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ABSTRACT

In this thesis, we presented in detail different aspects of Verrall’s chain ladder

method and their advantages and disadvantages. Insurance companies must ensure

there are enough reserves to cover future claims. To that end, it is useful to estimate

mean expected losses. The chain ladder technique under a general linear model is

the most widely used method for such estimation in property and casualty insurance.

Verrall’s chain ladder technique develops estimators for loss development ratios, mean

expected ultimate claims, Bayesian premiums, and Bühlmann credibility premiums.

The chain ladder technique can be used to estimate loss development in cases where

data has been collected from a population but the statistician has no information on

which to base a parametric prior distribution (empirical Bayesian estimation).
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1 INTRODUCTION

1.1 MOTIVATION

An insurance company must ensure as first order of business that there are

suitable reserves available to meet the demand by outstanding claims. Insurance com-

panies make promises to policyholders to pay out monetary amounts if certain events

(claims) occur. Events may be, for example, due to a car accident for which the

policyholder was not at fault (auto insurance), a tree limb damaging a policyholder’s

house (home insurance), or a monetary benefit after an insured party dies (life insur-

ance). There are two major types of insurance: property & casualty (non-life) and

life insurance. For property and casualty (non-life) insurance, one buys a policy to

cover for an unexpected loss or partial loss of the covered property due to accident,

storm damage, theft, etc. Life insurance covers claims due to death. Insurance com-

panies can suddenly face the possibility of paying claims, which can be large. Large

claims can be due to events such as a car accident in which the policyholder’s car was

totaled or a tornado destroying the policyholder’s home. The company needs to have

sufficient reserves to cover each claim. There is a need for forecasting future values

of those claims based on past experience.

The chain ladder technique is the most common general linear model tech-

nique to forecast the claims. Some other modeling possibilities mentioned by Verrall

[1] include Zehnwirth’s (1985) Gamma curve with γij = νi + δi log j + γi (j − 1) + eij

and Ajne’s (1989) exponential tail. Sahasrabudhe [2] introduced the short-tail Claims

Simulation Model as an alternative technique when the assumptions underlying the

chain ladder technique’s link ratios are inappropriate for the data. He applied his tech-

nique specifically to professional indemnity insurance, where the majority of claims

events fall under the incurred but not reported (IBNR) category. Recent developments
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within the chain ladder framework were summarized by Schmidt [3] in a survey of

chain ladder techniques (cf. Schmidt [4]). Schmidt [5] and Zocher [6] extended the

existing chain ladder methods, including the Bornhuetter-Ferguson, Cape Cod, and

Panning’s methods. Another major development to the field in recent years was the

Munich chain ladder method, which was developed by Mack [7] and solved the IBNR

problem.

The chain ladder technique first arranges the data in a run-off triangle, as

shown in Figure 1.1. Run-off triangles are primarily used as an estimation method

for non-life insurance claims. The data in the run-off triangle can be truncated or

not. It can also be given in incremental or cumulative claims. The observed data

(incremental claims) are denoted as Zij, where i is the underwriting year and j is the

delay year. The underwriting year, or year of business, is the year in which a policy

Figure 1.1: Claims Run-Off Triangle

was written, whereas the delay or development year is the number of years until the

accident. There is often a reporting delay between the occurrence of an event and

the time the claims is reported to the insurer, and a settlement delay until the date
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at which the insurer settles the loss with the policyholder and pays out the monetary

benefit. In this case, the delay year is the time until the claim is reported.

The problem is how to forecast outstanding claims in the lower right half. Sums

of data from the run-off triangle, cumulative claims Cij :=
j∑

k=1

Zik are looked at, and

the chain ladder technique is applied to the Cij’s, where Zij is treated as a random

variable. Underlying parameters of claims distributions can then be estimated using

the technique. The forecast will give an estimate of the reserve needed to cover the

future reported claims amount (cf. Verrall [1]). The forecast could also estimate

the amount of reserve necessary to pay off claims that have been reported by the

policyholder but not yet settled. The method for forecasting IBNR claims is similar

to Verrall’s method. IBNR claims could be incurred, for example, due to an accident

which costs the policyholder less than the deductible.

A paper by Richard Verrall[1] laid out a framework for analyzing data using the

chain ladder technique, extending the range of analysis to loglinear models. Loglinear

analysis is a good model for data involving multiple variables in multi-way contingency

tables, where no distinction is made between independent and dependent variables

- just the association is shown. Also the variables are easily broken into discrete

categories by year or possibly months depending on the settlement delays in the line

of business. Verrall [1] first tested the loglinear model for goodness of fit, which allows

easy comparison of different models, and used the model to forecast outstanding

claims. Using the technique in his previous paper [8], Verrall [1] improved the chain

ladder technique by extending it using Bayesian methods. The chain ladder technique

needed improvement for several reasons, including an improved connection between

accident years which prevented over-parameterization and unstable forecasts. The

loglinear model needed an allowance for change in parameters over time. He also

showed how the chain ladder linear model gives upper prediction bounds on total

outstanding claims.
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1.2 THE MODEL

The run-off triangle method for claims estimation relies on past claims data.

This includes complete monetary amounts due to specific claims and dates for the

event, report, and settlement of each claim. Estimating future claims using the run-

off triangle only makes sense if all accident years follow the same loss development

model (cf. Schmidt [3]). Thus, it implicitly assumes that patterns of claims occurring

in the past will continue into the future – that is, a homogenous development pattern.

There is no point in forecasting future claims if this assumption is not met. To ensure

a homogenous development pattern, lines of business should be segmented so that the

observed claims for any run-off triangle stem from a homogenous population. It can be

further segmented among populations if there are different claims handling processes

resulting in a different pattern of settlement or reporting delays (cf. Wiendorfer [9]).

Insurance company data is usually proprietary and therefore difficult to obtain. Some

papers and actuarial manuals use fictional portfolios of claims with which to work.

The data set for Verall’s work, Table (1.1), originated in a paper by Taylor and Ashe

[10] given in incremental claims each delay year.1 The first column is delay year 1,

not delay year zero.

Table 1.1: The Taylor-Ashe Data (1983)

Zij Delay yr 1 Delay yr 2 Delay yr 3 Delay yr 4 Delay yr 5 Delay yr 6 Delay yr 7 Delay yr 8 Delay yr 9 Delay yr 10

Business yr 1 357848 766940 610542 482940 527326 574398 146342 139950 227229 67948
Business yr 2 352118 884021 933894 1183289 445745 320996 527804 266172 425046
Business yr 3 290507 1001799 926219 1016654 750816 146923 495992 280405
Business yr 4 310608 1108250 776189 1562400 272482 352053 206286
Business yr 5 443160 693190 991983 769488 504851 470639
Business yr 6 396132 937085 847498 805037 705960
Business yr 7 440832 847631 1131398 1063269
Business yr 8 359480 1061648 1443370
Business yr 9 376686 986608
Business yr 10 344014

1Table (1.1) as shown here was published in Verrall’s 1994 paper[1] and is available in Excel
format online.
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Exposure factors are a subjective, potential percentage of a loss to a specific

asset if a specific threat is realized. If PL is the ceding company policy limit, AP

is the treaty attachment point, and Lim is the treaty limit, the exposure factor is

defined as2

Exposure Factor =

(
E[X; min{PL,AP + Lim}]− E[X; min{PL,AP}]

E[X;PL]

)
. (1.1)

To connect successive development years (delay years until the accident), one

looks at the ratios of claims in successive delay years. The resulting development

factor is called the link ratio. Multiple quantities can be used to estimate the de-

velopment factor: the proportion of the ultimate cumulative claims losses settled

in a particular development year (development pattern for incremental claims losses

settled), the proportion of ultimate cumulative claims losses settled by a particular

development year (development pattern for cumulative claims losses), and the ratio of

cumulative claims losses settled by a particular development year to the cumulative

claims losses settled by the previous development year (cumulative claims loss factor).

Verrall used the last ratio, and estimated the development factor for delay year j as

Link Ratio = λ̂j =

t−j+1∑
i=1

Cij

t−j+1∑
j=1

Ci,j−1

, (1.2)

where E[Cij|Ci1, Ci2, ..., Ci,j−1] = λjCi,j−1 for j = 2, ..., t.

Note that the numerator in Equation (1.2) looks at delay year j but the denomi-

nator at delay year j − 1. Both have the same business (underwriting) year. The

2For the purpose of example, the ceding company is giving up some portion of their risk to a
reinsurer. If the ceding company, for example, has a policy limit of $5 Million, keeps $3 Million of
the risk and gives up $2 Million of their risk to the reinsurer; then PL = 5 Million, AP = 2 Million,
Lim = 3 Million.
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assumption that patterns of claims occurring in the past continue into the future

induces an assumption that development of settled claims losses follows the same

pattern for every claims occurrence year – i.e., that the cumulative claims loss settle-

ment factor for a specific development year is the same for all claims occurrence

years.The cumulative claims pattern is shown in Table (1.2). By way of exam-

ple, the cumulative claims amount C13 for business year 1 and accident year 3 is

calculated as
3∑

k=1

Z1k = 1735330. Using Equation (1.2), the link ratio estimate

Table 1.2: Cumulative Claims Pattern

Cij Delay yr 1 Delay yr 2 Delay yr 3 Delay yr 4 Delay yr 5 Delay yr 6 Delay yr 7 Delay yr 8 Delay yr 9 Delay yr 10

Business yr 1 357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463
Business yr 2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085
Business yr 3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315
Business yr 4 310608 1418858 2195047 3757447 4029929 4381982 4588268
Business yr 5 443160 1136350 2128333 2897821 3402672 3873311
Business yr 6 396132 1333217 2180715 2985752 3691712
Business yr 7 440832 1288463 2419861 3483130
Business yr 8 359480 1421128 2864498
Business yr 9 376686 1363294
Business yr 10 344014

λ̂9 = (3833515 + 5339085)/(3606286 + 4914039) = 1.076552. The rest of the link

ratios are calculated as shown in Table (1.3).

