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ABSTRACT 

Crude glycerin solution, a principal byproduct of the conventional biodiesel 

process, was reacted in supercritical water using a specially designed Haynes® Alloy 282 

reactor system for the production of hydrogen rich syngas. The effects of temperature, 

pressure, water-to-carbon molar ratio, reactor residence time, and glycerin-to-methanol 

weight ratio on the extent of carbon gasification and gas composition were explored. 

Based on the results, the extent and selectivity of reactions that concurrently occur when 

methanol and glycerin are in the presence of supercritical water were analyzed.  

A decomposition reaction pathway for glycerin conversion to syngas was 

hypothesized, and then utilizing the results of the crude glycerin solution experiments, as 

well as experiments using pure methanol and pure glycerin with supercritical water, the 

hypothesized decomposition pathway was evaluated. Also an empirical equation was 

formulated to predict the gas composition and carbon gasification of crude glycerin using 

the reaction conditions of temperature and reactor residence time. 

To gain a better understanding of how the functional groups of different 

hydrocarbon molecules react when exposed to supercritical water, experiments were also 

conducted to determine the effect of hydroxyl groups on hydrocarbons in supercritical 

water. These experiments used isopropanol, propylene glycol, and glycerin as 

monohydric, dihydric, and trihydric alcohol feeds. The effect that the number and the 

position of hydroxyl groups in the molecular structures had on carbon gasification and 

gas composition were determined at multiple temperatures, of hydroxyl groups were 

shown to have a great impact on the decomposition mechanism of hydrocarbons. 
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1.  INTRODUCTION 

Discovering and utilizing alternative fuels as replacements for traditional fossil 

fuels has been a focus of the scientific community for many decades. From 2004 to 2009, 

global renewable energy capacity for many technologies grew 10-60 percent annually.1 

Still, in 2009 the United States used 6.04 quadrillion BTUs of fossil fuels, compared to 

0.563 quadrillion BTUs of renewable fuel.2 With the amount of fossil fuels utilized 

annually being over ten times that of renewable fuels, new innovation in the development 

and uses of alternative fuels is still required as a high priority.  

One type of alternative fuel that shows promise is biodiesel. Biodiesel is a 

renewable biofuel produced from the oils of a variety of different crops, such as soybean 

oil, rapeseed oil, canola oil, sunflower oil, palm oil, flax oil, safflower oil, corn oil, algae 

oil, and many others. From 2004 to 2009 biodiesel production has increased 51 percent, 

with 16.6 billion liters produced globally in 2009.1 One of the biggest advantages of 

biodiesel is the ability to be used in current diesel engines with little to no modification, 

allowing it to be used with current transportation fuel infrastructure.  

Biodiesel is produced through the transesterification of triglycerides with primary 

alcohols, usually methanol or ethanol. This reaction between one mole of triglyceride and 

three moles of methanol makes three moles of biodiesel esters, and one mole of glycerin. 

This process normally uses a base such as potassium hydroxide or sodium hydroxide as a 

catalyst, but there is a catalyst free, continuous version of the process that utilizes 

supercritical methanol as a reactant.3 In both processes excess alcohol reactant is used to 

drive the transesterification reaction to completion. 
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Unfortunately the production of biodiesel has some disadvantages. To remain 

profitable, most biodiesel industries must sell or get the best value of the glycerin 

byproduct that is produced. Since glycerin is non-toxic and sweet, it has many 

commercial uses such as being an ingredient in food additives, cosmetics, baby care 

products, embalming fluid, adhesives, and explosives.4 Unfortunately the amount of 

glycerin being produced far exceeds the market demand. In 2005, replacing just two 

percent of diesel with biodiesel would have produced an extra 325,000 tons of glycerin, 

almost doubling the demand of 350,000 tons of glycerin a year based on the previous five 

years.5 In addition the crude glycerin solution, which is typically a mixture of glycerin 

and excess methanol reactant, must undergo an energy-intensive purification process 

before it can be used commercially.  

One solution is to use the crude glycerin with supercritical water for hydrogen 

production without going through any of the purification process. Reacting crude glycerin 

in supercritical water for hydrogen production not only provides a novel outlet for the 

excess glycerin being produced by biodiesel plants, but also allows for an increased 

amount of transportation fuel to be produced from the triglyceride feedstock. Using crude 

glycerin with supercritical water also has the advantage of not having to undergo an 

energy intensive separation process. 

A chemical species becomes a supercritical fluid when it is above its critical 

temperature and pressure. Water’s critical temperature and pressure are 374°C and 217.7 

atm, respectively.6 A supercritical fluid has properties similar to both liquids and gases. 

In addition non-polar molecules such as aliphatic hydrocarbons become more readily 

soluble in supercritical water than they are in ambient water. 
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One use of supercritical water is for the reformation of hydrocarbons into 

hydrogen and carbon monoxide. Due to the highly energetic nature of supercritical water 

as well as its highly solubilizing/homogenizing property, no catalyst is necessary for the 

reaction process, rendering the process great versatility as to the number of different 

feedstocks it can take. Supercritical water reformation has been used to make hydrogen 

from hydrocarbons such as jet fuel, sucrose, and ethanol.7-13 While glycerin and methanol 

in the presence of supercritical water produce hydrogen and carbon monoxide, it is 

believed that they undergo decomposition instead of traditional reformation.14, 15 

With such a wide variety of hydrocarbon fuels that can be used to produce 

hydrogen with supercritical water, mixtures of fuels besides glycerin and methanol may 

be used. However, since different hydrocarbons undergo different types of reactions 

based on their molecular structures, determining the impact of different functional groups 

in the molecular structure of the fuel is of the utmost importance. In this study, the role 

and effect of hydroxyl groups on the supercritical water reformation and decomposition 

of hydrocarbons in supercritical water environment were examined. The hydrocarbon 

fuels used to accomplish this objective were glycerin, propylene glycol, and isopropanol, 

all of which are C3-alcohols.  

The water gas shift (WGS) reaction is another prominent reaction when crude 

glycerin solution is in the presence of supercritical water. Carbon monoxide produced 

from the decomposition of glycerin and decomposition of methanol can further react with 

supercritical water by the forward WGS reaction to produce hydrogen and carbon 

dioxide. The water gas shift reaction is a reversible reaction, and the forward reaction is 

thermodynamically favored at temperatures below 815°C. 16 
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The focus of the first paper presented in this work is the effect of different 

operating variables on the gas and liquid compositions and carbon gasification yield 

when a crude glycerin solution is reacted in a supercritical water medium. Specific 

operational variables examined include temperature, pressure, water-to-carbon molar 

ratio, space time, and glycerin-to-methanol weight ratio. Analyzing the results, the extent 

and selectivity of different chemical reactions that take place in the system were 

determined.  

The first paper also focuses on the construction of the mechanistic reaction 

pathways of glycerin in supercritical water, which were elucidated from analysis of the 

gaseous and liquid products, and supported with findings from literature. An empirical 

equation was also formulated using the linear trends in gas composition found by varying 

temperature and space time. Using these equations, the relative amounts of product gases 

from crude glycerin decomposition can be determined.  

The second paper presented in this work shows the effects hydroxyl groups in the 

molecular structure of hydrocarbon fuels have on the gas composition and carbon 

gasification when reacted in supercritical water. The effects of hydroxyl groups were 

determined across a range of temperatures to show their effect at different run conditions.  

The changes in gas composition and carbon gasification were analyzed to determine how 

the presence of hydroxyl groups influenced the decomposition or reformation of the 

different hydrocarbons.  
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2. REVIEW OF LITERATURE 

2.1 BIODIESEL AND CRUDE GLYCERIN PRODUCTION 

The process by which biodiesel is produced has a large amount of variation 

between biodiesel plants. As such, there is great variation in the resultant crude glycerin 

produced as a byproduct. The composition of the crude glycerin depends on a number of 

factors such as the oil that is used as the triglyceride, the type and amount of excess 

alcohol used, and the amount of type of catalyst used.17 Figure 0 shows a general reaction 

for the production of biodiesel using methanol. 

