
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2015

Some combinatorial applications of Sage, an open source Some combinatorial applications of Sage, an open source

program program

Jessica Ruth Chowning

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Applied Mathematics Commons, and the Mathematics Commons

Department: Department:

Recommended Citation Recommended Citation
Chowning, Jessica Ruth, "Some combinatorial applications of Sage, an open source program" (2015).
Masters Theses. 7390.
https://scholarsmine.mst.edu/masters_theses/7390

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7390&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7390&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7390&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7390?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7390&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

SOME COMBINATORIAL APPLICATIONS OF SAGE, AN OPEN SOURCE

PROGRAM

by

JESSICA RUTH CHOWNING

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

 MASTER OF SCIENCE IN MATHEMATICS

2015

Approved by

Ilene H. Morgan, Advisor

David Grow

Gerald L. Cohen

Copyright 2015

JESSICA RUTH CHOWNING

All Rights Reserved

iii

ABSTRACT

In this thesis, we consider the usefulness of Sage, an online and open-source

program, in analyzing permutation puzzles such as the Rubik’s cube and a specific

combinatorial structure called the projective plane. Many programs exist to expedite

calculations in research and provide previously-unavailable solutions; some require

purchase, while others, such as Sage, are available for free online. Sage is asked to handle

a small permutation puzzle called Swap, and then we explore how it calculates solutions

for a Rubik’s cube. We then discuss projective planes, Sage’s library of functions for

dealing with projective planes, and how they relate to the card game Spot It! Since Sage

is a free, open-source program, its limitations are a valid concern and are also discussed.

iv

ACKNOWLEDGMENT

Deepest thanks to Dr. Ilene Morgan for being my academic advisor as well as my

thesis advisor. Since I joined the mathematics department during my undergrad work, she

has been a wonderful resource for classes to take, books to read for research, and for her

endless help with this thesis. If not for her copious corrections, it would not be nearly as

complete and consistent as it is now. I am also indebted to Drs. Grow and Cohen for

serving on my committee and being my professors. All three have challenged me in

various ways, and it has been a wonderful experience to see the limits of my abilities

being pushed and expanded.

I would also like to thank my friends and family for supporting me during late

nights and vacations spent working on this thesis. Your patience, belief in me, and

willingness to bring me coffee and snacks has been instrumental and never forgotten.

Particular thanks and gratefulness to my parents, Mark and Jennifer Chowning, for

believing that I could successfully pursue mathematics. Unending gratitude to Samantha

DiCenso, Kara Mihalik, Danforth Griesenaur, Frank Marshall, Chloe Entwhistle, Amy

Cady, and Garion Lovig. Your friendship and tireless support mean the world to me, and

I would not be who I am otherwise.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENT.. iv

LIST OF ILLUSTRATIONS ... vi

LIST OF TABLES ... viii

SECTION

1. INTRODUCTION ... 1

2. AN INTRODUCTION TO SAGE ... 2

3. PERMUTATION PUZZLES ... 6

4. SAGE AND PERMUTATION PUZZLES .. 12

5. SPOT IT! AND PROJECTIVE PLANES ... 22

6. USING SAGE TO ANALYZE PROJECTIVE PLANES 26

7. CONCLUSIONS AND FUTURE POSSIBILITIES 34

APPENDICES

A. PERMUTATION GROUPS IN SAGE ... 36

B. THE 𝑁 = 3, 𝑁 = 4, AND 𝑁 = 5 RUBIK GROUPS IN SAGE 40

C. SPOT IT! AND SPOT IT! JR. GAMES .. 48

BIBLIOGRAPHY .. 56

VITA .. 57

vi

LIST OF ILLUSTRATIONS

Figure Page

 2.1 The Sage worksheet .. 2

 2.2 A basic calculation in Sage (assigning values to a variable), and how

 Sage gives the output .. 3

 2.3 Defining a function that will test divisibility of two numbers 4

 2.4 An alternate function for testing divisibility ... 5

 4.1 Using Sage to check permutation representations of a game of Swap and

 the solution. ... 13

 4.2 Using Sage to check the sign of the permutation describing the tile setup

 of 2,6,4,1,3,5. .. 14

 4.3 Applying the same process as before to check a solution for Swap 15

 4.4 Initial labeling of the facelets of the Rubik’s cube, which will be used

 throughout the Rubik group to display a given configuration of the cube. .. 17

 4.5 The position of the cube is given as the sequence of moves performed to

 scramble it. .. 19

 6.1 Alternative commands for building projective planes 26

 6.2 Testing Spot It! Jr for isomorphism to a projective plane of order 5 and

 the bijection between the two structures ... 29

 6.3 Testing the incidence structure of the Spot It! blocks and the missing

 blocks for isomorphism to a projective plane of order 7 30

 6.4 Reduced design ... 32

 6.5 An example of a function designed to help rebuild two missing blocks

 from a projective plane ... 33

vii

LIST OF TABLES

Table Page

 5.1 Orders of the points in Spot It! game .. 24

 5.2 Blocks that the points of degree 6 and 7 of Spot It! appear in 24

1. INTRODUCTION

There are few things as satisfying as pitting one’s mind against a puzzle and

finding a solution. Whether it’s developing a mathematical proof or testing a hypothesis

about the laws of nature, the challenge of solving the unknown has driven scientists and

mathematicians to develop ever more sophisticated analytical tools. As the problems

grow more complicated and intricate, so must the tools of investigation. Many powerful

programs exist for various kinds of mathematical computation, but, for the university

student trying to research on a budget, they are somewhat out of reach due to expensive

subscription or purchase fees. With the introduction of Sage, an open-source program

available for online use or free download, an alternative to expensive programs may

exist.

A program is only as useful as its functions allow, and a free program is generally

not as extensive as its paid counterpart. Open-source code, however, allows for users and

developers to add functions as necessary, extending the program’s library and usefulness.

If Sage is to be a competitor with the programs already available, it will have to be able

to handle a wide variety of problems and fields of mathematics. In this thesis, we will

explore how Sage can be used to analyze combinatorial designs such as projective planes

as well as how it handles permutation puzzles, including one famous example: the

Rubik’s cube.

2

2. AN INTRODUCTION TO SAGE

Sage is an open-source mathematical computing package available for free online.

The source code itself can also be downloaded and set up on a personal computer for

offline use. Given that it is an open-source package, it draws on many other mathematical

packages (such as Gap, R, etc.), which opens up its usefulness to mathematicians and

programmers from a variety of disciplines and backgrounds. The current functionality of

the program is limited only by a particular version of the source code; since the program

is open-source, the source code is open to development.

The interface itself, whether used online or built on a computer from the source

code, resembles a command line. A user has only to open a worksheet to begin a new

project. For new users, Sage provides a comprehensive tutorial, beginning with simple

arithmetic and moving up to more specific, advanced fields such as group theory.

The blank worksheet for Sage (Figure 2.1) features a command line. Calculations

in progress are denoted by a red line to the left of the entry and a green line underneath

the output, and finished calculations take the place of the green “in progress” line (Figure

2.2).

Figure 2.1: The Sage worksheet.

3

Figure 2.2: A basic calculation in Sage (assigning values to a variable), and how Sage

gives the output.

Sage’s library encompasses many basic commands necessary for anything from

simple graphing to working with more advanced branches of mathematics such as finite

fields. It also allows users to define functions, which opens up opportunities for more

specific calculations, based on their purpose for using Sage.

Figure 2.3 features an example of a defined function. The first line names the

function is_divisible_by(), and in parentheses names variables that the function

should be able to work with, as well as giving a default for the variable “divisor”. In the

case that a value is not assigned to the variable “divisor”, it has a default and will not

cause the program to output an error. The default also gives this particular function a

wider use: testing whether a number is even or odd.

4

Figure 2.3: Defining a function that will test divisibility of two numbers.

The second line of the function definition has Sage perform several small steps at

once. When calling the function, as shown in the third line of the figure, Sage assigns the

number 6 to the variable “dividend” and the number 2 to the variable “divisor”. The

calculation “dividend%divisor” tells Sage to find the remainder when “dividend” is

divided by “divisor”. If the value assigned to the variable “dividend” is a multiple of the

divisor, the remainder should be 0, and therefore the calculated remainder is tested. If it is

equivalent to 0, Sage is told to output a True value, and if not, it outputs False.

