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ABSTRACT

Random matrix theory (RMT) is an area of study that has applications in a wide

variety of scientific disciplines. The foundation of RMT is based on the analysis of the

eigenvalue behavior of matrices. The eigenvalues of a random matrix (a matrix with

stochastic entries) will behave differently than the eigenvalues from a matrix with non-

random properties. Studying this bifurcation of the eigenvalue behavior provides the means

to which system-specific signals can be distinguished from randomness. In particular, RMT

provides an algorithmic approach to objectively remove noise frommatrices with embedded

signals.

Major advances in data acquisition capabilities have changed the way research is

conducted in many fields. Biological sciences have been revolutionized with the advent

of high-throughput techniques that enable genome-wide measurements and a systems-level

approach to biology. These new techniques are very promising, yet they produce a massive

influx of data, which presents unique data processing challenges. A major task researchers

are confronted with is how to properly filter out inherent noise from the data, while not

losing valuable information. Studies have shown that RMT is an effective method to

objectively process biological data. In this thesis, the underpinnings of RMT are explained

and the function of the RMT algorithm used for data filtering is described. A survey

of network analysis tools is also included as a way to provide insight on how to begin

a rigorous, mathematical analysis of networks. Furthermore, the results of applying the

RMT algorithm to a set of miRNA data extracted from the Bos taurus (domestic cow) are

provided. The results of applying the RMT algorithm to the data are provided along with

an implementation of the resulting network into a network analysis tool. These preliminary

results demonstrate the facility of RMT coupled with network analysis tools as a basis for

biological discovery.
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1. INTRODUCTION

1.1. BACKGROUND

The digital revolution in recent years has ushered in an unprecedented boom in new

technologies. Information is more easily accessible now than ever before via the internet,

which is making for a widely-connected, information-rich world. Advancements in sci-

ence have led to technological feats that would have been unthinkable only decades ago.

Biology is one field of science that has seen great advancements in recent times. High-

throughput techniques—biological methods that produce simultaneous measurements on

the order of thousands across the genome—are revolutionizing our understanding of cells

and how their constituents interact [40]. High-throughput techniques use automated equip-

ment that produce data which, when analyzed properly, help scientists tackle systems-level

biology questions that would have been unattainable with the use of traditional reductionist

approaches. These new experimental methods in biology are producing massive amounts

of “omics” data—any of the biological studies that end in the suffix “omics”, such as

proteomics, genomics, or metabolomics—that can be very difficult to interpret due to the

size and complexity of the data. Though the prospects of what can be learned from these

influx of data are exciting, there are large obstacles in managing, processing, and extracting

meaningful information from these unrefined data. These obstacles arise due to the data

being high-dimensional and noisy, which can make uncovering any underlying signals very

difficult. With so many variables in the data, there are bound to be spurious correlations

just by the nature of big data [25]. In order to process these data and extract meaningful

information, appropriate methods that include various statistical tests, bioinformatics meth-

ods, and data mining tools can be used. These methods are means to filter out random noise
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from the data. Once the data have been filtered, the process of discovering new information

and learning new science can begin. A network analysis approach can be used to facilitate

this discovery stage.

Using networks to analyze complex data is an emerging approach in biological

sciences. To use networks effectively, a critical step to make analysis feasible is the data

filtering process (or network pruning). The aim of this process is to reduce the amount of

static or irrelevant components in the data. There are various methods for network pruning;

however, new methods may be required in order to filter out random noise and non-

information. As high-throughput techniques are improved upon, computational complexity

increases so that previous data filtering methods become ineffective. One method for

network pruning that is explored in this thesis is called random matrix theory (RMT). RMT

has been already used in awide variety of fields because of its objectivity andmathematically

sound approach to data filtering. It has been applied in areas such aswireless communication

[82], quantum physics [33], number theory [42], and the financial field [48]. The discovery

of new and innovative applications of RMT is becoming a common occurrence [9]. The

diverse assortment of its applications provides evidence for the efficacy of using RMT as a

data filtering technique. It is an unbiased, system-information independent method that can

be applied to biological systems. More specifically, this evidence suggests that RMT would

be useful for filtering biological data, namely to prune co-expression networks. Also, there

is a need for RMT because pruning co-expression networks without ambiguity is difficult

and current methods are not robust and consistent with different data sets [52]. Luo et al.

[52] showed how RMT could be used to prune co-expression networks and subsequently to

facilitate learning about the functions of unknown genes.
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1.2. AIMS

This thesis will discuss networks and how they can be used as a tool for a systems-

level approach to biological research. A discussion of how networks are visually represented

with network diagrams, or graphs will be provided. Various network analysis methods will

be discussed, including 1) network reductionmethods, which includes a detailed description

of RMT, and 2) metrics for measuring the topological properties and features of networks

in order to compare different networks to each other. The main focus of this thesis will be to

discuss the fundamental principles of RMT and its application as a network pruning tool, a

pertinent step in data processing required to extract meaningful information from raw data.

RMT was applied to an open-source Bos taurus (domestic cow) miRNA data set and the

network reduction results are discussed. Lastly, after pruning the networks with the RMT

algorithm, the networks were then uploaded into the network analysis tool called Cytoscape

[73]. Provided are the results from one of the co-expression networks, so as to showcase

how the next stage of scientific discovery could be conducted.

1.3. STRUCTURE

The structure of this thesis is as follows: Section 2 provides a literature review that

contains background information on 1) what networks are and why they are an effective

tool for conducting systems-biology research, 2) statistical metrics used to create networks

from raw data, 3) an introduction to various network pruning methods, 4) an enumeration

of various network analysis methods, and 5) a detailed description of the network pruning

method RMT. Note that a description of RMT is not included in Section 2.3, where the other

pruning methods are described. The discussion of RMT is delayed until the end of Section

2, due to the depth and breadth of the content in which RMT is examined. Section 3 provides

the methods andmaterials used to apply the RMT algorithm to prune the Bos taurusmiRNA

co-expression networks. In Section 4, the results of applying RMT to the co-expression
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networks are presented. More specifically, four similarity metrics—Pearson, Spearman,

Czekanowski, and SPS—were each applied to the same set of raw miRNA expression data

to create four networks. It was at this point that the RMT algorithm was applied to each

co-expression network (correlation matrix) in order to remove noise and reduce the size of

each network. One of the pruned networks was then uploaded—the co-expression network

created with the Pearson similarity metric—into the network analysis tool called Cytoscape

[73]. The network was briefly inspected and a cursory demonstration and discussion was

provided of how the network could be analyzed further with Cytoscape for the next step

in scientific discovery. Finally, a summary of the work and a discussion of possible future

work is provided in Section 5.
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2. LITERATURE REVIEW

The age of big data has enabled researchers to collect comprehensive sets of data

on biological systems, which bestows golden opportunities for systems-level approaches to

understanding biology [64]. Trying to understand biology as a whole system, rather than

component-by-component analysis, has been a focal point since the emergence of the this

big data age. A systems-level approach endeavors to understand something as a unitary

whole from a top-down approach. This opposes a bottom-up approach that strives to under-

stand the whole system by piecing together the comprehension of the system’s constituent

components. Processing information about performance and component interactions as a

whole fosters insight into complex systems that were inaccessible before the post-genomic

era. One way to study these complex systems is with networks.

Networks have been used to represent a wide variety of systems and have demon-

strated their efficacy in areas such as social network analysis [12], the World Wide Web [1],

and many domains of biology such as gene co-expression networks [39, 80, 91], protein-

protein interaction networks [28, 45, 69], and cell biology [2, 36]. Biological systems are an

excellent candidate for the use of networks as an analytical tool because they are composed

of many inherent complexities and interacting components. A reductionist approach of

studying isolated components is not well-suited for biological systems because of the uni-

versal modularity exhibited in these systems [5]. Trying to understand biological systems

by studying the individual components can be likened to the parable of the blind men and

the elephant. When the men try to describe the elephant as a whole from their individual

isolated view points, they miss the mark. Though each description may be accurate, the

men are limited by the failure to account for other truths outside of their own account. This

describes the limitations of a bottom-up, or reductionist, approach to biology. A systems-

level approach, rather than a purely reductionist view, should be used to understand how
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the constituent parts interact and affect each other in order to get the big picture of what

is happening in the system. Networks are an effective analytical tool for this systems-level

approach. They have been widely used in various branches of biology because of the con-

venience with which the relationships and interactions between the biological entities can

be represented [56], especially since the advent of biological big data [15].

2.1. NETWORK OVERVIEW

A network is a way to represent the relationship between objects and how they

interact. Any system that is composed of a collection of objects and their interactions can

be represented with a network. The data required for a network can be represented as a table

in a simple interaction file (SIF). A network that is in SIF format, in its simplest form, will

contain three columns. The first column represents object 1, the second column represents

object 2, and the last column is the relationship between those two objects. This last column

could be a quantification of some association between the objects from columns one and

two. Networks in SIF format are practical because they can easily be converted into a visual

representation of the network.

A visual representation of a network is called a network diagram or simply a graph.

Graphs are essentially composed of a collection of points and lines where the points are

the objects and the lines are the associations between the objects. In the jargon of network

theory, the points are called nodes, or vertices, and if two nodes are associated with each

other a line called an edge connects them [56]. The entire complexity of the network can

be captured visually with a graph composed of this collection of nodes and edges [5]. In

a biological system, the nodes represent the constituent parts that constitute the system

(e.g. genes, miRNA, or proteins) and the edges represent the interactions the biological

components have with each other. The collection of these edges and nodes make up
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the biological system as a whole. Representing biological networks this way provides a

mathematical representation of the system and has applications in ecological, evolutionary,

and physiological studies [63].

The purpose of converting a network into a graph is to enable the visualization of

the system at hand, which facilitates understanding and can help scientists glean insight that

might otherwise be lost. Visualizations are very important and powerful inmodern scientific

research because they allow humans to take advantage of our biology (i.e. our eyes and the

connection with the mind) to see, explore, and process large amounts of information at once

[27]. Graphs essentially allow for a better understanding of how objects are associated with

each other and the implications of the correlations. Networks are flexible and generic in

the sense that many different systems can be represented by them. Biological systems are,

therefore, a great candidate for a network analysis approach. A gene co-expression network

is a common example of a biological system represented with a network [13, 80, 95].

The nodes represent the different genes in the system and two nodes are connected by an

edge if the two genes have a significant correlation. Many other biological systems can

be represented with networks, besides just gene co-expression data, because the network

architecture of biological systems exhibit characteristics that are generic to systems-level

cellular organization [67]. Modeling biological systems with networks has hence become a

prevalent method for systems biology research.

Note that the terms network and graph are often used interchangeably. In this thesis,

the term network will sometimes be used to refer to the visual representation of the system

as well as to reference the table format of the system, such as the SIF formatted file described

previously. It will be clear what the term network is referring to from the context. The

term graph, however, will strictly mean the visual representation of the system. This section

has been a high-level introduction to graph theoretical concepts and definitions that are

applicable for representing biological systems. For a more thorough introduction, see [41].
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2.2. CREATING NETWORKS: SIMILARITY METRICS

Networks are often constructed to represent a biological system. To construct a

network of a biological system, a similarity metric or a distance metric can be applied to

a set of experimental data. The result is a matrix of values that quantifies the association

between the constituents of the biological system. To reiterate, the constituents of the

biological system could be various entities, such as different genes from which a gene co-

expression network could be constructed. In this thesis, the components of the biological

data are different miRNA sequences.

Typically, similaritymetrics—also known as correlationmetrics—are applied to two

or more objects (e.g. two different miRNA sequences). The similarity metric will quantify

an association the objects have with each other. This quantification could be a variety of

measurements, such as how often the objects are involved in a similar process, how likely

the objects are to appear in the same location, etc. The value representing the quantified

correlation is often referred to as the similarity coefficient, or the correlation coefficient.

This correlation coefficient is a real-valued number that describes to what extent the objects

are related.