 

 

Figure 0 General transesterification reaction to produce biodiesel 

 

 

 

Biodiesel is produced through a base catalyzed transesterification reaction 

between an alcohol and a triglyceride to make glycerin and biodiesel. Many types of 

triglyceride oils are used as a feedstock for biodiesel production. Table 0 shows the 
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compositions of various oils and fats that can be used for biodiesel feedstock. The table 

shows the lengths and number of double bonds in the carbon chains in each triglyceride, 

which correspond to what the molecular structure of the ester that will be produced. 

 

 

Table 0 Composition of various oils and fats
18

 

Oil or Fat 14:0 16:0 18:0 18:1 18:2 18:3 20:0 22:1

Soybean 0 6-10 2-5 20-30 50-60 5-11 0 0

Corn 1-2 8-12 2-5 19-49 34-62 trace 0 0

Peanut 0 8-9 2-3 50-65 20-30 0 0 0

Olive 0 9-10 2-3 73-84 10-12 trace 0 0

Cottonseed 0-2 20-25 1-2 23-35 40-50 trace 0 0

Hi Linoeic Safflower 0 5.9 1.5 8.8 83.8 0 0 0

Hi Oleic Safflower 0 4.8 1.4 74.1 19.7 0 0 0

Hi Oleic Rapeseed 0 4.3 1.3 59.9 21.1 13.2 0 0

Hi Erucic Rapeseed 0 3 0.8 13.1 14.1 9.7 7.4 50.7

Butter 7-10 24-26 10-13 28-31 1-2.5 0.2-0.5 0 0

Lard 1-2 28-30 12-18 40-50 7-13 0-1 0 0

Tallow 3-6 24-32 20-25 37-43 2-3 7-13 0 0

Linseed Oil 0 2-4 2-4 25-40 35-40 25-60 0 0

Chain Length: Number of Double Bonds

Yellow Grease (Typical) 2.43 12.96 44.32 6.97 0.67 0 023.24 

16:1=3.79  

 

 

The most commonly used alcohol in this process is methanol, since it limits water 

content that can interfere with the reaction, can lower yields, or create soaps as a 

product.18 Usually methanol is fed at a 6:1 molar ratio instead of the stoichiometric 3:1 to 

drive the reaction to completion.18 Using such excess quantities of reactant, methanol can 

constitute up to 40 weight percent of the crude glycerin solution leaving the process.17 
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 Common base catalysts used for making biodiesel include sodium hydroxide, 

potassium hydroxide, and sodium methoxide, though acid-catalyzed processes and 

catalyst free processes using supercritical methanol exist as well. 3, 18 A relatively small 

amount of catalyst is needed, usually 0.3 kg of sodium hydroxide per 100 kg of oil.18 

After the reaction the base catalyst is neutralized with an acid, usually hydrochloric acid.  

 

2.2 METHANOL DECOMPOSITION 

There are number of reactions that methanol can undergo in the presence of 

supercritical water. The main reaction is methanol decomposition which is shown in 

Equation 1. The water gas shift reaction, which takes the carbon monoxide produced 

from decomposition and water to produce carbon dioxide and hydrogen, is shown in 

Equation 2. According to N. Boukis, another important reaction is methanation, which is 

shown in Equations 3 and 4.15 

CO +2H  OHCH 23 →                                                   (1) 

222 CO +H  COOH ↔+                                                 (2) 

422 CH +OH  CO3H →+                                                (3) 

4222 CH +O2H  CO4H →+                                              (4) 

According to Van Bennekom et al.19 increasing temperature and space time 

increases carbon gasification, while increasing the weight percent of methanol in the 

solution decreases gasification. This has been shown in other work, as well as showing 
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that methane production increases with temperature and increasing concentration of 

methanol in the solution, with little to no methane production at temperatures below 600 

degrees Celsius.15, 20 The presence of base catalyst for biodiesel production in the 

methanol was shown to increase carbon conversion and inhibit the production of 

methane.19, 21 In contrast, the presence of base catalyst had very little effect on the extent 

of water gas shift reaction occurring.19  

 

2.3 GLYCERIN DECOMPOSTION 

While methanol decomposition in supercritical water is fairly straightforward, the 

decomposition of glycerin is much more complicated. Glycerin decomposes through a 

series free radical and ionic mechanisms which produce a large number of intermediates, 

which in turn leads to a large number of chemical products.14 At temperatures near the 

critical point of water, the ionic decomposition is important, while at higher temperatures 

the free radical decomposition becomes prominent.14 Also primarily liquid products are 

produced near the critical point, and gaseous products produced at higher temperatures.14 

There are a variety of liquid intermediates that are produced from glycerin 

decomposition in supercritical water. The first step of glycerin decomposition involves 

glycerin dehydrating into hydroxyacetone if a primary hydroxyl group is removed from 

glycerin or 3-hydroxypropanal if a secondary hydroxyl group is removed. Removal of the 

primary alcohol is more favorable unless in the presence of a catalyst.22, 23 Other liquid 

intermediates include acetic acid, propanoic acid, acetaldehyde, propionaldehyde, allyl 

alcohol, ethanol, 1-propanol, formaldehyde, phenols, and acrolein.14, 19, 24-27 Figure  
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shows a partial mechanistic pathway that produces 3-hydroxylpropanal, acetaldehyde, 

formaldehyde, and acrolein from glycerin.  

 

 

 

Figure 2.2 Glycerin decomposition pathways
14, 28, 29

 

  

 

Gaseous products from glycerin decomposition in supercritical water include 

hydrogen, carbon monoxide, methane, carbon dioxide, ethane, ethylene, propane, and 

propylene. 14, 19 At temperatures below 500°C, gaseous products are minor.14 However, 

increased temperatures leads to the liquid intermediates further decomposing into gaseous 

products.  

A number of different reaction systems have been used for glycerin 

decomposition to make hydrogen. Some processes use near-critical and supercritical 
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water without catalysts. Other process use a packed bed or fluidized bed of catalysts 

ranging from nickel, platinum in γ-alumina, ruthenium, quartz, silicon carbide, copper, 

sulfuric acid, and others.30-32 These catalysts can help increase gasification at lower 

temperatures and pressures, or improve the selectivity of certain reactions to favor the 

production of certain products and intermediates. Even with catalysts, these reaction 

systems sometimes carry out their reactions in supercritical water to achieve better 

conversion and gasification.32 

2.3.1 Acetaldehyde Decomposition. The one of the primary intermediates 

species produced in glycerin decomposition is acetaldehyde. Acetaldehyde decomposes 

into methane and carbon monoxide through a free radical mechanism.33 The mechanism 

is known as the Rice-Hersfield Mechanism and is detailed in the Equations 5-10. The 

entire process produces primarily carbon monoxide and methane, with hydrogen and 

ethane as minor byproducts. Propagation steps one and two, shown as Reactions (8) and 

(9), are the major reactions that account for a majority of the acetaldehyde 

decomposition. This mechanistic pathway also explains the mechanistic steps leading to 

methane and ethane formation. 

••→ CHO +CH  CHOCH            :1 Step  Initiation 33                                          (5) 

CO +H  CHO   :1 Step  TransferChain •→•                                                         (6) 

233 H +COCH CHOCH H  :2 StepTransfer  Chain •→+•                                  (7) 

4333 CH +COCH CHOCH CH       :1 Stepn  Propagatio •→+•                           (8) 
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CO +CH COCH      :2 Stepn  Propagatio 33 •→•                                        (9) 

623 HC 2CH       :1 Stepn  Terminatio →•                                                   (10) 

2.3.2 Formaldehyde Decomposition. The formaldehyde produced from 

glycerin decomposition breaks down further into hydrogen and carbon monoxide.14 The 

formaldehyde is almost immediately broken down by other free radicals into carbon 

monoxide, and hence little to no formaldehyde comes out in the liquid effluent.14, 32 In 

other words, formaldehyde may be regarded as a short-lived “fleeting” species in this 

reaction environment. 

2.3.3 Acrolein Decomposition.  Another intermediate produced from glycerin 

decomposition is acrolein. Acrolein is produced from the dehydration of 3-

hydroxypropanal, which is the product of the dehydration of glycerin on the secondary 

alcohol.24 While the dehydration of the primary alcohol on glycerin is preferred, the 

presence of an acid such as sulfuric acid, or of certain metal catalysts increases the 

selectivity of acrolein products.14, 22, 26, 27 Acrolein decomposes into carbon monoxide and 

ethylene.  

