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ABSTRACT

In this work, we study Abel dynamic equations of the first and the second kind.

After a brief introduction to time scales, we introduce the Abel differential equations

of the first and the second kind, as well as the canonical Abel form in the continuous

case. Using the existing information, we derive novel results for time scales. We

provide formulas for the Abel dynamic equations of the second kind and present a

solution method. We furthermore achieve a special class of Abel equations of the first

kind and discuss the canonical Abel equation. We get relations between common

dynamic equations by analyzing relations between common differential equations in

R. Examples for T = R illustrate our results for the Abel dynamic equations.
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1. INTRODUCTION

Niels Henrik Abel, one of the most active mathematicians of his time, was born

in Norway in 1802 [14] and improved mainly the research field of functional analysis.

He dedicated himself to integral equations, where he defined the Abel integral and

worked on methods to solve special integral equations, which were later called Abel

integral equations [14]. His research on integral equations and their solutions led him

work on differential equations, where he verified the importance of the Wronskian

determinant for a differential equation of order two [14]. It was studies of the theory

of elliptic functions that got him involved in the analysis of special differential equa-

tions [12], which are a generalized Riccati differential equation. Due to his crucial

research on and improvement of these differential equations, they are named after

Abel. The Abel differential equation of the first and of the second kind are both

nonhomogeneous differential equations of first order and are related by a substitution

that is explained in more detail in Section 3.2.

Abel differential equations have various applications. For example, in physics to

find solutions for equations describing the development of the universe [15] and in the

theory of thin film condensation [18]. This illustrates the significance of the analysis

of Abel equations and their solution. The purpose of this thesis is to introduce Abel

dynamic equations of the first and of the second kind and illustrate the relation

between both kinds, as well as to other common differential equations. It has been

already mentioned that Abel differential equations generalize the Ricatti differential

equation, which will be verified later on. The Abel differential equation of the first

kind is furthermore a generalization of the common Bernoulli differential equation,

which enables the establishment of a correlation to linear differential equations and
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to a special class of the logistic differential equation. These relations are discussed

throughout the thesis, but mainly in Section 5.

Various classes of Abel differential equations can be solved by different methods,

and to illustrate the idea of solving Abel differential equations in R and T, a special

method is described and proved, mainly based on a paper of Bougoffa [3].

Applied scientists are interested in modeling real-life situations mathematically,

which often include differential equations such as Abel equations. The modeling, in

general, enables the use of mathematical tools to analyze the modeled situations and

optimize them. For the mathematical model, data is used, which is often based on

observation and examination of experiments and is, therefore, not evaluated at each

time step t. For the investigation of these models, differential equations are used,

where the (variable) coefficients of these equations are constructed by the data. To

apply methods to solve these differential equations, the variable coefficients have to

be continuous, which is not satisfied by the data, since it is only evaluated at some

time points. To transfer the data into a continuous function, approximation methods

are used, such as the linear or exponential approximation method. This makes, on the

one hand, the mathematical optimization by using differential equations possible but,

on the other hand, more inaccurate, since approximations based on assumptions were

made. This is one of the main reasons why the time scale in the models is valuable.

The mathematical field of time scales generalizes the time set and helps improve the

model of the real world. Thus the interest in translating differential equations and

their solution (methods) into time scales.

In some cases, the strategy to solve differential equations in time scales, so-called

dynamic equations, is more or less identical to the continuous case R. In other cases, a

novel idea has to be found to generate a general solution. That underlines the purpose

of this thesis, namely to translate Abel differential equations, which are used in many

important applications, into a more generalized time set. After an introduction to
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time scales T, Abel equations of the second and of the first kind are expounded. In

applied science, the solution of the differential equation is of main interest, which is

the reason why a solution method of a class of the Abel differential equation of the

second kind is explained in R, and then converted into T. This method refers to a

strategy presented in R in a paper by Bougoffa [3].

Finally, relating the Abel dynamic equation with common differential equations

in T is realized in Section 5. The connections are first derived in R and then analyzed

in T. In this context, further transformations between differential equations, such as

between the linear and the logistic differential equation, are examined in time scales

and the results are presented. This should help the readers to better understand

mathematical behavior in time scales and to get familiar with the Abel differential

equation in a generalized time set, T.
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2. TIME SCALES PRELIMINARIES

2.1. MAIN DEFINITIONS IN TIME SCALES

A time scale T is an arbitrary nonempty closed subset of the real numbers R [2,

p. 1]. A subset of X is a closed subset if its complement set is an open subset. A

closed subset of X has the following properties [8, p. 23]:

• X and ∅ are closed subsets of X,

• any union of finitely many closed subsets of X is a closed subset of X,

• any intersection of arbitrarily many closed subsets of X is a closed subset of X.

It is easy to see that the rational numbers do not satisfy the third property of

a closed subset of R and therefore do not define a time scale. The complex numbers

do not define a time scale either since they are not a subset of R.

Definition 2.1. Let T be a time scale. For t ∈ T, define [2, p. 1]:

• The forward jump operator σ : T −→ T by

σ(t) := inf{s ∈ T : s > t} for all t ∈ T. (2.1)

• The backward jump operator ρ : T −→ T by

ρ(t) := sup{s ∈ T : s < t} for all t ∈ T. (2.2)

Define inf ∅ = supT and sup ∅ = inf T.

Example 2.2. If T = R, then

σ(t) = inf{s ∈ R : s > t} = t = ρ(t) = sup{s ∈ R : s < t} for all t ∈ R.
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Example 2.3. If T = Z, then

σ(t) = inf{s ∈ Z : s > t} = t+ 1 for all t ∈ Z,

ρ(t) = sup{s ∈ Z : s < t} = t− 1 for all t ∈ Z.

Definition 2.4. t ∈ T is called [2, p. 2]

• right-scattered if σ(t) > t,

• left-scattered if ρ(t) < t,

• isolated if t is left-scattered and right-scattered;

• right-dense if σ(t) = t,

• left-dense if ρ(t) = t, and

• dense if t is left-dense and right-dense.

It is trivial to realize that t is dense for all t ∈ R if T = R and that t is isolated

for all t ∈ Z if T = Z.

Definition 2.5. The graininess function µ : T −→ [0,∞) is defined by [2, p. 2]

µ(t) := σ(t)− t for all t ∈ T. (2.3)

If t ∈ T has a left-scattered maximum M , then we define Tκ = T \ {M};

otherwise, Tκ = T.
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Example 2.6. For T = R,

µ(t) = σ(t)− t = t− t = 0 for all t ∈ R.

Example 2.7. For T = Z,

µ(t) = σ(t)− t = t+ 1− t = 1 for all t ∈ Z.

Remark 2.8. In the literature, f(σ(t)) is equivalently denoted as fσ(t).

2.2. DIFFERENTIATION ON TIME SCALES

Definition 2.9. Consider the function f : T −→ R. f is called delta differentiable at

t ∈ T, or short differentiable, if for all ε > 0, there exists δ > 0 and a number f∆(t),

such that [2, p. 2]

∣∣f(σ(t))− f(s)− f∆(t)(σ(t)− s)
∣∣ ≤ ε |σ(t)− s| for all s ∈ (t− δ, t+ δ). (2.4)

If f is differentiable in Tκ, then f∆ is called the delta derivative of f .

Theorem 2.10. Assume f : T −→ R is differentiable at t ∈ Tκ. Then f is continuous

at t [2, p. 2].

Theorem 2.11. Assume f : T −→ R is continuous at t ∈ Tκ and t is right-scattered.

Then f is differentiable at t and [2, p. 2]

f∆(t) =
f(σ(t))− f(t)

µ(t)
=
f(σ(t))− f(t)

σ(t)− t
. (2.5)
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Theorem 2.12. Assume f : T −→ R is a function and t ∈ Tκ is right-dense, then f

is differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s
(2.6)

exists. In this case the limit is equal to the delta-derivative f∆(t) [2, p. 2].

Theorem 2.13. If f is differentiable at t ∈ Tκ, then

f(σ(t)) = f(t) + µ(t)f∆(t). (2.7)

Proof. Let f : T −→ R be differentiable at t ∈ Tκ. If t is right-dense, then σ(t) = t

and therefore, by Definition 2.5, µ(t) = 0, so

f(σ(t)) = f(t) = f(t) + µ(t)f∆(t).

If t is not right-dense, then σ(t) 6= t. So t is right-scattered and therefore, by Definition

2.5, µ(t) 6= 0. Since f is differentiable at t, Theorem 2.11 yields

f∆(t) =
f(σ(t))− f(t)

µ(t)
,

i.e.,

f∆(t)µ(t) = f(σ(t))− f(t),

i.e.,

f∆(t)µ(t) + f(t) = f(σ(t)).
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This completes the proof.

Example 2.14. For T = R, any t ∈ R is right-dense. Theorem 2.12 states that f is

differentiable if and only if

lim
s→t

f(t)− f(s)

t− s

exists. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
= f ′(t).

Example 2.15. For T = Z, any t ∈ Z is right-scattered. Assume f is continuous. By

Theorem 2.11, f is differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
=
f(t+ 1)− f(t)

1
= f(t+ 1)− f(t) = ∆f(t).

The delta-operator is, as the derivative operator, a linear operator. Assuming

f, g : T −→ R are differentiable at t ∈ Tκ and α, β ∈ R, one has

(αf + βg)∆(t) = αf∆(t) + βg∆(t). (2.8)

Similar to the derivative of a product of two functions f, g : R −→ R, one can obtain

the product rule for time scales in the following way [2, p. 3]. If f, g : T −→ R are

differentiable at t ∈ Tκ, then

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = g∆(t)f(t) + gσ(t)f∆(t). (2.9)
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Before deriving a formula for the quotient rule of two functions f, g in time scales,

one has to differentiate 1/f for a function f : T −→ R.

Theorem 2.16. If f : T −→ R is delta-differentiable at t ∈ Tκ and f(t)f(σ(t)) 6= 0,

then

(
1

f

)∆

(t) = − f∆(t)

f(t)f(σ(t))
. (2.10)

Proof. Assume f and 1/f are delta-differentiable at t ∈ Tκ and f(s), f(σ(t)) 6= 0 for

all s in surrounding of t. For ε > 0, define ε∗ = ε
(
‖f(σ(t))‖+‖f∆(t)f(s)‖

‖f(s)f(σ(t))‖

)−1

. Then ε∗ > 0.

Since f is differentiable in t ∈ Tκ, by Definition 2.4, there exists a neighborhood U1

of t such that

∣∣f(σ(t))− f(s)− f∆(t)(σ(t)− s)
∣∣ ≤ ε∗ |σ(t)− s| for all s ∈ U1.

Since 1/f is differentiable at t, 1/f is continuous at t by Theorem 2.10. Therefore

there exists a neighborhood U2 of t such that

∣∣∣∣ 1

f(t)
− 1

f(s)

∣∣∣∣ ≤ ε∗ for all s ∈ U2.

Let U = U1 ∩ U2 and s ∈ U . Then

∣∣∣∣ 1

f(σ(t))
− 1

f(s)
−
(
− f∆(t)

f(σ(t))f(t)
(σ(t)− s)

)∣∣∣∣
=

∣∣∣∣f(s)− f(σ(t))

f(σ(t))f(s)
+

f∆(t)

f(σ(t))f(t)
(σ(t)− s) +

f∆(t)(σ(t)− s)
f(s)f(σ(t))

− f∆(t)(σ(t)− s)
f(s)f(σ(t))

∣∣∣∣
≤

∣∣∣∣[f(s)− f(σ(t)) + f∆(t)(σ(t)− s)]
(

1

f(s)f(σ(t))

)∣∣∣∣
+

∣∣∣∣f∆(t)(σ(t)− s)
f(σ(t))

(
1

f(t)
− 1

f(s)

)∣∣∣∣
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≤ ε∗

|f(s)f(σ(t))|
|σ(t)− s|+

ε∗
∣∣f∆(t)

∣∣
|f(σ(t))|

|σ(t)− s|

= ε∗
|f(σ(t))|+

∣∣f∆(t)f(s)
∣∣

|f(s)f(σ(t))|
|σ(t)− s| = ε |σ(t)− s| .

By Definition 2.9,
(

1
f

)∆

(t) = − f∆(t)
f(t)f(σ(t))

is the delta-derivative of 1/f at t ∈ T.

The quotient rule for delta-differentiable functions f, g : T −→ R can be ob-

tained by applying the product rule to f 1
g
. Therefore

(
f

g

)∆

(t) =

(
f

1

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
. (2.11)

Example 2.17. Let f be a delta-differentiable function at t ∈ Tκ. The delta-derivative

of f 2 at t ∈ Tκ can be found by applying the product rule to f · f

(f 2)∆(t) = (f · f)∆(t) = f∆(t)f(t) + f∆(t)f(σ(t)) = f∆(t)(f(t) + f(σ(t)).

