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ABSTRACT

To avoid insolvency, insurance companies must have enough reserves to fulfill

their present and future commitment-refer to in this thesis as outstanding claims to-

wards policyholders. This entails having an accurate and reliable estimate of funds

necessary to cover those claims as they are presented. One of the major techniques

used by practitioners and researchers is the single chain ladder method. However,

though most popular and widely used, the method does not offer a good understand-

ing of the distributional properties of the way claims evolve. In a series of recent

papers, researchers have focused on two potential components of outstanding claims,

namely: those that have incurred but not reported (IBNR), and those that are re-

ported but not settled (RBNS). The deep analysis of those has led to improvements

in the chain ladder technique leading to the so-called double chain ladder method in

a reference to the two steps application of the single chain ladder. First to RBNS,

and then to IBNR. Although this new technique of estimating outstanding claims is

a significant improvement over the single chain ladder, there are still room for better.

This thesis is based on the most up to date work in the area that is presented in

a paper by Miranda, Nielsen, Verrall, and Wüthrich [13]. Using the machinery of

stochastic processes, the authors outline how a possible inflation of the loss distribu-

tion over the years and distributional properties of future claims can be incorporated

into the analysis leading to a better estimate of the reserves. We discuss in details

those new breakthroughs, and, apply them to bootstrapped run-off triangle data. We

assess the new methods with respect to the existing ones and provide a discussion

and recommendation to practitioners.
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1 INTRODUCTION

Insurance companies have to make sure that enough reserves are available to

meet the demand of present and outstanding claims as a result of the occurrences of

events as outlined in the contract between policyholders and insurers. Those events

can be, but not limited to: properties losses, lump sum payment resulting from life

insurance policies as a result of death, claims pertaining to health insurances policies,

annuities or disabilities benefits. There are two major groups of insurance policies:

property and casualty-so called non-life, and life insurance. This thesis focuses on the

former. One buys a policy to cover for an unexpected or partial loss of a property due

to accident, storm, damage, theft, vandalism etc... Because of the unpredictability of

these occurences, insurers can suddenly face the possibility of paying claims as the

policy dictates, and those can be very large in some cases. Therefore, a large amount

of money needs to be reimbursed to policyholders under the terms of the contract.

For instance, the hurricane Katrina back in 2006, or the storm in Joplin in 2011 have

caused many people to lose their houses, businesses, cars etc... In both cases, we are

talking about claims from policyholders in millions, if not billions. Though insurance

companies can reinsure their insurance contracts to avoid situations like the previous

two examples, however, most of the time, they need to have enough reserves to cover

claims in order to ensure the financial stability of the company and its profits and

losses accounts, since those depend on archives claims, but also on the forecasted

claims yet to be settled.

Forecasting futures claims entails having better knowledge of history of claims

in the company-that is past experiences are keys. Claims settled and claims filed

but not yet settled are presented in the actuarial jargon in a triangle format, called
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run-off triangle. See Table 2.1 for an example. Any statistical method for estimating

reserves is based on the triangle of data. For a detailed account and explanation on

how the triangle evolve, we refer the reader to B. Ajne [1], A. Renshaw [17] and R.

J. Verrall ([22], [23] and [24]).

There are various techniques in the literature for estimating outstanding claims,

cf. again the previous references and other references therein. One of the methods

extensively used by researchers and practitioners is the single chain ladder method,

SCL from now on. This is the most celebrated and well known method of having a

good understanding of outstanding liabilities in non-life insurance. It was originally

a simple algorithm, appealing and one that gives reasonable estimates of outstand-

ing claims. Later, it was connected to mathematical statistics by researchers who

developed sound statistical methods for the SCL via maximum likelihood, regres-

sion models, Bayesian estimation etc., cf. Mack [8], Renshaw and Verrall [18]. See

also Verrall ([25] and [26]), England and Verrall ([5] and [4]) for a detailed and com-

prehensive account of the various statistical methods for SCL. The models in those

papers brought up many improvements on the SCL over the years and continue to

make it the method mostly used for estimation of outstanding claims.

However, the SCL has some shortcomings. While it gives estimates of out-

standing claims, better understanding of how claims evolve over the years is crucial.

Observe that the SCL only forecasts outstanding claims, which include those that are

reported but not settled-called RBNS, but does not include those that have occurred

but are not yet reported-called IBNR. So the reserve should include both IBNR and

RBNS, that is

Reserve = IBNR+RBNS.
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A better understanding of these two parts will lead to a much better estimate of

outstanding claims. In recognition of that, in a recent series of papers, Verrall et al.

[28], Mart́ınez-Miranda et al. ([14] and [16]) have deeply analyzed the claim gener-

ating process in order to have a better understanding of outstanding claims. Those

improvements over the SCL are based on a two steps analysis of the data, each of

which is a simple application of the former method because both sets of data can

be represented in a run-off triangle format required for reserve estimation. The au-

thors now call this double chain ladder (DCL) technique in reference to the two steps

analysis. Those improvements were possible using the stochastic processes machinery

that is important in the modeling and analysis of claims data.

Verall, Nielsen and Jessen [28] focused on the split between IBNR and RBNS

delay. They used the run-off triangle of paid claims and the number of reported claims

to propose a model that predicts IBNR and RBNS claims. The main focus lies on

the two sources of delay and how to estimate the IBNR and RBNS claims seperately.

Mart́ınez-Miranda, Nielsen and Verall [12] focused more on the weak points of the

SCL and the DCL method presented in Verall, Nielsen and Jessen [26]. They showed

how alterations of the DCL method can produce a new method that is related to

the Bornhuetter-Ferguson technique, cf. [19]. The Bornhuetter-Ferguson method is

motivated by the lack of stability of the DCL method. Mart́ınez-Miranda, Nielsen,

Nielsen and Verall [14] showed how the DCL method is related to the SCL. It focuses

on the estimation of the first moment parameters and the estimation of IBNR and

RBNS claims. The paper on which this thesis is based shows that by making a

particular choice about how the claims are estimated, the DCL method yields the

same reserves than the classical SCL. This is mainly done by looking at the tail of

claims estimated by the DCL method.
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Those work brought significant improvements in run-off triangle analysis. How-

ever, some of the assumptions in the aforementioned papers related to DCL are

not needed to estimate outstanding claims. This thesis is based, to the best of our

knowledge, on the most up to date improvement of the DCL presented by Mart́ınez-

Miranda, Nielsen, Verrall, and Wüthrich [13]. The stochastic assumptions made in

the manuscripts in the previous paragraph are important to understand the predictive

distribution. But, Mart́ınez-Miranda et al. [13] argues that having knowledge of the

distribution of outstanding claims would translate into a better estimate. Specifically,

they show that if prior knowledge is available about the future number of no-claims

(zero-claims) and future loss distribution inflation rate, then those will affect the

predicted distribution of outstanding claims. Therefore, if the issue is to qualify or

improve best estimates, prior knowledge of zero-claims and development year severity

inflation is not important. On the other hand, if the focus is the best estimate of

outstanding claims, then one should (for example) consider underwriting year sever-

ity inflation. The two additional information can be easily incorporated into the well

known DCL. This thesis is based on the same type of data as in Mart́ınez-Miranda,

Nielsen and Wüthrich [13], in the sense that it considers the two triangles used in

DCL. Mart́ınez-Miranda et al. [13] combines these two triangles with a third triangle

on the number of payments. In their paper, they go through the full mathematical

statistical modelling of the entire system behind the three triangles. It is essential

to consider all available prior knowledge. Although those additions complicate mat-

ters, they add insight into the estimation procedures by properly taken into account

the no-claims thereby having better understanding of the distributional properties of

outstanding claims.

Following Mart́ınez-Miranda et al. [13], we discuss the pro and cons of this new

method, how to address properties of data surrounding the chain ladder prediction,
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and issues around the inclusion of claim severity inflation and distribution of claim

settled without payment. Does this new statistical model estimate reserves in a better

and more accurate way? Should insurance companies use the DCL method instead

of the commonly used SCL to estimate reserves? This thesis introduces the SCL,

explains in detail the DCL method and outlines the advantages and disadvantages of

the two techniques.

The content of the thesis is as follow. In Section 2, we introduce the basic

SCL and then show different approaches to estimate reserves using the SCL method

as a basic foundation. We discuss the different statistical methods utilized and how

the corresponding parameters are estimated. This section is just a brief summary

of the technique. A more detailed account can be found in the master thesis of

Netanya Martin [10] and other references presented there. Section 3 deals with the

DCL method, beginning with the model itself and then proceed with how reserves

are estimated via this technique. Moreover, we discuss in details how to incorporate

i) prior information alone

ii) future severity inflation alone and

iii) how to incorporate both i) and ii).

In Section 4, the bootstrap method is reviewed and how it can be used to bootstrap

run-off triangles is presented. In Section 5, we compare the different techniques pre-

sented in this thesis. Discuss their advantages and disadvantages. Section 6 concludes

the thesis work with a brief summary and an outline of potential dissertation research

problems.
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2 STATISTICAL METHODS FOR THE CHAIN LADDER
TECHNIQUE

One of the most popular and mainly used method for estimating reserves is the

single chain ladder method (SCL). In this section, we discuss different chain ladder

techniques and other issues which can arise using these techniques. The outlined

reasons will pave the way and motivate the use of the Double Chain Ladder

Method which is an extension of the SCL method.

2.1 BASIC CHAIN LADDER

The unit is monitured for a certain type of event (accident, tornado, etc.)

which occurs in year i. To describe the data, let i be the index for the accident year,

with i ∈ {1, . . . ,m}. When the accident occurs, policyholders are expected to file

a claim. In general, claims are not always reported right after events occur. Let j

denote the claim filing year, also called delay year, with j ∈ {0, . . . ,m− 1}. That is

the jth year that elapsed since the accident occured. In this section we assume that

the data is in the form of a triangle. The maximal delay year is m − 1. We give in

Table 2.1 an example of the type of data we are referring to. The data is taken from

Taylor and Ashe [21]:

Table 2.1 The Taylor-Ashe Data (1983)

Zij Delay yr 0 Delay yr 1 Delay yr 2 Delay yr 3 Delay yr 4 Delay yr 5 Delay yr 6 Delay yr 7 Delay yr 8 Delay yr 9

accident yr 1 357848 766940 610542 482940 527326 574398 146342 139950 227229 67948
accident yr 2 352118 884021 933894 1183289 445745 320996 527804 266172 425046
accident yr 3 290507 1001799 926219 1016654 750816 146923 495992 280405
accident yr 4 310608 1108250 776189 1562400 272482 352053 206286
accident yr 5 443160 693190 991983 769488 504851 470639
accident yr 6 396132 937085 847498 805037 705960
accident yr 7 440832 847631 1131398 1063269
accident yr 8 359480 1061648 1443370
accident yr 9 376686 986608
accident yr 10 344014
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The incremental claims are denoted by Zij, that is the amount of claims in dollar

that occured in accident year i and filed after j years. Thus, the set of incremental

claims is {Zij : i = 1, . . . ,m; j = 0, . . . ,m− i}. Table 2.2 is an example of the SCL

triangle with m=5:

Table 2.2 Chain Ladder Triangle

Z10 Z11 Z12 Z13 Z14

Z20 Z21 Z22 Z23

Z30 Z31 Z32

Z40 Z41

Z50

Z20 for instance, is the dollar value of a claim which occured in accident year 2 and

reported in the same year as they occured. Z21, on the other hand, describes the

amount of claims occured in accident year 2 but filed one year later. That is, they

occured in accident year 2 but were reported to the insurance company one year

after they occured. The objective of the company is to forecast outstanding claims.

Outstanding claims can be accidents which have not yet occured but need to be

forecasted such that a company knows how much money they probably need going

forward. In the table below, outstandig claims, calculated by the SCL method are

colored in red:

Table 2.3 Chain Ladder Triangle with Outstanding Claims

Z10 Z11 Z12 Z13 Z14

Z20 Z21 Z22 Z23 Z24

Z30 Z31 Z32 Z33 Z34

Z40 Z41 Z42 Z43 Z44

Z50 Z51 Z52 Z53 Z54
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The chain ladder technique itself uses cumulative claims for estimation, given by

Cij =

j∑
k=0

Zik for i = 1, . . . ,m . (2.1)

In the SCL method, development factors are used to forecast future claims. The

development factors are denoted by λj and defined by

λj =

∑m−j
i=1 Cij∑m−j

i=1 Ci,j−1

for j = 1, . . . ,m− 1,

where Cij is defined as in (2.1). So, given Ci0, Ci1, . . . , Ci,j−1, the conditional expected

cumulative claim is

E [Cij|Ci0, Ci1, . . . , Ci,j−1] = λj Ci,j−1 for j = 1, . . . ,m− 1.