Similarity metrics are ubiquitous in statistics and related fields and many different

similarity metrics have been developed as well [14]. The plethora of similarity metrics

is not a superfluity because each metric is important in its own right. Different metrics

were developed to measure different aspects of correlation. Each metric measures different

aspects of similarity and quantifies those associations in different manners. Using the ap-

propriate measure for a specific need is of fundamental importance in pattern classification,

clustering, and retrieval problems [23]. The similarity metric chosen will highlight specific

features of the data. Different similarity metrics applied to the data will ultimately result

in different biological interpretations of the data. Therefore, a similarity metric must be

chosen based on the biological significance that is trying to be captured.
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This thesis will cover four similarity metrics used to create different networks: Pear-

son product moment correlation, Spearman’s rank-order correlation, Czekanowski index,

and the stringent proportional similarity index (SPS).

2.2.1. Pearson Product-Moment Correlation. The first rigorous mathematical

derivation of the Pearson product-moment correlation coefficient, or Pearson’s r , was de-

veloped by Karl Pearson in 1895 [57]. Francis Galton is credited for first introducing the

notion of regression in 1886 upon which the Pearson’s r was built [30]. Pearson’s r was

the primary measurement of correlation in regression analysis and is still very widely used

today. It is a dimensionless index that is calculated with the formula:

r =

n∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
√√ n∑

i=1

(
Xi − X̄

)2
n∑

i=1

(
Yi − Ȳ

)2

(2.1)

where X̄ and Ȳ are the expected values of the vectors X = {x1, x2, x3, . . . , xn} and Y =

{y1, y2, y3, . . . , yn}, respectively. The Pearson’s r can be interpreted as the strength of the

linear relationship between two variables [50]. Using the Cauchy-Schwarz inequality, it can

be shown that the absolute value of the numerator is less than or equal to the denominator

and therefore −1 ≤ r ≤ 1. The closer to 1 or -1 the r value is, the stronger the positive or

negative linear relationship is between the two vectors, respectively. A Pearson’s r value

near 0 indicates a lack of linear relatedness; this does not, however, indicate that the two

vectors are independent.

2.2.2. Spearman’s Rank-Order Correlation. Spearman’s rank-order correlation

was developed by Charles Spearman in 1904 [78]. The correlation coefficient is often

denoted by ρ, which gives way to its reference of Spearman’s ρ. Spearman’s ρ is a

nonparametric version of the Pearson correlation, meaning it does not necessarily matter

what the values of the individual entries are, it matters only what the values are relative to the

other values. Because only a variable’s rank matters, each rank is given equal weight. This
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makes Spearman’s correlation less sensitive to strong outliers that would more heavily affect

Pearson’s correlation. For a definition of Spearman’s ρ, let X = {x1, x2, x3, . . . , xn} and

Y = {y1, y2, y3, . . . , yn} represent two vectors of length n. Also, letR = {R1, R2, R3, . . . , Rn}

and Q = {Q1,Q2,Q3, . . . ,Qn} represent the sequence of ranks for the vectors X and Y,

respectively. Spearman’s ρ is calculated with the formula:

ρ =

n∑
i=1

(
Ri − R̄

) (
Qi − Q̄

)
√√ n∑

i=1

(
Ri − R̄

)2
n∑

i=1

(
Qi − Q̄

)2

(2.2)

where R̄ and Q̄ are the mean ranks of the sequence of values for the variables R and Q,

respectively [61]. From this definition, it is easy to see the similarity between the Spearman

correlation and the Pearson correlation; Spearman’s correlation is the same formula as given

by Equation (2.1), where Xi = Ri and Yi = Qi, indicating the formula is applied to the ranks

rather than the raw data as it is in Pearson’s correlation. Spearman’s correlation is also

similar to the Pearson correlation in that it is on the scale −1 ≤ ρ ≤ 1. A Spearman’s ρ

value close to -1 represents a strong negative correlation in the monotonicity, a Spearman’s

ρ value near 0 indicates a very weak correlation in monotonicity, and a Spearman’s ρ value

near 1 indicates a strong positive correlation in monotonicity of the two vectors. The two

correlation tests differ in that the Pearson correlation is quantifying the strength of the linear

relationship between two variables (vectors) whereas the Spearman correlation is simply

measuring the strength of the monotonic relationship between the variables. Consequently,

the variables do not necessarily need to have a linear relationship to exhibit a correlation

[61].

2.2.3. Czekanowski Index. The Czekanowski index was described by Jan Czekan-

owski as early as 1909 [18] and more in-depth in 1913 [19] to quantify the likeness between

two biological samples. The Czekanowksi index is a quantitative version of a presence-

absence similarity index called the Sørensen index [76]. The Sørensen index, which is also
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known as Czekanowski’s binary [29], is widely used to calculate ecological community

measurements [94]. The Czekanowski index is also known as the proportional similarity

index [7]. This metric is used to quantify the amount of set intersection two or more vectors

may have with each other. The Czekanowski index, therefore, takes on values in the range

[0, 1]. An index value between two samples that is near 0 indicates that the two samples

had very little overlap. An index value near 1 indicates that the two samples had substantial

overlap. For two vectors X and Y, the Czekanowski index is defined as:

Cz =

n∑
i=1

2 min(Xi,Yi)

n∑
i=1
(Xi + Yi)

(2.3)

2.2.4. Stringent Proportional Similarity Index. The stringent proportional sim-

ilarity index (SPS) was developed by D. Weighill and D. Jacobson [85]. SPS is a modified

version of the Czekanowski index created with the intention of being an index that quanti-

fies vector overlap similar to how the Czekanowski index does. SPS is more strict than the

Czekanowski index though, in the sense that vectors have to be more similar to each other

in order to achieve the same score as that of a Czekanowski index. For two vectors X and

Y,Weighill defines the SPS index as:

1 − 1
n

n∑
i=1

��X2
i − Y2

i

��
X2

i + Y2
i

. (2.4)
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It is apparent that if in the ith position, both vectors X and Y have a value of 0, then the

expression is undefined due to a division by zero error. To resolve this issue, a slightly

modified version of the SPS index was created. The modified SPS is defined as:

1 − 1
n


n∑

{i:X2
i +Y2

i ,0}

��X2
i − Y2

i

��
X2

i + Y2
i

+

n∑
{i:X2

i +Y2
i =0}

1

 . (2.5)

If there is a value of 0 in the ith position for both vectors X and Y, then the expression is

calculated slightly different than that of Equation 2.4 in order to remedy the divistion by

zero error. The new term included in Equation 2.5 can be considered as a penalty term for

the calculation of the SPS index. If two vectors are both very sparse (i.e. the majority of the

values are 0), then these two vectors should not be considered to be similar to each other.

The SPS index and also the Czekanowski index are metrics for quantifying how

similar two vectors are, or the amount of biological overlap exhibited. With this in mind,

that is why the penalty term was added so that two sparse vectors will not attain a high

SPS index value. The scale for the SPS index is the same as for the Czekanowski index,

namely values in the range [0, 1] because it also measures the amount of overlap between

two vectors. Therefore, the values can be interpreted in a similar fashion, namely an SPS

index value near 1 indicates that the two vectors of data were very similar and on the other

hand, if two vectors were nearly disjoint, then the SPS index will have a value near 0. Note

that when the SPS index is referred to throughout the rest of this thesis, it will be referring

to the modified version in Equation 2.5

2.3. NETWORK PRUNING

Network pruning is the process of removing unwanted or irrelevant parts of a

network before one begins to analyze it. Pruning is a necessary step in data processing

in order for the emergence of significant associations in the data to become observable.
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Constructing a network by using a similarity metric, such as the ones defined in the previous

section, quantifies the association between objects. The resulting network from applying a

particular similarity metric is a complete network of the data which includes an all-versus-

all comparison between the different elements of the data. The resulting network could

contain significant amounts of noise, or irrelevant data, that mask the true associations and

correlations that some elements may have with each other. One of the major challenges

in network construction is to produce a network of the biological data which captures the

complex interactions without too much computational complexity overhead [38]. Pruning

endeavors to filter out this noise so that the system specific signals can emerge. A selection

of some widely used pruning methods will be covered in this section. However, the random

matrix theory (RMT) pruning method has a dedicated portion by itself in the last section of

this literature review, since it is the focus of this thesis.

2.3.1. Thresholding Methods. A threshold is a base value against which one can

compare all of the values in the network thatwere obtained by applying a particular similarity

metric to the experimental data. This threshold is the value that demarcates the irrelevant

noisy data from the system specific signals. The entries that have a correlation value whose

magnitude is less than the threshold value will be regarded as less significant.

Thresholding has been suggested by several researchers as a way to create robust

networks [10, 13, 20, 95]. Zhang et al. [95] proposes two methods of thresholding, namely

hard thresholding and soft thresholding. Hard thresholding completely eliminates the

entries whose (absolute) value is less than the specified threshold. This hard thresholding

method is essentially a sign function, or signum function, which assigns a “sign”, a 1 or a

0, to the entries in the similarity (correlation) matrix based on their value compared to a

predefined threshold value τ. This is defined mathematically by:

ai j = sgn(si j, τ) :=


1, if |si j | ≥ τ

0, otherwise
(2.6)
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where si j is the correlation value between the ith and jth nodes in the similarity matrix, τ

is the predefined hard threshold value, and ai j is the resulting connection or disconnection

between the ith and jth nodes. All of the edges in which a 0 was assigned are then deleted

from the network. This removes the edges that signify a weak correlation and retains a

network with only the most prominent correlations. It reduces the network and therefore

some of the computational expense. Though there are strategies for picking hard thresholds

based on statistical significance [95], information can still be lost with a hard thresholding

method [13, 95]. An example of this is if τ = 0.90 then any correlation coefficient c whose

value is below τ will be eliminated from the network: if c = 0.899, the edge will still be

removed. Note that this hard thresholding method is for creating unweighted graphs [81].

Another thresholding method proposed by Zhang et al. [95] is called soft threshold-

ing. The soft thresholdingmethod differs fromhard thresholding in that if a soft thresholding

method is used, none of the edges will be removed from the network. This is an approach

when weighted networks [81] are used for analysis. Soft thresholding essentially applies a

function to the correlation values in the similarity matrix that increases the relative weight

of strong correlation values. Similarly, the function decreases the relative weight of weaker

correlation values. An example of such a soft thresholding function is [95]:

ai j = f (si j, β) := |si j |β (2.7)

where si j is the correlation value between the ith and jth nodes, β is a parameter which affects

the relative weight assignment, and ai j is the resulting edge weight assigned by applying

the function f . This has the benefit of not losing any information from the data; however, it

does not decrease the computational expense, which becomes significant when there is an

increasing amount of data being produced. Because the soft thresholding method neglects

to remove any potentially irrelevant edges, the network can be plagued with spurious node

connections, which can mask the true signal in the network.
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2.3.2. Maximum Spanning Tree. The maximum spanning tree algorithm is a way

to construct a spanning tree with maximum weight from a weighted graph. Essentially, it

is a method to prune a network so that only the most significant portions are maintained.

Maximum spanning trees are the result of applying a sister algorithm, minimum spanning

trees [60], to a set of data whose entries are inverted [72]. More specifically, each entry in

a network ai j is replaced with the value a′i j = 1 − |ai j | and then subsequently, a minimum

spanning tree algorithm is applied to the network.

2.4. METHODS OF NETWORK ANALYSIS

Once a network has been created and properly filtered to remove any spurious

correlations, one can begin investigating the patterns that emerge. The patterns in the

network interactions are often overlooked, but almost invariably crucial to the behavior of

the system [56]. Kitano and Hiroaki [47] describe the importance of network analysis well

with an analogy to examining traffic patterns; creating a diagram or a graph is an important

first step, which is like a static road map, but what is really important is to know the traffic

patterns, why the patterns emerge, and how to control them. Understanding the patterns and

structures of a system contribute to an understanding of how the system works as a whole.

Networks are now a very useful tool for analyzing these complex systems as a whole

because of modern computational power which is enabling data acquisitions that allows for

a better analysis of network topologies. The topology of an object is concerned with its

geometric properties in space, as well as its logical arrangement. Various network topology

metrics have been developed to analyze and quantify different properties of the networks

[39]. These metrics analyze the layout of the graph, the geometric properties of the nodes,

and the node-based interactions and connectivity. A network’s topology can be assessed on

the microscale (local) and on the macroscale (global). Local properties of a network involve
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properties at the individual node-based level, whereas the global network properties assess

the more general properties of the network as a whole. Quantifying aspects of a network

allows for the ability to compare the properties of one network with another.

