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ABSTRACT 

 

In this thesis, we consider the usefulness of Sage, an online and open-source 

program, in analyzing permutation puzzles such as the Rubik’s cube and a specific 

combinatorial structure called the projective plane. Many programs exist to expedite 

calculations in research and provide previously-unavailable solutions; some require 

purchase, while others, such as Sage, are available for free online. Sage is asked to handle 

a small permutation puzzle called Swap, and then we explore how it calculates solutions 

for a Rubik’s cube. We then discuss projective planes, Sage’s library of functions for 

dealing with projective planes, and how they relate to the card game Spot It! Since Sage 

is a free, open-source program, its limitations are a valid concern and are also discussed. 
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1. INTRODUCTION 

 

 

 

There are few things as satisfying as pitting one’s mind against a puzzle and 

finding a solution. Whether it’s developing a mathematical proof or testing a hypothesis 

about the laws of nature, the challenge of solving the unknown has driven scientists and 

mathematicians to develop ever more sophisticated analytical tools. As the problems 

grow more complicated and intricate, so must the tools of investigation. Many powerful 

programs exist for various kinds of mathematical computation, but, for the university 

student trying to research on a budget, they are somewhat out of reach due to expensive 

subscription or purchase fees. With the introduction of Sage, an open-source program 

available for online use or free download, an alternative to expensive programs may 

exist. 

A program is only as useful as its functions allow, and a free program is generally 

not as extensive as its paid counterpart. Open-source code, however, allows for users and 

developers to add functions as necessary, extending the program’s library and usefulness. 

If Sage is to be a competitor with the programs already available, it will have to be able 

to handle a wide variety of problems and fields of mathematics. In this thesis, we will 

explore how Sage can be used to analyze combinatorial designs such as projective planes 

as well as how it handles permutation puzzles, including one famous example: the 

Rubik’s cube. 
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2. AN INTRODUCTION TO SAGE 

 

 

 

Sage is an open-source mathematical computing package available for free online. 

The source code itself can also be downloaded and set up on a personal computer for 

offline use. Given that it is an open-source package, it draws on many other mathematical 

packages (such as Gap, R, etc.), which opens up its usefulness to mathematicians and 

programmers from a variety of disciplines and backgrounds. The current functionality of 

the program is limited only by a particular version of the source code; since the program 

is open-source, the source code is open to development. 

The interface itself, whether used online or built on a computer from the source 

code, resembles a command line. A user has only to open a worksheet to begin a new 

project. For new users, Sage provides a comprehensive tutorial, beginning with simple 

arithmetic and moving up to more specific, advanced fields such as group theory.  

The blank worksheet for Sage (Figure 2.1) features a command line. Calculations 

in progress are denoted by a red line to the left of the entry and a green line underneath 

the output, and finished calculations take the place of the green “in progress” line (Figure 

2.2). 

 
 
 
 

 
Figure 2.1: The Sage worksheet. 
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Figure 2.2: A basic calculation in Sage (assigning values to a variable), and how Sage 

gives the output. 

 

 

 

 

 

Sage’s library encompasses many basic commands necessary for anything from 

simple graphing to working with more advanced branches of mathematics such as finite 

fields. It also allows users to define functions, which opens up opportunities for more 

specific calculations, based on their purpose for using Sage. 

Figure 2.3 features an example of a defined function. The first line names the 

function is_divisible_by(), and in parentheses names variables that the function 

should be able to work with, as well as giving a default for the variable “divisor”. In the 

case that a value is not assigned to the variable “divisor”, it has a default and will not 

cause the program to output an error. The default also gives this particular function a 

wider use: testing whether a number is even or odd. 
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Figure 2.3: Defining a function that will test divisibility of two numbers. 
 
 
 
 

The second line of the function definition has Sage perform several small steps at 

once. When calling the function, as shown in the third line of the figure, Sage assigns the 

number 6 to the variable “dividend” and the number 2 to the variable “divisor”. The 

calculation “dividend%divisor” tells Sage to find the remainder when “dividend” is 

divided by “divisor”. If the value assigned to the variable “dividend” is a multiple of the 

divisor, the remainder should be 0, and therefore the calculated remainder is tested. If it is 

equivalent to 0, Sage is told to output a True value, and if not, it outputs False. 

This particular function has all of these calculations performed in one step. The 

same function could also be defined as in Figure 2.4. This function takes multiple steps, 

but is essentially the same as the first; the difference lies only in the number of lines. A 

default is still assigned to the variable “divisor” in case one is not assigned when the 

function is called, and the remainder is still compared to the value 0. The output is also 

either True or False, since the function’s purpose is to test divisibility. 
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Figure 2.4: An alternate function for testing divisibility, demonstrated by assigning 3 to 

the variable “dividend” and allowing “divisor” to default to 2. 

 

 

 

 

Both functions are valid. More possibilities exist, based on how in-depth the user 

wishes to get in the definition. 

A worksheet can be accessed from the main page (whether a user is working 

online or offline), or the results can be printed as a PDF and saved to the computer. The 

PDF displays the name of the worksheet at the top of the page, and the top left corner 

gives the date the worksheet was printed.  
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3. PERMUTATION PUZZLES 

 

 

 

One question that any student in a math class will eventually ask is, “But how can 

I use this in my everyday life?” Calculus finds application in calculating projectile 

motion in physics, while linear algebra and matrices are used in coding theory and finite 

fields in cryptography, to name a few examples. Mathematics even shows up in the 

games that people play every day, not just to predict how likely someone is to win a hand 

of poker, but even to provide strategies for winning. When it comes to permutation 

puzzles, it grants the player a solution for winning the game. 

A permutation rearranges the elements of a set from a certain starting order. 

Elements are neither added nor removed, merely assigned a position that may or may not 

be different from the starting position. For example, given the set of integers from 1 to 

10, a possible permutation would be to switch each even number with the odd number 

directly preceding it, changing the order 1,2,3,4,5,6,7,8,9,10 to 2,1,4,3,6,5,8,7,10,9. There 

are 10!, or 3,628,800, possible ways to order the integers 1 to 10, each of them being a 

permutation of the initial arrangement from least to greatest. Given 𝑛 distinct elements, 

𝑆𝑛 (read as “the symmetric group on 𝑛 elements”) is the group comprising permutations 

of said elements and whose operation is composition of those permutations. There are 𝑛! 

permutations in 𝑆𝑛.  

Various representations exist for the same arrangement of elements. One can 

visualize a set of tiles, labeled as the integers from 1 to 10, arranged in the same order as 

given in the previous paragraph. The same arrangement can be represented as: 

[
1
2

  
2
1

  
3
4

  
4
3

  
5
6

  
6
5

  
7
8

  
8
7

  
9

10
  
10
9

] 
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with the first row denoting the tile numbers and the second row indicating location of the 

tiles. Tile 2 would be in the first position, tile 1 in the second, etc. 

Another representation combines the two rows as follows: 

(1,2)(3,4)(5,6)(7,8)(9,10) , and can be viewed as a function. In general, a cycle 𝛼 of k 

elements is denoted as (𝑎1, 𝑎2, . . . , 𝑎𝑘). For each i, 1 ≤ 𝑖 ≤ 𝑘 − 1, 𝛼(𝑎𝑖) = 𝑎𝑖+1, and 

𝛼(𝑎𝑘) = 𝑎1. General convention places the smallest element in a cycle at the beginning, 

though the cycle (1,3,5), for example, is the same as (3,5,1) and (5,1,3). In the context 

of tiles and position, 𝛼(𝑎𝑖) = 𝑎𝑖+1 means that tile 𝑎𝑖 is in position 𝑎𝑖+1. 