Thus, the expected ultimate loss of all outstanding claims for accident year i is

E [Ci,m−1] =

(
m−1∏

j=m−i+1

λj

)
Ci,m−i for i = 1, . . . ,m. (2.2)

The estimation of claims using the SCL method produces estimates which have a

column and a row effect. The parameter λj can be viewed as a column effect of

claims when forecasting the ultimate loss Ci,m−1. The random variable Ci,m−i on

the other hand can be viewed as a row factor. The estimation of the ultimate claim

Ci,m−1 is based on Ci,m−i for every row i, and thus Ci,m−i can be interpreted as a row

effect in estimating the ultimate claim. The advantage of using development factors

is that they are straightforward to calculate. Although the SCL method has a lot of

advantages, it also has some disadvantages. For example:

i) The missing extension in calculating reserves beyond the latest delay year m−1.
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ii) The SCL method is only an algorithm which produces estimates for outstanding

claims. But there is no statistical model behind this estimation.

iii) There is no option in the SCL algorithm for including any tails, alterations or

additional information.

If we estimate the outstanding claims in the lower right hand triangle, we are only

estimating claims till the latest delay year m−1 (see Table 2.3). We don’t look beyond

the latest delay year since the estimation of the claims is only based on the cumulative

claims {Cij : i = 1, . . . ,m, j = 0, . . . ,m− i} and thus, on the given incremental claims

{Zij : i = 1, . . . ,m, j = 0, . . . ,m− i}. It would be in fact sometimes quite helpful to

have such extension since claims can also be filed after m− 1 years. In what follows

we discuss different other techniques for reserve estimation.

2.2 LINEAR MODELS AND CHAIN LADDER

By estimating the development factors, we are taking into account column and

row effects in the process of forecasting reserves. Since we want to have those effects

included in our outstanding claims, we write our incremental claims in a multiplicative

model, given by

E [Zij] = UiSj, (2.3)

where Ui is the parameter for row i which can be interpreted as the expected total

claim for accident year i, and Sj for column j represents the expected proportion

of the ultimate claim for each delay year j with the restriction
∑m−1

j=0 Sj = 1. It

can be shown that Sj can be expressed by development factors since λj can also be

interpreted as a column effect. Ui can be seen as the expected ultimate caim for row i

with Ui = E [Ci,m−1]. Kremer [7] showed, that one can write the expected proportion
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of the ultimate claim for delay year j by


Sj =

λj−1∏m−1
l=j λl

for j = 1, . . . ,m− 1 ,

S0 = 1∏m−1
l=1 λl

.

To estimate Ui and Sj, we will use a log-linear model. To that end, we assume that

the incremental claims Zij are lognormal distributed. Taking the logarithm on both

sides of (2.3) yields

E [Yij] = µ+ αi + βj,

where Yij=log(Zij), µ is the overall mean, αi is the row effect and βj the column effect

of the logged incremental claims. Thus,

Yij = µ+ αi + βj + εij, (2.4)

where εij, the error term, has mean 0 and variance σ2. Since
∑m−1

j=0 Sj = 1, we obtain

m−1∑
j=0

E [Zij] =
m−1∑
j=0

UiSj = Ui

m−1∑
j=0

Sj = Ui.

So, Kremer [7] showed the relationship

Ui = eαieµ
m−1∑
j=0

eβj . (2.5)

Equation (2.4) can be written in form of a log-linear model. To do this, some regularity

conditions are needed. Let α1 = β0 = 0 such that the following model has a non-

singular design matrix X. Thus, we get the log-linear model

y = Xβ + ε, (2.6)
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where

y denotes the vector of the logged incremental claims Yij = log (Zij)

with i = 1, . . . ,m; j = 0, . . . ,m− i,

X is the design matrix, where each row contains the coefficients for µ, αi and

βj to ensure that E [Yij] = µ+ αi + βj holds,

β a parameter vector with β = [µ;α2, α3, . . . , αm; β1, β2, . . . , βm−1] and

ε a vector of errors which are identically distributed with mean zero and

variance σ2.

We now give an example of (2.6):

Let m = 3, which means that the chain ladder triangle contains data for 3 years

and hence, uses the incremental claims Z10, Z11, . . . , Z30. By taking the logarithm of

those incremental claims we get Y10, Y11, . . . , Y30. Since α1 = β0 = 0, the parameter

β has the same form as in (2.6). With this information, we get the following equation:



y10

y11

y12

y20

y21

y30


=



1 0 0 0 0

1 0 0 1 0

1 0 0 0 1

1 1 0 0 0

1 1 0 1 0

1 0 1 0 0


·



µ

α2

α3

β1

β2


+



ε10

ε11

ε12

ε20

ε21

ε30


.

By plugging in the given data from the run-off triangle, we can estimate the param-

eter β. Hence, we get the estimates of the overall mean µ, the row effect αi and the

column effect βj. With this estimates at hand are we able to forescast the incremental
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claims using (2.4). Kremer [7] also showed, that by hatting the parameters in equa-

tion (2.5), the estimated claims using Ui are very similar to the incremental claims

estimated by the SCL method. One advantage of using the log-linear model instead

of the SCL mehtod is that the log-linear model gives standard errors that can be used

forecasting upper limits for our claims and facilitate inferences such as goodness of fit.

But we still can’t extend our calculations to forecast claims further than delay

year m − 1 since the log-linear model is only based on the given incremental claims

{Zij; i = 1, . . . ,m; j = 0, . . . ,m− i} which means that this model can only estimate

µ, αi, βj with i = 1, . . . ,m and j = 0, . . . ,m− 1 and thus, the incremental claims till

accident year m and delay year m− 1.

2.3 ESTIMATION OF RESERVES

The purpose of this subsection is to obtain estimates of our incremental claim

Zij. To that end, we require some assumptions. First, let m be the number of

accident years and n the number of observations, which in this case is n=1
2
m(m+ 1).

We assume that the incremental claims Zij are lognormally distributed with Zij
iid∼

lognormal with E [Zij] = θij ∀ (i, j). Therefore,

Yij = log (Zij) ∼ N
(
µ, σ2

)
. (2.7)

Using the lognormal distribution property, we have θij = eµ+ 1
2
σ2

. From the log-linear

model in (2.6) we can write y = Xβ + ε and therefore

E [Yij] = Xijβ,

Var (Yij) = σ2,

ε
iid∼ N

(
0, σ2

)
,



13

with Xij being the row of X regarding Yij. From the above sequence of equations we

can estimate θij and σ2 by using θij = e Xijβ + 1
2
σ2

, which is obtained by replacing

µ by Xijβ. Observe that µ = E [Yij] in (2.7). Thus we can derive the maximum

likelihood estimator θ̂ij of θij by

θ̂ij = e Xij β̂ + 1
2
σ̂2

with β̂ = (X ′X)−1X ′y the maximum likelihood estimator of β in the regression model

and σ̂2 = 1
n

(
y −Xβ̂

)′ (
y −Xβ̂

)
the maximum likelihood estimator of σ2.

The expression of σ̂2 given above is biased. Since we need an unbiased estima-

tor of θij, we need to improve our estimator. Let θ̃ij be an unbiased estimate of θij.

Finney [6] introduced a function gl(t), which is used to obtain an unbiased estimate

of θij. Finney [6] showed that the unbiased estimate of eZiβ + aσ2
is

eZiβ̂ gl

[(
a− 1

2
Zi (X

′X)
−1
Z
′

i

)
s2

]
,

where

Zi = the ith row vector of the matrix X of length p, equal Xij in (2.6),

gl (t) =
∞∑
k=0

lk (l + 2k)

l (l + 2) . . . (l + 2k)
· t

k

k!
, a polynomial function,

s2 =
n

n− p
σ̂2 an unbiased estimate of σ2,

l = (n− p) the degrees of freedom associated with s2,

a = a constant.
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Thus, the unbiased estimate of θij is

θ̃ij = e Xij β̂gl

[(
1

2
− 1

2
Xij (X ′X)

−1
X ′ij

)
s2

]
, (2.8)

with l = n - (2m-1) and s2 = n
n−(2m−1)

σ̂2. With an unbiased estimate of θij at hand,

we can now calculate its unbiased variance. Denote the variance of the unbiased

estimate of θij by r2
ij. Hence, we get

r2
ij = Var

(
θ̃ij

)
= E

[
θ̃2
ij

]
−
(
E
[
θ̃ij

])2

= E
[
θ̃2
ij

]
− θ2

ij

= E
[
θ̃2
ij

]
− e2Xijβ +σ2

. (2.9)

Using (2.8), (2.9) and again the result in Finney [6], we obtain an unbiased estimate

of the variance by

r̃2
ij = θ̃2

ij − e2Xij β̂gl

((
1− 2Xij (X ′X)

−1
X ′ij

)
s2
)

= e2Xij β̂

[(
gl

((
1

2
− 1

2
Xij (X ′X)

−1
X ′ij

)
s2

))2

−gl
((

1− 2Xij (X ′X)
−1
X ′ij

)
s2

)]
,

with l = n− (2m−1) the degrees of freedom associated with s2 and s2 = n
n−(2m−1)

σ̂2

an unbiased estimate of σ2 since p = (2m−1) is the number of parameters estimated.

We only calculated the unbiased estimate of the individual incremental claims Zij,

denoted by θ̃ij. Our task is to estimate the total outstanding claims for each accident

year i and each delay year j. By adding up the incremental claims over all j we will
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get the total outstanding claim for accident year i which will be denoted by

Ri =
m−1∑

j=m−i+1

Zij. (2.10)

Since we know the unbiased estimate of Zij, we can write the unbiased estimate of

Ri as R̃i =
∑m−1

j=m−i+1 θ̃ij. Using (2.10), we have

Var
(
R̃i

)
= Var

[
m−1∑

j=m−i+1

θ̃ij

]

=
m−1∑

j=m−i+1

[
Var

(
θ̃ij

)
+ 2

m−1∑
k=j+1

Cov
(
θ̃ij, θ̃ik

)]
.

To calculate the covariance, observe that

Cov
(
θ̃ij, θ̃ik

)
= E

[
θ̃ij θ̃ik

]
− E

[
θ̃ij

]
E
[
θ̃ik

]
= E

[
θ̃ij θ̃ik

]
− θijθik

= E
[
θ̃ij θ̃ik

]
− eXijβ+ 1

2
σ2

eXikβ+ 1
2
σ2

= E
[
θ̃ij θ̃ik

]
− e(Xij+Xik)β+σ2

.

Thus, the unbiased estimator of Cov
(
θ̃ij, θ̃ik

)
, still following Finney [6], denoted by

r̃2
ijk, is

r̃2
ijk = θ̃ij θ̃ik − e(Xij+Xik)β gl((1− 1

2
(Xij +Xik)(X

′X)−1(Xij +Xik)
′)s2)

= e(Xij+Xik)β
[
gl((

1
2
− 1

2
Xij(X

′X)−1X ′ij)s
2) gl((

1
2
− 1

2
Xik(X

′X)−1X ′ik)s
2)

−gl((1− 1
2
(Xij +Xik)(X

′X)−1(Xij +Xik)
′)s2)

]
.



16

Hence the unbiased estimate of Var
(
R̃i

)
is

m−1∑
j=m−i+1

[
r̃2
ij + 2

m∑
j=j+1

r̃2
ijk

]
. (2.11)

The total outstanding claim for the whole triangle is denoted by

R =
m∑
i=2

Ri,

the sum over all outstanding claims for each accident year i except the first one

since we know all claims for accident year 1. So, an unbiased estimate of the total

outstanding claim is

R̃ =
m∑
i=2

R̃i =
m∑
i=2

m−1∑
j=m−i+1

θ̃ij. (2.12)

The expression in (2.11) and (2.12) can be used to derive the confidence interval for

estimated reserves.

2.4 PREDICTION OF CLAIMS INTERVALS

By obtaining an unbiased estimator for our total outstanding claims and its

variance, it is often preferable to have a prediction interval for those claims. An

insurance company wants to have an upper bound for outstanding claims such that

they can safe enough money in case of a lot of events, like severe storms or accidents.

In this case, they have to pay a lot of money to the policyholders. We will only look

at the upper confidence bounds for outstanding claims. This upper bound represents

an estimated value of outstanding claims which should never be exceeded by the

true actual claims. Hence, we need an upper bound of estimated outstanding claims

such that the actual outstanding claims do not exceed this upper bound or if it

would exceed, it exceeds this bound with a very small probability. For calculating for
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instance a 95% confidence interval, we need to find a value k such that

P
(
R ≤ R̃ + k

)
= 0.95, (2.13)

with R being the actual total outstanding claims for the triangle, R̃ is the unbiased

estimate as calculated above and k is a real number that need to be added to our

unbiased estimate such that we can be 95% confident that our actual total outstanding

claim will not exceed R̃+ k. The value of k can be viewed as an adjustment number.

In this case we can write (2.13) as follows:

P
(
R− R̃ ≤ k

)
= 0.95 .

