and the median.

Table 3.3. Summary of Loss Amounts in Thousands (after adjustments)

Sample size Min. 1st quantile Median Std. Dev Mean 3rd quantile Maximum
7553 0.01 4.29 10.82 1003.08 91.37 32.04 54100

In the following section we will introduce the spatial heterogeneity model that is

based on linear regression and thus, models the first moments of losses at different locations

(Hua et al. [2017]).

3.2. THE SPATIAL HETEROGENEITY MODEL

Before getting into details of the spatial heterogeneity model, let us take a look at

the distribution of the claims throughout the year illustrated in Figure 3.2. We observe

that thunderstorm wind damages are much higher during the spring and summer months,

compared to the fall and winter months, i.e. there are clearly seasonal patterns in the loss

amounts. According to the (NSSL), thunderstorms are most likely to occur in the spring and
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Figure 3.2. Seasonality of Loss Amounts (Thousands) from Year 1996 to 2013

summer months. Consequently, to model this seasonality, we use trigonometric functions

such as sin(·) and cos(·) in the spatial heterogeneity model to account for these seasonal

pattern.

As already explained, population density may significantly affect the losses at dif-

ferent locations and from Figure 3.2, we observe that "time of the year" has an effect on the

losses as well. Recall that the spatial heterogeneity model is based on linear regression and

it seems reasonable to include county-level population density and "time of the year" as co-

variates. "Time of the year" refers to the month in which the claim occurred (see Figure 3.2).

Population densities are obtained from the U.S. Census Bureau (http://www.census.gov/)

and are calculated as the population in the corresponding county divided by the area of the

county. Linear regression assumes the residuals to be normally distributed. Modeling the

natural logarithm of the losses supports the normal distribution assumption for the residuals

(Hua et al. [2017]). To that end, let Yi, i = 1, . . . , n, with sample size n = 7553, be the
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natural logarithm of the loss amounts adjusted by the inflation indexes. In addition, let D

be the set of all possible coordinates. The model is given by

µ = E[Y |s, t, x] = θ(s;w,K, γ) + β0 + β1t + β2sin(ωt) + β3cos(ωt) + β4x, (3.1)

where s ∈ D is a two dimensional vector containing the coordinates of the location;

θ(s;w,K, γ) is a function that accounts for the geographical effects at s, i.e. its influence

on other locations (see below); t = 1, . . . , 216 is the month indicator from 1996 to 2013 (18

years is equivalent to 216 months), for example t = 13 corresponds to January 1997; ω = 2π
12

such that the period of the trigonometric functions becomes 12 (months), to account for the

seasonal patterns that repeat every year. Finally, x denotes the population density of the

county where s is located. The regression parameters to be estimated are (β0, β1, β2, β3, β4).

To account for spatial dependence we will use radial basis functions to approximate

the function θ(s;w,K, γ). Radial basis functions are usually applied to approximate func-

tions or data which are only known at a finite number of points or too difficult to evaluate

otherwise (Powell [1981], Cheney [1966]). A radial basis function φ(·) : R+ → R is a

real-valued function whose value at a given argument x depends only on the distance from

some fixed point c, called a centre, i.e. φ(x; c) = φ(‖x − c‖). ‖·‖ is typically the Euclidean

norm. Radial basis functions originated in the context of neural networks in the work by

Broomhead and Lowe [1988]. The family of radial basis functions consists of many useful

kernel smoothing functions, such as Gaussian kernels, inverse multiquadratic kernels and

thin plate spline kernels. Following Hua et al. [2017], a real-valued continuous function

θ : R2 → R can be approximated by

θ(s;w,K, γ) ≈
K∑

k=1
wkφ

(
‖s − ek ‖2

)
, (3.2)
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where w = (w1, . . . ,wK) ∈ R
K are the weights that can be estimated by solving a system of

linear equations because the approximation function is linear in the weights, φ : R+ → R

is a radial basis function (see (3.3)), γ is the shape parameter for the basis function φ, and

ek, k = 1, . . . ,K are some "reasonable" K prespecified centres. With "reasonable" we

mean, those K centres should be chosen in a sense that they represent the data as good as

possible, e.g. more centres should be found where many observations are located. It would

not make sense to choose many centres far away from the majority of observations. The

norm ‖·‖2 is the usual Euclidean norm, describing the distance between the locations s and

ek . Other norms are also allowed, but we retain the Euclidean norm. Some commonly used

radial basis functions are

Gaussian: φ(x) = exp
(
− γx2)

Inverse multi-quadratic: φ(x) =
1√

x2 + γ2
(3.3)

Thin plate spline: φ(x) = x2 log x

Let yi, i = 1, . . . , n be the logarithm of the observed losses. One way to estimate

the weights w = (w1, . . . ,wK) in (3.2) is to construct a system of linear equations

K∑
k=1

wkφ
(
‖si − ek ‖2

)
= yi, i = 1, . . . , n, (3.4)

for each distinct observation (si, yi). Equation (3.4) can be rewritten as

(
φ
(
‖si − e1‖2

)
, . . . , φ

(
‖si − eK ‖2

) ) ©­­­­­«
w1
...

wK

ª®®®®®¬
= yi . (3.5)
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From (3.5) we obtain the following system of linear equations

©­­­­­«
φ
(
‖s1 − e1‖2

)
. . . φ

(
‖s1 − eK ‖2

)
...