As another example, suppose ten tiles numbered 1-10 have been arranged in the 

following order: 7,2,4,3,9,1,6,5,10,8. This is an example of a permutation of the first ten 

positive integers. This ordering can be expressed in the two given ways to express 

permutations: 

 [
1
6

  
2
2

  
3
4

  
4
3

  
5
8

  
6
7

  
7
1

  
8

10
  
9
5

  
10
9

] 

 and (1,6,7)(2)(3,4)(5,8,10,9). 

The last representation can omit the cycle consisting solely of 2 since the element 

is already in its home position. If the game was to order the tiles from least to greatest, 2 

would already be “solved.” Additionally, the inverse of the permutation switches the 

rows, with the first being tile positions and the second being the tiles themselves. 

Games have been built around this concept; provided with a set of elements that 

have been jumbled up and a set of legal moves, the player is challenged to rearrange the 

elements back into their home positions. The most famous example is the Rubik’s cube, a 

six-faced cube broken into movable pieces called cubies so each face is divided into nine 

squares, called facelets, that are the elements permuted in the Rubik’s cube. Legal moves 
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consist of series of rotations of the movable faces, which are fixed in the center of the 

cube. Once the cube has been scrambled, each piece must be moved back into its proper 

place so each side is the same color. The closer the cube is to being solved, the cleverer 

the moves have to be so that a new piece can be put in place without disturbing 

previously-solved cubies. Solving strategies will be discussed later. 

A simpler permutation game is built from the aforementioned image of jumbled 

tiles. To simplify the process of solving such a puzzle and reducing the number of 

necessary and possible moves, only the integers 1-6 shall be considered. 

The game of Swap, proposed by Jamie Mulholland in his course “Permutation 

Puzzles: A Mathematical Perspective” at Simon Fraser University, is presented to this 

end. Suppose tiles numbered from 1 to 6 are given in a certain jumbled order, or 

permutation, and the object is to put them back in ascending order. The game is 

complicated by defining only certain moves to be legal; since the game is more of an 

exercise to illustrate mathematical properties rather than a commercially-available 

system, there are no formal rules for legal moves. If legal moves are swapping any two 

tiles, then it can be shown by properties of permutations that any ordering of the tiles can 

be eventually solved. Any ordering of tiles can be represented as a permutation 𝛼, and 

switching two tiles can be represented as the 2-cycle, or transposition, (𝑎, 𝑏), with tile a 

moving to position b and tile b moving to position a. Any permutation 𝛼 can be 

represented as a series of transpositions (Dummit), and it will be shown later that a series 

of transpositions can be found that solves the permutation back to the “home” state. 

Mulholland presents, in his lectures, the ordering 2,6,4,1,3,5. As a first move, one 

might, for instance, swap the 1st and 4th tiles, resulting in the arrangement 1,6,4,2,3,5. 
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The first tile is now solved and can be left alone. Continuing, one possible sequence of 

moves involves switching the following positions in this order: 2 and 4, 4 and 6, 4 and 5, 

and finally 3 and 4. Five moves were all that were necessary for solving the puzzle. 

If the puzzle was represented in cycle notation, we would say that tile 1 is in 

position 4, tile 4 in position 3, tile 3 in position 5, tile 5 in position 6, tile 6 in position 2, 

and tile 2 in position 1, which ends the cycle. Labelling this as 𝛽, the permutation is 

𝛽 = (1,4,3,5,6,2). Each of the swaps would be represented as 𝑠 = (𝑎, 𝑏), with 𝑠(𝑎) = 𝑏 

meaning that the tile in position a is moved to position b. In order, they are 𝑠1 = (1,4),

𝑠2 = (2,4), 𝑠3 = (4,6), 𝑠4 = (4,5), 𝑠5 = (3,4). Each intermediate arrangement of tiles 

can also be represented as a permutation. 

Mathematically, applying each swap is a composition of permutations. Read from 

left to right, the first permutation should be the beginning arrangement of the tiles, and 

each subsequent cycle (in this case, a transposition since legal moves only allow the 

switching of two tiles at a time) would be the next swap in the sequence. So, the steps 

followed earlier to solve 2,6,4,1,3,5 would result in: 

𝛽𝑠1𝑠2𝑠3𝑠4𝑠5 = (1,4,3,5,6,2)(1,4)(2,4)(4,6)(4,5)(3,4). 

The left-to-right convention is not universal. For example, some authors favor 

composing permutations from right to left (Pinter). Sage and Mulholland favor left-to-

right, and so that convention will be used for continuity. What is universal is that the 

order of the permutations of the composition is important; composition of permutations is 

not commutative, and so changing the order of the swaps would not necessarily result in a 

solved puzzle. The moves themselves, as well as the order in which they are applied, 

matter for solving the puzzle. 
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The legal moves can dictate the solvability of the puzzle. If legal moves are 

defined as swapping any two tiles, any scrambled arrangement of tiles can be solved. 

This hinges on the fact that any permutation can be broken down into a series of 

transpositions. If 𝛼 is a cycle of length 𝑚 (𝑎1, 𝑎2, … , 𝑎𝑚), 𝛼 can be written as, for 

example, (𝑎1, 𝑎2)(𝑎1, 𝑎3). . . (𝑎1, 𝑎𝑚−1)(𝑎1, 𝑎𝑚). Using this procedure, any permutation 𝜎 

in the symmetric group on 𝑛 symbols, which is the set of all permutations of those n 

symbols and denoted as 𝑆𝑛, can be written as a composition of 2-cycles. This holds even 

for products of disjoint cycles, i.e., cycles with no elements in common. For example, if 

𝜎 = (1,12,8,10,4)(2,13)(5,11,7)(6,9) in 𝑆13, it may be written as 

(1,12)(1,8)(1,10)(1,4)(2,13)(5,11)(5,7)(6,9). 

Applied to our game of Swap, the starting arrangement can be written as a 

permutation as before. This permutation can now be expressed as a composition of 

transpositions, each of which physically translates into switching two tiles. The resulting 

expression of the permutation gives a possible method for scrambling the tiles, in which 

case the solution would be reversing the process. It is certainly not the only solution, as 

the expression of a permutation as transpositions is not unique, but it is nonetheless valid. 

If valid moves consist of moving more than two tiles, then not all arrangements 

can be solved. Mulholland presents another variant of Swap in which valid moves are 3-

cycles, or taking three tiles and cycling them left or right amongst themselves. If the tiles 

themselves can take any free position independent of their fellows (they are not fixed in a 

track and do not have any other physical restrictions), certain positions may not be 

solvable by any series of 3-cycles. Solutions exist if and only if the rearranged 
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permutation can be represented as a series of legal moves. It then becomes necessary to 

study which permutations can be broken into 3-cycles and which ones can’t. 

As shown before, all permutations, including 3-cycles, can be expressed as a 

series of transpositions. The number of 2-cycles that makes up a permutation will be 

either even or odd; in the former case, the permutation is said to be even, and otherwise, 

it is odd. It can be shown that if a permutation 𝛼 can be represented as an odd number of 

2-cycles, no even-length series of transpositions exists that also represents 𝛼, and the 

same for an even permutation. So, if 𝛼 can be described by an odd number of 2-cycles, it 

can only be represented by odd numbers of 2-cycles and is therefore designated to be 

odd. 

If an arrangement of tiles can be represented by 3-cycles, it is an even 

permutation since 3-cycles can also be represented as a pair of transpositions. Given an 

arrangement of tiles, and with the rule that valid moves consist of permuting three tiles in 

either direction, the first step should be expressing the arrangement as a permutation and 

determining whether or not it is even. Given our previous example, expressed as 

(1,4,3,5,6,2), the arrangement cannot be solved using this rule since it can be broken 

down into an odd number of transpositions, specifically (1,4)(1,3)(1,5)(1,6)(1,2). 