Example 2.18. Let f : T −→ R be delta-differentiable at t ∈ Tκ with f and f(σ) > 0.

The delta-derivative of
√
f is then given by

(
√
f)∆(t) =

f∆(t)√
f(t) +

√
f(σ(t))

.

Proof. Assume f and
√
f are delta differentiable at t ∈ Tκ. For ε > 0, define

ε∗ = ε

(
m+ 1√

f(t) +
√
f(σ(t))

)−1

,
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where m = max
√
f(t0)

∆
for t0 ∈ [σ(t), s] for all s in surrounding of t. Then ε∗ > 0.

Since f is differentiable in t ∈ Tκ, there exists a neighborhood U1 of t such that

∣∣f(σ(t))− f(s)− f∆(t)(σ(t)− s)
∣∣ ≤ ε∗ |σ(t)− s| for all s ∈ U1.

Since
√
f is differentiable at t and

√
f is continuous at t, by Theorem 2.10, there

exists a neighborhood U2 and U3 of t such that

∣∣∣√f(t)−
√
f(s)

∣∣∣ ≤ ε∗ for all s ∈ U2

and

∣∣∣√f(σ(t))−
√
f(s)

∣∣∣ ≤ m |σ(t)− s| for all s ∈ U3.

Let U = U1 ∩ U2 ∩ U3 and s ∈ U . Then

∣∣∣∣∣√f(σ(t))−
√
f(s)− f∆(t)√

f(σ(t)) +
√
f(t)

(σ(t)− s)

∣∣∣∣∣
=

∣∣∣∣∣√f(σ(t))−
√
f(s)− f∆(t)√

f(σ(t)) +
√
f(t)

(σ(t)− s)± f(s)√
f(σ(t)) +

√
f(t)

∣∣∣∣∣
≤

∣∣∣∣∣
√
f(t)−

√
f(s))(

√
f(σ(t))−

√
f(s))√

f(t) +
√
f(σ(t))

∣∣∣∣∣+

∣∣∣∣∣f(σ(t))− f(s)− f∆(t)(σ(t)− s)√
f(t) +

√
f(σ(t))

∣∣∣∣∣
≤ ε∗√

f(t) +
√
f(σ(t))

∣∣∣√f(σ(t))−
√
f(s)

∣∣∣+
ε∗√

f(t) +
√
f(σ(t))

|σ(t)− s|

≤ ε∗√
f(t) +

√
f(σ(t))

m |σ(t)− s|+ ε∗√
f(t) +

√
f(σ(t))

|σ(t)− s|

=
ε∗(m+ 1)√

f(t) +
√
f(σ(t))

|σ(t)− s| = ε |σ(t)− s| .

By Definition 2.9, f∆(t)√
f(t)+
√
f(σ(t))

is the derivative of
√
f at t ∈ T.
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Remark 2.19. In general, (f∆)σ(t) 6= (fσ)∆(t) , even if both exist. One can easily

realize this by using Theorem 2.13 for (fσ)∆(t)

(fσ)∆(t) = (f + µf∆)∆(t) = f∆(t) + µ∆(t)f∆(σ(t)) + µ(t)f∆∆(t).

Example 2.20. For T = R, consider f : R −→ R. If f is differentiable in t, then

(f∆)σ(t) = f∆(t) = (fσ)∆(t).

Example 2.21. For T = Z, consider f : Z −→ R. If fσ is differentiable and f is twice

differentiable in t, then

(fσ)∆(t) = f∆(t+ 1) =
f(σ(t+ 1))− f(t+ 1)

1
= ∆f(t+ 1)

and

(f∆)σ(t) =
f(σ(σ(t)))− f(σ(t))

1
= ∆f(t+ 1).

Example 2.22. Consider a time scale T with µ(t) = 2t for t ∈ T and f : T −→ R.

Remember µ(t) = σ(t) − t and therefore σ(t) = t + µ(t). Then (fσ)∆(t) = (f∆)σ(t)

if and only if

(f∆)σ(t) = (fσ)∆(t) = f∆(t) + µ∆(t)f∆(σ(t)) + µ(t)f∆∆(t)

= f∆(t) + t2t−1(f∆)σ(t) + 2tf∆∆(t),

i.e., if and only if

(f∆)σ(t) =
f∆(t) + 2tf∆∆(t)

1− t2t−1
.
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If fσ(t) is not delta-differentiable or f is not twice differentiable in t, then the equation

is definitely not satisfied.

2.3. INTEGRATION ON TIME SCALES

To identify delta-integrable functions, it is critical to define some characteristics

of delta-integrable functions.

Definition 2.23. A function f : T −→ R is called pre-differentiable with region of

differentiation D provided that the following conditions hold [2, p. 6]:

1. f is continuous on T,

2. D ⊂ Tκ,

3. Tκ\D is countable and contains no right-scattered elements of T,

4. f is differentiable at each t ∈ D.

Definition 2.24. A function f : T −→ R is called rd-continuous at t ∈ Tκ if

f is continuous at t for all right-dense points t and the left-sided limit exists for

all left-dense points t [2, p. 7]. The set of rd-continuous functions is denoted by

Crd = Crd(T) = Crd(T,R).

In order to define integrable functions, the characterization of regulated functions

is necessary.

Definition 2.25. A function f : T −→ R is called regulated provided its right-sided

limits exist at all right-dense points in T and its left-sided limits exist at all left-dense

points in T [2, p. 7].
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Remark 2.26. All continuous functions f : T −→ R are rd-continuous [1, p. 22].

Theorem 2.27. For any time scale T, we have the following.

• The jump-operator σ is rd-continuous.

• Every rd-continuous function f is regulated.

Now the essential terms have been introduced and pre-antiderivatives can be

defined.

Definition 2.28. Assume f : T −→ R is regulated. Any pre-differentiable function

F with region of differentiation D that satisfies F∆(t) = f(t) for all t ∈ D is called a

pre-antiderivative of f [2, p. 8].

The existence theorem for delta-integrable functions f is formulated as follows.

Theorem 2.29. Let f : T −→ R be regulated. There exists a function F which is

pre-differentiable with region of differentiation D such that [2, p. 7]

F∆(t) = f(t) holds for all t ∈ D.

The indefinite integral of a regulated function f is therefore defined by

∫
f(t)∆t = F (t) + C,

where F is a pre-antiderivative of f and C an arbitrary constant in R.
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The Cauchy-integral of a regulated function f is defined by

∫ b

a

f(t)∆t = F (b)− F (a),

where a, b ∈ T and F is a pre-antiderivative of f .

The properties of time scales integrals are similar to the properties of the inte-

grals in R. Let f, g ∈ Crd, a, b, c ∈ T, α ∈ R [2, p. 8]. Then

1.
∫ b
a
(αf(t) + βg(t))∆t = α

∫ b
a
f(t)∆t+ β

∫ b
a
g(t)∆t,

2.
∫ b
a
f(t)∆t = −

∫ a
b
f(t)∆t,

3.
∫ b
a
f(t)∆t =

∫ c
a
f(t)∆t+

∫ b
c
f(t)∆t,

4.
∫ a
a
f(t)∆t = 0.

Similar to the integration by parts formula in R, a formula for the integration

of a product of two functions f, g : T −→ R can be derived.

Theorem 2.30. Let f, g ∈ Crd and a, b, c ∈ T. Then

1.
∫ b
a
f(σ(t))g∆(t)∆t = (fg)(b)− (fg)(a)−

∫ b
a
f∆(t)g(t)∆t,

2.
∫ b
a
f(t)g∆(t)∆t = (fg)(b)− (fg)(a)−

∫ b
a
f∆(t)g(σ(t))∆t.
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Proof. Assume f, g : T −→ R, f, g ∈ Crd and a, b ∈ T. Then

∫ b

a

f(σ(t))g∆(t)∆t+

∫ b

a

g(t)f∆(t)∆t =

∫ b

a

(f(σ(t))g∆(t) + g(t)f∆(t))∆t

=

∫ b

a

(fg)∆(t)∆t = (fg)(b)− (fg)(a) = f(b)g(b)− f(a)g(a).

The second equation results similarly by using the fact that

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = g∆(t)f(t) + g(σ(t))f∆(t) = (gf)∆(t).

This completes the proof.

2.4. EXPONENTIAL FUNCTION ON TIME SCALES

To introduce the exponential function as a basic function in time scales, the

definition of regressive functions is critical.

Definition 2.31. A function p : T −→ R is called regressive if [2, p. 10]

1 + µ(t)p(t) 6= 0 for all t ∈ Tκ. (2.12)

The set of regressive and rd-continuous functions is denoted byR = R(T) = R(T,R).

A function p : T −→ R is called positively regressive if

1 + µ(t)p(t) > 0 for all t ∈ Tκ.

Two often used operations that serve to simplify expressions and calculations

in time scales are circle plus (denoted by ⊕) and circle minus (denoted by 	).
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Definition 2.32. Assume p, q ∈ R. The operations ⊕ and 	 are defined for t ∈ Tκ

by [2, p. 10]

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t), (2.13)

(p	 q)(t) := (p⊕ (	q))(t), (2.14)

where (2.15)

(	q)(t) := − q(t)

1 + µ(t)q(t)
. (2.16)

Now we define the exponential function in time scales as the solution of a delta-

differential equation problem.

Theorem 2.33. Suppose p ∈ R and fix t0 ∈ T. Then the initial value problem

y∆(t) = p(t)y(t), y(t0) = 1 (2.17)

has a unique solution on T, denoted by ep(·, t0) [2, p. 10].

Remark 2.34. Another possibility to introduce the exponential function in time scales

is by using the exponential function in R. The exponential function in time scales

can then be also defined by [1, p. 59]

ep(t, s) = exp

{∫ t

s

ξµ(r)p(τ)∆τ

}
for s, t ∈ T, (2.18)

where ξµ(r) is the so-called cylinder transformation. This definition implies that

ep(·, t0) solves the initial value problem (2.17).

Using the definition of the exponential function as the solution of the initial

value problem (2.17), some properties of the exponential function in time scales can
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be given. Consider p, q ∈ R. The following properties of ep(t, t0) hold for any t, s, r ∈

T [2, p. 10f]:

1. e0(t, s) = 1 and ep(t, t) = 1,

2. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

3. (ep(t, s))
−1 = e	p(t, s) = ep(s, t),

4. ep(t, s)ep(s, r) = ep(t, r),

5. ep(t, s)eq(t, s) = ep⊕q(t, s),

6. ep(t,s)

eq(t,s)
= ep	q(t, s).

The definition of the exponential function ep(t, s) yields furthermore the follow-

ing results concerning the delta-derivative of the exponential function.

Theorem 2.35. Let p ∈ R and s ∈ T. Then

(
1

ep

)∆

(·, s) = − p

eσp(·, s)

and

e∆
p (s, ·) = −peσp(s, ·).

Proof. Let p ∈ R and s ∈ T. Using the quotient rule and the properties of the

exponential function in T, it follows that

(
1

ep

)∆

(·, s) =
−e∆

p (·, s)
ep(·, s)eσp(·, s)

= − pep(·, s)
ep(·, s)eσp(·, s)

= − p

eσp(·, s)
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and

e∆
p (s, ·) =

(
1

ep

)∆

(·, s) = − p

eσp(·, s)
= −peσp(s, ·).

This completes the proof.

To summarize the previous results and generalize them, one can see that the

general solution of the delta-differential equation

y∆(t) = p(t)y(t), (2.19)

where p ∈ R, is given by y(t) = ep(t, t0)y(t0), for an initial value t0 ∈ T [2, p. 8]. The

general solution of the delta-differential equation,

y∆(t) = −p(t)y(σ(t)), (2.20)

where p ∈ R, is given by y(t) = e	p(t, t0)y(t0) [2, p. 8].
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3. ABEL DIFFERENTIAL EQUATIONS

3.1. SOLUTION OF THE ABEL DIFFERENTIAL EQUATION OF
THE 2ND KIND

Definition 3.1. The general form of the dynamic Abel equation of the second kind

is, for fi, gk : R −→ R, i = 0, 1, 2, k = 0, 1 [3]

[g0(x) + g1(x)u(x)]u′(x) = f0(x) + f1(x)u(x) + f2(x)u2(x). (3.1)

The French mathematician Gaston Julia proved 1933 in [6, p. 82f] that the

equation

dy +
Ay2 +By + C

Dy + E
dx = 0, (3.2)

for A,B,C,D, and E functions of x, has an implicit solution if the condition

E(2A−D′) = D(B − E ′) with D 6= 0 (3.3)

is satisfied. Then the solution is implicitly given by

D
y2

2
exp

{∫
2A−D′

D
dx

}
+ Ey exp

{∫
2A−D′

D
dx

}
+

∫
C exp

{∫
2A−D′

D
dx

}
dx

= λ, (3.4)

where λ is any constant.
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The result can be rewritten to match the equation (3.1), since Eq. (3.2) is

equivalent to

dy = −Ay
2 +By + C

Dy + E
dx,

i.e.,

dy

dx
(Dy + E) = −Ay2 −By − C,

i.e.,

(−Dy − E)y′ = Ay2 +By + C,

which has the form of Eq. (3.1) with

g0(x) = −E, g1(x) = −D, f0(x) = C, f1(x) = B, f2(x) = A.