This particular function has all of these calculations performed in one step. The

same function could also be defined as in Figure 2.4. This function takes multiple steps,

but is essentially the same as the first; the difference lies only in the number of lines. A

default is still assigned to the variable “divisor” in case one is not assigned when the

function is called, and the remainder is still compared to the value 0. The output is also

either True or False, since the function’s purpose is to test divisibility.

5

Figure 2.4: An alternate function for testing divisibility, demonstrated by assigning 3 to

the variable “dividend” and allowing “divisor” to default to 2.

Both functions are valid. More possibilities exist, based on how in-depth the user

wishes to get in the definition.

A worksheet can be accessed from the main page (whether a user is working

online or offline), or the results can be printed as a PDF and saved to the computer. The

PDF displays the name of the worksheet at the top of the page, and the top left corner

gives the date the worksheet was printed.

6

3. PERMUTATION PUZZLES

One question that any student in a math class will eventually ask is, “But how can

I use this in my everyday life?” Calculus finds application in calculating projectile

motion in physics, while linear algebra and matrices are used in coding theory and finite

fields in cryptography, to name a few examples. Mathematics even shows up in the

games that people play every day, not just to predict how likely someone is to win a hand

of poker, but even to provide strategies for winning. When it comes to permutation

puzzles, it grants the player a solution for winning the game.

A permutation rearranges the elements of a set from a certain starting order.

Elements are neither added nor removed, merely assigned a position that may or may not

be different from the starting position. For example, given the set of integers from 1 to

10, a possible permutation would be to switch each even number with the odd number

directly preceding it, changing the order 1,2,3,4,5,6,7,8,9,10 to 2,1,4,3,6,5,8,7,10,9. There

are 10!, or 3,628,800, possible ways to order the integers 1 to 10, each of them being a

permutation of the initial arrangement from least to greatest. Given 𝑛 distinct elements,

𝑆𝑛 (read as “the symmetric group on 𝑛 elements”) is the group comprising permutations

of said elements and whose operation is composition of those permutations. There are 𝑛!

permutations in 𝑆𝑛.

Various representations exist for the same arrangement of elements. One can

visualize a set of tiles, labeled as the integers from 1 to 10, arranged in the same order as

given in the previous paragraph. The same arrangement can be represented as:

[
1
2

2
1

3
4

4
3

5
6

6
5

7
8

8
7

9

10

10
9

]

7

with the first row denoting the tile numbers and the second row indicating location of the

tiles. Tile 2 would be in the first position, tile 1 in the second, etc.

Another representation combines the two rows as follows:

(1,2)(3,4)(5,6)(7,8)(9,10) , and can be viewed as a function. In general, a cycle 𝛼 of k

elements is denoted as (𝑎1, 𝑎2, . . . , 𝑎𝑘). For each i, 1 ≤ 𝑖 ≤ 𝑘 − 1, 𝛼(𝑎𝑖) = 𝑎𝑖+1, and

𝛼(𝑎𝑘) = 𝑎1. General convention places the smallest element in a cycle at the beginning,

though the cycle (1,3,5), for example, is the same as (3,5,1) and (5,1,3). In the context

of tiles and position, 𝛼(𝑎𝑖) = 𝑎𝑖+1 means that tile 𝑎𝑖 is in position 𝑎𝑖+1.

As another example, suppose ten tiles numbered 1-10 have been arranged in the

following order: 7,2,4,3,9,1,6,5,10,8. This is an example of a permutation of the first ten

positive integers. This ordering can be expressed in the two given ways to express

permutations:

 [
1
6

2
2

3
4

4
3

5
8

6
7

7
1

8

10

9
5

10
9

]

 and (1,6,7)(2)(3,4)(5,8,10,9).

The last representation can omit the cycle consisting solely of 2 since the element

is already in its home position. If the game was to order the tiles from least to greatest, 2

would already be “solved.” Additionally, the inverse of the permutation switches the

rows, with the first being tile positions and the second being the tiles themselves.

Games have been built around this concept; provided with a set of elements that

have been jumbled up and a set of legal moves, the player is challenged to rearrange the

elements back into their home positions. The most famous example is the Rubik’s cube, a

six-faced cube broken into movable pieces called cubies so each face is divided into nine

squares, called facelets, that are the elements permuted in the Rubik’s cube. Legal moves

8

consist of series of rotations of the movable faces, which are fixed in the center of the

cube. Once the cube has been scrambled, each piece must be moved back into its proper

place so each side is the same color. The closer the cube is to being solved, the cleverer

the moves have to be so that a new piece can be put in place without disturbing

previously-solved cubies. Solving strategies will be discussed later.

A simpler permutation game is built from the aforementioned image of jumbled

tiles. To simplify the process of solving such a puzzle and reducing the number of

necessary and possible moves, only the integers 1-6 shall be considered.

The game of Swap, proposed by Jamie Mulholland in his course “Permutation

Puzzles: A Mathematical Perspective” at Simon Fraser University, is presented to this

end. Suppose tiles numbered from 1 to 6 are given in a certain jumbled order, or

permutation, and the object is to put them back in ascending order. The game is

complicated by defining only certain moves to be legal; since the game is more of an

exercise to illustrate mathematical properties rather than a commercially-available

system, there are no formal rules for legal moves. If legal moves are swapping any two

tiles, then it can be shown by properties of permutations that any ordering of the tiles can

be eventually solved. Any ordering of tiles can be represented as a permutation 𝛼, and

switching two tiles can be represented as the 2-cycle, or transposition, (𝑎, 𝑏), with tile a

moving to position b and tile b moving to position a. Any permutation 𝛼 can be

represented as a series of transpositions (Dummit), and it will be shown later that a series

of transpositions can be found that solves the permutation back to the “home” state.

Mulholland presents, in his lectures, the ordering 2,6,4,1,3,5. As a first move, one

might, for instance, swap the 1st and 4th tiles, resulting in the arrangement 1,6,4,2,3,5.

9

The first tile is now solved and can be left alone. Continuing, one possible sequence of

moves involves switching the following positions in this order: 2 and 4, 4 and 6, 4 and 5,

and finally 3 and 4. Five moves were all that were necessary for solving the puzzle.

If the puzzle was represented in cycle notation, we would say that tile 1 is in

position 4, tile 4 in position 3, tile 3 in position 5, tile 5 in position 6, tile 6 in position 2,

and tile 2 in position 1, which ends the cycle. Labelling this as 𝛽, the permutation is

𝛽 = (1,4,3,5,6,2). Each of the swaps would be represented as 𝑠 = (𝑎, 𝑏), with 𝑠(𝑎) = 𝑏

meaning that the tile in position a is moved to position b. In order, they are 𝑠1 = (1,4),

𝑠2 = (2,4), 𝑠3 = (4,6), 𝑠4 = (4,5), 𝑠5 = (3,4). Each intermediate arrangement of tiles

can also be represented as a permutation.

Mathematically, applying each swap is a composition of permutations. Read from

left to right, the first permutation should be the beginning arrangement of the tiles, and

each subsequent cycle (in this case, a transposition since legal moves only allow the

switching of two tiles at a time) would be the next swap in the sequence. So, the steps

followed earlier to solve 2,6,4,1,3,5 would result in:

𝛽𝑠1𝑠2𝑠3𝑠4𝑠5 = (1,4,3,5,6,2)(1,4)(2,4)(4,6)(4,5)(3,4).

The left-to-right convention is not universal. For example, some authors favor

composing permutations from right to left (Pinter). Sage and Mulholland favor left-to-

right, and so that convention will be used for continuity. What is universal is that the

order of the permutations of the composition is important; composition of permutations is

not commutative, and so changing the order of the swaps would not necessarily result in a

solved puzzle. The moves themselves, as well as the order in which they are applied,

matter for solving the puzzle.

10

The legal moves can dictate the solvability of the puzzle. If legal moves are

defined as swapping any two tiles, any scrambled arrangement of tiles can be solved.

