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ABSTRACT

In the work of [34], the solution to a system of coupled parabolic PDEs, modeling

the price of a CDO, was approximated numerically. Due to the nature of the problem,

the system involved a large number of equations such that the parameters cannot be

stored explicitly. The authors combined the data sparse H-Tucker storage format

with the Galerkin method to approximate the solution, using wavelets for the space

discretization together with time stepping (Method of Lines). The aforementioned

approximation is of the linear kind, i.e., using a nonadaptive method. In this work,

three methods for solving such systems adaptively are presented, together with a

convergence and complexity analysis. The best choice of the method among the

three, in general, depends on the particular application. It is shown that (quasi-

)optimality is not achieved in the classical sense for adaptive methods, since it, in

general, relies on the H-Tucker structure.
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1. INTRODUCTION

Mathematical modeling is required in various fields for different types of prob-

lems, e.g., in engineering, physics, finance or psychology. There are numerous ways

of modeling real-world problems mathematically, one of the most common being the

Partial Differential Equation (PDE) approach. For instance, the well known Navier-

Stokes equation is frequently used to model problems in fluid dynamics or distribu-

tions of static pressure. In physics PDEs can be used to model physical quantities

obeying conservation laws, e.g., energy. As the various fields evolve, so do the prob-

lems and thus the requirements on the modeling process. More realistic and complex

models typically lead to more complicated PDEs that require more sophisticated

solution methods. For instance, problems in finance are often distinguished by com-

plex dependency structures and an overwhelming number of equations in a system.

Therefore a decent model should consider a large number of equations that lead to

high-dimensional PDE problems. This results in the need to store and manage large

data tensors, and it is a topic on its own. In the work of [41], the methods stemming

from two independent fields were combined to solve a Collateralized Debt Obligation

(CDO) modeling problem – namely, PDE methods were combined with methods to

manage large tensors.

The issue of storing and managing large amount of data is relevant for various

other fields of applied mathematics besides PDEs. Consider a tensor X ∈ Rn1×...×nd

of order d that represents a large number of parameters in, e.g., a CDO pricing

problem. One can see that the storage requirements grow exponentially with order d.

Normally such tensors would be impossible to store on a computer for a realistic

number of parameters. This led researchers to develop data sparse storage formats.

In most realistic cases, the exact representation of a tensor in such a format is not
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possible. For instance, a rank 1 approximation of a tensor takes the form of

vec(X ) ≈ f1 ⊗ · · ·⊗ fd, fi ∈ Rni .

For X representing a function f : [0, 1]d → R sampled on a finite grid, the represen-

tation above implies we approximate f by a separable function f̃ := f1 ⊗ . . .⊗ fd.

An improved version of the rank 1 approximation can be found in, e.g., [6, 29]. This

format requires much less storage but, unfortunately, efficient and reliable algorithms

for this format remain a subtle problem (see, e.g., [1,24]). In that respect, the problem

is less subtle for the Tucker decomposition of the form

vec(X ) ≈ (U1 ⊗ · · ·⊗Ud) vec(C), Ui ∈ Rni×ri

with so-called mode frames Ui and core tensor C. Such an approximation can be

achieved by the Higher-Order Singular Value Decomposition (HOSVD) as in [14].

The problem here is, however, that the storage requirement for C grows exponentially

with d. In order to combine the advantages of both of the above methods, i.e., low

storage requirements and preferable structure for numerical algorithms, various other

decompositions have been developed, such as Tensor Train Decomposition (TT) in [33]

or the more general Hierarchical Tucker Decomposition (H-Tucker) in [27,28]. Since

then, various software has been developed to implement the mentioned formats. A

good introduction to H-Tucker is provided in the manual for an H-Tucker MATLAB

toolbox in [35].

The second component that is required to solve the CDO modeling problem

are tools for approximating solutions to PDEs. For most PDE problems, closed-form

solutions are not available. This requires the use of numerical methods to solve such

problems on a computer. The solution of a PDE is a function that typically depends

on a time parameter t and a spacial variable y. In most applications y ∈ Ω ⊂ Rn,
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where Ω is a bounded domain and t ∈ R+. This means the problem is of infinite

nature and cannot be solved directly on a computer. Thus, the usual approach is

to approximate the solution u by a solution ũ of a restated finite problem. A direct

approach would be to discretize the space and time domains and compute the solution

over a finite set of points. This would lead to the family of Finite Difference (FD)

methods. A typically better performing approach is to approximate the solution by

a solution to the same problem on a finite-dimensional subspace. This subspace is

given in terms of its basis functions, whereas the choice of these basis functions, and

consequently the spaces, is essential. This family of methods is referred to as Finite

Elements Methods (FEM, see, e.g., [47]). Wavelets posses various preferable analytical

and numerical properties that made them very popular in many applications, such as

image and signal processing, and numerical solution of PDEs (see, e.g., [48] for more

details).

Let Ψ := {ψλ : λ ∈ Λ} denote the family of such wavelets, where Λ is an index

set. Roughly speaking, each wavelet ψλ can be characterized by two parameters:

position and level. Each wavelet ψλ has finite support and thus represents functions

in the spanned space locally, in the region where it is supported, hence the position

parameter. This is one of the advantages of wavelet analysis in contrast to Fourier

analysis: by local changes of the signal, only a few wavelets have to be modified,

whereas in Fourier analysis local changes lead, in general, to global adjustments of

the analysis (i.e., adjustment of all coefficients). Each wavelet ψλ also represents a

level of detail. Given a finite family of wavelets, if one wishes to improve the accuracy

of the wavelet representation, wavelets on higher levels of detail have to be added to

the system. One of the most important properties of a wavelet system Ψ is that it is a

stable basis for L2. Other important properties include (and are not limited to) good

approximation properties and compression, i.e., for many functions f , stemming from

approximation problems or PDE problems, a few wavelets often suffice to represent
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f with high accuracy. To this day extensive research on wavelets has been performed

and numerous constructions have been proposed, both for the univariate case and

higher dimensions. The choice of the particular construction typically depends on

the desired application. Many of the constructions are rather sophisticated. However,

once implemented, these can be utilized as “black box” algorithms. A good survey

on wavelets and applications for PDEs can be found in [48] and the various references

therein.

Roughly speaking, numerical methods for PDEs can be classified into nonadap-

tive and adaptive methods. The former one can be viewed as a specific type of

linear approximation, while the latter one is a case of nonlinear approximation (see,

e.g., [17]). In nonadaptive methods, the solution to a PDE is approximated by solving

the problem on a (linear) finite dimensional subspace based on an a-priori error esti-

mator. In adaptive methods, the problem is typically solved with an initial (small)

number of degrees of freedom, then, based on an a-posteriori error estimator, certain

elements or wavelets are added to the space in order to reduce the error by some mag-

nitude. This process is repeated until a certain tolerance is reached. Depending on

the given problem and choice of basis, there exists a best possible approximation rate

for the unknown solutions u. The key question is whether this approximation rate

can be achieved by nonadaptive methods, or whether an adaptive method is neces-

sary. For sufficiently smooth solutions, methods based on optimized sparse grids have

been developed that achieve this rate (see, e.g., [4,16,52]). Hence, adaptive methods

truly only make sense for nonsmooth solutions. In the context of approximation of

solutions to operator equations, a method is optimal if it produces an approximation

to any given accuracy in linear storage and computational complexity. As we will see

in the sequel, the choice of wavelets as basis is crucial to ensure the aforementioned

optimality.
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The remainder of this work is structured as follows: in Section 2, a brief overview

over the two main tools of this work is given, namely tensor decompositions and

wavelets, which should provide a sensible fundament for the sequel. In Section 3,

we introduce some approximation theory and discuss the crucial ingredients for an

optimal adaptive method. Section 4 reviews the PDE problem from [41]. In [41],

a coupled system of parabolic PDEs with a large number of parameters was solved

nonadaptively via Galerkin discretization with time-stepping, utilizing the H-Tucker

storage format in the process. The goal of this work is to extend the developed

method to an adaptive routine. Since the methods proposed in the sequel maintain

a relatively general framework, these will be of particular interest when applied to

problems with nonsmooth solutions. Specifically, the goal is to

• verify the compressibility of the operators in Section 5,

• formulate a Richardson type adaptive method for the semi-discrete problem in

Subsection 6.4,

• formulate an AWGM type adaptive method for the semi-discrete problem in

Subsection 6.5,

• and discuss an adaptive approach for the space-time variational formulation of

the PDE in Subsection 6.6.

We develop the general form and analyze some important properties of the suggested

methods. Section 7 offers some final conclusions.
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2. PRELIMINARIES

In this section we briefly discuss the basics of the H-Tucker storage format and

wavelets. Both are independent topics on their own. We require the former one

to store large tensors, e.g., tensors containing input parameter values for a PDE.

Wavelets have many applications and are particularly useful for approximation pur-

poses, e.g., for approximating solutions of differential equations. Combining both

frameworks allows one to handle PDEs arising from problems with a huge number of

parameters, such as CDO pricing models.

2.1. HTUCKER

The introduction in this subsection mainly follows [41, Section 5], [35] and [27].

2.1.1. Tucker Decomposition. Most introductions to the H-Tucker format

begin with a brief review of the Tucker format since H-Tucker is an extension. For

this purpose we require the notion of matricization. To shorten notation, define the

d-fold product index set as

I := I1 × . . .× Id, Ij := {1, . . . , nj}, j ∈ {1, . . . , d}.

If X ∈ RI , then the tensor X is said to have order d. The main problem guiding this

subsection is that storing X directly requires storing n1·. . .·nd elements, which quickly

becomes unmanageable on any modern computer, since the storage requirement grows

exponentially in d.



7

Definition 2.1 (Matricization). Let X ∈ RI . Define t := {t1, . . . , tk} ⊂ {1, . . . , d}

and s := {s1, . . . , sd−k} = {1, . . . , d} \ t. Define the index set

I(t) := It1 × . . .× Itk and I(s) := Is1 × . . .× Isd−k

The t-matricization of X is defined as

X (t) ∈ RI(t)×I(s)

, X (t)
it,is

= Xj

where it = (it1 , . . . , itk) ∈ I(t), is = (is1 , . . . , isd−k) ∈ I(s) and j = (i1, . . . , id) ∈ I.

Note that the order in which the row and column indices are traversed is impor-

tant in the Definition 2.1. For instance, in [41], a lexicographical order was assumed,

and in [35], a reversed lexicographical order was assumed. If followed consistently, any

order can be used. From hereon we will assume a lexicographical order. An impor-

tant special case of the above definition is the matricization w.r.t. a single dimension

t = {µ}, which is commonly referred to as µ-mode matricization. This allows us to

define the notion of rank for a tensor.

But first we require the notion of vectorization for a tensor.

Definition 2.2 (Vectorization). Let X ∈ RI . The vectorization of X is defined as

vec(X ) := X ({1,...,d})

where the columns of X are traversed in reversed lexicographical order.

A matrix X ∈ Rn×m can be represented as a tensor X ∈ RI(t)×I(s)
in an obvious

manner, and a tensor X ∈ RI can be represented as a matrix by taking the t-

matricization with t := {1, . . . , k} for some 1 ≤ k ≤ d. The matricization is in one-

to-one correspondence with the original tensor and, hence, we can always identify the
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two with each other. Taking this into consideration, for X being a matrix, Definition

2.2 simply means we transform the matrix X into a vector vec(X ) by stacking the

columns of X into one long vector.

Definition 2.3 (Tucker Rank, Tucker Truncation). Let X ∈ RI . The tuple (r1, . . . , rd)

with rµ = rank(X (µ)) is called the Tucker rank or multilinear rank of X . Furthermore,

denote the singular value decomposition of X ({µ}) by

X ({µ}) = U{µ}Σ{µ}V{µ}

for µ ∈ {1, . . . , d}. The matrices Uµ are the so-called mode frames. The tensor X can

be written as

vec(X ) = (U{1}⊗ . . .⊗U{d}) vec(C),

where C is a core tensor with

vec(C) := (UT
{1}⊗ . . .⊗UT

{d}) vec(X ).

Let Ũµ be the restriction of the mode frames to the first 1 ≤ r̃µ ≤ rµ columns. The

Tucker truncation is defined as

Tr̃1,...,r̃d(X ) := (Ũ{1}⊗ . . .⊗ Ũ{d}) vec(C̃),

vec(C̃) := (ŨT
{1}⊗ . . .⊗ ŨT

{d}) vec(X ).

As the following result shows, the approximation Tr̃1,...,r̃d(X ) is nearly optimal,

i.e., can be bounded by an absolute multiple of the best approximation. As in the

case of matrices or, more generally, linear operators, the error of the approximation
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depends on the decay of the singular values. Note that from hereon, we denote

‖X‖ := ‖ vec(X )‖ := ‖ vec(X )‖2.

Lemma 2.1. Let X ∈ RI. The error of the Tucker truncation can be bounded by

‖X − Tr1,...,rd(X )‖ ≤

√√√√ d∑
µ=1

nµ∑
i=rµ+1

σ2
µ,i ≤

√
d inf
Y∈T (r1,...,rd)

‖X − Y‖

where (σµ,i)i are the µ-mode singular values and

T (r1, . . . , rd) := {vec(X ) = (U{1}⊗ . . .⊗U{d}) vec(C) : rank(U{µ}) ≤ rµ,

µ ∈ {1, . . . , d}}.

Proof. See [15, Property 10].

Given the above decomposition, in order to (approximately) represent a tensor X

we need to store the mode frames U{µ} and the core tensor C. However, the storage

requirement for C still grows exponentially in d (see, e.g., [27, Definition 3]).

2.1.2. Hierarchical Tucker Decomposition. TheH-Tucker decomposition

applies similar ideas as the Tucker decomposition, however, the storage requirement

is significantly reduced by applying a hierarchical tree structure to store the tensor.

More precisely, the storage format is motivated by the following lemma.

Lemma 2.2. Let X ∈ RI and t = tl∪tr, with tl := {il, . . . , im} and tr := {im+1, . . . , ir}.

Then

span(X (t)) ⊂ span(X (tl) ⊗X (tr))

where span(X) denotes the space spanned by the columns of X.
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Proof. See [35, Lemma 2.1].

Lemma 2.2 implies that, given bases for the column spaces, there exists a matrix

Bt such that

Ut = (Utl ⊗Utr)Bt, Bt ∈ Rrtlrtr×rt .

Starting with X ({1,...,d}) and applying Lemma 2.2 successively, we obtain a tree struc-

ture, where tl denotes the left child node and tr the right child node. We require some

further notation to define the H-Tucker format.

Definition 2.4 (Dimension Tree). A dimension tree Td is a tree with root {1, . . . , d}

such that each node t ∈ Td is either a leaf and a singleton t = {µ}, µ ∈ {1, . . . , d} or

is the union of two disjoint successors t = tl ∪ tr. The set

L(Td) := {t ∈ Td : t = {µ}, µ ∈ {1, . . . , d}}

is called the set of leaves of Td, and the set

I(Td) := Td \ L(Td)

is called the set of inner nodes.

Definition 2.5 (Hierarchical Rank). Let Td be a dimension tree. The set (rt)rt∈Td is

called the hierarchical rank of X ∈ RI if rt = rank(X (t)), for all t ∈ Td.

Finally, we can define the H-Tucker format as follows.

Definition 2.6 (H-Tucker Format). Let Td be a dimension tree and (rt)t∈Td a family

of nonnegative integers. Let (Ut)t∈Td be a family of matrices such that

Ut = (Utl ⊗Utr)Bt, Bt ∈ Rrtlrtr×rt



11

for the inner nodes t ∈ I(Td). The matrices (Ut)t∈Td are called mode frames and

(Bt)t∈I(Td) transfer tensors. Then the collection
(
(Ut)t∈L(Td), (Bt)t∈I(Td)

)
is called the

hierarchical Tucker representation of the tensor U{1,...,d}. If X has such a representa-

tion, we write X ∈ H.

In the representation above, not all leaf nodes are on the highest level. In order

to obtain a closed form representation where all leaves are on the highest level, we

can replace the mode frames Ut that are not on the highest level by the Kronecker

product Ut = (Ut⊗ 1)It. An example of such an adjusted storage format for a tensor

of order d = 4 is illustrated in Figure 2.1.

⊗B{1,2,3,4}

⊗B{1,2,3}

⊗B{1,2}

U{1} U{2}

⊗B{3}

U{3}

⊗B{4}

⊗B{4}

U{4}

Figure 2.1. Example of an adjusted tree Td for d = 4 (see [41, Figure 5.5]).

In the software, the Kronecker product Utl ⊗Utr is never set up explicitly. In-

stead the following relation is applied to the columns of Bt.

Lemma 2.3. Let A ∈ RmA×nA, B ∈ RmB×nB , C ∈ RmC×nC and X ∈ RnB×nA. Then

(A⊗B) vec(X) = vec(C)⇔ BXAT = C.

Proof. See, e.g., [49].

To avoid repetitive transformation of the columns of the transfer tensors into

matrices, the transfer tensors of the form Bt ∈ Rrtlrtr×rt are stored in block format
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Bt ∈ Rrtr rt×rtl such that

vec((Bt)j) = (Bt)j, (Bt)j ∈ Rrtr×rtl , j ∈ {1, . . . , rt}.

For X ∈ H, the storage requirement is

∑
t∈I(Td)

rtrtlrtr +
∑

t∈L(Td)

ntrt ≤ (d− 1)r3 + r
d∑

µ=1

nµ,

where r := maxt∈Td rt. Hence, it does not seem to grow exponentially in d anymore.

However, note that, in general, r may vary for different d and therefore it can not be

concluded that the rate of growth is linear in d.

Last but not least, in the sequel we require an estimate for the complexity of

a matrix-vector product in H-Tucker format which is given by the following lemma.

Lemma 2.4. Let I1 = m1 × . . . ×md and I2 = n1 × . . . × nd be d-fold index sets,

M ∈ RI1×I2∩H a matrix and X ∈ RI2∩H a vector. If both share the same H-Tucker

structure, in particular the same dimension tree Td, then the H-Tucker representation

of the matrix-vector product can be computed as

UMX
t =

[
V

(1)
t UX

t , . . . , V
(rMt )
t UX

t

]
, ∀t ∈ L(Td),

where Vt ∈ Rmt×nt is such that the i-th column of UM
t satisfies

(UM
t )i = vec(V

(i)
t ).

The transfer tensors are computed as

BMX
t = BMt ⊗BXt , ∀t ∈ I(Td),
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where Bt is a transfer tensor in block format. The number of arithmetic operations

can be bounded by

rMrX
d∑

k=1

mk(2nk − 1) + (d− 1)(rM)3(rX)3

where rM := maxt∈Td r
M
t and analogously rX .

Proof. See [41, Lemma 5.9].

We conclude this subsection with some remarks on the practical implementation

of the H-Tucker format. For a comprehensive list of currently available operations

with the H-Tucker format see [41, Section 5]. Note that if the H-Tucker format of a

tensor X is not given explicitly, i.e., cannot be derived analytically, computing such

a representation is a nontrivial task. Hierarchical SVD is often not practical due to

the size of the tensor X . Alternatively, one could apply the Black Box algorithm.

However, this is a heuristic algorithm, since it only uses certain entries of each ma-

tricization. For more details see [41, Section 5.4]. Finally, matrix-vector products

with H-Tucker tensors lead to an increase in the hierarchical rank as can be seen

in Lemma 2.4. This rapidly leads to unmanageable storage sizes and not practical

computation times, and thus the resulting tensor has to be further truncated. Such

truncations introduce additional errors, the control over which is particularly impor-

tant in the context of approximation of solutions to PDEs. However, this issue will

not be discussed in further detail in this work.