Using Julia’s result, the Abel equation of the second kind has an implicit solution if

the condition (3.3), namely

−g0(x)(2f2(x) + g′1(x)) = E(2A−D′) = D(B − E ′) = −g1(x)(f1(x) + g′0(x)),

i.e.,

g0(x)(2f2(x) + g′1(x)) = g1(x)(f1(x) + g′0(x)), g1(x) 6= 0
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is satisfied. The implicit solution is then given by (3.4) as

−Dy
2

2
exp

{∫
2A−D′

D
dx

}
− Ey exp

{∫
2A−D′

D
dx

}
=

∫
C exp

{∫
2A−D′

D
dx

}
dx − λ,

i.e.,

−Dy2 exp

{∫
2A−D′

D
dx

}
− 2Ey exp

{∫
2A−D′

D
dx

}
= 2

∫
C exp

{∫
2A−D′

D
dx

}
dx + Λ,

where Λ := −2λ. Using the expressions for A, C, D, and E, this yields

g1y
2 + 2g0y = 2

∫
f0 exp

{∫ 2f2−g′1
g1

dx
}

dx

exp
{∫ 2f2−g′1

g1
dx
} + Λ

1

exp
{∫ 2f2−g′1

g1
dx
} . (3.5)

Using furthermore the fact that

exp

{∫
2f2 + g′1
−g1

dx

}
= exp

{∫
−2f2

g1

dx

}
exp

{∫
−g
′
1

g1

dx

}
= exp

{∫
−2f2

g1

dx

}
1

g1

and defining J := exp
{∫

2f2

g1
dx
}

, Eq. (3.5) turns into

y2

J
+

2g0y

Jg1

= 2

∫
f0

Jg1

dx+ Λ.

This implicit solution is consistent with the solution given in [3].

Lazhar Bougoffa presented in [3] an additional method to solve a further class

of Abel equations of the second kind. A different relation between the coefficients of
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the Abel equation of the second kind has to be satisfied in order to follow Bougoffa’s

idea, which is stated in the following theorem.

Theorem 3.2. If there exists a constant λ such that

2B2(x)g0(x) = λB1(x)g1(x) with g0, g1 6= 0, (3.6)

where

B1(x) := exp

{
−
∫ x

x0

f1(t)

g0(t)
dt

}
, B2(x) := exp

{
−2

∫ x

x0

f2(t)

g1(t)
dt

}
,

then Eq. (3.1) admits the general solution u = u(x) implicitly as

B2(x)u2(x) + λB1(x)u(x) = 2

∫ x

x0

f0(t)

g1(t)
B2(t)dt+ C, (3.7)

where C is an integration constant.

Proof. Multiply B1 on both sides of Eq. (3.1) to get

B1g0u
′ +B1g1uu

′ = B1f0 +B1f1u+B1f2u
2.

Since −B′1g0 = B1f1, we obtain

B1g0u
′ +B1g1uu

′ = B1f0 −B′1g0u+B1f2u
2,

i.e.,

B1g0u
′ +B′1g0u+B1g1uu

′ = B1f0 +B1f2u
2.
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By using the product rule, we have

g0(B1u)′ +B1g1uu
′ = B1f0 +B1f2u

2. (3.8)

Similarly, we multiply B2 on both sides of (3.8) to obtain

B2g0(B1u)′ +B2B1g1uu
′ = B2B1f0 +B2B1f2u

2.

Since −B′2g1 = 2B2f2, we get

B2g0(B1u)′ +B2B1g1uu
′ = B2B1f0 −

1

2
B′2B1g1u

2,

i.e.,

B2g0(B1u)′ +B2B1g1uu
′ +

1

2
B′2B1g1u

2 = B2B1f0.

By using the product rule, we have

B2g0(B1u)′ +
1

2
B1g1(B2u

2)′ = B2B1f0.

Dividing this by B1g1

2
, we get

2B2g0

B1g1

(B1u)′ + (B2u
2)′ = 2B2

f0

g1

.

Since condition (3.6) is satisfied, we find

λ(B1u)′ + (B2u
2)′ = 2

B2

g1

f0.
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Integrating now both sides with respect to x gives the general solution u = u(x) as

λB1(x)u+B2(x)u2 = 2

∫ x

x0

f0(t)

g1(t)
B2(t)dt+ C,

where C is an integration constant, determined by an initial value x0.

Theorem 3.2 requires in particular g0(x) 6= 0 and g1(x) 6= 0. In case g1 = 0,

g0 6= 0, Eq. (3.1) becomes

g0(x)u′ = f0(x) + f1(x)u+ f2(x)u2 with u = u(x),

i.e.,

u′ =
f0(x)

g0(x)
+
f1(x)

g0(x)
u+

f2(x)

g0(x)
u2 with u = u(x),

which is of the form [11, p. 1]

u′ = h1(x)u+ h2(x)u2 + h3(x) with u = u(x). (3.9)

This is a (scalar) Ricatti differential equation, which enables the solution methods of

the Ricatti differential equation to be used for the Abel differential equation. It is

well-known [16, p. 73] that the Ricatti differential equation

y′ = P (x) +Q(x)y +R(x)y2

can be solved if a particular solution y0 is known. The substitution y = y0 + u yields

a Bernoulli differential equation in u and can afterwards be transformed into a linear

differential equation in w by u = 1
w

[16, p. 73].
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In case g0 = 0, g1 6= 0, Eq. (3.1) is of the form

g1(x)uu′ = f0(x) + f1(x)u+ f2u
2 with u = u(x).

By using the substitution u(x) = y(x) + 1, we obtain

g1(x)(y + 1)y′ = f0(x) + f1(x)(y + 1) + f2(y2 + 2y + 1),

i.e.,

(g1(x)y + g1(x))y′ = (f0(x) + f1(x) + f2(x)) + (f1(x) + 2f2(x))y + f2y
2

which is of the form (3.1) with g0 = g1 6= 0 and therefore satisfies the condition

g0, g1 6= 0. With this substitution, a form is obtained that is solvable with Bougoffa’s

method (assuming the condition (3.6) is additionally satisfied).

3.2. ABEL DIFFERENTIAL EQUATIONS OF THE 1ST KIND

3.2.1. Transform the Abel equation of the 2nd to the 1st kind. The

Abel dynamic equation of the first kind appears especially in applications,such as

physics. The Friedman equations, which describe a homogeneous, isotropic universe

are given by [15]

Θ′′ + 3HΘ′ +
dV

dΘ
= 0, (3.10)

H2 =
1

2
Θ

′2 + V − k

a2
, (3.11)

with a scalar, Θ the scalar field, V the self potential of the scalar field, and H the

Hubble constant.



27

By introducing a functional of full energy, denoted by W , a relation between

the self potential and the scalar field can be obtained. The assumption of a flat space

time set (k = 0) allows the previous equations to become

dW

dΘ
= −3HΘ′, (3.12)

H = ±
√
W. (3.13)

This enables the solving of the equation for a given self potential V of a scalar field,

by using the differential equation for W . The function W is then given by an explicit

formula, depending on V and y, where y is the solution of a particular Abel differential

equation of the first kind [15].

Definition 3.3. The general Abel equation of the first kind, with hi : R −→ R,

i = 0, 1, 2, 3 is of the form [9]

y′ = h3(x)y3 + h2(x)y2 + h1(x)y + h0(x) with y = y(x). (3.14)

Starting with the Abel equation of the second kind, the Abel equation of the

first kind can be derived by using a special substitution. Assume we are given a

general Abel equation of the second kind (3.1) with g1(x), g0(x) 6= 0, namely

[g0(x) + g1(x)u(x)]u′(x) = f0(x) + f1(x)u(x) + f2(x)u2(x),

i.e.,

[g(x) + u]u′ = F0(x) + F1(x)u+ F2(x)u2 with u = u(x),



28

where

g(x) =
g0(x)

g1(x)
, Fi(x) =

fi(x)

g1(x)
for i = 0, 1, 2.

Using two substitutions, the previous equation yields the general Abel equation of the

first kind. First of all, one applies the substitution u = w
E
−g with E = exp{−

∫
F2dx}

to get

(
g +

w

E
− g
)(w′E − E ′w

E2
− g′

)
= F0 + F1

(w
E
− g
)

+ F2

(
w2

E2
− 2gw

E
+ g2

)
,

i.e.,

w′w

E2
− E ′w2

E3
− g′w

E
= F0 + F1

w

E
− F1g + F2

w2

E2
− F2

2gw

E
+ F2g

2.

Using now that E ′ = −F2E, we obtain

w′w

E2
− −F2w

2

E2
− g′w

E
= F0 + F1

w

E
− F1g + F2

w2

E2
− F2

2gw

E
+ F2g

2,

i.e.,

w′w

E2
− g′w

E
= F0 + F1

w

E
− F1g − F2

2gw

E
+ F2g

2.

Multiplying both sides with E2 yields

ww′ = F0E
2 − F1gE

2 + F2g
2E2 + g′Ew + F1Ew − 2F2gEw. (3.15)

Eq. (3.15) is of the general form

ww′ = G0(x) +G1(x)w, (3.16)
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where

G0 = E2(F0 − F1g + F2g
2) and G1 = E(g′ + F1 − 2F2g).

Later on, Eq. (3.16) appears again, as the canonical Abel form. Apply the second

substitution w = 1
y+1

, Eq. (3.15) results in

(
1

y + 1

)(
− y′

(y + 1)2

)
= E2(F0 − F1g + F2g

2) + E(g′ + F1 − 2F2g)

(
1

y + 1

)
.

Multiplying both sides with −(y + 1)3, this becomes

y′ = −E2[F0 − F1g + F2g
2](y3 + 3y2 + 3y + 1)

− E[g′ + F1 − 2F2g](y2 + 2y + 1).

This is in the form of the Abel equation of the first kind, namely

y′ = h0(x) + h1(x)y + h2(x)y2 + h3(x)y3,

where

h0 = −E[g′ + F1 − 2F2g]− E2[F0 − F1g + F2g
2],

h1 = −2E[g′ + F1 − 2F2g]− 3E2[F0 − F1g + F2g
2],

h2 = −E[g′ + F1 − 2F2g]− 3E2[F0 − F1g + F2g
2],

h3 = −E2[F0 − F1g + F2g
2].

In the following, a special class of the Abel differential equation of the first kind

is presented whose time scales analogue is discussed in Section 4.2. Consider the
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general Abel equation of the second kind with g1(x) 6= 0. Eq. (3.1) can then be

written in the form

(u+ g(x))u′ = F0(x) + F1(x)u+ F2(x)u2 with u = u(x).

By applying the substitution u = 1
y
−g, y = y(x), a special class of the Abel equation

of the first kind can be derived [7, p. 27], namely

(
1

y
− g + g

)(
− y

′

y2
− g′

)
= − y

′

y3
− g′

y

= F0 + F1
1

y
− F1g + F2

1

y2
− 2F2

g

y
+ F2g

2.

Multiplying both sides with −y3 yields

y′ = −g′y2 − F0y
3 − F1y

2 + F1gy
3 − F2y + 2F2gy

2 − F2g
2y3

= y3(−F0 + F1g − F2g
2) + y2(−g′ − F1 + 2F2g)− F2y.

This is of the special Abel equation of the first kind, namely

y′ = h1(x)y + h2(x)y2 + h3(x)y3 with y = y(x), (3.17)

where

h1 = −F2, (3.18)

h2 = −g′ − F1 + 2F2g, (3.19)

h3 = −F0 + F1g − F2g
2. (3.20)
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This is the class of the Abel equation of the first kind where the variable coefficient

h0 of Eq. (3.14) satisfies h0(x) = 0. This special class is later transferred into time

scales, which helps to construct a special class of an Abel equation of the first kind.

3.2.2. Transform the Abel equation of the 1st to the 2nd kind. In

particular, the transformation from an Abel equation of the first kind to the second

kind is the subject under investigation, since various classes of Abel equations of the

second kind can be already solved [10, p. 50–55]. By transferring the Abel equation of

the first kind into the second kind, one can translate the conditions to solve the Abel

equation of the second kind such as from Theorem 3.2 into required conditions for

the Abel equation of the first kind. M. P. Markakis presented in [9] a transformation

to reduce an Abel equation of the first kind to an Abel equation of the second kind.

This is presented in more detail in the following.

Consider the general Abel equation of the first kind, Eq. (3.14). Note that in

order to apply the substitution y = y0 + 1
u
, where y0 is a particular solution of Eq.