Why would one want this link ratio estimate anyway? The link ratio estimate

allows for a fairly straightforward forecast of E[Cij| past values of Cij]. This is an

estimate of the cumulative claims for underwriting year i and accident year j. The

most recent loss Ci,t−i+1 is multiplied by the appropriate development factor estimate

λ̂j. For example, E[C67|C61, . . . , C66] = ̂(1.0862694)(4074998.6). The estimated loss

forecasts are shown in lower right triangle of Table (1.3). Ease of calculation makes

this a method allowed under Solvency II3 to estimate reserves needed for non-life

3Solvency II is a law concerning the reserves European Union insurance companies must hold to
prevent insolvency. See Wiendorfer [9] for a practical application of the chain ladder method under
Solvency II.
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Table 1.3: Cumulative Claims Forecast

Cij Delay yr 1 Delay yr 2 Delay yr 3 Delay yr 4 Delay yr 5 Delay yr 6 Delay yr 7 Delay yr 8 Delay yr 9 Delay yr 10 Delay yr 11

Business yr 1 357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463 3901463
Business yr 2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085 5339085 5339085
Business yr 3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315 5285148.5 5378826.3 5378826.3
Business yr 4 310608 1418858 2195047 3757447 4029929 4381982 4588268 4835458 5205637.3 5297905.8 5297905.8
Business yr 5 443160 1136350 2128333 2897821 3402672 3873311 4207459.1 4434133.2 4773589.1 4858199.6 4858199.6
Business yr 6 396132 1333217 2180715 2985752 3691712 4074998.6 4426546.1 4665023.4 5022155.1 5111171.5 5111171.5
Business yr 7 440832 1288463 2419861 3483130 4088678.1 4513179.1 4902528.2 5166648.7 5562182.5 5660770.6 5660770.6
Business yr 8 359480 1421128 2864498 4174756.2 4900544.6 5409336.5 5875996.5 6192562.1 6666634.7 6784799 6784799
Business yr 9 376686 1363294 2382128.1 3471744.1 4075312.7 4498426.1 4886502.4 5149759.6 5544000.4 5642266.3 5642266.3
Business yr 10 344014 1200817.5 2098227.7 3057983.9 3589619.6 3962306.6 4304132.3 4536014.7 4883270.1 4969824.7 4969824.7

Link Ratio λ̂j 3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177

insurance; however, it is also a rough estimation method (cf. Verrall [1]). This gives

rise to Verrall’s estimate of the desired forecast:

Expected Ultimate Loss = Ê[Cit] =

(
t∏

j=t−i+2

λ̂j

)
Ci,t−i+1. (1.3)

For example, E[C6,6] =
6∏
j=2

λjC6,1. Verrall’s estimates are shown in Table (1.4).

It results in a row effect, due to λi; i = 2, ..., t and the row being considered,

Table 1.4: Forecast with Verrall’s Expected Loss Method

Cij Delay yr 1 Delay yr 2 Delay yr 3 Delay yr 4 Delay yr 5 Delay yr 6 Delay yr 7 Delay yr 8 Delay yr 9 Delay yr 10 Sum Ui

UW yr 1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463 26,309,426 32,724,489
UW yr 2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085 5,433,719 35,365,452 43,506,648
UW yr 3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315 5,251,748 5,378,826 35,324,229 43,673,409
UW yr 4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268 5,092,411 5,400,491 5,297,906 36,472,947 45,388,370
UW yr 5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311 4,365,888 4,298,439 4,628,949 4,858,200 32,033,123 39,378,637
UW yr 6 396,132 1,333,217 2,180,715 2,985,752 3,691,712 4,562,595 4,778,696 4,714,338 4,767,924 4,111,172 34,522,253 42,679,436
UW yr 7 440,832 1,288,463 2,419,861 3,483,130 - - - - - - - -
UW yr 8 359,480 1,421,128 2,864,498 - - - - - - - - -
UW yr 9 376,686 1,363,294 - - - - - - - - - -
UW yr 10 344,014 - - - - - - - - - - -

λ̂j 3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177

and also a column effect due to λj; j = 2, ..., t. The random variable Ci,t−i+1 =
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latest cumulative claim = row effect. For this reason, Verrall also considered other

models with row and column effects, such as ANOVA and the multiplicative model.4

One-way ANOVA compares the null hypothesis H0: µ1 = µ2 = · · · = µn

to the alternative hypothesis HA: There exists (i, j) where i 6= j such that µi 6= µj.

Examples of model factors are as shown in Figure (1.2).

Figure 1.2: One-way ANOVA model possibilities

The chain ladder technique and two-way ANOVA are quite similar. Both can

be represented by a linear regression model (cf. Christensen [11]) and both models

have both a row and a column effect (cf. Verrall [1]). For two-way ANOVA, a setup

looking at two factors (A and B) where Factor A has three different levels and Fac-

tor B has 3 levels could have the 9 treatment groups shown in Figure (1.3). It is

also possible to have multiple observations per cell, though the incremental run-off

triangle will have a single observation, logZij per cell. The design set-up is random-

ized block, with underwriting year and accident year factors. There is a one-way

ANOVA null hypothesis for both the row and column factors. For the row factor,

4ANOVA models can be represented by regular regression models of the form Y = XB+ε where
the matrix X is entirely 0’s and 1’s.[11][12]
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Figure 1.3: Two-way ANOVA model with single observations per cell

the null hypothesis is H0: µ1· = µ2· = · · · = µk· versus HA: At least one µi· 6= µj·.

For the one-way ANOVA column factor, H0: µ·1 = µ·2 = · · · = µ·l where HA: At

least one µ·i 6= µ·j. These are equivalent to testing H0: No main effect of row factor

versus HA: There is a main effect of row factor and H0: No main effect of column

factor versus HA: There is a main effect of column factor. The third test for inde-

pendence looks at possible interaction between the two factors. The null hypothesis

is H0: (µij − µ·j) = (µi· − µ··).5 The assumptions for the tests include data being

lognormally distributed, the model being applied to logged incremental claims, and

unbiasedness of estimates.

The multiplicative model Z = b0(Xb1
1 )(Xb2

2 )ε, where b0, b1, b2 ≥ 0 and ε is the

error term, is best used when the dependent variable Y is proportional to percentage

changes in the independent variables Xi. It makes sense to use the multiplicative

model for the claims triangle under the assumption that ultimate cumulative claims

losses are proportional to claims in a particular development year (cf. Schmidt [5]).

Using the additive general linear regression model, Y = β0 + β1X1 + β2X2 + ε where

5This is achieved by testing the sum of squares error, SSE, for significance. SSE is large when
there is column and row interaction. Kleinbaum describes Tukey’s test for additivity to test for such
interaction.[12]
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β = (β0, β1, β2) is the regression parameter vector and ε is the error vector, as a

framework, the multiplicative model can be turned into a linear model, logZ =

β0 + β1 logX1 + β2 logX2 + ε, through the logarithmic transformation. Now if Zij ∼

lognormal, then Yij = logZij ∼ N(µ, σ2), where E[Zij] = eµ̂+ 1
2
σ̂2

.

Verrall’s multiplicative model sets up the data with parameters Ui for row i

and Sj for column j. Then Uj is the expected total claim for business year i and Sj is

the expected proportion of ultimate claims for development year j. The multiplicative

model is given by E[Zij] = UiSj, where
t∑

j=1

Sj = 1. Kremer [13] derived a form for

the expected ultimate loss, which can be used to estimate the entire reserve needed

to pay out claims, given by:

Expected Ultimate Loss = U = E[Cit] where Ui = eαieµ
t∑

j=1

eβj . (1.4)

Furthermore, the estimate of U is Ûi = eα̂ieµ̂
t∑

j=1

eβ̂j . The result in (1.4) is very similar

to that of the chain ladder technique; however, Kremer’s estimate Ûi is not unbiased.

The relationships between the parameters for the loglinear model are:

Sj =
λj − 1
t∏
i=j

λi

, S1 =
1
t∏
i=2

λi

, and Ui = E[Cit].

Applying Kremer’s estimate to the previous Taylor-Ashe data, the estimates for Sj

(rounded to four decimal places) are calculated in Table (1.5) along with the forecasts

based on proportionality factor Sj. The unrounded values for Sj sum to 1.

Estimates Ŝi and Ûi, can be obtained by applying a linear model to the logged

incremental claims data: E[Zij] = UiSj, so that log(Zij) = Yij ⇒ E(Yij) = µ+αi+βj.