Many different networks can be created from the same set of data. The various

combinations of procedures to produce the network will generate the possibility for the

exhibition of many different topological characteristics. The choice of a similarity metric

to calculate the correlations, in conjunction with the chosen method of data filtering, can

have a significant effect on the network topology. Comparing and contrasting topological

features of two networks could show prevailing characteristics that would be of interest to

explore. Also, there may be discrepancies that warrant further investigation and could lead

to new understandings of the system. This is why having metrics to use as a tool for network

comparison is important. The following subsections will briefly list and discuss some of the

metrics and methods used to analyse network topologies. These metrics quantify network

characteristics at the local-level and the global-level, which then allows for the ability to

compare and contrast biological networks.

2.4.1. Local Network TopologyMeasures. These are called node-based topology

measures. The cornerstone of these local measures is in the properties of the individual

nodes and or node-pair associations. Weighill [85] provides a thorough discussion of eight

local network topology measures and therefore a simple enumeration of those measures that

were detailed will be provided. The eight different measures included in [85] are: adjacency

[95], connectivity [39], maximum adjacency ratio [39], topological overlap [67, 95], TOM-

based connectivity [95], clustering coefficient [84], betweenness [68], and efficiency [49].

To reiterate, these local measures listed will provide a way to quantify the properties of a

network on the node-based level. These quantifications provide the grounds on which one

could begin comparing two different networks.
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2.4.2. Global NetworkTopologyMeasures. Thesemetrics quantify network char-

acteristics that may be more visually apparent when the network is examined with a network

visualization tool. Weighill [85] provides a diligent report of four main global network

topology measures that are enumerated here. These measures include: density [75], cen-

tralization [22], heterogeneity [22], path length [84], and degree correlation [68]. These

global measures take a high-level view of the network as opposed to the local node/node-

pair level view. Global characterizations of networks can capture emerging patterns that a

granular local metric may not capture.

2.5. RANDOMMATRIX THEORY

2.5.1. SectionOverview. This sectionwill include a detailed description of random

matrix theory (RMT). RMT is a network pruning method whose discussion was delayed

until now because a much more in-depth description than the other pruning methods is

provided; as it is the focus of this thesis. Included is a description of the origins of study,

the mathematical theory and foundation relevant to this thesis, and also definitions and

descriptions of relevant statistical distributions necessary for understanding the application

of RMT. The section concludes with a discussion of various candidate software tools that

were investigated for applying the RMT algorithm.

2.5.2. Introduction to Random Matrix Theory. One focus area in mathematical

physics involves studying the spacings of ordered entities in a system [55]. Suppose there

is a system with the observables {ε1, ε2, ε3, . . . , εn}, where ε1 ≤ ε2 ≤ ε3 ≤ . . . ≤ εn, which

describe some property of that system. The spacings between the distinct εi could be a

central question to explore. Studying spacings has long been an active area of research,

which includes examining the spacings between different energy levels of complex nuclei

[86], prime gaps [77], and the ordered arrangement of the eigenvalues of symmetricmatrices

[24]. Having a full, comprehensive body of knowledge about the system itself would lend
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to an exact knowledge of the spacing between each εi and εi+1. When studying complex

systemswhose interrelationships quickly become too thorny to grasp, the converse approach

is often taken; namely trying to gain more of an understanding about the underlying system

from the knowledge of how the εi are spaced.

RMT is an approach for studying massive, complex systems that are too difficult to

directly analyze because of their labyrinth of connected components. The main functional-

ity of RMT is to contribute to an understanding of complex systems primarily by analyzing

the statistical properties of eigenvalue spacing distributions of the systems. By examining

the distribution of the eigenvalue spacings of a network and comparing that distribution

to known global properties associated with some universal system, one can detect system

specific behavior and determine what is unique about the network that is being analyzed.

The behavior just described is called universality, a key concept to the mechanics of RMT.

Universality is the observation that there are behaviors exhibited in a large collection of

systems that share some similar characteristics, which are independent of the individual

systems. The universality property that RMT utilizes is the known eigenvalue spacing char-

acteristics exhibited by established ensembles of random matrices. Before delving deeper

into the mechanics of RMT and discussing more about these random matrix ensembles,

the history of RMT should first be discussed along with the emergence of its multifaceted

applications in various domains.

The study of RMT has is roots in the nascent research of random matrices by John

Wishart in 1928 [89]. Wishart was analyzing the statistical properties of the eigenvalues of

random matrices. This ground work helped build the foundation for modern research and

applications of RMT. It has since matured and developed within the realm of mathematics

and physics into a tool with many useful applications. RMT was brought to the forefront

of physics and mathematical research by Eugene Wigner and Freeman Dyson in the 1960s

[88] for studying high-dimensional complex systems, namely atomic nuclei.
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Wigner had labored to study the energy levels of the uranium nucleus in the 1950s

[86] and was finding that it was far too difficult to understand how all the constituent

components interacted; it is known that matrices can be used to represent the energy

levels of an atom. According to Dyson, “Every quantum system is governed by a matrix

representing the total energy of the system, and the eigenvalues of the matrix are the energy

levels of the quantum system” [90]. Simple atoms like hydrogen and helium can easily

be calculated to astounding precision; however, when dealing with heavy nuclei such as

uranium and plutonium, the calculations become infeasible. There are simply too many

interconnected constituent parts of a uranium nucleus to handle.

Wigner’s goal was to describe the general properties of the energy levels of atomic

nuclei, like uranium, with a Hamiltonian H [44]. A Hamiltonian is a Hermitian operator

that corresponds to the total energy in a system, also known as the total energy operator [17].

The eigenvalues of the Hamiltonian would correspond to the energy levels of the physical

system. But again, the nuclei of heavy atoms are too difficult to directly be represented with

a matrix H. Wigner then postulated that H could be regarded as a random matrix that is a

member of a large group or ensemble of Hamiltonians which would all have some of the

same universal properties [87]. This leads into the discussion of random matrix ensembles.

2.5.3. Wigner Matrices. The most basic model for a random matrix ensemble is

the Wigner matrix ensemble. For the sake of clarity, an ensemble of random matrices is a

family, group, or collection of random matrices where any member of the infinite group of

matrices can represent a state of the entire group. Wigner matrices are historically important

because they were the first model of a random matrix ensemble.

Now to define a Wigner matrix (ensemble): specifically a real Wigner matrix which

is a Wigner matrix with real-number entries. Without loss of generality, when referring to a

real Wigner matrix it will be referred to simply as aWigner matrix because neither complex

nor quaternionic Wigner matrices will be considered in this thesis. Consider a symmetric
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N × N matrix A:

A =

©­­­­­­­­«

a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...

aN,1 aN,2 · · · aN,N

ª®®®®®®®®¬
=

©­­­­­­­­«

a1,1 a2,1 · · · aN,1

a1,2 a2,2 · · · aN,2
...

...
. . .

...

a1,N a2,N · · · aN,N

ª®®®®®®®®¬
= AT (2.8)

where AT denotes the transpose of A. Let the matrix elements {ai j : i < j} (off-diagonal)

and {aii : i} (diagonal) be two independent and identically distributed (i.i.d.) random

variables. Suppose the matrix elements ai j have mean zero and unit variance: E(ai j) = 0

and E(a2
i j) = 1. Further suppose the matrix elements aii also have mean zero and unit

variance: E(aii) = 0 and E(a2
ii) = 1. This matrix A is then a representative of the Wigner

matrices. Note that the random variables aii and ai j are not necessarily from the same

distribution.

2.5.4. Wigner Semi-Circle Law. Now, with a Wigner matrix defined, the staple

of RMT can be introduced: the Wigner semi-circle law. This can be seen as the inception

to the study of RMT. The Wigner semi-circle law was first derived by Eugene Wigner in

1955 when he observed that the empirical distribution of the eigenvalues of aWigner matrix

closely followed the distribution of a semi-circle [87]. The standard semi-circle distribution

of a random variable X with a continuous distribution on [−1, 1] is given by the probability

density function f defined as:

f (x) = 2
π

√
1 − x2, x ∈ [−1, 1]. (2.9)

The semi-circle law is concerned with the asymptotic behavior exhibited by the normalized

eigenvalues

λ1

(
A
√

N

)
≤ λ2

(
A
√

N

)
≤ λ3

(
A
√

N

)
≤ · · · ≤ λn

(
A
√

N

)
(2.10)
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of an N × N Wigner matrix A in the limit as N → ∞. It should also be noted that the

eigenvalues of a real symmetric matrix are real [65], and there are exactly N eigenvalues

(not necessarily distinct) due to the fundamental theorem of algebra.

Wigner observed that the histogram of the eigenvalue density approached the de-

terministic curve of the semi-circle or half-circle distribution. This in fact turned out to be

universally true, which the Wigner semi-circle law describes. This law implies that there is

a universal probability density distribution, σv, for which the density of eigenvalues of any

Wigner matrix, with a secondmoment v, will converge toσv [46]. This limiting distribution

is given by:

σv(x) =
1

2vπ
√
(4v − x2)+ (2.11)

where (x)+ = x if x > 0 and (x)+ = 0 otherwise. This law turns out to be critically important

in RMT. It, in effect, advances that the eigenvalues of certain ensembles of randommatrices

will behave in a predictable fashion. This is very useful because if one knows how the

eigenvalues of a matrix should behave, then when the distribution of the eigenvalues behave

differently, it indicates that there has been some kind of deviation from the norm. The point

at which the deviation occurs is when there has been an underlying change in the data. This

idea is the basis of the application of RMT, which will be discussed further in this section.

To illustrate the Wigner semi-circle law and how it is valid for N × N Wigner

matrices as N →∞, two plots were produced with the statistical programming language R

[66]. The R code that was written to produce these plots is provided in Appendix A. Figure

2.1a is a 500× 500 normalized Wigner matrix and Figure 2.1b is a 5000× 5000 normalized

Wigner matrix. As the dimensions of the symmetricWigner matrix increase, the eigenvalue

distribution gets closer to the semi-circle distribution. Thesematrices were constructed with

entries aii and ai j from a normal distribution: aii ∼ N(0, 1) and ai j ∼ N(0, 1). Wigner

matrices with entries from the normal distribution are equivalently called Gaussian Wigner

matrices. This leads into the discussion of the Gaussian orthogonal ensemble (GOE).
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Eigenvalue Distribution of a 500 by 500
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Eigenvalue Distribution of a 5000 by 5000
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Figure 2.1. Plots (a) and (b) illustrate the convergence of the eigenvalue density distribution,
as N → ∞, to the limiting semi-circle distribution as described by the Wigner semi-circle
law. Plot (a) is the distribution for a 500 × 500 normalized Wigner matrix and similarly,
Plot (b) is for a 5000 × 5000 normalized Wigner matrix.

2.5.5. Gaussian Orthogonal Ensemble. Gaussian ensembles, namely Gaussian

orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic

ensemble (GSE), are some of the most typical and frequently studied ensembles of random

matrices. This is likely because these ensembles are the least computationally expensive

ensembles of random matrices [8]. Dyson introduced these three matrix ensembles with

time reversal as a motivation [44]. In this thesis, the application of RMT on biological data

required the use of the statistical properties of the GOE.

Now for a definition of this special Wigner matrix ensemble: an N × N Wigner

matrix A, whose entries are ai j ∼ N(0, 1) and aii ∼
√

2N(0, 1), is considered a member

of the GOE. One of the main features of the GOE is the concept of level repulsion that

Wigner described for energy level of quantum systems. The eigenvalues from a GOEmatrix

have the tendency to repel each other, or in other words, they will likely have distinct and

isolated values. Wigner posited this idea of level repulsion while studying the nuclei of

complex heavy atoms. He realized that the energy levels (eigenvalues) should repel each

other and so he began investigating the distribution of the spacings between the different

levels. This lead to the idea of the nearest neighbor spatial distribution (NNSD) of the
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eigenvalues. Before the NNSD is described, a preliminary discussion of Poisson statistics

and the negative exponential distribution needs to be established along with a description

of the χ2 goodness-of-fit test.

2.5.6. Statistical Distributions. In this subsection, a description of the statistical

procedures involved in the RMT algorithm is provided. Specifically, a description of the

negative exponential distribution, the χ2 goodness-of-fit test, and the nearest neighbor

spatial distribution (NNSD) is provided.