...

φ
(
‖sn − e1‖2

)
. . . φ

(
‖sn − eK ‖2

ª®®®®®¬︸                                               ︷︷                                               ︸
=A∈Rn×K

©­­­­­«
w1
...

wK

ª®®®®®¬︸︷︷︸
=w∈RK×1

=

©­­­­­«
y1
...

yn

ª®®®®®¬︸︷︷︸
=y∈Rn×1

. (3.6)

Obtaining the solution w to the problem Aw = y may require the use of a gener-

alized inverse of the matrix A. For solving such a system in R, we refer to the package

limSolve, which uses the Moore-Penrose generalized inverse of the matrix A to solve the

corresponding system of linear equations. Another possible way to find the weights in (3.4)

is to estimate the weights as the least square estimates of the regression coefficients from

linear regression (which leads to the exact same result).

We use a smooth function θ(s;w,K, γ) as given in equation (3.2) to explain the effect

of a specific location s. In order to get a good approximation for θ(s;w,K, γ) in (3.2) we

use a clustering algorithm to partition the data into K clusters. The K centres of the clusters

are then used as the K prespecified points ek given in the approximation of θ(s;w,K, γ).

The number of clusters K ≤ n can be any arbitrary number (one approach to choose

a good number is discussed further below). However, from the statistical viewpoint, large

values of K may lead to overfitting and poor prediction (Hua et al. [2017]). A possible option

is to select the K centres and group the data according to a certain clustering algorithm, such

as the K-means clustering. Note that the K-means method is just one way of partitioning

the data. We just need a partition over which to approximate the function θ(s;w,K, γ) such

that the data is more or less evenly clustered based on the geographical information only.

We will use the K-means algorithm to partition the data based on geographical locations,

so that a geographical area can be divided into K smaller areas that are "representative"
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of the whole area (explanation of representative further below). The function θ(s;w,K, γ)

can then be approximated at those K centres of the clusters. Given the number of clusters

K , the K-means method assigns those K centers so that the within-cluster sum of squares

is minimized. The clustering aims to partition n observations into K clusters in which

each observation belongs to the cluster with the nearest mean (Hua et al. [2017]). More

specifically, let SK be the partition, then

SK = arg min
S;S=∪Sk

K∑
k=1

∑
s∈Sk

‖s − mean(s, s ∈ Sk)‖
2
2 ,

where ∪ is the union operation of mutually exclusive subsets of S (Hua et al. [2017]).

Having partitioned the locations into K groups, we can now estimate θ(s;w,K, γ)

as given in equation (3.2) based on claim observations yi = y(si), i = 1, . . . , n, where si

is the coordinate of the ith-location. We choose the number of clusters with the K-means

algorithm based on howmuch variability is explained by those clusters. This means that one

should choose a number of clusters such that adding another cluster does not "significantly

improve" the within-group sum of squares. A vague approach is given by the elbow method

that looks at the percentage of variance explained as a function of the clusters. Statistical

techniques for obtaining an optimal number of clusters can be based on information criteria

such as AIC or BIC.

Figure 3.3 shows the relationship between the number of clusters and the within-

group sum of squares. We observe that when there are about 20 or more clusters, the

total within-group variability is significantly decreased and adding more clusters does not

improve the variability much.
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Figure 3.3. Withing-Group Sum of Squares vs. Number of Clusters

According to Figure 3.3, we believe it is appropriate to choose 20 clusters to rep-

resent the data. Figure 3.4 displays a result of the K-means algorithm for K = 20, where

different colors stand for different clusters and the black stars in each cluster shows the centre

of each cluster according to the K-means algorithm. We observe when the insurance claims

are densely distributed (e.g. east Texas), then the clustering algorithm assigns many smaller

clusters for this region. This implies that the centres of the clusters are also within closer
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distances to each other. In contrast, when the insurance claims are sparsely distributed (e.g.

west Texas), we obtain larger clusters and conclusively the centres are further apart from

each other. Using the centres of the clusters as the K prespecified locations e1, . . . , eK in

equation (3.2) represents the data in a sense that areas with densely filed insurance claims are

assigned more clusters (and respectively more centres) than areas with sparsely distributed

insurance claims. This implies that areas with a higher claim density are assigned more

weight compared to areas with a smaller claim density.