One permutation of tiles that would be solvable using 3-cycles would be 

3,5,1,6,4,2, or (1,3)(2,6,4,5) in cycle notation. This is an even permutation and therefore 

solvable. One possible solution would be first taking the tiles in positions 1,2, and 3 and 

cycling them left, then 1,5,2 to the left, and then 2,4,6 to the right, i.e., apply (1,3,2) →

5,1,3,6,4,2, (1,5,2) → 1,4,3,6,5,2, and (2,4,6) → 1,2,3,4,5,6. Note (1,3,2)(1,5,2)(2,4,6) 

= (1,3)(2,5,4,6) is the inverse of the original permutation, as expected.  
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4. SAGE AND PERMUTATION PUZZLES 

 

 

 

So far, solutions for the presented games of Swap have been obtained through 

guesswork. Sage can be used to obtain solutions for these puzzles, taking guesswork out 

of the equation. Any permutation puzzle can be expressed as a starting configuration 

represented by a permutation 𝛼, a home configuration 𝜀, and any solution as a series of 

moves expressed as 𝛽1, 𝛽2, … , 𝛽𝑛. Altogether, the beginning permutation and the 

application of moves makes up the following equation: 

𝛼𝛽1𝛽2 … 𝛽𝑛 = 𝜀. 

We can write ∏ 𝛽𝑖
𝑛
𝑖=1 = 𝛽, where 𝛽 represents the whole solution, so we can 

write 𝛼𝛽1𝛽2 … 𝛽𝑛 = 𝛼𝛽 = 𝜀. 

From this equation, we can see that 𝛼 and 𝛽 must be inverses since they come 

from the same permutation group, so a solution can be calculated as 𝛼−1, or the inverse 

of the permutation that describes the initial configuration. This was illustrated at the end 

of Chapter 3. 

Inverses of permutations are not difficult to calculate by hand, and Sage can be 

used to check the solution; for Swap, it can also give a pictorial representation of the 

initial arrangement of tiles. If necessary, Sage can also check the sign of the permutation 

as a solvability check. If the solution has been calculated by hand and then broken down 

into 2- or 3-cycles, Sage can be an accuracy check. 

Going back to our first example, the six tiles scrambled to show 2,6,4,1,3,5, we 

first suppose that legal moves consist of switching the tiles in any two locations. Our 

solution was switching (in order) positions 1 and 4, 2 and 4, 4 and 6, 4 and 5, and lastly 3 
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and 4. Figure 4.1 presents the following code that can be used to represent this puzzle and 

process as well as check the solution: 

 

 

 

 

 

Figure 4.1: Using Sage to check permutation representations of a game of Swap and the 

solution, as well as a function written to calculate the moves necessary to solve the 

puzzle, outputted as a series of 2-cycles. This given output is then tested for equivalence 

to our solution. 
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The first line sets up the symmetric group of order 6, which calculates all 

permutations of the integers 1-6. Our representation of the starting tiles, as well as each 

move, will be pulled from this group. The second line takes the variable ‘begin’ and 

assigns it to the permutation in 𝑆6 that represents the starting arrangement of the tiles, and 

then displays the permutation. In addition, a matrix representation of the tiles is set up to 

check that the correct permutation is being used. The # starts a comment, just to serve as 

a reminder of what the code is doing and an explanation of the output. 

From there, the variables beta1 to beta5 are assigned to the move permutations. If 

applied in the correct order to begin, and if in that order they are a solution, the end 

permutation should be the identity permutation, and the variables beta1 to beta5 should 

be the inverse of the begin permutation. The variable ‘end’ is assigned to the permutation 

that comes from multiplying ‘begin’ and ‘beta’ together (‘beta’ being the whole solution), 

and the end positions of the tiles are displayed in the same way their beginning positions 

were, allow a visual check that the solution is valid. Additionally, a function has been 

written to take the initial permutation and gives a series of swaps that solve the puzzle. 

To check the sign (+1 or -1) of a permutation, corresponding to its parity (even or 

odd, respectively) in Sage, the following command is used in Figure 4.2: 

 
 
 
 

 
Figure 4.2: Using Sage to check the sign of the permutation describing the tile setup of 

2,6,4,1,3,5; Sage displays a -1 for odd permutations and a 1 for even permutations.  
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Once a variable has been assigned in Sage, it will have certain properties. For 

example, a list will have a length and elements in a certain order. These properties, 

referred to in Sage’s documentation as methods, can be called and worked with by 

appending .[method]() to the end of the variable name. In Figure 5, the variable in 

question is begin, which Sage recognizes as a permutation. Permutations have a sign, 

which is called in Sage by the method .sign(). From these, we can see that, while the 

2,6,4,1,3,5 arrangement can be solved using any rules involving switching two boxes, it 

is an odd permutation, and therefore cannot be solved using 3-cycles. 

Another example present in Figure 4.3, using eight tiles, can be represented by 

(1,3)(2,4,7,6,8). This time, valid moves are 3-cycles, so it is necessary to check the sign 

of the beginning permutation before proceeding.  

 
 
 
 

 
Figure 4.3: Applying the same process as before to check a solution for Swap. 
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As before, the symmetric group is defined that contains all of the permutations 

being used. The beginning permutation is defined, and the output is visually displayed. 

Since a check for solvability is necessary, the .sign() method must be called. The 

inverse is displayed, and a possible set of solving moves are assigned to the variables 

delta1 through delta4, which are multiplied together and checked against the inverse to 

see if they are equivalent. This is not the only valid series of moves that will grant a 

solution, but composed together, they should be the inverse of the initial permutation. 

Once checked, the end variable is assigned, and this time displayed. ‘begin’ 

multiplied by a valid solution yields the identity permutation, since no positions should 

have switched with each other, and as a failsafe, the matrix showing ‘end’ as tiles is 

displayed. 

Utilizing Sage as a physical check as well as a calculator can cut down on the 

time needed to solve certain puzzles. Not only can it handle small permutation puzzles, 

but it possesses the functionality to deal with more complicated puzzles, as well. The 

Rubik’s cube, mentioned earlier as a famous example of a permutation puzzle, has been 

programmed into Sage, with all legal moves and positions residing in a permutation 

group called CubeGroup(), a subgroup of 𝑆48. The generators, or permutations that 

combine to make all elements of the permutation group, represent the base moves 

available to a Rubik’s cube: moving each face of the cube clockwise. 

Writing each face move as a permutation is tedious as each is made up of five 

cycles. For example, turning the front face clockwise results in a configuration that can 

be written as (6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20). One 

way to refer to each move is by the face that is turned clockwise; the before permutation 
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can therefore be called F. In the same way, the other five principal moves are B, R, L, U, 

D. This notation is referred to as Singmaster notation, after David Singmaster, an 

American mathematician who coined the notation and presented his own solution to the 

Rubik’s cube in his Notes on Rubik’s ‘Magic Cube’. The numbering of each facelets can 

be found in Figure 4.4. 

 

 

 

 

Figure 4.4: Initial labeling of the facelets of the Rubik’s cube, which will be used 

throughout the Rubik group to display a given configuration of the cube. 

 

 

 

 

The programming for the Rubik’s cube in Sage is extensive enough that it can 

display 2D and 3D representations of the cube in a certain legal orientation, as well as 

after each move applied to the cube. This provides the same usefulness that Sage had in 

checking and providing solutions for the Swap games; the program can be used to solve 

the cube and display the solution as a series of legal moves. Sage contains methods to 

check whether a given configuration of the cube is legal or possible, return the current 
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state of a cube, and to return a random scrambling of the cube. Given enough time and a 

scrambled state of the cube, Sage can even give a solution in terms of face rotations, or in 

Singmaster notation. This takes quite a long time, as the algorithm used by the 

.solve() method takes the following steps: 

This algorithm 

1. constructs the free group on 6 generators then computes a reasonable set of 

relations which they satisfy 

2. computes a homomorphism from the cube group to this free group quotient 

3. takes the cube position, regarded as a group element, and maps it over to the 

free group quotient 

4. using those relations and tricks from combinatorial group theory (stabilizer 

chains), solves the “word problem” for that element. 