 

2.4 ISOPROPANOL DECOMPSOTION 

Having two fewer hydroxyl groups than glycerin, isopropanol decomposition 

proceeds very differently from glycerin decomposition. Isopropanol thermally 

decomposes via dehydrogenation into hydrogen and acetone.34, 35 The acetone may then 

further decompose into methane and ethanone.36 The ethanone can then undergo one of 
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two decomposition routes. Two ethanone molecules can combine for bimolecular 

decomposition to produce ethylene and two carbon monoxides.36, 37 Ethanone produced 

may also undergo hydration to acetic acid.38 Acetic acid may then decompose into carbon 

dioxide and methane.39 The chemical stoichiometric equations of all of the decomposition 

reactions described above are shown below. 

23333 HCOCHCH CHOHCHCH    :ionDecomposit  lIsopropano +→                (11) 

4233 CHCOCH COCHCH          :ionDecomposit  Acetone +→                         (12) 

2COHC CO2CH        :ionDecomposit  Ethanone 422 +→                                 (13) 

COOHCH OHCOCH                :Hydration  Ethanone 322 →+                           (14) 

243 COCH COOHCH     :ionDecomposit Acid Acetic +→                                (15) 

Any acetone produced by isopropanol dehydrogenation may also undergo free 

radical decomposition. In this free radical decomposition, acetone breaks up into a methyl 

radical and an acetyl radical.40 This free radical decomposition can lead to higher order 

hydrocarbons as methyl groups add on to other acetone molecules. 

Isopropanol may also undergo dehydration to produce propylene.41, 42 Propylene 

then decomposes by a series of free radical reactions, which produce primarily hydrogen, 

methane, and ethylene, as well as small amounts of higher hydrocarbons.43 This 

propylene may also react with hydrogen produced by other reactions to make propane, 

which undergoes decomposition by a different series of free radical reactions. 44  
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It is also possible that in addition to the reactions given above, isopropanol may 

also undergo supercritical water reformation directly to hydrogen and carbon monoxide. 

Unfortunately there is currently no literature information on the subject. The proposed 

chemical equation for this direct reformation is shown below.  

3CO6H OH2CHOHCHCH  :nReformatioSCW  lIsopropano 2233 +→+         (16) 

 

2.5 PROPYLENE GLYCOL DECOMPOSTION 

Propylene glycol in supercritical water has been shown to dehydrogenate to 

produce hydroxyacetone, also known as acetol.45 Hydroxyacetone may then undergo 

decomposition into acetaldehyde and formaldehyde, or steam reformation to produce 

hydrogen and carbon monoxide.26, 46 The chemical equations for propylene glycol 

dehydrogenation and hydroxyacetone decomposition and reformation mechanisms are 

shown in Equations 17-19. 

OHCOCHCHH OHCHOHCHCH  :Acetol  toGlycol  Propylene 23223 +→       (17) 

OCHCHOCH OHCOCHCH    :ionDecomposit  Acetol 2323 +→                       (18) 

CO34H OHOHCOCHCH    :nReformatioSCW   Acetol 2223 +→+                  (19) 

Another possible mechanism is the dehydration of propylene glycol to 

propionaldehyde.47 The propionaldehyde may then decompose into ethane and carbon 

monoxide.48 The chemical equations for this decomposition pathway are shown below in 

Equations 20 and 21. 
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COHCHCHOH OHCHOHCHCH   :nDehydratio  Glycol  Prop. 23223 +→       (20) 

6223 HCCO COHCHCH       :ionDecomposit ehydePropionald +→                (21) 

The first pathway involves the formation of aldehydes, viz., acetaldehyde and 

formaldehyde, as intermediates and/or byproducts, whereas the second pathway produces 

ethane as byproduct. 
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PAPER 

 

1. DETERMINTATION OF A COMPREHENSIVE MECHANISTIC 

REACTION PATHWAY AND THE EFFECTS OF REACTION 

PARAMETERS ON THE DECOMPOSTION OF A CRUDE GLYCERIN 

SOLUTION IN SUPERCRITICAL WATER  

1.1 ABSTRACT 

Glycerin is a substantial byproduct of the transesterification reaction to produce 

biodiesel. With the expanded use of biodiesel as a renewable transportation fuel, the 

amount of glycerin produced has begun to greatly exceed the market demand. In order to 

offer the glycerin on the conventional chemical market, the crude glycerin solution 

containing excess methanol reactant must undergo an energy intensive purification. One 

possible alternative to this problem is utilizing the crude glycerin solution for hydrogen 

production through decomposition in supercritical water. This process would not only 

allow for an outlet where the excess crude glycerin can be used, but would also increase 

the amount of renewable transportation fuel produced from the triglyceride feedstock 

used in biodiesel production. Using a specially designed Haynes® Alloy 282 reactor 

system, the effects of temperature, space time, water-to-carbon molar ratio, pressure, and 

glycerin-to-methanol weight ratio on the decomposition of a crude glycerin solution in 

supercritical water were explored. Experimental reaction conditions were varied between 

temperatures of 500 to 700 °C, space times of 30 to 60 seconds, water-to-carbon molar 

ratios of 1.58 to 6.47, pressures of 3250 to 3750 psi, and glycerin-to-methanol weight 

ratios of 1.5 to 4. From the experimental results, a comprehensive mechanistic pathway 

for glycerin-to-syngas conversion was proposed and evaluated, and empirical equations 
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showing the linear trends in the production of the gaseous species of glycerin 

decomposition were formulated using temperature and space time. 

 

1.2 INTRODUCTION 

Biodiesel is an important renewable transportation fuel due to its ability to be 

used in conventional diesel engines with little to no modification. With approximately ten 

pounds of glycerin being produced for every hundred pounds of biodiesel, the supply of 

glycerin far exceeds the demand.18 Using this excess crude glycerin for hydrogen 

production via decomposition in supercritical water has a number of advantages. One 

advantage is that the process is catalyst free and does not require the glycerin to be 

purified of the excess methanol beforehand. Another advantage is increasing the total 

amount of renewable transportation fuel produced per unit of triglyceride feedstock.  

Further, the process can be effectively operated on a small scale. 

There are many types of triglycerides used in the production of biodiesel. With 

such a diverse feedstock, there are variations in the process that lead to variations in the 

resultant crude glycerin. In general, if the transesterification process uses 6:1 methanol to 

bio-oil ratio the resulting crude glycerin is between 60 and 80 percent glycerin with the 

balance being methanol.17  

Water above its critical point of 374°C and 217.7 MPa becomes supercritical, and 

exhibits drastically different physical properties than ambient water.6 Supercritical water 

has properties that are both liquid water-like and steam-like, and has an outstanding 

potential to serve as a very energetic reaction medium. In addition, organic molecules and 
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oxygen become readily miscible in supercritical water, which is not possible in ambient 

or subcritical water.  

In the presence of supercritical water, glycerin and methanol both undergo 

separate decomposition reactions.14, 15, 19 In methanol decomposition, methanol breaks 

down into carbon monoxide and hydrogen gas. The water gas shift (WGS) reaction can 

then utilize the carbon monoxide produced with water to produce carbon dioxide and 

more hydrogen gas.16 Another reaction that is claimed to occur with methanol in 

supercritical water is methanation, though significant methane production was found to 

only occur at temperatures above 600˚C.15, 20  

The mechanism for glycerin decomposition in supercritical water is more 

complicated than that of methanol. In supercritical water, glycerin first dehydrates to 

form either hydroxyacetone or 3-hydroxypropanal.24 The hydroxyacetone can then 

decompose into acetaldehyde and formaldehyde. The formaldehyde readily decomposes 

further into hydrogen and carbon monoxide in the reactor’s prevailing conditions, which 

may subsequently undergo the water gas shift reaction to produce carbon dioxide and 

more hydrogen.14, 32 Acetaldehyde decomposes through a free radical mechanism that 

produces primarily carbon monoxide and methane, with trace of ethane and hydrogen.49  

3-hydroxypropanal that is produced is relatively unstable, and is readily 

dehydrated into acrolein.24 Acrolein can further decompose into carbon monoxide and 

ethylene.50, 51
 Acrolein can also be hydrogenated to produce propionaldehyde, which 

further decompose into ethane and carbon monoxide, or reacts with hydrogen to produce 

1-propanol. In addition, due to the large number of carbonyl groups in the liquid 
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intermediates, higher order carbons can also be produced through aldol condensation and 

similar reactions.24, 27 

 

1.3 EXPERIMENTAL  

1.3.1 Materials. The chemicals used for the experiments were deionized water, 

99.7 percent pure glycerol from the chemistrystore.com, and over 99 percent pure 

histological grade methanol from Fisher Scientific. Glycerin is hygroscopic and can 

readily absorb atmospheric water until it is only about 80 percent pure by weight.52 To 

prevent an unknown quantity of water from getting absorbed into the glycerin, freshly 

unsealed glycerin was immediately diluted down to 75 percent purity. The water, 

glycerin, and methanol for the experiments were then mixed into solutions that had 

water-to-carbon molar ratios of 6.47, 4.22, and 1.58. A water-to-carbon molar ratio was 

used to ensure that the crude glycerin solution would be diluted equally for each 

experiment even though the solutions have varying amount of glycerin and methanol. 