This hinges on the fact that any permutation can be broken down into a series of

transpositions. If 𝛼 is a cycle of length 𝑚 (𝑎1, 𝑎2, … , 𝑎𝑚), 𝛼 can be written as, for

example, (𝑎1, 𝑎2)(𝑎1, 𝑎3). . . (𝑎1, 𝑎𝑚−1)(𝑎1, 𝑎𝑚). Using this procedure, any permutation 𝜎

in the symmetric group on 𝑛 symbols, which is the set of all permutations of those n

symbols and denoted as 𝑆𝑛, can be written as a composition of 2-cycles. This holds even

for products of disjoint cycles, i.e., cycles with no elements in common. For example, if

𝜎 = (1,12,8,10,4)(2,13)(5,11,7)(6,9) in 𝑆13, it may be written as

(1,12)(1,8)(1,10)(1,4)(2,13)(5,11)(5,7)(6,9).

Applied to our game of Swap, the starting arrangement can be written as a

permutation as before. This permutation can now be expressed as a composition of

transpositions, each of which physically translates into switching two tiles. The resulting

expression of the permutation gives a possible method for scrambling the tiles, in which

case the solution would be reversing the process. It is certainly not the only solution, as

the expression of a permutation as transpositions is not unique, but it is nonetheless valid.

If valid moves consist of moving more than two tiles, then not all arrangements

can be solved. Mulholland presents another variant of Swap in which valid moves are 3-

cycles, or taking three tiles and cycling them left or right amongst themselves. If the tiles

themselves can take any free position independent of their fellows (they are not fixed in a

track and do not have any other physical restrictions), certain positions may not be

solvable by any series of 3-cycles. Solutions exist if and only if the rearranged

11

permutation can be represented as a series of legal moves. It then becomes necessary to

study which permutations can be broken into 3-cycles and which ones can’t.

As shown before, all permutations, including 3-cycles, can be expressed as a

series of transpositions. The number of 2-cycles that makes up a permutation will be

either even or odd; in the former case, the permutation is said to be even, and otherwise,

it is odd. It can be shown that if a permutation 𝛼 can be represented as an odd number of

2-cycles, no even-length series of transpositions exists that also represents 𝛼, and the

same for an even permutation. So, if 𝛼 can be described by an odd number of 2-cycles, it

can only be represented by odd numbers of 2-cycles and is therefore designated to be

odd.

If an arrangement of tiles can be represented by 3-cycles, it is an even

permutation since 3-cycles can also be represented as a pair of transpositions. Given an

arrangement of tiles, and with the rule that valid moves consist of permuting three tiles in

either direction, the first step should be expressing the arrangement as a permutation and

determining whether or not it is even. Given our previous example, expressed as

(1,4,3,5,6,2), the arrangement cannot be solved using this rule since it can be broken

down into an odd number of transpositions, specifically (1,4)(1,3)(1,5)(1,6)(1,2).

One permutation of tiles that would be solvable using 3-cycles would be

3,5,1,6,4,2, or (1,3)(2,6,4,5) in cycle notation. This is an even permutation and therefore

solvable. One possible solution would be first taking the tiles in positions 1,2, and 3 and

cycling them left, then 1,5,2 to the left, and then 2,4,6 to the right, i.e., apply (1,3,2) →

5,1,3,6,4,2, (1,5,2) → 1,4,3,6,5,2, and (2,4,6) → 1,2,3,4,5,6. Note (1,3,2)(1,5,2)(2,4,6)

= (1,3)(2,5,4,6) is the inverse of the original permutation, as expected.

12

4. SAGE AND PERMUTATION PUZZLES

So far, solutions for the presented games of Swap have been obtained through

guesswork. Sage can be used to obtain solutions for these puzzles, taking guesswork out

of the equation. Any permutation puzzle can be expressed as a starting configuration

represented by a permutation 𝛼, a home configuration 𝜀, and any solution as a series of

moves expressed as 𝛽1, 𝛽2, … , 𝛽𝑛. Altogether, the beginning permutation and the

application of moves makes up the following equation:

𝛼𝛽1𝛽2 … 𝛽𝑛 = 𝜀.

We can write ∏ 𝛽𝑖
𝑛
𝑖=1 = 𝛽, where 𝛽 represents the whole solution, so we can

write 𝛼𝛽1𝛽2 … 𝛽𝑛 = 𝛼𝛽 = 𝜀.

From this equation, we can see that 𝛼 and 𝛽 must be inverses since they come

from the same permutation group, so a solution can be calculated as 𝛼−1, or the inverse

of the permutation that describes the initial configuration. This was illustrated at the end

of Chapter 3.

Inverses of permutations are not difficult to calculate by hand, and Sage can be

used to check the solution; for Swap, it can also give a pictorial representation of the

initial arrangement of tiles. If necessary, Sage can also check the sign of the permutation

as a solvability check. If the solution has been calculated by hand and then broken down

into 2- or 3-cycles, Sage can be an accuracy check.

Going back to our first example, the six tiles scrambled to show 2,6,4,1,3,5, we

first suppose that legal moves consist of switching the tiles in any two locations. Our

solution was switching (in order) positions 1 and 4, 2 and 4, 4 and 6, 4 and 5, and lastly 3

13

and 4. Figure 4.1 presents the following code that can be used to represent this puzzle and

process as well as check the solution:

Figure 4.1: Using Sage to check permutation representations of a game of Swap and the

solution, as well as a function written to calculate the moves necessary to solve the

puzzle, outputted as a series of 2-cycles. This given output is then tested for equivalence

to our solution.

14

The first line sets up the symmetric group of order 6, which calculates all

permutations of the integers 1-6. Our representation of the starting tiles, as well as each

move, will be pulled from this group. The second line takes the variable ‘begin’ and

assigns it to the permutation in 𝑆6 that represents the starting arrangement of the tiles, and

then displays the permutation. In addition, a matrix representation of the tiles is set up to

check that the correct permutation is being used. The # starts a comment, just to serve as

a reminder of what the code is doing and an explanation of the output.

From there, the variables beta1 to beta5 are assigned to the move permutations. If

applied in the correct order to begin, and if in that order they are a solution, the end

permutation should be the identity permutation, and the variables beta1 to beta5 should

be the inverse of the begin permutation. The variable ‘end’ is assigned to the permutation

that comes from multiplying ‘begin’ and ‘beta’ together (‘beta’ being the whole solution),

and the end positions of the tiles are displayed in the same way their beginning positions

were, allow a visual check that the solution is valid. Additionally, a function has been

written to take the initial permutation and gives a series of swaps that solve the puzzle.

To check the sign (+1 or -1) of a permutation, corresponding to its parity (even or

odd, respectively) in Sage, the following command is used in Figure 4.2:

Figure 4.2: Using Sage to check the sign of the permutation describing the tile setup of

2,6,4,1,3,5; Sage displays a -1 for odd permutations and a 1 for even permutations.

15

Once a variable has been assigned in Sage, it will have certain properties. For

example, a list will have a length and elements in a certain order. These properties,

referred to in Sage’s documentation as methods, can be called and worked with by

appending .[method]() to the end of the variable name. In Figure 5, the variable in

question is begin, which Sage recognizes as a permutation. Permutations have a sign,

which is called in Sage by the method .sign(). From these, we can see that, while the

2,6,4,1,3,5 arrangement can be solved using any rules involving switching two boxes, it

is an odd permutation, and therefore cannot be solved using 3-cycles.

Another example present in Figure 4.3, using eight tiles, can be represented by

(1,3)(2,4,7,6,8). This time, valid moves are 3-cycles, so it is necessary to check the sign

of the beginning permutation before proceeding.

Figure 4.3: Applying the same process as before to check a solution for Swap.

16

As before, the symmetric group is defined that contains all of the permutations

being used. The beginning permutation is defined, and the output is visually displayed.

Since a check for solvability is necessary, the .sign() method must be called. The

inverse is displayed, and a possible set of solving moves are assigned to the variables

delta1 through delta4, which are multiplied together and checked against the inverse to

see if they are equivalent. This is not the only valid series of moves that will grant a

solution, but composed together, they should be the inverse of the initial permutation.

Once checked, the end variable is assigned, and this time displayed. ‘begin’

multiplied by a valid solution yields the identity permutation, since no positions should

have switched with each other, and as a failsafe, the matrix showing ‘end’ as tiles is

displayed.