5. uses python string parsing to rewrite that in cube notation. (“Rubik’s cube 

group functions”) 

The “solution” is then displayed as a sequence of moves necessary to put a solved 

cube in the given scrambled position, and would therefore have to be inverted.  Figure 4.5 

illustrates a scrambled cube and how to solve it using Sage. 
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Figure 4.5: The position of the cube is given as the sequence of moves performed to 

scramble it.  

 

 

 

 

The facelet positions have been given in Singmaster notation as well as in a 

colored layout. The cube colors in Sage do not match up with commercially-available 

cubes, but serve to illustrate a basic idea of what the cube would look like unfolded. 

Then, Sage is told to solve the cube, outputting the sequence “L2 B’ D2 F U2 F U L’ U2 

L’ F’ L F U D’ L2 D F2 D”. This is actually a simplified sequence to scramble the cube, 

and the solution would therefore be the inverse, starting with a counterclockwise rotation 

of the bottom face and ending with two rotations (in this case, counterclockwise or 

clockwise does not matter) of the left face. This is not immediately clear and could stand 

to be updated in later versions of Sage. 
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While the program cannot yet solve other Rubik’s cubes, the current functionality 

could be extended to nxnxn cubes for 𝑛 > 3. To start, the facelets of the 4x4x4 cube 

(called Rubik’s Revenge) or the 5x5x5 cube (called Professor’s Cube) would be assigned 

numbers in the same way that the Rubik’s cube was, and the generating permutations 

would be built from there (see Appendix B). Legal moves would be sequences of these 

permutations. Each group would have twelve generators (the 𝑛 = 5 cube follows suit for 

𝑛 = 3 and ignores the middle slice). We therefore consider 96 facelets for the 𝑛 = 4 

cube, and 144 for 𝑛 = 5.  

Practically, when solving larger cubes by hand, many prefer to use the reduction 

method, which takes a larger cube and puts it in the state of the 𝑛 = 3 cube. For example, 

for 𝑛 = 4, the four center facelets of a face are treated as one center piece, where it 

doesn’t matter the orientation of each individual facelet; any move permuting the four 

centers is seen to be invisible. Additionally, the 2 center facelets along an edge are seen 

as one facelet, and each corner is handled as a single cubie. The first half of solving the 

cube is making all of the centers, edges, and corner pieces the same color, therefore 

reducing the cube to an 𝑛 = 3 cube; the solution can then be completed using methods to 

solve the 𝑛 = 3 cube. Specialized algorithms of moves exist that will set a facelet in 

place. Opposite colors must be kept in mind, as they are used by solvers to orient the 

colors correctly. Possible errors in the setting of edges and corners may arise, but 

algorithms exist to correct those parity errors, as well. Whether n is odd or even, the 

technique works; the only differences come in moves that will set the reduced “cubies”. 

Once the reduced “cubies” have been solved, the task is to solve the 3x3x3 cube. 

One method for beginning is to solve the top “cross” first, then the whole first layer 
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(making sure edge facelets follow the same order that the center facelets of the side faces 

follow). The second layer is solved, and then the bottom face only, leaving the third 

layer’s corner and edge facelets. Other algorithms exist, some preferred by speedcubers 

and others depending on the developer of the method. Like a traditional puzzle, there is 

no “right” way to solve a permutation puzzle, and the Rubik’s cube is no exception. 

When Sage presents a solution for a cube, it does not necessarily follow this 

formatting. The solution more directly follows as an inverse of the beginning 

permutation, much like the solutions for the Swap games were found. This is a faster, 

though far less intuitive solving of the cube as the solution could potentially solve many 

cubies at once, and many algorithms presented to solve the cube by hand focus on one 

cubie at a time. 

If Sage was also applied to 𝑛 > 3 cubes, the solution process would take 

advantage of the existing code that solves 𝑛 = 3 cubes. While reduction makes use of the 

fact that certain facelets will never be in certain places on the cube (for example, a center 

will never be a corner, and vice versa) and moves single cubies into place without 

disturbing already solved ones, it does not present a quick solution. Sage takes 

advantages of a few diverse algorithms to calculate solutions, depending on the 

contributing developer, but the default algorithm gives a solution in the fewest moves 

necessary. All that would be necessary for Sage to handle 𝑛 > 3 cubes would be to create 

a cube group with twelve generators and modify the existing code to call those 

generators. 
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5. SPOT IT! AND PROJECTIVE PLANES 

 

 

 

Permutations can appear in different games whose objectives are not necessarily 

reordering scrambles tiles or facelets. Spot It!, a card game focused on matching symbols, 

presents cards with small sets from a given list of symbols. The object of the game is to 

find the shared symbol in a pair of cards. Each card has the same number of symbols, and 

for Spot It!, there are two less cards than there are symbols total. 

The collections of symbols on each card are not randomized; they are specifically 

chosen such that any pair of cards will have a common symbol. The combinations of 

symbols are not what make this game mathematically interesting. Rather, it is the fact 

that the game is a physical representation of what is in mathematics called a projective 

plane. A projective plane is made up of a series of lines, or blocks, containing a certain 

number of points. Any two blocks will share exactly one point in common. 

The projective plane is a specific case of a balanced incomplete block design 

(BIBD), which takes a set of elements and organizes them in such a way that certain 

interesting characteristics arise. Five parameters are considered for a BIBD: number of 

elements or points (𝑣), number of blocks or lines (𝑏), length of block or number of 

elements in each block (k), degree of element or number of blocks in which the element 

appears (r), and number of times a subset of elements will appear in the design (𝜆). If the 

subsets have two points, then the design is called a 2-design; a projective plane is a type 

of 2-design in which 𝜆 = 1. Projective planes are also symmetric, with 𝑣 = 𝑏. 

Any block design is subject to the following necessary conditions: 𝑣𝑟 = 𝑘𝑏 and 

𝜆(𝑣 − 1) = 𝑟(𝑘 − 1). Given that a projective plane satisfies 𝜆 = 1 and 𝑣 = 𝑏 (therefore 
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reducing the first equation to 𝑟 = 𝑘) the second equation simplifies to 𝑣 − 1 = 𝑘(𝑘 − 1). 

The order 𝑛 of a projective plane is defined to be 𝑘 − 1. Substituting, we obtain 𝑣 − 1 =

𝑘(𝑘 − 1) = (𝑛 + 1)𝑛. So, the number of points in a projective plane is 𝑣 = 𝑛2 + 𝑛 + 1. 

Since the design is symmetric, there must also be 𝑛2 + 𝑛 + 1 blocks, and each point has 

degree 𝑛 + 1. (Beth) 

A children’s version of the game, called Spot It! Jr., exists with thirty-three cards 

and thirty-three symbols; the degree of each symbol as well as the number of symbols on 

each card is 6, making Spot It! Jr. a projective plane of order 5. In this game, no block is 

missing. The fact that this game as well as the Spot It! game plus its missing blocks are 

projective planes will be verified later. 

In a game of Spot It!, there are 57 symbols total, meaning the plane has order 7. 

Unlike Spot It! Jr., which represents a complete projective plane, there are only 55 cards 

in a Spot It! deck, which means that the game is missing two cards to be considered a 

complete projective plane. Each card has eight symbols, and each symbol would ideally 

appear eight times if the game was a full projective plane. The two missing cards means 

that there is one symbol of degree 6, fourteen of degree 7, and forty-two of degree 8. The 

missing cards do not affect the playability of the game, as each of the remaining cards 

share pairs independent of each other. 

For Spot It! to fully represent a projective plane, it would need two more blocks. 