(3.14), f0(x) has to be nonzero, otherwise u = u(x) could be zero.

Apply to the general Abel equation of the first kind (3.14) the substitution

y = y0 + 1
u

to obtain

y′0 −
u′

u2
= h3

(
y3

0 + 3
y2

0

u
+ 3

y0

u2
+

1

u3

)
+ h2

(
y2

0 + 2
y0

u
+

1

u2

)
+ h1

(
y0 +

1

u

)
+ h0.

Since y0 is a particular solution of Eq. (3.14), i.e.,

y′0 = h3(x)y3
0 + h2(x)y2

0 + h1(x)y0 + h0(x),
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where y0 = y0(x), terms can be canceled. This results in

− u
′

u2
= h3

(
3
y2

0

u
+ 3

y0

u2
+

1

u3

)
+ h2

(
2
y0

u
+

1

u2

)
+ h1

(
1

u

)
.

To get u′u on the left-hand side, both sides have to be multiplied by −u3 to obtain

u′u = h3(−3y2
0u

2 − 3y0u− 1) + h2(−2y0u
2 − u)− h1u

2,

which is of the form

uu′ = f0(x) + f1(x)u+ f2(x)u2, (3.21)

where

f0 = −h3 , f1 = −3h3y0 − h2 , f2 = −3h3y
2
0 − 2h2y0 − h1.

This is the special form of the Abel equation of the second kind (3.1) with g0(x) = 0,

g1(x) = 1, hi(x) = fi(x) for i = 0, 1, 2.

The transformation of an Abel equation of the first kind to the second kind

enables the classification of solvable Abel equations of the first kind. Various classes

of Abel equations of the second kind are solvable under special conditions and can

now be translated into conditions to solve Abel equations of the first kind.

3.3. CANONICAL ABEL DIFFERENTIAL EQUATIONS

Definition 3.4. The canonical form of the Abel equation, with G0, G1 : R −→ R, is

defined by [9]

ww′ −G1(x)w = G0(x) with w = w(x). (3.22)
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The interest in this special kind of the Abel equation is caused by the variety

of solvable classes of this kind. In [10, p. 45–50], 37 types of solvable classes of the

canonical Abel equation are presented, but 12 of them have to satisfy the special

condition G0 = 1. That is also one of the reasons of attempting to transfer an

Abel equation of the first or of the second kind into the canonical form of an Abel

equation. Some of the 44 solvable classes of the Abel differential equation of the

first kind use the transformation into the canonical Abel differential equation and its

solution methods [10, p. 55].

3.3.1. Transform the 2nd kind to the canonical Abel equation. A

substitution that transfers an Abel equation of the second kind into the canonical

form (3.22) is given by u = w
E
− g with E = exp{−

∫
h2(x)dx} [7, p. 27]. Consider an

Abel equation of the form (3.1) and assume in particular g1 6= 0. Then

(
g0

g1

+ u

)
u′ =

f0

g1

+
f1

g1

u+
f2

g1

u2. (3.23)

Define

g(x) :=
g0(x)

g1(x)
, F0(x) :=

f0(x)

g1(x)
, F1(x) :=

f1(x)

g1(x)
, F2(x) :=

f2(x)

g1(x)
.

Eq. (3.23) is then of the form

(g(x) + u)u′ = F0(x) + F1(x)u+ F2(x)u2 with u = u(x).

By applying the substitution u = w
E
− g and E = exp{−

∫
F2(x)dx}, the previous

equation becomes

(
g +

w

E
− g
)(w′E − E ′w

E2

)
= F0 + F1

w

E
− F1g + F2

w2

E2
− 2F2

wg

E
+ F2g

2.
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Using furthermore the fact that E ′ = −F2E, the equation results in

ww′

E2
+
F2w

2

E2
= F0 + F1

w

E
− F1g + F2

w2

E2
− 2F2

wg

E
+ F2g

2,

i.e.,

ww′

E2
= F0 + F1

w

E
− F1g − 2F2

wg

E
+ F2g

2.

By multiplying E2 on both sides, one can immediately recognize the canonical form

(3.22), namely

ww′ = F0E
2 + F1wE − F1gE

2 − 2F2wgE + F2g
2E2

= F0E
2 − F1gE

2 + F2g
2E2 + w(F1E − 2F2gE),

i.e.,

ww′ −G1w = G0,

where

G1 = E(F1 − 2F2g) and G0 = E2(F0 − F1g + F2g
2).

3.3.2. Transform the 1st kind to the canonical Abel equation. The

proof of the transformation of an Abel equation of the first kind into the second kind

can be expanded to get the canonical form (3.22). We saw that the Abel equation of

the first kind can be transformed into the form (3.21)

uu′ = f0(x) + f1(x)u+ f2(x)u2 with u = u(x),
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where

f0 = −h3, f1 = −3h3y0 − h2, f2 = −3h3y
2
0 − 2h2y0 − h1.

Assume h3 6= 0 (otherwise w could be zero) and suppose hi are integrable for i =

1, 2, 3. By applying the further substitution u = w
E

with

E = exp

{∫
(3h3(x)y2

0 + 2h2(x)y0 + h1(x))dx

}
,

Eq. (3.21) becomes

w

E

(
w′E − E ′w

E2

)
=
w2

E2
(−3h3y

2
0 − 2h2y0 − h1) +

w

E
(−3h3y0 − h2)− h3.

Note that E ′ = E(3h3y
2
0 + 2h2y0 + h1) and therefore

ww′

E2
− (3h3y

2
0 + 2h2y0 + h1)w2

E2

=
w2

E2
(−3h3y

2
0 − 2h2y0 − h1) +

w

E
(−3h3y0 − h2) − h3,

i.e.,

ww′

E2
− (3h3y

2
0 + 2h2y0 + h1)w2

E2

=
w2

E2
(−3h3y

2
0 − 2h2y0 − h1) +

w

E
(−3h3y0 − h2) − h3,

i.e.,

ww′

E2
=
w

E
(−3h3y0 − h2)− h3.
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Multiplying both sides with E2 results in

ww′ = wE(−3h3y0 − h2)− E2h3,

which is in canonical Abel form ww′ = wE[−3h3y0 − h2]− E2h3. In this case,

G1 = −E(3h3y0 + h2) and G0 = −E2h3.

In the following chapter, the case of the Abel differential equations will be

discussed in T and in particular the special case of the Abel equation of the first

kind, which provides novel results in time scales. If the Abel equation of the first

kind is given with h0 = 0, then a particular solution of Eq. (3.14) is given by y0 = 0,

which reduces the previous substitution to

y = y0 +
E

w
=
E

w

with

E = exp

{∫
(3h3y

2
0 + 2h2y0 + h1)dx

}
= exp

{∫
h1dx

}
.
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4. ABEL DYNAMIC EQUATIONS

4.1. SOLUTION OF THE ABEL DYNAMIC EQUATION OF THE 2ND
KIND

The Abel dynamic equation of the second kind has different expressions in T,

which are equivalent to the unique Abel equation of the second kind for T = R.

In the following, the expressions of the Abel dynamic equations of the second kind

are introduced and a method to solve a class of these equations is presented. For

the general expression, the solution is derived explicitly, which is the foundation to

extend the method to the other Abel dynamic versions of the second kind.

Definition 4.1. The general form of the Abel dynamic equation of the second kind,

with fi, gk : R −→ R, i = 0, 1, 2, k = 0, 1 is

[
g0(x) + g1(x)

(
u+ uσ

2

)]
u∆ = f0(x) + f1(x)u+ f2(x)u2, (4.1)

where u = u(x).

Based on [3], one can transfer the idea of solving the Abel equation of the second

kind under particular conditions from the continuous time set into time scales.

Theorem 4.2. Consider the Abel equation of the second kind (4.1) with g0(x) 6= 0,

g1(x) 6= 0, g0, g1, f1, f2 ∈ R, and f0

g1
∈ Crd. If furthermore the condition

2Bσ
2 (x)g0(x) = λBσ

1 (x)g1(x) (4.2)
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with

B∆
1 = −f1

g0

Bσ
1 , B∆

2 = −2
f2

g1

Bσ
2

is satisfied, then the solution of the dynamic equation problem (4.1) is implicitly given

by

B2(x)u2(x) + λB1(x)u(x) = 2

∫ x

x0

Bσ
2 (t)

f0(t)

g1(t)
∆t+ C, (4.3)

where C is an integration constant, determined by the initial value x0.

Remark 4.3. The condition (4.2) is, by using Eq. (2.20), equivalent to

B1(x) = e	p(x, x0)B1(x0) with p(x) =
f1(x)

g0(x)
,

B2(x) = e	q(x, x0)B2(x0) with q(x) =
2f2(x)

g1(x)
,

for an initial value x0.

Proof of Theorem 4.2. Consider the Abel equation of the second kind in T. Let fur-

thermore the conditions from the theorem be satisfied. Multiply Bσ
1 on both sides of

equation (4.1) to get

Bσ
1 g0u

∆ +Bσ
1 g1

(
u+ uσ

2

)
u∆ = Bσ

1 f0 +Bσ
1 f1u+Bσ

1 f2u
2.

By using the fact that −g0B
∆
1 = f1B

σ
1 , we have

Bσ
1 g0u

∆ +Bσ
1 g1

(
u+ uσ

2

)
u∆ = Bσ

1 f0 −B∆
1 g0u+Bσ

1 f2u
2,
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i.e.,

Bσ
1 g0u

∆ +B∆
1 g0u+Bσ

1 g1

(
u+ uσ

2

)
u∆ = Bσ

1 f0 +Bσ
1 f2u

2.

Applying the product rule (B1u)∆ = B∆
1 u+Bσ

1u
∆, we get

g0(B1u)∆ +Bσ
1 g1

(
u+ uσ

2

)
u∆ = Bσ

1 f0 +Bσ
1 f2u

2. (4.4)

Similarly, we multiply Bσ
2 on both sides of (4.4) to obtain

Bσ
2 g0(B1u)∆ +Bσ

2B
σ
1 g1

(
u+ uσ

2

)
u∆ = Bσ

2B
σ
1 f0 +Bσ

2B
σ
1 f2u

2.

Using the fact that −g1B
∆
2 = 2f2B

σ
2 , the equation results in

Bσ
2 g0(B1u)∆ +Bσ

2B
σ
1 g1

(
u+ uσ

2

)
u∆ = Bσ

2B
σ
1 f0 −

1

2
B∆

2 B
σ
1 g1u

2,

i.e.,

Bσ
2 g0(B1u)∆ +Bσ

2B
σ
1 g1

(
u+ uσ

2

)
u∆ +

1

2
B∆

2 B
σ
1 g1u

2 = Bσ
2B

σ
1 f0.

Applying the product rule (B2u
2)∆ = B∆

2 u
2 +Bσ

2u
∆(u+ uσ) yields

Bσ
2 g0(B1u)∆ +

1

2
Bσ

1 g1(B2u
2)∆ = Bσ

2B
σ
1 f0.

Analogous to the case in R, one continues by dividing both sides of the equation by

1
2
Bσ

1 g1 to get

2Bσ
2 g0

Bσ
1 g1

(B1u)∆ + (B2u
2)∆ = 2Bσ

2

f0

g1

. (4.5)
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Using the λ condition (4.2) in (4.5) yields

λ(B1u)∆ + (B2u
2)∆ = 2Bσ

2

f0

g1

,

and integrating this equation provides the general solution u = u(x) of (4.1) implicitly

as

λB1(x)u(x) +B2(x)u2(x) =

∫ x

x0

2Bσ
2 (t)

f0(t)

g1(t)
∆t+ C,

where C is an integration constant, determined by the initial value x0.

Remark 4.4. For T = R, Theorem 4.2 is the same as Theorem 3.2. Eq. (4.1) becomes

(g0(x) + g1(x)u)u′ = f0(x) + f1(x)u+ f2(x)u2 with u = u(x).

For T = R, u = uσ and u∆ = u′. Therefore condition (4.2) is

2B2g0 = λB1g1,

B1(x) = e	p(x, x0)B1(x0) = −B1(x0) exp

{∫ x

x0

p(t)dt

}
with p =

f1

g0

,

B2(x) = e	q(x, x0)B2(x0) = −B2(x0) exp

{∫ x

x0

q(t)dt

}
with q =

2f2

g1

,

for an initial value x0.

Example 4.5. For T = Z, Theorem 4.2 is formulated in the following way. The

equation

(
g0 + g1

(
u+ Eu

2

))
∆u = f0 + f1u+ f2u

2, (4.6)
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where E is the shift operator, Eu(x) = u(x+ 1), has an implicit solution if g0(x) 6= 0,

g1(x) 6= 0 and

2(EB2)g0 = λ(EB1)g1,

where B1 and B2 satisfy

(EB1)f1 = −g0∆B1, (EB2)f2 = −g1

2
∆B2.