Utilizing Sage as a physical check as well as a calculator can cut down on the

time needed to solve certain puzzles. Not only can it handle small permutation puzzles,

but it possesses the functionality to deal with more complicated puzzles, as well. The

Rubik’s cube, mentioned earlier as a famous example of a permutation puzzle, has been

programmed into Sage, with all legal moves and positions residing in a permutation

group called CubeGroup(), a subgroup of 𝑆48. The generators, or permutations that

combine to make all elements of the permutation group, represent the base moves

available to a Rubik’s cube: moving each face of the cube clockwise.

Writing each face move as a permutation is tedious as each is made up of five

cycles. For example, turning the front face clockwise results in a configuration that can

be written as (6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20). One

way to refer to each move is by the face that is turned clockwise; the before permutation

17

can therefore be called F. In the same way, the other five principal moves are B, R, L, U,

D. This notation is referred to as Singmaster notation, after David Singmaster, an

American mathematician who coined the notation and presented his own solution to the

Rubik’s cube in his Notes on Rubik’s ‘Magic Cube’. The numbering of each facelets can

be found in Figure 4.4.

Figure 4.4: Initial labeling of the facelets of the Rubik’s cube, which will be used

throughout the Rubik group to display a given configuration of the cube.

The programming for the Rubik’s cube in Sage is extensive enough that it can

display 2D and 3D representations of the cube in a certain legal orientation, as well as

after each move applied to the cube. This provides the same usefulness that Sage had in

checking and providing solutions for the Swap games; the program can be used to solve

the cube and display the solution as a series of legal moves. Sage contains methods to

check whether a given configuration of the cube is legal or possible, return the current

18

state of a cube, and to return a random scrambling of the cube. Given enough time and a

scrambled state of the cube, Sage can even give a solution in terms of face rotations, or in

Singmaster notation. This takes quite a long time, as the algorithm used by the

.solve() method takes the following steps:

This algorithm

1. constructs the free group on 6 generators then computes a reasonable set of

relations which they satisfy

2. computes a homomorphism from the cube group to this free group quotient

3. takes the cube position, regarded as a group element, and maps it over to the

free group quotient

4. using those relations and tricks from combinatorial group theory (stabilizer

chains), solves the “word problem” for that element.

5. uses python string parsing to rewrite that in cube notation. (“Rubik’s cube

group functions”)

The “solution” is then displayed as a sequence of moves necessary to put a solved

cube in the given scrambled position, and would therefore have to be inverted. Figure 4.5

illustrates a scrambled cube and how to solve it using Sage.

19

Figure 4.5: The position of the cube is given as the sequence of moves performed to

scramble it.

The facelet positions have been given in Singmaster notation as well as in a

colored layout. The cube colors in Sage do not match up with commercially-available

cubes, but serve to illustrate a basic idea of what the cube would look like unfolded.

Then, Sage is told to solve the cube, outputting the sequence “L2 B’ D2 F U2 F U L’ U2

L’ F’ L F U D’ L2 D F2 D”. This is actually a simplified sequence to scramble the cube,

and the solution would therefore be the inverse, starting with a counterclockwise rotation

of the bottom face and ending with two rotations (in this case, counterclockwise or

clockwise does not matter) of the left face. This is not immediately clear and could stand

to be updated in later versions of Sage.

20

While the program cannot yet solve other Rubik’s cubes, the current functionality

could be extended to nxnxn cubes for 𝑛 > 3. To start, the facelets of the 4x4x4 cube

(called Rubik’s Revenge) or the 5x5x5 cube (called Professor’s Cube) would be assigned

numbers in the same way that the Rubik’s cube was, and the generating permutations

would be built from there (see Appendix B). Legal moves would be sequences of these

permutations. Each group would have twelve generators (the 𝑛 = 5 cube follows suit for

𝑛 = 3 and ignores the middle slice). We therefore consider 96 facelets for the 𝑛 = 4

cube, and 144 for 𝑛 = 5.

Practically, when solving larger cubes by hand, many prefer to use the reduction

method, which takes a larger cube and puts it in the state of the 𝑛 = 3 cube. For example,

for 𝑛 = 4, the four center facelets of a face are treated as one center piece, where it

doesn’t matter the orientation of each individual facelet; any move permuting the four

centers is seen to be invisible. Additionally, the 2 center facelets along an edge are seen

as one facelet, and each corner is handled as a single cubie. The first half of solving the

cube is making all of the centers, edges, and corner pieces the same color, therefore

reducing the cube to an 𝑛 = 3 cube; the solution can then be completed using methods to

solve the 𝑛 = 3 cube. Specialized algorithms of moves exist that will set a facelet in

place. Opposite colors must be kept in mind, as they are used by solvers to orient the

colors correctly. Possible errors in the setting of edges and corners may arise, but

algorithms exist to correct those parity errors, as well. Whether n is odd or even, the

technique works; the only differences come in moves that will set the reduced “cubies”.

Once the reduced “cubies” have been solved, the task is to solve the 3x3x3 cube.

One method for beginning is to solve the top “cross” first, then the whole first layer

21

(making sure edge facelets follow the same order that the center facelets of the side faces

follow). The second layer is solved, and then the bottom face only, leaving the third

layer’s corner and edge facelets. Other algorithms exist, some preferred by speedcubers

and others depending on the developer of the method. Like a traditional puzzle, there is

no “right” way to solve a permutation puzzle, and the Rubik’s cube is no exception.

When Sage presents a solution for a cube, it does not necessarily follow this

formatting. The solution more directly follows as an inverse of the beginning

permutation, much like the solutions for the Swap games were found. This is a faster,

though far less intuitive solving of the cube as the solution could potentially solve many

cubies at once, and many algorithms presented to solve the cube by hand focus on one

cubie at a time.

If Sage was also applied to 𝑛 > 3 cubes, the solution process would take

advantage of the existing code that solves 𝑛 = 3 cubes. While reduction makes use of the

fact that certain facelets will never be in certain places on the cube (for example, a center

will never be a corner, and vice versa) and moves single cubies into place without

disturbing already solved ones, it does not present a quick solution. Sage takes

advantages of a few diverse algorithms to calculate solutions, depending on the

contributing developer, but the default algorithm gives a solution in the fewest moves

necessary. All that would be necessary for Sage to handle 𝑛 > 3 cubes would be to create

a cube group with twelve generators and modify the existing code to call those

generators.

22

5. SPOT IT! AND PROJECTIVE PLANES

Permutations can appear in different games whose objectives are not necessarily

reordering scrambles tiles or facelets. Spot It!, a card game focused on matching symbols,

presents cards with small sets from a given list of symbols. The object of the game is to

find the shared symbol in a pair of cards. Each card has the same number of symbols, and

for Spot It!, there are two less cards than there are symbols total.

The collections of symbols on each card are not randomized; they are specifically

chosen such that any pair of cards will have a common symbol. The combinations of

symbols are not what make this game mathematically interesting. Rather, it is the fact

that the game is a physical representation of what is in mathematics called a projective

plane. A projective plane is made up of a series of lines, or blocks, containing a certain

number of points. Any two blocks will share exactly one point in common.

The projective plane is a specific case of a balanced incomplete block design

(BIBD), which takes a set of elements and organizes them in such a way that certain

interesting characteristics arise. Five parameters are considered for a BIBD: number of

elements or points (𝑣), number of blocks or lines (𝑏), length of block or number of

elements in each block (k), degree of element or number of blocks in which the element

appears (r), and number of times a subset of elements will appear in the design (𝜆). If the

subsets have two points, then the design is called a 2-design; a projective plane is a type

of 2-design in which 𝜆 = 1. Projective planes are also symmetric, with 𝑣 = 𝑏.

Any block design is subject to the following necessary conditions: 𝑣𝑟 = 𝑘𝑏 and

𝜆(𝑣 − 1) = 𝑟(𝑘 − 1). Given that a projective plane satisfies 𝜆 = 1 and 𝑣 = 𝑏 (therefore

23

reducing the first equation to 𝑟 = 𝑘) the second equation simplifies to 𝑣 − 1 = 𝑘(𝑘 − 1).