2.2. WAVELETS

In this subsection a brief introduction to wavelets is provided. The introduction

mainly follows [41, Section 4]. Wavelets have many applications, the most common

being image processing (see, e.g., [37]) or numerical solution of PDEs (see, e.g., [48]).

There are many possible wavelet constructions and the best choice depends on the
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problem at hand. To mention a few: biorthogonal B-Spline wavelets as in [11],

orthonormal wavelets as in [13], interpolatory wavelets as in [20], semi-orthogonal

wavelets (prewavelets) as in [7], noncompactly supported wavelets as in [21], frames

as in [45], piecewise polynomial multiwavelets as in [22] or fractal multiwavelets, as

in [23]. In the work of [41], L2-orthonormal multiwavelets from [22] are utilized.

2.2.1. Multiresolution Analysis. Generally, the construction of a wavelet

basis starts with a Multiresolution Analysis (MRA) given a basis of scaling functions.

If not mentioned otherwise, such an MRA is usually assumed to be generated by

a single scaling function. Otherwise one speaks of multiscaling functions and the

resulting wavelets are referred to as multiwavelets. Using more than one scaling

function leads to a more complicated construction but introduces additional flexibility

if one, e.g., wishes to obtain orthonormal bases in higher dimensions. Typically one

constructs wavelets bases on the interval and uses tensor products to obtain a basis

for higher dimensions, as in the work of [41]. Such bases are satisfactory for PDE

problems arising in, e.g., finance, where typically exotic and nonsmooth domains

are not an issue. However, there are more sophisticated constructions for the multi-

dimensional case that allow for more flexible domains, such as in [12]. For the purpose

of introduction, we focus on the 1D case since most properties are preserved for the

tensor products bases. At the end of this subsection we collect important properties

of wavelets that will be required in the sequel. For the most part of this work, we then

assume a general wavelet basis for the general Lipschitz domain1 Ω ⊂ Rn satisfying

these properties, unless required otherwise as in Section 5.

Definition 2.7 ((Orthonormal) MRA). A sequence of spaces (Sj)j∈Z with Sj ⊂ L2(R)

for all j ∈ Z is called a Multiresolution Analysis if for any j ∈ Z

1. Sj ⊂ Sj+1 (nestedness).

1I.e., open, nonempty, bounded and connected.
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2. closL2(R)(
⋃
j∈Z Sj) = L2(R) (density).

3.
⋂
j∈Z Sj = {0} (trivial intersection).

4. f ∈ Sj ⇔ f(2·) ∈ Sj+1 (scaling).

5. f ∈ Sj ⇔ f(· − k) ∈ Sj for any k ∈ Z (translation invariance).

6. There are (scaling) functions ϕ1, . . . , ϕn such that Φj := {ϕn[j,k] : k ∈ Z} is a

uniformly stable basis for Sj where the multiscaling functions ϕn[j,k] are given by

ϕn[j,k] := 2j/2ϕ((k−1)mod n)+1

(
2j · −

(
k − 1− ((k − 1)mod n)

n

))
.

An MRA is called orthonormal if for all j, k1, k2 ∈ Z

(ϕn[j,k1], ϕ
n
[j,k2])L2 = δk1,k2 ,

where δ denotes the Kronecker delta.

Typically one has a coarsest level, say j0 = 0, such that for all j < j0, Sj = {0}.

Since an MRA is nested, we can write for any j ∈ Z, Sj+1 = Sj
⊕

Wj, where Wj ⊥ Sj.

The spaces Wj are called wavelet spaces or detail spaces and are generated by the

functions ψ1, . . . , ψn (mother wavelets). The multiwavelets are then defined as

ψn[j,k] := 2j/2ψ((k−1)mod n)+1

(
2j · −

(
k − 1− ((k − 1)mod n)

n

))
,

and the system Ψj :=
{
ψn[j,k] : k ∈ Z

}
is a basis for Wj. Note that by iterating the

orthogonal decomposition, we obtain

Sj+1 =

j⊕
k=−∞

Wk,
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and hence, the collection of wavelets on all levels is dense in L2(R) by the properties

of the MRA. The system Ψ :=
⋃
j∈Z Ψj is thus a basis for L2(R).

This is only one possible construction using orthogonal complement spaces of Sj.

In general, one could choose Wj to be a complement space with a different “angle”,

so called biorthogonal wavelets. For more details see [48, Section 5].

The MRA gives us a basis for L2(R). To obtain a basis for L2(Ω) for a bounded

domain Ω ⊂ R, unfortunately, we can not simply restrict the functions in Ψ to Ω.

This cut-off procedure would, e.g., lead to an unstable basis and would, in general,

destroy orthogonality. In general, there are different approaches to solve this problem

and the best choice depends on the properties one desires to preserve from the MRA

on R. Perhaps the more common strategy is to leave the inner wavelets on the

interval Ω unchanged and modify/add wavelets on the boundary. For more details

see [48, Section 8]. We briefly summarize a common strategy for constructing an

orthonormal multiwavelet basis for a more general domain Ω ⊂ Rd.

1. Construct an MRA on R.

2. Orthogonalize to obtain an orthonormal MRA on R.

3. Construct orthonormal multiwavelets on R.

4. Modify the multiwavelet system to obtain an orthonormal stable basis for [0, 1].

5. Construct an orthonormal stable wavelet basis for the reference domain Ω̂ =

[0, 1]d by taking tensor products and properly scaling.

6. Construct a wavelet basis for a parametric image of Ω̂ by taking an appropriate

transformation, i.e., Ωi = Fi(Ω̂).

7. Construct a wavelet basis for a more general domain Ω̄ =
⋃N
i=1 Ω̄i by matching.
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2.2.2. Properties of Wavelet Bases. From hereon we will often write a

system of functions as Ψ := {ψλ : λ ∈ Λ}, where Λ is some general index set. For

instance, in the MRA from Definition 2.7 λ = (j, k). Furthermore, to shorten notation

we write

cTΨ :=
∑
λ∈Λ

cλψλ, c ∈ `2(Λ),

(Ψ̃,Ψ)L2 := ((ψλ, ψµ))λ∈Λ̃,µ∈Λ ,

(f,Ψ)L2 := ((f, ψλ))λ∈Λ , f ∈ L2(Ω).

One of the most important properties of wavelet bases is that they give rise to a Riesz

basis.

Definition 2.8 (Riesz Basis). Let H be a Hilbert space. A system Ψ is called a

Riesz basis for H if every element in H has a unique expansion in Ψ and there are

constants 0 < c ≤ C such that for x ∈ `2(Λ), we have

c‖x‖`2 ≤ ‖xTΨ‖H ≤ C‖x‖`2 .

The best possible choices for such constants are called Riesz constants and are denoted

by cΨ, CΨ.

Obviously, for an orthonormal system, we get the best possible case cΨ = CΨ = 1.

The Riesz constants are an indicator for the stability of the basis. The condition num-

ber of a Riesz basis is defined as

κ(Ψ) :=
CΨ

cΨ

=
λmax(G)

λmin(G)
,

where G := (Ψ,Ψ)L2 is the Gramian of Ψ.
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As previously mentioned, for higher dimensions, a basis can be constructed by

taking tensor products. The following lemma establishes the relationship between the

condition of the component basis and the tensor product basis. A detailed discussion

on the underlying theory of tensor product spaces can be found in [36].

Lemma 2.5 (Bases of Product Spaces). Let Hi be separable Hilbert spaces with Riesz

bases Ψi for i = 1, . . . , N . Then the tensor product basis

Ψ :=
N

⊗
i=1

Ψi

is a Riesz basis for ⊗N
i=1Hi with Riesz constants

cΨ =
N∏
i=1

cΨi , CΨ =
N∏
i=1

CΨi .

Proof. See [30, Proposition 2.23].

For a product domain Ω = XNi=1 Ωi, this lemma gives a basis for L2(Ω) since

from, e.g., [51, Section 1.6], we know that

L2(Ω) ∼=
N

⊗
i=1

L2(Ωi).

However, for solving differential equations, we are actually interested in bases for

Sobolev spaces Hs(Ω), and these can not be decomposed into a product space. In-

stead, by, e.g., [18, Lemma 3.1.9], such spaces can be identified with an intersection

of product spaces

Hs(Ω) ∼=
N⋂
i=1

L2(Ω1)⊗ . . .⊗L2(Ωi−1)⊗Hs(Ωi)⊗L2(Ωi+1)⊗ . . .⊗L2(ΩN).

A basis for such spaces is given by the following lemma.
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Lemma 2.6 (Bases for Intersection Spaces). Let H be a separable Hilbert space with

Riesz basis Ψ. Let Hi ⊂ H be subspaces with Riesz bases

Ψi :=

{
ψλ
ciλ

: λ ∈ Λ

}

for nonzero ciλ. Then the system

Ψ :=

 ψλ√∑N
i=1(ciλ)

2

: λ ∈ Λ


is a Riesz basis for

⋂N
i=1 Hi with Riesz constants

cΨ = min
i=1,...,N

cΨi , CΨ = min
i=1,...,N

CΨi .

Proof. See [18, Lemma 3.1.8].

Lemma 2.5 and Lemma 2.6 tell us how to construct bases for Hs(Ω). An im-

portant observation at this point is that, in general, the condition of the basis is not

uniform w.r.t. the dimension of the domain Ω. This has a lot of unpleasant implica-

tions. For instance, for nonorthonormal wavelet bases, the condition number of the

differential operator as in [19, Section 2] grows exponentially with the space dimen-

sion. This is the main reason for the choice of an orthonormal multiwavelet basis,

since then κ(Ψ) does not depend on the space dimension.

To conclude, we collect and briefly discuss important wavelet properties required

in the sequel. From hereon, we assume a given basis Ψ on the domain2 Ω ⊂ Rd with

the following properties (cf. [30, Section 2.2.3] and [18, Section 5.3]). Note that the

resulting tensor product wavelet basis preserves the listed properties.

2In practice commonly d = 1, and a basis for higher dimensions is constructed by taking tensor
products as described above.
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Assumption 2.1 (Stability). Ψ is a wavelet basis for L2(Ω), i.e., in particular a Riesz

basis, where Ω ⊂ Rd. Furthermore, with proper scaling Ψ is a Riesz basis for Hs(Ω),

where s should be deduced from the context.

Assumption 2.2 (Minimal Level). We assume a given minimal level j0 > −∞ for

the original MRA and thus the resulting system Ψ.

Assumption 2.3 (Local Support). Wavelets in Ψ have compact support that decays

exponentially with the level, i.e.,

| supp(ψλ)| . 2−|λ|d, ∀λ ∈ Λ, (2.1)

where |λ| denotes the (detail) level of the wavelet ψλ.

Assumption 2.4 (Finite Number of Overlaps). The system Ψ is locally finite, i.e.

# {µ ∈ Λ : |µ| = |λ|, | supp(ψµ) ∩ supp(ψλ)| > 0} . 1

uniformly in |λ|.

Together with Assumption 2.3, Assumption 2.4 implies for λ ∈ Λ,

# {µ ∈ Λ : | supp(ψµ) ∩ supp(ψλ)| > 0} . 2max(|µ|−|λ|,0)d.

Briefly this can be seen as follows. Fix ψλ and consider ψλ′ , where λ′ only differs

from λ in the level, i.e., ψλ′ has the same position but is on a different level. If ψλ′ is

one level finer than ψλ, then, by Assumption 2.3, there will be at most 2d (actually

. 2d) wavelets on the level |λ′| that intersect the support of ψλ. Hence, assuming Ψ

is locally finite, if the number of overlaps on the level |λ| is at most C, then between

|λ| and |λ′| it will be at most C2d. For a coarser level, the number of overlaps can

only get smaller. Hence, in general, we get the bound 2max(|µ|−|λ|,0)d.
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Assumption 2.5 (Piecewise Polynomial). The wavelets are piecewise polynomial of

order p+ 2.

Assumption 2.6 (Singular Support). For λ ∈ Λ, ` ∈ Z

#{µ ∈ Λ : |µ| = `, dist(singsupp(ψλ), supp(ψµ)) = 0

or dist(singsupp(ψλ), supp(ψµ)) = 0} . 2max(`−|λ|,0)(d−1),

(2.2)

where singsupp(·) denotes the singular support of a function, i.e., the complement of

the largest open set on which the function is smooth.

The Assumption 2.6 is fulfilled if singsupp(ψλ) is overlapped by a finite number

of ψµ, bounded uniformly in |λ| and |µ|. Since singsupp(·) is d− 1 dimensional, for,

e.g., d = 1 this means that any point on the interval Ω is overlapped by a finite

number of wavelets ψλ, bounded uniformly in |λ| (cf. [19, Section 3]).

Assumption 2.7 (Boundary Wavelets). The number of boundary wavelets, i.e.,

wavelets whose support has nonempty intersection with ∂Ω is uniformly bounded.

Assumption 2.8 (Vanishing Moments). Inner wavelets, i.e., wavelets whose support

has empty intersection with the boundary, have p vanishing moments

(xn, ψλ)L2 = 0, 0 ≤ n < p.

The higher the order of vanishing moments, the better the compression proper-

ties of the wavelets. For f ∈ W s
∞(supp(ψλ)) ∩ L2(Ω), in conjunction with a Whitney

type estimate, we get from Assumption 2.8 (cf. [48, Proposition 5.9]) that

(f, ψλ)L2 . 2−|λ|(
d
2

+s)‖f‖W s
∞ , s ∈ [0, p]. (2.3)
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Assumption 2.9 (Global Smoothness). The wavelets are globally in Cr(Ω), where

p ≥ r + 2.

Assumption 2.9 also gives (cf. [42, Section 3])

‖ψλ‖W s
∞ . 2|λ|(

d
2

+s), s ∈ [0, r + 1] (2.4)

and, if we integrate only over the part of the domain, where ψλ is smooth, then we

get

‖ψλ‖W s
∞ . 2|λ|(

d
2

+s), s ≥ 0. (2.5)

There are several wavelet constructions that satisfy Assumptions 2.1-2.9, in-

cluding the one used in [41]. For convenience we use the term wavelets, even though,

strictly speaking, in [41] multiwavelets have been utilized.
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3. ADAPTIVE METHODS

In this section, we give a brief overview on adaptive wavelet methods. PDEs

or PIDEs are expressed as operator equations. These operator equations are refor-

mulated as equivalent operator equations in sequence spaces and the solution is then

nonlinearly approximated. Thus, adaptive wavelet methods can be viewed as a special

case of nonlinear approximations as opposed to linear approximations, e.g., Galerkin

methods, where the solutions is approximated by a (linear) finite-dimensional sub-

space of the solution space. This section is mainly based on [46] and the references

therein.

3.1. NONLINEAR APPROXIMATION

The brief introduction to approximation theory here is mainly based on [17,

Section 2] and [46, Section 1.3]. Consider a separable Hilbert space X and a basis

for X , Ψ. If we seek to approximate a solution u ∈ X , in linear approximation we

consider a finite subspace as

XN := span{ψλ : λ ∈ ΛN}, #Λ = N <∞.

The error of the linear approximation by the finite subspace is measured as

EN(u)X := inf
g∈XN

‖u− g‖X .

Since a Hilbert space is strictly convex, there exists a unique uN ∈ XN that mini-

mizes this error. In the context of numerical methods for PDEs, Galerkin methods

(nonadaptive) are linear approximations. Typically, the wavelet index sets ΛN consist

of all wavelets up to a certain level (∼ log2(N)).
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Turning to a different approach, consider the nonlinear manifold

ΣN :=

{
uN ∈X : u =

∑
λ∈I

cλψλ, #I ≤ N

}
.

The manifold is indeed nonlinear since for x, y ∈ ΣN , we have x+y ∈ Σ2N in general.

An approximation to the solution u ∈X from ΣN can be thus interpreted as the best

approximation to u, given a budget of N terms. This is known as the best N-term

approximation and clearly belongs to the framework of nonlinear approximation. The

error is measured as

ρN(u) := inf
g∈ΣN

‖u− g‖X .

The issue of existence of such approximations is discussed in a general setting in [2].

Clearly such approximations are not unique in general. Think of a function with

N+1 constant wavelet coefficients – taking any N coefficients results in a best N -term

approximation. In the context of numerical methods for PDEs, adaptive methods fall

into the framework of nonlinear approximations.

If Ψ is a Riesz basis, then we have the norm equivalence

‖cTΨ‖X ∼ ‖c‖`2 , c ∈ `2(Λ).

Consider approximating the sequence c by cN with supp(cN) ≤ N . Again, obviously

this approximation is not unique in general. However, it is easily seen that taking cN

to be the largest N coefficients in magnitude3 is a best possible choice in the sense

cN = arg min
supp(gN )≤N

‖c− gN‖`2 .

3Since c ∈ `2(Λ), the sequence is in particular bounded.
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Due to the norm equivalence, we have

ρN(u) ∼ ‖u− cTNΨ‖X .

Hence, the approximation ũN := cTNΨ is comparable to the best possible choice uN .

Such best N -term approximations converge, in general, with different rates for differ-

ent types of sequences. It thus makes sense to analyze classes that characterize those

rates more closely. But first, we briefly discuss the best possible approximation rate.

Consider a nested sequence (Λi)
∞
i=0 of sets with a finite number of degrees of

freedom such that

Λ0 ⊂ Λ1 ⊂ . . . ,
∞⋃
i=0

Λi = Λ.

In adaptive methods, the enlargement of a Λi to Λi+1 is based on a posteriori error

estimator, which is the main difference to nonadaptive methods, where the sequence

is fixed from the beginning based on a priori error estimator. For wavelets, the index

set Λi typically includes all wavelets up to level i. Associated with the space X and

the basis Ψ, there exists a best possible approximation rate smax, i.e., a parameter

smax such that for all sufficiently smooth u ∈X

‖u− uΛi‖ . (#Λi)
−smax ,

and this rate smax cannot be improved by additional smoothness assumptions or a

different choice of (Λi)i. A fundamental question is whether this rate of convergence

can be achieved by a nonadaptive method or whether an adaptive method is re-

quired. In fact, there are possible choices for a finite Λ such that this is achieved

(e.g., optimized sparse grid spaces). However, the main disadvantage of such non-

adaptive methods in contrast to adaptive methods is the high regularity assumptions
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on the solution. Hence, adaptive methods truly make sense only for problems with

nonsmooth4 solutions. For more details see, e.g., [30, Section 3.1.2].

Remark 3.1 ( [46, Remark 1.1]). Note that there are u ∈ X for which any desirable

rate can be realized. Think of u having finite representations or being exceptionally

close to such functions. An appropriate choice of (Λi)i would yield any desirable rate.

Those exceptional cases are not taken into consideration (cf. [46, Section 1.1]).

Example 3.1 ( [46, Example 1.1]). Let X = Hm(Ω), Ω ⊂ Rd be a bounded domain

and Ψ a wavelet basis of order p > m. Then

smax =
p−m
d

.

For s ∈ (0, smax] and u ∈ Hsd+m(Ω) the rate s is realized. In particular, for s = smax,

we require u ∈ Hp(Ω). The nested sequence (Λi)i is simply chosen as the set of

wavelets of level up to i. The result is sharp in the sense that for any ε > 0, there is

no choice of (Λi)i such that s is realized for all u ∈ Hsn+m−ε(Ω). Note that the best

possible approximation rate is inversely proportional to the space dimension, i.e., for

higher dimensions, the approximation rate deteriorates. This is sometimes referred

to as the curse of dimensionality.

Example 3.2 ( [46, Section 7.2]). Let Ωi be a domain of dimension di and Ψi a wavelet

basis of order pi ≥ m. It is known that a sufficiently smooth function on Ω :=

Ω1 × . . . × ΩN can be approximated in Hm(Ω) by sparse grid approximations with

the best possible rate being

smax = max
i

pi −m
di

.