For an alternate derivation of estimates from the multiplicative model, see Schmidt [5].

There are some assumptions with the loglinear model; namely, errors are identically

distributed around zero with standard deviation σ (cf. Christensen [11] and Verrall
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Table 1.5: Forecast with Kremer’s Proportionality Factor

Cij Delay yr 1 Delay yr 2 Delay yr 3 Delay yr 4 Delay yr 5 Delay yr 6 Delay yr 7 Delay yr 8 Delay yr 9 Delay yr 10 Sum Ui

UW yr 1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463 26,309,426 32,724,489
UW yr 2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085 5,339,085 35,270,818 43,410,336
UW yr 3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315 4,996,331 4,996,331 34,686,318 43,009,164
UW yr 4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268 5,027,075 5,116,179 5,116,179 35,941,572 44,828,489
UW yr 5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311 4,472,371 4,900,094 4,986,947 4,986,947 33,228,007 40,644,809
UW yr 6 396,132 1,333,217 2,180,715 2,985,752 3,691,712 4,630,424 5,346,582 5,857,912 5,961,742 5,961,742 38,345,932 46,727,227
UW yr 7 440,832 1,288,463 2,419,861 3,483,130 4,822,390 6,048,606 6,984,105 7,652,043 7,787,673 7,787,673 48,714,776 58,100,020
UW yr 8 359,480 1,421,128 2,864,498 4,655,372 6,455,358 8,084,255 9,334,595 10,227,326 10,408,603 10,408,203 64,209,217 75,956,842
UW yr 9 376,686 1,363,294 3,229,074 5,247,880 7,265,684 9,113,170 10,522,646 11,528,998 11,733,346 11,733,346 72,114,124 84.790,938
UW yr 10 344,014 1,423,771 3,372,319 5,480,681 7,587,997 9,517,440 10,989,441 12,040,436 12,253,849 12,253,849 75,263,797 88,552,349

λj 3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177∏
λj 14.4466 4.1387 2.3686 1.6252 1.3845 1.2543 1.1547 1.0956 1.0177

Proportion Sj 0.0692 0.1724 0.1806 0.1931 0.1070 0.0750 0.0688 0.0467 0.0699 0.0174
Sum(Sj) .0692 .2416 .4222 .6153 .7223 .7973 .8661 .9127 .9826 1

[1]). Setting parameters α1 = β1 = 0 ensures a non-linear design matrix. The loglinear

model can be written in the familiar form Y = Xβ+ε, where Y is the vector of logged

incremental claims, X is the design matrix, β is the parameter vector, and ε is the

error vector. The logged data is shown in Table (1.6). Verrall [14] fit a loglinear

Table 1.6: Logged Taylor-Ashe Data

log(Zij) Delay yr 1 Delay yr 2 Delay yr 3 Delay yr 4 Delay yr 5 Delay yr 6 Delay yr 7 Delay yr 8 Delay yr 9 Delay yr 10

UW yr 1 12.7879 13.5502 13.3221 13.0877 13.1756 13.2612 11.8937 11.8490 12.3337 11.1265
UW yr 2 12.7717 13.6922 13.7471 13.9838 13.0075 12.6792 13.1765 12.4919 12.9600
UW yr 3 12.5794 13.8173 13.7389 13.8320 13.5289 11.8977 13.1143 12.5440
UW yr 4 12.6463 13.9183 13.5622 14.2617 13.5153 12.7715 12.2370
UW yr 5 13.0017 13.4491 13.8075 13.5535 13.1320 13.0619
UW yr 6 12.8895 13.7505 13.6500 13.5986 13.4673
UW yr 7 12.9964 13.6502 13.9390 13.8769
UW yr 8 12.7924 13.8753 14.1825
UW yr 9 12.8392 13.8020
UW yr 10 12.7484

model logZij = Xijβ+εij to the logged incremental claims, where i is the underwriting

year, j is the delay year, the matrix Xij contains explanatory variables, β is the

parameter vector, V ar[ε] = σ2I is the error vector, and errors εij, εkl are independent.

The run-off triangle data is assumed to be loglinear, with independent identically

distributed (iid) errors. The homogeneity assumption (identically distributed errors)
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can occasionally be violated if the sample size is large enough. In matrix notation,

Y = Xβ + ε for the first three years of data (cf. Verrall [8]) would look like



y11

y12

y13

y21

y22

y31


=



12.7879

13.5502

13.3221

12.7717

13.6922

12.5794


=



1 0 0 0 0

1 0 0 1 0

1 0 0 0 1

1 1 0 0 0

1 1 0 1 0

1 0 1 0 0





µ

α2

α3

β2

β3


+



ε11

ε12

ε13

ε21

ε22

ε31


. (1.5)

The standard error for the three years of data shown above is σ̂ = 0.07911.

For the full model, X is a 55 × 19 design matrix. The standard error, which can be

computed in a program such as RStudio is σ̂ = 0.3409. The least-squares estimate is

β̂ = (X ′X)−1X ′y (Christensen [11]). For the three years of data,

β̂ =



µ

α2

α3

β2

β3


=



12.7483105

0.0629650

−0.1689275

0.8414070

0.5737915


.
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For the full model,

β̂ =



µ

α2

α3

α4

α5

α6

α7

α8

α9

α10

β2

β3

β4

β5

β6

β7

β8

β9

β10



=



12.519840036

0.361002000

0.282241500

0.171194452

0.282223613

0.311746273

0.392047931

0.480267443

0.345165464

0.228599964

0.911189000

0.938718562

0.964980568

0.383200324

−0.004910349

−0.118069524

−0.439277869

−0.053511036

−1.393340036



.

Verrall [1] also examined enhancing the stability of predictions using Bayesian

methodology. Often mentioned in research during the last decade, the use of prior

estimators of ultimate claims losses and prior estimators of the cumulative claims loss

settlement factors (development factors) can improve reliability of the estimation.

These prior estimators can be based on run-off triangle data, another data source

like market statistics or data obtained through a reinsurer, or the insurer’s personal

experience. Verrall uses data contained within the run-off triangle itself.
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2 VERRALL’S ESTIMATORS

2.1 ESTIMATION OF RESERVES

Using the “quick and dirty” method mentioned in the introduction, the reserve

can be estimated using the cumulative claims forecasts from Table (1.3). First use the

cumulative claims triangle to forecast the incremental claims triangle, shown in Table

(2.1). Then use the incremental claims forecast to estimate the claim loss settlement

Table 2.1: Forecasted Incremental Claims

Zij Delay yr 1 Delay yr 2 Delay yr 3 Delay yr 4 Delay yr 5 Delay yr 6 Delay yr 7 Delay yr 8 Delay yr 9 Delay yr 10

UW yr 1 357848 766940 610542 482940 527326 574398 146342 139950 227229 67948
UW yr 2 352118 884021 933894 1183289 445745 320996 527804 266172 425046 4914039
UW yr 3 290507 1001799 926219 1016654 750816 146923 495992 280405 5004743 374083
UW yr 4 310608 1108250 776189 1562400 272482 352053 206286 4629172 576465 4721440
UW yr 5 443160 693190 991983 769488 504851 470639 3736820 697313 4076276 781924
UW yr 6 396132 937085 847498 805037 705960 3369039 1057508 3607516 1414639 3696532
UW yr 7 440832 847631 1131398 1063269 3025409 1487770 3414758 1751891 3810292 1850479
UW yr 8 359480 1061648 1443370 2731386 2169158 3240178 2635819 3556744 3109891 3674908
UW yr 9 376686 986608 1395520 2076224 1999089 2499337 2387165 2762595 2781406 2860860
UW yr 10 344014 856804 1241424 1816560 1773060 2189247 2114886 2421129 2462141 2507684

amount for each future year. The incremental forecasts are summed diagonally across

the triangle for each future year reserve estimate. For example, for year 11, the

estimated claim loss settlement is 856804 + 1395520 + 2731386 + . . . + 4914039 =

29662932. The reserve can be calculated from the estimated claim loss settlement

amounts for upcoming years, as in Table (2.2). However, since the cumulative claim

forecasts were biased estimates, this method also results in a biased estimate for the

reserve. See Wiendorfer [9] for a more detailed explanation of this calculation method.

Verrall’s [1] problem was reversing the log transformation to get unbiased esti-

mates on the original scale. Since Ci ∼ lognormal, then Yi = logCi ∼ N(µ, σ2) and
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Table 2.2: Estimated Claim Loss Settlements

yr 11 29,662,932
yr 12 9,679,945
yr 13 22,875,817
yr 14 10,856,669
yr 15 15,639,980
yr 16 9,837,850
yr 17 8,877,443
yr 18 5,323,001
yr 19 2,507,684

Total 115,261,321

E[C] = θ̂ = eµ̂+ 1
2
σ̂2

, where µ̂ and σ̂2 are the MLE estimates. The estimate µ̂ is biased,

but θ̂ is asymptotically unbiased. In claims reserving, n is not usually large, which may

lead to biased estimators. To overcome this problem, Verrall used a result attributed

to Finney [15] for an unbiased estimate θ̂ using gm(t): θ̂ = exp(µ̂)gm
(

1
2
(1− 1

n
)s2
)
,

where s2 is the standard error estimate of σ2, and

gm(t) =
∞∑
k=0

mk(m+ 2k)

m(m+ 2) · · · (m+ 2k)

tk

k!
, (2.1)

m = n − 1 being the degrees of freedom associated with the distribution of σ̂2 (cf.