To calculate k, we need to know the expectation and variance of (R− R̃). Since R̃ is

an unbiased estimate of E [R], we can assume that R̃ is independent of R and so we

have

E
[
R− R̃

]
= E [R]− E

[
R̃
]

= 0,

and

Var(R− R̃) = Var(R) + Var(R̃)− 2 Cov(R, R̃)

= Var(R) + Var(R̃)

by independence of R̃ and R. R and R̃ are assumed lognormally distributed and they

will take large values since claims in an insurance company can be very high. In this

case, it is okay to assume that (R − R̃) is approximately normally distributed with

mean 0 and variance Var(R) + Var(R̃).
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So, one can calculated k as follows:

P
(
R− R̃ ≤ k

)
= 0.95

⇒ P

 (R− R̃)− 0√
Var(R) + Var(R̃)

≤ k − 0√
Var(R) + Var(R̃)

 = 0.95

⇒ k − 0√
Var(R) + Var(R̃)

= 1.645

⇒ k = 1.645

√
Var(R) + Var(R̃)

Thus, (2.13) becomes

P
(
R ≤ R̃ + 1.645

√
Var(R) + Var(R̃)

)
= 0.95,

which means that an upper confidence bound for our total outstanding claims, such

that only with a probability of 5% the actual total claims will exceed this upper

bound, has been found. It only remains to find the value of Var(R) and Var(R̃).

From the preceding calculations, we know what the unbiased estimator of Var(R̃) is

r̃2
ij. However an unbiased estimator for the variance of R is unknown. To obtain that,

we use the same approach as before together with Finney [6]. By independence, we

obtain

Var(R) =
m∑
i=2

m−1∑
j=m−i+1

Var (Zij)

=
m∑
i=2

m−1∑
j=m−i+1

e2Xijβ+σ2
(
eσ

2 − 1
)

=
m∑
i=2

m−1∑
j=m−i+1

e2Xijβ+2σ2 − e2Xijβ+σ2

.
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Using the results from above, we get that an unbiased estimate of Var(Zij) is

e2Xij β̂
[
gl

((
2− 2Xij (X ′X)

−1
X ′ij

)
s2
)
− gl

((
1− 2Xij (X ′X)

−1
X ′ij

)
s2
)]

It is very useful to have unbiased estimates for our outstanding claims. We can con-

struct prediction intervals and will have a good forecast of our actual claims. But

there are still some disadvantages. Calculating unbiased estimates are often very

complicated and tedious. Furthermore, no close expression or prior informations are

available. To overcome this, we take a Bayesian approach. The use of Bayes estimates

is also motivated by the fact that our model is based on the Bayesian theory.

Before proceeding using Bayesian estimation, we will look at another technqiue

for theSCL model. If we are given the run-off triangle of different companies, it

would be nice to assess how claims vary across those companies by looking how

claims evolve. In some companies for example, claims are always filed directly after

they occured and, other claims are reported 10-15 years after the event occured.

With this information, one can compare companies by say, the types of insurance

policies they offer or their database of policyholders. Moreover, the structure of

the company can provide valuable information. So, we want to compare companies

and look for a pattern in run-off triangles. It is much easier to use the maximum

likelihood estimation instead of the SCL method or analysis of variance. In Equation

(2.1) and (2.3), we used the development factor λj and also the parameter Sj to find

the outstanding claims.

2.5 ESTIMATION OF DEVELOPMENT FACTORS

We want to compare different sets of data using several different triangles from

different companies. The different values of the development factors λj can be used
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to compare how claims arise in a company. In the previous subsection, we showed

that Sj can be written as a function of λj, that’s


Sj =

λj−1∏m−1
l=j λl

for j = 1, . . . ,m− 1 and

S0 = 1∏m−1
l=1 λl

.

(2.14)

Therefore, Sj can be written as a function of βj, as well by

Sj =
eβj∑m−1
l=1 eβl

with j = 0, . . . ,m− 1 with β0 = 0. (2.15)

Combining (2.14) and (2.15), we can write the development parameter λj as

λj = 1 +
eβj∑j−1
l=1 e

βl
with j = 1, . . . ,m− 2. (2.16)

Since we know the maximum likelihood estimator for β from the previous subsections,

we can plug in β̂ into equation (2.15) and (2.16). That is because maximum likeli-

hood estimates are invariant under parameter transformation. Thus, we get λ̂j the

maximum likelihood estimate for the parameter λj and Ŝj the maximum likelihood

estimate for Sj with

Ŝj =
eβ̂j∑t−1
l=1 e

β̂l
,

λ̂j = 1 +
eβ̂j∑j−1
l=1 e

β̂l
.

In the previous subsections, the importance of having an estimate for the variance to

check the goodness of fit was discussed. If we are given the variance-covariance matrix

V(β), we can immediately estimate the variance-covariance matrix for the parameter
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λ = (λ1, . . . , λm) and S = (S1, . . . , Sm) using the multivariate delta method

V(λ) =

(
δλ

δβ

)
V(β)

(
δλ

δβ

)′
,

V(S) =

(
δS

δβ

)
V(β)

(
δS

δβ

)′
.

The parameter λj describes how much claims are filed after j years and thus the

number of outstanding claims depend on λ (2.2). The development factor λ for each

company can be used to see if a company has more runoff in later years than other

companies have. If λj for high j would be for example very large, then we can see that

the runoff of a company’s claim is very high which means that there are many claims

filed in later years. The next subsection pertains to the estimate of the outstanding

claims using the Bayesian technique.

2.6 BAYESIAN ESTIMATION OF CLAIMS

In this subsection we estimate total claims using the Bayesian estimation

method. After obtaining Bayesian estimates for outstanding claims, we introduce

the Bayesian estimation for our linear model from Subsection 2.2. For the Bayesian

estimation for runoff triangles, we assume that

Zij ∼ lognormal (θ, σ2),

as before. Additionally, we assume that θ ∈ Ω follows a certain prior distribution

π(θ) = P(θ = k). In this case we have a normal distribution for our prior. A

better way to have an idea about the behaviour of θ is to use available data. The

posterior distribution of θ is proportional to a normal distribution since we have

a conjugate prior. Following Bayesian estimation technique we can calculate the
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posterior distribution of θ given the data D = {x1, . . . , xn} by

π(θ|D) =
f(D|θ) · π(θ)

f(D)

=
L(x1, . . . , xn|θ) · π(θ)∫

Ω
L(x1, . . . , xn|θ) · π(θ) dθ

∝ N(m, r2).

Thus, we have

log Zij | θ ∼ N(θ, σ2) and

θ | D ∼ N(m, r2).

With this information at hand, we want to calculate the expectation and the variance

of our claim Zij. Given σ2 and r2, we get

E [Zij|D] = em+ 1
2
σ2+ 1

2
r2 ,

Var (Zij|D) = e2m+σ2+r2
(
eσ

2+r2 − 1
)
,

using the hierarchical Bayes technique. Since we want to know what our ultimate

total claim will be, the Bayes estimate of our outstanding claims is

m∑
i=2

m−1∑
j=m−i

E [Zij|D]

and also the Bayes estimate of the variance is

Ri =
m∑

j>m−i

[
Var(Zij|D) + 2

∑
k>j

Cov(Zij, Zik|D)

]
.

To apply the Bayes estimate to the linear model in (2.6), we use some facts from
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Subsection 2.2. Recall that Yij = Xijβ + ε and thus

y | β ∼ N(Xβ,Σ),

with Σ being the variance-covariance matrix of y. If we have additional information

on β, we could use a prior distribution, given by the practitioner, to calculate the

posteriori distribution. Since the prior is normally distributed with parameters Xβ

and Σ, we know that the posterior distribution is also normal. Thus,

β | θ ∼ N(Aθ,C),

with C being a diagonal matrix of variances and θ a prior estimate. The Bayes

estimate of β is denoted by β̃ and Verall [27] showed that it can be calculated using

the equation

(σ−2X ′X + C−1)β̃ = σ−2X ′Xβ̂ + C−1θ

and also the variance-covariance matrix of β̃ is obtained by

Var(β̃) =
[
σ−2X ′X + C−1

]−1

A nice solution of the Bayes estimate, in this case, is the credibility formula for the

estimate β̃. We can write the estimate as

β̃ = Zβ̂ + (I − Z)θ

with Z = (σ−2X ′X+C−1)−1σ−2X ′X. Z being the credibility factor or the credibility

matrix in our case and can be interpreted as the weight assigned to β̂ and (1−Z) the

weight assigned to the prior data θ. One can also estimate the parameter β by using

empirical bayes estimates which will rely on a 3-stage model where we look at the
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row and the column parameter seperately. However we will not go into more detail

here.

The Bayesian estimation is one of the best techniques for the SC Lmethod

although all of the techniques outlined here can be used. The advantages in using

the Bayesian estimates is the stability of the parameters. One reason why Bayesian

estimate have a low standard error, is the amount of information used to obtain them.

We include prior information and also use data from different rows and columns.

Though they perform better than other estimates, we still don’t look further than our

m accident years. We have discussed many different techniques of the SCL method to

forecast outstanding claims. We assumed lognormally distributed incremental claims

and then applied methods like the linear model, unbiased and likelihood estimates

and also Bayesian estimates. But there were some common disadvantages in all of

this techniques such as

i) What happens if we would like to extend our calculation to more than our given

m accident years? At this moment we are not able to do this without further

information.

ii) There is a problem in the way the estimates are calculated. This techniques are

not based on an underlying theory or look at the way how the claims arise and

what the predictive distribution of our reserves are.

This is the reason why we will now look at another method for calculating the out-

standing claims. This method is called the double chain ladder method and it looks

at the way claims arise and how we can estimate reserves by looking at their distri-

bution. The double chain ladder method also describes a way to extend our triangle,

which was one of the things in the SCL method that was missing.
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3 DOUBLE CHAIN LADDER

In Section 2, we have discussed how to forecast outstanding claims by using

the chain ladder method. The disadvantages of using the chain ladder method are

i) The method does not estimate any reserves further than the maximal delay year

of m− 1.

ii) There exists no theory behind the chain ladder method.

iii) There is no option to include additional information.

Estimating reserves using the SCL method does not take into account any underly-

ing theory about the way claims arise. It is a straightforward algorithm that works

fast and quite well, but it only projects one single triangle of aggregated data. The

SCL method also cannot include additional information from the company properly,

since it is only an algorithm that computes the estimated reserves. Because of its

easy applicability, many people only use the SCL method. Since insurance companies

also want to extend their forecasts for outstanding claims, tail factors can be used.

Sometimes the SCL method only predicts reserves for 10 years, but some kinds of in-

surance can have claims filed after those 10 years, which has to be taken into account.

Thus, if the development of the run-off triangle is not complete after the maximum

delay year m − 1, a tail factor can be used to estimate the total outstanding claims

including development years j > m − 1. A tail factor is a constant k = 1 + ε, with

ε ∈ [0.01, 0.06], which, if multiplied by the total outstanding claims, will result in a

higher estimate for the total outstanding claims. In Mack [9], for instance, the tail

factor based on some data was estimated to be k = 1.05, which means that in addi-

tion to the total outstanding claims, approximately 5% of those claims will be filed

after m− 1 years. Using a tail factor is one option to avoid the problem of the SCL
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method not having any extension after delay year m−1 in its calculations. Although

it is quite simple to use a tail factor, this estimation does not include the fact that

claims after delay year m − 1 can also have development inflation and that there is

an evolution of claims after delay year m− 1. It is definitely a problem that the SCL

algorithm does not produce any tails and thus, estimates for high delay years are

not exact. Another big disadvantage of the SCL is that the SCL is not a statistical

model. It does not take into account any distributional properties about the claims

or how adjustments or any additional information can be included in this framework

properly. A statistical model that estimates outstanding claims by looking at their

distribution, produces a tail, and includes additional information is the way to go.

In this section, we focus on a statistical model for estimating reserves, distri-

butional properties of claims and prior information on claims that can be included in

the DCL framework. The DCL method is closely related to the SCL method, though

there are some differences:

• The DCL method includes the distribution of claims and looks at how claims

evolve in order to estimate outstanding claims.

• The DCL method can be easily adapted to include other information as time

goes by.

• The DCL method’s use of tail facilitates reserve calculation for later years.

The goals of the DCL method are not to develop a new model to get different esti-

mations for reserves. It is rather the goal to develop a model that procudes similar

estimates like the SCL method but in addition to obtain the distribution of claims

and estimate those claims.
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3.1 DECOMPOSITION OF OUTSTANDING CLAIMS

If an accident occurs, claims are first filed and later paid. Sometimes claims

will be filed years after they occur. Claims can also be paid years after they were

filed. Thus, there exists a reporting delay and payment delay in estimating reserves.

The following figure from Mart́ınez et al. [15] shows that claims can occur after the

reserves of a insurance company are set and sometimes claims occur before reserves

are set but are paid afterwards.