4Here nonsmooth is meant in the measure of Sobolev spaces. Adaptive methods deal with solu-
tions that are nonsmooth in this measure but smooth in the measure of Besov spaces.
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Thus, thinking of d1 = . . . = dN = 1 and p1 = . . . = pN =: p > m, the aforementioned

curse of dimensionality is completely removed in this case. See [4, 16, 52] for details

on sparse grid approximations and, e.g., [30, Section 8], [5] for applications.

As previously mentioned, we would like to further investigate the appropriate

class of sequences. The class of coefficient sequences for which the best N -term

approximation converges with rate s > 0 is defined as

A s :=

{
c ∈ `2(Λ) : ‖c‖A s := sup

ε>0
ε · [min{N ∈ N0 : ‖c− cN‖`2 ≤ ε}s <∞

}
.

It is easily verified that for c ∈ A s, the smallest N such that ‖c− cN‖`2 ≤ ε satisfies

N ≤ ε−1/s‖c‖1/s
A s ,

and this bound is sharp. This bound justifies the following definition of (quasi-)

optimality for adaptive methods. From hereon, we use `0(Λ) to denote sequences

in Λ with finite support.

Definition 3.1 (Quasi-Optimal). An adaptive wavelet method is called (quasi-)optimal

if for u = cTΨ ∈X with c ∈ A s, s ∈ (0, smax] and a given tolerance ε > 0, the method

produces an approximation v ∈ `0 with

‖c− v‖`2 ≤ ε,

and

# supp(v) . ε−1/s‖v‖1/s
A s ,

at the cost of O(ε−1/s‖v‖1/s
A s) arithmetic operations.
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Roughly speaking, a (quasi-)optimal method produces a solution for a prescribed

tolerance ε > 0, with computational and storage complexity being linear in the output

size, i.e., in the number of nonzero coefficients of the approximation v. For s > smax

the class A s is, although not empty, not interesting, since it corresponds to the

exceptionally “nice” case discussed in Remark 3.1.

3.2. LINEAR OPERATOR EQUATIONS

In this subsection, we consider general operator equations as we can apply the

theory to PDEs. The discussion follows mainly [46, Section 2.1]. Note that for

notational simplicity, we drop the index set Λ when it is clear from context.

Let X and Y be Hilbert spaces and let ΨX , ΨY denote the respective bases.

Define the analysis operator as

FX : X ′ → `2(ΛX ), g 7→ [g(ψλ)]λ∈ΛX

and analogously for Y . We assume the bases for both X and Y are Riesz bases

which is equivalent to assuming the analysis operator is boundedly invertible. Since

FX is bounded, we can define the adjoint as

F ′
X : (`2(ΛX ))′ →X ′′, (F ′

X l)(g) = l(FX (g)), l ∈ `′′2, g ∈X ′.

Since `2 is a Hilbert space, by the Riesz Representation Theorem (RRT), it is iso-

metrically isomorph to its dual. Identify l ∈ `′2 with c ∈ `2. Then by RRT, we can

write

(F ′
X l)(g) = (FX (g), c)`2 =

∑
λ∈ΛX

cλg(ψλ). (3.1)
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Furthermore, since X is a Hilbert space, it is reflexive. Fix g ∈X ′ and let C : X →

X ′′ denote the canonical mapping. Identifying g with x0 =
∑

λ∈ΛX
dλψλ, we can

write

(F ′
X l)(g) = Cx0(g) = g(x0) =

∑
λ∈ΛX

dλg(ψλ),

where the last equality follows by linearity and boundedness of g. Comparing with

(3.1), since ΨX is a basis, we infer

x0 = cTΨX .

Hence, we can identify the adjoint F ′
X with F ∗

X defined as

F ∗
X : `2 →X , c 7→ cTΨX

and similarly for FY where both adjoints are boundedly invertible as well. The

operator F ∗
X is called the synthesis operator and is commonly defined as the adjoint

of FX (cf. [46, Section 2.1]), although strictly speaking it can only be identified with

the adjoint as described above.

We are interested in solving the operator equation

Bu = f, B ∈ L(X ,Y ′), u ∈X , f ∈ Y ′,

where B is boundedly invertible. This problem is equivalent to

Bu = f ,

B := FY BF ∗
X = [(BψX

µ )(ψY
λ )]λ∈ΛY ,µ∈ΛX

∈ L(`2(ΛX ), `2(ΛY )),
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f := FY f = [f(ψY
λ )]λ∈ΛY

∈ `2(ΛY ),

u = uTΨX ,

where, since B is boundedly invertible together with the analysis, synthesis operators

and their adjoints, B is boundedly invertible as well. Moreover, we get the useful

correspondence

(Bv,w)`2 = (Bv)(w)

for any v, w ∈ `2, where v = vTΨX and w = wTΨY . The Riesz constants are equal

to

CΨX = ‖FX ‖ = sup
‖g‖X =1

‖FX g‖`2 ,

cΨX = ‖(FX )−1‖−1 = inf
‖g‖X =1

‖FX g‖`2

and similarly for Y . By definition of B, we infer ‖B‖ ≤ ‖B‖CΨXCΨY , ‖B−1‖ ≤

‖B−1‖/(cΨX cΨY ). This in particular shows that the condition number κ(B) depends

on the operator B itself and on the condition of the Riesz bases for X and Y , which

again justifies the choice of a uniformly well conditioned basis, e.g., orthonormal, as

mentioned in Subsection 2.2.2.

Example 3.3. As a model example consider the Poisson equation on a bounded domain

Ω ⊂ Rd


−∆u = f in Ω,

u = 0 on ∂Ω.
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Multiplying by a test function v and integrating by parts, we get the weak form

∫
Ω

∇u · ∇v =

∫
Ω

fv, ∀v ∈ H1
0 (Ω)

for some f ∈ L2(Ω). The test and trial spaces are X = Y = H1
0 (Ω). The associated

operator equation reads as

Bu = f, B ∈ L(X ,X ′), (Bu)(v) :=

∫
Ω

∇u · ∇v,

f ∈ X ′, f(v) :=

∫
Ω

fv.

The operator B is boundedly invertible. The equivalent `2 problem reads

Bu = f , B :=

[∫
Ω

∇ψµ · ∇ψλ
]
λ,µ∈Λ

, f =

[∫
Ω

fψλ

]
λ∈Λ

, u = uTΨ.

3.3. APPLY

According to Definition 3.1, in order to obtain a (quasi-)optimal routine, we

require a method that, for a given u ∈ A s, produces an approximation to any desired

tolerance in linear complexity. Note that the system Bu = f involves a bi-infinite

matrix and infinite vectors. Hence, it should be clear that producing an approximation

to any desired accuracy is not possible for an arbitrary B. Intuitively, since we only

know how to deal with finite systems, we have to approximate the operator B by

a finite matrix and we have to be able to do so for any desired accuracy. This means

that, when truncatingB in an appropriate manner, the error should approach 0 as we

increase the size of the finite approximation. In other words, B has to be of a certain

kind that allows this compression. In fact, we will see that the compression properties

are usually guaranteed by the underlying wavelet basis, as wavelets have preferable

compression properties that are well known from image processing.
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More precisely, we require the availability of a routine for approximate operator

application that was coined by [9, Section 6.4] as APPLY. Since the publication of

the original paper, several modifications of APPLY have appeared and thus, even

though we briefly mention one of them, in the sequel any APPLY routine satisfying

the following properties can be utilized. From hereon, we often use the shorthand

notation ‖ · ‖ without a subscript if the space is clear from the context.

Definition 3.2 ( [46, Definition 3.1]). For s̄ > 0, the operatorB is called s̄-admissible

if for any ε > 0, we have an approximate matrix-vector routine

APPLY[B,w, ε]→ wε

such that, for w ∈ `0, wε ∈ `0 and ‖Bw −wε‖ ≤ ε, where for any s ∈ (0, s̄]

# supp(wε) . ε−1/s‖w‖1/s
A s

and the number of operations is of the order

O(ε−1/s‖w‖1/s
A s + # supp(w) + 1).

In fact, in order to guarantee optimality, comparing with Definition 3.1, we

require s̄ ≥ smax (see [46, Section 3.2] for details). As shown in [9, Proposition 3.8],

such an s̄-admissible operator defines a bounded linear mapping on the approximation

class A s (cf. also [46, Proposition 3.1]). Intuitively, it is not surprising that B

preserves the approximation class, given B itself can be approximated to any desired

accuracy.

Proposition 3.1. Let B be s̄-admissible. Then for s ∈ (0, s̄], B : A s → A s is

bounded and ‖wε‖A s . ‖w‖A s holds uniformly in ε.
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Proof. The proof can be found in [46, Proposition 3.1].

In the work of [9], a specific class of operators was investigated that allowed

to define a valid APPLY routine. If an operator B belongs to this class, then it

can be approximated to any desired accuracy by sparse matrices. Note that the

approximation property ensures one part of Definition 3.2, while the “sparse” part

ensures that this approximation can actually be performed in linear complexity.

Definition 3.3 ( [9, Definition 3.6]). An operatorB : `2 → `2 is called s∗-compressible

if for any s ∈ (0, s∗), there exists (αj)j, (βj)j ∈ `1(N) such that the sequence of oper-

ators (Bj)j satisfies

‖B −Bj‖ ≤ αj2
−sj,

where Bj is derived from B by replacing all but in the order of O(βj2
j) entries by 0.

In practice, an entry of B is not given explicitly but has to be approximated

numerically, e.g., by a quadrature rule. Hence, it should be clear that the question

whether B is s̄-admissible also depends on the computability of the individual entries

which motivates the following definition.

Definition 3.4 (Computable). The operatorB is s∗-computable if it is s∗-compressible

and each entry can be computed in O(1) operations or, more generally, if each column

of Bj can be computed in O(2j) operations.

A useful lemma that is often used to show s∗-compressibility and that will

be used in the sequel several times is the well known Schur Lemma stated below.

Typically, the entries of the (preconditioned) operatorB have strong decay properties

due to the underlying wavelet basis. Choosing an appropriate dropping criteria, one

obtains a sparse operator Bj and uses the Schur Lemma to show that the norm of

the remainder of the bi-infinite matrix is bounded and approaches 0 as we increase j.
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Then one investigates a suitable quadrature rule for the entries such that each entry

can be computed in O(1) operations while preserving the error on the same level.

This finally gives s∗-computability.

Lemma 3.1 (Schur Lemma). Let M = (mλ,µ)λ,µ∈Λ be an operator such that there

exist positive weights (ωλ)λ∈Λ and constants 0 < cr, cc <∞ with

∑
µ∈Λ

ωµ|mλ,µ| ≤ crωλ, ∀λ ∈ Λ,

∑
λ∈Λ

ωλ|mλ,µ| ≤ ccωµ, ∀µ ∈ Λ.

Then ‖M‖`2 ≤
√
crcc.

Proof. The proof can be found in a slightly different form in [38, Lemma 8.4].

To show that B is s̄-admissible, we require an APPLY routine satisfying Def-

inition 3.2. Such a routine was presented first in [9], and later an optimized version

was proposed in [19]. In fact, for those routines to be valid, all we require is that

the operator is s∗-computable and, hence, this readily implies that s∗-computable

operators are s̄-admissible for any s̄ < s∗. The idea for an approximate matrix vec-

tor routine in [9] is to find an optimal balance between accuracy and computational

effort. This is achieved by applying good approximations of the operator B to rough

approximations of the vector and rough approximations of B to good approximation

of the vector. Suppose we want to approximate Bw, where # supp(w) = N < ∞.

Let wj denote the best 2j-term approximation to w. Then compute bins as

w0,

wj −wj−1, j = 1, . . . , blog2(N)c,

wj = w, j > log2(N).
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Finally, compute the approximation as

Bw ≈ wk := Bkw0 +
k−1∑
j=0

Bj(wk−j −wk−j−1).

This approximation lies in the heart of the APPLY routine proposed in [9]. Bigger

choices of the parameter k lead to more accurate approximations and more compu-

tational effort at the same time. Thus, obviously k will depend on the prescribed

tolerance ε > 0. Before we can state an important result concerning the convergence

of this routine and possible choices for k, we require the following definition.

Definition 3.5 (Lorentz Spaces, cf. [48, Definition 7.8]). Given v ∈ `2, define its

decreasing rearrangement v∗ as follows: for n ≥ 1, let v∗n be the n-th largest element

of v in magnitude and v∗ := (v∗n)∞n=1. Then for each 0 < τ < 2 define

|v|`wτ := sup
n≥1

n1/τv∗n

and the weak `wτ space as

`wτ :=
{
v ∈ `2 : |v|`wτ <∞

}
.

The corresponding norm is defined as

‖v‖`wτ := |v|`wτ + ‖v‖`2 .

Lorentz spaces5 characterize the decay of coefficients in a sequence. It is thus

not surprising that they are closely related to the class A s, as the following result

shows.

5The above definition is only a special kind of Lorentz spaces.
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Proposition 3.2. For s > 0 define

τ :=

(
s+

1

2

)−1

.

Then we have

(i) v ∈ A s iff v ∈ `wτ . The norm equivalence

‖v‖A s ∼ ‖v‖`wτ

holds with constants depending only on τ for τ ↘ 0.

(ii) If v ∈ `wτ , then the error of the best N-term approximation can be bounded as

ρN(v) . N−s‖v‖`wτ

with a constant depending only on τ for τ ↘ 0.

Proof. See [48, Proposition 7.11] and the references therein.

Finally, we are ready to state the result from [9] on the convergence of APPLY.

Proposition 3.3. Let B be s∗-compressible. For wk, the error estimate

‖Bw −wk‖ . 2−ks‖w‖`wτ

holds, where s < s∗ and

s =
1

τ
− 1

2

with a constant depending only on τ for τ ↘ 0.

Proof. The proof can be found in [48, Proposition 7.13].
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The question remains as to the choice of k = k(ε). Taking a closer look at the

approximation wk, we observe

‖Bw −wk‖ ≤ ‖B‖‖w −wk‖+ ‖B −Bk‖‖w0‖

+
k−1∑
j=0

‖B −Bj‖‖wk−j −wk−j−1‖

≤ ‖B‖‖w −wk‖+ αk2
−ks‖w0‖+

k−1∑
j=0

αj2
−js‖wk−j −wk−j−1‖

=:Ek.

Hence, if we can estimate ‖B‖ and (αj)j, then we can ensure Ek ≤ ε. More generally,

to have an implementable version of APPLY, we require knowledge of the sequences

(ej)j∈N0 , (cj)j∈N0 , where

‖B −Bj‖ ≤ ej, ‖B‖ ≤ e0

and cj is the number of nonzero entries in each column of Bj, c0 = 0. A more efficient

modification of the original APPLY routine discussed above was proposed by [19].

Summing up, we get the following result.

Theorem 3.1. If B is s∗-computable, then it is also s̄-admissible for any s̄ < s∗.

Proof. The proof follows from the discussion above. For more details see [46, Theorem

3.2].

3.4. RICHARDSON ITERATIONS

With the tools introduced above, we are ready to provide a sensible introduction

to an adaptive routine for solving operator equations. First we discuss Richardson

iterations from [10] and then the Adaptive Wavelet Galerkin Method from [9] in
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the next subsection, since both are required in the sequel. The introduction mainly

follows [46, Sections 3 and 4].

The Richardson iteration is a fixed point type scheme: we assume that there

exists α ∈ R such that

‖I − αB‖ < 1,

and, hence, the iteration of the form

ui+1 = ui + α(f −Bui)

converges linearly by the Banach Fixed Point Theorem. Under certain conditions,

the existence of such a dampening parameter α is guaranteed. We consider the

nonsymmetric case for the Lemma 3.2 as the PDE from [41] is nonsymmetric.

Lemma 3.2. Let B ∈ L(`2, `2) and BS := 1
2
(B+BT ) be positive definite and bound-

edly invertible. Then for α ∈ (0, 1/(‖BS‖+ ‖B−1
S ‖−1)] with α < 2/(‖B−1

S ‖‖B‖), we

have

‖I − αB‖ ≤
√

1− 2α‖B−1
S ‖−1 + α2‖B‖2 < 1.

Proof. The proof can be found in [46, Lemma 3.2].

Hence, if we can estimate ‖B‖, ‖B−1‖ and from thereon ‖BS‖ and ‖B−1
S ‖,

then we obtain a linearly convergent iterative scheme for solving Bu = f . However,

this scheme is still not implementable, since f , u are generally infinite vectors and B

is a bi-infinite matrix. Thus, we require further approximations. Approximations for

Bu were discussed in the previous subsection. As for f , the approximation generally

depends on the specific RHS f at hand. In a more general setting, we will assume
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the availability of a routine for the RHS with the following properties. For specific

approximations of the RHS see, e.g., [19, Section 5] or [30, Section 4.6.3].

Assumption 3.1. The routine RHS[f , ε]→ f ε satisfies

‖f − f ε‖ ≤ ε, # supp(f ε) . min {N : ‖f − fN‖ ≤ ε}

at the cost of O(# supp(f ε) + 1) arithmetic operations.

At first sight, the Assumption 3.1 does not fit directly into the definition of

(quasi-)optimality as given in Definition 3.1, which is the ultimate goal for an adaptive

wavelet algorithm. However, as the following statement shows, it is in fact sufficient,

given an appropriate B.

Proposition 3.4. Let B be s̄-admissible and u ∈ A s for s ∈ (0, s̄]. The f ε satisfies

# supp(f ε) . ε−1/s‖u‖1/s
A s , and the number of operations is of the order

ε−1/s‖u‖1/s
A s + 1.

Proof. The proof can be found in [46, Corollary 3.1].

Technically, we could already formulate a first Richardson iteration. However,

numerical experiments showed that such a routine is not optimal (see, e.g., [48, Section

7.6.3]) in the sense that it does not converge with a rate comparable to the best N -

term approximation. The iterations produce a lot of negligible coefficients that do

not contribute significantly to the accuracy of the approximation but substantially

increase computational effort. A remedy would be to apply coarsening of the iterands

to restore the balance between accuracy and computational effort, while keeping the

error on the same level. A specific implementation of such a routine can be found in,

e.g., [46, Section 3.3]. For the sequel, we assume the availability of the following.
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Assumption 3.2. The routine COARSE[w, ε]→ wε for w ∈ `0 satisfies

‖w −wε‖ ≤ ε, # supp(wε) . min {N : ‖w −wN‖ ≤ ε}

with the number of operations in the order of

O(# supp(wε) + max(ε−1‖w‖, 1)).

Although COARSE introduces an additional error, the following statement

shows that it preserves the error on the same level while maintaining a number of

nonzero terms comparable to the best N -term approximation and guarantees a uni-

form bound on the ‖ · ‖A s-norm (which is not the case without COARSE).

Proposition 3.5. Let ζ > 1 and s > 0. Then for any ε > 0, v ∈ A s and w ∈ `0

with

‖v −w‖ ≤ ε

for wζε := COARSE[w, ζε] we have

# supp(wζε) . ε−1/s‖v‖1/s
A s , ‖wζε‖A s . ‖v‖A s , ‖v −wζε‖ ≤ (1 + ζ)ε.

Proof. The proof can be found in [46, Proposition 3.2] or in more detail in [8, Theorem

4.9.1].

Finally, an implementable version of the Richardson iteration is formulated in

Algorithm 3.1 (cf. [46, Section 3]).