Bradu and Mundlak [16]).

To estimate the reserve, we first need an unbiased estimate for mean incre-

mental claims. To proceed, we assume that the data is lognormally distributed,

Zi
iid∼ lognormal, with mean E[Zi] = θ. This implies that Yi = logZi ∼ N(µ, σ2) and

θ = eµ+ 1
2
σ2

. We must estimate θ and find the mean squared error, or find σ2 if θ̂ is un-

biased. The maximum likelihood estimates are µ̂ = 1
n

n∑
i=1

Yi and σ̂2 = 1
n

n∑
i=1

(Yi − µ̂)2.

This means θ can be estimated as a plug-in estimator θ̂ = eµ̂+ 1
2
σ̂2

. Since θ̂ is biased,

the results of Finney (2.1), come in handy: Now θ̃ = eµ̂gm
(

1
2
(1− 1

n
)s2
)

is unbiased
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for θ where s2 = n
n−1

σ̂2. Verrall’s [1] plug-in estimator for the variance is

V ar[θ̃] = τ̃ 2 = e2µ̂

{(
gm

[
1

2

(
1− 1

n

)
s2

])2

− gm
([

1− 2

n

]
s2

)}
. (2.2)

Next, for the claims runoff triangles, the data is based on both the business

year i and delay year j. If Zij is distributed lognormally with mean θij = E[Zij] =

e(Xijβ+ 1
2
σ2), then Yij = logZij

indep∼ N(Xijβ, σ
2). Then the expected value of the logged

data is E[Yij] = Xijβ and the variance is V ar[Yij] = σ2, where Xij is a row vector of

the variables and β is a column vector of parameters. When we look at Y as the vector

of observations of our data, E[Y ] = Xβ, where X is an n×p matrix. The errors in this

model are assumed to be iid normally distributed, with variance σ2I. The problem of

a biased estimator θ̂ for the mean θ of the data Zij mentioned above arises again here,

and it is dealt with similarly by using Finney’s gm(t) along with an unbiased estimator

derived by Bradu and Mundlak [16]. Bradu and Mundlak’s unbiased estimator of

eZβ+aσ2
, where Z is a row vector, is eZβ̂gm

(
[a− 1

2
Z(X ′X)−1Z ′]s2

)
. From this Verrall

[1] derived the unbiased estimate of E[Zij] = θij:

θ̃ij = e(Xij β̂)gm

(
1

2

[
1−Xij(X

′X)−1X ′ij
]
s2

)
, (2.3)

along with a matching estimate for variance:

V ar[θ̃ij] = τ̃ 2
ij = e(2Xij β̂)

{[
gm

(
1

2
(1−Xij(X

′X)−1X ′ij)s
2

)]2

− gm
([

1− 2Xij(X
′X)−1X ′ij

]
s2
)}

. (2.4)

Now if β̂ = (X ′X)−1X ′y as before (cf. Christensen [11]) and we take s2 to be the

standard error estimate, then for the smaller 3-year model of logged data, the estimate
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for E[Z2j] is

θ̃2j = e(X2j β̂)gm

(
1

2

[
1−X2j(X

′X)−1X ′2j
]
s2

)
= (797883.2)gm(0.0007822418)

= (797883.2)
∞∑
k=0

4k(4 + 2k)

4(6) . . . (4 + 2k)

(.0007822418)k

k!
.

To estimate the reserve, we now need an estimator for mean total outstanding

claims, which was derived by Verrall [14]. Begin by totaling the claims by business

year. Let Ri be the total claims for business year i and R be the total outstanding

claims for the entire run-off triangle. Then R̃i =
t∑

j=t−i+2

θ̃ij is an unbiased estimate of

total outstanding claims in business year i, where θ̃ij = Ẽ[Zij] as in (2.3) and Zij are

incremental claims. An unbiased estimate for the variance derived by Verrall using

the plug-in technique is

˜V ar[Ri]unbiased = V ar[R̃i] = V ar

[
t∑

j=t−i+2

θ̃ij

]

=
t∑

j=t−i+2

[
V ar[θ̃ij] + 2

t∑
k=j+1

Cov(θ̃ij, θ̃ik)

]

=
t∑

j=t−i=2

[
τ̃ 2
ij + 2

t∑
k=j+1

τ̃ijk

]
, (2.5)

where τ̃ijk = Cov(θ̃ij, θ̃ik) (2.6) is an unbiased estimate derived the same way as

Verrall [1] derived the mean claims estimate τ̃ 2
ij = V ar[θ̃ij] in (2.4). Verrall’s variance

for total outstanding claims in business year i turns out to be exactly the same as

the variance given by Bradu and Mundlak:

τ 2
ij = V ar[θ̃ij] = E[θ̃2

ij]−
(
E[θ̃ij]

)2

= θ̃2
ij − θ2

ij = θ̃2
ij − e2Xijβ+σ2

.
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Therefore,

θ̃2
ij = e2Xijβ

{[
gm

(
1

2
[1−Xij(X

′X)−1Xij]
′
)
s2

]2

− gm
(
[1− 2Xij(X

′X)−1X ′ij]s
2
)}

.

Now,

τijk = Cov(θ̃ij, θ̃ik) = E[θ̃ij θ̃ik]− E[θ̃ij]E[θ̃ik] = θ̃ij θ̃ik − θijθik

implies

τ̃ijk = e(Xij+Xik)β̂

{
gm

(
1

2
[1−Xij(X

′X)−1X ′ij]s
2

)
gm

(
1

2
[1−Xik(X

′X)−1X ′ik]s
2

)
−gm

([
1− 1

2
(Xij +Xik)(X

′X)−1Xij +Xik

]
s2

)}
. (2.6)

To derive an estimate of total outstanding claims for the entire triangle,

E[R̃] =
t∑
i=2

θ̃ij =
t∑
i=2

{
e(Xij β̂)gm

(
1

2

[
1−Xij(X

′X)−1X ′ij
]
s2

)}
, (2.7)

where θ̃ij = Ẽ[Zij] as in (2.3). Then with the entire lower triangle forecasted as shown

above using Equation (2.3) and perhaps a computer program to quickly calculate

values for gm(t), we could calculate an unbiased estimate for the total reserve more

accurate than the current “quick and dirty” method shown at the beginning of this

chapter. Verrall [1] also derived the variance

V ar[R̃] =
t∑
i=2

t∑
j=t−i+2

˜V ar(Zij) =
t∑
i=2

t∑
j=t−i+2

e(2Xij β̂) {gm (2 [1−Xij(X
′X)−1X ′ij

]
s2
)

− gm
([

1− 2Xij(X
′X)−1X ′ij

]
s2
)
} . (2.8)

The term inside the sum of (2.8), ˜V ar[Zij], is derived similarly to (2.4).

Verrall [1] also found prediction intervals for total outstanding claims. A 95%

upper confidence bound on R implies Prob(R ≤ R̃ + k) = .95 where E[R̃] = R.
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Straightforward algebra further implies that Prob(R − R̃ ≤ k) = .95, where E[R −

R̃] = E[R]−E[R̃] = 0. Similarly, V ar[R− R̃] = V ar[R] +V ar[R̃] due to the assump-

tion of independent claims. Since R and R̃ are combinations of a large number of

lognormal random variables, a normal approximation for the 95% confidence interval

gives R̃ + 1.645
√
MSE = R̃ + 1.645

√
V ar[R] + V ar[R̃].

2.2 ESTIMATION OF DEVELOPMENT FACTORS

Recall that development factors, also referred to as link ratios, are ratios of

claims in successive delay years. The link ratio estimate, given in 1.2, allows for

a forecast of E[Cij|j past values of Cij]. When estimating outstanding claims, un-

biased estimators are necessary. When comparing several sets of runoff patterns,

unbiasedness is not critical. The maximum likelihood estimator (MLE) can provide

a good, though biased estimate. Consider development factors λj and proportions

of ultimate claims Sj. As mentioned above from Kremer’s [13] paper, S1 = 1
t∑
i=2

λi

and Sj =
λj−1
t∑
i=j

λi

=
λj−1
t∏
i=2

λi

. Additionally, Kremer showed that Sj = eβj
t∑
i=1

eβt
, where the

βi are the column parameters and β1 = 0. Verrall [17] had previously shown that

λj = 1 + eβj
j−1∑
i=1

eβi
. For both Sj and λj, he obtained maximum likelihood estimates Ŝj

and λ̂j by plugging in the MLE estimates βj and βt = 0. If the variance-covariance

matrix of β is V ar[β], then the variance-covariance matrix of link ratios, λj, and

proportions of ultimate claims, Sj, are as follows:

V ar[λ] =

(
∂λ

∂β

)
V ar[β]

(
∂λ

∂β

)
,

V ar[S] =

(
∂S

∂β

)
V ar[β]

(
∂S

∂β

)
,

where λ is a vector of link ratios λ = [λ2, . . . , λt]
′, S is a vector of ultimate claims

proportions S = [S1, . . . , St]
′, and β is the parameter vector described in the general
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linear model, Equation 1.5. In addition, Verrall showed the following result:

(
∂λ
∂β

)
jk

=
∂λj
∂βk

=



0 = 0 k > j

eβj
j−1∑
i=1

eβt
= λj − 1 k = j

eβj eβk
j−1∑
i=1

eβi
= −(λj − 1)(λk − 1) k < j

(
∂S
∂β

)
jk

=
∂Sj
∂βk

=


−eβj eβk
t∑
i=1

eβi
= −SjSk k 6= j

eβj
(

t∑
i=1

eβi−eβi
)

t∑
i=1

eβi
= Sj(1− Sj) k = j.
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3 BAYESIAN METHODOLOGY

3.1 BAYESIAN ANALYSIS

Let X = (X1, . . . , Xn) be a random sample, x = (x1, . . . , xn) be observed data

drawn from a population, and θ be a parameter describing risk characteristics within

the population. Risk parameter θ can be accident rating class, age, or residence in a

geographic location prone to tornadoes or hurricanes. In Bayesian analysis, instead

of making inference about the parameter θ using the observed data, parameter θ is

assumed to be random with a probability distribution called the prior distribution,

π(θ), which is based on an analyst’s belief about the population prior to taking the

data sample x = (x1, . . . , xn). Then after observing the data, the prior distribution

π(θ) is updated based on the sample using Bayesian technique and called the posterior

distribution. The posterior distribution, the conditional distribution of θ given the

sample x, is:

π(θ|x) =
f(x, θ)

f(x)
=

f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

(3.1)

where f(x|θ) is the sampling distribution. The distribution of claims or losses X

given risk parameter θ is f(x|θ). Because
∫
f(x|θ)π(θ)dθ is independent of θ, then

we have π(θ|x) ∝ f(x|θ)π(θ). See Casella [18] for further development of classical

Bayesian analysis.

Assume we wish to set a rate to cover any new claims Xn+1 using the predictive

distribution f(Xn+1|x); that is, the conditional probability of a new observation Xn+1

given the data x. The risk parameter, θ, is unknown. Experience and policyholders

corresponding to different exposure periods are assumed independent. The obser-

vation random variables X1, X2, . . . , Xn, Xn+1 conditional on θ are independent but

not necessarily identically distributed, where Xj = f(xj|θ) for j = 1, 2, . . . , n, n + 1.
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Our interest lies in Xn+1|Θ = θ ∼ f(xn+1|θ). Since θ is unknown, conditioning on

θ is not possible. The next best thing is to condition on the known value x, using

the predictive distribution f(xn+1|x). This distribution is relevant for risk analysis,

management, and decision making (cf. Klugman [19]). The predictive distribution

can then be computed as:

fXn+1|X=x(xn+1|x) =

∫
fXn+1|Θ(xn+1|θ)︸ ︷︷ ︸

PDF of new observation
given the parameter value

πΘ|X=x(θ|x)︸ ︷︷ ︸
posterior

distribution

dθ. (3.2)

The derivation of (3.2) is as follows (cf. Klugman [19] and Weishaus [20]):

f(x, θ) = f(x1, x2, . . . , xn|θ)π(θ) =

{
n∏
j=1

f(xj|θ)

}
π(θ)

f(x1, x2, . . . , xn) =
∫ n∏
j=1

f(xj|θ)π(θ)dθ

f(x1, x2, . . . , xn+1) =
∫ n+1∏
j=1

f(xj|θ)π(θ)dθ

f(xn+1|x) =

∫ n+1∏
j=1

f(xj |θ)π(θ)dθ

f(x)
=

∫
f(xn+1|θ)

n∏
j=1

f(xj |θ)π(θ)dθ

f(x)
.

Since the posterior distribution of θ given x is in the form of (3.1), then

f(xn+1|x) =

∫
f(xn+1|θ)f(x, θ)dθ

f(x)
=

∫
f(xn+1|θ)π(θ|x)dθ,

proving Equation (3.2).

One determines the Bayesian premium, the predictive expected value, using

both

E[Xn+1|X = x] =

∫
xn+1f(xn+1|x)dxn+1

and (3.3)

E[Xn+1|X = x] =

∫
µn+1(θ)π(θ|x)dθ
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(cf. Weishaus [20]). The motivation for (3.3) is that X = x is observed for a policy-

holder and we wish to predict its mean, Xn+1. If θ is known, the hypothetical mean

(individual premium) is

µn+1(θ) = E[Xn+1|Θ = θ] =

∫
xn+1f(xn+1|θ)dxn+1. (3.4)

The pure (or collective) premium,

µn+1 = E[Xn+1] = E[E[Xn+1|Θ]] = E[µn+1(Θ)], (3.5)

is the mean of individual premiums (cf. Klugman [19] and Weishaus [20]). This

premium is used when nothing is known about the policyholder, as it does not depend

on the individual’s risk parameter, θ, and does not use x, the data collected from

the individual. Because θ is unknown, a Bayesian premium should be used. The

derivation for the Bayesian premium (3.3) is as follows (cf. Klugman [19]):

E[Xn+1|X = x] =

∫
xn+1f(xn+1|x)dxn+1

=

∫
xn+1

{∫
f(xn+1|θ)π(θ|x)dθ

}
dxn+1

=

∫ ∫
xn+1f(xn+1|Θ)dxn+1︸ ︷︷ ︸

E[Xn+1|Θ]

π(θ|x)dθ

=

∫
µn+1(θ)π(θ|x)dθ.

The pure premium is µn+1 = E[Xn+1], but policyholders prefer it when in-

surance companies charge the individual premium µn+1(θ), which is the hypothetical

mean using the hypothetical parameter θ associated with the policyholder. Since θ is

unknown, this is impossible. Instead the company must condition on the past data
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x, which leads to the Bayesian premium E[Xn+1|x]. The problem is that it is difficult

to evaluate the Bayesian premium because it often requires numerical integration.

There are several purposes for Bayesian analysis. The statistician may have

information from previously taken data which may help specify a prior parametric

distribution for the parameters in the model before collecting a data sample. Verrall

[8] finds results for Bayesian estimators when both prior information is known and

no prior information is assumed. The Bayesian estimators have a simpler form than

the unbiased estimators of mean claims derived using Finney’s gm(t) (2.1). Since

lognormal models are completely described by the mean and variance, one only needs

the mean and variance of the prior distribution to make some inference. Assuming the

data is lognormally distributed Zki|θ ∼ lognorm (θ, σ2), and the posterior distribution

normally distributed θ|X ∼ N(m, r2), where σ2 and r2 are known, and X refers to the

data; then E[Zki|X] = em+ 1
2
σ2+ 1

2
r2 and V ar[Zki|X] = e2m+σ2+r2

(
eσ+r2 − 1

)
. Under

squared error loss, the Bayes estimate is the mean of the posterior distribution (cf.

Klugman [19]). The ANOVA models Verrall [1] used to analyze claims runoff triangles

can be represented in linear form (cf. Christensen [11]). Verrall analyze them from a

Bayesian point of view, and developed the Bayes estimate of outstanding claims for

business year i and Bayes estimate of the variance:

̂E[Zki|X]Bayes =
∑

j>n−i+1

E[Zkij|X],

̂V ar[Zki|X]Bayes =
∑

j>n−i+1

{
V ar[Zkij|X] + 2

∑
k>j

Cov(Zij, Zik|X)

}
.

3.2 BÜHLMANN CREDIBILITY

Another reason for Bayesian analysis is developing estimators with a credibility

theory interpretation. This could be used to give partial weight of experience to the

population from which the sample is drawn and partial weight to the individual
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policyholder. If the statistician lacks prior information, the variance of the prior

distribution could be set larger and still analyzed from a Bayesian perspective. As

the variance (2.2) becomes large, the estimators tend to the ordinary least squares

estimator (cf. Verrall [1]). Here the statistician could use empirical Bayes prior

estimators.1

Difficulty with numerical evaluation of the Bayesian premium led to an al-

ternate suggestion in 1967 by Bühlmann [21]: a weighted least squares estimate

of the Bayesian predictive mean (cf. Weishaus [20]). The motivation is to use

fXn+1|Θ(xn+1|θ) or hypothetical mean µn+1(θ) for estimation of the following year’s

claims. The company has observed x, so approximate µn+1(θ) by a linear function

of past data. Estimators are restricted to ones of the form of a weighted average in

order to minimize squared error loss. The weighted average is α0 +
n∑
j+1

αjXj, where

values of α0, . . . , αn are chosen to minimize the squared error loss

Q = EX,Θ

(µn+1(Θ)− α0 −
n∑
j=1

αjXj

)2
 . (3.6)

Set ∂Q
∂α0

= 0. This implies E[µn+1(Θ)] = α̃0 +
n∑
j=1

α̃jE[Xj] where α̃0, . . . , α̃n are values

that minimize Q. Then using iterated expectation, derive

E[Xn+1] = E [E[Xn+1|Θ]] = E[µn+1(Θ)] = α̃0 +
n∑
j=1

α̃jE[Xj],︸ ︷︷ ︸
Must be unbiased for E[Xn+1]

(3.7)

the first of two normal equations. Even though E[Xn+1] must be unbiased, the cred-

ibility estimate may be a biased estimator µn+1(θ) = E[Xn+1|θ]. The bias averages

out over all θi ∈ Θ, so it is generally accepted to reduce the overall mean-squared

1This section on Bühlmann Credibility extensively uses Bühlmann [21], Klugman [19], and
Weishaus [20]. Notation is consistent with Klugman. Other souces not cited here but referenced by
Weishaus include Herzog’s Introduction to Credibility Theory and Mahler-Dean’s study notes.
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error. For ∂Q
∂αi

= 0,

E[µn+1(Θ)Xi] = α̃0E[Xi] +
n∑
j=1

α̃jE[XiXj] = . . . = E[XiXn+1]. (3.8)

This implies that

Cov[Xi, Xn+1] =
n∑
j=1

α̃jCov[Xi, Xj] for i = 1, . . . , n. (3.9)

This is the second of the two normal equations. They can be solved for α̃0, α̃1, . . . , α̃n

to yield the credibility premium α̃0 +
n∑
j=1

α̃jXj. One can also show that the solutions

α0, . . . , αn satisfy the normal equations and minimize Q, making the credibility pre-

mium the best linear estimator of E[Xn+1|Θ] (the hypothetical mean), E[Xn+1|X]

(the Bayesian premium), and Xn+1. See Bühlmann [21] and Klugman [19].