The order 𝑛 of a projective plane is defined to be 𝑘 − 1. Substituting, we obtain 𝑣 − 1 =

𝑘(𝑘 − 1) = (𝑛 + 1)𝑛. So, the number of points in a projective plane is 𝑣 = 𝑛2 + 𝑛 + 1.

Since the design is symmetric, there must also be 𝑛2 + 𝑛 + 1 blocks, and each point has

degree 𝑛 + 1. (Beth)

A children’s version of the game, called Spot It! Jr., exists with thirty-three cards

and thirty-three symbols; the degree of each symbol as well as the number of symbols on

each card is 6, making Spot It! Jr. a projective plane of order 5. In this game, no block is

missing. The fact that this game as well as the Spot It! game plus its missing blocks are

projective planes will be verified later.

In a game of Spot It!, there are 57 symbols total, meaning the plane has order 7.

Unlike Spot It! Jr., which represents a complete projective plane, there are only 55 cards

in a Spot It! deck, which means that the game is missing two cards to be considered a

complete projective plane. Each card has eight symbols, and each symbol would ideally

appear eight times if the game was a full projective plane. The two missing cards means

that there is one symbol of degree 6, fourteen of degree 7, and forty-two of degree 8. The

missing cards do not affect the playability of the game, as each of the remaining cards

share pairs independent of each other.

For Spot It! to fully represent a projective plane, it would need two more blocks.

Each symbol can be assigned a number from 0-56; particulars can be found in Appendix

C. The degrees of the points, given our particular assignments, can be found in Table 5.1.

24

Table 5.1: Orders of the points in Spot It! Game.

Degree Points

6 44

7 0, 1, 8, 17, 21, 23, 27, 31, 32, 33, 40, 41, 47, 50

8 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 24, 25, 26,

28, 29, 30, 34, 35, 36, 37, 38, 39, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54,

55, 56

Since the two missing blocks, which shall be called B1 and B2, must share a point

in common, and point 44 must have degree 8, both B1 and B2 must contain point 44. The

existing blocks were also assigned a number from 0 to 56, and the blocks in which points

of degree 7 can be found in Table 5.2.

Table 5.2: Blocks in which the points of degree 6 and 7 of Spot It! appear

Point Blocks

0 5, 23, 24, 36, 39, 43, 51

1 11, 28, 35, 38, 39, 44, 49

8 15, 19, 25, 32, 45, 46, 51

17 22, 27, 28, 37, 40, 46, 50

21 8, 9, 16, 19, 38, 42, 48

23 6, 9, 23, 33, 34, 37, 47

27 13, 16, 20, 27, 30, 36, 53

31 1, 2, 14, 20, 25, 33, 49

32 0, 1, 5, 18, 40, 42, 54

33 6, 11, 15, 18, 26, 41, 53

40 2, 4, 12, 22, 41, 43, 48

41 10, 12, 13, 32, 34, 35, 54

47 0, 4, 17, 30, 44, 45, 47

50 8, 10, 14, 17, 24, 26, 50

25

From here, it is a matter of sorting these points into B1 and B2. Since each must

appear with point 44, it becomes necessary to have another point of comparison. Sorting

point 0 into B1, the blocks of each subsequent point are compared to those of point 0’s. If

they already share one in common, the point is sorted into B2, as the point and 0 have

appeared together before. If not, the point goes in B1. Following this method, B1 and B2

were constructed as {0,17,21,31,33,41,44,47} and {1,8,23,27,32,40,44,50}. Combining

these with the existing blocks forms a projective plane of order 7, which will be verified

in the next chapter.

26

6. USING SAGE TO ANALYZE PROJECTIVE PLANES

So far, Sage has been used primarily as a calculator for solutions of various

puzzles. Given its wide library of pre-existing functions, as well as easily-accessed source

code, Sage can be used as an analysis tool, as well, especially for projective planes.

Block designs can be built from just a few parameters, and some of the more

specialized ones, such as projective planes, can be called by their names. Most generally,

a BIBD can be built by the following line of code:

balanced_incomplete_block_design(v, k, existence=False,

use_LJCR=False). Assuming that the inputs for each parameter correspond to a valid

design, Sage will build it and can go to the La Jolla Covering Repository if use_LJCR is

set to True when it does not know how to build the design. Figure 6.1 demonstrates

alternatives for building an incidence structure.

Figure 6.1: Alternative commands for building projective planes.

27

General incidence structures can be built in a few different ways: by giving the

total number of points and a set of blocks or by giving the incidence matrix of the points

and blocks. This is demonstrated by building the Fano plane, an incidence structure that

also happens to be a projective plane of order 2 as defined in Chapter 5. In the first part of

the figure, the plane is built given the total number of points 7 (this can also be handled

by giving a list of the points) and the construction of the individual blocks. The next uses

the incidence matrix of the structure to build the Fano plane.

When it comes to building a projective plane, there are various approaches. Users

can use the methods demonstrated previously, or they could call

designs.projective_plane(n), which will construct a projective plane of order

n. This doesn’t allow for any control of which points are assigned to which blocks, but

usually isn’t a problem for smaller orders. According to the Bruck-Ryser-Chowla

theorem, “If a symmetric design with 𝜆 = 1 and order 𝑛 exists and if 𝑛 ≡ 1 or 2 (mod 4)

then 𝑛 can be expressed as a sum of two integral squares.” (Hughes) This combined with

the necessary conditions for projective planes allows for the possible existence of planes

of order 10 and 12, but not for order 6. In fact, exactly one plane of each order exists (up

to isomorphism) for order 2, 3, 4, 5, 7, and 8 (Cherowitzo). This means that it doesn’t

matter how we arrange the individual points in the blocks for a projective plane; if two

incidence structures are isomorphic, then there exists a bijection between them that will

map the points of one structure to the other and preserve the block structure. For

example, if one structure consists of the blocks [a,b] and [c,d], and the other of the blocks

[1,2] and [3,4], then these structures are the same with a mapping to 1, b to 2, c to 3, and

d to 4, and vice versa.

28

 If a specific design is desired, it can be built from the incidence matrix of the

points, as well as by giving the total number of points as well as a list of the blocks

themselves. This last method will be how we build and verify the projective planes

represented in the Spot It! and Spot It! Jr. games.

Spot It! Jr. is meant to be a projective plane of order 5, meaning 31 points and 31

blocks. Sage doesn’t require an incidence structure’s points to be integers. For example,

the example on the previous page could be built in Sage with the command

A=designs.IncidenceStructure([['a','b'],['c','d']]). This yields

an incidence structure with the points a, b, c, and d, and two blocks [a,b] and [c,d]. The

same process could be used to model the Spot It! Jr. game in Sage, with the points being

the names of the symbols on each card. The blocks would then be built with the symbol

names as elements. To reduce error, each symbol was assigned a number from 0 to 30, as

well as each block. A full list can be found in Appendix C.

To check that Spot It! Jr. is actually a projective plane of order 5, Sage can be

made to build a plane of order 5 and check that the two are isomorphic to each other.

Two incidence structures are said to be isomorphic if there is a one-to-one and onto

mapping from the point set of one to the point set of the other that preserves the block

structure. Only one plane of order 5 exists up to isomorphism, so any construction of 31

points into 31 blocks that each share only a single point in common must be isomorphic

to the existing plane. By calling the method

[design].is_isomorphic([other], certificate=False), Sage

compares the two designs to each other to determine if one is just a renumbering of the

other. If the certificate is set to True, and the two planes are determined to be isomorphic,

29

Sage will come up with a bijection between the two. In this case, the bijection would tell

us what point in Sage’s built plane of order 5 corresponds to a given symbol in Spot It!

Jr.

Figure 6.2: Testing Spot It! Jr for isomorphism to a projective plane of order 5 and the

bijection between the two structures.

Now, given the fact that Spot It! is not a full projective plane due to two missing

blocks, the existing structure can be put into Sage, but will not be isomorphic to a

projective plane of order 7. The missing blocks were reconstructed in the previous

30

chapter, so the completed structure can be tested against a plane of order 7 that Sage

builds, and the blocks are verified.

Figure 6.3: Testing the incidence structure of the Spot It! blocks and the missing blocks

for isomorphism to a projective plane of order 7.