2.5.6.1. Poisson statistics and the negative exponential distribution. The Pois-

son distribution is a well known and widely used discrete probability distribution. Despite

its name, it is not the fish distribution. The Poisson distribution was developed in 1837 by

the French mathematician Siméon Denis Poisson [62]. It is a discrete probability distribu-

tion, meaning that it gives the probability of an event X occurring at some specific value

x, where x can take on a finite or a countably infinite number of values. The sum of the

probabilities of each event x occurring over all possible values of X adds to 1. Therefore,

X is a discrete random variable defined as:

∞∑
x=0

Pr (X = x) = 1 (2.12)

where x are all of the possible values of the variable X . A Poisson random variable X is

defined as the number of events that occur in some interval of space or time. If a random

variable X is described by a Poisson distribution, it is said to follow a Poisson process,

namely 1) the events must occur independently, i.e. the occurrence of one event does not

diminish nor increase the probability of occurrence of another event, 2) the rate at which

the events occur is constant, 3) the number of times an event can occur is non-negative,

and also 4) the mean is equal to the variance: E(X) = Var(X) [34]. The probability mass

function of the Poisson distribution is given by:

fX(x) = Pr(X = x) = λ
xe−λ

x!
(2.13)
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where x, the number of occurrences per interval, takes values 0, 1, 2, . . . and the mean

number of occurrences per interval is given by λ.

The Poisson distribution is closely related to the negative exponential distribution.

Whereas the Poisson distribution might be used to model the probability of occurrences

of random events, the negative exponential distribution would be used to model the how

much time elapses between those random events. Both of these distributions relate to the

same Poisson process, they just govern different aspects of it. The negative exponential

distribution is defined by:

P(s) = e−s . (2.14)

In the application of the negative exponential distribution to eigenvalue occurrences, s would

denote the spacing between successive eigenvalues, where s can take on values [0,∞).

2.5.6.2. The χ2 goodness-of-fit test. Here a description of the χ2 goodness-of-fit

test, or just χ2 test, is provided. It is a critical component in the RMT algorithm and the

statistical procedure that the RMTGeneNet software implements: a software package used

in this thesis. The χ2 test is the oldest and perhaps best-known goodness-of-fit test that

was first investigated by Pearson in 1900 [58]. It provides a quantitative statistical basis to

see if some hypothesized distribution “fits” the distribution of some observed data. A χ2

test can be used to analyze how “close“ the observed values from an experiment are from

those which one would expect if the values were from a random variable that followed a

particular distribution.

The null hypothesis, H0, is that the observed data follow a particular distribution.

The outcome of the χ2 test provides evidence to either support the assertion of the H0

or to not support it. If the results fail to reject the H0, then there is strong evidence to

suggest that the observed data does in fact come from the same random variable as the

one that follows the particular hypothesized distribution. On the other hand, if the results

do not support the H0, then the H0 is rejected for an alternative hypothesis, H1. This

H1 states that the observed data is not from a random variable that follows the particular
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hypothesized distribution. These hypotheses should be stated in a way such that they are

mutually exclusive: if one hypothesis is true, then the other hypothesis is effectively not

true, and vice versa.

Once the H0 and H1 have been established, the next step is to partition the observed

data into n intervals, or bins, of finite length. The χ2 test statistic is then defined as:

χ2 =

n∑
i

(Oi − µi)2
µi

(2.15)

where Oi is the observed frequency for bin i and µi is the expected frequency for bin i;

see Conover [16] for an explanation of how to calculate the expected frequency µi. The

exact χ2 test statistic is approximated by the χ2 distribution with n− 1 degrees of freedom.

Therefore, one can see that the χ2 distribution varies depending on the number of degrees

of freedom, or the number of bins used to partition the observed data.

An analysis plan is formulated by choosing a statistical relationship parameter α.

Recall that a statistically significant relationship means that the results from an experiment

are not likely to occur by pure chance alone, instead there is likely a specific cause for what

is being seen. A significance level α is established, which is the maximum probability of

rejecting a true null hypothesis one is willing to accept [16]. The significance level α is

used to determine if the observed sample frequencies significantly differ from what was

expected in the H0. If the χ2 test statistic value is greater than the 1 − α quantile from the

χ2 distribution with n − 1 degrees of freedom, then the H0 would be rejected. The p-value

associated with the χ2 test statistic is the probability that a χ2 random variable with n − 1

degrees of freedom would be greater than the χ2 test statistic value if the H0 were true. This

can be found with a χ2 table. These tables can be used to complete a statistical analysis in

order to discern the χ2 values. A χ2 table is included in Appendix C.
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For the RMTGeneNet software used in this thesis, the H0 is that the nearest neigh-

bor spatial distribution (NNSD)—discussed in the next subsection— follows the negative

exponential distribution. The H1 is that the NNSD does not follow the negative exponential

distribution. When the default p-value of ∼ 0.001 is obtained (χ2=100 with 59 degrees of

freedom), the H0 is rejected; i.e. the distribution does not follow the negative exponential

distribution [32].

2.5.6.3. Nearest neighbor spatial distribution. The discussion of the statistics

involved in RMT can continue with a description of the nearest neighbor spatial distribu-

tion (NNSD). The NNSD looks at the difference between successive eigenvalues from an

ordered sequence of eigenvalues and quantifies the distribution of the spacings. This is

a convenient way to compare eigenvalue distributions. Consider the ordered sequence of

eigenvalues {λ1, λ2, λ3, . . . , λn}, where λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn. Then, let the sequence

{x1, x2, x3, . . . , xn} represent the normalized spacings between successive eigenvalues:

xi =
xi+1 − xi

S
, (2.16)

where S is the average spacing of the sequence. The NNSD is then the probability density

function P(x), which gives the probability of finding the next eigenvalue λi+1 a distance of

x away from a known eigenvalue of λi.

There are two universal ensembles of matrices that RMT distinguishes for, 1) the

GOE, which are a class of randommatrices and 2) the Poisson ensemble, which are matrices

whose eigenvalue behaviors follow statistics described by the Poisson process. Observing

the NNSD of these two distributions allows for a characterization of the matrix as a member

of the GOE or as a member of the Poisson ensemble. This thesis will denote PGOE (x) and

PPoisson(x) as the NNSD of the GOE and Poisson ensemble, respectively, where x is the

random variable that denotes the eigenvalue spacing. As it was stated earlier, the eigenvalues

of matrices that are a member of the GOE exhibit level repulsion; the eigenvalues tend to not
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be close in value. Contrary to this characteristic are the eigenvalues frommatrices that are a

member of the Poisson ensemble. The eigenvalues of thesematrices do not exhibit repulsion

and are in no way correlated. Therefore, it would not be unlikely to have eigenvalues with

similar values. These two opposing characteristics allow for a straightforward way to

distinguish when a matrix is a member of one ensemble and not the other.

From RMT, it is known that when a matrix is a member of the GOE, it will closely

followGOE statistics described by theWigner-Dyson distribution, also known as theWigner

surmise:

PGOE (x) ≈
1
2
πxe−πx2/4. (2.17)

As for Poisson statistics, if the eigenvalue spacings show no correlation then the distribution

will be given by the negative exponential distribution:

PPoisson(x) = e−x . (2.18)

The two distributions contrast each other the most when their behavior at small values of x

are compared:

lim
x→0

PGOE (x) = 0 (2.19)

whereas

lim
x→0

PPoisson(x) = 1. (2.20)

This marked difference between the two ensembles as x → 0 creates a significant demar-

cation that allows for a method to easily distinguish between the two distributions. This

method gives rise to a protocol or algorithm which enables RMT to be applied as a data

filtering technique.

2.5.7. RandomMatrix TheoryAlgorithm for Applications. RMT is a threshold-

ing technique that is knowledge-independent. This means that the algorithm is not affected

by what the actual data is measuring. The threshold is a cutoff number between two units
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RMT Algorithm

Input experimental data, e.g. Mn×m

matrix of miRNA expression data

Construct a network (correlation matrix)
An×n from the input data by applying a sim-
ilarity metric, e.g. Pearson’s or Spearman’s

Establish an initial candidate threshold
τ = max |ai,j | − 0.01, where ai,j are
the off-diagonal elements of network A

Construct a new network Â by setting the elements
âi,j = 0 if τ − |ai,j | > 0 and âi,j = ai,j if τ − |ai,j | ≤ 0

Recalculate candidate threshold
τ = τ − 0.01

Calculate the eigenvalues of Â and order them in a se-
quence {λ1, λ2, λ3, ..., λn} where λ1 ≤ λ2 ≤ λ3 ≤ ...,≤ λn

Apply a spectral unfolding technique to the eigen-
values in order to correct the heterogeneity of the

eigenvalue densities and then calculate the NNSD, P (x)

Perform a χ2 statistical test to determine if P (x)
is following the negative exponential distribu-

tion according to a predefined significance level α.

Does P (x) follow the nega-
tive exponential distribution

yes

Network Â is the
resulting pruned network

no

Figure 2.2. A flowchart illustrating the steps and logic of the RMT algorithm.
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or elements that determines if they are correlated or not. The threshold will be determined

from the transition of the NNSD of the eigenvalues from statistics described by the Poisson

process to statistics described by the GOE.

The eigenvalue fluctuations follow two universal predictions depending on the cor-

relation or non-correlation that the eigenvalues exhibit. The first prediction is that if the data

of interest is mostly saturated with random noise, static, or non-information—which masks

the expression of actual correlations—then these data will follow the statistics described

by GOE. Specifically, the eigenvalues will exhibit a strong correlation, as described by the

semi-circle law, and the NNSD of the eigenvalues will closely follow the Wigner-Dyson

distribution. A matrix with completely random entries is the archetype which follows GOE

statistics. This is because the off-diagonal entries, which represent mutual relationships

between the diagonal entries, are predominantly non-zero and therefore induce a strong cor-

relation between the eigenvalues. The NNSD will consequently follow the Wigner-Dyson

distribution. The second universal prediction is that if there is mostly just system specific

information left in the data, then the data has been sufficiently denoised and so the eigen-

values will not exhibit a strong correlation. This is because the data is mainly left with only

non-zero values for the diagonal (or block-diagonal) entries. The NNSD from this kind of

data will follow Poisson statistics because of the lack of eigenvalue correlation.

Now, a more specific description of the RMT algorithm is provided. Figure 2.2 is

provided to help illustrate the RMT algorithm logic. Consider a real-valued, symmetric,

N × N matrix A, such as a correlation matrix. This correlation matrix A is made up of

elements which signify highly correlated elements, Ahc, and also elements that are weakly

correlated Awc. The elements Awc represent the spurious correlations that the matrix

contains. The highly correlated elements Ahc, which represent actual meaningful data,

along with the weakly correlated elements Awc, which represent irrelevant data, together

make up the entire matrix:

A = Ahc + Awc. (2.21)
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The goal is to find a threshold of correlation, at which point all or most of the

elements from Awc have been removed and therefore the remaining elements are mostly

true correlations from Ahc: A ≈ Ahc. In order to remove the Awc part from the data, the

RMT algorithm is needed. Suppose a set of experimental data is presented as a matrix

Mn×m, where n is the number of variables and m is the number of experimental samples in

the data. The first step is to choose a statistical method, such as one of the four similarity

metrics described in Section 2.2, to calculate the correlations between the unique variables

(rows). The next step is to create a similarity matrix (correlation matrix) An×n by applying

one of these similarity metrics. The last step is to determine a threshold of correlation by

performing the RMT algorithm. Let us describe the step for determining a threshold of

correlation in more detail.

First, one establishes an initial threshold whose value is significantly larger than

most of the other values in the matrix. This step of establishing the first threshold value is

somewhat arbitrary. However, the value needs to be high enough so that one can be fairly

certain that anything with a value above this threshold (in absolute value) will actually be

correlated and not just have coincidental correlation. So for example, if two elements have

a correlation value c, where |c | ≥ 0.99 on a scale from -1 to 1, one can be fairly certain that

those two elements are not randomly correlated.

After choosing a threshold that has a significantly high value, set every element

in the correlation matrix that is below this threshold to zero. Then calculate the eigen-

values and order them in a sequence so that the level spacings can be determined. After

appropriately normalizing the spacings, the distribution P(x) is calculated. Then determine

which distribution, theWigner-Dyson or negative exponential, the eigenvalue spacings most

closely follow. A χ2 test is used to gain an understanding of how closely or how far away

the NNSD of the eigenvalues is from the negative exponential distribution. If the χ2 test

statistic value is less than 100 (the default value in the software RMTGeneNet that was used

in this thesis), then the stated process is repeated. The χ2 test was described in detail in
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Figure 2.3. This plot [71] illustrates the transition of the NNSD of the eigenvalues of a
correlation matrix from statistics described by the GOE, the Wigner-Dyson distribution,
to statistics described by the Poisson process, the negative exponential distribution. The
transition indicates when a matrix has been sufficiently denoised.