Note that this routine can be further improved by an inner iteration as in [48,

Algorithm 7.3]. Moreover, one can think of applying more advanced iterative schemes,
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Algorithm 3.1 RICH

Input: ε > 0, ε0 ≥ ‖u‖, θ ≤ 1
2
, K ∈ N and ρ < 1 s.t. ‖I − αB‖ ≤ ρ, 2ρK < θ

Output: uε with ‖uε − u‖ ≤ ε
i := 0, u0 := 0
while εi > ε do
i := i+ 1
εi := 2ρKεi−1/θ
yi,0 := ui−1

for j = 1 to K do
δ := ρjεi−1/2αK
yi,j := yi,j−1 + α (RHS[f ; δ]−APPLY[B;yi,j−1; δ])

end for
ui := COARSE[(1− θ)εi,yi,K ]

end while
return uε := ui

such as Krylov subspace methods. For Richardson iterations the following result gives

(quasi-)optimality.

Theorem 3.2. The output of RICH satisfies ‖u − uε‖ ≤ ε. If B is s̄-admissible

with s̄ ≥ smax and ε < ε0 . ‖u‖, then RICH is (quasi-)optimal.

Proof. The proof can be found in [46, Theorem 3.1].

3.5. ADAPTIVE WAVELET GALERKIN METHOD

In alternative to the iterative scheme, one can consider using an Adaptive

Wavelet Galerkin Method (AWGM) from [9] to approximate the solution of an op-

erator equation. In contrast to RICH, AWGM does not require coarsening of the

iterands and thus numerically outperforms the iterative Richardson procedure (see,

e.g., [26]). However, unlike the more general Richardson iterations, AWGM is limited

to the elliptic case. The idea behind AWGM is very similar to the Adaptive Finite

Elements Method: there the solution is projected to a finite subspace Λi representing

a finite mesh, then an error estimator is used to mark elements for refinement and
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the equation is solved on the refined mesh Λi+1 ⊃ Λi. The loop terminates when a

certain criterion is fulfilled, e.g., when the residual is small enough. As is common in

the literature, AWGM is introduced in an idealized setting first and then converted

to an implementable routine. The introduction mainly follows [46, Section 4].

Crucial for the convergence analysis of AWGM is the availability of an equivalent

energy norm. For this purpose, we assume B is s.p.d. and is boundedly invertible.

Note that if B is not symmetric and positive definite, then we can apply the scheme

to the normal equationBTBu = BTf . In fact, a closer inspection of the convergence

analysis reveals that symmetry ofB is not crucial. IfB is coercive but not symmetric,

then the induced bilinear form is not an inner product anymore and the associated

(pseudo-)norm is not a norm, since only the relaxed version ‖x + y‖ . ‖x‖ + ‖y‖ of

the triangle inequality holds. However, the convergence analysis does not depend on

this and is still valid in the setting. We will come back to the norm equivalences in

Subsection 6.5.

Define on `2(Λ)

|||·||| :=
√

(B·, ·)`2 .

Define restrictions of operators to subsets J ⊂ Λ where, in practice, J will be finite.

Define `2(J ) ⊂ `2(Λ) as the set of those vectors in `2(Λ), that have supports in J .

Let EJ denote the trivial embedding of `2(J ) into `2(Λ) and RJ its Hilbert adjoint.

Hence, EJ extends by filling entries in positions j ∈ Λ\J with zeros, and RJ restricts

by dropping entries outside J . Define the restricted operator onto `2(J ) as

BJ := RJBEJ .

The solution to BΛiuΛi = RΛif is known as the Galerkin approximation and is

the best approximation w.r.t. |||·|||. The idea of AWGM is to compute the Galerkin
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solution on (a finite) Λi, then enlarge Λi to Λi+1 such that the solution on Λi+1 satisfies∣∣∣∣∣∣u− uΛi+1

∣∣∣∣∣∣ ≤ ρ|||u− uΛi ||| for some ρ < 1. Furthermore, this enlargement should

be minimal. The following result shows that, if the enlargement captures the bulk of

the residuum, also referred to as the bulk criterion, then the AWGM converges.

Lemma 3.3. Let µ ∈ (0, 1], w ∈ `2(Λi) and Λi ⊂ Λi+1 ⊂ Λ such that

‖RΛi+1
(f −Bw)‖ ≥ µ‖f −Bw‖. (3.2)

Then for the Galerkin solution uΛi+1
, we have

∣∣∣∣∣∣u− uΛi+1

∣∣∣∣∣∣ ≤√1− β2|||u−w|||

where

β := µ · κ(B)−
1
2 .

Proof. The proof can be found in [46, Lemma 4.1].

Taking µ sufficiently small, e.g., 0 < µ < κ(B)−1/2, we get β < κ(B)−1 ≤ 1

and thus a convergent scheme. Moreover, this particular choice of µ ensures the

cardinality of Λi+1 is controlled, as the following result shows.

Lemma 3.4. For µ as above and for the minimal Λi+1 satisfying (3.2), we have

#(Λi+1 \ Λi) ≤ min

{
N : |||u− uN ||| ≤

√
1− β̄2|||u−w|||

}
,

where

β̄ := µ · κ(B)
1
2 < 1.
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Proof. The proof can be found in [46, Lemma 4.2].

In conclusion, if we choose a minimal sequence (Λi)i, where in each iteration we

capture the bulk of the residuum and compute the Galerkin approximation, then we

get a convergent solving procedure for the operator equation. The following result

offers a summary.

Proposition 3.6. For the sequence of Galerkin approximations (ui)i produced as

discussed above and the choice of µ as above we have

|||u− uΛi||| ≤ (1− β2)i/2|||u|||.

If additionally u ∈ A s for some s > 0, then

# supp(uΛi) . ‖u− uΛi−1
‖−1/s‖u‖1/s

A s .

Proof. The proof can be found in [46, Proposition 4.1].

Of course, this procedure is not practically implementable. In order to obtain

an implementable routine, three issues have to be addressed:

• The approximation of the, in general, infinite residual.

• Enlargement of Λi to Λi+1 based on the computed (approximate) residual.

• Galerkin solution on Λi+1.

Given appropriate solutions to all of the above issues, the following proposition shows

that the results from the idealized procedure extend to this setting.

Proposition 3.7. Let δ ∈ (0, α), γ > 0 be constants such that µ := α+δ
1−δ < κ(B)−1/2

and γ < (1−δ)(α−δ)
1+δ

κ(B)−1. Let r ∈ `2(Λ) (approximate residual) be such that

‖f −Bw − r‖ ≤ δ‖r‖.
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Let Λi ⊂ Λi+1 ⊂ Λ be such that (bulk criterion)

‖RΛi+1
r‖ ≥ α‖r‖

and such that #(Λi+1 \Λi) is minimal up to some absolute multiple. Let w̄ ∈ `2(Λi+1)

be an approximation to uΛi+1
such that

‖RΛi+1
f −BΛi+1

w̄‖ ≤ γ‖r‖.

Then

|||u− w̄||| ≤ ρ|||u−w|||,

where

ρ :=

√
1−

(
α− δ
1 + δ

)2

κ(B)−1 +
γ2

(1− δ)2
κ(B) < 1

and

#(Λi+1 \ Λi) . min

{
N : |||u− uN ||| ≤

√
1− β̄|||u−w|||

}
.

Proof. The proof can be found in [46, Proposition 4.2].

The first issue, concerning approximating the infinite residual, can be solved

using the routines RHS and APPLY as described in the previous subsections. The

second issue, concerning expanding Λi to Λi+1 is solved by adding to Λi those indices

from Λ for which the entries of the approximate finitely supported residual are largest

in magnitude. This is achieved by the routine EXPAND, and the enlarged index set

is indeed minimal (see [46, Proposition 4.3]). As for the Galerkin approximation, as an
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example of a routine satisfying the requirements of the Proposition 3.7, the Richardson

iteration can be utilized (see [46, Proposition 4.4]). One can, however, easily think

of other iterative methods to compute the Galerkin approximation. From hereon, we

denote this step of AGWM as GALERKIN. Thus, we have the ingredients for a

valid AWGM routine. We conclude this subsection by stating an AWGM routine in

Algorithm 3.2 as in [46, Section 4] and the corresponding optimality result.

Algorithm 3.2 AWGM

Input: ε, ε−1 > 0, α, δ, γ, θ with δ ∈ (0, α), α+δ
1−δ < κ(B)−1/2, θ > 0 and γ ∈

(0, (1−δ)(α−δ)
1+δ

κ(B)−1)
Output: uε with ‖f −Buε‖ ≤ ε
i := 0,ui := 0,Λi := ∅
loop
ζ := θεi−1

repeat
ζ := ζ/2, ri := RHS[f ; ζ/2]−APPLY[B;ui; ζ/2]
if εi := ‖ri‖+ ζ ≤ ε then
uε := ui stop

end if
until ζ ≤ δ‖ri‖
Λi+1 := EXPAND[Λi; r

i;α]
ui+1 := GALERKIN[Λi+1;ui; εi; γ‖ri‖]

end loop
return uε := ui+1

Theorem 3.3. The output of AWGM satisfies ‖f−Buε‖ ≤ ε. If B is s̄-admissible

for s̄ ≥ smax, then AWGM is (quasi-)optimal.

Proof. The proof can be found in [46, Theorem 4.1].
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4. PDE FOR THE CDO PROBLEM

In this section, we introduce the PDE from [41]. The PDE arises from a stochas-

tic model of a CDO, where the underlying process is an Itō-Process. In such models,

typically, the conditional expectation can be equivalently expressed through a PDE.

Since the portfolio states are expressed as a Markov chain with a very large number

of states, the resulting PDE contains a high-dimensional part, i.e., a huge number

of parameters. Under appropriate assumptions, this part can be separated from the

wavelet components such that we can apply H-Tucker to store and manage the high-

dimensional part.

4.1. VARIATIONAL FORMULATION

The value of the CDO portfolio is described by the function u = (u0, . . . , uJ)T

where J := {0, . . . , J} are the states of the Markov chain. The function satisfies

a system of parabolic PDEs, i.e., for each j ∈ J we have



ujt(t, y) = r(t, y)uj(t, y)− αT (t)∇uj(t, y)− 1

2
tr
[
β(t)β(t)THuj(t, y)

]
−
∑
k:k 6=j

dj,k(t, y)(aj,k(t, y) + uk(t, y)− uj(t, y))− cj(t, y),

u(T, y) = uT (y) := (a0(y), . . . , aJ(y))T .

(4.1)

As usual, since we are interested in the weak solution and due to homogenization,

we can assume homogeneous Dirichlet boundary conditions on the domain of interest

Ω ⊂ Rd. The parameters are (see [41, Section 6]):

• r(t, y) is the market interest rate.
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• α(t) ∈ Rd is the drift vector and β(t) ∈ Rd×d is the volatility matrix stemming

from the market process

dY (t) = α(t)dt+ β(t)dW (t),

where W (t) is a d-dimensional Wiener process. The space variable y ∈ Rd

describes the current market situation.

• Hu(t, y) is the Hessian of u.

• dj,k(t, y) are the transition intensities.

• aj,k(t, y) are the recovery payments.

• cj(t, y) are the CDO payments.

• aj(y) are the final payments at maturity.

As can be inferred from [41, Theorem 6.1 and Remark 6.1], the weak form of this

PDE is well posed. However, due to the aforementioned high-dimensional structure,

i.e., due to the huge number of λj,k, it is not possible to solve the PDE numerically,

given the current state of numerical methods and storage capacities. For this purpose,

we require the following assumption that, as we will see later in Subsection 4.2, allows

us to express the semi-discrete problem as a tensor problem, where one side of the

tensor product is compatible with the H-Tucker structure, while the other represents

the wavelet part.

Assumption 4.1. Assume that the coefficients have an affine decomposition as

dj,k(t, y) = d̃j,k(t)hd(y), aj,k(t, y) = ãj,k(t)ha(y),

cj(t, y) = c̃j(t)hc(y), aj(y) = ãjha(T )(y).
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In the following, notation of the form L2(0, T ;X) or H1(0, T ;X), where X is

some Banach space, is used to denote Bochner spaces6.

Lemma 4.1. Let Assumption 4.1 hold. Then for (4.1) the variational formulation

in space reads


(ut, v)L2 + a(u, v) = (f, v)L2 ,

u(T ) = uT := (a0, . . . , aJ)T
(4.2)

for almost all t ∈ [0, T ] and f ∈ L2(0, T ; (L2(Ω))J+1). The test space is X :=

L2(0, T ; (H1
0 (Ω))J+1) ∩ H1(0, T ; (L2(Ω))J+1) and the trial space is Y := H1

0 (Ω)J+1.

The bilinear form a(·, ·) is given by

a(u, v) := −
∫

Ω

r(t, y)uT (t, y)v(y)dy +

∫
Ω

α(t)T∇u(t, y)v(y)dy

− 1

2

∫
Ω

tr

[(
∂

∂y
u(t, y)

)T
β(t)β(t)T∇v(y)

]
dy +

∫
Ω

hd(y)uT (t, y)DT (y)v(y)dy

and

f(t, y) = −c̃(t)hc(y)− Γ(t)hd(y)ha(y)

with c̃(t) := (c̃0(t), . . . , c̃J(t))T

Γ(t) :=

(∑
k:k 6=0

d̃0,k(t)ã0,k(t), . . . ,
∑
k:k 6=J

d̃J,k(t)ãJ,k(t)

)T

6See [25, Section 5.9.2].
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and D(t) = (Di,j(t))j,i∈J with

Di,j(t) :=


d̃i,j if i 6= j,

−
∑

k:k 6=j d̃
i,k(t) if i = j.

Proof. See [41, Lemma 6.1].

Remark 4.1. Note that if u ∈ H1(0, T ;X) for a Banach space X, then u has a contin-

uous representative u∗ ∈ C(0, T ;X) such that the statement u(T ) = uT makes sense.

For more details, we refer to [25, Section 5.9.2, Theorem 2].

Theorem 4.1. If β(t)β(t)T has full rank and Ω ⊂ Rd is a Lipschitz domain, then the

problem (4.2) is well posed.

Proof. See [41, Theorem 6.1 and Remark 6.1].

4.2. DISCRETIZATION

A common method to solve time-dependent PDEs is to discretize in space and

time separately. This is often referred to as Method of Lines. In particular, as

in [41, Section 6.2], we want to use the θ-time stepping scheme for the PDE in (4.2),

and it will be required in the sequel as well. Discretizing in space first, let uj(t, y) =∑
λ∈Λ x

j
λ(t)ψλ(y). Note that, given a basis for H1

0 , the basis for the Cartesian product

can be simply taken as the canonical basis of the form ejλ := (ψλδi,j)i where δ denotes

the Kronecker delta. Analogously, we can use the canonical basis as test functions.
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Thus, for each j ∈ J , we get the semi-discrete problem

∂

∂t

∑
µ∈Λ

xjµ(t)(ψµ, ψλ)L2

=
∑
µ∈Λ

xjµ(t)(r(t, ·)ψµ, ψλ)L2 −
∑
µ∈Λ

xjµ(t)
d∑
i=1

(α(t))i(D
iψµ, ψλ)L2

+
1

2

∑
µ∈Λ

xjµ(t)
d∑

i,k=1

(β(t)β(t)T )i,k(D
iψµ, D

kψλ)L2 − c̃j(t)(hc, ψλ)L2

−
∑
k:k 6=j

[
d̃j,k(t)ãj,k(t)(hdha, ψλ)L2 + d̃j,k(t)

∑
µ∈Λ

xkµ(t)(hdψµ, ψλ)L2

− d̃j,k(t)
∑
µ∈Λ

xjµ(t)(hdψµ, ψλ)
]

for each λ ∈ Λ. Hence, in matrix notation with xj(t) := (xjλ(t))λ∈Λ the system for

each j ∈ J reads as

∂

∂t
M1x

j(t) =A(t)xj(t)−
∑
k:k 6=j

d̃j,k(t)
(
M2(t)(xk(t)− xj(t)) + ãj,k(t)F1

)
− c̃j(t)F2, (4.3)

where

M1 := ((ψµ, ψλ)L2)λ,µ∈Λ ,

M2(t) := (hdψµ, ψλ)λ,µ∈Λ ,

A(t) :=
(

(r(t, ·)ψµ, ψλ)L2 −
d∑
i=1

(α(t))i(D
iψµ, ψλ)L2

+
1

2

d∑
i,k=1

(β(t)β(t)T )i,k(D
iψµ, D

kψλ)L2

)
λ,µ∈Λ

,

F1 := ((hdha, ψλ)L2)λ∈Λ ,

F2 = ((hc, ψλ)L2)λ∈Λ .
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Thus, for the entire system the semi-discrete problem reads

(
∂

∂t
(I⊗M1)− [I⊗A(t)−D(t)⊗M2(t)]

)
x(t) = b(t)⊗F1 − c̃(t)⊗F2 (4.4)

where

I ∈ R(J+1)×(J+1),

b(t) = −

(∑
k:k 6=j

d̃j,k(t)ãj,k(t)

)
j∈J

and the terminal condition is given by

x(T ) := ã⊗F3,

F3 :=
(
(ha(T ), ψλ)L2

)
λ∈Λ

with ã := (ã0, . . . , ãJ)T . For more details, see [41, Theorem 6.2].

Remark 4.2. The expression “ ∂
∂t
u(t) =

∑
λ∈Λ x

′(t)ψλ” that was implicitly used above

should be interpreted as follows. Let the solution u be in X = L2(0, T ;H1
0 (Ω)) ∩

H1(0, T ;L2(Ω)), as in the problem above. Then ut(t) ∈ L2(Ω), and one can easily

show ut(t) =
∑

λ∈Λ dλ(t)ψλ. By definition of the weak time derivative of u and using

properties of the Bochner integral7

∫ T

0

ut(t)vdt =
∑
λ∈Λ

ψλ

∫ T

0

dλ(t)v(t)dt

= −
∫ T

0

u(t)v′dt = −
∑
λ∈Λ

ψλ

∫ T

0

xλ(t)v
′(t)dt,∫ T

0

dλ(t)v(t)dt = −
∫ T

0

xλ(t)v
′(t)dt, ∀λ ∈ Λ

7For details on integration theory on general measure spaces, we refer to [40, Sections 17–19].
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for a test function v ∈ H1
0 ((0, T )). In fact, xλ ∈ H1((0, T )) and ut(t) =

∑
λ∈Λ x

′
λ(t)ψλ.

Moreover, since xλ ∈ H1((0, T )), x has an absolutely continuous representative that

is differentiable almost everywhere. Thus, applying finite differences in time makes

sense. For a comprehensive analysis of the time-stepping scheme, see, e.g., [47, Sec-

tion 1].
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5. APPROXIMATING DIFFERENTIAL OPERATORS

The method of lines, as described in Subsection 4.2, is a standard method for

solving time-dependent boundary value problems. The aim of an adaptive wavelet

method is to achieve an approximation to the solution of a prescribed tolerance while

keeping computational and storage costs at a minimum. In other words, the aim is

to achieve (quasi-)optimality as in Definition 3.1. Due to the nature of time-stepping

schemes and to our best knowledge, no such optimality results have been established

for time-stepping schemes in this context. On the other hand, as can be seen in Section

3, the analysis concerning (quasi-)optimality of adaptive methods was conducted in a

rather general framework, i.e., for general operator equations. Thus, intuitively, these

results should naturally extend to parabolic problems, where the operator arises from

the space-time variatonal formulations. Indeed, an approach proposed by [43] for

solving a general parabolic problem was shown to be (quasi-)optimal. The method

introduces no penalty in complexity due to the use of tensor-product bases. Efficient

approximate residual evaluation based on multi-trees was presented in [32] and an

adaptive method for periodic problems thereafter [31].