Figure 3.1 Stochastic Claims Reserving

The DCL method is based on two types of data in the form of run-off tri-

angles. The first triangle contains data about the number of reported claims and

the second triangle contains observations about the number of payments for each

reported claim. The data is presented in a form of a triangle for (i, j) ∈ Im, with

Im = {(i, j) : i = 1, . . . ,m; j = 0, . . . ,m− 1; i+ j ≤ m}, where i denotes the accident

year, j denotes the delay year, and m is the last observed accident year. For example,

in Table 2.1 (The Taylor-Ashe Data), the last observed accident year was m = 10.

We will not only consider predictions over the lower triangle, like in the SCL method,

but we will also predict reserves over other sets of triangles. The following figure is
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taken from Mart́ınez, Nielsen, and Verrall [11] and shows the possible index sets for

predicting reserves: I is, in our case defined as Im, the actual data which is available.

Figure 3.2 Index Sets For Aggregate Claims Data

The sets I1, I2, I3 are defined as follows:

I1 = {i = 2, . . . ,m; j = 1, . . . ,m− 1 so i+ j = m+ 1, . . . , 2m− 1} ,

I2 = {i = 1, . . . ,m− 1; j = m, . . . , 2m− 2 so i+ j = m+ 1, . . . , 2m− 1} ,

I3 = {i = 2, . . . ,m; j = m, . . . , 2m− 2 so i+ j = 2m, . . . , 3m− 2} .

When estimating reserves using the SCL method, we used the data for (i, j) ∈ Im to

forecast reserves for only I1, and we would need to use tail factors to estimate claims

if we want to extend our estimation for I2 and I3. The DCL method automatically

provides tail factors over I2 ∪ I3, thus the DCL is consistent over all index sets in the

process of estimating the reserves.
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To proceed with the DCL technique, we introduce the following random vari-

ables:

• Nij: the number of reported claims

Nij denotes the number of reported claims that occured in accident year i and

filed after j years, where each claim can generate a number of payments.

• Npaid
ijl : the number of payments

Those payments originated from the Nij claims and were paid after l years,

which means that with a payment delay of l years, where l = 0, . . . ,m−1. If we

are only interested in the number of paid claims, we define Npaid
ij =

∑j
l=0N

paid
i,j−l,l.

• Y (k)
ijl : the individual severity claims

The individual severity claims describe the individual settled payments, with

Y
(1)
ijl being the first payment and Y

(Npaid
ijl )

ijl being the last payment that originated

from the Nij claims and are paid after l years, where k = 1, . . . , Npaid
ijl . We

define Y
(k)
ij =

∑j
l=0 Y

(k)
i,j−l,l, where the individual payment of claims originated

in accident year i and paid in year i+ j.

• Xij: the total payments:

The amount of Xij describes the total payment from claims that occured in

year i and were paid in year i+ j. Since the total payments are the sum of all

individual payments, we can write Xij as

Xij =

Npaid
ij∑
k=1

Y
(k)
ij

=

j∑
l=0

Npaid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l.
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The reason why the DCL method is called double chain ladder is because the SCL

method is performed twice for the following two run-off triangles:

(χm,∆m) , where

χm = {Nij : (i, j) ∈ Im} is the number of reported claims and

∆m = {Xij : (i, j) ∈ Im} is the number of total payments.

In Mart́ınez, Nielsen, and Verrall [11] (Table 1 and Table 2) one can find an example

of those run-off triangles:

Table 3.1 Aggregated Reported Claims

Table 3.2 Aggregated Total Payments

Table 3.1 shows the triangle χm that contains the data on the number of reported

claims Nij. Table 3.2 shows the triangle ∆m with the data of total payments Xij. It
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is possible that sometimes claims are reported but not paid. Those will be denoted by

RBNS claims (Reported But Not Settled), which can be estimated over I1 ∪ I2 since

we do know the number of claims in Im and only have to forecast them using the SCL

method. We know all of the claims that incurred and thus only have to estimate the

delay payment. From the SCL method we know, that accidents sometimes occur in

a given year but are not reported immediately. If accidents occur but claims are not

reported, we denote those by IBNR claims (Incurred But Not Reported). Since we

do not know how many claims occured and when they happened, the IBNR claims

have to be estimated over I1∪ I2∪ I3. Thus, we have to forescast how many accidents

in the future will occur, and so we have not only to estimate the payment delay but

we also have to estimate the reporting delay. The following figure from Mart́ınez et

al. [15] shows the difference between IBNR and RBNS claims.

Figure 3.3 Decomposition of Outstanding Claims into IBNR and RBNS Claims

The IBNR and the RBNS claims sum to the total payments, so we can write

the total payments Xij as follows

Xij = X ibnr
ij +Xrbns

ij .
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Since we are interested in estimating reserves and having better knowledge about the

distributionl properties of claims, we need some further assumptions:

(D1) Nij ∼ Poi (αiβj) are independent random variables with the restriction that∑m−1
j=0 βj = 1. Since Nij depends on accident year i and delay year j, the

number of reported claims Nij have a cross-classified mean E [Nij] = αiβj,

which means that the mean is evaluated for the accident year i and the delay

year j at the same time.

(D2)
(
Npaid
i,j,0 , . . . , N

paid
i,j,m−1

)
∼ Multi (Nij; p0, . . . , pm−1) is a random vector, where

m − 1 is the maximum delay year and p = (p0, . . . , pm−1) is a vector of de-

lay probabilities such that
∑m−1

l=0 pl = 1 and 0 ≤ pl ≤ 1 ∀ l = 0, . . . ,m− 1. The

variable pl is the probability that a claim will be paid with a delay of l years.

(D3) Y
(k)
i,j−l,l are individual payments that are independent random variables with

a mixed-type distribution. This means that the distribution of Y
(k)
i,j−l,l has a

discrete and a continuous component. The discrete part of the distribution is

defined by

P
(
Y

(k)
i,j−l,l = 0

)
= Qi,

where Qi is the probability of a zero-claim in accident year i. The continuous

part of the distribution is defined by a conditional distribution, given Qi, with

µij = µ · γi · δj, the conditional mean with a common mean factor µ and two

inflation factors γi and δj, depending on the accident year i and the delay year

j. The conditional variance σ2
ij can be written as σ2

ij = σ2 · γ2
i · δ2

j , where σ2 is

the common variance factor and γ2
i and δ2

j are the inflation factors.

(D4) The individual payments Y
(k)
ijl are independent of the numbers of reported claims

Nij.
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We know from the definition in (D1) that the expected value of the number of claims

is defined by E [Nij] = αiβj. With (D1)-(D4) in force, we can calculate the expected

value of Xij, thereby obtaining expected values of both run-off triangles χm and ∆m.

To calculate the expected value of the total payments, we first need to calculate the

expected value of the individual payments Y
(k)
i,j−l,l:

E
[
Y

(k)
i,j−l,l

]
= E

[
Y

(k)
i,j−l,l|Y

(k)
i,j−l,l > 0

]
· P
(
Y

(k)
i,j−l,l > 0

)
+ E

[
Y

(k)
i,j−l,l|Y

(k)
i,j−l,l = 0

]
· P
(
Y

(k)
i,j−l,l = 0

)
= µij · (1−Qi) + 0 ·Qi

= µij · (1−Qi)

= µ · γi · δj · (1−Qi)

By the law of total variance, we can also define the variance of the individual payments

by

Var
(
Y

(k)
i,j−l,l

)
= E

[
Var

(
Y

(k)
i,j−l,l|Qi

)]
+ Var

(
E
[
Y

(k)
i,j−l,l|Qi

])
= Var

(
Y

(k)
i,j−l,l|Y

(k)
i,j−l,l > 0

)
· P
(
Y

(k)
i,j−l,l > 0

)
+ Var

(
Y

(k)
i,j−l,l|Y

(k)
i,j−l,l = 0

)
· P
(
Y

(k)
i,j−l,l = 0

)
+ E

[
Y

(k)
i,j−l,l|Y

(k)
i,j−l,l > 0

]2

· P
(
Y

(k)
i,j−l,l > 0

)
·
(

1− P
(
Y

(k)
i,j−l,l > 0

))
= Var

(
Y

(k)
i,j−l,l|Y

(k)
i,j−l,l > 0

)
· P
(
Y

(k)
i,j−l,l > 0

)
+ E

[
Y

(k)
i,j−l,l|Y

(k)
i,j−l,l > 0

]2

· P
(
Y

(k)
i,j−l,l > 0

)
·
(

1− P
(
Y

(k)
i,j−l,l > 0

))
= σ2

ij · (1−Qi) + µ2
ij ·Qi · (1−Qi)

= σ2 · γ2
i · δ2

j · (1−Qi) + µ2 · γ2
i · δ2

j ·Qi · (1−Qi)

= (1−Qi) · γ2
i · δ2

j ·
(
σ2 + µ2 ·Qi

)
.
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To estimate the reserves, we need to know the conditional distibution of the out-

standing claims. To that end, we need the first two moments of the total payments

given the number of reported claims χm. The conditional expectation of the number

of payments is

E
[
Npaid
ij |χm

]
= E

[
j∑
l=0

Npaid
i,j−l,l|χm

]

=

j∑
l=0

E
[
Npaid
i,j−l,l|χm

]
(D2)
=

j∑
l=0

Ni,j−l · pl.

The conditional variance of the number of payments is

Var
(
Npaid
ij |χm

)
= Var

(
j∑
l=0

Npaid
i,j−l,l|χm

)

=

j∑
l=0

Var
(
Npaid
i,j−l,l|χm

)
(D2)
=

j∑
l=0

Npaid
i,j−l,l · pl · (1− pl).

Assuming that the number of claims paid from various years are uncorrelated, define

the conditional expectation of Y
(k)
ij by µij = µ · γi · δj · (1 − Qi) and its conditional

variance by σ2
ij = (1 − Qi) · γ2

i · δ2
j · (σ2 + µ2 ·Qi), then obtain E [Xij|χm] using the
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iterated rule of expectation.

E [Xij|χm] = E
[
E
[
Xij|Npaid

ij

]
|χm
]

= E

E
N

paid
ij∑
k=1

Y
(k)
ij |N

paid
ij

 |χm


(D3)
= E

[
Npaid
ij E

[
Y

(k)
ij

]
|χm
]

(D4)
= E

[
Npaid
ij |χm

]
E
[
Y

(k)
ij

]
=

j∑
l=0

Ni,j−l · pl · µ · γi · δj · (1−Qi) .

Similarly, the variance of Xij given χm can be approximated by

Var (Xij|χm) = E
[
Var

(
Xij|Npaid

ij

)
|χm
]

+ Var
(
E
[
Xij|Npaid

ij

]
|χm
)

= E

Var

Npaid
ij∑
k=1

Y
(k)
ij |N

paid
ij

 |χm
+ Var

(
Npaid
ij E

[
Y

(k)
ij

]
|χm
)

= E
[
Npaid
ij Var

(
Y

(k)
ij

)
|χm
]

+ Var
(
Npaid
ij E

[
Y

(k)
ij

]
|χm
)

(D4)
= E

[
Npaid
ij |χm

]
Var

(
Y

(k)
ij

)
+ Var

(
Npaid
ij |χm

)
E
[
Y

(k)
ij

]2

= E
[
Npaid
ij |χm

]
· γ2

i · δ2
j · (1−Qi) ·

(
σ2 +Qiµ

2
)

+Var
(
Npaid
ij |χm

)
· µ2 · γ2

i · δ2
j · (1−Qi)

2

=

j∑
l=0

Ni,j−l · pl · γ2
i · δ2

j · (1−Qi) ·
(
σ2 +Qiµ

2
)

+

j∑
l=0

Ni,j−l · pl · (1− pl) · µ2 · γ2
i · δ2

j · (1−Qi)
2

≈ γ2
i · δ2

j · (1−Qi) · (σ2 + µ2) ·
j∑
l=0

Ni,j−l · pl

= γi · δj ·
σ2 + µ2

µ
E [Xij|χm]

= ϕij E [Xij|χm] ,
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where ϕij = γi · δj · ϕ and ϕ = σ2+µ2

µ
. Using the expected value of Npaid

i,j−l,l

E
[
Npaid
i,j−l,l

]
(D2)
= E [Ni,j−l] · pl

= αi · βj−l · pl,

the expected value of the total payments is denoted by

E [Xij] = E

 j∑
l=0

Npaid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l


(D3)
=

j∑
l=0

E

N
paid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l


(D4)
=

j∑
l=0

E
[
Npaid
i,j−l,l

]
· E
[
Y

(k)
i,j−l,l

]
=

j∑
l=0

αi · βj−l · pl · µ · γi · δj · (1−Qi)

= (αi · µ · γi · (1−Qi)) ·

(
δj

j∑
l=0

βj−l · pl

)
= α̃i β̃j, (3.1)

where

α̃i = αi · µ · γi · (1−Qi) and

β̃j = δj

j∑
l=0

βj−l · pl.