Each symbol can be assigned a number from 0-56; particulars can be found in Appendix 

C. The degrees of the points, given our particular assignments, can be found in Table 5.1. 
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Table 5.1: Orders of the points in Spot It! Game. 

Degree Points 

6 44 

7 0, 1, 8, 17, 21, 23, 27, 31, 32, 33, 40, 41, 47, 50 

8 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 24, 25, 26, 

28, 29, 30, 34, 35, 36, 37, 38, 39, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 

55, 56 

 

Since the two missing blocks, which shall be called B1 and B2, must share a point 

in common, and point 44 must have degree 8, both B1 and B2 must contain point 44. The 

existing blocks were also assigned a number from 0 to 56, and the blocks in which points 

of degree 7 can be found in Table 5.2. 

 
 
 
 

Table 5.2: Blocks in which the points of degree 6 and 7 of Spot It! appear 

Point Blocks 

0 5, 23, 24, 36, 39, 43, 51 

1 11, 28, 35, 38, 39, 44, 49 

8 15, 19, 25, 32, 45, 46, 51 

17 22, 27, 28, 37, 40, 46, 50 

21 8, 9, 16, 19, 38, 42, 48 

23 6, 9, 23, 33, 34, 37, 47 

27 13, 16, 20, 27, 30, 36, 53 

31 1, 2, 14, 20, 25, 33, 49 

32 0, 1, 5, 18, 40, 42, 54 

33 6, 11, 15, 18, 26, 41, 53 

40 2, 4, 12, 22, 41, 43, 48 

41 10, 12, 13, 32, 34, 35, 54 

47 0, 4, 17, 30, 44, 45, 47 

50 8, 10, 14, 17, 24, 26, 50 
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From here, it is a matter of sorting these points into B1 and B2. Since each must 

appear with point 44, it becomes necessary to have another point of comparison. Sorting 

point 0 into B1, the blocks of each subsequent point are compared to those of point 0’s. If 

they already share one in common, the point is sorted into B2, as the point and 0 have 

appeared together before. If not, the point goes in B1. Following this method, B1 and B2 

were constructed as {0,17,21,31,33,41,44,47} and {1,8,23,27,32,40,44,50}. Combining 

these with the existing blocks forms a projective plane of order 7, which will be verified 

in the next chapter.  
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6. USING SAGE TO ANALYZE PROJECTIVE PLANES  

 

 

 

So far, Sage has been used primarily as a calculator for solutions of various 

puzzles. Given its wide library of pre-existing functions, as well as easily-accessed source 

code, Sage can be used as an analysis tool, as well, especially for projective planes. 

Block designs can be built from just a few parameters, and some of the more 

specialized ones, such as projective planes, can be called by their names. Most generally, 

a BIBD can be built by the following line of code: 

balanced_incomplete_block_design(v, k, existence=False, 

use_LJCR=False). Assuming that the inputs for each parameter correspond to a valid 

design, Sage will build it and can go to the La Jolla Covering Repository if use_LJCR is 

set to True when it does not know how to build the design. Figure 6.1 demonstrates 

alternatives for building an incidence structure. 

 

 

 

 

 
Figure 6.1: Alternative commands for building projective planes. 
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General incidence structures can be built in a few different ways: by giving the 

total number of points and a set of blocks or by giving the incidence matrix of the points 

and blocks. This is demonstrated by building the Fano plane, an incidence structure that 

also happens to be a projective plane of order 2 as defined in Chapter 5. In the first part of 

the figure, the plane is built given the total number of points 7 (this can also be handled 

by giving a list of the points) and the construction of the individual blocks. The next uses 

the incidence matrix of the structure to build the Fano plane. 

When it comes to building a projective plane, there are various approaches. Users 

can use the methods demonstrated previously, or they could call 

designs.projective_plane(n), which will construct a projective plane of order 

n. This doesn’t allow for any control of which points are assigned to which blocks, but 

usually isn’t a problem for smaller orders. According to the Bruck-Ryser-Chowla 

theorem, “If a symmetric design with 𝜆 = 1 and order 𝑛 exists and if 𝑛 ≡ 1 or 2 (mod 4) 

then 𝑛 can be expressed as a sum of two integral squares.” (Hughes) This combined with 

the necessary conditions for projective planes allows for the possible existence of planes 

of order 10 and 12, but not for order 6. In fact, exactly one plane of each order exists (up 

to isomorphism) for order 2, 3, 4, 5, 7, and 8 (Cherowitzo). This means that it doesn’t 

matter how we arrange the individual points in the blocks for a projective plane; if two 

incidence structures are isomorphic, then there exists a bijection between them that will 

map the points of one structure to the other and preserve the block structure. For 

example, if one structure consists of the blocks [a,b] and [c,d], and the other of the blocks 

[1,2] and [3,4], then these structures are the same with a mapping to 1, b to 2, c to 3, and 

d to 4, and vice versa. 
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 If a specific design is desired, it can be built from the incidence matrix of the 

points, as well as by giving the total number of points as well as a list of the blocks 

themselves. This last method will be how we build and verify the projective planes 

represented in the Spot It! and Spot It! Jr. games. 

Spot It! Jr. is meant to be a projective plane of order 5, meaning 31 points and 31 

blocks. Sage doesn’t require an incidence structure’s points to be integers. For example, 

the example on the previous page could be built in Sage with the command 

A=designs.IncidenceStructure([['a','b'],['c','d']]). This yields 

an incidence structure with the points a, b, c, and d, and two blocks [a,b] and [c,d]. The 

same process could be used to model the Spot It! Jr. game in Sage, with the points being 

the names of the symbols on each card. The blocks would then be built with the symbol 

names as elements. To reduce error, each symbol was assigned a number from 0 to 30, as 

well as each block. A full list can be found in Appendix C. 

To check that Spot It! Jr. is actually a projective plane of order 5, Sage can be 

made to build a plane of order 5 and check that the two are isomorphic to each other. 

Two incidence structures are said to be isomorphic if there is a one-to-one and onto 

mapping from the point set of one to the point set of the other that preserves the block 

structure. Only one plane of order 5 exists up to isomorphism, so any construction of 31 

points into 31 blocks that each share only a single point in common must be isomorphic 

to the existing plane. By calling the method 

[design].is_isomorphic([other], certificate=False), Sage 

compares the two designs to each other to determine if one is just a renumbering of the 

other. If the certificate is set to True, and the two planes are determined to be isomorphic, 
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Sage will come up with a bijection between the two. In this case, the bijection would tell 

us what point in Sage’s built plane of order 5 corresponds to a given symbol in Spot It! 

Jr. 

 

 

 

 

 
Figure 6.2: Testing Spot It! Jr for isomorphism to a projective plane of order 5 and the 

bijection between the two structures. 

 

 

 

 

Now, given the fact that Spot It! is not a full projective plane due to two missing 

blocks, the existing structure can be put into Sage, but will not be isomorphic to a 

projective plane of order 7. The missing blocks were reconstructed in the previous 



30 

 

chapter, so the completed structure can be tested against a plane of order 7 that Sage 

builds, and the blocks are verified. 

 

 

 

 

 
Figure 6.3: Testing the incidence structure of the Spot It! blocks and the missing blocks 

for isomorphism to a projective plane of order 7. 

 

 

 

 

Since Sage is open-source, a solution or improvement can be implemented in a 

matter of weeks. Code is built and tested, and once it is given a positive review, it can be 

integrated into the program. For example, developers have pulled an outside program 

called bliss to expedite the calculation of a projective plane’s automorphism group (the 

set of isomorphisms from the plane to itself). Before, such a calculation could take 
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several hours and a large amount of memory. Utilizing bliss, the calculation time was 

trimmed down to a matter of seconds, and the storage needed was also vastly reduced. 