The results in [43] are rather technical, and we will thus refrain from discussing

them here in detail. Instead, in this section, we will focus on properties of operators

of the form as they arise in the semi-discrete problem in (4.3), ignoring for now

that these only represent operator equations for a fixed t, and are thus only one

component of the entire differential operator. This will suffice to illustrate main

ideas and wavelet bases properties leading to compressiblity and (quasi-)optimality.

Furthermore, we will require the compressibility results in the sequel for solving the

semi-discrete problem adaptively. Given an appropriate basis, the estimates can be
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used in combination with results from [43] to show (quasi-)optimality for solving the

normal equations. For more details, we refer the reader to the aforementioned paper.

5.1. COMPRESSIBILITY

As previously mentioned, compression of operators is usually guaranteed by the

properties of the underlying wavelets. In this subsection, we take a closer look to

confirm this expectation. To show compressibility, we will proceed as follows: first we

show compressiblity in 1D, then we use the result to get compressiblity for the tensor

product. Since the operator in (4.3) consists of three parts, we state results that

apply to each part individually, and the overall compression then trivially follows. In

this section, we are thus interested in operator equations, i.e.

Bu = f ,

where, however, B and f will be of a more specific form, as will be discussed below.

Furthermore, since we will be using tensor product bases later on, we consider op-

erators that arise by discretizing differential operators using tensor product wavelet

bases. Note that from hereon, we solely concentrate on compressiblity issues and

assume the underlying problem is well posed. For the particular problem in (4.2),

existence, uniqueness and stability were shown in [41].

For the 1D compression, we can use the results from [42]. [42, Lemma 3.1] is

restated here in its general form for a bounded domain Ω ⊂ Rd, and for illustration

purposes, the proof is included in more detail. First we need the following notation:

for λ, µ ∈ Λ with supp(ψλ) ∩ supp(ψµ) 6= ∅ and supp(ψλ) ∩ ∂Ω = ∅ for |λ| ≥ |µ| (and



56

respectively for |λ| < |µ|), define the indicator i(λ, µ) ∈ {0, 1} by setting

i(λ, µ) :=


dist(singsupp(ψµ), supp(ψλ)) > 0 when |µ| ≤ |λ|

dist(singsupp(ψλ), supp(ψµ)) > 0 when |µ| > |λ|.

The notation is introduced in order to exploit the fact that many wavelets construc-

tions, in particular those discussed in the previous section, are piecewise polynomials

and have vanishing moments. This will allow to use Assumptions 2.8 and 2.9 for the

case i(µ, λ) = 0. Moreover, note that if the coefficient function is a polynomial itself,

then the entire entry vanishes in case i(µ, λ) = 0. Vanishing moments do not hold

in general for boundary wavelets (see [19]), i.e., wavelets that intersect the boundary.

These are the wavelets that are added to the basis system in order to ensure boundary

adaptivness. However, as long as the number of such wavelets is uniformly bounded,

this does not influence the compressiblity results.

For the next result we are going to need particularly the Assumptions 2.3, 2.8

and 2.9.

Lemma 5.1. Let Ω ⊂ Rd be a bounded domain. Let α, β ∈ Nd be multi-indices and

Dα the canonical differential of order |α| =
∑n

i=1 αi. Assume w.l.o.g. |β| ≤ |α| ≤ r+1

and |µ| ≤ |λ|, where µ, λ ∈ Λ. Let the preconditioned entry a
(α,β)
λ,µ be defined as

a
(α,β)
λ,µ := 2−|λ||α|−|µ||β|

∫
Ω

gDαψµD
βψλ. (5.1)

If g ∈ W p+|β|
∞ , then

|a(α,β)
λ,µ | .


2−
∣∣|λ|−|µ|∣∣( d

2
+p+|β|)‖g‖

W
p+|β|
∞

if i(µ, λ) = 0, |α + β| ≤ r + 1

2−
∣∣|λ|−|µ|∣∣( d

2
+r+1−|α|)‖g‖

W
r+1−|α|
∞

otherwise,

(5.2)
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where we use the norms over the set supp(ψµ) ∩ supp(ψλ).

Remark 5.1. Furthermore, in Lemma 5.1 we require that the wavelet system is bound-

ary adapted with Dirichlet boundary, i.e., in this setting we need Dηψλ = 0 on ∂Ω for

all η ≤ β with η 6= β. Note, however, that in the second, better estimate we require

that ψλ is an inner wavelet, i.e., not stemming from the boundary condition. Oth-

erwise the vanishing moment property is not guaranteed. If ψλ is an inner wavelet,

then it vanishes on ∂Ω as well.

Proof of Lemma 5.1. Consider first the case |α + β| ≥ r + 1. Then choose γ ≤ β

(componentwise) such that |γ + α| = r + 1. Integrating by parts and using the

Dirichlet boundary conditions, we get

a
(α,β)
λ,µ = 2−|λ||α|−|µ||β|

∫
Ω

(−1)|γ|Dγ(gDαψµ)Dβ−γψλ.

Now observe when applying the Leibniz differentiation rule to Dγ(gDαψµ), we obtain

a sum of mixed derivatives of order up to r+ 1− |α| for g and r+ 1 for ψµ. Thus, we

can bound the resulting sum by ‖g‖
W
r+1−|α|
∞

·‖ψµ‖W r+1
∞

. For ‖ψµ‖W r+1
∞

and ‖ψλ‖W |β−γ|∞
,

we use the property (2.4). As for the measure of the common support, we use the

support decay property (2.1) and thus get

|a(α,β)
λ,µ | . 2−|λ||α|−|µ||β|‖g‖

W
r+1−|α|
∞

2|µ|(
d
2

+r+1)2−|λ|d2|λ|(
1
2

+|β−γ|).

Next notice that, since β ≥ γ, we get

|β − γ| =
d∑

k=1

(βk − γk) =
d∑

k=1

(βk + αk)− (αk + γk)

=
d∑

k=1

(βk + αk)−
d∑

k=1

(αk + γk) = |β + α| − |α + γ| = |β|+ |α| − (r + 1).
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Summing all together gives

|a(α,β)
λ,µ | . ‖g‖W r+1−|α|

∞
2(|µ|−|λ|)( d

2
+r+1−|α|).

Second, consider the case |β + α| ≤ r + 1. Integrating again by parts and using the

boundary conditions, we get

a
(α,β)
λ,µ = 2−|λ||α|−|µ||β|

∫
Ω

(−1)|β|Dβ(gDαψµ)ψλ.

As in the first case, for g we get derivatives of order up to r+ 1−|α| and r+ 1 for ψµ.

Furthermore, we can use the estimate (2.3) for s := r+ 1− |α| − |β| ≤ r+ 1 ≤ p and

thus get

|a(α,β)
λ,µ | . 2−|λ||α|−|µ||β|‖g‖

W
r+1−|α|
∞

2|µ|(
d
2

+r+1)2−|λ|(
d
2 +r+1−|α|−|β|)

. ‖g‖
W
r+1−|α|
∞

2(|µ|−|λ|)( d
2

+r+1−|α|).

Third, consider the case i(µ, λ) = 0 and |α + β| ≤ r + 1. Thus, we can use the

estimate (2.5) for ψµ. With the rest being as before and using s := p for ψλ, we get

|a(α,β)
λ,µ | . 2−|λ||α|−|µ||β|‖g‖

W
|β|+p
∞

2|µ|(
d
2

+|α|+|β|+p)2−|λ|(
d
2

+p)

. ‖g‖
W
|β|+p
∞

2(|µ|−|λ|)( d
2

+p+|β|).

This proves the estimate (5.2).

Next we take a look at the bi-infinite matrix consisting of entries that are of

the form as in (5.1) where the wavelets are n-th tensor products of wavelets each in

dm dimensions. Normally one would have dm = 1 for all m. However, the general

setting of this result also allows for wavelets in more than one dimension that are
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not tensor-products of wavelets on the interval (e.g., [12]), thus also leaving more

flexibility w.r.t. the choice of the product domain.

The following theorem is stated as in [42, Theorem 4.1]. To accommodate for

the tensor product setting, we require the following notation:

• Ω := Xnm=1 Ωm,

• p := (p1, . . . , pn),

• r := (r1, . . . , rn),

• d := (d1, . . . , dn),

• Λ := Xnm=1 Λm,

• |α| := (|α1|, . . . , |αn|),

• For λ ∈ Λ, |λ| := (|λ1|, . . . , |λn|),

• max(α,β) := (max(α1, β1), . . . ,max(αn, βn)),

• i(µ, λ) := (i1(µ1, λ1), . . . , in(µn, λn)),

• z(i) := (z
(i1)
1 , . . . , z

(in)
n ) ∈ Rn where

z(i) :=


p+ min |αm|, |βm| for i = 0,

r + 3
2
−max(|αm|, |βm|) for i = 1,

• Dα := ⊗n
m=1D

αm
m .

Theorem 5.1. Let |α|, |β| ≤ r + 1. Suppose Dγg ∈ L∞(Ω) for all |γ| ≤ p +

min(|α|, |β|). Define the bi-infinite matrix A by

(A)µ,λ := 2−|µ|·|α|−|λ|·|β|
∫

Ω

gDα

(
n
⊗
m=1

ψ(m)
µm

)
Dβ

(
n
⊗
m=1

ψ
(m)
λm

)
, (5.3)
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where · denotes the inner product on Rn. For any j ∈ N, we define the compressed

matrix Aj by dropping the entries of A if

||λ| − |µ|| · zi(µ,λ) > j. (5.4)

Then the resulting error can be bounded by

‖A−Aj‖ . jn−12−j

where we use the norm on `2(Λ). The number of nonzero entries in each row and

column of Aj is of order O(jn−12j/s
∗
), where

1

s∗
:= max

1≤m≤n
max

(
dm

p+ min(|αm|, |βm|)
,

dm − 1

r + 3
2
−max(|αm|, |βm|)

)
. (5.5)

Proof. We first consider a partition of A into blocks as A =
∑
i∈{0,1}nA

(i), where

A(i) is the block of all nonzero entries with i(µ, λ) = i. Note that there are exactly

2n such partitions. Hence, we can estimate the error and the number of nonzero

entries for each partition, and the same bounds will hold for the entire matrix. By

the dropping rule in (5.4), the matrix Aj consists of blocks A
(i)

l,l′
= (A

(i)
µ,λ)|µ|=l,|λ|=l′ ,

where |l′ − l| · z(i) ≤ j, and we first consider those blocks.

Consider a given dimension m from the tensor product. To estimate the number

of nonzero entries, we consider the cases im = 0 and im = 1. Note that this is sufficient

since the wavelets are tensor products here, i.e., if for a single m a wavelet vanishes,

then so does the entire entry in the matrix. If im = 0, then the number of nonvanishing

wavelets can be simply bounded by 2max(l′m−lm,0)dm as in (2.2). Otherwise, if im =

1, then, due to the local support of wavelets and the piece-wise smoothness, the

number of such wavelets is uniformly bounded if dm = 1, and bounded in general

by 2max(l′m−lm,0)(dm−1) since the singular support of a wavelet is (dm − 1)-dimensional.



61

All together we thus can bound the number of nonzero entries in each row of A
(i)

l,l′

or column of A
(i)

l′,l
by 2max(l′−l,0)·(d−i). The parameter s∗ was defined in (5.5) in such

a way that it is the largest number such that d − i ≤ z(i)

s∗
. Counting the number of

nonzero elements and considering the dropping rule (5.4), we get

#(Aj)µ,· .
∑

{l′:0≤(l′−|µ|)·z(i)≤j}

2(l′−|µ|)·z(i)/s∗ .
j∑

k=0

2k/s
∗
kn−1 . jn−12j/s

∗
,

where the constant in general depends on z(i). Thus the number of nonzero elements

in Aj in each row and column is of order O(jn−12j/s
∗
).

Now we study the error bound. Recall that each entry of A is an integral over

tensor products except for the possibly nonseparable g. Since we assumed g to be

sufficiently smooth and all of its derivatives essentially bounded, by applying the

estimate from Lemma 5.1 and a tensor-product argument, we get

|(A)µ,λ| =
∣∣∣∣2−|µ|·|α|−|λ|·|β| ∫

Ω

gDα
n

⊗
m=1

ψ(m)
µm ·D

β
n

⊗
m=1

ψ
(m)
λm

∣∣∣∣
. max
|γ|≤z(i(µ,λ))− i(µ,λ)

2

‖Dγg‖L∞2||µ|−|λ||·(
d
2

+z(i(µ,λ))− i(µ,λ)
2

).

Note that the indices here are merely a compact version of (5.2). We apply the Schur

Lemma, Lemma 3.1. For any µ ∈ Λ with |µ| = l, we have

∑
{λ:|λ|=l′}

|(A)µ,λ| . 2−|l
′−l|·(d

2
+z(i)− i

2
)2max(l′−l,0)·(d−i),

and similarly for any λ ∈ Λ with |λ| = l′, we have

∑
{µ:|µ|=l}

|(A)µ,λ| . 2−|l
′−l|·(d

2
+z(i)− i

2
)2max(l−l′,0)·(d−i).
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Thus, all together, we get with the Schur Lemma

‖A(i)

l,l′
‖ . 2−2|l′−l|·(d

2
+z(i)− i

2
)2max(l−l′,0)·(d−i)2max(l′−l,0)·(d−i)

= 2−|l
′−l|·(d+z(i)−i)2|l

′−l|(d−i) = 2−|l
′−l|·z(i) .

Applying a straight forward bound and some simple combinatorics, we get

‖A(i) −A(i)
j ‖2 =

∑
{l,l′:|l′−l|·z(i)>j}

‖A(i)

l,l′
‖2

≤

max
l

∑
{l′:|l′−l|·z(i)>j}

‖A(i)

l,l′
‖

max
l′

∑
{l:|l′−l|·z(i)>j}

‖A(i)

l,l′
‖


.

(
max
l

∞∑
k=j

2−kkn−1

)(
max
l′

∞∑
k=j

2−kkn−1

)

=

(
2−jjn−1

∞∑
k=j

2−k+j

(
k

j

)n−1
)2

. (jn−12−j)2.

Note here that max is appropriate since as |l′ − l| gets large, the sum gets smaller

and hence the range of possible l is bounded.

Theorem 5.1 directly implies s∗-compressibility, which can be easily seen as

follows (cf. Definition in 3.3).

Corollary 5.1. A is s∗-compressible for s∗ as defined in (5.5).

Proof. Replace the compression rule in (5.4) by

||λ| − |µ|| · zi(µ,λ) > εs∗j
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where 0 < ε < 1. Then the number of nonzero entries in each row and column of Aj

can be estimated by

#(Aj)µ,· . (εs∗j)n−12εs
∗j/s∗ = (εs∗j)n−12εj = (εs∗j)n−12(ε−1)j2j = βj2

j

where βj := (εs∗j)n−12(ε−1)j ∈ `1(N). The resulting compression error is bounded as

‖A−Aj‖ . (εs∗j)n−12−εs
∗j.

Now let 0 < δ < 1 and observe that

(εs∗j)n−12−εs
∗j = (εs∗j)n−12s

∗εj(δ−1)2−εδs
∗j = αj2

−εδs∗j

where αj := (εs∗j)n−12s
∗εj(δ−1) ∈ `1(N). By setting s := εδs∗ and since 0 < ε < 1 and

0 < δ < 1 were chosen arbitrarily, the result holds for all 0 < s < s∗.

For illustration purposes we apply all of the above results to an operator of the

form of the semi-discrete problem (4.4), i.e., dm = 1 for all m. Recall that due to

Assumption 4.1, the high-dimensional part of the problem was separated from the

wavelet part. We switch to Ψ := {ψλ : λ ∈ Λ} to denote the wavelet system for Rn

A(t) :=

(
(r(t, ·)ψµ, ψλ)L2(Ω) −

n∑
i=1

(α(t))i (D
αiψµ, ψλ)L2(Ω) ,

+
n∑

i,j=1

(β(t)β(t)T )i,j
2

(Dαiψµ, D
αjψλ)L2(Ω)

)
λ,µ∈Λ

.

The operator A(t) is s∗-compressible according to Theorem 5.1 and Corollary 5.1,

where s∗ = p + 1 with p being the order of vanishing moments of the underlying

wavelets system. The preconditioning for an entry of A(t) can be taken as 2−|λ|−|µ|.
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The compression rule can be reduced to

z(i) :=


p+ 1 for i = 0,

r + 1
2

for i = 1,

where r is the global smoothness of the wavelet system.

It is clear that Theorem 5.1 applies to a wide range of operators. However, for

the particular operator A(t), combining these results with the work in [19], we can

obtain a much better estimate for the sparsity, s∗ and a simpler compression criterion

(see also [30, Section 4.4]). To be precise, we obtain better estimates for the second

and third terms of A(t). As for the other terms, same improvements apply if in

the particular setting r(t, ·) and hd are constant. To illustrate the origin of better

estimates, the results are stated here with a short proof sketch, since many details

follow analogously to Theorem 5.1.

Theorem 5.2. Let the operator B be defined as

B :=
(
a(ψλ,ψµ)

)
λ,µ∈Λ

where

a(ψλ,ψµ) = 2−|λ|−|µ|
∫

Ω

Dα

(
n
⊗
m=1

ψλm

)
Dβ

(
n
⊗
m=1

ψµm

)

with Ω ⊂ Rd being a bounded product domain and |α| = |β| = 1. The wavelets ψλ on

the interval are assumed to have p ≥ 3 vanishing moments. Then B is s∗-compressible

with s∗ =∞. We derive the matrix Bj from B by dropping all entries for which

‖|λ| − |µ|‖∞ > j.
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Then the number of nonzero entries in each row or column of Bj is of the order

O(nj), and the resulting error can be bounded by

‖B −Bj‖ . 2−(r+ 1
2

)j.

Proof. Consider first the case d = 1 and let w.l.o.g. |λ| ≥ |µ|. If i(µ, λ) = 0, then,

using homogeneous boundary conditions,

∫
Ω

ψ′µψ
′
λdx = −

∫
Ω

ψµψ
′′
λdx = 0

where the last equality is due to the vanishing moment property. If i(µ, λ) = 1, then

the entry does not vanish in general, but the number of such entries is uniformly

bounded in |λ| and |µ|. This implies the number of nonzero entries in each row or

column of Bj is O(j). The entry bound can be shown similarly to Lemma 5.1, and the

overall error bound can be shown as in Theorem 5.1 applying the Schur Lemma. For

the general case d > 1, due to the tensor product structure, the number of nonzero

entries in each row or column of Bj is O(nj) and the error bound is again shown as

in Theorem 5.1.

The estimates imply s∗ = ∞ which can be seen as follows (cf. [30, Theorem

4.14]). Replace j in the dropping criterion by 2j. The number of nonzero entries is

now O(n2j). For any s > 0, js ≤ C(s)+(r+1/2)2j for an appropriate choice of C(s).

This gives

‖B −Bj‖ . 2−(r+ 1
2

)2j ≤ 2C(s)2−js.

The fact that this implies Definition 3.3 can be shown in a similar fashion as in

Corollary 5.1 by adjusting the dropping criterion.
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Note that the estimate for s∗ in (5.5) comes from the bound on the number of

nonzero entries. This implies the result of Theorem 5.2 can be viewed as a limiting

case of Theorem 5.1 where as dm → 0, s∗ →∞.

Another observation that can be made at this point is that the results would hold

for polynomial coefficients as well. In summary, we thus obtain for PDE operators of

the form as in (4.4) that these are s∗-compressible by Theorem 5.1. Furthermore, in

case r(t, y) is constant in space or, more generally, polynomial, we obtain by Theorem

5.2 that s∗ =∞ and the number of nonzero entries in each row or column is of linear

complexity.