For each policyholder (conditional on Θ), past losses are independent and

identically distributed Xi
iid∼ f(x|θ). The hypothetical mean is denoted as µ(θ) =

E[Xj|Θ = θ], the process variance (hypothetical variance) as V ar[θ] = V ar[Xj|Θ =

θ], the expected value of hypothetical means as µ = E[µ(Θ)], the expected value of

the process variance as ν = E[V ar(Θ)], and variance of the hypothetical means as

a = V ar[µ(Θ)] (cf. Klugman [19] and Weishaus [20]). In the case where nothing is

known about the policyholder–i.e., there is no information about θ, use the collective

premium µ = E[Xj] = E [E[Xj|Θ]] = E[µ(Θ)]. Then V ar[Xj] = E [V ar[Xj|Θ]] +

V ar [E[Xj|Θ]] = E[ν(θ)] + V ar[µ(Θ)] = ν + a. For i 6= j, Cov[Xi, Xj] = a. The

credibility premium is α̃0 +
n∑
j=1

α̃jXj = ZX + (1− Z)µ where Z = n
n+k

and k = ν
a

=

E[V ar[Xj |Θ]]

V ar[E[Xj |Θ]]
. Now the credibility factor Z = n

n+k
is known as the Bühlmann Credibility

Factor (cf. Klugman [19] and Weishaus [20]).

The usefulness of Bühlmann’s solution is found in lim
n→∞

Z = 1, so the credibility

factor gives more weight to X than to µ as more past data accumulates (cf. Klugman
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[19]). This keeps the policyholder invested in keeping their own premium down, but

also gives the insurance company the collective premium as a good starting point. If

µ(Θ) = E[Xj|Θ] has small variability – that is, it does not vary to a great extent with

values of Θ – then ν = E[v(Θ)] is large relative to a = V ar[µ(Θ)]. This causes k = ν
a

to be large and Z = n
n+k

to be closer to zero. For a homogeneous population, µ is of

more value in helping to predict Xn+1. For a heterogeneous population, the opposite

happens: a is large relative to ν, which makes k small and Z gives more weight to X.

This makes logical sense and is of great practical use. See the discussion in Klugman

[19].

Bayesian linear estimation has similarity with credibility estimators of risk

premiums. The credibility premium mentioned is linear, a weighted average. There

is also an assumption that some parameters are exchangeable. This is very similar to

the independent and identically distributed variable assumption, and arises naturally

under the chain ladder model, where future samples will behave similarly to past

samples (see the assumptions in section 1.1). This affects estimates due to shrinkage

toward a central value. This gives stability, as shrinkage is the greatest when the

number of observations is small (cf. Verrall [1]). Regard the runoff rows as a set of

risks and use the Bühlmann risk credibility estimator. Verrall starts from the runoff

triangles and proceeds to credibility formula via the linear models. The advantage is

that the linear model approach produces estimates of standard errors of the estimates.

Constraints are α0 = β0 = 0 from the first stage distribution are retained. These

restraints ensure a non-singular design matrix and introduce asymmetry into the

prior distribution. One can use a constraint such as
∑
αi =

∑
βj = 0 to avoid this

(cf. Kremer [13] and Christensen [11] for introducing constraints to general linear

models). One can also apply the constraint at the second stage and use the prior

distribution αi ∼ N(0, σ2
α), for i = 1, . . . , t.
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Verrall’s Bayesian estimates for the ANOVA model use a 2-stage Bayesian

model, assuming some prior information or knowledge. Recall that the chain ladder

model can be described in linear form as in Equation (1.5), where Y |β ∼ N(Xβ,Σ):

Y︷ ︸︸ ︷

y11

y12

y13

y21

y22

y31


=

Xβ︷ ︸︸ ︷

1 0 0 0 0

1 0 0 1 0

1 0 0 0 1

1 1 0 0 0

1 1 0 1 0

1 0 1 0 0





µ

α2

α3

β2

β3


+

ε︷ ︸︸ ︷

ε11

ε12

ε13

ε21

ε22

ε31


.

The log-linear model implies that Yi = logZi where Yi ∼ N(Xijβ, σ
2) and Zi ∼

Lognormal(Xijβ, σ
2), E[Zi] = e

(
Xijβ+σ2

2

)
and V ar[Zi] = e(2Xijβ+σ2)(eσ

2 − 1). The

prior information is quantified in the prior distribution on β: β|θi ∼ N(Iiθi,Σi).

Similar sets of data may all give information on the individual parameters. Here,

I1 is an identity matrix, θ1 is a vector containing the prior estimates, and Σ1 is

the diagonal variance-covariance matrix. When there are nonzero covariances, the

prior distribution becomes β|θ1 ∼ N(θ1,Σ1). If the errors are independent, then the

variance-covariance matrix is the diagonal matrix Σ = σ2In, where In is the n × n

identity matrix.

Verrall [1] showed that the Bayes estimate of the parameter vector is the

solution β̃ of

(σ−2X ′X + Σ−1
1 )︸ ︷︷ ︸

V ar[β̃]−1

β̃ = σ−2X ′Xβ̃ + Σ−1
1 θ1. (3.10)

where [σ−2X ′X + Σ−1
1 ]−1 is the variance-covariance matrix of β̃. Then the Bühlmann

credibility premium is β̃ = Zβ̃ + (1 − Z)θ1 where Z is a p × p matrix. The cred-

ibility factor Z is [σ−2X ′X + Σ−1
1 ]−1σ−2X ′X = σ−2X′X

σ−2X′X+Σ−1
1

= Z. Recall that,
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the credibility factor Z = m
m+ v

a
= 1

1+ v
am

, where E[V ar(X|θ)] = v
m

and the vari-

ance of the hypothetical means is a. It is not possible to write a credibility for-

mula separately for each factor in the form α̃j = Zα̃j + (1 − Z)θj (cf. Klugman

[19]). To estimate the variance σ2, use s2 = (ν−Xβ̃)′(ν−Xβ̃)
n+2

and substitute it into

[σ̃−2X ′X + Σ−1
1 ]β̃ = [s−2X ′X + Σ−1

1 ]β̃ = s−2X ′Xβ̃ + Σ−1
1 θ1 and solve for β̃ to get

the Bayes estimates. To do this numerically, start with s2 = 0 and iterate between

[s−2X ′X + Σ−1
1 ]β̃ and s−2X ′Xβ̃ + Σ−1

1 θ1.[1]

There is also a generalization of the Bühlmann model, the Bühlmann-Straub

model. For the Bühlmann model, past claims experience comprise independent and

identically distributed components with respect to each past year, so there is no

variation in exposure or size. The model does not reflect if the claims experience

reflects only a portion of a year, if benefits change mid-way through the year, or

if the size of a group in group insurance changes over time. The Bühlmann-Straub

model is more appropriate when each Xj is an average of mj independent (conditional

on Θ) random variables, each with mean µ(θ) and variance v(θ). For example the mj

independent random variables could be months the policy was in force, the number

of individuals in a group, or the amount of premium income for a policy in year j.

Both Klugman [19] and Weishuas [20] contain a discussion of Bühlmann-Straub.

Assume X1, . . . , Xn are independent (cf. Bühlmann [21]), conditional on Θ

with common mean µ(θ) = E[Xj|Θ = θ] and conditional variances V ar[Xj|Θ =

θ] = ν(θ)
mj

, where mj is a known constant measuring exposure, proportional to the size

of the risk. As before, let µ = E[µ(Θ)], ν = E[V ar(Θ)], and a = V ar[µ(Θ)]. For

unconditional moments, E[Xj] = µ, Cov[Xi, Xj] = a, and V ar[Xj] = E [V ar[Xj|Θ]]+

V ar [E[Xj|Θ]] implies V ar[Xj] = E
[
ν(Θ)
mj

]
+V ar [µ(Θ)] = ν

mj
+a (cf. Klugman [19]).