Until very recently, Sage did not possess the code necessary to calculate, for example, the 

stabilizer of a block of a system (the set of automorphisms of the design that leave the 

block unchanged), but code to provide this additional functionality was recently 

incorporated. 

If a particular calculation does not call for the source code to be changed, a 

function can be written to perform the desired task. Instead of computing the missing 

blocks of Spot It! by hand, Sage could be made to do that task itself. There are a few 

possibilities for code that could be written to handle such a task. One might involve 

comparing the blocks from Spot It! to those in a projective plane of order 7, come up with 

a bijection between the points, and apply that bijection to the blocks in Spot It! From 

there, it is a matter of finding the blocks that aren’t represented and determining the 

symbols that make up those blocks from the bijection. 

This is somewhat imprecise and roundabout. Another possibility would be to look 

at the incidence matrix for Spot It!, where the rows represent the points from 0 to 56, and 

the columns are the blocks from 0 to 54. Calling this matrix M, and letting 

M’=M*M.transpose(), M’ is a 57x57 matrix, with entry 𝑚𝑖,𝑗 telling how many times 

point 𝑚𝑖 appears with point 𝑚𝑗 in the design. The diagonal would then give the degree of 

each point. So, if the first row corresponds to point 0, and the first column would also 

correspond to point 0, entry 𝑚1,1 should be the degree of point 0. The missing blocks 

(again, we can label them B1 and B2) would be built by first finding the row i such that 

𝑚𝑖,𝑖 = 6; this will correspond to the point 𝑖 by Sage’s indexing system. This point will go 
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in both blocks. From there, it is a matter of finding all points of degree 7, picking one, 

which shall be denoted 𝑎, with degree 7, placing it in B1, and then reading across the row 

to find the columns with a 0; these will correspond to points with which 𝑎 has not yet 

appeared, and must also be placed in B1. The remaining points of degree 7 should be 

sorted into B2. 

Doing these calculations in Sage is feasible, but the output can be somewhat hard 

to read given the size of the matrices. To illustrate the above process on a smaller scale, 

let’s say we’re given the following five blocks: [0,1,2], [0,3,4], [0,5,6], [1,3,5], [2,4,5]. 

Based on the fact that there are seven distinct points, and if we are trying to build a 

projective plane, then we should be trying for a projective plane of order 2. Inputting this 

design into Sage, we come up with the following for the incidence matrix and Mstar: 

 

 

 

 

 
Figure 6.4: Reduced design. 
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From the Mstar matrix, we see that point 6 has degree 1, placing it in both B1 and 

B2, and points 1, 2, 3, and 4 have degree 2 and will be sorted based on how often the 

pairs between them have appeared in the design. The second row of the matrix gives 

incidences for point 1, and we can see that the pairs [1,4] and [1,6] have not appeared yet. 

Therefore, B1 can be assigned points 1, 4, and 6. This leaves 2 and 3 to be assigned to B2 

along with 6. Our full design then becomes [0,1,2], [0,3,4], [0,5,6], [1,3,5], [2,4,5], 

[1,4,6], and [2,3,6]. 

The function written to handle this sort of calculation and sorting could be much 

more general and applied to different, incomplete projective planes. If handed a design 

that is two blocks short of being a projective plane, the function should be able to find the 

point that should be sorted into both of the missing blocks, the points that should be 

sorted into one block or the either, and then from there, find the point pairs that have not 

appeared together. One function that could handle this is shown in Figure 6.5. 

 
 
 
 

 
Figure 6.5: An example of a function designed to help rebuild two missing blocks from a 

projective plane.  
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7. CONCLUSIONS AND FUTURE POSSIBILITIES 

 

 

 

Sage’s versatility and use of outside programs makes it an ideal tool for analyzing 

mathematical problems. We have seen how it can be used to handle small puzzles, and 

even how it can formulate a solution to solve a Rubik’s cube. It can also be given an 

incidence structure and, if the functionality does not yet exist to solve a particular 

problem, then the open-source code and active forums allow for new code to be added 

and tested in a matter of weeks, if not days. For instance, after I inquired about the 

existence of a method for finding the stabilizer of a block in a BIBD, a developer set out 

to program such a method, and it was recently given a positive review and has been 

incorporated into Sage. If users have experience with developing programs, they can 

write scripts themselves and contribute to the ever-growing list of tools that Sage can use 

to provide answers. 

If development is of no interest to the user, then basic functions can be written to 

handle a process. Limitations here would be that a basic knowledge of programming is a 

must, as well as quirks with Sage’s indexing and the habit of composing permutations left 

to right rather than right to left as presented in many algebra textbooks, for example. 

There is also the aforementioned issue of Sage’s presented solution to a Rubik’s cube. It 

is not immediately clear that the given sequence that Sage comes up with is a scrambling, 

rather than a descrambling, of the cube. This could be potentially rectified by adding a 

line or two of code that would take the “solution” and invert it, or even by adding a 

comment that states “Reversing the given sequence will unscramble this Rubik’s cube.” 
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There is enough interest in 𝑛 = 4 and 𝑛 = 5 Rubik’s cubes that one could foresee the 

possibility of expanding Sage’s capabilities to handle these larger cubes. 

These are rather minor inconveniences and conventions of the program that, once 

the user has been familiarized with them, do not detract from the functionality and 

usefulness of the program. Sage’s open-source nature allows for collaboration with many 

specialized programs and languages (bliss and Python, for example). While still a 

developing program, there is not much it can’t already handle, and the limitations 

mentioned above are either already being patched or can be fixed. Its limitations do not 

outweigh the already numerous problems the program can already handle. Since it does 

not require a subscription or purchase to use, or even that the user download it, Sage 

could be an incredibly useful analytical tool for students of mathematics in the future.



 
 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

PERMUTATION GROUPS IN SAGE 
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Figure 1: Two ways to define a permutation: one as a function, and another as an element 

of a group; as well as legal and illegal operations to perform 

 

 

 

 
 

 
Figure 2: Calling methods of permutations (as elements of group) 
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Figure 3: Calling methods of the symmetric group of six elements 

 

 

 

 
 

 
Figure 4: Calculating orbits of a point and of a set, and calculating stabilizer of a point 
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Figure 5: Truncated output of the subgroups of S6 

  

 

 



 
 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

THE 𝑵 = 𝟑, 𝑵 = 𝟒, AND 𝑵 = 𝟓 RUBIK GROUPS IN SAGE 
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Modeling a Rubik’s cube in Sage 

The Rubik’s Cube can be dealt with in Sage using one of two classes: CubeGroup() 

and RubiksCube(). RubiksCube() has already been demonstrated, and an example 

of how to use CubeGroup() is below. 

 

sage: rubikscube=CubeGroup(); rubikscube; rubikscube.display2d("") # last will display 

the cube after no move has been applied  

        The Rubik's cube group with generators R,L,F,B,U,D in 

SymmetricGroup(48). 

             +--------------+ 

             |  1    2    3 | 

             |  4   top   5 | 

             |  6    7    8 | 

+------------+--------------+-------------+------------+ 

|  9  10  11 | 17   18   19 | 25   26  27 | 33  34  35 | 

| 12 left 13 | 20  front 21 | 28 right 29 | 36 rear 37 | 

| 14  15  16 | 22   23   24 | 30   31  32 | 38  39  40 | 

+------------+--------------+-------------+------------+ 

             | 41   42   43 | 

             | 44 bottom 45 | 

             | 46   47   48 | 

             +--------------+ 

sage: rubikscube.F(), rubikscube.move("F")[0] # permutation B returned in Singmaster 

notation, called two ways  

        ((6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20), 
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(6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20)) 

sage: r1 = {'back': [[33, 34, 35], [36, 0, 38], [37, 39, 40]], 'down': [[41, 42, 43], [44, 0, 

45], [46, 47, 48]],'front': [[17, 18, 19], [20, 0, 21], [22, 23, 24]],'left': [[9, 11, 10], [12, 0, 

13], [14, 15, 16]],'right': [[29, 26, 27], [28, 0, 25], [30, 31, 32]],'up': [[1, 2, 3], [4, 0, 5], [6, 

8, 7]]}; 

sage: rubikscube.legal(r1) #tests legality when facelets are in the described positions, 

where 0 is the center facelet  

        0 

sage: rubikscube.plot3d_cube("F")  

 
 
 
 
 



43 

 

 
 

Figure 1: 3D output in Sage of a Rubik’s cube with the front face turned clockwise. The 

colors used do not match what is commercially available, but suffice for demonstration. 