3.2 THE DOUBLE CHAIN LADDER METHOD

In this subsection, we outline the DCL method. We want to estimate reserves

and distibutional properties of claims. In this subsection we assume, that δj = 1 and

Qi = 0. Estimating the outstanding claims under those assumptions is much easier,
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because there is no inflation effect for delay year j and there are no zero-claims in

our data. At the end of this section, we will take a look at how one can incorporate

the parameters δj and Qi. But for now, we assume that δj = 1 and Qi = 0 and thus

the expectation of Y
(k)
i,j−l,l and Xij becomes

E
[
Y

(k)
i,j−l,l|Qi

]
= µ · γi and

E [Xij] = α̃iβ̃j,

repectively, where α̃i = αiµγi and β̃j =
∑j

l=0 βj−lpl. The objective of the the DCL

method is to estimate the parameters αi, βj, pl, γi, µ, σ
2. The single chain ladder

method can be applied twice on the triangle χm and ∆m to that end. In Section 2,

we have seen that the expectation of claims can be written as E [Zij] = UiSj in (2.3),

with Sj =
λj−1∏m−1
l=j λl

and S0 = 1∏m−1
l=1 λl

for j = 1, . . . ,m− 1. Verall [27] showed that Sj

is actually an estimate of the parameter β̂j. Thus,

β̂j =
λ̂j − 1∏m−1
l=j λ̂l

∀ j = 0, . . . ,m− 1,

β̂0 =
1∏m−1

l=1 λ̂l
; (3.2)

α̂i =
m−i∑
j=0

Nij

m−1∏
j=m−i+1

λ̂j ∀ i = 1, . . . ,m,

with λ̂ being the the vector of estimated development factors, obtained by SCL

method on the triangle χm. The same calculations can also be used for estimat-

ing the parameters ˆ̃αi and
ˆ̃
βj by using the SCL method on the triangle of paid claims

∆m. We will denote the estimated reserves using the SCL method by X̂SCL
ij . Thus,

the estimated reserves can be written as XSCL
ij = ˆ̃αi

ˆ̃
βj.
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There is another method for estimating the parameters (αi, βj). This method

is called the method of moments. For estimating αi and βj using the method of

moments, we can obtain

m−i∑
k=0

E [Nik] = αi ·
m−i∑
k=0

βk ∀ i = 1, . . . ,m,

m−j∑
k=1

E [Nkj] = βj ·
m−j∑
k=1

αk ∀ j = 0, . . . ,m− 1.

Every run-off triangle differs from one company to another or for each kind of insur-

ance. To get the parameters αi and βj such that they reflect the triangle χm in the

best way, it is helpful to use the given data in the upper triangle of χm instead of the

expectation of the number of claims Nij. Thus, by looking at the upper triangle, the

expectation of the estimate α̂i and β̂j are indeed the parameters αi and βj. In order

to make sure that the parameters αi and βj are not biased, we can use the actual

values of Nij for (i, j) ∈ Im from the given triangle instead of using the expectation

of Nij. By adding up the rows and columns of our data given in the triangle χm, we

obtain a system of linear equations. This system of linear equations can be solved

for αi and βj to obtain the chain ladder estimates α̂i and β̂j for the triangle χm. The

same calculations applied to ∆m yield

m−i∑
k=0

E [Xik] = α̃i ·
m−i∑
k=0

β̃k ∀ i = 1, . . . ,m,

m−j∑
k=1

E [Xkj] = β̃j ·
m−j∑
k=1

α̃k ∀ j = 0, . . . ,m− 1.

By solving the two equations above, we arrive at the method of moments estimate ˆ̃αi

and
ˆ̃
βj. The next step in the DCL process is to estimate the parameters of the delay
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probability pl using the following equation:

β̃j =

j∑
l=0

βj−l · pl ∀ j = 0, . . . ,m− 1. (3.3)

Estimates β̂j−l and
ˆ̃
βj are plugged in (3.3) and then solved for pl. Since the solution

p̂ = (p̂0, . . . , p̂m−1) of (3.3) does not satisfy the condition in (D2), we denote the

solution of (3.3) by π̂ = (π̂0, . . . , π̂m−1). The parameter π̂ can be estimated solving

the following system of linear equations:



˜̂
β0

...

...˜̂
βm−1


=



β̂0 0 · · · 0

β̂1 β̂0
. . . 0

...
. . . . . . 0

β̂m−1 · · · β̂1 β̂0


·



π0

...

...

πm−1


.

We need to adjust the solution π̂ such that it satisfies the conditions
∑m−1

l=0 pl = 1 and

0 ≤ pl ≤ 1 ∀ l = 0, . . . ,m− 1 without altering the delay property. Mart́ınez-Miranda

et al. [13] suggested a few procedures for adjustment and the following procedure is

one of them:

1) Count the number of all delay probabilities π̂l > 0 such that
∑d−1

l=0 π̂l < 1 ≤∑d
l=0 π̂l is satisfied, where d+ 1 ≤ m− 1.

2) Set p̂l equal to π̂l for all l ≤ d− 1 such that p̂l = π̂l, for l = 0, . . . , d− 1.

3) Set p̂d such that the conditions
∑m−1

l=0 p̂l = 1 and 0 ≤ p̂l ≤ 1 ∀ l = 0, . . . ,m− 1

are satisfied. The result will be p̂d = 1−
∑d−1

l=0 p̂l.

4) Set the rest of the probabilities equal to zero such that
∑m−1

l=0 p̂l = 1. Thus,

p̂d+1 = . . . = p̂m−1 = 0.
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For adjusting those parameters, one always needs to look at the distribution and the

properties of the delay function and use those properties to adjust the delay proba-

bilities. There are no set techniques that will always work.

To estimate the parameters γi and µ, the equation α̃i = αi · µ · γi can be

solved for γi to get γi = α̃i

αiµ
. Since this equation is over-parameterised, γi needs to be

identifiable by setting γ1 equal to one. Thus, µ = α̃1

α1
. The estimate of γi is given by

γ̂i =
ˆ̃αi
α̂iµ̂

i = 1, . . . ,m. (3.4)

By plugging µ̂ =
ˆ̃α1

α̂1
into (3.4), the rest of the parameters γi can be estimated.

Since the equation
∑m−1

l=0 βj = 1 and the assumptions of the delay probabilities must

be satisfied, the estimated mean needs to be corrected by dividing it by κ, where

κ =
∑m−1

j=0

∑j
l=0 β̂j−lp̂l. The corrected estimate of µ will be defined again as µ̂.

The last parameter left to be estimated in the DCL process is the variance σ2.

In Subsection 3.1, we showed that the conditional variance of the payments given χm

is

Var (Xij|χm) ≈ γi
σ2 + µ2

µ
E [Xij|χm]

= ϕi E [Xij|χm] ,

where ϕi = γiϕ and ϕ = σ2+µ2

µ
. The variance of the outstanding claims is proportional

to its mean, which means that we can use the over-dispersed Poisson model for

estimating the variance of the outstanding claims by solving the parameter ϕ for

σ2. Thus, the variance estimator is defined by σ̂2 = µ̂ϕ̂ − µ̂2. The over-dispersion



41

parameter ϕ can be estimated by

ϕ̂ =
1

n−m
∑
i,j∈Im

(
Xij − X̂DCL

ij

)2

X̂DCL
ij γ̂i

,

with n = m(m+ 1)/2 and X̂DCL
ij =

∑j
l=0 N̂i,j−lp̂lµ̂γ̂i.

The final step of the DCL method is to estimate the outstanding claims. We

will use the unconditional mean of the total payments in (3.1) by substituting in the

unconditional mean of the reported claims:

E [Xij] = αi · µ · γi ·
j∑
l=0

βj−l · pl

= µ · γi ·
j∑
l=0

αi · βj−l · pl

(D1)
= µ · γi ·

(
j∑
l=0

E [Ni,j−l] · pl

)

=

j∑
l=0

E [Ni,j−l] · pl · µ · γi.

The estimated parameters θ̂ = (p̂l, µ̂, γ̂) can now be used to forecast the RBNS and

IBNR claims. Thus, we get the estimate of the total outstanding claims for i+j > m:

X̂DCL
ij = X̂rbns

ij + X̂ ibnr
ij

=

j∑
l=i−m+j

N̂i,j−lp̂lµ̂γ̂i +

i−m+j−1∑
l=max{0,j−m+1}

N̂i,j−lp̂lµ̂γ̂i, (3.5)

where N̂ij = α̂iβ̂j. Since the RBNS claims have already been reported, there is another

possibility for estimating the RBNS claims. It is possible to use either the fitted value

N̂ij like in (3.5) or the actual numbers of claims Nij. The IBNR component always

uses the fitted value N̂ij since those claims have not been reported so we do not know
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the actual number of claims and thus have to use the estimate of the actual number

of claims. By using the fitted value N̂ij and the unadjusted delay probabilities for

the IBNR and RBNS claims, we get the same estimate of outstanding claims as in

the SCL method for (i, j) ∈ I1 :

X̂rbns
ij + X̂ ibnr

ij =

j∑
l=i−m+j

N̂i,j−lπ̂lµ̂γ̂i +

i−m+j−1∑
l=0

N̂i,j−lπ̂lµ̂γ̂i

=

j∑
l=0

N̂i,j−lπ̂lµ̂γ̂i

(D1)
=

j∑
l=0

α̂iβ̂j−lπ̂lµ̂γ̂i

= α̂iµ̂γ̂i

j∑
l=0

β̂j−lπ̂l

= ˆ̃αi

j∑
l=0

β̂j−lπ̂l

= ˆ̃αi
ˆ̃
βj

= X̂SCL
ij . (3.6)

In Tables 3.1 and 3.2, the two triangles ∆m and χm are shown. By applying the

DCL method, with µ̂ being the unadjusted estimate of µ and thus dividing µ̂ by

κ = 0.9994427, we get the adjusted estimate µ̂ = 208.491. The following table shows

the estimated parameters:
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Table 3.3 Estimated Parameters Using The DCL Method

With those estimated parameters, we can compute the point forecast of the

IBNR and RBNS claims. The point forecasts will be calculated using (3.5). The

RBNS claims will be computed using the actual number of payments Nij instead of

the estimated number of payments N̂ij. We will illustrate the forecast of the cash

flow by calendar year k with k = 1, . . . , 19. The RBNS cash flow by calendar year is

computed by summing up the point forecasts along the diagonals of I1 ∪ I2 and the

IBNR cash flow by summing up the point forecasts along the diagonals of I1∪ I2∪ I3.

The following table shows the point forecast of the cash flow of the RBNS and IBNR

claims:
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Table 3.4 Point Forecasts of Cash Flow by Calendar Year (Numbers In Thousands)

Future RBNS IBNR Total
1 1261 97 1358
2 672 83 755
3 453 36 489
4 293 27 319
5 165 20 185
6 103 12 115
7 54 9 63
8 30 5 36
9 0 5 5
10 1 1
11 0.6 0.6
12 0.4 0.4
13 0.2 0.2
14 0.1 0.1
15 0.06 0.06
16 0.03 0.03
17 0.01 0.01
18 0.00 0.00
19 0.00 0.00

Total 3030 296 3326

3.3 INCORPORATING PRIOR KNOWLEDGE

In the previous derivations, we excluded the prior knowledge about zero-claims

Qi and about the claims development inflation δj. We now include the aforementioned

prior information, in order to have better knowledge of reserves. We begin with the

inclusion of

i) prior information about the claims development inflation,

ii) prior information about zero-claims and towards the end of the subsection

iii) prior information about both, the development inflation and the zero-claims.

3.3.1 Development Inflation. First, we want to include the prior knowl-

edge of the claims development inflation factor δj. To do this, we restrict the proba-

bility of zero-claims Qi to be zero for all i = 1, . . . ,m and δj is unrestricted. Inclusion

of inflation factors will be done by first dividing the data in the triangle ∆m by δj.
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Next, apply the DCL method to estimate the reserves and lastly, we multiply the

inflation factor δj back to our reserve estimates. It is quite intuitive to first remove

the prior inflation effect and after the DCL method multiply it back since we used

the DCL method before, with the assumption that δj = 1 which in this case will have

the same results by using the DCL method before multiplying back the parameter δj .

To that end, let X̃ij =
Xij

δj
be the total payments without the inflation effect,

and let ∆̃m be our new triangle, with ∆̃m =
{
X̃ij; (i, j) ∈ Im

}
. The DCL method

is applied to the triangles (χm, ∆̃m). Despite the transformation, the assumptions

(D1)-(D4) are still satisfied with Qi being zero and δj equal to one. Those steps

lead to the prediction of X̃DCL
ij . Since we want to have the predicted reserves with

incorporating the development inflation, we multiply back the prior information δj to

the predicted reserves X̃DCL
ij . Thus, the predicted reserve with prior information is

denoted by

X̃DCLP
ij = δj · X̃DCL

ij , for (i, j) ∈ I1.