Since Sage is open-source, a solution or improvement can be implemented in a

matter of weeks. Code is built and tested, and once it is given a positive review, it can be

integrated into the program. For example, developers have pulled an outside program

called bliss to expedite the calculation of a projective plane’s automorphism group (the

set of isomorphisms from the plane to itself). Before, such a calculation could take

31

several hours and a large amount of memory. Utilizing bliss, the calculation time was

trimmed down to a matter of seconds, and the storage needed was also vastly reduced.

Until very recently, Sage did not possess the code necessary to calculate, for example, the

stabilizer of a block of a system (the set of automorphisms of the design that leave the

block unchanged), but code to provide this additional functionality was recently

incorporated.

If a particular calculation does not call for the source code to be changed, a

function can be written to perform the desired task. Instead of computing the missing

blocks of Spot It! by hand, Sage could be made to do that task itself. There are a few

possibilities for code that could be written to handle such a task. One might involve

comparing the blocks from Spot It! to those in a projective plane of order 7, come up with

a bijection between the points, and apply that bijection to the blocks in Spot It! From

there, it is a matter of finding the blocks that aren’t represented and determining the

symbols that make up those blocks from the bijection.

This is somewhat imprecise and roundabout. Another possibility would be to look

at the incidence matrix for Spot It!, where the rows represent the points from 0 to 56, and

the columns are the blocks from 0 to 54. Calling this matrix M, and letting

M’=M*M.transpose(), M’ is a 57x57 matrix, with entry 𝑚𝑖,𝑗 telling how many times

point 𝑚𝑖 appears with point 𝑚𝑗 in the design. The diagonal would then give the degree of

each point. So, if the first row corresponds to point 0, and the first column would also

correspond to point 0, entry 𝑚1,1 should be the degree of point 0. The missing blocks

(again, we can label them B1 and B2) would be built by first finding the row i such that

𝑚𝑖,𝑖 = 6; this will correspond to the point 𝑖 by Sage’s indexing system. This point will go

32

in both blocks. From there, it is a matter of finding all points of degree 7, picking one,

which shall be denoted 𝑎, with degree 7, placing it in B1, and then reading across the row

to find the columns with a 0; these will correspond to points with which 𝑎 has not yet

appeared, and must also be placed in B1. The remaining points of degree 7 should be

sorted into B2.

Doing these calculations in Sage is feasible, but the output can be somewhat hard

to read given the size of the matrices. To illustrate the above process on a smaller scale,

let’s say we’re given the following five blocks: [0,1,2], [0,3,4], [0,5,6], [1,3,5], [2,4,5].

Based on the fact that there are seven distinct points, and if we are trying to build a

projective plane, then we should be trying for a projective plane of order 2. Inputting this

design into Sage, we come up with the following for the incidence matrix and Mstar:

Figure 6.4: Reduced design.

33

From the Mstar matrix, we see that point 6 has degree 1, placing it in both B1 and

B2, and points 1, 2, 3, and 4 have degree 2 and will be sorted based on how often the

pairs between them have appeared in the design. The second row of the matrix gives

incidences for point 1, and we can see that the pairs [1,4] and [1,6] have not appeared yet.

Therefore, B1 can be assigned points 1, 4, and 6. This leaves 2 and 3 to be assigned to B2

along with 6. Our full design then becomes [0,1,2], [0,3,4], [0,5,6], [1,3,5], [2,4,5],

[1,4,6], and [2,3,6].

The function written to handle this sort of calculation and sorting could be much

more general and applied to different, incomplete projective planes. If handed a design

that is two blocks short of being a projective plane, the function should be able to find the

point that should be sorted into both of the missing blocks, the points that should be

sorted into one block or the either, and then from there, find the point pairs that have not

appeared together. One function that could handle this is shown in Figure 6.5.

Figure 6.5: An example of a function designed to help rebuild two missing blocks from a

projective plane.

34

7. CONCLUSIONS AND FUTURE POSSIBILITIES

Sage’s versatility and use of outside programs makes it an ideal tool for analyzing

mathematical problems. We have seen how it can be used to handle small puzzles, and

even how it can formulate a solution to solve a Rubik’s cube. It can also be given an

incidence structure and, if the functionality does not yet exist to solve a particular

problem, then the open-source code and active forums allow for new code to be added

and tested in a matter of weeks, if not days. For instance, after I inquired about the

existence of a method for finding the stabilizer of a block in a BIBD, a developer set out

to program such a method, and it was recently given a positive review and has been

incorporated into Sage. If users have experience with developing programs, they can

write scripts themselves and contribute to the ever-growing list of tools that Sage can use

to provide answers.

If development is of no interest to the user, then basic functions can be written to

handle a process. Limitations here would be that a basic knowledge of programming is a

must, as well as quirks with Sage’s indexing and the habit of composing permutations left

to right rather than right to left as presented in many algebra textbooks, for example.

There is also the aforementioned issue of Sage’s presented solution to a Rubik’s cube. It

is not immediately clear that the given sequence that Sage comes up with is a scrambling,

rather than a descrambling, of the cube. This could be potentially rectified by adding a

line or two of code that would take the “solution” and invert it, or even by adding a

comment that states “Reversing the given sequence will unscramble this Rubik’s cube.”

35

There is enough interest in 𝑛 = 4 and 𝑛 = 5 Rubik’s cubes that one could foresee the

possibility of expanding Sage’s capabilities to handle these larger cubes.

These are rather minor inconveniences and conventions of the program that, once

the user has been familiarized with them, do not detract from the functionality and

usefulness of the program. Sage’s open-source nature allows for collaboration with many

specialized programs and languages (bliss and Python, for example). While still a

developing program, there is not much it can’t already handle, and the limitations

mentioned above are either already being patched or can be fixed. Its limitations do not

outweigh the already numerous problems the program can already handle. Since it does

not require a subscription or purchase to use, or even that the user download it, Sage

could be an incredibly useful analytical tool for students of mathematics in the future.

APPENDIX A

PERMUTATION GROUPS IN SAGE

37

Figure 1: Two ways to define a permutation: one as a function, and another as an element

of a group; as well as legal and illegal operations to perform

Figure 2: Calling methods of permutations (as elements of group)

38

Figure 3: Calling methods of the symmetric group of six elements

Figure 4: Calculating orbits of a point and of a set, and calculating stabilizer of a point

39

Figure 5: Truncated output of the subgroups of S6

APPENDIX B

THE 𝑵 = 𝟑, 𝑵 = 𝟒, AND 𝑵 = 𝟓 RUBIK GROUPS IN SAGE

41

Modeling a Rubik’s cube in Sage

The Rubik’s Cube can be dealt with in Sage using one of two classes: CubeGroup()

and RubiksCube(). RubiksCube() has already been demonstrated, and an example

of how to use CubeGroup() is below.

sage: rubikscube=CubeGroup(); rubikscube; rubikscube.display2d("") # last will display

the cube after no move has been applied

 The Rubik's cube group with generators R,L,F,B,U,D in

SymmetricGroup(48).

 +--------------+

 | 1 2 3 |

 | 4 top 5 |

 | 6 7 8 |

+------------+--------------+-------------+------------+

| 9 10 11 | 17 18 19 | 25 26 27 | 33 34 35 |

| 12 left 13 | 20 front 21 | 28 right 29 | 36 rear 37 |

| 14 15 16 | 22 23 24 | 30 31 32 | 38 39 40 |

+------------+--------------+-------------+------------+

 | 41 42 43 |

 | 44 bottom 45 |

 | 46 47 48 |

 +--------------+

sage: rubikscube.F(), rubikscube.move("F")[0] # permutation B returned in Singmaster

notation, called two ways

 ((6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20),

42

(6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20))

sage: r1 = {'back': [[33, 34, 35], [36, 0, 38], [37, 39, 40]], 'down': [[41, 42, 43], [44, 0,

45], [46, 47, 48]],'front': [[17, 18, 19], [20, 0, 21], [22, 23, 24]],'left': [[9, 11, 10], [12, 0,

13], [14, 15, 16]],'right': [[29, 26, 27], [28, 0, 25], [30, 31, 32]],'up': [[1, 2, 3], [4, 0, 5], [6,

8, 7]]};

sage: rubikscube.legal(r1) #tests legality when facelets are in the described positions,

where 0 is the center facelet

 0

sage: rubikscube.plot3d_cube("F")

43

Figure 1: 3D output in Sage of a Rubik’s cube with the front face turned clockwise. The

colors used do not match what is commercially available, but suffice for demonstration.