Here, the topmost face is “Up”, the leftmost is “Front”, and the last is “Right”. Like 

colors have been given symbols for the sake of clarity. 

 

 

 

 

sage: state=rubikscube.faces("R*F*B2*F^(-1)") # sets cube faces after the sequence of 

moves has been applied 

sage: rubikscube.solve(state) # outputs shortest sequence to scramble cube into 'state' 

which should be inverted for solution  

        'R B2' 
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4x4x4 Rubik’s Cube (Rubik’s Revenge) 

The permutation group that would describe the 𝑛 = 4 cube would be a subgroup of 𝑆96 

and have twelve generators, one for each slice of the cube. The group would also have 

order 16972688908618238933770849245964147960401887232000000000, or 

2^50*3^29*5^9*7^7*11^4*13^2*17^2*19^2*23^2. Each of the generators have been 

assigned a letter based on which direction on the cube they lie (standard left, right, up, 

down, front, back from Singmaster), and are capitalized if the slice is the outside slice, 

and lowercased if the inside slice. For example, the leftmost slice is denoted by L, and the 

slice directly inside L is denoted as l. The topmost slice is U, and the slice directly inside 

is u. 

Facelet Numbering   

         top 

                 +----------------+ 

                 |  1   2   3   4 | 

                 |  5   6   7   8 | 

           |  9  10  11  12 | 

      left       | 13  14  15  16 |      right        rear 

+----------------+----------------+----------------+----------------+ 

| 17  18  19  20 | 33  34  35  36 | 49  50  51  52 | 65  66  67  68 | 

| 21  22  23  24 | 37  38  39  40 | 53  54  55  56 | 69  70  71  72 | 

| 25  26  27  28 | 41  42  43  44 | 57  58  59  60 | 73  74  75  76 | 

| 29  30  31  32 | 45  46  47  48 | 61  62  63  64 | 77  78  79  80 | 

+----------------+----------------+----------------+----------------+ 

                 | 81  82  83  84 | 

                 | 85  86  87  88 | 

                 | 89  90  91  92 | 

                 | 93  94  95  96 | 

                 +----------------+ 

        bottom 

 

Generators 

L=(1,33,81,80)(5,37,85,76)(9,41,89,72)(13,45,93,68)(17,20,32,29)(18,24,31,25)(19,28,30

,21)(22,23,27,26) 

l=(2,34,82,79)(6,38,86,75)(10,42,90,71)(14,46,94,67) 
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r=(3,78,83,35)(7,74,87,39)(11,70,91,43)(15,66,95,47)  

R=(4,77,84,36)(8,73,88,40)(12,69,92,44)(16,65,96,48)(49,52,64,61)(50,56,63,57)(51,60,

62,53)(54,55,59,58) 

U=(17,65,49,33)(18,66,50,34)(19,67,51,35)(20,68,52,36)(1,4,16,13)(2,8,15,9)(3,12,14,5)

(6,7,11,10) 

u=(21,69,53,37)(22,70,54,38)(23,71,55,39)(24,72,56,40) 

d=(25,41,57,73)(26,42,58,74)(27,43,59,75)(28,44,60,76) 

D=(29,45,61,77)(30,46,62,78)(31,47,63,79)(32,48,64,80)(81,84,96,93)(82,88,95,89)(83,9

2,94,85)(86,87,91,90) 

F=(13,49,84,32)(14,53,83,28)(15,57,82,24)(16,61,81,20)(33,36,48,45)(34,40,47,41)(35,4

4,46,37)(38,39,43,42) 

f=(9,50,88,31)(10,54,87,27)(11,58,86,23)(12,62,85,19) 

b=(5,30,92,51)(6,26,91,55)(7,22,90,59)(8,18,89,63) 

B=(1,29,96,52)(2,25,95,56)(3,21,94,60)(4,17,93,64)(65,68,80,77)(66,72,79,73)(67,76,78,

69)(70,71,75,74) 
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5x5x5 Rubik’s Cube (Professor’s Cube) 

The permutation group that would describe the 𝑛 = 5 cube would be a subgroup of 𝑆144 

and have order 

187482944635529732772790873889227901981546631951879544342690743355535455

068451826403024481163459041820045980772498551501004551978078086768958630

6139030929584094503620200680652800000000000000000000000000000000, or 

2^139*3^68*5^32*7^22*11^12*13^10*17^8*19^6*23^6*29^4*31^4*37^2*41^2*43^2

*47^2*53^2*59^2*61^2*67^2*71^2. Like the 𝑛 = 4 cube, the Professor’s Cube would 

have twelve generators, one for each slice of the cube that is not the centermost slice as 

any facelets on that slice can be moved by rotation of other slices. Naming of slices (and 

therefore the corresponding permutations) follows the same conventions as for the 𝑛 = 4 

cube, as there are only twelve slices to consider. 

Facelet Numbering 
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Generators 

L=(1,12,121,120)(6,54,126,115)(11,59,131,110)(15,63,135,106)(20,68,140,101)(25,29,4

8,44)(26,34,47,39)(27,38,46,35)(28,43,45,30)(31,33,42,40)(32,37,41,36) 

l=(2,50,122,119)(7,55,127,114)(12,60,132,109)(16,64,136,105)(21,69,141,101) 

r=(4,117,124,52)(9,112,129,57)(13,108,133,61)(18,103,138,66)(23,98,143,71) 

R=(5,116,125,53)(110,111,130,58)(14,107,134,62)(19,102,139,67)(24,97,144,72)(73,77,

96,92)(74,82,95,87)(75,86,94,83)(76,91,93,78)(79,81,90,88)(80,85,89,84) 

U=(25,97,73,49)(26,98,74,50)(27,99,75,51)(28,100,76,52)(29,101,77,53)(1,5,24,20)(2,10

,23,15)(3,14,22,11)(4,19,21,6)(7,9,18,16)(8,13,17,12)   

u=(30,102,78,54)(31,103,79,55)(32,104,80,56)(33,105,81,57)(34,106,82,58) 

d=(39,63,87,111)(40,64,88,112)(41,54,89,113)(42,66,90,114)(43,67,91,115)  

D=(44,68,92,116)(45,69,93,117)(46,70,94,118)(47,71,95,119)(48,72,96,120)(121,125,14

4,140)(122,130,143,135)(123,134,142,131)(124,139,141,126)(127,129,138,136)(128,133

,137,132) 

F=(20,73,125,48)(21,78,124,43)(22,83,123,38)(23,87,122,34)(24,92,121,29)(49,53,72,68

)(50,58,71,63)(51,62,70,59)(52,67,69,54)(55,57,66,64)(56,61,65,60) 

f=(15,74,130,47)(16,79,129,42)(17,84,128,37)(18,88,127,33)(19,93,126,28) 

b=(6,45,139,76)(7,40,138,81)(8,36,137,85)(9,31,136,90)(10,26,135,95) 

B=(1,44,144,77)(2,39,143,81)(3,35,142,86)(4,30,141,91)(5,25,140,96)(97,101,120,116)(

98,106,119,111)(99,110,118,107)(100,115,117,102)(103,105,114,112)(104,109,113,108) 

 



 
 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

SPOT IT! AND SPOT IT! JR. GAMES 
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Table 1: Spot It! Jr. list of symbols, corresponding number assignments, and degree 

Symbol Point Degree 

bat 0 6 

bear 1 6 

camel 2 6 

cat 3 6 

chick 4 6 

crab 5 6 

dog 6 6 

dolphin 7 6 

duck 8 6 

fish 9 6 

flamingo 10 6 

frog 11 6 

gator 12 6 

gorilla 13 6 

grasshopper 14 6 

hippo 15 6 

horse 16 6 

lion 17 6 

octopus 18 6 

owl 19 6 

parrot 20 6 

penguin 21 6 

pig 22 6 

rabbit 23 6 

seal 24 6 

shark 25 6 

skunk 26 6 

snake 27 6 

squirrel 28 6 

starfish 29 6 
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Symbol Point Degree 

turtle 30 6 

 

 

Table 2: List of blocks for Spot It!, Jr. 