By including the development factor in our estimation, total reserves (sum of

IBNR and RBNS claims) will not be altered very much from the estimated reserves

without prior information. However, the differences can be seen in the values of IBNR

and RBNS. Moreover, change can occur in claims further down (that’s with high j)

or at the beginning of the triangle construction. For instance, if δj is large for large

j, that implies RBNS claims will increase and IBNR claims will decline as compared

to the situation where prior knowledge is not included.

3.3.2 Zero-claims. This subsection pertains to the case where prior infor-

mation on zero-claims is accounted for. We want to include the prior information

about the number of zero-claims. In this case, it is not that simple to include prior

information like for the development inflation but can still be done. We assume that
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δj = 1 and the probability of zero-claims is in [0, 1], that’s 0 ≤ Qi ≤ 1. Accounting

for this kind of prior knowledge will not have any effect in the best estimation of the

reserves. In Subsection 3.1, we derived an approximation of the conditional variance

of the claims given the assumption that Qi = 0. The conditional variance with Qi 6= 0

is given by

Var (Xij|χm) = γ2
i δ

2
j (1−Qi)

(
σ2 +Qiµ

2
) j∑
l=0

Ni,j−l,lpl

+γ2
i δ

2
j (1−Qi)

2µ2

j∑
l=0

Ni,j−l,lpl(1− pl)

≈ γ2
i δ

2
j (1−Qi)(σ

2 + µ2)

j∑
l=0

Ni,j−l,lpl

= γiδj
σ2 + µ2

µ
E [Xij|χm]

= ϕijE [Xij|χm] , (3.7)

where ϕij = γiδjϕ and ϕ = σ2+µ2

µ
. We assumed that δj = 1 and thus, ϕi = γiϕ like

before. Once again, one can use the over-dispersed Poisson model to approximate

the parameters. The outstanding claims with the DCL method are estimated using

a different inflation parameter γi given by

γDCLi

(1−Qi)

(1−Q1)
,

where γDCLi is the inflation effect of X̃ij =
Xij

(1−Qi)
, the triangle of claims where the

zero-claims effect is removed and (1−Qi)
(1−Q1)

the zero claim effect. Thus, the inflation

parameter γi can be split into the inflation parameter without the zero-claims effect

and the zero-claims effect itself. Since the estimation of the variance depends on the

approximation in equation (3.7), we need to know how sensitive this approximation

is with respect to the parameters Qi and pl. If the approximation is not always close

to the true value, we could not rely on the estimate of the variance, which means
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that we could not rely on our estimated outstanding claims. To test the goodness of

this approximation, we can test if the ratio of the true conditional variance and their

approximation are nearly one. That’s:

H0 : ψ = 1 vs. H1 : ψ 6= 1,

where ψ =
Var (Xij |χm)

γ2i δ
2
j (1−Qi)(σ2+µ2)

∑j
l=0Ni,j−l,lpl

is the ratio of the true conditional variance

and its approximation. Mart́ınez-Miranda et al. [13] for example performed this test

on some sample data and the resulting ratios ψ varied between 0.9960 and 0.9992

which is very close to one. Thus, Mart́ınez-Miranda et al. [13] came to the conclusion

that this approximation is good enough, since the ratios are close to one. The result

of incorporating zero-claims does not have a big effect on the total reserves and it

does not have an effect on the split of IBNR and RBNS claims.

3.3.3 Development Inflation and Zero-claims. After including the prior

knowledge about the development inflation and the zero-claims seperately, we will

include both together in our calculations. This can be done by combining the tech-

nique pertaining to each inclusion. In this case, let Qi 6= 0 and δj 6= 1. To estimate

the reserves, the following steps apply:

1. Remove the development inflation effect and use (χm, ∆̃m) for the DCL method,

where ∆̃m =
{
X̃ij; (i, j) ∈ Im

}
and χm = {Nij; (i, j) ∈ Im}.

2. Estimate XDCL
ij with incorporating Qi like in Subsection 3.3.2.

3. Multiply back the development inflation effect. Thus, we get XDCLP
ij = δjX

DCL
ij .

The result of incorporating both prior information has a big effect in the split betweem

IBNR and RBNS but not in the total reserves which is obviously caused by the prior

information about the development inflation and not by the zero-claims probability.
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Since one of the objective in this paper is to predict the distibution of claims and

estimate a full cash flow, we can now approximate the aforementioned distribution

by using parametric bootstrap technique.
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4 THE BOOTSTRAP TECHNIQUE FOR THE DCL

B. Efron [2] first introduced the bootstrap method, which is a statistical tech-

nique using resampling to estimate the value of a parameter of sample data. After B.

Efron introduced this method, it spread out within some decades and today it is a

widely used method in statistics. An insurance company needs to know the number

of outstanding claims but only has one data set of claims of their own company avail-

able, so it is not very accurate to calculate the reserves only based this sample data.

The reason for this is that we don’t know if this one sample is a good representation of

all claims. Because of time and resource constaints, it is almost impossible to reach

out to the entire population to estimate a parameter. The bootstrap method is a

resampling technique that uses one sample data, resamples (with replacement) from

the sample data and creates a large number of bootstrap samples. The parameter

can be computed on each of those bootstrap samples and with this, we can get a good

idea about the sampling distribution.

4.1 THE BOOTSTRAP METHOD

Statisticians primary task is to summarize a sample based on a study and

generalize the findings to the parent population. This sample summary is called

a statistic. Problems in statistics often involve estimating this unknown statistic.

The main idea of the bootstrap method is to determine how accurate the estimated

statistic is. This statistic can be the sample mean, median, standard deviation or

quantiles. Estimating this statistic based on one sample data is not very accurate.

The statistic will fluctuate from sample to sample, but statisticians want to know the

statistic of the parent population in an overall sense. Simulating repeated samples
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of the same size from the population of interest a large number of times can be

very expensive and time consuming. The bootstrap method is a technique based

on resampling, where a big amount of computations are substituted in place of the

sample data. With this replacement, we get a large number of samples. Thus, the

bootstrap method uses the Monte Carlo approximation to get a predictive distribution

of claims. Those samples are also called bootstrap samples. Thus, the statistic can

then be estimated on each of those bootstrap samples and all possible values of

the statistic can be expressed in form of a probability distribution, so called sample

distribution or in this case, bootstrap distribution. It is not always easy to calculate

for instance the standard error of an estimate θ. If for instance our parameter θ is

the mean of the sample data, then computing the standard error of θ is very easy. In

fact, the standard error is then denoted by

σ̂ = σ(X) =

(∑n
i=1 Xi −X

n

) 1
2

,

with x being the mean of the observation. But it is not always that easy. This is the

reason, why the bootstrap method is a good technique to estimate the standard error

or prediction error of the parameter θ. And as a side effect, the bootstrap method

also gives us a predictive distribution of this parameter. There are various ways to

bootstrap data. It can be parametric, nonparametric, semiparametric. We will only

focus on the parametric bootstrap method.

Here is how the bootstrap works. Suppose we want to estimate a statistic

θ (µ, σ2, F , . . . ). One takes a random sample of size n from a population, say

X = (X1, . . . , Xn). The main steps of the parametric bootstrap method are shown

below:
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1. X1, . . . , Xn
iid∼ F , a random sample of size n, with F an unkown distribution

from a parametric family.

2. We have a sample of observations (x1, . . . , xn) ∈ (X1, . . . , Xn).

3. Estimate the parameter θ̂ from the sample data x = (x1, . . . , xn).

4. Compute the empirical distribution F̂ with probability mass 1
n

on the observa-

tion x = (x1, . . . , xn), with

F̂ (x) =

∑n
i=1 1(xi ≤ x)

n
.

5. With fixed F̂ , simulate random samples of size n. Those simulated random

samples will be denoted by (x∗1, . . . , x
∗
n) ∈ (X∗1 , . . . , X

∗
n), with X∗i ∼ F̂ for

i = 1, . . . , n. Replace the original sample data by x∗ = (x∗1, . . . , x
∗
n).

6. Create a large number (B) of bootstrap samples (x∗,1, . . . , x∗,B) and estimate

θ̂∗ = (θ̂∗,1, . . . , θ̂∗,B) based on the B bootstrap samples.

The bootstrapped parameter θ̂∗ can now be used for purposes like the approximation

of the standard error, confidence intervals, the computation of the prediction error

or computing the predictive distribution of the parameter θ. Thus, the advantages of

the bootstrap method are:

i) It is a very simple and straighforward algorithm to estimate parameters using

a small sample set of data.

ii) Since it generates a large number of bootstrap samples for the estimation, the

results are very stable.

iii) The boostrap method is commonly used when the true distribution of the data

is intractable or is of a complex form.
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It turns out that insurance companies deal with a complex set of observation,

which is very hard to deal with. So the bootstrap method will help in that context,

that is obtaining distributional properties of claims. One of the objectives in this

thesis is to find the distributional properties of claims. One way of achieving this

goal is to use the bootstrap method to estimate a predictive distribution of reserves,

with the inclusion of prior information. Using a large number of bootstrap samples

(≥ 1000), the bootstrap method can estimate mean, prediction error and also some

quantiles that will describe the distribution of reserves. In the following subsection,

we will apply the bootstrap method on the DCL method and also use some data

in form of a run-off triangle to estimate the predictive distribution of outstanding

claims.

4.2 APPLICATION OF THE BOOTSTRAP METHOD

This subsection shows how the bootstrap method can be used to get the pre-

dictive distribution of reserves. Incorporating prior information, the main steps of

estimating the distribution of the reserves are

1. Remove the development inflation effect and the knowledge on the number of

zero-claims by dividing the claims Xij by the inflation parameter δj and the

number of zero claims (1 − Qi). Thus, the claims triangle excluding the prior

information is denoted by ∆̃m =
{
X̃ij; (i, j) ∈ Im

}
, where X̃ij =

Xij

δj(1−Qi)
.

2. Use the Bootstrap method on the triangles (χm, ∆̃m) to simulate IBNR and

RBNS claims including the information about the zero-claims. Thus, we get the

bootstrapped IBNR predictions X̃ ibnr∗
ij and the bootstrapped RBNS predictions

X̃rbns∗
ij .
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3. Replace the development inflation effect by multiplying the inflation parameter

δj back to the bootstrapped IBNR and RBNS predictions. So, the final IBNR

and RBNS predictions are X ibnr∗
ij = δjX̃

ibnr∗
ij and Xrbns∗

ij = δjX̃
rbns∗
ij , repectively.

The IBNR and RBNS claims will be estimated seperately and added together to-

wards the end to get the total bootstrapped reserves. To generate a large number of

bootstrap samples, the Monte Carlo approximation is used. First, we use the DCL

method to estimate θ using the triangles (χm, ∆̃m), with ∆̃m =
{
X̃ij; (i, j) ∈ Im

}
.

The estimated parameter θ̂ is then used by the bootstrap method to simulate the

reserves. There are two different ways to simulate those reserves. The first one is by

ignoring the uncertainty of the estimated parameters θ̂ and the second is by incorpo-

rating the uncertainty of θ̂. The following assumptions for the bootstrap method are

needed:

• Assume (D1)-(D4) are still in force including the development inflations factor

δj and the probability of zero-claims Qi.

• δj and Qi are known.

• θ =
{
pl, µij = γiδjµ, σ

2
ij = σ2

i γ
2
i δ

2
j ; i = 1, . . . ,m; l, j = 0, . . . ,m− 1

}
.

• The maximal delay is m− 1 years.

Before we start simulating the claims, an estimate of the parameter θ is needed. Our

estimation is based on the triangles (χm, ∆̃m), with ∆̃m =
{
X̃ij =

Xij

δj(1−Qi)
; (i, j) ∈ Im

}
.

Thus, the estimate of θ is denoted by

θ̂ =
{
p̂l, µ̂ij = γ̂iδjµ̂, σ̂

2
ij = σ̂2

i γ̂
2
i δ

2
j , l = 0, . . . ,m− 1, i = 1, . . . ,m

}
,

where σ̂2
i = (1 − Qi)σ̂

2 − Qiµ̂, the variance of the data including the probability of

having a zero-claim and γ̂i = γ̂DCLi .
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Algorithm for RBNS claims:

The DCL method estimates the RBNS claims over the index sets I1 ∪ I2 and

thus, using the bootstrap method, the RBNS claims will also be bootstrapped over

those sets. The following steps are done:

i) The DCL method will be used on our given run-off triangle ∆̃m. Using equation

(3.3) and (3.4), we get the estimated parameter θ̂.

ii) A new run-off triangle ∆̃∗m will be simulated using the assumptions in (D1)-(D4)

and the estimated parameter θ̂.

iii) The parameter θ̂ will be bootstrapped using the DCL method on the boot-

strapped triangle ∆̃∗m. Estimating θ based on this triangle yields the boot-

strapped parameter θ∗. This parameter will be used to calculate the RBNS

predictions.

iv) The Monte Carlo approximation is used to repeat the steps i) - iii) B times to

get the empirical bootstrap distribution of the RBNS predictions.