Subsection 2.5.6. The threshold is then iteratively refined by decreasing the value by a small

increment and repeating the steps to determine which distribution the NNSD most closely

follows. For example, if the starting threshold value is 0.920 (the default starting threshold

for the RMTGeneNet software used in this thesis) then this initial estimated threshold can

be decreased by 0.001 to the value of 0.919 and then continually decreased until the χ2 test

statistic value is greater than or equal to 100. Note that a χ2 value of 100 is a reference point

and a more or less stringent value may been chosen, depending on the level of certainty

desired for one’s experiment.
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A less arbitrary way to set the cutoff threshold could be to base it on the maximum

correlation value in a correlationmatrix. So for example, a default initial candidate threshold

value c of an N × N correlation matrix A could be set according to the following:

c = max{|ai j |} − 0.01 (2.22)

where 1 ≤ i < j ≤ n because the diagonal elements should not be counted; they all have

a value of 1 in a correlation matrix. This method for determining an initial threshold

would provide a starting point that is less arbitrary and better suited for the specific data set

being analyzed. The point at which the NNSD transitions from the negative exponential

distribution to theWigner-Dyson distributionmarks the threshold of correlation. Thismeans

that everything above that threshold value represents actual correlations in the correlation

matrix and everything below this value is simply static and can be ignored. There should be a

sharp transition the from negative exponential distribution to theWigner-Dyson distribution

[51]. Figure 2.3 illustrates the transition that NNSD makes from Poisson to GOE statistics.

Also, refer to Flowchart 2.2 for the RMT algorithm logic.

To investigate the statistics of the eigenvalue distributions of various correlation

matrices, an unbiased way of comparing their eigenvalues is needed. The eigenvalues need

to be standardized because the density of eigenvalues for different correlation matrices is

not constant, generally speaking. Because the densities are generally not comparable, it

is difficult to separate the global variation of the eigenvalue densities from the underlying

universal properties one matrix should exhibit since it is a member of an ensemble of

matrices [96, 97]. In order to compare eigenvalues of different systems, the mean density

needs to be constant, for example by normalizing to 1 [35]. This is done via spectral

unfolding methods, which map the eigenvalues to a new sequence but maintain some of the

system-specific properties, or universality. Essentially, unfolding maps each eigenvalue λi

to another value λ̃i in such a way that the resulting unfolded eigenvalue density is constant.

Therefore, without loss of generality, when the NNSD of the eigenvalues is mentioned it
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will be implied that a spectral unfolding technique was used to obtain a constant density

of eigenvalues. There are various methods for unfolding the eigenvalues as well, such as

the Gaussian kernel density or a cubic spline interpolation on the cumulative distribution

function.

2.5.8. RMTGeneNet. The software used in this thesis is called RMTGeneNet

v1.0a. RMTGeneNet is an open-source software package available on a Github repository

at theweb address https://github.com/spficklin/RMTGeneNet. This softwarewas developed

by Gibson et al. [32] to create gene co-expression networks using the RMT algorithm. It is

an improved version of the RMT algorithm, made to be highly scalable, based on a software

program written by Luo et al [52] that implemented the RMT algorithm to show how RMT

can be applied to biological systems.

The RMTGeneNet software has three main functions called: ‘similarity’, ‘thresh-

old’, and ‘extract’. The first function, ‘similarity’, is used to construct a correlation matrix,

or network. The user must supply a matrix of raw data, for instance a gene expression matrix

constructed from a method such as microarray analysis or RNA-sequencing. The format

of the raw data being imported should be a tab-delimited file, where the columns represent

the experiment samples and the rows represent the variables that are being measured. An

archetype data set is the sample data that is provide with the RMTGeneNet software. The

column headers indicate the unique experimental sample ID’s, the rows are the gene ID’s,

and the entries are the gene expression levels. Once the raw data have been supplied, the

user must then decide which similarity metric to choose that will generate a correlation ma-

trix. The ‘similarity’ function uses a pair-wise similarity calculation to output a correlation

matrix from the input expression data. RMTGeneNet supports three similarity metrics:

Pearson, Spearman, and Mutual information. This prerequisite function is the first step in

order to apply the thresholding algorithm, refer to Figure 2.2.
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After the correlation matrix is created via the ‘similarity’ function, the next function

called ‘threshold’ can be applied. This function finds the cutoff threshold that indicates

when the correlation matrix has been sufficiently filtered to the point where only significant

correlations remain. The ‘threshold’ function works by first establishing an initial default

threshold value of 0.92, which is a parameter that can be altered. It gradually iterates

through successively smaller possible correlation thresholds—default decreases of 0.001 at

each iteration—and computes the NNSD of eigenvalues at each iteration. This algorithm

continues to iteratively decrease the threshold values until the NNSD stops following the

negative exponential distribution. A χ2 test is performed to calculate how closely the NNSD

follows the negative exponential distribution. The NNSD is considered to have sufficiently

diverged from the negative exponential distribution when a default value of p ∼ 0.001

(χ2 = 100, with 59 degrees of freedom) has been reached. The software allows the user to

alter this default significance value to allow for more or less stringency.

The threshold value identified can then be applied to the correlation matrix which

essentially will weed out the random data and leave only the system specific signal. That is

the role of the ‘extract’ function. It actually applies the correlation value that was identified

by the ‘threshold’ function to the original correlation matrix produced from the ‘similarity’

function. The output of the ‘extract’ function is a table, called a network, with all of the

correlations that were at or above the identified threshold. The user can then investigate the

correlations in this network with a visualization tool such as Cytoscape [73]. Cytoscape is

a tool for gaining new insights by visually exploring relationships in data.

The reason the RMTGeneNet software was utilized in this thesis is twofold. One

reason was to establish a proof of concept of applying RMT using the RMTGeneNet. Luo

et al. [51, 52] used RMT in their biological studies and showed it was a robust and sensitive

algorithm for network pruning. Gibson et al. [32] were then able to build upon this work

to use RMT for the construction of massive gene co-expression networks by creating the

RMTGeneNet software.
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The second reason was because RMTGeneNet already had some built in function-

ality that was needed for our analysis; there was no need reinvent the wheel. This software

had the Spearman and Pearson similarity metrics already built into its ‘similarity’ function.

RMTGeneNet also had efficient code written for applying the RMT algorithm and finding

the threshold of correlation without any user interaction after the initial call of the ‘thresh-

old’ function. This was a very convenient aspect that influenced the decision to implement

RMTGeneNet for applying the RMT algorithm to the data over other possible software

packages.

2.5.9. Candidate Software Packages. Other candidate software packages were

tested and vetted for applying the RMT algorithm. Although, these software packages were

not used in their full capacity to implement the RMT algorithm, specific aspects of them

were used to aid in various aspects of the data analysis.

One software package that was useful, but was not ultimately used for its application

of the RMT algorithm, is called RMThreshold [54]. RMThreshold is a CRAN - R package

developed in 2016. This software package contains some useful functions and graphing

capabilities. For example, RMThreshold has a function called ‘rm.matrix.validation’ which

can be applied to an inputmatrix (network) to determine if it is well-conditioned for the RMT

algorithm. By well-conditioned, it means that the matrix must be real-valued, symmetric,

and sufficiently large. The matrix must be sufficiently large because RMT is valid as the

dimensions of the matrix approach infinity. This function therefore checks all of these

requisite conditions and creates validation plots that help the user determine if the RMT

algorithm is the viable option for the analysis of the given data.

RMThreshold applies the RMT algorithm to find a threshold of correlation with a

built in function called ‘rm.get.threshold’. One helpful and useful aspect of this function is

that it creates plots of the NNSD, in conjunction with the negative exponential distribution
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and the Wigner-Dyson distribution, at each tested candidate threshold of correlation. This

makes it possible to see the change in the NNSD as it transitions from one distribution to

the other.

The aspect of this functionality that was not particularly preferred for the analysis in

this thesis was that it required user interaction to estimate the threshold of correlation. The

user would have to determine a possible threshold of correlation by examining the output

plots at each iteration. There was no χ2 test to statistically determine when the NNSD had

sufficiently transitioned from the negative exponential distribution to the Wigner-Dyson

distribution. This made it less objective than the procedure that RMTGeneNet implements

for determining the threshold of correlation in the data. The interactive requirement from

the user to determine the threshold of correlation by analyzing diagnostic plots also made

it impractical for someone to use if connected to another computing device. For example,

many high-performance-computing (HPC) platforms require remote access by secure shell

logins and require users to submit jobs, which makes it impossible for shell interactions.

This was another reason why RMThreshold was not ultimately used for implementing the

RMT algorithm.

The interactive RMThreshold software was helpful in some situations. For example,

there are times when RMTGeneNet, the non-interactive software, might not perform as

desired. If the RMT algorithm is applied to a matrix that is not well-conditioned, as

described previously, then a threshold may not ever be found. There are no troubleshooting

diagnostics to perform with RMTGeneNet, so the user would not be notified about what

went wrong. A more specific example of this instance is if RMTGeneNet is used to apply

the RMT algorithm to a matrix that is overly sparse. There may not be enough noise in the

data so that there is never a transition from the Wigner-Dyson distribution to the negative

exponential distribution. Recall, this transition would indicate the point at which the matrix

transitions from a member of the GOE—a class of random matrices—to a matrix that

follows statistics described by the Poisson process—a matrix without random correlations
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in the data. On the other hand, with the interactive software of RMThreshold, the user would

be able to tell right away that a threshold may not be found after applying and analyzing

the appropriate built-in diagnostic function (i.e. the ‘rm.matrix.validation’ function). So,

it would behoove someone that is wanting to apply the RMT algorithm to his or her data

to first apply the diagnostic functions to the data that the RMThreshold software contains.

After verifying that the data is well-conditioned, a threshold of correlation could then be

found with the RMTGeneNet software. This is precisely the analysis process performed in

this thesis.

Another notable R software package called KINC.R was also investigated for pos-

sible utility in this thesis. KINC.R is a lightweight package, released in 2016, that contains

a function for applying the RMT algorithm. Similar to the method the RMTGeneNet soft-

ware implements, KINC.R uses a χ2 test to evaluate when the matrix has been sufficiently

thresholded. This software prints to screen the analysis that is being performed in real-time.

The user must then parse through this output to find the transition point in the data, or the

threshold value. KINC.Rwas less automated than the procedure the RMTGeneNet software

implemented; however, the real-time plots were beneficial for verifying the NNSD behavior

as the RMT algorithm was performed.

Several other software packages exist that implement theRMTalgorithm, besides the

ones previously described. It was not possible, however, to fully investigated every software

package. It was encouraging to discover that the RMT algorithm had been implemented

in several software packages already. This further supported the assertion that RMT is

becoming a popular tool because of its effectiveness in filtering data in an objective manner.

Of the software packages investigated, RMTGeneNetwas the best suited software for

our analysis. Albeit, there were a few things that were needed for the analysis that it did not

have. The functionality of RMTGeneNet was extended by including the correlation metrics
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to its repertoire: 1) the Czekanowski index and 2) the stringent proportional similarity index

(SPS). This extended functionality added to the RMTGeneNet software will be described

in Section 3.2.
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3. METHODS AND MATERIALS

This section will discuss the data to which the RMT algorithm was to applied to

in order to investigate its capability as a network pruning method on biological data. A

description of how the data were processed and formatted is provided. The tools used to

verify the appropriateness of applying the RMT algorithm to the data are presented, along

with a description of the other software tools that were used in various stages of the analysis.

These tools include implementations of the RMT algorithm, as well as the software too

Cytoscape [73], which used to analyze the co-expression networks after the RMT algorithm

had been applied to prune them.