−106 −104 −102 −100 −98 −96 −94

26
28

30
32

34
36

Longitude

La
tit

ud
e

Figure 3.4. 20 Chosen Clusters
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In order to get an estimate for θ(s;w,K, γ), we need to find the best shape parameter

γ for the radial basis function (if one exists). This can be done by minimizing the root mean

square error (RMSE). That is

γ = argmin
γ

√∑n
i=1(ŷi(γ) − yi)

2

n
, (3.7)

where yi is the natural logarithm of the ith observed property loss and ŷi(γ) is the estimated

logarithm of the ith property loss in (3.4) with shape parameter γ.

Figure 3.5 illustrates how the value of gamma affects the RMSE for a Gaussian

basis function. It seems appropriate to choose γ = 0.04 for the Gauss basis function as it

minimizes the RMSE. The corresponding RMSE is 1.5823.
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Figure 3.5. RMSE vs. Shape Parameter of Gaussian Basis Function



47

In the same vein, we can find an appropriate value for γ for the inverse multi-

quadratic basis function. The result is displayed in Figure 3.6. Here it seems appropriate

to choose γ = 2. The corresponding RMSE is 1.5734.
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Figure 3.6. RMSE vs. Shape Parameter of Inverse Multi-Quadratic Basis Function

Recall that for approximating θ(s;w,K, γ), the 20 weights for the radial basis func-

tion are obtained as solution to the system of linear equations given in (3.6) or via linear

regression (which yields the exact same result). Now, we fix the weights and the value

for the shape parameter γ (which was chosen according to the RMSE) and approximate

θ(s;w,K, γ) as in (3.2). After approximating θ(s;w,K, γ), we use the estimated θ̂(s;w,K, γ)

to normalize the response variable Y (s) − θ̂(s;w,K, γ). Then, the rest of the parameters are

estimated by the linear regression model given in (3.1):

µ − θ̂(s;w,K, γ) = E[Y − θ̂(s;w,K, γ)|s, t, x]

= β0 + β1t + β2sin(ωt) + β3cos(ωt) + β4x.
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The type of radial basis function determines the speed of decay and can be chosen

based on overall model-fitting performance, such as AIC. Among the three presented radial

basis functions, the Gaussian basis function has the smallest AIC value of the regression

model and therefore performs best.

Remark

When K is relatively large (K > 10), the AIC values become unstable (Hua et al. [2017]).

The larger the value of K, the larger the number of clusters, and conclusively more weights

need to be estimated which will lead to run time issues further below when maximizing the

likelihood function. Therefore, one should consider a parameter calibration for the number

of clusters K , and the shape parameter γ. For more details, we refer the reader to Hua et al.

[2017].

For the same reason given in the remark, Hua et al. [2017] proposed the number

of cluster to be K = 4. For this special case, we obtain γ = 0.26 as the optimal shape

parameter for the Gaussian basis function. As the Gaussian basis function did a better job

in the previous calculations, we retain this basis function. We estimated the weights of

θ(s;w,K, γ) for K = 4 and γ = 0.26 in (3.6). Now, we fix the weights w = (w1, . . . ,w4)

and estimate θ̂(s;w,K, γ) in (3.2) with the fixed weights. Then, as before, we normalize the

response variable and the new regression model becomes

µ − θ̂(s;w,K, γ) = E[Y − θ̂(s;w,K, γ)|s, t, x]

= β0 + β1t + β2sin(ωt) + β3cos(ωt) + β4x.

The result for this regression model is given in Table 3.4.



49

Table 3.4. Regression summary with fixed weights

Coefficients Estimate S.E.
Intercept +9.576e + 00 3.875e − 02
t −1.376e − 03 2.934e − 04
sin(ωt) +1.179e − 01 2.793e − 02
cos(ωt) +1.091e − 01 3.229e − 02
Pop. density +2.035e − 04 2.802e − 05
σ +1.601e + 00 1.842e − 02
AIC 28553.69

Since the estimated regression coefficient for the cumulated months t is negative

(β̂1 = −0.001376), the model suggests that, over the years, the average property damage loss

amount due to thunderstorm winds in Texas has been slightly decreasing, after adjusting

for inflation. This reflects the trend in the data correctly. In a similar vein we observe

that the estimated regression coefficient for population density (β̂4 = 0.0002035 > 0) is

positive and therefore affects the loss amount in such a way that a higher population density

leads to a higher average loss amount (which is what we would expect). One may argue

that although β̂4 is positive, it is very small and therefore has little effect on the response.