Figure 4.1 shows the main steps of the bootstrap method for the RBNS claims, in-

cluding the uncertainty of the parameters but ignoring the development parameter

δj and the probability of zero-claims Qi. This figure shows that the original data

(χm,∆m) is used to estimate the parameter θ̂ and with this parameter, the RBNS

claims can be computed over I1 ∪ I2. With the estimated prameter, the data can be

bootstrapped and so (χm,∆
∗
m) can be used to calculate the bootstrapped parameter

θ∗ thereby obtaining the bootstrapped RBNS predictions over the index set I1 ∪ I2.

Repeating this procedure B times leads to the predictive bootstrap RBNS distribu-

tion. It is possible to estimate the IBNR and RBNS predictions with including the

fact, that we don’t know the true value of the parameter θ and thus, there is un-

certainty in those calculations. To exclude the uncertainty of the parameter θ̂, the
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estimated parameter θ̂ will be directly used to calculate the RBNS claims without

using the bootstrapped parameter θ∗.

Figure 4.1 Bootrapping the RBNS Claims,
Source: Mart́ınez-Miranda et al. [14]

The following algorithm shows the bootstrap method estimating the RBNS claims

including the uncertainty of the parameter θ:

1. Estimation of the parameters and distribution:

• Estimate θ̂ for the observed data (χm, ∆̃m).

•
(
Npaid
i,j,0 , . . . , N

paid
i,j,m−1

)
∼ Mutli (Nij; p̂0, . . . , p̂m−1) ∀ (i, j) ∈ Im.

•
(
Y

(k)
i,j,l > 0, l = 0, . . . ,m− 1

)
∼ Gamma

(
λ̂i, κ̂i

)
, where the mean of the

non-zero individual payments is µi = γ̂iµ̂ and the variance is σ2
i = σ̂2

i .

Thus, λ̂i = γ̂2
i µ̂

2/σ̂2
i is the shape parameter and κ̂i = σ̂2

i /γ̂iµ̂ is the scale

parameter.
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2. Bootstrapping the data:

Generate ∆∗m =
{
X∗ij; (i, j) ∈ Im

}
given χm.

• Simulate the payment delay Npaid∗
i,j,l by(

Npaid∗
i,j,0 , . . . , Npaid∗

i,j,m−1

)
∼ Mutli (Nij; p̂0, . . . , p̂m−1) ∀ Nij, (i, j) ∈ Im.

• Simulate the number of non-zero payments Npaid∗
ij by

Npaid∗
ij ∼ Bin

(∑j
l=0N

paid∗
i,j−l,l, 1−Qi

)
∀ (i, j) ∈ Im.

• Simulate X∗ij ∀ (i, j) ∈ Im by

X∗ij ∼ Gamma
(
Npaid∗
ij λ̂i, κ̂i

)
3. Bootstrapping the parameters (include uncertainty of parameters):

• ∆̃∗m =
{
X̃∗ij; (i, j) ∈ Im

}
, with X̃∗ij =

X∗ij
(1−Qi)

• χm = {Nij; (i, j) ∈ Im}

• Estimate θ based on (χm, ∆̃
∗
m) and get a bootstrapped parameter θ∗.

4. Simulate the RBNS claims:

• Simulate the payment delay N rbns∗
i,j,l by(

N rbns∗
i,j,0 , . . . , N rbns∗

i,j,m−1

)
∼ Mutli (Nij; p

∗
0, . . . , p

∗
m−1) ∀ Nij, (i, j) ∈ Im.

• Simulate the number of non-zero payments N rbns∗
ij by

N rbns∗
ij ∼ Bin

(∑j
l=0 N

rbns∗
i,j−l,l, 1−Qi

)
∀ (i, j) ∈ I1 ∪ I2.

• Simulate Xrbns∗
ij ∀ (i, j) ∈ I1 ∪ I2 by

X̃rbns∗
ij ∼ Gamma

(
N rbns∗
ij λ∗i , κ

∗
i

)
, with λ∗i = γ∗2i µ

∗2/σ∗2i and κ∗i = σ∗2i /γ
∗
i µ
∗.

Xrbns∗
ij = δjX̃

rbns∗
ij .

5. Monte Carlo approximation:

Repeat Step 2-4 B times and get the empirical distribution of RBNS claims{
Xrbns∗,b
ij ; (i, j) ∈ I1 ∪ I2, b = 1, . . . , B

}
.
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To ignore the uncertainty of the parameters, only step 1,4 and 5 are completed and

thus, θ̂ from Step 1 is used in Step 4.

Algorithm for IBNR claims:

Bootstrapping the IBNR claims is different from bootstrapping RBNS claims.

The first difference is that the DCL method estimates the IBNR claims over the index

set I1 ∪ I2 ∪ I3 and not only over I1 ∪ I2 like the RBNS claims. And so the RBNS

predictions using the bootstrap method will be over I1 ∪ I2 ∪ I3. Another difference

is that we don’t know the number of claims in I1 and thus also need to bootstrap the

data in the triangle χm and not only the data in the triangle ∆m like for the RBNS

prediction. Figure 4.2 shows the main steps of the bootstrap method for the IBNR

claims including the uncertainty of the parameters but again ignoring the additional

information abour δj and Qi.

Figure 4.2 Bootrapping the IBNR Claims,
Source: Mart́ınez-Miranda et al. [14]
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Figure 4.2 shows that the first step in estimating the parameters is exactly the same

as for RBNS claims. But with those parameters the IBNR claims are calculated over

a bigger set, namely I1 ∪ I2 ∪ I3. The original and the bootstrapped counts and

the bootstrapped aggregated payments will be used in the bootstrap method for the

IBNR prediction. The original counts and the bootstrapped payments are used to

estimate the parameter θ∗, while the bootstrapped counts are used to predict the

counts in I1. The bootstrapped IBNR predictions are estimated over the index set

I1 ∪ I2 ∪ I3. Repeating the steps above B times, we get the bootstrapped IBNR

distribution.

Thus, the following algorithm shows the bootstrap method estimating IBNR claims,

including the uncertainty of parameters and also incorporating the information about

δj and Qi:

1. Estimation of parameters and distribution:

• Estimate θ̂ for the observed data ∆̃m.

• Estimate α̂ and β̂ for the observed data χm.

•
(
Npaid∗
i,j,0 , . . . , Npaid∗

i,j,m−1

)
∼ Mutli (Nij; p̂0, . . . , p̂m−1) ∀ (i, j) ∈ Im.

•
(
Y

(k)
i,j,l > 0, l = 0, . . . ,m− 1

)
∼ Gamma

(
λ̂i, κ̂i

)
.

2a. Bootstrapping the data ∆∗m =
{
X∗ij; (i, j) ∈ Im

}
:

• Simulate the payment delay Npaid∗
i,j,l by(

Npaid
i,j,0 , . . . , N

paid
i,j,m−1

)
∼ Mutli (Nij; p̂0, . . . , p̂m−1) ∀ Nij, (i, j) ∈ Im.

• Simulate the number of non-zero payments Npaid∗
ij by

Npaid∗
ij ∼ Bin

(∑j
l=0N

paid∗
i,j−l,l, 1−Qi

)
∀ (i, j) ∈ Im.

• Simulate X∗ij ∀ (i, j) ∈ Im by

X∗ij ∼ Gamma
(
Npaid∗
ij λ̂i, κ̂i

)
.
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2b. Bootstrapping the data χ∗m =
{
N∗ij; (i, j) ∈ Im

}
:

• Simulate the number of claims Nij by N∗ij ∼ Poi (α̂iβ̂j) ∀ (i, j) ∈ I1.

3. Bootstrapping the parameters (include uncertainty of parameters):

• ∆̃∗m =
{
X̃∗ij; (i, j) ∈ Im

}
, with X̃∗ij =

X∗ij
(1−Qi)

• χm = {Nij; (i, j) ∈ Im}

• Estimate θ based on (χm, ∆̃
∗
m) and get a bootstrapped parameter θ∗.

4. Simulating the IBNR claims:

• Simulate the payment delay N ibnr∗
i,j,l by(

N ibnr∗
i,j,0 , . . . , N ibnr∗

i,j,m−1

)
∼ Mutli (N∗ij; p

∗
0, . . . , p

∗
m−1) ∀ N∗ij, (i, j) ∈ I1.

• Simulate the number of non-zero payments N ibnr∗
ij by

N ibnr∗
ij ∼ Bin

(∑j
l=0N

ibnr∗
i,j−l,l, 1−Qi

)
∀ (i, j) ∈ I1 ∪ I2 ∪ I3.

• Simulate X ibnr∗
ij ∀ (i, j) ∈ I1 ∪ I2 ∪ I3 by

X̃ ibnr∗
ij ∼ Gamma

(
N ibnr∗
ij λ∗i , κ

∗
i

)
.

X ibnr∗
ij = δjX̃

ibnr∗
ij .

5. Monte Carlo approximation:

Repeat Step 2-4 B times and get the empirical distribution of IBNR claims{
Xrbns∗,b
ij ; (i, j) ∈ I1 ∪ I2 ∪ I3, b = 1, . . . , B

}
.

To ignore the uncertainty of the parameter θ, only steps 1, 4 and 5 are used and thus

the boostrap method is based on θ̂ and not on θ∗. To apply the bootstrap method, we

will use the triangles (χm,∆m) from Subsection 3.1. With the bootstrap method we

are able to derive a predictive distribution of the RBNS and IBNR claims. In addition

to that, we want to simulate triangles (χ
′
m,∆

′
m) using the conditions (D1)-(D4) and

then use the bootstrap method on those simulated triangles.
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After performing the bootstrap method B = 1000 times, using the data of the

triangles (χm,∆m) in Tables 3.1 and 3.2, including the uncertainty of the parameters,

we obtain the following predictive distribution of the RBNS and IBNR claims:

Table 4.1 Distribution Forecast of RBNS and IBNR Claims on Original Data (Num-
bers in Thousands)

Distribution RBNS IBNR Total
mean 3015 300 3315

pe 378 79 387
1% 2204 122 2495
5% 2446 181 2735
50% 2987 297 3290
95% 3660 437 3994
99% 4054 500 4339

The root mean square error, also known as the prediction error ’pe’ is calculated using

the following formula:

RSME
(
θ̂
)

=

√
MSE

(
θ̂
)

=

√
E
[(
θ̂ − θ

)2
]
,

where θ is the estimate for the reserves calculated from the original data and θ̂

is the bootstrapped estimate. Since we have no informtion about δj and Qi, we

ignore those parameters and set δj = 1 and Qi = 0. In Table 4.1, we see that

the average claim is 3315000 and the prediction error 387000. The average claim is

obtained by the following formula, where B is the number of repetition of the Monte
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Carlo approximation and X ibnr∗
ij and Xrbns∗

ij are the bootstrapped IBNR and RBNS

predictions:

µ(Xrbns∗
ij ) =

1

B

B∑
i=1

Xrbns∗,i
i,j ∀(i, j) ∈ I1 ∪ I2,

µ(X ibnr∗
ij ) =

1

B

B∑
i=1

X ibnr∗,i
i,j ∀(i, j) ∈ I1 ∪ I2 ∪ I3.

The average claim µ is denoted by ’mean’ in Table 4.1. The probability that the total

outstanding claims will be less than 4339000 is 99% and that the total outstanding

claims are less than 2495000 is only 1%. With this predictive distribution, insurance

companies can get a better idea of how the claims arise and how big their reserves

should be to prevent insolvency. How much reserves a company in fact has, depends

on the company itself. It may be helpful to look at the mean for the reserve and then

with the predicive distribution decide how much money to put aside. An insurance

company for instance can also use some risk measures like the Value at Risk (VaR)

or the Tail Value at Risk (TVaR) to determine how much money they want to put

aside. The VaR describes the amount of money required to ensure, with a very high

probability p that a company does not get insolvent. The VaR is defined as follows:

P (X > VaRp(X)) = 1− p,

with 1 − p the probability that a claim exceeds a certain amount and X the ran-

dom variable for claims. Some companies want to be less risky and thus, take the

VaR0.99(X) of the bootstrapped data, where other companies may choose a lower

probability, say VaR0.92(X) or VaR0.95(X). If a company chooses 92% instead of 99%

for p, they will put less money aside but the probability that they have to pay more

claims than they estimated is higher and thus it is more risky to get insolvent. The
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Value at Risk for p = 0.99 and p = 0.95 in Table 4.1 is VaR0.99(X) = 4339000 and

VaR0.95(X) = 3994000. But it is also possible to use the TVaR for estimating how

much money a company should have as a reserve. The Tail Value at Risk measures

the average claim for claims that exceed the Value at Risk and thus, is denoted by

TVaRp(X) = E [X|X > VaRp(X)] .

In this example, we get TVaR0.99(X) = 4532340 and TVaR0.95(X) = 4173850. One

can see that the TVaR yields higher numbers than the VaR since it focuses on ex-

treme and high claims instead on all claims, like the VaR for instance does.