3.1. DATA DESCRIPTION

The data used in this thesis are microRNA (miRNA) data from the Bos taurus (do-

mestic cow). MiRNAs are small RNA sequences, approximately 22 nucleotides in length,

that are involved in gene expression regulation [11]. Mounting experimental evidence from

miRNAs studies suggest that miRNAs play a more significant role in cellular functions than

previously thought [3, 37]. The Bos taurus miRNA data used in this thesis were adopted

from a study that investigated the potential uses of circulating miRNA as a signature for

early pregnancy in dairy cattle [43]. The data set is publicly available in the ArrayExpress

database [21].

3.2. DATA FORMATTING AND PRE-PROCESSING

The miRNA data downloaded from the ArrayExpress database were formatted as

a table that contained 870 rows and 46 columns, where the rows indicated the miRNA

sequences and the columns were the miRNA sequencing samples (i.e. samples taken from
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19 different heifers at various stages of their estrous cycle or pregnancy). The data entries

are the expression levels from profiling the miRNA sequences in the biological samples

found by applying Illumina small-RNA to their collected plasma samples.

Some of the miRNA sequences were found to not be expressed at all, or very little,

across all the samples. To reduce some of the sparsity in the data, the data were preprocessed

to reduce some of the potential effects these outliers might have had on the construction of

the co-expression networks and ultimately on the analysis of the RMT algorithm. Therefore,

a Python script was written to remove any row in the table whose sum did not add up to

a value of 5 or more, indicating the lack of expression of that miRNA sequence across all

samples. A value of 5 was chosen, by inspection, as the cutoff to filter out these miRNAs

that did not have a significant presence in the data. This preprocessing procedure reduced

the data by nearly 29%, leaving 618 rows and 46 columns in the data set.

After preprocessing the raw data, four networks were then created by applying the

four similarity metrics: Pearson, Spearman, Czekanowski, and SPS, which are detailed in

Section 2.2. Applying these metrics to the miRNA expression data was made possible by

writing a Python script that implemented the packages: scikit-learn [59], NumPy [83], and

Pandas [53].

3.3. APPLYING RMT

After the data were preprocessed to filter out any severe sparseness, the next step

was to create the co-expression networks. Four co-expression networks were created by

applying each of the four different similarity metrics discussed in Section 2.2 to the miRNA

data set. After the networks were created, the RMT algorithm could be applied to prune the

co-expression networks by finding the threshold of correlation. Before the RMT algorithm

was implemented, each network was inspected with the R package called RMThreshold

[54]. This was done in order to validate the appropriateness of applying the RMT algorithm

to each network. Specifically, the RMThreshold package contains a built-in function called
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‘rm.matrix.validation’, which was applied to each of the four networks. This function

was applied to the networks to determine if they were well-conditioned for the RMT

algorithm: well-conditioned meaning the input matrix is symmetric, sufficiently large, and

not overly sparse. Refer to Section 2.5.9 for further discussion of RMThreshold and the

‘rm.matrix.validation’ function. After this validation process, the networks were pruned

by applying the RMT algorithm that the RMTGeneNet software contains [32], which was

described in Section 2.5.8.

This software contains three functions that, when applied in succession to a data set,

will yield a product that is a SIF formatted file. This SIF file will contain the network that

was created from the input data after a particular similarity metric had been applied and then

was pruned with the RMT algorithm. Recall, the SIF formatted file is a configuration of

the data that is a simple and convenient way to create graphs from a list of interactions; see

Section 2.1 for more information regarding the SIF format. The resulting pruned network

will have been denoised so that only the remaining constituents will have true correlations.

The interactions between different components which were pruned from the network would

have been randomly correlated according to RMT algorithm. The SIF formatted networks

can then be uploaded into a network visualization tool, such as the Cytoscape software [73],

for visual inspection and heuristic hypothesis generation.

The RMTGeneNet software was used for analysis in this thesis because it already

had the proven capability of applying the RMT algorithm [32], and thus allowed us to take

advantage of existing code that has been thoroughly evaluated. RMTGeneNet supports

three similarity metrics: Pearson, Spearman, and Mutual Information. To apply the RMT

algorithm implemented in RMTGeneNet, the user must first input the raw data, such as

the Bos taurus miRNA data downloaded directly from ArrayExpress [21]. Next, the user

must apply one of the three supported similarity metrics with the built-in function called

‘similarity’ in order to construct a network. Next, the RMT algorithm can be applied to the

resulting network with the function called ‘threshold’. Applying the ‘similarity’ function
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and the ‘threshold’ function is a streamlined process that works very well if the user is only

wanting to create his or her network from one of those three supported similarity metrics.

A caveat is if the user wants to apply the RMT algorithm to a network created by some other

similarity metric, e.g. Czekanowski or SPS metrics, RMTGeneNet does not currently have

the functionality to facilitate this kind of flexibility.

Additional functionality was augmented to the software to be able to apply the RMT

algorithm to the co-expression networks that were created with the Czekanowski and SPS

metrics. An interfacing script was written so that the RMT algorithm in RMTGeneNet was

still utilized, but any similarity metric of interest could be applied, not just the Pearson,

Spearman, or mutual information metrics that the software supports. This interfacing script

supports the use of the four similarity metrics that were used in this thesis, namely the

Pearson, Spearman, Czekanowski, and SPS metrics. The user inputs the raw data as an

argument in the script, along with the desired similarity metric to create the network. The

script creates the desired network and then automatically applies the RMT algorithm that

RMTGeneNet implements to find the threshold of correlation and prune the network.

In addition to finding the the threshold of correlation with the RMTGeneNet soft-

ware, the R package KINC.R [26] was used to verify the threshold of correlation found with

the RMTGeneNet software. The KINC.R software provides real-time plots of the NNSD

of the eigenvalues. The user can use these plots to verify the NNSD transitioning from the

negative exponential distribution to the Wigner-Dyson distribution once the data has been

sufficiently denoised.

The miRNA co-expression networks pruned by applying the RMT algorithm were

then uploaded into the visualization software called Cytoscape [73]. Cytoscape allows the

user to interactively explore networks in real-time. This is a helpful tool for developing new

hypotheses about the structural and functional relationships in data. This tool uses edges

(lines) to connect different nodes (objects) which are associated to each other in some way.

It provides a convenient platform on which data can be visually and analytically scrutinized.
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Cytoscape has been shown to be a powerful tool for complex network analysis and for

making hypothesis about uncharacterized nodes by using a guilt-by-association approach

[91]. In the case for this study, the nodes represented the different Bos taurus miRNA

sequences and the edges represented an association between different miRNAs whose co-

expression correlation values were at least as high as the threshold of correlation identified

with the RMT algorithm.
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4. RESULTS AND DISCUSSION

In this section, the results from applying the RMT algorithm to a set of Bos taurus

miRNA expression data, an open source data set at the time of this publication [21], are

presented. After the miRNA data were download and parsed to remove any unwanted

extreme sparsity, the four similarity metrics Pearson, Spearman, Czekanowski, and SPS

were applied to the data. This resulted in the construction of four co-expression networks

that were of the dimensions 618 × 618. The structure of this section is as follows: 1)

a discussion of the network validation process, 2) details of the identified threshold for

each co-expression network and the corroboration of these values using an alternative

RMT software called KINC.R, and 3) an analysis of the pruned co-expression networks

after applying the identified thresholds, which includes an introductory demonstration of

network analysis with the network visualization tool Cytoscape [73].

4.1. NETWORK VALIDATION PROCESS

The RMThreshold package [54] was used to validate the appropriateness of using

RMT as a pruning tool for each of the networks. A built-in function from the RMThreshold

package called ‘rm.matrix.validation’ analyzes an imported network (matrix) to determine

if it is well-conditioned for the RMT algorithm. This function checks to make sure the

network is not too sparse, is symmetric, sufficiently large, and has real-valued entries. If

the network is too sparse, then a threshold of correlation may not be found because it is as

if there is no randomness in the data, i.e. the matrix is already thresholded. The matrix

must be sufficiently large because RMT is valid for matrices with the dimensions N × N as

N → ∞, as described in Subsection 2.5.4. The matrix being symmetric and having real-

valued entries are also requisite properties in order to properly apply the RMT algorithm

for thresholding.
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Figure 4.1. RMT Validation Plot. A function called ‘rm.matrix.validation’ from the R
package RMThreshold was performed on each network to validate the appropriateness of
pruning the networks with the RMT algorithm. Above are the results from applying this
validation function to the miRNA network that was created with the Pearson correlation
metric.

To illustrate the functionality of ‘rm.matrix.validation’, Figure 4.1 demonstrates

the results when applied to the network that was produced by applying the Pearson

similarity metric to the Bos taurus miRNA data. This validation plot produced by the

‘rm.matrix.validation’ function is a diagnostic tool for verifying that the input network is

well-suited for the RMT algorithm. Recall that Figures 2.1a and 2.1b illustrate how the

eigenvalue density distribution of a Gaussian randommatrix follows theWigner semi-circle

law as the dimensions of the matrix increase. The plots in the upper left and right-hand
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corners of Figure 4.1 illustrate the eigenvalue density distributions following the semi-circle

distribution, an exhibition characteristic of random matrices. This distribution demonstra-

bly following the semi-circle distribution supports the reasoning that the input network

needed to be pruned. The plot in the lower left-hand corner of Figure 4.1 illustrates the

requisite eigenvalue unfolding that is described in Subsection 2.5.7. The image in the lower

right-hand corner of Figure 4.1 demonstrates how the nearest neighbor spatial distribution

(NNSD) of the eigenvalues followed the Wigner-Dyson distribution, which was another

indication that the network contained noise and needed to be pruned. This validation pro-

cedure was performed on all four networks in order to substantiate the use of the RMT

algorithm as a viable pruning method for the particular miRNA data set.

4.2. ANALYZING EACH IDENTIFIED THRESHOLD

Once the networks were created by applying the four similarity metrics, and they

were all deemed viable candidates for the use of the RMT as a pruning tool, the RMT

algorithm was then applied. The RMT algorithm was applied with the implementation

of the RMTGeneNet software [32]. Recall, that the RMT algorithm that this software

implements is illustrated with Flowchart 2.2. The threshold of correlation is identified by

determining the point at which the NNSD of the eigenvalues has deviated from the negative

exponential distribution and begins to follow the Wigner-Dyson distribution. Specifically,

the algorithmwill iteratively test smaller and smaller candidate threshold values until the χ2

value reaches 100, which marks the point at which the NNSD has sufficiently diverged from

the negative exponential distribution and thus random correlations are beginning to mask

the actual correlated data. RMTGeneNet will continue to iteratively test smaller candidate

threshold values until a χ2 value of 200 is reached. These additional computations are

described to be a preventative measure so that the software does not indicate a threshold
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that may have been part of a local maximum [32]. Ultimately, the last threshold value whose

associated χ2 value was less than 100, before a χ2 of 200 is reached, will be identified as

the threshold of correlation for the network.

The threshold of correlation found by applyingRMTGeneNet to the networks created

by the Pearson, Spearman, Czekanowski, and SPS similarity metrics were: 0.81, 0.77, 0.78,

and 0.63, respectively. These thresholds indicate the point at which significant correlations

begin to emerge in the data. All correlations that are not as strong as these thresholds

are therefore putative random correlations in the data. Note that for the networks that

were created with the Pearson and Spearman metrics, the correlation values are in the

range [−1, 1]. Therefore, any correlation value in these two co-expression networks whose

absolute value is less than the indicated threshold is deemed as noise.

The R package KINC.R [26] was additionally applied to each of the networks in

order to corroborate the different thresholds that were found. KINC.R provides a way to

visualize the behavior of the NNSD from each of the networks, in real-time, as the RMT

algorithm is being applied. At each iteration, a successively smaller candidate threshold

value is evaluated and a plot of the NNSD is produced with superimposed plots of the

Wigner-Dyson distribution along with the negative exponential distribution. This allows

the user to observe the transition of the NNSD from one distribution to the next as the

threshold of correlation is iteratively identified.