However, since we model the logarithm of the losses, a population density increase of, for

example, 100 will lead to a multiplicative factor of exp(100β̂4) ≈ 1.02 of the estimated

loss. This does not seem a lot, but assume we want to compare the estimated loss at

two cities with population densities 500 and 3000, respectively, then we obtain a factor of

exp(3000β̂4)/exp(500β̂4) = exp(2500β̂4) ≈ 1.66. This implies, if we fix all other covari-

ates, the estimated losses in a city with population density 3000 is 1.66 times higher than

in a city with a density of only 500. Therefore, we can conclude that β̂4 has indeed an

important effect on the estimated loss amount.
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The next section pertains to an introduction to factor copula models. As outlined

in Section 2, copulas are ideal to describe (nonlinear) dependence structures. After the

introduction of factor-copula models, we will construct an overall likelihood function that

considers the dependence structure from the factor copula in order to estimate the best

regression parameters for the spatial heterogeneity model.

3.3. THE SPATIAL DEPENDENCE MODEL

Following Krupskii and Joe [2013], let X = (X1, . . . , Xn) be a random n-dimensional

vector with joint cdf FX(x), x = (x1, . . . , xn) ∈ R
n and let FXi (xi) be the marginal cdf of Xi

for i = 1, . . . , n. By Sklar, the copula CX corresponding to FX , is a multivariate uniform cdf

such that FX(x1, . . . , xn) = CX(FX1(x1), . . . , FXn(xn)). If FX is continuous, the copula CX is

unique. Now, letUi = FXi (Xi) for i = 1, . . . , n, thenUi ∼ U(0, 1). The joint cdf of the vector

U = (U1, . . . ,Un) is then given by C(u1, . . . , un), where C is an n-dimensional copula. In

the following, we assume all copulas are continuous and their densities exist.

AssumeU1, . . . ,Un to be conditionally independent given p latent variablesV1, . . . ,Vp.

The random variables Vi, i = 1 . . . , p can be assumed to follow distributions such as the

standard Normal distribution for the continuous case or a multinomial distribution in the

discrete case for instance (McNeil et al. [2005]) but without loss of generality, we can

assume Vi
iid
∼ U(0, 1), i = 1, . . . , p. The assumption of uniform latent variables simplifies

many calculations. Furthermore, let the conditional cdf of Ui given V1, . . . ,Vp be denoted

by Fi |V1,...,Vp
. Then, the p-factor copula model (Krupskii and Joe [2013]) is given by

C(u1, . . . , un) =

∫
[0,1]p

n∏
i=1

Fi |V1,...,Vp
(ui |v1, . . . , vp)dv1 · · · dvp. (3.8)
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In this model, Fi |V1,...,Vp
needs to be appropriately expressed in terms of a sequence of bi-

variate copulas that link the observed variable Ui to the latent variable Vk .

3.3.1. One-Factor Copula Model. We first study the case of p = 1 latent variable

in (3.8). For i = 1, . . . , n, denote the joint cdf and density of (Ui,V1) by Ci,V1 and ci,V1

respectively. Since U1,V1 ∼ U(0, 1), then Fi |V1 is just a partial derivative of the copula Ci,V1

with respect to the second argument (Krupskii and Joe [2013]). That is,

Fi |V1(ui |v1) = Ci |V1(ui |v1) =
∂Ci,V1(ui, v1)

∂v1
.

With p = 1, equation (3.8) becomes

C(u1, . . . , un) =

∫ 1

0

n∏
i=1

Fi |V1(ui |v1)dv1 =

∫ 1

0

n∏
i=1

Ci |V1(ui |v1)dv1. (3.9)

Note that ∂
∂uCi |V1(u|v1) = ∂2

∂u∂v1
Ci,V1(u, v1) = ci,V1(u, v1). Then (3.9) implies by differentiation

that the density of the 1-factor copula is

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1, . . . , ∂un
=

∫ 1

0

n∏
i=1

ci,V1(ui, v1)dv1.

In the model, dependence is defined by n bivariate linking copulas C1,V1, . . . ,Cn,V1 .

There are no constraints among these bivariate copulas. Note that any conditional indepen-

dencemodel for absolutely continuous random variables, conditioned on one latent variable,

can be written in this form. The main advantage of the model is that it allows for different

types of tail dependence structure. If all bivariate linking copulas are lower (upper) tail

dependent, then all bivariate margins ofU are also lower (upper) tail dependent respectively.

Thus, with appropriately chosen linking copulas, asymmetric dependence structure as well

as tail dependence can be easily modeled (Krupskii and Joe [2013]).
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For the special case of bivariate Normal linking copulas, letCi,V1(·, ·) be the bivariate

Normal copula with correlation αi1, i = 1, . . . , n. Let Φ, φ denote the standard Normal cdf

and density respectively and let Φ2(·, ·; ρ) be the bivariate normal cdf with correlation ρ.

Then Ci,V1(ui, v1) = Φ2(Φ
−1(ui),Φ

−1(v1);αi1) and

Fi |V1(ui, v1) = Ci |V1(ui |v1) = Φ

(
Φ−1(u) − αi1Φ

−1(v1)√
1 − α2

i1

)
.