To realize this, one should just apply Theorem 4.2 for T = Z or otherwise follow the

same steps as in proof of Theorem 4.2. First of all, we define B1 as solution of the

difference equation (EB1)f1 = −g0∆B1 and multiply EB1 on both sides of Eq. (4.6).

The product rule for ∆(B1u) can be used to connect the terms g0u∆B1 +g0(EB1)∆u.

Define furthermore B2 as the solution of 2(EB2)f2 = −g1∆B2 and multiply EB2 on

both sides of the equation. Further terms can be connected by applying the product

rule for ∆(B2u
2).

To find the solution of the Abel equation

(
g0(x) + g1(x)

(
u+ uσ

2

))
u∆ = f0(x) + f1(x)uσ + f2(x)(uσ)2, (4.7)

where u = u(x), one uses the same procedure as in Theorem 4.2. This is formulated

in the following theorem.

Theorem 4.6. Consider the Abel equation of the second kind (4.7) with g0(x) 6= 0,

g1(x) 6= 0, gk, fi ∈ R for k = 0, 1, i = 0, 1, 2, and f0

g1
∈ Crd. If furthermore the

condition

2B2(x)g0(x) = λB1(x)g1(x) (4.8)
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is satisfied, where

B1(x) := ep(x, x0)B1(x0) with p :=
−f1

g0

and

B2(x) := eq(x, x0)B2(x0) with q :=
−2f2

g1

,

for an initial value x0, then the general solution u = u(x) of Eq. (4.7) is given

implicitly by

B2(x)u2(x) + λB1(x)u(x) = 2

∫ x

x0

B2(t)
f0(t)

g1(t)
∆t+ C, (4.9)

where C is an integration constant, determined by the initial value x0.

Proof. Consider the Abel equation of the second kind (4.7) that satisfies the condi-

tions in Theorem 4.6. Define B1(x) := ep(x, x0)B1(x0) with p := −f1

g0
and multiply B1

on both sides of equation (4.7) to obtain

B1g0u
∆ +B1g1

(
u+ uσ

2

)
u∆ = B1f0 +B1f1u

σ +B1f2(uσ)2.

Using the fact that −g0B
∆
1 = f1B1, the previous equation results in

B1g0u
∆ +B1g1

(
u+ uσ

2

)
u∆ = B1f0 −B∆

1 g0u
σ +B1f2(uσ)2,

i.e.,

B1g0u
∆ +B∆

1 g0u
σ +B1g1

(
u+ uσ

2

)
u∆ = B1f0 +B1f2(uσ)2.
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The product rule gives the delta-derivative of (B1u) as (B1u)∆ = u∆B1 + uσB∆
1 .

Therefore the equation becomes

g0(B1u)∆ +B1g1

(
u+ uσ

2

)
u∆ = B1f0 +B1f2(uσ)2.

Define B2(x) := eq(x, x0)B2(x0) with q := −2f2

g1
and multiply B2 on both sides. This

yields

B2g0(B1u)∆ +B2B1g1

(
u+ uσ

2

)
u∆ = B2B1f0 +B2B1f2(uσ)2.

Using the fact that −g1B
∆
2 = 2f2B2, the equation results in

B2g0(B1u)∆ +B2B1g1

(
u+ uσ

2

)
u∆ = B2B1f0 −

1

2
B∆

2 B1g1(uσ)2,

i.e.,

B2g0(B1u)∆ +B2B1
g1

2
(u+ uσ)u∆ +

1

2
B∆

2 B1g1(uσ)2 = B2B1f0.

The product rule, (B2u
2)∆ = B2u

∆(u+ uσ) +B∆
2 (uσ)2 yields

B2g0(B1u)∆ +
1

2
B1g1(B2u

2)∆ = B2B1f0.

Similar to the proof of Theorem 4.2, one divides both sides by 1
2
B1g1 to obtain

2B2g0

B1g1

(B1u)∆ + (B2u
2)∆ = 2B2

f0

g1

.

Using the λ condition (4.9) yields

λ(B1u)∆ + (B2u
2)∆ = 2B2

f0

g1

,
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and by integrating both sides with respect to x the solution u = u(x) of (4.7) is given

implicitly by

λB1(x)u+B2(x)u2 =

∫ x

x0

2B2(t)
f0(t)

g1(t)
∆t+ C,

where C is an integration constant, determined by the initial value x0.

The other expressions of the Abel dynamic equation of the second kind in time

scales are

(
g0(x) + g1(x)

(
u+ uσ

2

))
u∆ = f0(x) + f1(x)uσ + f2(x)u2, (4.10)(

g0(x) + g1(x)

(
u+ uσ

2

))
u∆ = f0(x) + f1(x)u+ f2(x)(uσ)2, (4.11)(

g0(x) + g1(x)

(
u+ uσ

2

))
u∆ = f0(x) + f1(x)

(
u+ uσ

2

)
+ f2(x)u2, (4.12)(

g0(x) + g1(x)

(
u+ uσ

2

))
u∆ = f0(x) + f1(x)

(
u+ uσ

2

)
+ f2(x)(uσ)2, (4.13)

where u = u(x). Especially the third and fourth expression are interesting, since they

combine the u and uσ also on the right-hand side of the Abel dynamic equation.

Remark 4.7. For T = R, any construction of the Abel dynamic equation of the second

kind is the Abel equation of the second kind introduced in Section 3.1, i.e.,

(g0(x) + g1(x)u)u′ = f0(x) + f1(x)u+ f2(x)u2 with u = u(x).

Theorem 4.8. There exists a solution of (4.12) provided g0 6= 0, g1 6= 0, gk, fi ∈ R

for k = 0, 1, i = 0, 1, 2 and f0

g1
∈ Crd and provided numbers λ and Λ exist such that

Bσ
2 (x)g0(x) = ΛB11(x)g1(x) and Bσ

2 (x)g0(x) = λBσ
12(x)g1(x), (4.14)
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where

B11(x) := e−p(x, x0)B11(x0) with p :=
f1

g0

,

B12(x) := e	p(x, x0)B12(x0), and

B2(x) := e	q(x, x0)B2(x0) with q := 2
f2

g1

.

Proof. One just has to separate equation (4.12) into

1

2
g0u

∆ +
1

2
g0u

∆ + g1

(
u+ uσ

2

)
u∆ = f0 +

f1

2
u+

f1

2
uσ + f2u

2.

Define

B11(x) := e−p(x, x0)B11(x0), B12(x) := e	p(x, x0)B12(x0) with p :=
f1

g0

and multiply both sides of (4.12) by B11B
σ
12 to get

B11B
σ
12

1

2
g0u

∆ +B11B
σ
12

1

2
g0u

∆ +B11B
σ
12g1

(
u+ uσ

2

)
u∆

= B11B
σ
12f0 + B11B

σ
12

f1

2
u + B11B

σ
12

f1

2
uσ + B11B

σ
12f2u

2.

By using the fact that

B11f1 = −g0B
∆
11 and Bσ

12f1 = −g0B
∆
12,

terms can be connected by the product rule, resulting in

Bσ
12

g0

2
(B11u)∆ +B11

g0

2
(B12u)∆ +Bσ

12B11g1

(
u+ uσ

2

)
u∆

= Bσ
12B11f0 + Bσ

12B11f2u
2.
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Furthermore, define

B2(x) := e	q(x, x0)B2(x0) with q := 2
f2

g1

and multiply Bσ
2 on both sides to get

Bσ
2B

σ
12

g0

2
(B11u)∆ +Bσ

2B11
g0

2
(B12u)∆ +Bσ

2B
σ
12B11g1

(
u+ uσ

2

)
u∆

= Bσ
2B

σ
12B11f0 + Bσ

2B
σ
12B11f2u

2.

By using the fact that B2 solves the dynamic equation

Bσ
2 f2 = −g1

2
B∆

2 .

Therefore we have

Bσ
2B

σ
12

g0

2
(B11u)∆ +Bσ

2B11
g0

2
(B12u)∆ +Bσ

12B11
g1

2
(B2u

2)∆ = Bσ
2B

σ
12B11f0.

By applying the λ condition (4.14) and integrating both sides with respect to x, the

solution u = u(x) of Eq. (4.12) is given by

B2(x)u2 + ΛB11(x)u+ λB12(x)u =

∫ x

x0

2Bσ
2 (t)

f0(t)

g1(t)
∆t+ C,

where C is an integration constant, determined by the initial value x0.

Remark 4.9. The condition of Theorem 4.2, g0(x) 6= 0, g1(x) 6= 0, is critical to

find an implicit solution to the different Abel dynamic equations of the second kind.

Analogous to R, one can apply a substitution to an Abel dynamic equation of the

second kind, where g0 = 0, to get a second kind with g0 6= 0. This enables, under the

satisfaction of the additional conditions, the application of Theorem 4.2.
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Consider the general Abel dynamic equation of the second kind in time scales

with g0 = 0, namely

g1(x)

(
u+ uσ

2

)
u∆ = f0(x) + f1(x)u+ f2(x)u2 with u = u(x). (4.15)

The substitution u = y + 1
2
, y = y(x) transfers Eq. (4.15) into

g1

(
y + yσ + 1

2
+ 1

2

2

)
y∆ = f0 + f1y +

f1

2
+ f2y

2 + f2y +
f2

4
,

i.e.,

(
g1

(
y + yσ

2

)
+
g1

2

)
y∆ = f0 +

f1

2
+
f2

4
+ f1y + f2y + f2y

2,

which is in the form (4.1)

(
h0 + h1

(
y + yσ

2

))
y∆ = F0 + F1y + F2y

2,

with

h0 =
g1

2
, h1 = g1, F0 = f0 +

f1

2
+
f2

4
, F1 = f1 + f2, F2 = f2.

The methods that require g0 6= 0, such as Theorem 4.2, can now be also applied to

Eq. (4.15).

The previous substitution transfers also the other expressions of the Abel dy-

namic equation of the second kind 4.10 to 4.13, where g0 = 0, into the form of an

Abel equation of the second kind, where g0 6= 0.
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Theorem 4.10. Consider the Abel equation

(
y + yσ

2

)
y∆ = f1(x)

(
y + yσ

2

)
+ f2(x)y2 with y = y(x). (4.16)

If a function F exists such that

F + F σ

2
= λ

B1

Bσ
3

, and
F + F σ

2
= Λ

Bσ
2

Bσ
3

,

with

B1 := ep(x, x0)B1(x0), p :=
−2(−F∆ + f1)

F σ + F
,

B2 := e	q(x, x0)B2(x0), q :=
2(−F∆ + f1 + 4f2F )

F σ + F
,

B3 := e	r(x, x0)B3(x0), r := 2f2,

where x0 is an initial value, then an implicit solution can be derived.

Proof. First of all, one uses the substitution y = w + F on equation (4.16) to obtain

((
F + F σ

2

)
+

(
w + wσ

2

))
(w∆ + F∆)

= f1

(
w + wσ

2

)
+ f1

(
F + F σ

2

)
+ f2w

2 + 2f2Fw + f2F
2,

i.e.,

((
F + F σ

2

)
+

(
w + wσ

2

))
w∆ = (−F∆ + f1)

(
F + F σ

2

)
+ f2F

2

+
w

2

[
−F∆ + f1 + 4f2F

]
+
wσ

2

[
−F∆ + f1

]
+ w2f2.
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Multiplying B1B
σ
2 on both sides yields

B1B
σ
2

(
F + F σ

4

)
w∆ +B1B

σ
2

(
F + F σ

4

)
w∆ +B1B

σ
2

(
w + wσ

2

)
w∆

=B1B
σ
2

[
(−F∆ + f1)

(
F + F σ

2

)
+ f2F

2

]
+B1B

σ
2

w

2

[
−F∆ + f1 + 4f2F

]
+B1B

σ
2

wσ

2

[
−F∆ + f1

]
+B1B

σ
2w

2f2.

Using the conditions for B1 and B2, we have

B1B
σ
2

(
F + F σ

4

)
w∆ +B1B

σ
2

(
F + F σ

4

)
w∆ +B1B

σ
2

(
w + wσ

2

)
w∆

=B1B
σ
2

[
(−F∆ + f1)

(
F + F σ

2

)
+ f2F

2

]
− wB1B

∆
2

(
F + F σ

4

)
−B∆

1 B
σ
2

(
F + F σ

4

)
wσ +B1B

σ
2w

2f2,

i.e.,

Bσ
2

(
F + F σ

4

)
(B1w)∆ +B1

(
F + F σ

4

)
(B2w)∆ +B1B

σ
2

(
w + wσ

2

)
w∆

= B1B
σ
2

[
(−F∆ + f1)

(
F + F σ

2

)
+ f2F

2

]
+ B1B

σ
2w

2f2.