Block Points in Block 

Block 0 8, 12, 16, 24, 27, 30 

Block 1 2, 3, 7, 15, 17, 24 

Block 2 1, 2, 9, 25, 29, 30 

Block 3 0, 4, 11, 14, 15, 30 

Block 4 8, 9, 15, 22, 26, 28 

Block 5 7, 9, 11, 20, 21, 27 

Block 6 11, 18, 19, 24, 26, 29 

Block 7 0, 2, 16, 21, 23, 26 

Block 8 6, 17, 19, 21, 28, 30 

Block 9 5, 15, 16, 19, 20, 25 

Block 10 4, 9, 13, 16, 17, 18 

Block 11 8, 10, 11, 17, 23, 25 

Block 12 4, 6, 7, 12, 25, 26 

Block 13 3, 4, 5, 8, 21, 29 

Block 14 0, 1, 7, 8, 13, 19 

Block 15 7, 10, 14, 16, 28, 29 

Block 16 0, 12, 17, 20, 22, 29 

Block 17 0, 3, 18, 25, 27, 28 

Block 18 1, 4, 20, 23, 24, 28 

Block 19 2, 6, 8, 14, 18, 20 

Block 20 5, 7, 18, 22, 23, 30 

Block 21 6, 13, 15, 23, 27, 29 

Block 22 0, 5, 6, 9, 10, 24 

Block 23 2, 5, 11, 12, 13, 28 

Block 24 3, 10, 13, 20, 26, 30 

Block 25 1, 10, 12, 15, 18, 21 
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Block Points in Block 

Block 26 2, 4, 10, 19, 22, 27 

Block 27 13, 14, 21, 22, 24, 25 

Block 28 1, 5, 14, 17, 26, 27 

Block 29 1, 3, 6, 11, 16, 22 

Block 30 3, 9, 12, 14, 19, 23 

 

 

Table 3: Spot It! list of symbols, corresponding number assignments, and degree 

Symbol Point Degree 

! 0 7 

? 1 7 

anchor 2 8 

apple 3 8 

art 4 8 

balloon 5 8 

bomb 6 8 

bottle 7 8 

cactus 8 7 

candle 9 8 

car 10 8 

carrot 11 8 

cat 12 8 

cheese 13 8 

clock 14 8 

clover 15 8 

clown 16 8 

dog 17 7 

dolphin 18 8 

dragon 19 8 

droplet 20 8 

eye 21 7 
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Symbol Point Degree 

flame 22 8 

flower 23 7 

ghost 24 8 

hand 25 8 

heart 26 8 

ice cube 27 7 

igloo 28 8 

key 29 8 

knight 30 8 

ladybug 31 7 

leaf 32 7 

lightbulb 33 7 

lightning bolt 34 8 

lips 35 8 

lock 36 8 

moon 37 8 

ok 38 8 

pencil 39 8 

person 40 7 

pirate 41 7 

scissors 42 8 

snowflake 43 8 

snowman 44 6 

spider 45 8 

splat 46 8 

stop 47 7 

sun 48 8 

sunglasses 49 8 

t-rex 50 7 

target 51 8 

treble 52 8 
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Symbol Point Degree 

tree 53 8 

web 54 8 

yin yang 55 8 

zebra 56 8 

 

 

Table 4: List of blocks for Spot It! 

Block Points in Block 

0 2, 11, 13, 14, 30, 32, 47, 54 

1 31, 32, 34, 46, 52, 53, 55, 56 

2 7, 11, 12, 31, 35, 40, 42, 51 

3 7, 10, 13, 18, 22, 28, 44, 46 

4 6, 18, 39, 40, 45, 47, 48, 52 

5 0, 3, 28, 32, 37, 42, 43, 45 

6 4, 12, 14, 23, 26, 33, 45, 46 

7 4, 9, 11, 29, 37, 44, 48, 55 

8 11, 15, 21, 22, 36, 45, 50, 56 

9 6, 9, 13, 21, 23, 34, 38, 42 

10 12, 13, 19, 37, 41, 49, 50, 52 

11 1, 15, 18, 33, 34, 35, 37, 54 

12 2, 9, 15, 25, 40, 41, 43, 46 

13 14, 16, 18, 27, 36, 41, 42, 55 

14 2, 3, 4, 18, 24, 31, 38, 50 

15 2, 8, 19, 22, 33, 42, 48, 53 

16 3, 21, 27, 30, 35, 46, 48, 49 

17 9, 16, 26, 28, 35, 47, 50, 53 

18 7, 9, 24, 32, 33, 36, 39, 49 

19 4, 7, 8, 16, 21, 43, 52, 54 

20 9, 10, 19, 20, 27, 31, 45, 54 

21 3, 6, 12, 25, 36, 44, 53, 54 

22 4, 17, 19, 28, 30, 34, 36, 40 



54 

 

Block Points in Block 

23 0, 2, 10, 23, 29, 35, 36, 52 

24 0, 7, 14, 20, 25, 34, 48, 50 

25 6, 8, 14, 15, 28, 29, 31, 49 

26 6, 10, 30, 33, 43, 50, 51, 55 

27 2, 6, 7, 17, 26, 27, 37, 56 

28 1, 3, 9, 14, 17, 22, 51, 52 

29 14, 19, 35, 38, 39, 43, 44, 56 

30 12, 22, 24, 27, 29, 34, 43, 47 

31 15, 20, 24, 26, 30, 42, 44, 52 

32 3, 8, 10, 11, 26, 34, 39, 41 

33 16, 22, 23, 25, 30, 31, 37, 39 

34 23, 24, 28, 41, 48, 51, 54, 56 

35 1, 7, 29, 30, 38, 41, 45, 53 

36 0, 4, 13, 15, 27, 39, 51, 53 

37 11, 17, 18, 20, 23, 43, 49, 53 

38 1, 2, 12, 20, 21, 28, 39, 55 

39 0, 1, 6, 11, 16, 19, 24, 46 

40 10, 12, 15, 16, 17, 32, 38, 48 

41 3, 13, 16, 20, 29, 33, 40, 56 

42 18, 19, 21, 25, 26, 29, 32, 51 

43 0, 22, 26, 38, 40, 49, 54, 55 

44 1, 4, 10, 25, 42, 47, 49, 56 

45 8, 20, 36, 37, 38, 46, 47, 51 

46 8, 13, 17, 24, 25, 35, 45, 55 

47 3, 5, 7, 15, 19, 23, 47, 55 

48 5, 10, 14, 21, 24, 37, 40, 53 

49 1, 5, 13, 26, 31, 36, 43, 48 

50 5, 17, 29, 39, 42, 46, 50, 54 

51 0, 5, 8, 9, 12, 18, 30, 56 

52 2, 5, 16, 34, 44, 45, 49, 51 

53 5, 11, 25, 27, 28, 33, 38, 52 
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Block Points in Block 

54 4, 5, 6, 20, 22, 32, 35, 41 
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