3.3.2. Two-Factor Copula Model. Consider the case for p = 2. Let Ci,V1 be the

copula of (Ui,V1) as before and let Ci,V2;V1 be the copula for Fi |V1 = FUi |V1 and FV2 |V1 . Note

that FV2 |V1 is the U(0, 1) cdf since we assume V2 and V1 to be independent. Then, equation

(3.8) becomes (Krupskii and Joe [2013])

C(u1, . . . , un) =

∫ 1

0

∫ 1

0

n∏
i=1

Fi |V2,V1(ui |v1, v2)dv1dv2

=

∫ 1

0

∫ 1

0

n∏
i=1

Ci |V2;V1(Ci |V1(ui |v1)|v2)dv1dv2, (3.10)

where Ci |V2;V1(Ci |V1(u|v1)|v2) =
∂
∂v2

Ci,V2;V1(Ci |V1(u|v1), v2).

A copula density reveals more about the dependence than its cdf. Therefore, differ-

entiating (3.10) with respect to u1, . . . , un, implies that the 2-factor copula density is

c(u1, . . . , un) =

∫ 1

0

∫ 1

0

n∏
i=1

[
ci,V2;V1(Ci |V1(ui |v1), v2) · ci,V1(ui, v1)

]
dv1dv2. (3.11)

For general factor copula models, the bivariate link copulas do not need to belong

to the same parametric family. However, for our spatial dependence model, we require

that the link copulas are of the same family. For the special case of bivariate Normal

linking copulas, let Ci,V1 and Ci,V2;V1 be the bivariate Normal copula with correlations

αi1 and γi = αi2/(1 − α2
i1)

1/2 respectively, i = 1, . . . , n. Here, αi2 is the correlation of
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Zi = Φ(Ui) and W2 = Φ(V2), so that the independence of V1 and V2 implies that γi is the

partial correlation of Zi and W2 given W1 = Φ(V1). In general the correlation is given as

ρZ,W2:W1 = [ρZ,W2 − ρZ,W1ρW2,W1]/[(1 − ρ2
Z,W1
)(1 − ρ2

W2,W1
)]1/2. In our case, ρW1,W2 = 0 due

to the independence between V1 and V2. Then ρZ,W2:W1 = ρZ,W2/(1 − ρ2
Z,W1
)1/2 or in terms

of α, γi = αi2/(1 − α2
i1)

1/2. Then, we have (Krupskii and Joe [2013])

Ci |V2;V1(Ci |V1(ui)|v1)|v2) = Φ

([
Φ−1(u) − αi1Φ

−1(v1)√
1 − α2

i1

− γiΦ
−1(v2)

]/√
1 − γ2

i

)

= Φ

(
Φ−1(u) − αi1Φ

−1(v1) − γi

√
1 − α2

i1Φ
−1(v2)√

(1 − α2
i1)(1 − γ

2
i )

)
.

In this work, we will use a 2-factor copula model. In the likelihood function that will

be discussed further below, we will evaluate an integral of the form given in (3.11). In order

to solve such a double integral, one needs to use numerical integration. For instance, one

can use Gauss-Hermite quadrature or Gauss-Legendre quadrature. Gauss-quadrature is a

numerical approximation of the definite integral of a function, usually stated as a weighted

sum of function values at specified points within the domain of integration (for more on

quadrature, see for example Press et al. [2007] (Section 4.6. "Gaussian Quadratures and

Orthogonal Polynomials"). It can be shown that the evaluation points xki are not equidistant

but the roots of a polynomial belonging to a class of orthogonal polynomials (see Press

et al. [2007] or Stoer and Bulirsch [2002]).

Assuming the parameters are θi1 for Ci,V1 and θi2 for Ci,V2;V1 , we obtain

c(u1, . . . , un; θ) ≈
nq∑

k1=1

nq∑
k2=1

wk1wk2

n∏
i=1

[
ci,V2;V1(Ci |V1(ui |xk1; θi1), xk2; θi2)) · ci,V1(ui, xk1; θi1)

]
,

(3.12)
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wherewki are the quadrature weights, xki are the roots of an orthogonal polynomial function,

and nq is the number of quadrature points (Krupskii and Joe [2013]). When the nodes xki are

chosen to be the zeros of the Legendre polynomials, the method is called Gauss-Legendre

quadrature. This method is attributed to the German mathematician Johann Carl Friedrich

Gauß (1777− 1855) and the French mathematician Adrien-Marie Legendre (1752− 1833).

In what follows, we present a Maximum-likelihood approach that is based on both

the spatial heterogeneity and spatial dependence model to find the optimal parameter esti-

mates for the spatial heterogeneity model using the dependence structure from the spatial

dependence model.