Define B3 := e	r(x, x0)B3(x0), with r := 2f2. Multiplying Bσ
3 on both sides, we get

Bσ
3B

σ
2

(
F + F σ

4

)
(B1w)∆+Bσ

3B1

(
F + F σ

4

)
(B2w)∆+Bσ

3B1B
σ
2

(
w + wσ

2

)
w∆

= Bσ
3B1B

σ
2

[
(−F∆ + f1)

(
F + F σ

2

)
+ f2F

2

]
+ Bσ

3B1B
σ
2w

2f2.
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Using the fact that B∆
3 = −2f2B

σ
3 , we obtain

Bσ
3B

σ
2

(
F + F σ

4

)
(B1w)∆+Bσ

3B1

(
F + F σ

4

)
(B2w)∆+Bσ

3B1B
σ
2

(
w + wσ

2

)
w∆

= Bσ
3B1B

σ
2

[
(−F∆ + f1)

(
F + F σ

2

)
+ f2F

2

]
− B∆

3 B1B
σ
2w

2 1

2
,

i.e.,

Bσ
3B

σ
2

(
F + F σ

4

)
(B1w)∆ +Bσ

3B1

(
F + F σ

4

)
(B2w)∆ +

1

2
B1B

σ
2 (B3w

2)∆

= Bσ
3B1B

σ
2

[
(−F∆ + f1)

(
F + F σ

2

)
+ f2F

2

]
.

Dividing both sides with 1
2
B1B

σ
2 and using the condition for F yields

λ(B1w)∆ + Λ(B2w)∆ + (B3w
2)∆ = 2Bσ

3

[
(−F∆ + f1)

(
F + F σ

2

)
+ f2F

2

]
.

Integrate both sides formulates the implicit solution w as

λB1w + ΛB2w +B3w
2 =

∫ x

x0

2Bσ
3

[
(−F∆ + f1)

(
F + F σ

2

)
+ f2F

2

]
∆t+ C,

where C is an integration constant, determined by the initial value x0.

4.2. THE ABEL DYNAMIC EQUATION OF THE 1ST KIND

The special case of an Abel equation of the first kind in R with f0(x) = 0 that

has been discussed in Section 3.2 can also be derived in T. Consider the Abel dynamic

equation of the second kind, namely

(
g(x) +

(
u+ uσ

2

))
u∆ = F0(x) + F1(x)u+ F2(x)u2, (4.17)
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with u = u(x). As in R, one gets a special class of the Abel equation of the first kind

by applying the substitution u = 1
w
− g, w 6= 0.

Definition 4.11. A special class of the Abel equation of the first kind in T is

w∆

(
w + wσ

2

)
= h1(x)(wσ)2 +h21(x)w2wσ+h22(x)w(wσ)2 +h3(x)w2(wσ)2, (4.18)

with w = w(x).

Remark 4.12. Starting with the Abel differential equation of the second kind in R,

namely

(g(x) + u)u′ = F0(x) + F1(x)u+ F2(x)u2 with u = u(x), (4.19)

the substitution u = 1
w
− g, w 6= 0 yields

(
g +

1

w
− g
)(
−w

′

w2
− g′

)
= F0 − F1g + F2g

2 +
F1

w
− 2F2g

w
+
F2

w2
,

i.e.,

−w
′

w3
− g′

w
= F0 − F1g + F2g

2 +
F1

w
− 2F2g

w
+
F2

w2
.

Multiplying both sides with −w3 yields

w′ = −g′w2 + w3(−F0 + F1g − F2g
2) + w2(−F1 + 2F2g)− wF2,

which is in the special form of an Abel equation of the first kind

w′ = h3w
3 + h2w

2 + h1w,
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with

h3 = −F0 + F1g − F2g
2, (4.20)

h2 = −g′ − F1 + 2F2g, (4.21)

h1 = −F2. (4.22)

The coefficients match exactly the coefficients from Section 3.2.1, Equation (3.18).

Theorem 4.13. The transformation u = 1
w
− g transforms the Abel equation of the

second kind into the special form of the Abel equation of the first kind (4.18).

Proof. Consider the Abel equation of the second kind, namely

((
g + gσ

2

)
+

(
u+ uσ

2

))
u∆ = f0 + f1u+ f2u

2.

The substitution u = 1
w
− g, w 6= 0 yields

(
g + gσ

2
+
w + wσ

2wwσ
− g + gσ

2

)(
−w∆

wwσ
− g∆

)
= f0 +

f1

w
− f1g +

f2

w2
− 2

f2g

w
+ f2g

2,

i.e.,

−w
∆(w + wσ)

2(wσ)2w2
− g∆

wwσ

(
w + wσ

2

)
= f0 − f1g +

f1

w
− 2

f2g

w
+
f2

w2
+ f2g

2.

By multiplying both sides with −w2(wσ)2, we have

w∆

(
w + wσ

2

)
=− g∆

(
w + wσ

2

)
wwσ + w2(wσ)2(−f0 + f1g − f2g

2)

+ (wσ)2w(−f1 + 2f2g) + (wσ)2(−f2),
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which is of the form

w∆

(
w + wσ

2

)
= h1(wσ)2 + h21(wσ)2w + h22w

2wσ + h3(wσ)2w2,

with

h1 = −f2, h21 = −g
∆

2
− f1 + 2f2g, h22 = −g

∆

2
, h3 = −f0 + f1g − f2g

2.

This completes the proof.

Remark 4.14. For T = R, Eq. (4.18) becomes

w′w = h1w
2 + h21w

2w + h22ww
2 + h3w

2w2,

i.e.,

w′w = h1w
2 + (h21 + h22)w3 + h3w

4,

i.e.,

w′ = h1w + (h21 + h22)w2 + h3w
3 = h1w + h2w

2 + h3w
3,

where h2 = h21 + h22. Theorem 4.13 provides

h1 = −f2,

h2 = −g
′

2
− f1 + 2f2g −

g′

2
= −g′ − f1 + 2f2g,

h3 = −f0 + f1g − f2g
2.
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These variable coefficients hi, i = 1, 2, 3 match the coefficients of equation (3.18) in

Section 3.2.1.

Example 4.15. For T = Z, the Abel equation of the first kind is

∆w

(
w + Ew

2

)
= h1(Ew)2 + h21w

2Ew + h22w(Ew)2 + h3w
2(Ew)2,

i.e.,

(Ew)2 − w2

2
= h1(Ew)2 + h21w

2Ew + h22w(Ew)2 + h3w
2(Ew)2,

i.e.,

(Ew)2

[
1

2
− h1 − h22w − h3w

2

]
+ Ew[−h21w

2] =
w2

2
.

Theorem 4.16. Consider a more general Abel equation of the second kind, where

g1(x) 6= 0, namely

(
g0 + g1

(
u+ uσ

2

))
u∆ = f0 + f1u+ f2u

2. (4.23)

Assume there exists β such that g0

g1
= β+βσ

2
. Then there exists a substitution that

transfers Eq. (4.23) into an Abel equation of the first kind.

Proof. Consider Eq. (4.23). First of all, one divides the equation by g1 to get

(
g +

(
u+ uσ

2

))
u∆ = F0 + F1u+ F2u

2,
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with

Fi =
fi
g1

, g =
g0

g1

for i = 0, 1, 2.

Since there exists β such that g = β+βσ

2
, we have

((
β + βσ

2

)
+

(
u+ uσ

2

))
u∆ = F0 + F1u+ F2u

2.

Apply furthermore the substitution u = 1
w
− β to obtain

[(
β + βσ

2

)
+

(
w + wσ

2wwσ

)
−
(
β + βσ

2

)](
− w∆

wwσ
− β∆

)
= F0 − F1β +

F1

w
+
F2

w2
− 2

F2β

w
+ F2β

2,

i.e.,

−w∆(w + wσ)

2w2(wσ)2
− β∆

(
w + wσ

2wwσ

)
= F0 − F1β + F2β

2 +
F1

w
− 2

F2β

w
+
F2

w2
.

Multiplying both sides with −w2(wσ)2 yields

w∆

(
w + wσ

2

)
=− β∆

2
w2wσ − β∆

2
(wσ)2w − F0w

2(wσ)2 + F1βw
2(wσ)2

− F2β
2w2(wσ)2 − F1(wσ)2w + 2F2βw(wσ)2 − F2(wσ)2.

By changing the order of the terms, we get

w∆

(
w + wσ

2

)
=[−F2](wσ)2 + w2wσ

[
−β

∆

2

]
+ w(wσ)2

[
−β

∆

2
− F1 + 2F2β

]
+ w2(wσ)2[−F0 + F1β − F2β

2].
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Putting

h1 = −F2, h21 = −β
∆

2
, h22 = −β

∆

2
−F1 + 2F2β, h3 = −F0 +F1β−F2β

2,

we see that this is of the form of an Abel equation of the first kind (4.18).

Theorem 4.16 also holds for g0 = 0 (g1 6= 0). If g0 = 0, then β = 0. The

substitution to transfer this Abel equation of the second kind into the first kind is

u = 1
w

. The resulting Abel dynamic equation is

w∆

(
w + wσ

2

)
= −F0(x)w2(wσ)2 − F1(x)w(wσ)2 − F2(x)(wσ)2, w = w(x).

Example 4.17. Suppose g0

g1
= c = constant. Then the Abel equation (4.23) can be

divided by g1 to get

(
g0

g1

+

(
u+ uσ

2

))
u∆ = F0 + F1u+ F2u

2,

i.e.,

(
c+

(
u+ uσ

2

))
u∆ = F0 + F1u+ F2u

2,

with Fi = fi
g1

for i = 0, 1, 2. Use the substitution u = 1
y
− c, y 6= 0. The left-hand side

becomes

(
c+

(
1
y

+ 1
yσ

2

)
− c+ c

2

)(
− y∆

yyσ
− 0

)
=

(
1
y

+ 1
yσ

2

)(
− y∆

yyσ

)
=

(
yσ + y

2yyσ

)(
− y∆

yyσ

)
= − 1

y2(yσ)2
y∆

(
yσ + y

2

)
,
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while the right-hand side is

F0 +
F1

y
− cF1 +

F2

y2
− 2

cF2

y
+ F2c

2.

Combining the left and the right sides, we obtain

− 1

y2(yσ)2
y∆

(
yσ + y

2

)
= F0 +

F1

y
− cF1 +

F2

y2
− 2

cF2

y
+ F2c

2.

Multiplying both sides with −y2(yσ)2, the previous equation becomes

y∆

(
yσ + y

2

)
= y2(yσ)2(−F0 + cF1 − c2F2) + (yσ)2y(−F1 + 2cF2) + (yσ)2(−F2).

This is in the form of an Abel equation of the first kind

y∆

(
yσ + y

2

)
= y2(yσ)2h3 + (yσ)2yh22 + (yσ)2h1

with

h3 = −F0 + cF1 − c2F2, h2 = −F1 + 2cF2, h1 = −F2.

4.3. CANONICAL ABEL DYNAMIC EQUATION

4.3.1. Transformation from the Abel dynamic equation of the 2nd
kind to the canonical Abel dynamic equation.

First of all we give the definiton of the canonical Abel equation in T.
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Definition 4.18. The canonical form of an Abel equation in T, h0, h11, h12 : R −→ R,

is defined by

w∆

(
w + wσ

2

)
= h0(x) + h11(x)w + h12(x)wσ with w = w(x). (4.24)

The previous section showed in Theorem 4.16 how to transfer the general Abel

equation of the second kind

(
g0 + g1

(
u+ uσ

2

))
u∆ = f0 + f1u+ f2u

2

into

((
g + gσ

2

)
+

(
u+ uσ

2

))
u∆ = F0 + F1u+ F2u

2. (4.25)

Using the same substitution from Section 3.3.1, Eq. (4.25) can be furthermore trans-

formed into the canonical form of an Abel dynamic equation.

Theorem 4.19. The substitution u = w
E
− g with E = eα(x, x0) transforms (4.25)

into the canonical Abel dynamic equation (4.24), where α is determined by

α

2
+
α

2

Eσ

E
= −F2

(Eσ)2

E2
↔ α + α2µ

2
= −F2(1 + µα)2.

Remark 4.20. For T = R, Theorem 4.19 was discussed in Section 3.3.1. Eq. (4.25) is

in R

(g + u)u′ =

(
g + gσ

2
+
u+ uσ

2

)
u∆ = F0 + F1u+ F2u

2,

which is the Abel equation of the second kind in R, introduced in Section 3.1. Theorem

4.19 is using exactly the same substitution in Section 3.2.1.
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Proof. Note that E = eα(x, x0) = exp{
∫
α(x)dx}, where α satisfies

α + α2µ

2
= −F2(1 + µα)2, (4.26)

which is in R equal to

α =
α

2
+
α

2
= −F2 · 1 = −F2,

so E is defined in the same way as in the substitution in Section 3.2.1.