5.2. RIGHT-HAND SIDE

Last but not least the approximation of the RHS should be considered. Recall

from Subsection 3.2 the general form of the RHS arising from an operator equation

is

f = (〈f, ψλ〉)λ∈Λ ,

where 〈·, ·〉 denotes the standard duality pairing. Thus, f ∈ `2(Λ) since Ψ is a Riesz

Basis and is, in general, an infinitely supported vector. The question is thus whether

and how we can approximate f by a finitely supported vector to any desired accuracy.

Note that the given f is the RHS of the equation

Bu = f ,

where B is s∗-compressible and u ∈ A s, so that f ∈ A s. This follows from the

fact that B : A s → A s is a bounded linear operator, which itself is implied by

s∗-compressibility for s∗ > s (cf. Proposition 3.1). Thus, f is in the appropriate class

in the sense that its best N -term approximation converges.
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For our particular PDE, the portion of RHS to be approximated is of the form

f = ((f, ψλ)L2)λ∈Λ .

Proceeding as in [19, Section 5], for the estimate assume that supp(ψλ) has empty

intersection with the boundary and that f ∈ W p
∞. Then, by using the fact that ψλ

has p vanishing moments and the estimate in (2.3), we get for the 1D case

∣∣∣∣2−|λ| ∫
Ω

fψλ

∣∣∣∣ . 2−( 3
2

+p)|λ|‖f‖W p
∞ ,

and generally for the n-dimensional case by a tensor product argument

∣∣∣∣2−|λ| ∫
Ω

fψλ

∣∣∣∣ . 2−( 3
2

+p)|λ|‖f‖W p
∞ .

Given this estimate, consider an approximation to f by dropping all entries outside

the set

Λ` := {λ ∈ Λ : |λ| ≤ `} .

Note that #Λ` ∼ 2` due to the fact # {λ ∈ Λ : |λ| ≤ l} ∼ 2l. The approximation

error is thus bounded by

‖f − f `‖ .
√∑

k>`

2k2−2k( 3
2

+p) . 2−(1+p)`.

Hence, with a support length N , the error should behave as O(N−(1+p)).
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In general, replace p by p(λ) where p(λ) = 0 if supp(ψλ) intersects the boundary

and p(λ) = p otherwise. The dropping criterion reads now

n∑
k=1

(
3

2
+ p(λk)

)
|λk| >

(
3

2
+ p

)
`.

As previously mentioned, we assume that the number of boundary wavelets is uni-

formly bounded for the chosen wavelet construction (cf. Assumption 2.7). This implies

# {λ ∈ Λ : |λ| ≤ l and p(λ) = p, or |λ| ≤ l and p(λ) = 0} ∼ 2l + (l + 1) ∼ 2l.

Similarly we obtain an approximation to f of order O(N−(1+p)). Note that smax ≤

p − 1 ≤ p + 1 which means this approximation is better than the best possible rate

(cf. Assumption 3.1).

Note that since the goal is an adaptive scheme, it would be of more interest to

consider nonsmooth f . Here one could apply the approach discussed in [30, Section

4.6.3] for approximating such f under appropriate assumptions. This is subject to

further investigation and will not be discussed here.

5.3. QUASI-OPTIMALITY

Thus far we have discussed the approximation of the RHS and the differential

operator in the equation of the form

Bu = f .

It remains to discuss (quasi-)optimality as defined in Definition 3.1. This can be

demonstrated analogously to [46, Section 5]. Recall that for (quasi-)optimality, we

require that we can produce an approximation to the solution u up to any desired

tolerance, with storage and computational complexity that grows linearly in the out-
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put size. Furthermore, to be more precise, given the following discussion, (quasi-

)optimality is guaranteed for the normal equation, since B itself will not be s.p.d.

First, as mentioned in Section 3, in order to have optimality, we require that B

is s-admissible for s ≥ smax, where smax is the best possible approximation rate for

u. Since, as discussed in Subsection 3.3, s∗-computability implies s-admissibility, it

suffices to verify that B is s∗-computable for s∗ ≥ smax.

We consider an operator defined by entries as in (5.3), or, more generally,

(B)µ,λ :=
∑

|α|,|β|≤m

2−(|µ|+|λ|)m
∫

Ω

gα,βD
αψµD

βψλ, (5.6)

where m ≤ r + 1, with r being the global order of smoothness of the wavelet basis

and Ω ⊂ Rn. We require that the wavelet basis possesses the approximation property

as in Assumption 2.8 which gives the Whitney-type estimate

inf
vl∈span{ψλ:|λ|≤l}

‖u− vl‖Hm . 2−(p−m)l‖u‖Hp , u ∈ Hp(Ω) ∩Hm
0 (Ω),

where the last condition is due to wavelets with homogeneous Dirichlet boundary of

order m and p > m is the order of vanishing moments. Due to the fact that

# {λ ∈ Λ : |λ| ≤ l} ∼ 2nl,

then rewriting

2−(p−m)l‖u‖Hp = 2nl(−
(p−m)
n )‖u‖Hp ,

we observe that

smax ≤
p−m
n

.
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In case of a tensor product basis, as in our problem, similarly the best approximation

rate is known to be

smax = max
l

pl − t
nl

,

for approximating sufficiently smooth functions in H t(Ω), where Ω ⊂ Rn is a product

domain. For more details, see [46, Section 7.2] and references therein. For most

applications, as in the work of [41], nl = 1 and pl = p, for all l. Thus smax = p−t which

also shows that the so called “curse of dimensionality” in the context of approximation

rates – the rate is inversely proportional with the space dimension – is removed for

tensor bases. Comparing this rate with s∗ from (5.5), since obviously p + t ≥ p − t,

we easily verify that s∗ ≥ smax.

Furthermore, we require s∗-computability of B to apply Theorem 3.3 that

ensures that the resulting AWGM is (quasi-)optimal. Hence, we require suitable

quadrature rules to compute the significant entries of B that keep the error on the

same level and require O(1) operations per entry of a row or column of B. For

operators as defined in (5.6), this can be achieved by applying a product compos-

ite quadrature rule, keeping s∗-computability for the same value of s∗ as in the s∗-

compressiblity estimate. This was shown in, e.g., [46, Section 5.2] or [42, Section 6].

This approach, in general, still requires computing entries that involve wavelets on

largely different levels. A more efficient approach, avoiding such computations, can

be realized through Trees, as discussed in [46, Section 5.3] or [31].

Last but not least, we need to verify the availability of RHS[f , ε] as assumed

in Assumption 3.1. In the previous subsection we described an approximation for

a sufficiently smooth f . Furthermore, as in the case of B, we require a suitable

quadrature rule for approximating the entries, keeping the error on the same level

and requiring O(1) operations per entry. As was shown in [19] and [42], by taking
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again a product composite quadrature rule, the error is maintained on the same

level and the number of operations can be bounded by some absolute multiple of

# supp(f ε). As was stated in Proposition 3.4, this shows that for a given tolerance

ε > 0, we obtain an approximation

‖f − f ε‖ ≤ ε,

where the number of operations is bounded by some absolute multiple of

ε−1/s‖u‖1/s
A s + 1,

and the storage requirement can also be bounded as

# supp(f ε) . ε−1/s‖u‖1/s
A s .

All together this ensures the (quasi-)optimality of the AWGM. See [46] for more

details.
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6. H-TUCKER-APPLY

In this section, we are concerned with adaptive schemes to solve PDEs of the

form as in (4.1). There are several possibilities to approach this issue.

An initial ansatz would be to tackle the tensor problem as derived in (4.4).

One could think of applying an iterative solver to the problem, e.g., BiCGSTAB as

in the work of [41], coupled with approximate residual evaluations via APPLY and

RHS, which would result in a scheme similar to AWGM. In terms of the current

state of software, this would also be the easiest to implement approach. This method

will be discussed in Subsection 6.5. Firstly, due to the nature of time-stepping, no

(quasi-)optimality can be guaranteed, e.g., storage requirement and computational

complexity will generally depend on the number of time-steps, and Definition 3.1 is

not directly applicable to this situation.

Alternatively, one could apply Richardson iterations, as discussed in Subsection

6.4. This yields a convergent scheme for the semi-discrete problem, applied to the

operators directly, since these are positive definite. The iteration method is applicable

to a wider range of operator equations, as opposed to AWGM (see [10]). The same

statement concerning (quasi-)optimality as above holds in this situation as well.

And lastly, one could consider a different operator equation, by reformulating

(4.2) in a space-time variational form. Hence, we would simply have an operator

equation of the form

Bu = f .

From a theoretical point of view, this would be the “nicest” approach. Using results

from previous works (e.g., [43]) and considering the discussion in Section 5, we get

that the AWGM applied to the normal equations is near to (quasi-)optimal. By
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“near to”, we mean that due to evaluations of the form Dx, where D and x are given

in H-Tucker format, we will not obtain (quasi-)optimality in the classical sense, since

the complexity will generally depend on the high-dimensional part D, the input vector

x and the structure of the H-Tucker format of both8. Assuming we can separate the

high-dimensional part, this approach would also be generally implementable. How-

ever, considering the current state of software, this would be by far the most costly

method to implement.

At this point, we would like to emphasize that this section provides three pro-

posals for an adaptive scheme to solve operator equations as in (4.2) with some initial

analysis. However, the discussion is by no means complete. In order to fully com-

prehend the quantitative properties of all three of the proposed schemes, a more

thorough analysis and extensive numerical testing would be required. For instance,

an issue that is ignored in the following discussion is that matrix-vector operations

on the H-Tucker tensors that are heavily used in, e.g., linear solvers, necessarily lead

to truncations of the H-Tucker storage format. These truncations introduce an ad-

ditional error, and a careful analysis of the introduced error w.r.t. the error of the

wavelet approximation of the solution is important for the practical implementation.

This is, however, outside the scope of this work.

6.1. GENERAL KRONECKER PRODUCTS

In this subsection, we briefly describe the implementation of matrix-vector prod-

ucts with general Kronecker products as implemented in the current software and

stated in [41, Section 5.5]. This tells us exactly what kind of operations with tensors

in H-Tucker are currently permitted.

8Note that this remark applies to all of the three approaches mentioned here.
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Consider the Kronecker sum

M := H1 ⊗A1 +H2 ⊗A2.

Apply M to a vector x, where x = x1 ⊗x2 such that Hix1 and Aix2 both make sense

for i ∈ {1, 2}. Then

Mx = H1x1 ⊗A1x2 +H2x1 ⊗A2x2.

We think of Hi being in H-Tucker format, Ai being simple matrices, e.g., simply

stored as an array or, in the FLENS library, as GeneralMatrix. More importantly, for

operators arising from PDEs, frequently Ai will be sparse. Sparse matrices cannot

be incorporated well into the H-Tucker format, given the current state of software,

since the H-Tucker implementation is designed to store dense matrices. In a naive

approach, we would have to densify Ai which is highly inefficient. A remedy suggested

in [41, Section 5.5] is to apply binary operator tree structure, justified by the above

equation. This can be implemented using expression templates in C++ ( [50, Chapter

18]). In a nutshell, the matrix M is not set up explicitly and instead the class

HTuckerClosure stores a reference to the left and right operands together with the

operation given by a template parameter. In each operand, the (possibly sparse)

matrices Ai are not converted to H-Tucker but rather stored as references to the

original matrices. Explicit evaluations are only performed when we compute Mx and

the results are stored in the same format. For instance, an initialization of the matrix

M := A⊗ I1 + I2 ⊗B, where A ∈ H and B is a general dense matrix, is given in

Figure 6.1 (cf. [41, Listing 5.38]).

The general procedure for computing Mx is as follows.

1. Compute Ti := Hix1 by the matrix-vector product in H-Tucker format.
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HTuckerTree <double > A(5);

flens:: GeneralMatrix <FullStorage <double , ColMajor > > C(7,7);

MatrixTensor <flens:: GeneralMatrix <FullStorage <double , ColMajor > > >

B(1);

C.setMatrix (1,C);

DimensionIndex index1 (1);

index1 =7;

DimensionIndex index2 (5,4);

IdentityTensor I1(index1);

IdentityTensor I2(index2);

HTuckerClosure <OpAdd ,

HTuckerClosure <OpTensor ,

HTuckerClosure <OpMat , HTuckerTree <double >,

HTuckerTree <double > >,

IdentityTensor >,

HTuckerClosure <OpTensor ,

IdenityTensor ,

MatrixTensor <flens:: GeneralMatrix <FullStorage <double

, Colmajor > > >

>

> M=A*I1+I2*B;

Figure 6.1. Initialization of a general Kronecker product matrix.

2. Compute Ni := Aix2 by the standard matrix-vector product.

3. Concatenate Ti⊗Ni, where again Ni is not converted to H-Tucker but rather

stored as a reference.

4. Add to get the end result T1 ⊗N1 + T2 ⊗N2 in H-Tucker format.

6.2. SEMI-DISCRETE PROBLEM

In this subsection, we take a closer look at the semi-discrete problem (4.3) and,

in particular, the arising operators. The discussion is essentially analogous to semi-

discrete problems arising in FEM. For more details, e.g., stability of the semi-discrete

problem, we refer to [47], or, stability of the θ-scheme can be found in, e.g., [39].
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Consider a general parabolic Dirichlet BVP with initial data


ut + Lu = f, (t, x) ∈ (0, T ]× Ω

u(0, x) = u0(x), x ∈ Ω,

(6.1)

for an elliptic L. The weak form reads as


(ut, v) + a(t;u, v) = (f, v), v ∈ V ⊂X ,

u(0) = u0,

(6.2)

where we assume homogeneous boundary data and the same test and trial Hilbert

space X (Galerkin method). One can think of X being a Sobolev space, or, for

our purposes, a vector-valued Sobolev space. Discretizing in space by writing u(t) =∑
λ∈Λ x(t)ψλ, we get the semi-discrete problem

Mx′(t) +A(t)x(t) = F (t).

HereM is the mass matrix and A is the stiffness matrix. The operator A(t) inherits

the properties of the bilinear form. In particular, if the bilinear form a(t; ·, ·) is positive

definite, then so is A(t). The mass matrix M is always positive definite, since it is

a Gramian. Hence, the semi-discrete problem has a unique solution. To obtain a

fully-discrete problem, apply a θ-scheme for the time discretization

Mx(t+ ∆t)− x(t)

∆t
=θ(F (t+ ∆t)−A(t+ ∆t)x(t+ ∆t)) (6.3)

+ (1− θ)(F (t)−A(t)x(t)),
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i.e.,

(M+ ∆tθA(t+ ∆t))x(t+ ∆t) = (M−∆t(1− θ)A(t))x(t)

+ ∆t(θF (t+ ∆t) + (1− θ)F (t)),

where for simplicity we assumed a uniform time grid. Note again that the operator

on the LHS, namelyM+∆tθA(t+∆t), is positive definite. For θ ∈ [0, 1], the scheme

is A-stable. See [39] for a detailed analysis.

If we replace the initial condition by a terminal condition, then we get the

problem


−(ut, v) + ā(t;u, v) = (f, v), v ∈X ,

u(T ) = uT .

Note that the minus in front of the time derivative is important for the problem

to be well posed or, equivalently, without the minus sign, we would require −ā(·, ·)

to be weakly coercive, instead of ā(·, ·). By introducing the time transformation

v(T − t) = u(t) for t ≤ T , the above problem is equivalent to the IVP (6.2). In the

case V ⊂ (H1(Ω))J+1, for the IVP to be well posed, it suffices when the bilinear form

a(t; ·, ·) is continuous and weakly coercive, i.e., satisfies the G̊arding inequality

∃γ ≥ 0, α > 0 : a(t; v, v) + γ‖v‖2
L2
≥ α‖v‖2

V , ∀v ∈ V. (6.4)

This has been shown for the particular PDE in (4.2), see [41, Theorem 6.1]. If (6.4)

is satisfied, then we can assume w.l.o.g. that γ = 0, i.e., the bilinear form is coercive.

This can be seen as in [39, Section 11.1.1] by applying the transformation uγ := e−γu.
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Then

∂

∂t
uγ = e−γtut − γuγ,

Luγ = e−γtLu,

which implies (6.1) is equivalent to


∂
∂t
uγ + Luγ + γuγ = e−γtf,

uγ(0, x) = u0.

The associated bilinear form is

aγ(u, v) = a(u, v) + γ(u, v),

and, if a(·, ·) is weakly coercive, then

aγ(v, v) ≥ α‖v‖2
V − γ‖v‖L2 + γ‖v‖L2 ,

and hence, from hereon, we will assume a(·, ·) is coercive. This gives in particular for

our problem that the bilinear form is positive definite and, hence, so is the associated

discrete operator A. To be more precise, the semi-discrete problem for our PDE

system reads

Mx′(t)−A(t)x(t) = F (t),
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where, comparing with (4.3)

M = I⊗M1, (6.5)

A(t) = I⊗A(t)−D(t)⊗M2(t),

F (t) = b(t)⊗F1 − c̃(t)⊗F2.

The fact that this is indeed the discretized operator associated with the bilinear form

can be seen by testing against vλ,j with

vλ,j ∈ H1
0 (Ω)J+1, (vλ,j)k :=


ψλ, if k = j

0, otherwise.

For details of this derivation, see, e.g., Section 4 or [41].

6.3. PRECONDITIONING

As was discussed in the Section 5, the operators we obtain are s∗-compressible

post scaling. Here we briefly elaborate on the topic of preconditioning. In the sequel,

we will assume the operators have been already properly preconditioned.

There are several possibilities for preconditioning. Generally, as described in [41,

Section 6.4.1], for an equation of the form Bx = f , where B is of the form

B = I⊗A+D⊗M,

one could think of preconditioning the wavelet part only, i.e., using a preconditioner

of the form I⊗P−1, where P is the wavelet preconditioner. If A and M require the

same preconditioner, this approach would work. The preconditioned system is of the
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form

(I⊗P−1AP−1 +D⊗P−1MP−1)x̄ = f1 ⊗P−1f2, x̄ = x1 ⊗Px2. (6.6)

This is basically equivalent to incorporating preconditioning into the basis, i.e., con-

structing a Riesz basis of the form Ψ :=
{

2−|λ|ψλ : λ ∈ Λ
}

(cf. [19]). However, consider

the case M = I. The preconditioned operator reads

I⊗P−1AP−1 +D⊗P−1P−1.

Clearly this results in an ill-conditioned operator. Furthermore, even if M 6= I, re-

call that in the original version part of the operator is a mass-matrix that, using

orthonormal multi-wavelets as in [41], is in fact an identity operator. Hence, we have

to apply a preconditioner to the entire operator. For instance, a basic preconditioner

would be the Jacobi preconditioner, i.e., a diagonal matrix P with diagonal entries

Pi,i =
(√

Bi,i

)−1
. We would require the H-Tucker representation of such a precondi-

tioner, and this can be achieved as desribed in [41, Section 6.4.1]. One could consider

implementing more sophisticated preconditioners. A good survey on preconditioning

can be found in [3]. Note, however, that, in general, implementing a preconditioner

in H-Tucker format is a nontrivial task.

Unfortunately, for our purposes, this is not sufficient. Adaptive wavelet methods

rely specifically on the compressibility of the wavelet operators. Hence, we require the

more specific preconditioning as in (6.6). For of our particular PDE, as discussed in

Subsection 6.2, this would suffice to obtain compressible operators. In a more general

setting, for the purpose of different row and column scaling, let us consider precondi-

tioning the wavelet matrices using (possibly different) left and right preconditioners,
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P1 and P2 respectively. Recall the semi-discrete problem for j ∈ J as in (4.4),

∂

∂t
M1x

j(t) = A(t)xj(t)−
∑
k:k 6=j

d̃j,k(t)
(
M2(t)(xk(t)− xi(t)) + ãj,kF1

)
− c̃j(t)F2.