It is not always good to only use the available data from the company and apply

the bootstrap method on one single triangle. It is important to also use the bootstrap

method on simulated data, which represents the general structure of claims. Using

simulated data, companies with less data available can still get a good predictive

distribution of claims. Using the assumptions in (D1)-(D4) one can simulate the

triangles (χm,∆m) in the following way:

• Nij ∼ Poi(αiβj), with αi the expected total ultimate claim amount for accident

year i and βj the expected proportion of the ultimate claim amount for delay

year j. Those parameters can be estimated using the equation for α̂i and β̂j in

(3.2).

• Xij ∼ Gamma (Npaid
ij λi, κi) like in the bootstrap method in Subsection 4.1.

To estimate the parameters αi, βj, N
paid
ij , λi and κi, we will use the triangles (χm,∆m)

in Tables 3.1 and 3.2 as our underlying data. In (D1), we stated that the number

of payments is Poisson distributed with mean αiβj. Using this parameter on the

triangles (χm,∆m), we get the following simulated run-off triangle χm:
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Table 4.2 Simulated Triangle: Aggregated Incurred Counts

Nij 0 1 2 3 4 5 6 7 8 9
1 6182 841 27 4 3 1 3 1 1 4
2 7867 1095 36 5 5 1 1 1 1 0
3 10007 1327 42 13 6 5 0 1 0 0
4 9361 1288 38 8 4 3 0 0 0 0
5 9761 1211 60 8 4 3 0 0 0 0
6 9953 1366 43 10 0 0 0 0 0 0
7 9773 1318 34 12 0 0 0 0 0 0
8 10730 1529 53 0 0 0 0 0 0 0
9 12052 1599 0 0 0 0 0 0 0 0
10 11045 0 0 0 0 0 0 0 0 0

Simulating the other triangle using a gamma distribution, leads to the following

triangle:

Table 4.3 Simulated Triangle: Aggregated Payments

Xij 0 1 2 3 4 5 6 7 8 9
1 451288 339519 333371 144988 93243 45511 25217 20406 31482 1729
2 448627 512882 168467 130674 56044 33397 56071 26522 14346 0
3 693574 497737 202272 120753 125046 37154 27608 17864 0 0
4 652043 546406 244474 200896 106802 106753 63688 0 0 0
5 566082 503970 217838 145181 165519 91313 0 0 0 0
6 606606 562543 227374 153551 132743 0 0 0 0 0
7 536976 472525 154205 150564 0 0 0 0 0 0
8 554833 590880 300964 0 0 0 0 0 0 0
9 537238 701111 0 0 0 0 0 0 0 0
10 684944 0 0 0 0 0 0 0 0 0

Applying the bootstrap method B = 1000 times on the simulated triangles in Ta-

bles 4.2 and 4.3, the predictive distribution of the RBNS and IBNR claims is shown

in Table 4.4. This predictive distribution of the RBNS and IBNR claims using the

simulated triangles is very similar to the distribution of the claims using the original

data in Tables 3.1 and 3.2. The mean of the total claims, using the original data is

3315000 and the mean of the simulated triangles is 3322000. Thus the mean of both
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Table 4.4 Distribution Forecast of RBNS and IBNR Claims on Simulated Data (Num-
bers in Thousands)

Distribution RBNS IBNR TOTAL
mean 3027 295 3322

pe 377 77 384
1% 2219 134 2497
5% 2431 175 2713
50% 3016 290 3309
95% 3676 429 3980
99% 3973 496 4289

predictions are very similar. We can also see that both predictions have nearly the

same prediction error. Using the original data, the prediction error is 378000 and

using the simulated triangles, the prediction error is 384000.

The question that arises now is, which of the two approaches for estimating

the total claims is better? This means, which of the two approaches gets a more

accurate estimate for outstanding claims. Which one of those estimates has less error

and also which of those approaches is easier to implement. In most cases the error is

measured by the standard deviation, VaR or TVaR or root mean quare error (here

prediction error). Thus, an insurance company wants to predict claims as exact as

possible and so the prediction error of the bootstrapped parameter should as small

as possible. Does the DCL method has a smaller error than the SCL since there

is a underlying theory behind this method, or is the SCL outperforming since it is

very easy to compute? Should an insurance company use the bootstrap method in

addition to the DCL method to calculate the prediction error and get a predictive

distribution? These issues will be discussed in the next section.
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5 COMPARISON

In this section, the different techniques for estimating claims, discussed in this

work, will be compared. This thesis gave an overview of the SCL technique and

discussed in depth the DCL method. Additionally, the bootstrap method using the

DCL method was presented. First, we compare the point forecast of the SCL method

and that of the DCL method. Equation (3.5) was used to estimate the point forecast

of claims and the output is shown in Table 5.1. In equation (3.5), Nij instead of N̂ij

Table 5.1 Point Forecasts for DCL and SCL of Cash Flow by Calendar Year (Numbers
in Thousands)

Future RBNS IBNR TOTAL SCL
1 1261 97 1358 1354
2 672 83 755 754
3 453 36 489 489
4 293 27 319 318
5 165 20 185 185
6 103 12 115 115
7 54 9 63 63
8 30 5 36 36
9 0 5 5 2
10 1 1
11 0.6 0.6
12 0.4 0.4
13 0.2 0.2
14 0.1 0.1
15 0.06 0.06
16 0.03 0.03
17 0.01 0.01
18 0.00 0.00
19 0.00 0.00

Total 3030 296 3326 3316

was used to estimate the RBNS claims. The point forecast of the total claim using

the DCL method is similar to the point forecast using the SCL method. In (3.6),

we showed that the DCL method estimates exactly the same outstanding claims for
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(i, j) ∈ I1 as the SCL does, if the estimated number of payments N̂ij is used instead

of Ni,j. Since the outstanding claims in the DCL in Table 5.1 are estimated with

the actual number of payments Nij instead of N̂ij, the point forecasts for the DCL

is slightly different than the point forecast for the SCL. However, looking at future

years 1, . . . , 9, the DCL and the SCL methods produce nearly the same point fore-

casts. The difference of the point forecast is for calendar years greater than 10. The

DCL method produces a tail for calendar year 10, . . . , 19. That means that the SCL

underestimates the claims filed after the maximal delay year m − 1 = 9. Although

there are not many claims estimated in later years, it is better not to underestimate

the outstanding claims. Another difference in the point forecast is the decomposition

of the claims into RBNS and IBNR claims produced by the DCL method. Table 5.1

shows that the DCL method produces the point forecasts by separating the reporting

delay from the payment delay.

We also compare the difference between the SCL and DCL method using

the bootstrap method. To that end, the bootstrap method was applied to the SCL

method. The bootstrap method results using the SCL and DCL method, are given

in the table below.

Table 5.2 Predictive Distribution of Claims using SCL and DCL (Numbers in Thou-
sands)

Distribution SCL DCL
Mean 3539 3315

pe 297 387
1% 3233 2495
5% 3255 2735
50% 3536 3290
95% 3842 3994
99% 3872 4339
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Table 5.2 shows that the mean of the outstanding claims for the SCL method is nearly

the same as that for the DCL method. Namely, the mean for the SCL is 3539000

and that for the DCL is 3315000. We mentioned before that the SCL underestimates

claims in later years. This can been seen clearly by looking at the 95% and the

99% quantile. Although the mean in both approaches is nearly the same, the DCL

method yields higher estimates than the SCL methods. The 99% quantile for the

SCL for instance is 3872000, whereas the 99% quantile for the DCL is 4339000. That

is a difference of 467000. The prediction error for the SCL is 297000 and thus, it

is much smaller than the prediction error for the DCL, which is 387000. This can

be explained by the fact that the DCL estimates reserves till delay year 19, which

yields in a higher probability for making prediction errors. Also by looking at Table

5.2, we can see that the 1% quantile for the SCL is 3233000 and the 99% quantile is

3872000 which has a difference of 639000. On the other hand, the difference of the

1% and the 99% quantile of the DCL is 1844000, which is much higher. The range

of the estimated reserves using the DCL is much bigger than the range using the SCL.

We also compare the point forecasts using the DCL method with the predictive

distribution using the bootstrap method on the DCL method. The DCL method only

produces estimates for each calendar year but does not give any additional properties

on the distribution of outstanding claims. Using the bootstrap method in addition to

the DCL method, we can see that the mean in Table 4.1 is very similar to the total

reserves of the point forecast. Thus, the mean produced by the bootstrap method

is very similar to the reserves predicted by the DCL but in addition to that, the

bootstrap method produces a predictive distribution. Especially having a prediction

error can help to evaluate the mean and the quantiles and get a better understanding

of how claims arise, as time goes by.
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6 CONCLUSIONS

6.1 SUMMARY

As mentioned before, the SCL method is a very easy and staightforward

method for estimating outstanding claims. Thus, it is okay for an insurance com-

pany to use this technique. But one disadvantage of the SCL method is that it does

not differentiate between IBNR and RBNS claims. Moreover, it does not take into

account the distribution of claims or how the claims arise. This technique also has no

option for incorporating additional information or extensions beyond delay year m−1.

The SCL method only takes the payment delay into account but not the reporting

delay. This method assumes that no claims will occur after setting up the reserves. As

discussed in Section 2, the SCL is not a reliable method for estimating reserves. If an

insurance company wants to have a good estimation and also would like to have the

chance to include any additional information like inflation, zero-claims or tails, then

the DCL method should be recommended. One reason for using the DCL method is

the tail produced using the DCL method. The SCL underestimates the reserves after

m−1 years and thus, thereby increasing the likelihood of insolvency. In an insurance

company, claims can sometimes be filed after 20, 25 years. If a insurance company

only uses the SCL method to estimate their reserves and never estimate reserves after

m− 1 years, they may run out of money to pay due claims because the forecast does

not include years m,m+1, . . . First, the DCL method uses two triangles and not only

one like the SCL method. Additional to the claims, the DCL method also looks at

the aggregate counts and thus, is able to predict reserves more accurately. Account-

ing for this additional triangle has another avantage. The aggregate counts can be

used to make a split between RBNS and IBNR claims and thus, the source of the

delay can be split into two different parts, the payment delay and the reporting delay.
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So to conclude, the DCL method has many advantages that can help predict more

accurately reserves and should be the one utilized by practitioners and researchers.

6.2 FURTHER RESEARCH

What happens if an insurance company knows that there will be zero-claims

but they don’t know the probability of those claims? Also, what happens if a com-

pany does not know the severity development inflation parameter but needs to include

this parameter in its framework since there obvious is inflation. This paper did not

cover how the inflation parameter or the zero-claim probability can be estimated if

we don’t know those parameters. Martinez Miranda et. al. [13] showed that it is

possible with additional information to estimate those parameters.

There are also other things we did not look into in this thesis. For example

many assumptions on page 386 in [13] can be weakened to make the DCL method a

better model:

i) We can take Nij, the number of reported claims, to be a poisson process with

rate λ. It can happen, that the number of reported claims vary during the

time of the year. In the winter, when there is snow on the streets or there is a

blizzard, there will be probably more car accidents than at a time in the year

where it is not that dangerous to drive. Also in the tornado season, more claims

will be filed regarding damage on houses or cars. Thus, one can take a look at

Nij as a poisson process.

ii) One can also consider the case where the total payments Xij follow a process

that depend on t, for example a gamma process. The total payments can differ

from time to time in a given year. Moreover, it can depend from region to region.

For instance, there could be more payment in east coast and west coast in the
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US as compared to the mid-west because both areas have more concentration

of people and therefore more proportion insured hence leading to more claims.

iii) One can also take a look at the number of reported claims Nij and the individual

claims Y
(k)
ijl . In this thesis we assumed in (D4) that Nij and Y

(k)
ijl are independent

of each other. But the number of reported claims and the individual claims

can not always be assumed to be independent of each other. Is it possible to

estimate reserves using dependence between Nij and Y
(k)
ijl ? That dependence

can be modeled using frailty or other existing dependence models.

iv) Another potential research problem could be the research of the development

factors itself. By looking at the development factors λj, we can see that those

factors follow a certain pattern. A development factor λj is the ratio of the

cumulative claims of development year j versus year j − 1. The plot of the

development factors in Tables 3.1 and 3.2 for j ∈ {0, . . . ,m− 1} is given in

Figures 6.1 and 6.2. Clearly, as time goes by, the development factor λj stabilizes

to 1. This means that in the first development years, many claims will be filed

and settled but after a few years, nearly no more claims will be filed and settled.

The factor λj being approximately equal to 1 means, that the cumulative claims

in year j versus year j − 1 are almost the same. This observation leads to

the fact that reserves can be calculated till development year 6 and then use

a tail factor, mentioned at the beginning of section 3, to make sure that an

insurance company does not underestimate the reserves. Well, this requires

future investigation.
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Figure 6.1 Development Factor of the Aggregated Total Payments

Figure 6.2 Development Factor of the Aggregated Reported Claims
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