Proof of Theorem 4.19. Consider the Abel equation of the second kind (4.25) and

apply the substitution u = w
E
− g with E = eα(x, x0), where α satisfies

α + α2µ

2
= −F2(1 + µα)2.

The left-hand side of Eq. (4.25) is then

((
g + gσ

2

)
+

1

2

(
w

E
+
wσ

Eσ
− g − gσ

))(
w∆E − E∆w

EEσ
− g∆

)
=

1

2

(
wEσ + wσE

EEσ

)(
w∆E − E∆w

EEσ
− g∆

)
=

1

2

(
w∆EwEσ + w∆EwσE

E2(Eσ)2

)
+

1

2

(
−E∆wwEσ − E∆wwσE

E2(Eσ)2

)
− 1

2
g∆

(
wEσ + wσE

EEσ

)
=

1

2

(
w∆E(wEσ + wσE + Ew − Ew)

E2(Eσ)2

)
+

1

2

(
−E∆wwEσ − E∆wwσE

E2(Eσ)2

)
− 1

2
g∆

(
wEσ + wσE

EEσ

)
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=
E2w∆

E2(Eσ)2

(
w + wσ

2

)
+

1

2

(
w∆Ew(Eσ − E)

E2(Eσ)2

)
+

1

2

(
−E∆wwEσ − E∆wwσE

E2(Eσ)2

)
− 1

2
g∆

(
wEσ + Ewσ

EEσ

)
=

w∆

(Eσ)2

(
w + wσ

2

)
+

1

2

(
w∆wµE∆

E(Eσ)2

)
+

1

2

(
−E∆wwEσ − E∆wwσE

E2(Eσ)2

)
− 1

2
g∆

(
wEσ + Ewσ

EEσ

)
=

w∆

(Eσ)2

(
w + wσ

2

)
+

1

2

(
w(wσ − w)E∆

E(Eσ)2

)
+

1

2

(
−E∆wwEσ − E∆wwσE

E2(Eσ)2

)
− 1

2
g∆

(
wEσ + Ewσ

EEσ

)
.

After the substitution, the right-hand side of (4.25) is

F0 +
F1w

E
− F1g +

F2w
2

E2
− 2F2gw

E
+ F2g

2.

Putting the left and the right sides together, Eq. (4.25) transfers into

w∆

(Eσ)2

(
w + wσ

2

)
+

1

2

(
wwσE∆

E(Eσ)2

)
−1

2

(
w2E∆

E(Eσ)2

)
+

1

2

(
−E∆wwEσ − E∆wwσE

E2(Eσ)2

)
− 1

2
g∆

(
wEσ + Ewσ

EEσ

)
= F0 +

F1w

E
− F1g +

F2w
2

E2
− 2F2gw

E
+ F2g

2.

Multiply both sides with (Eσ)2 and use E∆ = αE, as well as Eσ = E(1 + µα) we

have

w∆

(
w + wσ

2

)
+

1

2
αwwσ− 1

2
αw2− 1

2
α(1 +µα)w2− 1

2
αwwσ− 1

2
g∆E(1 +µα)2w

− 1

2
g∆E(1 + µα)wσ = F0E

2(1 + µα)2 + F1E(1 + µα)2w − F1gE
2(1 + µα)2

+ F2(1 + µα)2w2 − 2F2gE(1 + µα)2w + F2g
2E2(1 + µα)2.
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Rearranging terms leads to

w∆

(
w + wσ

2

)
= −1

2
αwwσ +

1

2
αw2 +

1

2
αE(1 + µα)2w2 +

1

2
αwwσ

+
1

2
g∆E(1 + µα)2w +

1

2
g∆E(1 + µα)wσ + F0E

2(1 + µα)2 + F1E(1 + µα)2w

− F1gE
2(1 + µα)2 + F2(1 + µα)2w2 − 2F2gE(1 + µα)2w + F2g

2E2(1 + µα)2.

This is in the form

w∆

(
w + wσ

2

)
= h0 + h11w + h12w

σ + h21ww
σ + h22w

2,

where h21 = −α
2

+ α
2

= 0. By using condition (4.26), we get

h22 = α + α
µ

2
+ F2(1 + µα)2 = 0.

The form is therefore

w∆

(
w + wσ

2

)
= h0 + h11w + h12w

σ, (4.27)

with

h0 = F0E
2(1 + µα)2 − F1gE

2(1 + µα)2 + F2g
2E2(1 + µα)2, (4.28a)

h11 =
g∆

2
E(1 + µα)2 + F1E(1 + µα)2 − 2F2gE(1 + µα)2, (4.28b)

h12 =
g∆

2
E(1 + µα). (4.28c)

This completes the proof.

Remark 4.21. For T = R, the coefficients of (4.28) match exactly the variable coeffi-

cients from the substitution into the canonical form in R, discussed in Section 3.2.1.
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The canonical form (4.27) is for T = R

w′w = w∆

(
w + wσ

2

)
= h0 + h11w + h12w

σ = H0 +H1w, (4.29)

with

H0 = h0 = F0(Eσ)2 − F1g(Eσ)2 + F2g
2(Eσ)2 = F0E

2 − F1gE
2 + F2g

2E2,

H1 =h11 + h12 =
g∆

2

(Eσ)2

E
+ F1

(Eσ)2

E
− 2F2g

(Eσ)2

E
+
g∆

2
Eσ

=
g′

2
E + F1E − 2F2gE +

g′

2
E.

The coefficients (4.30) are identical to the coefficients from Section 3.2.1 and [7, p.

27f].

Example 4.22. For T = Z, the canonical form (4.24) is

∆w

(
w + Ew

2

)
= w∆

(
w + wσ

2

)
= h0 + h11w + h12w

σ = h0 + h11w + h12Ew.

Since ∆w = Ew − w, we have

(Ew − w)

(
w + Ew

2

)
= h0 + h11w + h12Ew,

i.e.,

(Ew)2 − w2 = h0 + h11w + h12Ew,

i.e.,

Ew(Ew − h12) = w2 + h11w + h0.
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4.3.2. Transformation from the Abel equation of the 1st kind to the
canonical Abel dynamic equation.

Theorem 4.23. Consider the special Abel equation of the first kind

(
y + yσ

2

)
y∆ = h1(x)(yσ)2 + h21(x)y2yσ + h22(x)y(yσ)2 + h3(x)y2(yσ)2, (4.31)

with y = y(x). Use the substitution

y =
E

w
, E = eα(x, x0), α = 2h1

(
(1 + µα)2

2 + µα

)
,

to get the canonical Abel equation (4.24).

The canonical Abel form (4.24) can also be constructed by starting with the

special Abel equation of the first kind that has been discussed in Section 4.2.

Proof. Let an Abel equation of the first kind (4.31) be given and apply the substitu-

tion y = E
w

with E = eα(x, x0) and α = 2h1

(
(1+µα)2

2+µα

)
. The left-hand side of (4.31)

is

1

2

(
E

w
+
Eσ

wσ

)(
E∆w − Ew∆

wσw

)
=

1

2

(
Ewσ + wEσ

wwσ

)(
E∆w − Ew∆

wσw

)
=

1

2

(
Ewσ + wEσ + Ew − Ew

wwσ

)(
E∆w − Ew∆

wσw

)
=

(
E

(
w + wσ

2

)
1

wwσ
+

1

2
(Eσ − E)

w

wwσ

)(
E∆w − Ew∆

wσw

)
=

(
EE∆w

w2(wσ)2

)(
w + wσ

2

)
+

(Eσ − E)wE∆w

2w2(wσ)2
−
(
Ew∆E

w2(wσ)2

)(
w + wσ

2

)
− Ew∆µE∆w

2w2(wσ)2
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=
EE∆

2(wσ)2
+
EE∆

2wwσ
+
EσE∆

2(wσ)2
− EE∆

2(wσ)2
−
(

E2

w2(wσ)2

)
w∆

(
w + wσ

2

)
− EE∆

2wwσ
+

EE∆

2(wσ)2

=
EσE∆

2(wσ)2
+

EE∆

2(wσ)2
−
(

w∆E2

w2(wσ)2

)(
w + wσ

2

)
=
E∆(Eσ + E)

2(wσ)2
−
(

w∆E2

w2(wσ)2

)(
w + wσ

2

)
.

By applying the substitution, the right-hand side of (4.31) is

h1
(Eσ)2

(wσ)2
+ h21

E2

w2

Eσ

wσ
+ h22

(Eσ)2

(wσ)2

E

w
+ h3

E2

w2

(Eσ)2

(wσ)2
.

By combining now the left and right sides, as well as dividing by − E2

w2(wσ)2 , we get

w∆

(
w + wσ

2

)
− E∆(Eσ + E)w2

2E2

= −h1w
2 (Eσ)2

E2
− h21E

σwσ − h22w
(Eσ)2

E
− h3(Eσ)2.

Since E∆ = αE, we have

w∆

(
w + wσ

2

)
= w2

(
α(Eσ + E)

2E
− h1

(Eσ)2

E2

)
+ w

(
−h22

(Eσ)2

E

)
+ wσ(−h21E

σ) − h3(Eσ)2.

Note that α satisfies α = 2h1

(
(Eσ)2

E2+EEσ

)
, which yields

w∆

(
w + wσ

2

)
= w

(
−h22

(Eσ)2

E

)
+ wσ(−h21E

σ)− h3(Eσ)2.

This complies with the common canonical Abel dynamic equation (4.24).
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Remark 4.24. For T = R, Theorem 4.23 is leading to the same result as in Section

3.3.2. We have

yy′ =

(
y + yσ

2

)
y∆ = h1(yσ)2 + h21y

2yσ + h22y(yσ)2 + h3y
2(yσ)2

= h1y
2 + (h21 + h22)y3 + h3y

4.

After dividing by y, the equation is equivalent to the Abel equation of the first kind in

R, Eq. (3.17) that has been discussed in Section 3.2, which is verified in the following.

The substitution of Theorem 4.23 becomes for R, y = E
w

with E = exp{
∫
αdx}, where

α satisfies α = 2h1
(Eσ)2

E2+EEσ
. In R it is equal to α = 2h1

E2

E(E+E)
= h1. Applying now

the substitution yields

E

w

(
E ′w − w′E

w2

)
= h1

E2

w2
+ (h21 + h22)

E3

w3
+ h3

E4

w4
.

Multiplying both sides with −w4

E2 , we have

−E
′

E
w2 + ww′ = −h1w

2 − (h21 + h22)Ew − h3E
2.

Use furthermore E ′ = αE to obtain

ww′ = (α− h1)w2 − (h21 + h22)Ew − h3E
2.

Since α = h1, the equation is

ww′ = −(h21 + h22)Ew − h3E
2.

This is consistent with the canonical Abel form that was derived in R in Section 3.2.
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5. TRANSFORMATION BETWEEN COMMON DYNAMIC EQUATIONS

If Abel differential equations have a particular form, they already belong to

a special class of common differential equations, such as for example the Bernoulli

differential equation. In other cases, one needs a substitution to transfer a dynamic

equation into another equation in T. In the following, some of the relations between

dynamic equations such as Abel equations, Bernoulli equations, logistic equations

and linear equations are discussed.

5.1. TRANSFORMATION TO THE BERNOULLI DYNAMIC
EQUATIONS

Whereas Abel differential equations are not solvable in every case, there exists

a method to solve any Bernoulli differential equation in R. Even in T, there exists a

general method to solve the Bernoulli dynamic equation [2, p. 38]. This is one of the

reasons why the Bernoulli dynamic equation is so valuable. The Bernoulli differential

equation has in R the general form [5, p. 73]

y′ + a(x)y = r(x)yα, (5.1)

where α /∈ {0, 1} and y = y(x).

Kamke explains in [7, p. 26] that an Abel differential equation of the first kind

is of the Bernoulli form if h0 = h2 = 0, so

y′ = h3y
3 + h2y

2 + h1y + h0 = h3y
3 + h1y. (5.2)
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By comparing the equations (5.1) and (5.2), one can easily see that Eq. (5.2) is the

same as

y′ + (−h1)y = h3y
3. (5.3)

This is the Bernoulli form (5.1), with a = −h1, r = h3 and α = 3. This differential

equation is now solvable with the conventional methods of solving Bernoulli differen-

tial equations. The idea to solve the Bernoulli differential equation is to reduce it to

a linear differential equation and use the simple methods to solve linear differential

equations [4, p. 77]. This will be discussed in more detail in Section 5.2. There also

exist methods to solve Bernoulli differential equations in R and T without reducing

them to a simpler case. Bohner and Peterson introduced in [2] a method to solve a

Bernoulli dynamic equation.