The preconditioned semi-discrete problem reads

∂

∂t
(I⊗P−1

1 M1P
−1
2 )x̄(t)−

(
I⊗P−1

1 A(t)P−1
2 −D(t)⊗P−1

1 M2(t)P−1
2

)
x̄(t)

= b(t)⊗P−1
1 F1 − c̃(t)⊗P−1

1 F2(t),

x̄(t) = (I⊗P2)x(t).

For P1 6= I, the system will have an ill-conditioned mass matrix. A simple way out

would be to apply another preconditioner, however, now to the entire system. E.g.,

we could apply the Jacobi preconditioner mentioned above. In practice, precondition-

ing the wavelet matrices will not cost computational effort since the matrix-matrix

and matrix-vector products are not setup explicitly. Computational effort would be

required for recovering the original solution vector, i.e., solving x̄(t) = (I⊗P2)x(t).

This cost should be negligible given a “simple” choice of P2, e.g., if P is a diagonal

operator. Hence, the only computationally expensive part in this preconditioning

would be setting up the preconditioner for the entire system in H-Tucker format. In

particular, this would require calls of the Black Box algorithm. It is expected that

these costs are negligible in comparison to the entire adaptive routine, although this

is not precisely clear at this point.

6.4. RICHARDSON ITERATIONS

In this subsection, we consider equations of the form

(I⊗A+D⊗M)x = f
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as they arise in (6.5). As discussed in Subsection 6.2, the operator on the LHS is pos-

itive definite, which will allow to use Richardson iterations in order to approximately

solve the infinite-dimensional problem. In this subsection, we check the availability

of the routines required for the approximate iterations.

In the above equation, I ∈ R(J+1)×(J+1) is an identity matrix, D ∈ R(J+1)×(J+1)

can be viewed as the matrix containing the transition intensities, i.e., this will be

the part of the operator requiring H-Tucker storage format. The operators A and

M are bi-infinite matrices representing the wavelet part of the operator, and f is the

RHS which will be usually obtained from the previous iteration. In order for this

matrix-vector product to be implementable, as discussed in Subsection 6.1, we have

to assume that x is given or can be factored as

x = x1 ⊗x2,

where x1 is of H-Tucker format compatible with D and x2 is compatible with the

wavelet matrices A and M . Then we can write the above equation as

(I⊗A+D⊗M)x = x1 ⊗Ax2 +Dx1 ⊗Mx2 = f,

which can be implemented as discussed in Subsection 6.1. Note that, strictly speaking,

A and M are not matrices and thus, e.g., I⊗A is not a Kronecker product between

matrices. More precisely, one should consider linear mappings

I : R(J+1)×(J+1) → R(J+1)×(J+1),

A : `2(Λ)→ `2(Λ),

I⊗A : R(J+1)×(J+1) ⊗ `2(Λ)→ R(J+1)×(J+1) ⊗ `2(Λ),
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where the latter is the unique mapping satisfying

(I⊗A)(v1 ⊗ v2) = Iv1 ⊗Av2,

and I, A are representations of the linear mappings w.r.t. the canonical bases. With

an appropriate choice of basis, one can, loosely speaking, view I⊗A as the Kronecker

product of I with a bi-infinite matrix A, keeping in mind that this is based upon the

interpretation of I⊗A as a linear mapping. For more details, see, e.g., [36].

Firstly, we would at least require (I⊗A+D⊗M) to be s∗-compressible. This

is, however, a trivial consequence of s∗-compressiblity of A and M .

Proposition 6.1. Let D be the intensity matrix as defined in (4.4) and Aε an ap-

proximation to A such that

‖A− Aε‖ ≤ ε

and the number of nonzero entries in each row or column of Aε is of order O(g(ε)).

Similarly define Mε. Then

‖(I⊗A+D⊗M)− (I⊗Aε +D⊗Mε)‖ . ε,

and the number of nonzero entries in each row or column is of order O(g(ε)) as well.

Proof. By the discussion on the representation of I⊗A from above, we easily get

‖I⊗A− I⊗Aε‖ ≤ (J + 1)‖A− Aε‖ ≤ (J + 1)ε.
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Since D is a finite matrix, we can set

C := max

{
max
i

∑
j

d̃i,j, max
j

∑
i

d̃i,j

}

and obtain for the remaining term

‖D⊗M −D⊗Mε‖ ≤ C(J + 1)2‖M −Mε‖ ≤ C(J + 1)2ε.

By counting, the number of nonzero terms in each row or column of I⊗Aε and

D⊗Mε can be bounded by some absolute multiple of (J + 1)g(ε).

Note that we only require the error estimate in Proposition 6.1, since I⊗Aε +

D⊗Mε is not set up explicitly. Both for an iterative solver and for the approxi-

mate residuals, we require the availability of a matrix-vector product Bx that can be

computed to any desired accuracy. Since the matrices representing the differential

part are s∗-compressible, we can easily obtain such a routine by combining APPLY

with the method described in Subsection 6.1. We will refer to this routine as HT-

APPLY. Note that D is given in H-Tucker format and the result of the performed

computation is stored in H-Tucker format as well, using operations permitted by the

current state of software (see [41]). Given a nontrivial x 6= 0, we can state the routine

as in Algorithm 6.1.

Algorithm 6.1 HT-APPLY

Input: B := (I⊗A+D⊗M), x = x1 ⊗x2 ∈ `0(Λ), ε > 0
Output: wε with ‖Bx− wε‖ ≤ ε

1: Compute R1 := Dx1 in HTucker format
2: Compute norms δ1 := ‖Dx1‖ and δ2 := ‖x1‖
3: Compute R2 := APPLY [M ;x2; ε/2δ1]
4: Compute L1 := APPLY [A;x2; ε/2δ2]
5: Concatenate L := x1 ⊗L1 and R := R1 ⊗R2

6: return L+R
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We collect some straightforward properties of Algorithm 6.1.

Proposition 6.2. For an s∗-admissible A and M , the output of HT-APPLY sat-

isfies

‖Bx− wε‖ ≤ ε,

# supp(wε) . (J + 1)ε−1/s‖x2‖1/s
A s

for x ∈ `0(Λ) and any s < s∗. The number of arithmetic operations is bounded by an

absolute multiple of

ε−1/s‖x2‖1/s
A s + # supp(x2) + 1 + g(D, x1),

where g(D, x1) is given in [41, Lemma 5.9] by

g(D, x1) := rDrx1

d∑
k=1

mk(2nk − 1) + (d− 1)(rD)3(rx1)3.

The parameters in the g are defined as follows:

• d is the order of the H-Tucker tensor used to store the vector x1 and the row

and column order of the H-Tucker tensor used to store D.

• rD := maxt∈Td r
D
t and rx1 := maxt∈Td r

x1
t are the maximal H-Tucker ranks,

where Td is the H-Tucker tree of D and x1.

Proof. For the error observe that

‖x1 ⊗Ax2 − x1 ⊗L1‖2 =

∥∥∥∥∥∥∥∥∥∥


(x1)0(Ax2 − L1)

...

(x1)J(Ax2 − L1)


∥∥∥∥∥∥∥∥∥∥

2

≤ ε2/4.
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Similarly

‖Dx1 ⊗Mx2 −Dx1 ⊗R2‖2 ≤ ε2/4,

which gives the first claim. By the same arguments and using the bound from AP-

PLY, we get the bound on # supp(wε). Finally, counting the number of operations

and considering that the number of operations required for the matrix-vector product

in line 1 is O(g(D, x1)), we get the last claim.

To make notation compact, let B := (I⊗A+D⊗M). We have the necessary

ingredients for the Richardson iteration of the form

xi+1 = xi + α(f −Bxi).

This is a fixed point type iteration, where convergence is guaranteed by the Banach

Fixed Point Theorem. Thus, convergence relies on the existence of an α ∈ R with

‖I − αB‖ < 1,

where I is the identity operator. If B is positive definite, then this is guaranteed

by, e.g., Lemma 3.2 for an appropriate choice of α. We require one last adjustment

for the routine COARSE (see Algorithm 6.2) before we can formulate the inexact

Richardson iteration.

Algorithm 6.2 HT-COARSE

Input: x = x1 ⊗x2 ∈ `0, x 6= 0, ε > 0
Output: xε with ‖x− xε‖ ≤ ε

return xε := COARSE [x2; ε/‖x1‖]



87

Proposition 6.3. The output of the routine HT-COARSE satisfies

‖x− xε‖ ≤ ε,

# supp(xε) . (J + 1) min
{
N : ‖x2 − xN2 ‖ ≤ ε

}
,

and the number of operations is of the order

# supp(x2) + max
{

log(ε−1‖x2‖), 1
}
.

Proof. The proof follows directly from the properties of COARSE.

Recall the RHS f contains a term of the form I⊗A+D⊗M and b⊗F . The

former can be approximated to any desired accuracy by above. The remaining term

can be viewed as

b⊗F =


b0F

...

bJF

 ,

and hence, by the discussion in Subsection 5.2, can also be approximated to any

desired accuracy. The adjustment to the routine RHS (see 6.3) are analogous to

those above.

Algorithm 6.3 HT-RHS
Input: ε > 0, F
Output: fε with ‖b⊗F − fε‖ ≤ ε
Fε := RHS [F ; ε/‖b‖]
Concatenate fε := b⊗Fε
return fε
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Once more, we collect the properties of this algorithm.

Proposition 6.4. The output of HT-RHS satisfies

‖b⊗F − fε‖ ≤ ε.

If B is s∗-admissible and for x = x1 ⊗x2, x2 ∈ A s with 0 < s ≤ s∗, then

# supp(fε) . (J + 1)ε−1/s‖x2‖A s ,

and the number of operations by the call of HT-RHS can be bounded by

ε−1/s‖x2‖A s + 1.

Proof. The proof follows by Proposition 3.4 and straight-forward computations.

Remark 6.1. Note that, strictly speaking, approximating RHS involves not just F , but

an application of HT-APPLY as well, thus we would apply half a given tolerance,

i.e., ε/2 to both routines. Moreover, since HT-RICH would in general include a call

to HT-APPLY, this would have to be accounted for in the arithmetic complexity.

Together with routines for the RHS and approximate matrix vector products,

we can formulate the Richardson iteration.

For the convergence of the scheme we require that B is boundedly invertible

and positive definite. This can be seen by the following lemma. We call an operator

B : L(`2(Λ), `2(Λ)) coercive if

(Bx, x)`2 ≥ α‖x‖2
`2

for some α > 0 and all x ∈ `2.



89

Algorithm 6.4 HT-RICH

Input: ε > 0, ε0 ≥ ‖x‖, θ ≤ 1
2
, K ∈ N and ρ < 1 s.t. ‖I − αB‖ ≤ ρ, 2ρK < θ

Output: xε with ‖xε − x‖ ≤ ε
i := 0, x0 := 0
while εi > ε do
i := i+ 1
εi := 2ρKεi−1/θ
yi,0 := xi−1

for j = 1 to K do
δ := ρjεi−1/2αK
yi,j := yi,j−1 + α (HT-RHS[f ; δ]−HT-APPLY[B; yi,j−1; δ])

end for
xi := HT-COARSE[(1− θ)εi, yi,K ]

end while
return xε := xi

Lemma 6.1. Let Ψ be a wavelet basis satisfying the usual properties discussed in

Subsection 2.2 with global smoothness parameter r > n
2
− 2. Let B := M + ∆tθA

be an operator arising in a semi-discrete problem (6.3) for a weakly coercive and

continuous bilinear form a(·, ·). Furthermore, let


0 ≤ ∆tθ < cΨ

γCΨ−αcΨ
, if γCΨ − αcΨ > 0,

∆tθ ≥ 0, otherwise,

where α > 0 and γ ≥ 0 are constants from (6.4); and CΨ, cΨ are upper and lower

Riesz constants. Then B is bounded and coercive, i.e., in particular positive definite

and boundedly invertible.

Proof. First we show boundedness. The boundedness of A is directly implied by the

continuity of the associated bilinear form. As forM, we can apply the Schur Lemma,

Lemma 3.1. Let Ω ⊂ Rn and r denote the global smoothness of the underlying
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wavelets. Take weights ωλ := 1. Furthermore, let

U(λ, `) := {µ ∈ Λ : |µ| = `, (ψλ, ψµ) 6= 0} .

Note that U(λ, `) contains only those indices on level ` that have intersecting sup-

port with λ. Furthermore, the wavelets are piecewise polynomial and, hence, due to

vanishing moments, only those entries are nonzero, where the singular support of one

wavelet intersects the support of the other wavelet (i(λ, µ) = 1). This together with

Assumption 2.6 implies #U(λ, `) . 2max(`−|λ|,0)(n−1). By applying estimates (2.3) and

(2.4), we get

∑
µ∈Λ

(ψλ, ψµ) =
∑
`∈Z

∑
µ∈U(λ,`)

(ψλ, ψµ) .
∞∑

`=|λ|

2(`−|λ|)(n−1)2(n
2

+s)(|λ|−`)

=
∞∑

`=|λ|

2(`−|λ|)(n2−(1+s)) . 1.

for any n
2
− 1 < s ≤ r + 1. By symmetry, we get the same for the row sum. Hence,

‖M‖ . 1.

We now show coercivity. Let γ ≥ 0 and α > 0 be the constants from (6.4).

Then for any x ∈ `2(Λ),

(Ax, x) = a(xTΨ, xTΨ) ≥ α‖xTΨ‖2
V − γ‖xTΨ‖2

L2

≥ α‖xTΨ‖2
L2
− γ‖xTΨ‖2

L2
≥ αcΨ‖x‖2

`2
− γCΨ‖x‖2

`2
,

where cΨ and CΨ are lower and upper Riesz constants. Similarly for M,

(Mx, x) = ‖xTΨ‖2
L2
≥ cΨ‖x‖2

`2
,
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and thus for the operator B,

(Bx, x) ≥ ‖x‖2(cΨ + ∆tθ(αcΨ − γCΨ)).

For αcΨ − γCΨ < 0, we get the restriction on the step-size

cΨ + ∆tθ(αcΨ − γCΨ) > 0,

i.e,

0 ≤∆tθ <
cΨ

γCΨ − αcΨ

.

This completes the proof.

Remark 6.2. For notational simplicity we considered here a general wavelet basis on

Ω ⊂ Rn. For tensor-product wavelet bases, we get more specific estimates, and the

proof is analogous to the one above.

Proposition 6.5. Let BS := 1
2
(B + BT ) and α ∈ (0, 1/(‖BS‖ + ‖B−1

S ‖−1)], α <

2/(‖BS‖‖B−1
S ‖). For x2 ∈ A s with some s > 0 and an s̄-admissible B with s ≤ s̄,

the output of HT-RICH satisfies

‖x− xε‖ ≤ ε,

# supp(xε) . (J + 1)ε−1‖x2‖A s ,

and the number of operations is of the order

ε−1/s‖x2‖1/s
A s + g(D, x1),

where g(D, x1) is defined in Proposition 6.2.
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Proof. For the error bound apply, Lemma 6.1. For the support estimate and compu-

tational complexity, apply Propositions 6.3 and 6.2. The remainder of the proof is as

in [46, Theorem 3.1].

Summing up, in this subsection we proposed a scheme for an adaptive solving

procedure based on a Richardson iteration for a PDE problem of the form (4.1). The

routine converges but is not (quasi-)optimal in the classical sense. This is due to the

H-Tucker part D and x1. Computational complexity in general depends on the size,

and, more importantly, the storage structure. Unlike the size of the input vector, the

storage structure is, in general, independent of the approximation properties in the

sense of the space A s, and, hence, cannot be estimated from above by the A s norm.

Moreover, taking into account the time-discretization, (quasi-)optimality cannot be

guaranteed for the entire fully discrete problem regardless of the H-Tucker part.

6.5. SEMI-DISCRETE AWGM

In this subsection, we propose an AWGM method to solve the semi-discrete

problem at each time step. Although this routine will have similar convergence and

complexity properties as HT-RICH, we expect it to perform quantitatively better

since it does not require coarsening of the iterands. On the other hand, Richardson

iterations apply to a wider range of operator equations, while AWGM applies solely

to the elliptic case, i.e., s.p.d. operators arising in Galerkin problems.

Essential for the convergence analysis is the availability of an equivalent energy

norm with some properties. Note that for a norm, it suffices when the operator B is

positive definite and, hence, also invertible. However, to obtain the necessary norm

equivalences as in [46, Section 4], we require more than positive definiteness. At

the same time, closer inspection of the convergence analysis shows that symmetry is

not necessary for the real case. We summarize the required assumptions and norm
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equivalences in the following. Note that as before, we always implicitly assume the

underlying field is K = R.

Lemma 6.2. Let B : L(`2(Λ), `2(Λ)) be a coercive operator. Define the bilinear form

b(·, ·) on `2(Λ) by

b(x, y) := (Bx, y)`2 ,

and |||x||| :=
√
b(x, x). Then the following equivalences hold for all x ∈ `2(Λ)

(i) ‖B−1‖−1‖x‖ ≤ ‖Bx‖ ≤ ‖B‖‖x‖.

(ii) ‖B−1‖−1/2‖x‖ ≤ |||x||| ≤ ‖B‖1/2‖x‖.

(iii) ‖B−1‖−1/2|||x||| ≤ ‖Bx‖ ≤ ‖B‖1/2|||x|||.

Proof. (i) Using Lax–Milgram for nonsymmetric coercive bilinear forms, we get

that B is invertible and the inverse is bounded by ‖B−1‖ ≤ 1
α

, where α is the

coercivity constant. This is equivalent to B being bounded from below since

‖x‖ = ‖B−1Bx‖ ≤ ‖B−1‖‖Bx‖,

which gives the LHS of the inequality. The RHS is a trivial consequence of the

definition of the operator norm ‖B‖.

(ii) Define α∗ by

α∗ := sup
{
α > 0 : (Bx, x) ≥ α‖x‖2, x ∈ `2(Λ)

}
.

Since B is coercive, clearly 0 < α∗ < ∞. From (i), we have ‖B−1‖ ≤ 1/α∗.

By definition of α∗ and, applying same arguments as in Lax–Milgram, α∗ ≥
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‖B−1‖−1. This gives us the LHS of the inequality

|||x|||2 = (Bx, x) ≥ ‖B−1‖−1‖x‖2.

The RHS is obtained by a simple application of Cauchy–Schwarz.

(iii) The inverse B−1 is coercive as well, since

(B−1x, x) = (B−1By,By) = (y,By) & ‖y‖2 = ‖B−1x‖2 & ‖x‖2.

Hence, by applying similar arguments as in (ii), we get

|||x|||2 = (x,Bx) = (B−1Bx,Bx) & ‖B‖−1‖Bx‖2,

which gives the RHS of the inequality. The LHS follows again by an application

of Cauchy–Schwarz to the above.

The proof is complete.

Remark 6.3. If the bilinear form b(·, ·) is not symmetric, then |||·||| is not a norm, since

only a “relaxed” version of the triangle inequality holds, i.e.,

|||x+ y||| ≤
√
κ(B)(|||x|||+ |||y|||),

which follows from the proven equivalences. Symmetry is crucial for the Cauchy–

Schwarz inequality for the associated inner product b(·, ·). Obviously, other norm

axioms hold even for nonsymmetric b(·, ·). Moreover, inspecting the convergence

analysis in [46, Section 4], we do not require symmetry.

BJ inherits the properties of B and is in particular invertible and positive

definite. Note that ‖RJx‖ ≤ ‖x‖ where the bound is sharp, and ‖EJx‖ = ‖x‖, i.e.,

‖RJ ‖ = ‖EJ ‖ = 1. We infer ‖BJ ‖ ≤ ‖B‖ and ‖B−1
J ‖ ≤ ‖B−1‖. This, in particular,



95

implies that the condition number κ(BJ ) = ‖BJ ‖‖B−1
J ‖ is uniformly bounded by

κ(B).