These solutions contained glycerin-to-methanol weight ratios of 4, 2.33, and 1.5, 

corresponding glycerin-to-methanol molar ratios to 1.403, 0.812, and 0.520, respectively. 

This also corresponds to crude glycerin solutions of 80, 70, and 60 weight percent 

glycerin. Based on the glycerin-to-methanol weight ratio being used, the total moles of 

carbon in a glycerin/methanol mixture were calculated, and that solution was diluted 

down with the appropriate amount of water. Table 1 shows the compositions of the 

different solutions used in these experiments, as well as the critical points of the starting 

mixtures which were calculated in Aspen-Plus® using the property method of Peng-

Robinson with Wong-Sandler mixing rules.  
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1.3.2 Reactor System. The supercritical water reaction system used in these 

experiments consists of a solution feed system, a solution preheating system, a Haynes® 

Alloy 282 high pressure reactor with heater, a liquid effluent collection system and a gas 

sampling system.  The entire process operation is controlled by a Labview® data 

acquisition and control system.  

 The feed system uses an Eldex piston pump to continuously feed crude glycerin 

solution to the reactor system. The feed then enters an integrated heat exchanger and is 

heated by the high-temperature effluent leaving the reactor. Next is a preheating section 

that uses heat tapes to raise the temperature even higher. The solution then enters the 

Haynes® Alloy 282 reactor which is a high-nickel alloy with chromium, cobalt, 

molybdenum, titanium, aluminum, and iron.53  

After exiting the reactor, the effluent goes back through the integrated heat 

exchanger to pre-heat the incoming feed, and then through a water-cooled heat 

exchanger. A control valve then brings the effluent back to atmospheric pressure, and the 

liquid and gaseous products separate. Samples of the liquid effluent are collected for each 

experimental run. The gaseous effluent goes through the gas sampling system and a wet-

test meter to record the volumetric flow rate before being vented. Figure 1 shows a 

diagram of the entire reactor system. 

Samples of the liquid effluent were collected at ambient conditions and stored in 

screw-top bottles. The samples were then analyzed using a Thermo Scientific ISQ gas 

chromatograph/mass spectrometer system. Before analysis, each sample was diluted 

using methanol to a 1/5 sample-to-methanol solution to reduce the relative amount of 

water in the sample, and also increase separation and reduce noise peaks.  
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1.3.3 Analytical. The samples collected of the gaseous effluent at ambient 

conditions were analyzed using a HP 5890 Series A gas chromatograph with a thermal 

conductivity detector. The chromatograph uses argon as a carrier gas, and was calibrated 

with a standard gas mixture from Praxair to detect hydrogen, air, carbon monoxide, 

methane, carbon dioxide, ethylene, ethane, propylene, and propane. 

1.3.4 Procedure. The reactor system was regularly cleaned with sub- and 

supercritical water at the beginning and end of day’s experiments were being conducted. 

An experimental run was considered complete when steady-state was achieved for the 

reactor system. An experimental run was considered to be at steady-state when two gas 

samples, taken over the course of an hour, had matching compositions and there were no 

significant changes in the gas volumetric flow rate.  

The effects of many different process parameters were explored in this study. 

Process operating parameters explored include temperature (500-700°C), reactor space 

time (30-60 seconds), water-to-carbon molar ratio (1.58-6.47), pressure (3250-3750 psi), 

and glycerin-to-methanol weight ratio (1.5-4). Table 2 shows a list of the experimental 

runs and their run conditions.  

1.3.5 Definitions. The temperatures specified for an experiment were measured 

by thermocouples in a thermowell running down the interior of the Haynes® Alloy 282 

reactor. The space times were defined as 101ml internal volume of the reactor divided by 

the volumetric flow rate entering the reactor. The volumetric flow entering the reactor 

was calculated using Aspen® simulation software using the Peng-Robinson equation of 

state with Wang-Sandler mixing rules. This ensures that a uniform volumetric flow rate is 
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entering the reactor that takes into account the density changes of the crude glycerin 

solution that occur with different temperatures and pressures.  

The carbon gasification was calculated as the moles of gaseous carbon leaving the 

system divided by the moles of carbon entering. The carbon in the gaseous effluent was 

determined using the average gas flow rate and average gas composition for the 

experimental run. Using the gas effluent flow rates, the carbon gasification percentages 

were normalized so that the highest carbon gasification would become 100 percent.  The 

amount of carbon entering the reactor system was calculated using the feed mass flow 

rate with the weight percent of glycerin and methanol in the solution.  

Hydrogen conversion is defined as the mole of hydrogen gas produced divided by 

the theoretical maximum number of moles of hydrogen gas that could be produced from 

the flow rate and composition of that experiment. The theoretical maximum mole of 

hydrogen assumes the complete conversion of glycerin and methanol into carbon 

monoxide and hydrogen, and all carbon monoxide subsequently undergoing the water gas 

shift reaction to produce more hydrogen gas. The theoretical maximum is seven moles of 

hydrogen per mole of pure glycerin, and three moles of hydrogen per mole of pure 

methanol. For the crude glycerin solutions, the theoretical maximum of hydrogen for the 

mixture was determined using the maximums for each of the pure species and the 

fractions of each species in the solution. Equations 1-5 show the stoichiometric equations 

used to calculate the theoretical maximums for hydrogen production.  

2353 4H3CO (OH)HC       :ion DecompositGlycerin +→                                     (1) 

222 HCO OHCO                      :Shift GasWater +→+                                         (2) 
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22353 7H3CO (OH)HC       :WGSionDecompositGlycerin +→+                      (3) 

23 2HCO OHCH       :ionDecomposit Methanol +→                                           (4) 

2223 3HCO OH  OHCH       :WGSionDecomposit Methanol +→++                  (5) 

The gas composition of all experiments is given as moles of the gaseous species 

in the effluent per mole of carbon fed into the reactor. Because two different chemical 

species as source reactants were producing these gaseous products, it was not possible to 

non-dimensionalize the product gas results using moles of reactant fed. Using a basis of 

carbon fed ensured gas results would be comparable between all experiments, even those 

with different glycerin-to-methanol feed ratios.  

 

1.4 RESULTS AND DISCUSSION 

Table 3 shows a summary of the results of the experimental runs. The major 

gaseous species produced in the decomposition of crude glycerin are hydrogen, carbon 

monoxide, methane, carbon dioxide, and ethane. Some experiments in this investigation 

did show ethylene production, but it was only produced in trace quantities of less than 

0.01 moles of ethylene per moles of carbon fed and therefore will be disregarded in the 

current analysis. There was no noticeable production of any gaseous C3 hydrocarbons in 

any of the experiments performed for this investigation.  

1.4.1 Analysis of Liquid Intermediates. The liquid effluent leaving the reactor 

was analyzed using a gas chromatograph system with a mass spectrometer detector. 
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Figures 2-9 show the results of the liquid analysis for experiments at a range of 

temperatures, pressures, water-to-carbon molar ratios, and glycerin-to-methanol weight 

ratios. Each figure shows the residence times and relative abundance of each peak, as 

well as identifying the species that corresponds with each peak. Figures 11-18 show a 

sample total ion chromatogram (TIC) for each of the major species found in the liquid 

samples.  