4.2.1. The Pearson Network. In Figure 4.2 are four snapshots that were created as

the RMT algorithmwas being applied to the co-expression network created with the Pearson

similarity metric. Note that the four histogram plots in Figure 4.2 depict precisely what is

illustrated in Flowchart 2.2. Plot 4.2a is the real-time plot of the NNSD when the initial

candidate threshold value 0.88 was tested. Recall that the initial tested threshold should be

stringent enough so that there will be very few, if any, random correlations contained in the

network. The initial tested threshold of 0.88, after being applied to the original 618 × 618

network, resulted in a 196 × 196 network. This is a ∼ 90% reduction in node-to-node
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(a) (b)

(c) (d)

Figure 4.2. The Pearson Network: An illustration of the NNSD transitioning from the neg-
ative exponential distribution (blue) to the Wigner-Dyson distribution (red) while the RMT
algorithm is begin applied. A threshold value of 0.81 was identified with the RMTGeneNet
software for this network, which is corroborated with Plot 4.2b in this figure. in this figure.

correlations in the original network; a significant reduction that has likely filtered out some

actual correlations in the network. As the candidate threshold is iteratively decreased, the

network will begin to include more and more elements. Figure 4.2b is a plot of the NNSD

when the candidate threshold tested was equal to the actual threshold value of 0.81 that

was found using the RMTGeneNet software. A χ2 value of 99.78 was attained at this

tested candidate threshold, which indicates that the NNSD has all but diverged completely

away from the negative exponential distribution. It marks the last tested candidate threshold

whose χ2 value was less than 100; all other successively tested thresholds produced a χ2

value that was greater than 100. This provides strong evidence that the null hypothesis,

H0, which states that the NNSD of the eigenvalues is from the same random variable as a
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random variable that follows the negative exponential distribution, can be rejected. In other

words, the threshold value of 0.81 is the demarcation point between random correlations

and true correlations.

The transition is marked when visually comparing the four plots in Figure 4.2. Plot

4.2a followed the negative exponential, superimposed in blue, when the initial threshold

value of 0.88 was tested. Then, in Plot 4.2b, the NNSD has nearly diverged completely from

the negative exponential and is clearly beginning to follow the Wigner-Dyson distribution,

superimposed in red, when the tested threshold value was 0.81. As the candidate threshold

bar is lowered, elements with weaker, and presumably random, correlations are being

added to the network. In Plot 4.2d the tested threshold was 0.6 and the associated χ2

value was 222.21; therefore, the NNSD has clearly diverged from the negative exponential

distribution. The NNSD is undoubtedly following the Wigner-Dyson distribution at this

point. The NNSD following the Wigner-Dyson so closely is a good indication that the

matrix contains a substantial amount of randomness.

4.2.2. The Spearman Network. Similar diagnostic plots were generated for the

other networks created with the Spearman metric (Figure 4.3), the Czekanowski metric

(Figure 4.4), and the SPS metric (Figure 4.5). A threshold value of 0.77 was identified with

the RMTGeneNet software for the network created with the Spearman metric. Plots 4.3a–

4.3d illustrate the NNSD making an unmistakable transition from following the negative

exponential distribution to the Wigner-Dyson distribution. Plot 4.3b is the results from

testing the candidate threshold value of 0.78, a value slightly greater than the value that

the RMTGeneNet software identified as the threshold of correlation. A χ2 value of 93.29

is associated with the candidate threshold in Plot 4.3b, and therefore the RMT algorithm

continues to perform successive iterations by decreasing the candidate threshold value by

0.001 at each iteration. This indicates that the threshold value tested in Plot 4.3b is putatively

still a valid correlation in the network, not just a correlation caused by happenstance. As

the smaller candidate thresholds were successively tested, a threshold with the value of 0.77
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(a) (b)

(c) (d)

Figure 4.3. The Spearman Network: An illustration of the NNSD transitioning from
the negative exponential distribution (blue) to the Wigner-Dyson distribution (red) while
the RMT algorithm is begin applied. A threshold value of 0.77 was identified with the
RMTGeneNet software for this network.

proved to be the last candidate threshold whose χ2 value was below 100. As the network

grew larger by decreasing the candidate threshold values, random correlations begin to

infiltrate the network, as Plots 4.3c and 4.3d demonstrate.

4.2.3. The Czekanowski Network. The NNSD transition for the Czekanowski

network is in Figure 4.4. Plot 4.4a is the NNSD when the initial candidate threshold value

was 0.87. The χ2 value of 56.79 associated with this threshold implies a failure to reject the

H0; the NNSD is following the negative exponential distribution. In Plot 4.4b, the χ2 value

associated with the candidate threshold of 0.77 is 104.32. This implies a rejection of the H0

and an acceptance of the alternative hypothesis, H1, which states that the NNSD does not

follow the negative exponential distribution. The threshold of correlation identified with

the RMTGeneNet software for the network created with the Czekanowski metric was 0.78.



51

(a) (b)

(c) (d)

Figure 4.4. The Czekanowski Network: An illustration of the NNSD transitioning from
the negative exponential distribution (blue) to the Wigner-Dyson distribution (red) while
the RMT algorithm is begin applied. A threshold value of 0.78 was identified with the
RMTGeneNet software for this network.

Plot 4.4b illustrates that, as candidate threshold values were successively tested after the

threshold of correlation 0.78 was identified, the networks only became more infiltrated by

noise, as the χ2 value indicates. Plots 4.4c and 4.4d further solidify this claim.

4.2.4. The SPS Network. The threshold of correlation identified in the network

created with the SPSmetric was also corroborated by the diagnostic plots in Figure 4.5. The

behavior of the NNSD during successive iterations of the RMT algorithmwas similar to that

of the other co-expression networks. Specifically, a sufficiently high candidate threshold

was initially tested, as shown in Plot 4.5a. Note that the initial candidate threshold for

the SPS network was substantially smaller than the initial candidate thresholds tested in

the other networks. For the SPS network, the initial tested threshold was 0.79, which is

even lower than the threshold identified to be the threshold of correlation in the Pearson



52

(a) (b)

(c) (d)

Figure 4.5. The SPS Network: An illustration of the NNSD transitioning from the negative
exponential distribution (blue) to the Wigner-Dyson distribution (red) while the RMT
algorithm is begin applied. A threshold value of 0.63 was identified with the RMTGeneNet
software for this network.

network. This should serve as a reminder that establishing an initial candidate threshold

that is sufficiently large is of utmost importance. If this same initial threshold had been used

for the RMT algorithm in the Pearson network, then a threshold of correlation would not

have been identified. Establishing an appropriate starting threshold was discussed in more

detail in Subsection 2.5.7 and specifically with Equation 2.22.

The SPS co-expression network is reduced down from 618× 618 to a co-expression

network of size 103 × 103, which equates to a reduction of ∼ 97%. The NNSD markedly

follows the negative exponential distribution in Plot 4.5a, which is substantiated by the χ2

value of 42.86. The RMT algorithm iteratively decreases to the value of 0.63, as shown in

Plot 4.5b, which is the threshold of correlation that was identified with the RMTGeneNet

software. Successively lower tested candidate thresholds resulted in higher and higher χ2
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values, 140.47 and 220.75 for Plots 4.5c and 4.5d, respectively. This supports the claim that

the identified threshold of correlation, 0.63 as shown in Plot 4.5b, is the actual threshold of

correlation in the SPS network; a smaller correlation value between two elements (miRNA

sequences) in the co-expression network would indicate just an anomalous correlation.

4.3. ANALYSIS OF PRUNED NETWORKS

In this section, a description of the analysis of the co-expression networks is provided.

This step in the analysis occurred after the identified threshold for each network had been

applied to filter out, or prune, the unwanted random correlations from the co-expression

network. First, a histogram for each network was created to illustrate the distributions

of the co-expression values for each of the four co-expression networks. Then, the co-

expression network createdwith the Pearson similaritymetricwas uploaded into the network

visualization tool Cytoscape [73]. Preliminary analysis with this tool is provided to advocate

its potential potency as a powerful heuristic device when it is coupled with the network

pruning method RMT.

4.3.1. Co-ExpressionFrequencyDistributions. Ahistogramwas created for each

of the four co-expression networks so that the frequency distributions of the Bos taurus

miRNA co-expression correlation values could be analyzed. These histograms are illus-

trated in Figure 4.6. The Pearson co-expression network is in Plot 4.6a, Spearman in Plot

4.6b, Czekanowski in Plot 4.6c, and SPS in Plot 4.6d. Recall that the identified thresholds

of correlation for the Pearson, Spearman, Czekanowski, and SPS co-expression networks

were 0.81, 0.77, 0.78, and 0.63, respectively. For the Pearson co-expression network, this

resulted in a ∼ 80% size reduction of the original co-expression network. The Spearman

co-expression network was reduced by ∼ 84%, the Czekanowski co-expression network by

∼ 72%, and the SPS co-expression network by ∼ 75%.
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(a) (b)

(c) (d)

Figure 4.6. Frequency distributions of the miRNA co-expression correlation values for each
of the four analyzed networks. The more translucent columns in the histograms indicate
the co-expression values that were removed from the network. The more opaque columns
are the co-expression values that were maintained after the RMT algorithm was applied.

The co-expression values that were pruned are depicted differently in the histograms

of Figure 4.6 from the co-expression values that were retained. Namely, the values that were

pruned are depicted with the more translucent columns whereas the more opaque columns

depict the co-expression values that were retained. Note that the histograms created for

the Pearson and Spearman correlation networks had similar frequency distributions for

their co-expression values because they are calculated similarly, as can be seen from their

formulation in the Subsections 2.2.1 and 2.2.2. Likewise, the frequency distributions for

the co-expression values of the Czekanowski and SPS networks are similar because of their

homologous formulations, as seen in Subsections 2.2.3 and 2.2.4.
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4.3.2. Network Analysis with Cytoscape. After analyzing the frequency distri-

butions of the co-expression networks, as described in the previous subsection, the co-

expression networks were uploaded into the network visualization tool Cytoscape [73].

Cytoscape provides a platform on which heuristic analysis can take place. The RMT-

GeneNet software contains a function called ‘extract’, which prunes the given network with

the threshold of correlation indicated by the RMT algorithm. The output from the ‘extract’

function is a SIF formatted table of the co-expression network which, conveniently, can be

directly imported into Cytoscape. Here, the results from analyzing the Pearson network in

Cytoscape are provided. There are various layouts and style options that the user can adjust,

based on his or her preference. The specific layout chosen for this Pearson co-expression

network was the ‘organic’ layout with the style option ‘default black’ and the ‘show graphic

details’ option turned on so that the individual nodes can be identified by their specific

miRNA ID names.

To gain perspective on the outcome of the pruned network, included in Figure 4.7

is an image of the original unpruned Bos taurus miRNA network. This all-vs-all network

illustrated with Cytoscape demonstrates just how incomprehensible a network can be if

it is not properly filtered to remove irrelevant data. The convoluted globe in Figure 4.7

consists of 618 nodes with just over 380, 000 edges. It is obvious from this figure that in

order to begin making any sense of the miRNA network, much of the network needs to be

eliminated. RMT takes the guesswork out of this process. The results in Cytoscape after

pruning the network in Figure 4.7, with the RMT algorithm, will be expanded upon next.

Figure 4.8 is the Bos taurus miRNA co-expression network constructed with the

Pearson metric, which was then pruned with the RMT algorithm and upload into Cytoscape.

The threshold of correlation identified by the RMTGeneNet for this network was 0.81,

which was corroborated with the KINC.R software as described in Subsection 4.2. Plot

4.2b indicates that the threshold identified by the KINC.R software was 0.81 and the pruned

co-expression network would be 275 × 275. A Slight discrepancy was discovered however.
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Figure 4.7. The original unpruned Bos taurus miRNA network created with the Pearson
correlation metric.

The size of the resulting pruned networks that RMTGeneNet outputted, as opposed to the

size of the pruned network that KINC.R outputted, were distinct. This was likely due to a

inconsistency in the number of significant digits recognized by the two different software

packages. The resulting co-expression network from the RMTGeneNet software uploaded

into Cytoscape contained 277 nodes with 2669 edges.

In Figure 4.9, a small portion of the nodes was selected at random, along with the

first neighboring nodes of these selected nodes. The nodes that were randomly selected are

highlighted in yellow and the edges that linked these nodes to the first neighboring nodes

are highlighted in red. From the selected nodes and edges in Figure 4.9, Cytoscape has the
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Figure 4.8. The Bos taurus miRNA network that was created using the Pearson correlation
metric and thresholded with the RMT algorithm. The visualization of this network has been
created using the Cytoscape software.

functionality to isolate this portion of the network and created a new network containing just

this portion, as illustrated in Figure 4.10a. The user can then begin to construct hypotheses

about the data by exploring the partitioned network in real-time.