Moreover, ‖BJ ‖ = ‖B‖ on `2(J ), i.e., if we restrict B to elements in `2(Λ) with

support in J , then, the norm equivalences from Lemma 6.2 apply to BJ as well.

We have the required tools to formulate a solving procedure based on an ap-

proximate residual evaluation. Note that since we are considering a system of PDEs,

the procedure EXPAND has to be slightly modified. For a given finite index set Λi,

the residual will have the structure

r =


r0

...

rJ

 .

This suggests a slight modification of EXPAND (see Algorithm 6.5).

Algorithm 6.5 SYS-EXPAND

Input: Finite Λi ⊂ Λ, r ∈ `0(Λ), α ∈ [0, 1]
Output: Λi+1 ⊃ Λi

1: for k = 0 to J do
2: r̄k := COARSE

[
r|Λ\Λi ;

√
1− α2‖rk‖

]
3: end for
4: return Λi+1 := Λi ∪

⋃J
k=1 supp(r̄k)

Similar to [46, Proposition 4.3], one can show that this SYS-EXPAND cap-

tures the bulk of the residuum.

Proposition 6.6. Λi ⊂ Λi+1:=SYS-EXPAND[Λi; r;α] satisfies ‖RΛi+1
r‖ ≥ α‖r‖

and

#(Λi+1 \ Λi) . min
{

#(Λ̄ \ Λi) : ‖RΛ̄r‖ ≥ α‖r‖
}
,
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where the number of operations is of the order O(#Λi + # supp(r) + 1).

Proof. Let r̄ be defined by

r̄ :=


r̄0

...

r̄J

 .

Then

‖r −RΛi+1
r‖2 = ‖ r|Λ\Λi+1

‖2 ≤ ‖ r|Λ\Λi − r̄‖
2 =

J∑
k=1

(1− α2)‖rk‖2

= (1− α2)‖r‖2.

This is, however, equivalent to ‖r −RΛi+1
r‖2 ≤ (1− α2)‖r‖2, i.e.,

α2‖r‖2 ≤ ‖r‖2 − ‖r −RΛi+1
r‖2 = ‖r‖2 − ‖rΛ\Λi+1

‖2

=
J∑
k=1

∑
λ∈Λ

(rk)
2
λ −

J∑
k=1

∑
λ∈Λ\Λi+1

(rk)
2
λ =

J∑
k=1

∑
λ∈Λi+1

(rk)
2
λ = ‖RΛi+1

r‖2,

which gives the first claim.

The arithmetic complexity is implied by the properties of the routine COARSE,

being the only computationally expensive part of SYS-EXPAND. Minimality is

implied by COARSE by observing

#(Λi+1 \ Λi) = # supp(r̄)

. min
{

#Λ̄ : Λ̄ ∈ Λ \ Λi, ‖ r|Λ\Λi −RΛ̄(r|Λ\Λi)‖ ≤
√

1− α2‖r‖
}

= min
{

#Λ̄ : Λ̄ ∈ Λ \ Λi, ‖RΛi∪Λ̄r‖ ≥ α‖r‖
}
,

where for the last equality we used the same arguments as above.
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Next, after having refined from Λi to Λi+1, we need to solve the system on Λi+1.

The step corresponds to GALERKIN in Algorithm 3.2. As discussed in Subsection

3.5, the (idealized) Galerkin solution on Λi+1 corresponds to the best approximation

to the solutions on Λi+1 and w.r.t. the energy (pseudo-) norm |||·|||. To compute an

approximate Galerkin solution, we will use an iterative solver, e.g., BiCGSTAB as

in the work of [41]. In general, given an appropriate iterative solver, we assume the

availability of a GALERKIN routine that, for a given target tolerance ε and an

initial guess x0
Λi+1

with ‖RΛi+1
f − BΛi+1

x0
Λi+1
‖ ≤ δ, produces a Galerkin solution on

Λi+1 with the property

‖RΛi+1
f −BΛi+1

xΛi+1
‖ ≤ ε.

For instance, Galerkin can be implemented applying Richardson iterations (cf. Sub-

section 6.4 and [46, Section 4.2]). In that case, the cost of one call can be bounded

by

η(δ/ε)(δ−1/s‖x2‖1/s
A s + δ−1/s‖(x2)Λi‖+ #Λi+1 + 1 + g(D, x1)),

where δ is the initial error, ε is the target accuracy, g(D, x1) is defined in Proposition

6.2 and η ≥ 1 is a nondecreasing function. Alternatively, a more efficient routine can

be constructed by using a defect correction principle. See [46, Section 4.2] for more

details.

We can formulate the HT-AWGM procedure. Let F denote here the entire

RHS.



98

Algorithm 6.6 HT-AWGM

Input: ε, ε−1 > 0, α, δ, γ, θ with δ ∈ (0, α), α+δ
1−δ < κ(B)−1/2, θ > 0 and γ ∈

(0, (1−δ)(α−δ)
1+δ

κ(B)−1)

Output: xε with ‖f −Bxε‖ ≤ ε

i := 0, xi := 0,Λi := ∅

loop

ζ := θεi−1

repeat

ζ := ζ/2, ri := HT-RHS[f ; ζ/2]−HT-APPLY[B;xi; ζ/2]

if εi := ‖ri‖+ ζ ≤ ε then

xε := xi stop

end if

until ζ ≤ δ‖ri‖

Λi+1 := SYS-EXPAND[Λi; r
i;α]

xi+1 := GALERKIN[Λi+1;xi; εi; γ‖ri‖]

end loop

return xε := xi+1

Using norm equivalence (i) from Lemma 6.2, we get

‖B−1‖−1‖x− xε‖ ≤ ‖f −Bxε‖.

Using (ii), we get

‖x− xε‖ ≥ ‖B‖−1/2|||x− xε|||,
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and, using (iii), we get

‖x− xε‖ ≥ ‖B‖−1‖f −Bxε‖.

Overall

‖B‖−1‖f −Bxε‖ ≤ ‖x− xε‖ ≤ ‖B−1‖‖f −Bxε‖.

This justifies using the residuum as an error estimator.

Proposition 6.7. The output of HT-AWGM satisfies

‖f −Bxε‖ ≤ ε.

If x2 ∈ A s for some s > 0, then

# supp(xε) . (J + 1)ε−1/s‖x2‖A s .

If B is s∗-admissible for s∗ ≥ s and ε . ε−1 ∼ ‖f‖, then the number of operations

for a call of HT-AWGM can be bounded by

ε−1/s‖x2‖1/s
A s + g(D, x1),

where g(D, x1) is defined in Proposition 6.2.

Proof. Apply [46, Theorem 4.1] with Propositions from this subsection and Subsection

6.4.

Summing up, as in Subsection 6.4, we get a convergent adaptive routine with the

same properties but better (expected) quantitative performance than HT-RICH. For

a fixed point in time, the routine is still not (quasi-)optimal, even though rather close



100

to it. Overall, the routine for the entire fully discrete problem is not (quasi-)optimal

regardless of the H-Tucker part.

6.6. SPACE-TIME APPROACH

In this subsection, we consider solving the PDE by first considering the varia-

tional formulation in space-time. The advantage of this approach is that due to the

work in [43], as opposed to time stepping, we get (quasi-)optimality. More precisely,

this will get us the “closest” to (quasi-)optimality, i.e., if we ignore the H-Tucker part

in the complexity estimates.

The weak space-time form of the PDE in (4.1) is obtained by further integrating

the weak space-form over time and including the terminal condition

b(u, v) :=

∫ T

0

[(ut(t), v1)L2 + a(u(t), v1)]dt+ (u(T ), v2)L2 = f(v),

f(v) :=

∫ T

0

(f(t), v1)L2dt+ (uT , v2)L2 .

Note that here, for vector-valued functions, the inner product is defined as a sum of

the vector components, i.e.,

(u, v)L2 =
J+1∑
j=1

(uj, vj)L2 .

The above is just one possibility to include the terminal or initial condition (see,

e.g., [44]). For instance, similar to the boundary conditions, one could choose the

homogenization approach and concentrate on solving equations with homogeneous

terminal/initial conditions. This approach can be viewed as posing unnecessary re-

strictions on the terminal/initial functions. Another approach would be to apply

partial integration w.r.t. time and apply test functions that vanish on one of the

boundaries, e.g., at t = 0 for terminal conditions and t = T for initial conditions. In
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the above, as in the work of [43], multipliers are used to incorporate the terminal into

the equation.

Recall that in the derivation of the weak form in Subsection 4.1, it was assumed

that the coefficients admit to an affine decomposition w.r.t. space and time, i.e.,

dj,k(t, y) = d̃j,k(t)hd(y),

and analogously for the other coefficients. This assumption is not necessary from a

theoretical point of view, i.e., the problem is well posed independent of the assumption

above. However, it is crucial for splitting the H-Tucker part from the wavelet part,

which itself is crucial for an implementable numerical solution. It is thus not surpris-

ing that in the weak space-time formulation we require the coefficients to uniformly

depend on space and time, i.e.

dj,k(t, y) = d̃j,khd(t, y),

and analogously for the other coefficients.

For convenience, we summarize all results and derivations in the following.

Proposition 6.8. The weak space-time formulation of (4.1) reads

b(u, v) = f(v),

b(u, v) :=

∫ T

0

[(ut(t), v1)L2 + a(u(t), v1)]dt+ (u(T ), v2)L2 , (6.7)

f(v) :=

∫ T

0

(f(t), v1)L2dt+ (uT , v2)L2 ,
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or, as an operator equation

Bu = f,

B ∈ L(X ,Y ′), (Bu)(v) = b(u, v),

f ∈ Y ′.

The trial space is

X := L2(0, T ; (H1
0 (Ω))J+1) ∩H1(0, T ; (L2(Ω))J+1),

and the test space is

Y := X × (L2(Ω))J+1.

For (6.7), we have the following:

(i) The operator B is boundedly invertible.

(ii) Let ΨX := {σξ : ξ ∈ Ξ} be a Riesz basis for L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;L2(Ω))

and ΨL2 := {ψλ : λ ∈ Λ} a Riesz basis for L2(Ω). The equivalent `2-sequence

space problem reads

Bu = f ,

where the operator B ∈ L(`2(ΛΞ), `2(ΛΞ×Λ)) is boundedly invertible and can be

viewed as

B :=

B1

B2

 ,
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B1 := I⊗M 1 − [I⊗A−N ] , I ∈ R(J+1)×(J+1),

M 1 :=

(∫ T

0

(
Dtσν(t), σξ(t)

)
L2

dt

)
ξ,ν∈Ξ

,

A :=

(∫ T

0

(r(t)σν(t), σξ(t))L2dt−
n∑
i=1

∫ T

0

(α(t))i(D
iσν(t), σξ(t))L2dt,

+
1

2

n∑
i,j=1

∫ T

0

(β(t)βT (t))i,j)(D
iσν(t), D

jσξ(t))L2dt

)
ξ,ν∈Ξ

,

N := (N i,j)i,j∈J ,

N i,j :=


M i,j

2 if i 6= j,

−
∑

k:k 6=iM
i,k
2 otherwise,

M i,j
2 :=

(∫ T

0

(di,jσν(t), σξ(t))L2dt

)
ξ,ν∈Ξ

,

B2 := I⊗C, I ∈ R(J+1)×(J+1),

C := ((σξ(T ), ψλ)L2)λ∈Λ,ξ∈Ξ ,

f :=

f 1 − f 2

f 3

 ,

f 1 :=

(
−
∑
k:k 6=j

(∫ T

0

(dj,k(t)aj,k(t), σξ)L2dt

)
ξ∈Ξ

)
j∈J

,

f 2 :=

((∫ T

0

(cj(t), σξ(t))L2dt

)
ξ∈Ξ

)
j∈J

,

f 3 :=
((

(ujT , ψλ)L2

)
λ∈Λ

)
j∈J

.

The solution vector should be interpreted as

u =


u0

...

uJ+1

 , u = uTΨX .
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(iii) If the coefficients are affine in space and time, i.e., Assumption 4.1 holds, then,

keeping the notation as in (4.4), the simplifications

N =

∫ T

0

D(t)⊗M2dt, f 1 =

∫ T

0

b(t)⊗F1dt,

f 2 =

∫ T

0

c̃(t)⊗F2dt, f 3 = ã⊗ ((hT , ψΛ)L2)λ∈Λ

can be made, where
∫ T

0
dt should be interpreted component-wise.

(iv) Finally, if we assume

dj,k(t, y) = d̃j,khd(t, y),

aj,k(t, y) = ãj,kha(t, y),

cj(t, y) = c̃jhc(t, y),

then we can simplify

N = D⊗M 2, M 2 :=

(∫ T

0

(hdσν , σξ)L2

)
ξ,ν∈Ξ

,

f 1 = b⊗F 1, F 1 :=

(∫ T

0

(hdha, σξ)L2

)
ξ∈Ξ

,

f 2 = c̃⊗F 2, F 2 :=

(∫ T

0

(hc, σξ)

)
ξ∈Ξ

.

Proof. For (i) see [43, Theorem 5.1].

The operator B is boundedly invertible by the arguments in Subsection 3.2.

As a basis for the vector-valued function in a Bochner Space u, we consider the

canonical basis, i.e., the j-th canonical vectors are ejξ := (σξδi,j)i∈J . Expand each uj

as uj =
∑

ν∈Ξ c
j
νσν and multiply by a test function σξ. Hence, for each j ∈ J , we get
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by integrating over time

∑
ν∈Ξ

cjν

[∫ T

0

(Dtσν(t), σξ(t))L2dt−
∫ T

0

(r(t)σν(t), σξ(t)L2dt

+
n∑
k=1

∫ T

0

(α(t))k(D
kσν(t), σξ(t))L2dt

− 1

2

n∑
i,k=1

∫ T

0

(β(t)β(t)T )i,j(D
iσν(t), D

kσξ(t))L2dt

]

+
∑
k:k 6=j

∑
ν∈Ξ

(ckν − cjν)
∫ T

0

(dj,k(t)σν(t), σξ(t))L2dt

= −
∑
k:k 6=j

∫ T

0

(dj,k(t)aj,k(t), σξ(t))L2dt−
∫ T

0

(cj(t), σξ(t))L2dt.

Moreover, note that by Lemma 2.3,

I⊗Au =


Au0

...

AuJ

 .

By the same lemma

Nu =

(
J∑
k=1

N j,ku
k

)
j∈J

=

(∑
k:k 6=j

M j,k
2 (uk − uj)

)
j∈J

,

which proves the representation of B1, f 1 and f 2. The representation of the incor-

porated terminal condition follows analogously.

Parts (iii) and (iv) are simply special cases of the above.

As basis for the Bochner Space X for our purposes, we can utilize the tensor

product basis as in [43], where the best possible rate smax is derived as well. In

Proposition 6.8, it can be seen that the only implementable case is (iv). Since now

we have an operator that is not s.p.d., different test and trial spaces, i.e., a Petrov-
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Galerkin problem, and different index sets for the right and left-hand sides, we cannot

apply AWGM directly anymore (see, e.g., [31, Section 6.2]). A remedy would be to

apply AWGM to the normal equation

BTBu = BTf .

Following the work of [43], it can be shown that BTB is s∗-compressible and the

AWGM applied to the normal equation is (quasi-)optimal. More precisely, for our

problem, we get “close” to (quasi-)optimality if u = u1 ⊗u2 with u2 ∈ A s. In fact,

for case (iv), the solution is of a tensor product form. Generally, consider the operator

equation

Bu = (B1 ⊗B2)u = f = f 1 ⊗f 2,

where B is a bounded, linear and invertible operator and Bi is compatible with f i

for i ∈ {1, 2}. Then B−1 = B−1
1 ⊗B−1

2 and thus

u = B−1
1 f 1 ⊗B−1

2 f 2 =: u1 ⊗u2.

We conclude this section by summarizing the discussion above.

Proposition 6.9. The output of HT-AWGM applied to the normal equations sat-

isfies

‖f −Buε‖ ≤ ε.

If u2 ∈ A s, then

# supp(uε) . (J + 1)ε−1/s‖u2‖1/s
A s .
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If additionally B is s∗-admissible for s∗ ≥ s, then the number of arithmetic operations

is of the order

O(ε−1/s‖u2‖1/s
A s + g(D,u1)).

Proof. See [43, Theorem 4.13] and use similar arguments as in Subsection 6.5.
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7. CONCLUSIONS

In this thesis, results from [41] on solving a coupled system of parabolic PDEs

with a “high-dimensional” structure were extended to an adaptive setting. Given an

appropriate wavelet basis, the differential operators were verified to have the expected

compression properties which allows us to approximate them by sparse matrices.

This itself is a necessary requirement for an adaptive method. First, two adaptive

methods were proposed for the operator equation arising from a semi-discrete problem

by the method of lines. For the particular PDE system from the CDO model, both

methods were shown to converge and have same complexity properties. HT-AWGM

is expected to perform quantitatively better since it does not require coarsening of

the iterands. However, HT-RICH applies to a wider range of operators and must be

considered for more general problems. Both methods rely on the assumption that the

coefficients of the PDE admit to an affine decomposition in time and space. (Quasi-

)optimality is not guaranteed for any of the two methods, due to the nature of time

stepping and the H-Tucker structure. Finally, a third approach based on the weak

space time formulation was proposed. Applying known results, this approach was

shown to converge and to be the closest one being (quasi-)optimal out of the three

suggested routines. (Quasi-)optimality is not guaranteed, since computational effort

generally depends on the structure of the H-Tucker storage format which in itself is

independent of the input vector. This approach relies on the assumption that the

PDE coefficients depend uniformly on space and time.

This work provides merely an initial analysis of solving a coupled system of

PDEs in H-Tucker format. For future research, numerical testing has to be performed

in order to verify and improve the results presented here. For instance, since the

differential operator consists of parts that require different preconditioning, the system
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is preconditioned twice. It would be of interest to investigate more efficient methods

of preconditioning. Another issue, that was not investigated here, is the interaction

of tensor truncations with the adaptive routine. It is unclear at this point whether

and how the truncation error can be controlled such that the overall approximation

accuracy is ensured. Moreover, sharp estimates for the operator norms of discretized

differential operators are required for an efficient implementation of the presented

routines.

A slightly different problem would be to develop a format for the approximate

application of general differential operators in H-Tucker format, i.e., in particular of

nontensor form. Due to the nature of the format, it is unclear at this point whether it

is at all possible to apply such operators efficiently. Finally, in the work of [41] a very

specific structure of the H-Tucker tensor was considered that allowed to represent it

exactly. For general tensor structures, one would either have to use HOSVD or the

Black Box algorithm. The former is impractical due to the size of the matricizations

and the latter is a heuristic approach and is not always reliable. Developing an

efficient and reliable approximation routine for general tensor structures would allow

to design software applicable to a variety of realistic CDO models.



110

BIBLIOGRAPHY

[1] Acar, E., Dunlavy, D. M., and Kolda, T. G. A scalable optimization ap-
proach for fitting canonical tensor decompositions. J. Chemometr. 25, 2 (2011),
67–86.

[2] Bechler, P. Existence of the best n-term approximants for structured dictio-
naries. Arch. Math. 99, 1 (2012), 61–70.

[3] Benzi, M. Preconditioning techniques for large linear systems: a survey. J.
Comput. Phys. 182, 2 (2002), 418–477.

[4] Bungartz, H.-J., and Griebel, M. Sparse grids. Acta Numer. 13 (2004),
147–269.

[5] Bungartz, H.-J., Heinecke, A., Pflüger, D., and Schraufstetter, S.
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