Figure 2 shows the liquid composition of experimental run WCG-112M, which 

was conducted at 600°C, 3500 psi, a 4.22 water-to-carbon molar ratio, a 70/30 glycerin-

to-methanol weight ratio, and a 45 second space time. The primary liquid species 

produced in experiment WCG-112M were acetic acid, methyl propionate, 

hydroxyacetone, and propanoic acid. Other liquid species detected include 2-butanone, 1-

propanol, allyl alcohol, cyclopentanone, propylene glycol, glycerin, and various phenolic 

compounds. Because methanol was used as a solvent to dilute the sample, it does not 

appear in the liquid analysis. Acetaldehyde and propionaldehyde do not appear in the 

liquid analysis because they readily undergo oxidation with atmospheric oxygen at room 

temperature and were converted into acetic acid and propanoic acid.54  

Figure 3 shows the liquid species present in WCG-140M, which was conducted at 

the same experimental operating conditions as WCG-112M. Both experiments had 

similar values for carbon gasification (70.6% and 76.7%), so the amount of carbon 

present in the liquid samples should be approximately the same. Hydroxyacetone is the 

most prominent product, followed by a substantial amount of methyl propionate and 2-

butanone. Acetic acid, propanoic acid, 1-propanol, allyl alcohol, cyclopentanone, 

propylene glycol, and phenols were also detected. So while WCG-112M and WCG-
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140M produced the same liquid species, they were present in much different proportions.  

This is due to much less of the hydroxyacetone decomposing in experiment WCG-140M, 

while WCG-112M had a much greater amount of hydroxyacetone decompose to produce 

acetaldehyde, which was later oxidized to acetic acid.24  The increased extent of carbon 

gasification in WCG-112M can be attributed to its further decomposition from 

hydroxyacetone to acetaldehyde and formaldehyde. 

The liquid species present in experiment WCG-116M are shown on Figure 4. 

WCG-116M had a more concentrated water-to-carbon ratio of 1.58, but was otherwise 

operated at identical conditions as WCG-112M and WCG-140M. Due to the increased 

concentration of carbon in the starting solution, WCG-116M achieved a carbon 

gasification of only 48.6%. Overall, the chromatogram of WCG-116M looks very similar 

to that of WCG-140M, but with a slightly less prominent hydroxyacetone peak, and a 

larger relative abundance of acetic acid and propanoic acid.  

Experiment WCG-122M has a more dilute 6.47 water-to-carbon ratio, but 

otherwise has the same run conditions as WCG-112M, WCG-140M, and WCG-116M. 

The gas chromatography and mass spectrometry results for WCG-122M are shown in 

Figure 5. While similar to the results of the previous liquid samples, the biggest 

difference is the decrease in the relative amount of 2-butanone, cyclopentanone, and 

phenols, while more acetic acid and propanoic acid are produced. The reason for this is 

because 2-butanone, cyclopentanone, and phenols, are all products of condensation 

reactions between two liquid hydrocarbon intermediates, and a more dilute solution 

would inhibit the MW-increasing reactions between liquid hydrocarbons.   
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Figure 6 shows the liquids that were produced in experimental run WCG-139M, 

which was conducted at 600°C, 3500 psi, a 4.22 water-to-carbon molar ratio, a 60/40 

glycerin-to-methanol weight ratio, and a 45 second space time. The results are similar to 

WCG-140M, with the exceptions of a slightly higher relative abundance of methyl 

propionate and very small acetic acid peak. The higher abundance of methyl propionate 

can be attributed to an increase in the amount of methanol, which reacts with propanoic 

acid via esterification reaction to create methyl propionate. 

The liquid analysis results for experiment WCG-138M are displayed in Figure 7. 

WCG-138M has a glycerin-to-methanol weight ratio of 80/20, but otherwise has the same 

run conditions as WCG-112M, WCG-140M, and WCG-139M. All experiments had 

similar carbon gasification, and the most noticeable difference in the liquid analysis 

results of WCG-138M is the decreased relative abundance of methyl propionate. Again, 

the amount of methyl propionate appears to correspond with the excess amount of 

methanol in the starting solution. 

Figure 8 shows the liquid analysis for experiment WCG-109M, which was 

conducted at 600°C, 3250 psi, a 4.22 water-to-carbon molar ratio, a 70/30 glycerin-to-

methanol weight ratio, and a 45 second space time. At this lower pressure the carbon 

gasification was only around 56.2%, and with the exception of the high relative 

abundance of methyl propionate, the results were otherwise similar to that of other 

experiments. 

Experimental run WCG-119M, which is displayed in Figure 9, was conducted at 

550°C, 3500 psi, a 1.58 water-to-carbon molar ratio, a 70/30 glycerin-to-methanol weight 
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ratio, and a 45 second space time. WCG-119M reached only a low carbon gasification of 

14.9%, and hence most of the carbon from the solution still remains in the liquid effluent. 

This is evidenced by the large relative abundance of glycerin in the liquid sample 

analysis. The presence of hydroxyacetone, acetic acid, and propanoic acid is still 

relatively large, with peaks for 2,3-butadione and cyclopentanone present as well. The 

analysis result matches with the low reactivity of the glycerin decomposition as well as 

the incomplete reactions following the mechanistic pathway. 

The liquid analysis results for experimental run WCG-111M, which was 

conducted at 700°C, 3500 psi, a 4.22 water-to-carbon molar ratio, a 70/30 glycerin-to-

methanol weight ratio, and a 60 second space time was a run that reached 99.8% carbon 

gasification. The liquid sample reflects this by having no peaks for liquid species other 

than a small one for hydroxyacetone.  The liquid analysis also verifies that the desired 

decomposition reaction of crude glycerin in supercritical water could reach a state of 

complete conversion, if the operating conditions are set accordingly. 

1.4.2 Elucidation of a Glycerin-to-Syngas Mechanistic Pathway. Based on 

the liquid analysis of the samples from all of the experimental conditions, a conclusion 

can be drawn that basically the same set of liquid species is present in all samples. The 

primary liquid species detected in each of these experiments were hydroxyacetone, acetic 

acid, propanoic acid, and methyl propionate. Other substantial products included 2-

butanone, 1-propanol, and phenols. Minor products include allyl alcohol, cyclopentanone, 

and propylene glycol. 
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Based on of the molecular species present analyzed in the liquid effluent, a 

comprehensive mechanistic pathway for the reactions of glycerin in supercritical water 

was elucidated. While a wide variety of intermediate liquid species are present, all of the 

reactions occurring can be summarized as one of the following four reactions: 

dehydration, hydrogenation, decomposition/pyrolysis, or condensation. With only those 

reactions, all of the liquid species found in the liquid effluent can be adequately 

accounted for.  

The first reaction of glycerin in supercritical water is dehydration, which can 

produce one of two products depending on the hydroxyl group that is removed during the 

dehydration. If a primary alcohol group is removed, then hydroxyacetone is produced. If 

glycerin is dehydrated removing the secondary hydroxyl group, then 3-hydroxypropanal 

is the resulting product. 

The 3-hydroxypropanal produced as an intermediate is relatively unstable at 

prevailing operating conditions and will either decompose into acetaldehyde and 

formaldehyde, or dehydrate further to form acrolein.55 Any acrolein produced can further 

undergo a number of reactions. One of those reactions is decomposition into the gaseous 

products of carbon monoxide and ethylene.50 Another possible reaction pathway is 

hydrogenation, either of the carbon-carbon double bond, or of the carbon-oxygen double 

bond. Thermodynamically, hydrogenation of the carbon-carbon double bond is more 

favored over hydrogenation of the carbon-oxygen double bond, so the conversion of 

acrolein to propionaldehyde is preferred over the production of allyl alcohol.56 This 

corresponds to the results in the liquid analysis, where propionaldehyde was a relatively 

major product and the relative abundance of allyl alcohol was very small.  
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The hydroxyacetone produced from the dehydration of glycerin can also 

decompose into acetaldehyde and formaldehyde.26, 57 Any formaldehyde produced is 

quickly converted into carbon monoxide and hydrogen.14 Acetaldehyde decomposes via a 

free radical mechanism into primarily methane and carbon monoxide.49  

Other reaction pathways of hydroxyacetone include hydrogenation to propylene 

glycol, which can then be dehydrated into acetone or propionaldehyde.24, 47 

Propionaldehyde produced from either the hydroxyacetone pathway or acrolein pathway 

can further undergo decomposition, where the primary products are carbon monoxide and 