Here, the topmost face is “Up”, the leftmost is “Front”, and the last is “Right”. Like

colors have been given symbols for the sake of clarity.

sage: state=rubikscube.faces("R*F*B2*F^(-1)") # sets cube faces after the sequence of

moves has been applied

sage: rubikscube.solve(state) # outputs shortest sequence to scramble cube into 'state'

which should be inverted for solution

 'R B2'

44

4x4x4 Rubik’s Cube (Rubik’s Revenge)

The permutation group that would describe the 𝑛 = 4 cube would be a subgroup of 𝑆96

and have twelve generators, one for each slice of the cube. The group would also have

order 16972688908618238933770849245964147960401887232000000000, or

2^50*3^29*5^9*7^7*11^4*13^2*17^2*19^2*23^2. Each of the generators have been

assigned a letter based on which direction on the cube they lie (standard left, right, up,

down, front, back from Singmaster), and are capitalized if the slice is the outside slice,

and lowercased if the inside slice. For example, the leftmost slice is denoted by L, and the

slice directly inside L is denoted as l. The topmost slice is U, and the slice directly inside

is u.

Facelet Numbering

 top

 +----------------+

 | 1 2 3 4 |

 | 5 6 7 8 |

 | 9 10 11 12 |

 left | 13 14 15 16 | right rear

+----------------+----------------+----------------+----------------+

| 17 18 19 20 | 33 34 35 36 | 49 50 51 52 | 65 66 67 68 |

| 21 22 23 24 | 37 38 39 40 | 53 54 55 56 | 69 70 71 72 |

| 25 26 27 28 | 41 42 43 44 | 57 58 59 60 | 73 74 75 76 |

| 29 30 31 32 | 45 46 47 48 | 61 62 63 64 | 77 78 79 80 |

+----------------+----------------+----------------+----------------+

 | 81 82 83 84 |

 | 85 86 87 88 |

 | 89 90 91 92 |

 | 93 94 95 96 |

 +----------------+

 bottom

Generators

L=(1,33,81,80)(5,37,85,76)(9,41,89,72)(13,45,93,68)(17,20,32,29)(18,24,31,25)(19,28,30

,21)(22,23,27,26)

l=(2,34,82,79)(6,38,86,75)(10,42,90,71)(14,46,94,67)

45

r=(3,78,83,35)(7,74,87,39)(11,70,91,43)(15,66,95,47)

R=(4,77,84,36)(8,73,88,40)(12,69,92,44)(16,65,96,48)(49,52,64,61)(50,56,63,57)(51,60,

62,53)(54,55,59,58)

U=(17,65,49,33)(18,66,50,34)(19,67,51,35)(20,68,52,36)(1,4,16,13)(2,8,15,9)(3,12,14,5)

(6,7,11,10)

u=(21,69,53,37)(22,70,54,38)(23,71,55,39)(24,72,56,40)

d=(25,41,57,73)(26,42,58,74)(27,43,59,75)(28,44,60,76)

D=(29,45,61,77)(30,46,62,78)(31,47,63,79)(32,48,64,80)(81,84,96,93)(82,88,95,89)(83,9

2,94,85)(86,87,91,90)

F=(13,49,84,32)(14,53,83,28)(15,57,82,24)(16,61,81,20)(33,36,48,45)(34,40,47,41)(35,4

4,46,37)(38,39,43,42)

f=(9,50,88,31)(10,54,87,27)(11,58,86,23)(12,62,85,19)

b=(5,30,92,51)(6,26,91,55)(7,22,90,59)(8,18,89,63)

B=(1,29,96,52)(2,25,95,56)(3,21,94,60)(4,17,93,64)(65,68,80,77)(66,72,79,73)(67,76,78,

69)(70,71,75,74)

46

5x5x5 Rubik’s Cube (Professor’s Cube)

The permutation group that would describe the 𝑛 = 5 cube would be a subgroup of 𝑆144

and have order

187482944635529732772790873889227901981546631951879544342690743355535455

068451826403024481163459041820045980772498551501004551978078086768958630

6139030929584094503620200680652800000000000000000000000000000000, or

2^139*3^68*5^32*7^22*11^12*13^10*17^8*19^6*23^6*29^4*31^4*37^2*41^2*43^2

*47^2*53^2*59^2*61^2*67^2*71^2. Like the 𝑛 = 4 cube, the Professor’s Cube would

have twelve generators, one for each slice of the cube that is not the centermost slice as

any facelets on that slice can be moved by rotation of other slices. Naming of slices (and

therefore the corresponding permutations) follows the same conventions as for the 𝑛 = 4

cube, as there are only twelve slices to consider.

Facelet Numbering

47

Generators

L=(1,12,121,120)(6,54,126,115)(11,59,131,110)(15,63,135,106)(20,68,140,101)(25,29,4

8,44)(26,34,47,39)(27,38,46,35)(28,43,45,30)(31,33,42,40)(32,37,41,36)

l=(2,50,122,119)(7,55,127,114)(12,60,132,109)(16,64,136,105)(21,69,141,101)

r=(4,117,124,52)(9,112,129,57)(13,108,133,61)(18,103,138,66)(23,98,143,71)

R=(5,116,125,53)(110,111,130,58)(14,107,134,62)(19,102,139,67)(24,97,144,72)(73,77,

96,92)(74,82,95,87)(75,86,94,83)(76,91,93,78)(79,81,90,88)(80,85,89,84)

U=(25,97,73,49)(26,98,74,50)(27,99,75,51)(28,100,76,52)(29,101,77,53)(1,5,24,20)(2,10

,23,15)(3,14,22,11)(4,19,21,6)(7,9,18,16)(8,13,17,12)

u=(30,102,78,54)(31,103,79,55)(32,104,80,56)(33,105,81,57)(34,106,82,58)

d=(39,63,87,111)(40,64,88,112)(41,54,89,113)(42,66,90,114)(43,67,91,115)

D=(44,68,92,116)(45,69,93,117)(46,70,94,118)(47,71,95,119)(48,72,96,120)(121,125,14

4,140)(122,130,143,135)(123,134,142,131)(124,139,141,126)(127,129,138,136)(128,133

,137,132)

F=(20,73,125,48)(21,78,124,43)(22,83,123,38)(23,87,122,34)(24,92,121,29)(49,53,72,68

)(50,58,71,63)(51,62,70,59)(52,67,69,54)(55,57,66,64)(56,61,65,60)

f=(15,74,130,47)(16,79,129,42)(17,84,128,37)(18,88,127,33)(19,93,126,28)

b=(6,45,139,76)(7,40,138,81)(8,36,137,85)(9,31,136,90)(10,26,135,95)

B=(1,44,144,77)(2,39,143,81)(3,35,142,86)(4,30,141,91)(5,25,140,96)(97,101,120,116)(

98,106,119,111)(99,110,118,107)(100,115,117,102)(103,105,114,112)(104,109,113,108)

APPENDIX C

SPOT IT! AND SPOT IT! JR. GAMES

49

Table 1: Spot It! Jr. list of symbols, corresponding number assignments, and degree

Symbol Point Degree

bat 0 6

bear 1 6

camel 2 6

cat 3 6

chick 4 6

crab 5 6

dog 6 6

dolphin 7 6

duck 8 6

fish 9 6

flamingo 10 6

frog 11 6

gator 12 6

gorilla 13 6

grasshopper 14 6

hippo 15 6

horse 16 6

lion 17 6

octopus 18 6

owl 19 6

parrot 20 6

penguin 21 6

pig 22 6

rabbit 23 6

seal 24 6

shark 25 6

skunk 26 6

snake 27 6

squirrel 28 6

starfish 29 6

50

Symbol Point Degree

turtle 30 6

Table 2: List of blocks for Spot It!, Jr.