Joint likelihood. In order to obtain the best result, we can combine the spatial

heterogeneity model and the spatial dependence model. Therefore, we use a Maximum-

likelihood estimation based on the joint likelihood function containing both the marginal

spatial heterogeneity model and the spatial dependence model, which is given by

L(β, θ(s;w,K, γ)|y) = c(F1(y1), . . . , Fn(yn); θ(s;w,K, γ))
n∏

i=1
fi(yi; β, σ), (3.13)

where c(·) is the n-dimensional copula density (that can be obtained from the factor copula

approach), fi(yi; β, σ) is the normal density with mean β0+ β1ti + β2sin(ωti)+ β3cos(ωti)+

β4xi and varianceσ2 (from the spatial heterogeneity model). θ(s;w,K, γ) is the dependence

parameter of the copula and the value of θ(s;w,K, γ) is determined by the geographical

location s through the radial basis function given in equation (3.2). In contrast to the spatial

heterogeneity model, the spatial dependence parameter θ(s;w,K, γ) is now embedded in

the copula density and cannot be estimated with the previous methods. θ(s;w,K, γ) needs

to be estimated in the likelihood function with the other parameters. Thus, we need to
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maximize the likelihood function in 10 different parameters which is a computationally

difficult problem.

To approximate the copula density as given in (3.12), we use the Gauss-Legendre

quadrature with the number of quadrature points being 35, i.e. nq = 35 (see R-package

CopulaModel for explanation for number of quadrature points). The computations were

conducted in the software R with numerical optimization. Optimizing the full likelihood as

given above is numerically difficult since we need to estimate many parameters, the evalu-

ation of the copula density is itself a numerical procedure and the number of observations

we have is large (n = 7553). Therefore, instead of maximizing the multivariate likelihood

function given in (3.13), we use a pairwise (or composite) likelihood approach, i.e. for

i, j = 1, . . . , n

(β̂, σ̂, ŵ) = arg max
(β,σ,w)

∑
i> j

Li, j(β, θ(s;w,K, γ)|y) (3.14)

= arg max
(β,σ,w)

∑
i> j

[
c(Fi(yi), Fj(y j); θ(s;w,K, γ)) · fi(yi; β, σ) · f j(y j ; β, σ)

]
,

where β̂ = (β̂0, . . . , β̂4), ŵ = (ŵ1, . . . , ŵ4) and θ(s;w,K, γ) as given in (3.2). For more

information on composite likelihood, we refer to Heagerty and Lele [1998] or Curriero and

Lele [1999].

The optimization of the likelihood in (3.13) is a difficult problem regarding run time

or speed of calculations. As initial values for optimizing the objective function we used the

values from Table 3.4, which seem to be a reasonable choices to ensure that the iterations

converge. We refer to Krupskii and Joe [2013] for detailed discussions about numeric issues

on implementing factor copulas and the R package CopulaModel associated with the book

Dependence Modeling with Copulas, Joe [2014] for implementations of factor copulas.

However, this package cannot be installed via the regular "install.packages()" command in
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R. We refer to http://copula.stat.ubc.ca/ for details on installation of the R package. Useful

functions in this context are provided by dfact2cop() which evaluates a bivariate copula

density of a 2-factor copula and pfact2cop() which can help evaluate the bivariate cdf of a

2-factor copula model. These functions are only provided for the bivariate case, which is

why we chose to compute the MLE with the pairwise likelihood approach given in (3.14)

instead of as given in (3.13). The MLEs are reported in Table 3.5.

We can assume that β = (β0, β1, β2, β3, β4) in equation (3.1) approximately fol-

lows a multivariate Normal distribution with the mean being the MLEs given in Table

3.5 and variance-covariance matrix being approximated by the Fisher information matrix

Σ̂ = {σ2
i j}i, j=0,...,5, which can be obtained as the inverse of the estimated negative Hessian

matrix. The estimated Hessian matrix is obtained from the optimization procedure. An

approximate 95% CI for βi is then given by [β̂i + zα
2
σii, β̂i − zα

2
σii], where zα

2
= Φ−1(α2 ) is

the α
2 - quantile of the standard Normal distribution.

Table 3.5. MLEs of Model with 95% CI

Coefficients Estimate Lower CI Upper CI
β̂0 : Intercept +9.590e + 00 +9.514e + 00 +9.667e + 00
β̂1 : t −1.820e − 03 −2.398e − 03 −1.241e − 03
β̂2 : sin(ωt) +6.887e − 02 +1.380e − 02 +1.239e − 01
β̂3 : cos(ωt) +9.906e − 02 +3.538e − 02 +1.627e − 01
β̂4 : Pop. density +2.330e − 04 +1.327e − 04 +1.269e − 03
σ̂ +1.59e + 00
ŵ1 −2.867e − 01
ŵ2 −7.763e − 01
ŵ3 −2.107e − 01
ŵ4 +8.568e − 02
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According to Table 3.5, we propose the followingmodel to describe the thunderstorm

wind loss data from Texas:

µ = E[Y |s, t, x] = θ̂(s,w,K, γ) + β̂0 + β̂1t + β̂2sin(ωt) + β̂3cos(ωt) + β̂4x, (3.15)

where θ̂(s,w,K, γ) =
∑4

k=1 ŵkφ
(
‖s − ek ‖2

)
and φ(x) = exp(−0.26x2) being the Gaussian

basis function with shape parameter γ = 0.26. Figure 3.7 visualizes the estimated spatial

dependence parameter θ̂(s,w,K, γ). The large blue colored area is located around Houston,

which is the largest city in Texas by population. Beside the blue colored area, θ̂(s,w,K, γ)

is mostly close to zero and therefore has little effect on the response.
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Figure 3.7. Estimated spatial dependence parameter
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Prediction. Using equation (3.1) and the corresponding MLEs given in Table 3.5,

we can conduct risk assessment for a given set of values of covariates such as location,

population density and month. Let x = (1, t, sin(ωt), cos(ωt), population density)> be a

given vector of covariates. Then, we can calculate the standard error of the predicted loss

µ = E[Y |s, t, x] as σ̂2
µ = ˆvar(E[Y |s, t, x]) = x>Σ̂x. As already explained, the risks exp(Y )

are highly right skewed which makes the median a better measure of risk severity than the

mean. Thus, we can assess the risk severity as exp(µ̂) with µ defined in (3.1). Because µ̂

is an estimator of the mean µ and exp(Y ) is highly right skewed, we can think of exp(µ̂)

as an approximation of the median. A (1 − α)100% confidence interval of the risk exp(µ)

is given as [exp(µ̂ + zα
2
σ̂µ), exp(µ̂ − zα

2
σ̂µ)], where zα

2
= Φ−1(α2 ) is the

α
2 quantile of the

standard Normal distribution. Table 3.6 shows some example of risk assessment for some

cities for 2014 including a 95% confidence interval (CI) for the median risk. The values are

rounded to the next closest integers. To check the accuracy of these predictions we compare

the result to actually observed data in the database.

Table 3.6. Risk assessment for 2014

San Antonio, July Colorado City, June Midland, June Dallas, May
Median Risk 9409 8815 11037 14854
Lower 95% CI 8475 8079 9915 13061
Upper 95% CI 10444 9618 12286 16893
Observed Median 9843 8366 11318 49213

We notice that the prediction works well for many cases, however, in May 2014

Dallas experienced severe thunderstorm winds that lead to large losses and our prediction

does not match the observed value.
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3.4. MATÉRN CORRELATION FUNCTION AS MEASURE OF DEPENDENCE

An alternative to estimating the dependence parameter between locations with the

radial basis functions is provided by the Matérn covariance function as a measure of

dependence. The Matérn covariance (named after the Swedish statistician Bertil Matérn)

is a covariance function used in spatial statistics, geostatistics, machine learning, and other

statistical applications. It is commonly used to define the statistical covariance between

measurementsmade at two points that are h units apart from each other. Since the covariance

only depends on distances between points, it is stationary. If the distance is the Euclidean

distance, the Matérn covariance is also isotropic (Minasny and McBratney [2005]). The

Matérn isotropic covariance function is given by (Cressie and Wikle [2011]; Handcock and

Stein [1993]; Stein [1999])

C(h) =
21−v

Γ(v)

(
h
r

)v
Kv

(
h
r

)
, (3.16)

where h is the separation distance, Γ(t) =
∫ ∞
0 xt−1e−xdx is the Gamma-function, Kv(·) is a

modified Bessel function of the second kind of order v (Minasny and McBratney [2005];

Abramowitz and Stegun [1972]). The modified Bessel functions of the second kind are

sometimes also called the Basset functions or MacDonald functions (Spanier and Oldham

[1987], p.499). Eventually r > 0 is the distance parameter which measures how quickly the

correlations decay with distance, and v > 0 is the smoothness parameter. The model was

first introduced byMatérn in 1960, but was deduced earlier byWhittle in 1954 (constrained

to v = 1). An alternative parameterization of equation (3.16) has been suggested by

Handcock and Wallis [1994]:

C(h) =
21−v

Γ(v)

(
2v1/2h

r

)v
Kv

(
2v1/2h

r

)
,

which allows r to be less dependent on v (Stein [1999]).
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TheMatérnmodel has great flexibility formodelling the spatial covariance compared

with the standard models because of its smoothness parameter v. The parameter v, which

controls the smoothness of the spatial process, should be determined from the spatial data.

When v is small (v → 0) it implies that the spatial process is rough, and when it is large

(v → ∞) that the process is smooth. If v is of the form (n + 1/2), n ∈ N0, then C(h) is

the product of a polynomial of degree m in (h/r) and exp(−h/r) (Minasny and McBratney

[2005]):

v = 1/2⇒ C(h) = exp(−h/r)

v = 3/2⇒ C(h) =
[
(h/r) + 1

]
exp(−h/r)

v = 5/2⇒ C(h) =
[
(h/r)2 + 3(h/r) + 3

]
exp(−h/r)

Instead of using radial basis functions to estimate the spatial dependence parameter,

we can use the Matérn covariance function as a measure of spatial dependence.