ethane.48 Hydrogen can react with the carbon-oxygen double bond in propionaldehyde to 

produce 1-propanol. Dehydration of 1-propanol results in propylene, and decomposition 

of 1-propanol results in acetaldehyde and methane.58 

Acetone produced from propylene glycol thermally decomposes into methane and 

ethanone, and two ethanone molecules can react to produce two carbon monoxide and 

ethylene.37 Hydrogenation of acetone results in isopropanol, which can be subsequently 

dehydrated to produce propylene.35, 41, 42 Propylene produced from both 1-propanol and 

isopropanol can be converted to propane with the addition of hydrogen, and propane can 

decompose in methane and ethylene.44 

Most of the liquid products produced with more than three carbons are the result 

of aldol condensation reactions, where the carbonyl group of one molecule reacts with the 

enol conjugate form of another ketone or aldehyde. While relatively minor products in 

the liquid samples, they still have a notable presence in each sample. The primary species 

involved with these condensation reactions is acrolein, which can react with acetaldehyde 
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to make cyclopentenone. The carbon-carbon double bond in cyclopentenone reacts with 

hydrogen to produce cyclopentanone, which is seen in the liquid samples. Acrolein can 

also react with propionaldehyde to produce 2-methyl cyclopentenone, which can be 

converted to 2-methyl cyclopentanone through hydrogenation. Phenol is created through 

the reaction of acrolein with acetone.23 2-Butanone is produced through the condensation 

reaction of acetaldehyde molecules, and methyl-phenols are the result of 2-butanone 

reacting with acrolein. 

Because propionaldehyde and acetaldehyde are oxidized to propanoic acid and 

acetic acid at ambient conditions, it is unable to be determined whether propanoic acid 

and acetic acid are mechanistically occurring products of glycerin decomposition. Upon 

review of literature, sources that used metallic catalysts in the conversion of glycerin 

produced carboxylic acids, such as acetic acid and propanoic acid, while those sources 

that did not use metal catalysts reported little or no production of carboxylic acids.14, 19, 23, 

26, 27, 59 Because of this, it is believed no substantial quantities of carboxylic acid were 

produced during glycerin decomposition in supercritical water, and were only produced 

from atmospheric oxidation afterward. Methyl propionate found in the liquid samples 

was the product of the esterification of propanoic acid made from propionaldehyde 

oxidation and unreacted methanol.  

Figure 19 illustrates the full reaction pathway of glycerin to its final gaseous 

products, and Table 4 summarizes the comprehensive list of decomposition reactions 

occurring, and Table 5 shows all of the possible pathways from glycerin to it final 

gaseous products and water. Because only trace ethylene was found in the gas effluent, 
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the assumption that all ethylene produced was hydrogenated by product hydrogen to 

ethane was made. 

Using Gaussian simulation software, the enthalpies of reaction and Gibbs free 

energies of reaction were calculated for each of the reactions in the proposed mechanism. 

Table 6 shows the results of those simulations. Each quantum simulation was modeled at 

600°C and 3500 psi, and was performed in an environment of zero dielectric constant to 

create an environment similar to supercritical water.60 Specifically Gaussian 09 was used 

with B3LYP hybrid functional and the aug-cc-pVDZ basis set, and the calculations were 

carried out at the default levels of convergence in Gaussian. Analysis of the results 

reveals that dehydration reactions have largely negative ∆G values, and are exothermic 

unless the dehydration produces a carbon-carbon double bond, in which case the 

dehydration is endothermic. Reactions that hydrogenate a carbon-oxygen bond have 

positive ∆G values and are non-spontaneous, while hydrogenation of a carbon-carbon 

double bond is spontaneous. All decomposition reactions are endothermic and 

spontaneous, except the acetaldehyde decomposition which is slightly exothermic, and 

reactions involving ethanone. The decomposition of acetone to produce ethanone is non-

spontaneous, and the decomposition of ethanone is spontaneous and exothermic, 

suggesting that the production of ethanone is unfavorable. 

Using the ∆G of reaction, the mechanistic pathway in Figure 19 was reduced 

down to only those pathways from glycerin to gaseous products that only included 

spontaneous reactions. Figure 20 shows just these preferred reaction pathways occurring 

in glycerin decomposition into gaseous products. This preferred mechanism produces 
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primarily hydroxyacetone, acetaldehyde, and propionaldehyde as liquid intermediates, 

which matches the primary liquid intermediates found in the liquid samples.   

Comparing this glycerin decomposition mechanism to the mechanism for 

supercritical water reformation, there are some key points verifying that decomposition is 

what is occurring when glycerin is in supercritical water. The first is that the bonds 

primarily broken in the decomposition mechanism are carbon-carbon bonds or carbon-

oxygen bonds, which have substantially weaker bond energies than the hydrogen-oxygen 

and carbon-hydrogen bonds broken in reformation. Table 7 lists the typical bond energies 

for each type of bond. The second factor that shows reformation is not as feasible as 

decomposition is the methanation reaction, which is the source of methane production in 

the reformation mechanism.61 Methanation is a reversible reaction, where hydrogen and 

carbon monoxide react to produce methane and water. Using the Gibbs free energies of 

formation, the equilibrium of the methanation reaction shifts in favor of hydrogen 

production at temperatures above ~750 K, or ~477°C. 

1.4.3 Temperature. The first variable that will be examined is the effect of 

temperature on the decomposition of a crude glycerol solution in supercritical water. 

Figures 21-23 show the effect of temperature with different space times and water-to-

carbon molar ratios. While the effect of temperature was determined at different space 

times and water-to-carbon molar ratios, all of the experiments used a constant pressure of 

3500 psi and a glycerin-to-methanol weight ratio of 7:3, which is equivalent to a 0.812 

glycerin-to-methanol molar ratio. The graphs show the trend in carbon gasification as 

well as the changes in gas composition with respect to temperature.  
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All three figures show similar trends for carbon gasification, with less than 15 

percent gasification at 500°C to almost full conversion at 700°C. Similar trends also seen 

in the gas composition with the amount of all gases being produced steadily increasing 

with temperature, except carbon monoxide which begins to decrease around 650°C. The 

decrease in carbon monoxide is due to increased water gas shift reaction, which becomes 

very active at 650°C and showing a sharper temperature dependence than decomposition.  

This is not surprising, since in most syngas reaction environments the water gas shift 

reaction has shown stronger temperature dependence than the hydrocarbon 

decomposition reaction.  Because carbon gasification is constantly increasing through the 

range of temperatures, determining the selectivity of reactions is difficult since the 

amount of all product gases are increasing. To better determine the selectivity of different 

products, the gas was also shown with respect to the amount of carbon reacted, rather 

than the carbon fed. To convert the basis from moles of carbon fed to moles of gaseous 

carbon reacted, all of the gas composition results were divided by the gaseous carbon 

conversion. The results are shown in Figures 24-26.  

The gas composition based on moles of gaseous carbon reacted show a steady 

decrease in carbon monoxide production with increasing temperature, while methane, 

carbon dioxide and ethane increase. The hydrogen being produced per gaseous carbon 

with increasing temperature seems somewhat erratic by decreasing at first, then 

increasing. The initial decrease is due to the creation of more liquid intermediates that 

can be hydrogenated, thus removing hydrogen from the gaseous effluent. The increase in 

hydrogen at higher temperatures is due to increased reactivity of water gas shift reaction, 

as well as more complete gasification of liquid intermediates. 
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Since carbon dioxide is produced primarily through the water gas shift reaction 

and not from the decomposition of methanol or glycerin, the pre-WGS gas composition 

can be determined. This is achieved by taking the gas composition results per gaseous 

carbon and eliminating the carbon dioxide, and subtracting an equal amount from the 

hydrogen composition and adding the same value to carbon monoxide composition. By 

undoing the water gas shift reaction, the gas composition resulting from just the 

decomposition of glycerin and methanol can be obtained as shown. The pre-WGS gas 

compositions are shown in Figures 27-29. 

Without the water gas shift reaction, the amount of carbon monoxide in the 

effluent gas is decreasing linearly with increasing temperature. Likewise, the amount of 

methane and ethane increase with increasing temperature. The moles of hydrogen per 

gaseous carbon decline steadily with increasing temperature after removing the water gas 

shift reaction. This is indicative that at higher temperatures there is relatively less 

hydrogen produced from formaldehyde decomposition due to an increase in acetaldehyde 

decomposition (and thus more carbon accounted for in the gaseous effluent), as well as 

an increase in other glycerin decomposition pathways that do not produce formaldehyde 

and acetaldehyde.  