Block Points in Block

Block 0 8, 12, 16, 24, 27, 30

Block 1 2, 3, 7, 15, 17, 24

Block 2 1, 2, 9, 25, 29, 30

Block 3 0, 4, 11, 14, 15, 30

Block 4 8, 9, 15, 22, 26, 28

Block 5 7, 9, 11, 20, 21, 27

Block 6 11, 18, 19, 24, 26, 29

Block 7 0, 2, 16, 21, 23, 26

Block 8 6, 17, 19, 21, 28, 30

Block 9 5, 15, 16, 19, 20, 25

Block 10 4, 9, 13, 16, 17, 18

Block 11 8, 10, 11, 17, 23, 25

Block 12 4, 6, 7, 12, 25, 26

Block 13 3, 4, 5, 8, 21, 29

Block 14 0, 1, 7, 8, 13, 19

Block 15 7, 10, 14, 16, 28, 29

Block 16 0, 12, 17, 20, 22, 29

Block 17 0, 3, 18, 25, 27, 28

Block 18 1, 4, 20, 23, 24, 28

Block 19 2, 6, 8, 14, 18, 20

Block 20 5, 7, 18, 22, 23, 30

Block 21 6, 13, 15, 23, 27, 29

Block 22 0, 5, 6, 9, 10, 24

Block 23 2, 5, 11, 12, 13, 28

Block 24 3, 10, 13, 20, 26, 30

Block 25 1, 10, 12, 15, 18, 21

51

Block Points in Block

Block 26 2, 4, 10, 19, 22, 27

Block 27 13, 14, 21, 22, 24, 25

Block 28 1, 5, 14, 17, 26, 27

Block 29 1, 3, 6, 11, 16, 22

Block 30 3, 9, 12, 14, 19, 23

Table 3: Spot It! list of symbols, corresponding number assignments, and degree

Symbol Point Degree

! 0 7

? 1 7

anchor 2 8

apple 3 8

art 4 8

balloon 5 8

bomb 6 8

bottle 7 8

cactus 8 7

candle 9 8

car 10 8

carrot 11 8

cat 12 8

cheese 13 8

clock 14 8

clover 15 8

clown 16 8

dog 17 7

dolphin 18 8

dragon 19 8

droplet 20 8

eye 21 7

52

Symbol Point Degree

flame 22 8

flower 23 7

ghost 24 8

hand 25 8

heart 26 8

ice cube 27 7

igloo 28 8

key 29 8

knight 30 8

ladybug 31 7

leaf 32 7

lightbulb 33 7

lightning bolt 34 8

lips 35 8

lock 36 8

moon 37 8

ok 38 8

pencil 39 8

person 40 7

pirate 41 7

scissors 42 8

snowflake 43 8

snowman 44 6

spider 45 8

splat 46 8

stop 47 7

sun 48 8

sunglasses 49 8

t-rex 50 7

target 51 8

treble 52 8

53

Symbol Point Degree

tree 53 8

web 54 8

yin yang 55 8

zebra 56 8

Table 4: List of blocks for Spot It!

Block Points in Block

0 2, 11, 13, 14, 30, 32, 47, 54

1 31, 32, 34, 46, 52, 53, 55, 56

2 7, 11, 12, 31, 35, 40, 42, 51

3 7, 10, 13, 18, 22, 28, 44, 46

4 6, 18, 39, 40, 45, 47, 48, 52

5 0, 3, 28, 32, 37, 42, 43, 45

6 4, 12, 14, 23, 26, 33, 45, 46

7 4, 9, 11, 29, 37, 44, 48, 55

8 11, 15, 21, 22, 36, 45, 50, 56

9 6, 9, 13, 21, 23, 34, 38, 42

10 12, 13, 19, 37, 41, 49, 50, 52

11 1, 15, 18, 33, 34, 35, 37, 54

12 2, 9, 15, 25, 40, 41, 43, 46

13 14, 16, 18, 27, 36, 41, 42, 55

14 2, 3, 4, 18, 24, 31, 38, 50

15 2, 8, 19, 22, 33, 42, 48, 53

16 3, 21, 27, 30, 35, 46, 48, 49

17 9, 16, 26, 28, 35, 47, 50, 53

18 7, 9, 24, 32, 33, 36, 39, 49

19 4, 7, 8, 16, 21, 43, 52, 54

20 9, 10, 19, 20, 27, 31, 45, 54

21 3, 6, 12, 25, 36, 44, 53, 54

22 4, 17, 19, 28, 30, 34, 36, 40

54

Block Points in Block

23 0, 2, 10, 23, 29, 35, 36, 52

24 0, 7, 14, 20, 25, 34, 48, 50

25 6, 8, 14, 15, 28, 29, 31, 49

26 6, 10, 30, 33, 43, 50, 51, 55

27 2, 6, 7, 17, 26, 27, 37, 56

28 1, 3, 9, 14, 17, 22, 51, 52

29 14, 19, 35, 38, 39, 43, 44, 56

30 12, 22, 24, 27, 29, 34, 43, 47

31 15, 20, 24, 26, 30, 42, 44, 52

32 3, 8, 10, 11, 26, 34, 39, 41

33 16, 22, 23, 25, 30, 31, 37, 39

34 23, 24, 28, 41, 48, 51, 54, 56

35 1, 7, 29, 30, 38, 41, 45, 53

36 0, 4, 13, 15, 27, 39, 51, 53

37 11, 17, 18, 20, 23, 43, 49, 53

38 1, 2, 12, 20, 21, 28, 39, 55

39 0, 1, 6, 11, 16, 19, 24, 46

40 10, 12, 15, 16, 17, 32, 38, 48

41 3, 13, 16, 20, 29, 33, 40, 56

42 18, 19, 21, 25, 26, 29, 32, 51

43 0, 22, 26, 38, 40, 49, 54, 55

44 1, 4, 10, 25, 42, 47, 49, 56

45 8, 20, 36, 37, 38, 46, 47, 51

46 8, 13, 17, 24, 25, 35, 45, 55

47 3, 5, 7, 15, 19, 23, 47, 55

48 5, 10, 14, 21, 24, 37, 40, 53

49 1, 5, 13, 26, 31, 36, 43, 48

50 5, 17, 29, 39, 42, 46, 50, 54

51 0, 5, 8, 9, 12, 18, 30, 56

52 2, 5, 16, 34, 44, 45, 49, 51

53 5, 11, 25, 27, 28, 33, 38, 52

55

Block Points in Block

54 4, 5, 6, 20, 22, 32, 35, 41

56

BIBLIOGRAPHY

Beth, Thomas, Dieter Jungnickel, and Hanfred Lenz. "Block Designs and Affine and

Projective Geometry."Design Theory. Second ed. Vol. 1. Cambridge: Cambridge

UP, 1999. Print.

Dummit, David Steven, and Richard M. Foote. Abstract Algebra. Second ed. John Wiley

and Sons, 1999. 108-109. Print.

Hughes, D. R., and F. C. Piper. Design Theory. Cambridge [Cambridgeshire: Cambridge

UP, 1985. Print.

Mulholland, Jamie. "Permutation Puzzles: A Mathematical Perspective." Permutation

Puzzles: A Mathematical Perspective 15 Puzzle, Oval Track, Rubik’s Cube and

Other Mathematical Toys Lecture Notes. 4 June 2013. Web. 25 Nov. 2014.

<http://www.sfu.ca/~jtmulhol/math302/notes/302notes.pdf>.

Pinter, Charles C. A Book of Abstract Algebra. Second ed. New York: McGraw-Hill,

1990. Print.

"Rubik’s Cube Group Functions." Rubik's Cube Group Functions — Sage Reference

Manual V6.6.beta0: Groups. Web. 25 Feb. 2015.

<http://www.sagemath.org/doc/reference/groups/sage/groups/perm_gps/cubegrou

p.html>.

57

VITA

Jessica Ruth Chowning was born on July 6, 1991 in California. She graduated

valedictorian from St. Charles West High School in 2009 and attended Missouri

University of Science and Technology for her undergraduate work, graduating in May

2013 with a Bachelor of Science (Summa cum Laude) in Applied Mathematics. She

stayed for her graduate studies, where she earned a Master of Science in Applied

Mathematics in May 2015.