The user can select a specific node, as in Figure 4.10b, and examine all of its nearest

neighbor correlations. The specific node selected in this figure was associated with the

miRNA sequence labeled as ‘hsa-miR-1260b’. Cytoscape provides the functionality to

search external links for any public information associated with any selected nodes. These

external links include public databases, including the National Center for Biotechnology
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Figure 4.9. Selecting a random portion of the Pearson network from Figure 4.8 for heuristic
exploration.

Information (NCBI), which is a platform on which advances in science can be made by

providing access to biomedical and genomic information [70]. From NCBI, the target

miRNA was searched for in the Gene Expression Omnibus (GEO), an international archive

for high-throughput functional genomic data sets whose contributors are from the research

community [6]. GEO provides tools that assist users to query and analyze their data. The

user can utilize this archive to facilitate hypothesis generation about the functionality of a

particular gene or miRNA, for example. From searching the GEO for this target miRNA

‘hsa-miR-1260b’, various studies were discovered involving this particular miRNA, for

example, a study was published in 2012 on viral-miRNA in Homo sapiens in which the

miRNA ‘hsa-miR-1260b’ played a significant role [79].
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(a) Selected nodes and edges partitioned from Figure 4.9.

(b) Nearest neighbor correlations of selected node ‘hsa-miR-1260b’ highlighted in yellow.

Figure 4.10. Figures (a) and (b) illustrating the functionality of Cytoscape as a tool for
network analysis.

The previous example is provided only to showcase the functionality Cytoscape

provides. It is not necessarily the most appropriate approach one should take to gain an

accurate biological interpretation of these specific data; an accurate biological interpretation
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of these Bos taurus miRNA data is not in the scope of this thesis. The intent was to

convey that Cytoscape supports the user during the discovery stage of his or her research

by providing an easy access to all of the tools available that might be of assistance. It

allows the user to harness the power of on-line resources, where scientists collaborate and

share information about their findings. This example was provided as a motivation for

the scientific capabilities of coupling the network pruning method RMT with the network

visualization tool Cytoscape [73].
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5. CONCLUSIONS

Random matrix theory (RMT) has been shown to be a reliable method for con-

structing meaningful networks in a variety of biological systems such as in maize, rice,

and human beings [32]. It has also been shown to be an effective tool for predicting func-

tions of unknown genes [52]. In this thesis, the efficacy of RMT being applied to other

biological data was evaluated, namely miRNA expression data. Four different similarity

metrics were applied to construct co-expression networks from an experiment involving Bos

taurus miRNA data [43], which were publicly available at the time of this publication [21].

Then, the effect of using RMT as a pruning method was investigated. More specifically, the

threshold of correlation was found for each network using the software RMTGeneNet [32]

that, at the time of this publication, is currently available on a GitHub repository with an

open source GNU GPLv2.0 license at https://github.com/spficklin/RMTGeneNet.

These miRNA data were chosen because miRNA expression data is closely associ-

ated with gene expression data, for which the RMTGeneNet software provides as a sample

data set. Literature supports the use of co-expression networks as a tool for analyzing

miRNA data [4, 31, 74, 93]. Also, this Bos taurus miRNA data set was of manageable size

(< 1MB) for the personal computer on which the analysis were performed. For future work,

a logical next step would be to apply these procedures to some larger data sets. This would

further test the capabilities of RMT. The computational efficiency and applicability to other

types of biological data, such as DNA methylation data, could be evaluated.

RMT was explored in this thesis as a network pruning tool because it is a way to

objectively find a threshold of correlation in a network. Network analysis fills a crucial

need in biology; however, to analyze the networks, they must be filtered to some extent.
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This data filtering, or network pruning, process is necessary in order to remove spurious

correlations from the data. The choice of a threshold value in which to eliminate the noise

in a network greatly influences the resulting network.

The choice of a threshold value impacts the sensitivity and specificity of the node

connections. Therefore, an omnipresent question encountered by scientists is what is the

most appropriate threshold value to use. If the threshold value chosen is too high, then

the computational complexity is lowered at the expense of losing node connections. The

resulting network may therefore be too sparse and information could be lost. On the other

hand, if the threshold value is too low, then information is not lost but the computational

requirements are increased. Too many spurious correlations may appear which could

mask the true signal from emerging. RMT provides a way to objectively choose the most

appropriate threshold value.

The use of RMT was investigated by applying the RMT algorithm, incorporated in

the RMTGeneNet software, to an open-source miRNA data set. Preliminary results and

figures were provided to demonstrate the performance of RMT. The preliminary results

are encouraging and leave room for much future work to be done. In the future, a more

detailed analysis of the co-expression network topologies could be completed by applying

some of the network analysis metrics discussed in Section 2.4. A further exploration of the

capabilities that the Cytoscape software possesses could be incorporated into future work.

Furthermore, applying the RMT algorithm to larger data sets, such as DNAmethylation data

where hundreds of thousands to millions of nodes are possible, would also be of interest to

determine the efficacy of RMT on big data. It would also be advantageous to recruit persons

with a strong background knowledge of the particular data set being examined. This would

assist in providing a sound biological interpretation of the results.
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Wigner Semi-Circle Law Demonstration

# Set size of matrix

n <- 500;

# generate an (n by n) matrix with

# i.i.d entries distributed as N(0,1)

A <- array(rnorm(n^2), c(n,n));

# Standard symmetric Wigner matrix

wigMat <- (A + t(A)) / sqrt(2 * n);

# Calculate eigenvalues

lambda <- eigen(wigMat, symmetric = TRUE, only.values = T);

lambda <- lambda$values;

# Generate histogram

hist(lambda, breaks = 100,

main = paste("Eigenvalue Distribution of a ",

n, " by ", n, '\n',

" Standard Wigner Matrix", sep = ""),

cex.main = 2, xlab = "Eigenvalues", freq = FALSE)
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PYTHON CODE
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Similarity Metrics

#! /usr/bin/env python

import argparse

import os

from sklearn.neighbors import DistanceMetric

import numpy as np

import pandas as pd

##################################################################

##################################################################

def my_pearson(X, Y):

num = sum((X - X.mean()) * (Y - Y.mean()))

denom = np.sqrt(sum((X-X.mean())**2) * sum((Y - Y.mean())**2))

r = num / denom

return r

p_dist = DistanceMetric.get_metric(my_pearson).pairwise

# (start) Pearson Correlation Function

##################################################################

# If the user does not specify the output location by using the

# flag -o then the file will be saved in the current directory

# with the default name of:

# the name of the input file + Pearson_cor.tsv

# Example, samp_df.tsv will be saved as samp_df_Pearson_cor.tsv
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def Pearson(df, name = None, toFile = None):

df = df.T

P = df.corr(method = 'pearson')

P = P.round(3)

try:

P.index = list(df.index)

P.index.name = df.index.names

P.columns = list(df.index)

except:

pass

if toFile == None:

P.to_csv(name, sep='\t')

printStatement = """ The Pearson correlation metric

was performed on the input file and the resulting

correlation matrix will be saved in the current

directory as: """ + name

print(printStatement)

else:

P.to_csv(toFile, sep='\t')

outFile = """The Pearson correlation metric was

performed on the input file and the resulting

correlation matrix will be saved as: """

outFile += toFile

print(outFile)

################################################################
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# End Pearson Correlation

# (start) Czekanowski Index

################################################################

def my_Czek(X,Y):

X = np.array(X)

Y = np.array(Y)

Cz = 2 * sum(np.minimum(X, Y)) / sum(X + Y)

return Cz

czek_dist = DistanceMetric.get_metric(my_Czek).pairwise

def Czekanowski(df, name = None, toFile = None):

C = pd.DataFrame(czek_dist(df))

C = C.round(3)

try:

C.index = list(df.index)

C.index.name = df.index.names

C.columns = list(df.index)

except:

pass

if toFile == None:

C.to_csv(name, sep='\t')

printStatement = """ The Czekanowski correlation

metric was performed on the input file and the
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resulting correlation matrix will be saved in

the current diretory as : """ + name

print(printStatement)

else:

C.to_csv(toFile, sep='\t')

outFile = """ The Czekanowski correlation metric

was performed on the input file and the resulting

correlation matrix will be saved as : """ + toFile

print(outFile)

#############################################################

# End Czekanowski

# (start) Spearman Correlation

#############################################################

def Spearman(df, name = None, toFile = None):

df = df.T

S = df.corr(method='spearman')

S = S.round(3)

try:

S.index = list(df.index)

S.index.name = df.index.names

S.columns = list(df.index)

except:

pass

if toFile == None:
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S.to_csv(name, sep='\t')

printStatement = """ Spearman correlation metric

was performed on the input file and the resulting

correlation matrix will be saved in the current

directory as: """ + name

print(printStatement)

else:

S.to_csv(toFile, sep='\t')

printStatement = """ The Spearman correlation

metric was performed on the input file and the

resulting correlation matrix will be

saved as: """ + toFile

print(printStatement)

#############################################################

# End Spearman

# Stringent Proportional Similarity (SPS)

#############################################################

def my_sps(X, Y):

X = np.array(X)

Y = np.array(Y)

id0 = np.logical_and((X != 0) , (Y != 0))

sps = 1. - (1. / len(X)) * ( sum(np.absolute(X[id0]**2 - \

Y[id0]**2)/(X[id0]**2 + Y[id0]**2)) + sum(~id0) )
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return sps

sps_dist = DistanceMetric.get_metric(my_sps).pairwise

def SPS(df, name = None, toFile = None):

Sp = pd.DataFrame(sps_dist(df))

Sp = Sp.round(3)

try:

Sp.index = list(df.index)

Sp.index.name = df.index.names

Sp.columns = list(df.index)

except:

pass

if toFile == None:

Sp.to_csv(name, sep='\t')

printStatement = """ The SPS correlation metric

was performed on the input file and the resulting

correlation matrix will be saved in the current

directory as: """ + name

print(printStatement)

else:

Sp.to_csv(toFile, sep='\t')

outFile = """ The SPS correlation metric was

performed on the input file and the resulting

correlation matrix will be saved as: """ + toFile

print(outFile)

#############################################################

# End SPS
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def Main():

parser = argparse.ArgumentParser()

parser.add_argument('inputFile', help= """The inputFile

argument specifies which dataframe you are reading in

to perform a correlation test on.""")

parser.add_argument('CorFunc' , help= """The CorFunc

argument specifies which correlation metric to

perform on the input file. The options are:

<Pearson>, <Spearman>, <Czekanowski>, or <SPS>.""" )

parser.add_argument('-o' , '--output', help="""This

is an optional argument that specifies where your

output file (a correlation matrix) should be

written to. Default is the current working

directory.""", type=str)

args = parser.parse_args()

try:

df = pd.read_csv(args.inputFile, sep='\t', \

index_col=0, skipinitialspace=True)

except OSError:

errorStatement = "This input file: " +

args.inputFile + """
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does not exist."""

print(errorStatement)

#############################################################

if args.CorFunc == 'Pearson':

if args.output:

toFile = args.output

return Pearson(df = df, toFile = toFile)

else:

name = os.path.splitext(args.inputFile)[0] + \

"_Pearson_cor.tsv"

return Pearson(df = df, name = name)

#############################################################

elif args.CorFunc == 'Czekanowski':

if args.output:

toFile = args.output

return Czekanowski(df = df, toFile = toFile)

else:

name = os.path.splitext(args.inputFile)[0] + \

"_Czekanowski_cor.tsv"

return Czekanowski(df = df, name = name)

##############################################################

##############################################################

elif args.CorFunc == 'Spearman':

if args.output:

toFile = args.output

return Spearman(df = df, toFile = toFile)
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else:

name = os.path.splitext(args.inputFile)[0] + \

"_Spearman_cor.tsv"

return Spearman(df = df, name = name)

##############################################################

##############################################################

elif args.CorFunc == 'SPS':

if args.output:

toFile = args.output

return SPS(df = df, toFile = toFile)

else:

name = os.path.splitext(args.inputFile)[0] + \

"_SPS_cor.tsv"

return SPS(df = df, name = name)

##############################################################

else:

print("Invalid entry for the argument specifying " + \

"the correlation function. Please see help for " + \

"this script by typing: <python ex1.py -h>.")

if __name__=='__main__':

Main()
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Table C.1. A χ2 table from the book Statistics: Discovering Its Power [92].
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