To obtain the credibility premium α̃0 +
n∑
j=1

α̃jXj, solve normal equations (3.7)

and (3.9) to obtain α̃0, α̃1, . . . , α̃n. Klugman [19] gives a very detailed explanation

of the solution. Define m = m1 + m2 + · · · + mn to be the total exposure. Recall
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that the unbiasedness Equation (3.7) is E[Xn+1] = α̃0 +
n∑
j=1

α̃jE[Xj] where E[Xj] =

E [E[Xj|Θ]] = E[µ(Θ)] = µ. This implies that µ = α̃0 +
n∑
j=1

α̃jµ, which implies

n∑
j=1

α̃j = 1 − α̃0

µ
. Also recall that Cov[Xi, Xj] =

n∑
j=1

α̃jCov[Xi, Xj] for i = 1, . . . , n

(3.9). Set

a = Cov[Xi, Xn+1] =
n∑
j=1

j 6=i

α̃ja+ α̃i(a+
ν

mi

) =
n∑
j=1

α̃ja+
να̃i
mi

.

This implies that

α̃i =
a

ν
mi

(
a−

n∑
j=1

α̃j

)
=
a

ν
mi

(
α̃0

µ

)
and (3.11)

a− α̃0

µ
=

n∑
j=1

α̃j =
n∑
i=1

α̃i =
a

ν

α̃0

µ

n∑
i=1

mi =
aα̃0m

µν
.

Equations (3.11) result in closed form solutions (3.12) to the unbiased normal equa-

tion:

Normal Equation Solutions:

 α̃j = aα̃0

µν
mj =

mj
m+ v

a

α̃0 = µ
1+am

ν
=

ν
a

m+ ν
a
µ.

(3.12)

Let k = ν
a
, Z = m

m+k
, and X =

n∑
j=1

mj
m
Xj as before. Then the Bühlmann-Straub

credibility premium can be derived from the unbiased normal equation, by plugging

solutions (Equation (3.12)) into the Bühlmann-Straub credibility premium, as shown
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in Klugman [19] and Bühlmann [21]:

α̃0 +
n∑
j=1

α̃jXj =
ν
a

m+ ν
a

µ+
n∑
j=1

mj

m+ v
a

Xj

=
k

m+ k
µ+

n∑
j=1

mj

m+ k
Xj

= ZX + (1− Z)µ. (3.13)

Note that (3.13) is still in the form of credibility premium Pc = ZX+(1−Z)M . The

Bühlmann-Straub credibility factor Z depends on m, the exposure associated with the

policyholder. X is the weighted average of Xj, the average loss of mj group members

in year j, with weights proportional to mj so mjXj is the total loss of the group in

year j. X is then the overall average loss per group member over the n years. The

credibility premium to charge the group in year n+1 is then Pc = mn+1[ZX+(1−Z)µ],

where mn+1 is the number of group members in year n+ 1.

For a single observation x, the process variance is V ar[x|θ] =
n∑
j=1

m2
j

m2

ν(θ)
m

, which

implies E[V [x|θ]] = ν
m

. The variance of hypothetical means is a, which implies

k = ν
am

. Finally, the Bühlmann-Straub Credibility Factor Z = a
a+ ν

am
= m

m+ ν
a
, with

weights inversely proportional to the conditional variance of each Xj. The assump-

tions in Bühlmann-Straub are better than previous models, but are too restrictive

to accurately represent reality. Large risks generally do not behave as independent

aggregations of small risks; they are far more variable. The model can be generalized

by letting the variance µ(Θ) depend on the exposure. This may be reasonable if size

of a risk affects its tendency to produce claims different from the mean.

Exact credibility occasionally arises in the Bühlmann-Straub situation. When

the Credibility Premium (using best linear approximation) and Bayesian Premium

(using squared error loss) are equal, the approximation is referred to as exact – or

exact credibility. Verrall’s paper did not delve into this topic any further.
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3.3 CREDIBILITY THEORY

Limited2 fluctuation credibility theory is a method for assigning full or partial

credibility to a policyholder’s experience. It may be that the remaining weight comes

from some other information, such as occupation.3 Greatest accuracy credibility

theory was formalized by Bühlmann [21] in 1967. He used least squares estimation,

which relies on a geometric, not statistical, argument (cf. Christensen [11]). The

unknown parameters can be estimated by data using nonparametric estimation or

semi-parametric estimation upon assuming a particular distribution.

One can either assume Xj are the number of claims or losses experienced

in period j ∈ {1, 2, . . . , n} of a policyholder or that Xj is the experience from the

jth policy group or jth member of a group or class. Assumptions are that Xj is

homogenous (cf. Bühlmann [21]) or as Klugman [19] puts it, stable over time across

members of the group or class. Mathematically, E[Xj] = ξ; and that Xj are the same

for all j, V ar[Xj] = σ2. Past experience is collected, and the goal is to decide the

value of ξ. Then X̄ = x1+x2+...+xn
n

and E[X̄] = ξV ar[X̄] = σ2

n
(cf. Bühlmann).

Let M be the manual premium. This means that if one ignored the past data

(assumed no credibility), one would charge M based on past experience from similar

(not individual) policyholders. Partial credibility involves choosing a combination

of M and X̄, similar to choosing between the individual and collective premium in

section 3.1. To choose between X̄ and M , lean toward M if X̄ is variable (has a

large σ2) but lean toward X̄ if it is less variable and more stable. If there is reason

to believe the policyholder will behave differently than the group which produced M ,

more weight should be given to X̄. For full credibility, one relies entirely on past

data, but there are certain conditions which must apply (cf. Klugman [19]).

2This section also makes wide use of Bühlmann [21] and Klugman [19], following the last section
in using Klugman’s notation.

3Mowbray (1914) first suggested it in connection with worker’s compensation insurance.[19]
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Stability means the difference between X̄ and ξ is small relative to ξ with high

probability. Klugman [19] derived a mathematical expression for full credibility to

describe this situation. Let
√
λ0 > 0 and 0 < p < 1; then,

Prob(−
√
λ0ξ ≤ X̄ − ξ ≤

√
λ0 ∗ ξ) ≥ p ⇒ Prob

(∣∣∣∣X̄ − ξσ
√
n
≤
√
λ0ξ
√
n

σ

∣∣∣∣) ≥ p.

If we let

yp = inf
y

{
P

(∣∣∣∣X̄ − ξσ
√
n

∣∣∣∣ ≤ y

)
≥ p

}
where yp is the smallest value of y which satisfies this equation, then Klugman’s

condition for full credibility is

√
λ0ξ
√
n

σ
≥ yp ⇒

√
λ0n

yp
≥ σ

ξ

where σ
ξ

is the coefficient of variation. Since V ar[X̄] = σ2

n
≤ λ0ξ2

y2p
, then the minimum

sample size is

n ≥
(
σ

ξ

)2 y2
p

λ0

where λ is the exposure factor (see Equation (1.1)) required for full credibility. In

other words, n must be at least this big to have full credibility. Klugman [19] discusses

how to approximate X̄ by the normal distribution (X̄−ξ)
σ√
n

∼ N(0, 1). Then yp is

the
(
p+1

2

)th
percentile of the standard normal distribution. If the number of claims

are being considered, E[Xj] = λ. However, if as in Verrall’s [1] paper, the total

claim amount is being considered, E[Xj] = λ × ( claim size distribution) = λf(x).

This should not be seen as unusual given the similarity to Verrall’s estimate for

expected ultimate loss (1.3). Also see Schmidt [3] for estimation of mean claims

using development factors.

Partial credibility means the sample size n may not be large enough for full

credibility, so the credibility premium is a mixture of X̄ and M . Then the credibility
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premium is Pc = ZX̄ + (1 − Z)M where Z ∈ [0, 1] is the credibility factor. The

Bühlmann [21] credibility factor is Z = n
n+k

. Klugman [19] gives another formula for

the Bühlmann credibility factor by controlling the variance of the credibility premium

Pc.

ξ2

λ0

= V ar[Pc] = Z2σ
2

n
⇒ Z = min

{
ξ

σ

√
n

λ0

, 1

}
Greatest accuracy credibility has similar assumptions (cf. Klugman [19]).

There are n exposure units of past claims x1, x2, . . . , xn and a manual rate M = µ

for the policyholder. When past experience indicates µ may not be appropriate as

the manual rate (i.e., X̄ and E[X] could be very different from µ), then it may create

a problem. The question is, should next year’s net premium per exposure unit be

based on µ, X̄, or a combination of the two? One must decide if the policyholder dif-

ferent from assumptions made while calculating µ, or is random chance the difference

between µ and X̄.

The assumptions for greatest accuracy credibility are as follows (cf. Klugman

[19]): The policyholder is in a homogenous risk class, based on underwriting. The

rating class is characterized by a risk parameter, θ, which varies by policyholder.

There is a probability mass (or density) function, π(θ), which varies across the rating

class. If θ is a scalar parameter, Π(θ) = Prob(Θ ≤ θ), which is the proportion of

policyholders with a risk parameter less than or equal to θ. The last assumption that

π(θ) is known, can be relaxed but the relevant characteristics of the risk structure

π(θ) can be found within the population.