Recall: The spatial dependence parameter θ(s;w,K, γ) can be approximated by

equation (3.2)

θ(s;w,K, γ) ≈
K∑

k=1
wkφ

(
‖s − ek ‖2

)
,

where φ(·) : R+ → R is a radial basis function. In this approximation we can now replace

φ(·) with the Matérn covariance function C(·)

θ(s;w,K, γ) ≈
K∑

k=1
wkC

(
‖s − ek ‖2

)
and conduct the same computations as mentioned in the previous subsections.
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Theoretically, the parameters v and r need to be estimated from the data. However,

this is a cumbersome procedure and not the aim of this work. We choose v according to

what can be found in other literature. A good choice may be v = 3/2 (Gneiting et al.

[2010]). We also assume r = 1. Running the same procedure as explained above, yields

the predictions for 2014 as given in Table 3.7.

Table 3.7. Risk assessment for 2014 using Matérn covariance function

San Antonio, July Colorado City, June Midland, June Dallas, May
Median Risk 9944 8301 9689 11776
Lower 95% CI 8958 7579 8704 10354
Upper 95% CI 11038 9092 10786 13392
Observed Median 9843 8366 11318 49213

This result is a little different to the prediction we obtained before. Onemay consider

choosing other values for the parameters to optimize this procedure, i.e. by estimating the

parameters from the data.
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4. EXTENSIONS

SPATIO-TEMPORAL MODEL

The proposedmodel can be extended to a spatio-temporalmodel by letting θ(s;w,K, γ)

not only depend on the geographical location but also on the time, i.e. s = (Latitude, Longi-

tude, time). In this case we not only need to partition the data geographically using clusters

but also a partition along the time line [0, tmax] is needed , where tmax is the maximum time

t considered. This yields a modification of K as K = Kl × Kt , where Kl is the number of

clusters and Kt is the number of partitions along time (Hua et al. [2017]).

LOSS FREQUENCIES

Our original data contained many loss amounts of zero. We can extend the proposed

model to modeling spatial dependence for loss frequencies. For that purpose we let M(s) ∈

{0, 1, 2, . . . } be the number of losses at location s. M(s) can be written as M(s) = I(s)J(s)

with I(s) ∼ Ber(p), where p is the probability of success, and J(s) is a count variable, i.e. a

discrete random variable. Furthermore, we assume I(s) and J(s) to be independent. Then

P[M(s) = m] =


P[I(s) = 0] ,m = 0

P[I(s) = 1]P[J(s) = m] ,m = 1, 2, 3, . . .

An example of J(s) can be a shifted Poisson distribution whose parameter λ(s) depends on

the geographical location s

P[J(s) = m] = exp(−λ(s))
(λ(s))m−1

(m − 1)!
, m = 1, 2, . . .
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We can apply the spatial dependence concepts to model dependence among J(s)

using a one-factor copula model. The corresponding overall likelihood function is given by

L(p, α, θ |m1, . . . ,mn) =

∫ 1

0

n∏
i=1
(1−p)I(mi=0) [p(Ci |v(FJ(mi)|v)−Ci |v(FJ(mi−1)|v))

] I(mi>0)dv,

where FJ is the cdf of J(s), p is the parameter for the Bernoulli random variable I(s), and

α are the regression coefficients for λ(s). As before, θ are the dependence parameters that

can be written as a function of s, that is θ(s;w,K, γ). This implies we can use the proposed

approach for estimating θ(s;w,K, γ) (Hua et al. [2017]). For more information on factor

copula models for discrete data, we refer to Nikoloulopoulos and Joe [2015].
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5. CONCLUSIONS

In this work, we illustrated how linear models and factor copula models can be

used in order to model spatially dependent data such as insurance losses that are caused

by thunderstorm winds (or natural disasters in general). The main challenge of estimating

complex spatial dependence structures is reduced to estimating a spatial dependence pa-

rameter θ(s;w,K, γ). The spatial dependence parameter that is estimated via a weighted

sum of radial basis functions is embedded in the bivariate copulas in the likelihood function

which makes it computationally extremely expensive to maximize the likelihood function.

Note that we have used a bivariate Gaussian copulas in the methods but other families

of bivariate copulas can also be considered. The R-package "CopulaModel" also provides

functions for some other copula families such as the Frank or Gumbel family. Regarding run

time, one clearly needs to consider the amount of cluster that are being used for estimating

θ(s;w,K, γ) as it heavily influences the optimization procedure of the likelihood function.

As demonstrated, the proposed approach allows us to make efficient loss predictions as it

was shown for some cities in Texas. We have also discussed potential extensions of the

proposed models that can serve as dissertation research problems.
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