One last examination that can be done on the gas composition results is to take 

out the predicted gas results for methanol so just the gas composition of glycerol remains. 

Previous experiments show that at similar conditions, methanol decomposes into carbon 

monoxide and hydrogen, except at higher temperatures and water-to-methanol ratios 

where methane formation starts to occur.20 To take the methanol out of the crude glycerin 
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gas results, the assumption that both methanol and glycerol decompose at similar rates at 

the same temperature must be made, which is fairly accurate.19 

To remove the gas composition coming from methanol decomposition from the 

overall confounded gas results, the mole fraction of carbon coming from methanol was 

first determined, which is 29.1 mole percent methanol for a solution containing 7:3 

glycerin-to-methanol weight ratio (0.812 glycerin-to-methanol molar ratio). Overall gas 

results are then reduced by the appropriate amount based on the mole fraction and 

predicted gas results from previous work at similar experimental conditions. For most 

experimental runs the carbon monoxide value was reduced by close to 29 percent of the 

total gaseous carbon accounted for, and hydrogen was reduced by twice as much. If the 

experiment was at a condition where methanol would produce substantial methane, the 

values were adjusted accordingly to match the gas results. The effect of temperature on 

the gas composition results with methanol removed are shown in Figures 30-32 

With the gas results from the methanol removed, just the gas composition 

resulting from glycerin decomposition remains. Figures 30-32 all show increasing 

methane and ethane with increasing temperature, while carbon monoxide and hydrogen 

produced per gaseous carbon decrease with increasing temperature. Using these results, 

some insight on the effect of temperature on just glycerin decomposition can be obtained.  

Utilizing the pathways for glycerin-to-final products shown in Table 5, it was 

hypothesized that due to the large amount of hydrogen seen in the gas results, those 

reactions pathways that produced hydrogen or consumed only a single mole of hydrogen 

occurred preferentially. Those pathways which involved multiple hydrogenation 
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reactions that consumed multiple moles of hydrogen before reaching their final products, 

were thought to not occur as often. That is to say that a majority of glycerin 

decomposition proceeded through pathways 1-5 as opposed to pathways 6-11 on Table 5. 

The stoichiometry of pathways 1-5 also correspond to the reactions present in the 

preferred pathway shown in Figure 20. 

To verify that this is in fact the decomposition pathways primarily occurring, 

some stoichiometric calculations were conducted. Using the two independent 

stoichiometric equations in pathways 1-5 on Table 5, an equation was determined to 

calculate the moles of carbon monoxide that would be produced in the experiment using 

based on the amount of other gases present. Based on the Equation 1 below, Figures 33-

35 show what the actual carbon monoxide produced is versus the carbon monoxide 

predicted by the sum of the other gases produced.  

]HC[2]CH[]H[CO 6242calculated ++=     (1) 

Figures 33 and 34 show the calculated carbon monoxide values and actual values 

are relatively close, while Figure 35 matches up at higher temperatures, but not at lower 

temperatures. Points where the calculated and actual carbon monoxide values match 

show that the primary pathways of glycerin decomposition are the same as those shown 

in the preferred mechanistic pathway in Figure 20. Points that do not match up appear to 

follow the same trend as hydrogen, showing that inaccuracies in the calculated carbon 

monoxide value are the result of the experimentally determined hydrogen value. This is 

indicative of hydrogen gas created from glycerin decomposition hydrogenating other 
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liquid intermediates, and thus remaining in the liquid phase rather than appearing in the 

gas effluent.  

Overall, when a crude glycerin solution decomposes in supercritical water, 

increasing temperature will result in increased carbon gasification and an increase in the 

amount of all gaseous species produced, except carbon monoxide. Also using moles of 

gaseous carbon to determine the selectivity of the different reactions that were occurring, 

it was determined that with increasing temperature the extent of forward water gas shift 

reaction occurring increased, and the amount of ethane being produced also increased 

with increasing temperature. The amount of hydrogen and carbon monoxide produced per 

gaseous carbon decreased with increased temperature due to an increase of 

decomposition of acetaldehyde and propionaldehyde, which produces less carbon 

monoxide and hydrogen per gasified carbon.  

1.4.4 Space Time. The effect of space time was explored at three different 

temperatures of 550, 600, and 650°C with space time ranging from 30 to 60 seconds. For 

all of the experiments the water-to-carbon molar ratio, pressure, and glycerin-to-methanol 

molar ratio was kept at 4.22, 3500 psi, and 0.812, respectively.  Figures 36-38 show the 

gaseous carbon conversion as well as the gas composition on a basis of carbon fed. The 

percentage of carbon gasification increases with longer space times, and the amount of 

each gaseous species produced increases with increased space time as well, except carbon 

monoxide at higher temperatures.  

 Like in the previous section, to get a better understanding of the selectivity of the 

different reactions the graphs were re-configured to a basis of moles of gaseous carbon 

produced rather than moles of carbon fed. Figures 39-41 show the effect of space time on 
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the gas composition on a basis of moles of gaseous carbon. At all temperatures the 

amount of methane and ethane seems to remain fairly constant with space time. With 

increasing space time, carbon monoxide decreases while carbon dioxide increases for 

Figures 40 and 41, while Figure 39 shows the amount of carbon monoxide staying 

relatively constant and carbon dioxide decreasing slightly. This means the relative extent 

of water gas shift reaction increases with increased space time, except at lower 

temperatures. Likewise, the amount of hydrogen produced at lower temperatures 

decreases with increasing space time, and at higher temperatures hydrogen production 

increases with increased space time. This is likely due to the inactivity of the water gas 

shift reaction at lower temperatures, and more hydrogen being produced from the water 

gas shift reaction at higher temperatures. At higher temperatures with a sufficiently long 

space time, the WGS reaction should go nearly to completion. 

To examine what is happening regarding the decomposition of glycerin, reversing 

the water gas shift reaction from the experimental results, like what was done before with 

the temperature results, is necessary. Figures 42-44 show the effect of space time on the 

gas composition under a hypothetical situation where the water gas shift reaction had not 

occurred at all, i.e., mathematically subtracting the water gas shift reaction’s 

contributions from the experimental results. With the water gas shift reaction undone, the 

only gaseous species to trend substantially with increasing space time is hydrogen which 

decreases at 550°C, stays fairly steady at 600°C, and increases at 650°C. At 550°C, the 

increased space time increases the amount of unsaturated liquid intermediates being 

produced while also giving hydrogen more time to react with them. At 650°C the solution 

gasifies quickly and more completely, so there is much less hydrogenation occurring.  
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After subtracting the predicted values for methanol decomposition so that just the 

gas results for glycerin decomposition remain, which is shown in Figures 45-47, the 

mechanism for decomposition was evaluated. This was done in the same manner as 

detailed in the temperature section, with the actual carbon monoxide production being 

checked against the predicted carbon monoxide production calculated from the other 

decomposition products. The results of the actual and calculated carbon monoxide values 

are shown in Figures 48-50. While some data points match nicely, meaning that glycerin 

decomposes to primarily acetaldehyde, formaldehyde, acrolein, and propionaldehyde as 

liquid intermediates, for other data points the calculated values start to diverge away from 

the actual carbon monoxide values. As was the case in the temperature results, the 

divergence in the space time results seems to follow the same trend as hydrogen.  This 

again coincides with some hydrogen reacting directly with a liquid intermediates and not 

appearing in the gaseous effluent. The experiments at 550°C show an especially wide 

divergence at increased space times, which supports the assumption that at low 

gasification percentages and longer space times hydrogenation of liquid samples occurs 

more readily.  

In summary, the effect of space time has a few effects on the decomposition of 

crude glycerin in supercritical water. With increasing space time the amount of carbon 

gasification increases. The extent of water gas shift reaction changes with space time, 

though at 550°C it decreases slightly with increasing space time, which suggests that the 

water gas shift reaction is not yet active at that temperature.  At 600 and 650°C the extent 

of water gas shift reaction increases with increasing space time. Increasing space time 

seems to have little effect on the selectivity of the decomposition of glycerin, with little 
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change in the amounts of carbon monoxide, methane, and ethane being produced per 

gaseous carbon. However, at small carbon gasification percentages and increased space 

times, more hydrogenation of liquid intermediates occurs.  