3.4 EMPIRICAL BAYES

Verrall’s [8] empirical Bayes estimates for the chain ladder linear model uses a

3-stage Bayesian model, with an improper or vague prior distribution.[1] This method

allows for the possibility that there may be no prior information on which to base
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a prior parametric distribution. The Bühlmann parameters are instead estimated

entirely from empirical data. This is possible because Bühlmann credibility is based

on least squares estimation, a geometric and not statistical method (cf. Weishaus

[20]). The method uses an improper prior distribution (a distribution, the CDF of

which may not sum to 1) at the third stage for row parameters and an improper

prior distribution at the second stage for overall mean and column parameters. The

same assumptions for overall mean and column parameters apply as for maximum

likelihood estimation.

Those assumptions for maximum likelihood estimation are that the row pa-

rameters are iid (same as in credibility theory when assigning risk parameters to each

risk) (cf. Verrall [8]). Estimates produced combine information from not just rows

but the triangle as a whole. The prior distribution (second stage) is estimated from

the data, which means the estimates are empirical Bayes estimates. The linear model

for the chain ladder method is y|β ∼ N(Xβ, σ2I) with constraint α1 = β1 = 0 as

before. Errors are assumed to be iid. As in credibility theory, a structure is put onto

row parameters α2, α3, . . . , αt - assume these are iid. For overall mean µ and column

parameters β2, β3, . . . , βt, the same assumptions apply as for MLE, but the estimators

are different because of the row parameter treatment (cf. Verrall [1]).

Verrall [8] proved the following result for 3-stage models (using improper prior)

in section 2.2 of his earlier 1990 paper. Define the prior distribution for a vector of

hyper-parameters: θ1|θ2 ∼ N(I2θ2,Σ2), where θ2 is a p2-dimensional vector, I2 is a

p1 × p2 matrix, Σ2 is a p1 × p1 matrix. Also let D refer to the data. Verrall assumes

all the parameters follow a parametric distribution, with the following assumptions:

y|β ∼ N(Xβ,Σ), β|θ1 ∼ N(I1θ1,Σ1), and θ1|θ2 ∼ N(I2θ2,Σ2).
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Those further imply the posterior distribution of β is β|y, θ2 ∼ N(Dd,D), D−1 =

X ′Σ−1X + [Σ1 + I1Σ2I
′
1]−1 and d = X ′σ−1y + [Σ1 + I1Σ2I

′
1]−1I1I2θ2. The Bayesian

estimate (posterior mean) is a weighted average of the maximum likelihood estimator

and prior mean (cf. Verrall, and Weishaus [20]):

β̂ =
[
X ′Σ−1X + (Σ1 + I1Σ2I

′
1)−1

]−1
[
X ′Σ−1Xβ̂ + (Σ1 + I1Σ2I

′
1)−1I1I2θ2

]
(3.14)

which can be viewed as a credibility formula with credibility factor

Z =
X ′Σ−1X

X ′Σ−1X + (Σ1 + I1Σ2I ′1)−1
. (3.15)

The weight given to the MLE depends on the inverse of the dispersion matrix of β̂,

which is X ′Σ−1X. Verrall [8] uses a vague third-stage prior with the 3-stage Bayesian

model. With the same three assumptions as before and an additional assumption

of Σ−1
2 = 0, the posterior distribution of β|y is β|y ∼ N(D0d0, D0) where D−1

0 =

X ′Σ−1X︸ ︷︷ ︸
σ−2X′X

+Σ−1
1 −Σ−1

1 I1(I ′1Σ−1
1 I)−1I−1

1 Σ−1
1 and d0 = X ′Σ−1y︸ ︷︷ ︸

σ−2X′y

. These are the parameters

used for empirical Bayes estimation of the parameters. They have a credibility theory

interpretation similar to the estimators used in the premium setting by Bühlmann.

For the prior distribution, β|(ω, θ, ξ) ∼ N(I1θ1,Σ1), where

I1θ1 =



1 0 · · · 0

0 1 · · · 0

1
...

...
...

...

0 1 0

... 0 1

...
...

. . .
...

0 · · · 0 1





ω

θ

ξ2

...

ξt


and Σ1 =



σ2µ

σ2α

. . .

σ2α

σ2β

. . .

σ2β



.
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Here, Σ1 is taken so σ−2µ → 0 and σ−2β → 0. Let ψ be the mean of the common

distribution of the row parameters α2, . . . , αt. An improper prior distribution is used

for ψ. As σ−2µ → 0 and σ−2β → 0, the third stage distribution is not needed for

ω and ξ2, . . . , ξt. So the model is a combination of 2nd (prior distribution) and 3rd

(improper prior) models.

The Bayes estimate, β̂, of β, was proved by Verrall in the appendix of his 1990

paper[8] to be

β̂ = σ−2X ′X +



0

σ−2α

. . .

σ−2α

0

. . .

0



−1

×



σ−2X ′Xβ +



0

σ−2α

. . .

σ−2α

0

. . .

0





0

α̃0

...

α̃0

0

...

0





(3.16)

where α̃0 = 1
t−1

t∑
i=2

α̃i.

The credibility interpretation of Verrall’s estimate is that the empirical Bayes

estimates of the row parameter are in the general form of credibility estimates – a

weighted average of the MLE estimates and average of the estimates from all the rows.
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Note that X ′X is not a diagonal or block-diagonal matrix. Estimation of µ, β2, . . . , βt

is tied up in estimating α2, . . . , αt and the reverse is true as well. Changing the

estimates of row parameters forces change in other estimates, so this makes sense.

The weights depend on the precision of the estimates, as in credibility theory. As

before, σ2 and σ2α are replaced by model estimators s2 and s2α where

s2 =
νλ+ (ν −Xβ̂)′(ν −Xβ̂)

n+ ν + 2

and

s2α =

ναλα +
t∑
i=2

(α̂i − α.)2

t+ να + 1
,

and ν, λ, να, λα are set by the prior distribution of the variances. As before with s2 = 0,

iterate between the two equations above and the Bayes estimate β̂. The empirical

Bayes assumptions can also be applied to column parameters, though Verrall mentions

it has little practical use.
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4 CONCLUSIONS

4.1 SUMMARY

Insurance companies must ensure as first order of business that there are

enough reserves to cover future claims. For this reason, it is useful to estimate the

mean expected losses. The run-off triangle method estimates losses based on past

claims data, and is the most widely used method for such estimation in property and

casualty insurance. Relying on development factors which are proportions of claims

from year to year, the logged data from the multiplicative model in the chain ladder

technique is well suited to being expressed in general linear model form. However,

the chain ladder model also has limitations. Where the loss development factors in

successive accident years are inconsistent, the chain ladder model may not be well

suited to the data (see also Sahasrabuddhe [2] for alternate models and Schmidt [3]

for assumptions underlying various chain ladder techniques).

Based on the work of Finney [15] and Bradu and Mundlak [16], Verrall’s

([8], [14], [17], and [1]) chain ladder technique developed unbiased estimators for the

claims in each business year, expected ultimate claims, and the variance for each

estimator. Verrall also found maximum likelihood estimates for the development

factors by taking partial derivatives of the ultimate claims proportions and link ratios

(cf. Kremer [13]). Much of the current chain ladder technique involves a biased

estimation not too dissimilar from the “quick and dirty” method discussed in the

first two chapters. Verrall’s method, which developed unbiased estimates first for the

mean expected claims and then for the total reserve, is a significant improvement

over currently accepted methods. With a computer program to quickly calculate or

estimate values for Finney’s infinite gm(t) sum (2.1), Verrall’s technique could have a

wide range of industry applications in loss reserving.
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Bayesian analysis allows the statistician to make inference about a population

based on some previously known knowledge. It also allows the statistician to predict

a new observation given past data. Verrall combined the technique with Bühlmann

[21] credibility to develop an estimator of the following year’s claims based on the

previous year’s claims. Bühlmann credibility can be used to combine a previously

known mean or premium based on the population from which the sample is drawn

with a mean or premium based on the available data. The chain ladder technique

can be used to estimate loss development in cases where data has been collected from

a population but the statistician has no information on which to base a parametric

prior distribution (empirical Bayesian estimation).

4.2 FURTHER RESEARCH

As mentioned above, Verrall’s unbiased estimator for claims and expected

ultimate claims suffers from a burden of tedious calculation, making it difficult to

apply directly. For real data applications, a run-off triangle could easily reach into

hundreds or thousands of rows and columns, depending on the time unit chosen and

length of time the statistician wishes to apply historical data. Industry also often

uses inexpensive and widely available applications. Instead of a direct calculation of

Finney’s gm(t), it may be useful to instead be able to accurately estimate it using one

of the functions native to, say, MS Excel.

Catastrophic losses are extremely large losses arising from a single event catas-

trophe – for example, all losses resulting from the tornado which leveled a large por-

tion of the city of Joplin, Missouri USA. It would be of interest to compare the loss

development pattern for both catastrophic and non-catastrophic losses. The loss de-

velopment pattern for catastrophic losses may spike higher but does not necessarily

develop over time. For non-catastrophic losses, the development pattern does not

spike but gradually increases over time. It is a useful application of the chain ladder
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technique to investigate the development patterns for both catastrophic and non-

catastrophic losses. Investigation into speed of claims adjustment could also have

useful industry applications. As the chain ladder technique is a linear model, re-

gression analysis and comparison of residuals could inform a recommendation about

which chain ladder technique is appropriately suited to each loss type.
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