Theorem 5.1. Suppose α ∈ R, y = y(x), α 6= 0, p ∈ R, and f ∈ Crd. Let

y0 = y(x0) 6= 0 for an initial value x0. If

1

yα0
+

∫ x

x0

eαp (t, x0)f(t)∆t > 0 for all x ∈ T, (5.4)

then the solution of the Bernoulli dynamic equation is given by [2, p. 38]

y(x) =
ep(x, x0)[

y−α0 +
∫ x
x0
eαp (t, x0)f(t)∆t

] 1
α

. (5.5)

The relation between the Abel equation of the first kind and the Bernoulli

differential equation is also valid in time scales. Consider the special Abel dynamic

equation of the first kind discussed earlier

(
y + yσ

2

)
y∆ = h3(x)(yσ)2y2 + h21(x)y2yσ + h22(x)(yσ)2y + h1(x)(yσ)2. (5.6)
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Compared to the Abel differential equation in R, Eq. (5.6) is already an Abel dynamic

equation of the first kind with h0 = 0, since Eq. (5.6) is in R

yy′ =

(
y + yσ

2

)
y∆ = h3(yσ)2y2 + h21y

2yσ + h22(yσ)2y + h1(yσ)2

= h3y
2y2 + h21y

2y + h22y
2y + h1y

2,

i.e.,

y′ = h3y
3 + (h21 + h22)y2 + h1y.

Furthermore the h2 term has to be zero which means in T h21 = h22 = 0. The Abel

dynamic equation of the first kind is then

(
y + yσ

2

)
y∆ = h3(yσ)2y2 + h1(yσ)2. (5.7)

Equation (5.7) is a Bernoulli dynamic equation on time scales.

Remark 5.2. For T = R, Eq. (5.7) is equivalent to the Bernoulli differential equation

(5.1) since

yy′ =

(
y + yσ

2

)
y∆ = h3(yσ)2y2 + h1(yσ)2 = h3y

4 + h1y
2,

i.e.,

y′ + (−h1)y = h3y
3.

The fact that the Bernoulli dynamic equation we achieved in T is for T = R

equal to the Bernoulli differential equation which is already known, proves that the
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definition of the Bernoulli dynamic equation in T is in the correct form. Note that in

this case we examined, α = 3.

5.2. TRANSFORMATION TO LINEAR DYNAMIC EQUATIONS

A Bernoulli differential equation can be transferred into a linear differential

equation which enables the application of simple methods to solve a Bernoulli equa-

tion.

Theorem 5.3. In R, the Bernoulli differential equation [5, p. 73]

y′ + a(x)y = r(x)yα, (5.8)

where α /∈ {0, 1} and y = y(x), can be transferred into a linear inhomogeneous

differential equation of the form

u′ + (1− α)a(x)u = (1− α)r(x), (5.9)

with u = u(x), by using the substitution u = y1−α [7, p. 19].

The same idea transfers a Bernoulli dynamic equation into a linear equation.

Theorem 5.4. The special Bernoulli dynamic equation with α = 3 which can be

derived from the Abel dynamic equation of the first kind

(
y + yσ

2

)
y∆ = h3(x)(yσ)2y2 + h1(x)(yσ)2 with y = y(x), (5.10)
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can be transferred into a linear dynamic equation by applying the substitution

u = y1−3 = y−2.

Remark 5.5. For T = R, Eq. (5.10) is a Bernoulli equation since

yy′ =

(
y + yσ

2

)
y∆ = h3(yσ)2y2 + h1(yσ)2 = h3y

4 + h1y
2,

i.e.,

y′ = h3y
3 + h1y.

Theorem 5.3 states that this equation can be transferred into a linear equation by

using the substitution u = y1−α = 1
y2 . This leads by Theorem 5.3 to the linear

differential equation

u′ + 2h1u = −2h3 with a = −h1, r = h3. (5.11)

Proof of Theorem 5.4. Consider the special Bernoulli dynamic equation (5.10) and

use the substitution u = y−2, y(x) 6= 0. That yields

(
1√
u

+ 1√
uσ

2

)(
1√
u

)∆

= h3
1

uσ
1

u
+ h1

1

uσ
.

In Section 2.2, the delta-derivative of 1√
u

was shown to be
(

1√
u

)∆

= − u∆

(
√
u+
√
uσ)
√
uσu

.

Therefore we have

−
(√

u+
√
uσ

2
√
uuσ

)(
u∆

(
√
u+
√
uσ)
√
uσu

)
= h3

1

uσ
1

u
+ h1

1

uσ
,
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i.e.,

− u∆

2uuσ
= h3

1

uσ
1

u
+ h1

1

uσ
.

Multiply both sides with −2uuσ to obtain

u∆ = −2h3 − 2h1u, (5.12)

i.e.,

u∆ + 2h1u = −2h3. (5.13)

In [2, p. 17] the general linear dynamic equation is introduced as

y∆ = p(t)y + f(t). (5.14)

It is trivial to see that for y(t) = u(x), p(t) = −2h1(x) and f(t) = −2h3(x), Eq.

(5.14) and Eq. (5.12) are identical. Eq. (5.12) is therefore a common linear dynamic

equation in T.

For T = R, equation (5.13) is equivalent to Eq. (5.11).

That proves that a Bernoulli dynamic equation can be transferred into a linear

dynamic equation, which simplifies the analysis and the solving method. A linear

differential equation can be solved in R, as well as in T, by using the variation of

constants method.
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Theorem 5.6 (Variation of Constants). [2, p. 19] Suppose p ∈ R and f ∈ Crd. Let

x0 ∈ T and y0 ∈ R. The unique solution of the initial value problem

y∆ = p(x)y + f(x) with y(x0) = y0,

is given by

y(x) = ep(x, x0)y0 +

∫ x

x0

ep(t, σ(t))f(t)∆t.

5.3. TRANSFORMATION TO THE LOGISTIC DYNAMIC
EQUATIONS

In the following, it is described how to transfer a linear dynamic equation into a

logistic dynamic equation in R and T. This will give the foundation to find a substi-

tution to transform a Bernoulli dynamic equation into a logistic dynamic equation,

since the transfer from Bernoulli to linear equations is already well known.

Theorem 5.7. A general linear differential equation in R [4, p. 36], namely

u′ = p(x)u+ g(x) with g(x) 6= 0 (5.15)

can be transformed into a logistic differential equation

w′ = G(x)w(H(x) + w), (5.16)

by the substitution u = 1
w

and w(x) 6= 0.
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Proof. Consider the general linear differential equation (5.15) and apply the substi-

tution u = 1
w

, w(x) 6= 0. Eq. (5.15) is then

−w
′

w2
=
p

w
+ g.

Multiplying both sides with −w2 yields

w′ = −pw − gw2 = −gw
(
p

g
+ w

)
,

which is of the form (5.16), with H = p
g

and G = −g. A logistic differential equation

is obtained.

The same method leads to the formulation of the relation between a linear

dynamic equation and a logistic dynamic equation.

Theorem 5.8. A general linear differential equation in T, p, g ∈ R [2, p. 19]

u∆ = p(t)u+ g(x) with g(x) 6= 0, (5.17)

can be transformed into a logistic dynamic equation with variable coefficients [2, p.

30]

w∆ = w[	(p(x) + g(x)w)], (5.18)

by applying the substitution u = w−1 for w(x) 6= 0.
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Proof. Consider the linear dynamic equation (5.17) and apply the substitution u = 1
w

,

w(x) 6= 0. Eq. (5.17) is then

− w∆

wwσ
=
p

w
+ g.

Multiplying both sides with −wwσ yields

w∆ = −pwσ − gwwσ = −wσ(p+ gw).

To get the general expression of a logistic dynamic equation (5.18), one uses wσ =

w + µw∆ to get

w∆ = −wσ(p+ gw) = −w(p+ gw)− w∆µ(p+ gw),

i.e.,

w∆(1 + µ(p+ gw)) = −w(p+ gw).

This is by definition of

	(p(x) + g(x)w) = − (p(x) + g(x)w)

1 + µ(p(x) + g(x)w)

equivalent to Eq. (5.18).

The logistic differential equation is especially found in various mathematical

biology applications, such as in population dynamics [17, p. 95]. To describe the

development of the population mathematically, the logistic equation is used. Under

assumptions in order to make the model simpler, the existence of a natural enemy

is implemented by estimations for the birth-rate and death-rate. Furthermore it is
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assumed that a carrying capacity threshold exists, which is due to the natural fact of

limited resources. If a special population is too big, then they restrict themselves. In

the following, a population growth model is described in more detail.

Example 5.9. The population model [13, p. 702f]

Variables:

t = time; (usually) measured in years,

P = P (t) = population at time t,

L = carrying capacity,

k = growth proportionality.

Assumptions:

• The population P (t) is limited naturally by the carrying capacity L.

• The carrying capacity is constant.

• The growth proportionality is constant and includes any natural restrictions of

a population, such as birth- and death-rate.

• The population is regarded in a non changing system.

The population is then modeled by the following logistic differential equation

dP

dt
= kP

(
1− P

L

)
. (5.19)
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The substitution to transfer a Bernoulli dynamic equation into a linear dynamic

equation, has already been discussed in the previous part. To identify the required

substitution from a Bernoulli dynamic equation into a logistic dynamic equation, one

has to connect the transformations from Bernoulli to linear equations and then to a

logistic equation.

Theorem 5.10. A Bernoulli dynamic equation in y, given by

y∆

(
y + yσ

2

)
= h3(x)y2(yσ)2 + h1(x)(yσ)2 with y = y(x), (5.20)

can be transferred into a logistic dynamic equation (5.18) by applying the substitution

y(x) =
√
w(x).

Proof. In Section 5.2, it was proved that a Bernoulli dynamic equation (5.20) leads

to a linear equation in u by applying y = 1√
u
. Moreover, in this section, a linear

differential equation in u was transferred into a logistic dynamic equation in w by the

substitution of u = 1
w

. To find a transformation from the Bernoulli dynamic equation

into a logistic dynamic equation, one connects the two substitutions. That transfers a

Bernoulli dynamic equation into a linear equation in T and afterwards into a logistic

dynamic equation. The substitution that realizes the transformation is given by

y(x) =
1√
u(x)

=
1√

1
w(x)

=
√
w(x). (5.21)

This can now also be checked directly.

The presented relations between differential equations in R remain therefore the

same in time scales and can be used to ease the solving method for dynamic equations

in T.
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6. CONCLUSION

In summary, one can conclude that the Abel dynamic equations of the second

kind in time scales are defined similarly to the Abel differential equation of the second

kind in the continuous case of R, although they have different expressions, involving

u and uσ. The similarity of the Abel differential and dynamic equations of the second

kind enables the translation of the solution methods from R to T. The strategy of

transferring solving methods to time scales is presented in an example in Section 4.1,

where a solution of a special class of the Abel equation of the second kind is derived,

based on a method used by Bougoffa in [3]. The purpose of this demonstration was

to present the idea of how to use existing solution strategies in R to achieve methods

and solutions in time scales. Various methods to solve Abel equations have been

already generated [10, p. 45–62] and so form the base for possible solutions in time

scales. The relation between the two kinds of an Abel equation has been verified by

a substitution, applied to the Abel equation of the second kind. This led to a special

class of the Abel equation of the first kind in T. It was first derived in R and then

in T, to find the analogue of a special class of an Abel equation of the first kind in

time scales. This relation has critical relevance because it enables the transfer of the

solution methods for the Abel equation of the second kind to the first kind.

Analogous to the canonical Abel equation in the continuous time scale, a canon-

ical form was defined in time scales. It was furthermore shown that both kinds of

Abel equations, the first and the second kind, can be rewritten in canonical form.

Some canonical Abel equations can be solved, depending on the satisfaction of spe-

cial conditions, which let them refer to different classes of the canonical equation [10,

p. 45–50].
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Due to the possibility of transforming an Abel equation into canonical Abel form, the

classes of solvable Abel equations extended, and additional solving methods can be

established.

Finally the focus of Abel equations was extended to common differential equa-

tions and their relation to each other has been investigated. Based on the existing

research on correlations and connections between the Abel, Bernoulli, logistic, and

linear differential equations in R, this was analyzed in the generalized time set T.

We realized that the investigated relation between these differential equations can be

generalized into time scales. Nevertheless the definition for each of the common dif-

ferential equations differ from the formula in R [2]. Throughout this thesis, examples

were presented to illustrate the forms of an Abel equation in different time scales.

They referred especially to the continuous and discrete cases, to compare the results

from the derivation in time scales with the existing formulas for R and the discrete

time scale Z.

The purpose of this thesis was to introduce Abel dynamic equations of the first

and the second kind in time scales. This builds the base for further analysis of Abel

dynamic equations and the investigation of their general solution. Existing solution

methods for Abel equations are useful in generating solutions for the different forms

of an Abel dynamic equation and can be translated into time scales in a similar way

as in Section 4.1.

Due to the fact that Abel equations are used to model real life situations and

problems mathematically, the solution of these equations is critical. This is an ad-

ditional advantage of the definition of Abel equations in time scales since the appli-
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cations of the Abel equations in time scales offer a more precise reproduction of the

reality.
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