1.4.5 Water-to-Carbon Molar Ratio. The effect of water-to-carbon (W/C) 

molar ratio was also explored at temperatures of 550, 600, and 650°C. The W/C molar 

ratios used for these experiments were 1.58, 4.22, and 6.47, respectively. Table 1 shows 

the compositions of the different solutions in weight percents of glycerin and water. The 

space time, pressure, and glycerin-to-methanol weight ratio for these experiments were 

45 seconds, 3500 psi, and 7:3, respectively.  

Figures 51-53 show the effect of W/C ratio on the decomposition of a crude 

glycerin solution in supercritical water. The extent of carbon gasification increases with a 

higher W/C ratio, though at 600 and 650°C diluting from a 4.22 to a 6.47 solution seems 

to have no extra effect on the carbon gasification. The production of hydrogen slightly 

decreases over that same range, but that is likely the result of small decreases in the 

extent of the water gas shift reaction and carbon gasification. Otherwise the amounts of 

all gaseous species produced increases with increased water dilution.  

Analyzing the gas composition on a basis of gaseous carbon exiting the reactor 

instead of carbon fed, the selectivity of reactions becomes more apparent. These results 

are shown in Figures 54-56. With increasing W/C ratio, hydrogen increases going from a 

1.58 ratio to 4.22, then decreases slightly going to a 6.47 ratio. Carbon monoxide shows 

noticeable decrease with increasing W/C ratio, while carbon dioxide increases over the 

same period. This is directly indicative of increased water gas shift reaction with 

increased dilution. Increasing W/C ratio seems to have little effect on methane and 
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ethane, since they are produced from carbon-carbon bond cleavage and not a reaction 

with water. 

The results with the water gas shift reaction undone are shown on Figures 38-40. 

With no water gas shift reaction, the only species showing a noticeable change with 

increasing W/C ratio is hydrogen. Figures 60-62 show the results with the predicted 

products for methanol removed. Again with increased W/C ratio, hydrogen increases at 

first, and then decreases. This trend is the result of more hydrogenation occurring with 

more concentrated glycerin solution, and more gasification of non-formaldehyde species 

in more dilute solutions. At 650°C, increasing W/C ratio shows a noticeable decrease in 

carbon monoxide while methane increases, indicating the decomposition of more 

acetaldehyde.  

Figures 63-65 show the actual carbon monoxide verses the predicted carbon 

monoxide based on the decomposition mechanism mentioned in Equation 1. While some 

points match up closely with less than a 10 percent difference in values, others are very 

far off due to lack of hydrogen. This again indicates that some hydrogen is not accounted 

for and is reacting with a liquid intermediates.  

Overall, the effect of W/C ratio on the decomposition of a crude glycerin solution 

seems varied. Increasing W/C ratio increases carbon gasification up to a point, after 

which further dilution has no effect and may even decrease carbon conversion. Likewise, 

with increasing W/C ratio hydrogen production increases to a point, and then begins to 

decrease. This is the result of increased hydrogenation in concentrated solutions and 

increased gasification of species that do not produce hydrogen in more dilute solutions. 
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The water gas shift reaction reactivity shows a slight increase with increasing dilution, 

while methane and ethane production remains constant. When checking if the glycerin 

decomposition mechanism was accurate, points with lower hydrogen did not match well. 

The lack of hydrogen is the result of hydrogen consumption by hydrogenation of a liquid 

intermediate, causing its deficiency in the gaseous effluent.  

1.4.6 Pressure. Another experimental variable important to the decomposition 

of a crude glycerin solution in supercritical water is pressure. The critical point of water 

is 374°C and 217.7 atm (or 3199.3 psi), and the experiments showing the effect of 

pressure were performed at 3250, 3500, and 3750 psi so that they were all above the 

critical pressure of water. These experiments were performed at 600°C, a space time of 

45 seconds, and a solution with a 4.22 water-to-carbon molar ratio and 7:3 glycerin-to-

methanol weight ratio (0.812 molar ratio).   

Figure 66 shows the effect of pressure on the carbon gasification and gas 

composition from crude glycerin decomposition per carbon fed. With increasing pressure, 

the carbon gasification increases about 10 percentage points going from 3250 to 3500 psi, 

and then decreases 5 percentage points going up to 3750 psi. The gas compositions all 

follow a similar trend of increasing and then decreasing with increasing pressure.  

Looking at the gas composition per gaseous carbon leaving the reactor system, as 

shown in Figure 67, hydrogen decreases slightly with increased pressure. The amount of 

other gaseous species being produced stays relatively constant with increasing pressure. 

Figure 68 shows the gaseous results with the water gas shift reaction artificially undone. 

Again the only gas with any significant trend with increasing pressure is hydrogen, which 

is decreasing. The gas composition with the predicted methanol decomposition results 



 

 

42

removed were shown in Figure 69, and Figure 70 shows the real carbon monoxide 

produced against that predicted from the expected glycerin decomposition mechanism. At 

lower pressure the suggested mechanism fits nicely, while at higher pressure the 

calculated carbon monoxide starts to deviate from the actual carbon monoxide due to the 

lack of hydrogen. This is likely due to increased pressures increasing the amount of 

hydrogenation of liquid intermediates occurring.  

In summation, pressure seems to have relatively little effect on the decomposition 

of crude glycerin in supercritical water. Increasing pressure at first increases carbon 

gasification, but then begins to decrease after 3500 psi. Pressure seems to have little 

effect on the selectivity of reactions occurring, with only gaseous species to show any 

trend being hydrogen decreasing with increasing pressure. This decrease in hydrogen 

caused the decomposition mechanism for glycerol to deviate from the actual results, 

which is again due to an increase in hydrogen reacting with liquid intermediates. 

1.4.7 Glycerin-to-Methanol Weight Ratio. The glycerin-to-methanol (G/M) 

weight ratios examined in these experiments were 1.5, 2.33, and 4. These correspond to 

crude glycerin solutions made up of 60, 70, and 80 weight percent glycerin and the 

balance methanol, and correspond to glycerin-to-methanol molar ratios of 0.520, 0.812, 

and 1.403. These solutions encompass the wide range of G/M ratios commonly found in 

biodiesel production before the glycerin undergoes purification.17 These experiments 

were performed at 600°C, 3500 psi, 45 second space time, and a 4.22 water-to-carbon 

molar ratio.  

Figure 71 shows the effect of increasing G/M ratio on gas composition and carbon 

gasification. Increasing the G/M ratio seems to have very little impact on carbon 
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conversion, with all solutions having conversions within 3 percentage points of each 

other. The similar carbon gasification with varying G/M ratios also demonstrates that the 

assumption of glycerin and methanol decomposing at the same rates is accurate. With 

increasing weight percent of glycerin, the amount of hydrogen decreases, carbon dioxide 

decreases then stays steady, and carbon monoxide increases and then decreases, which is 

due to increased amount of the water gas shift reaction for the experiment with 60 weight 

percent crude glycerin solution. Methane and ethane show little change with increasing 

weight percent glycerin.  

The gas composition on a gaseous carbon basis is shown in Figure 72. The results 

seem similar to Figure 71, which makes sense due to the similar carbon conversions for 

each solution. Figure 73 shows gas composition with the water gas shift reaction undone. 

Besides hydrogen, which decreases with increasing G/M ratio, all other gas compositions 

stay constant with increasing G/M ratio. The decrease in hydrogen can be attributed to 

the increase in glycerin concentration in the starting solution, which in turn results in a 

higher concentration of liquid intermediates to hydrogenate.  

The gas results with the predicted methanol decomposition taken out are shown 

on Figure 74. The data points in Figure 74 were normalized to take into account the 

differing amounts of glycerin and methanol between points. With increasing weight 

percent of glycerin, only hydrogen shows significant change increasing and then 

decreasing. To test the decomposition mechanism of crude glycerin, the actual carbon 

monoxide values were compared to the calculated values, and the results were shown on 

Figure 75. Like previous comparisons of the decomposition mechanism to the actual 
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results, some points are close while others fall short due to lack of hydrogen coming out 

in the gas.  

Overall, the G/M ratio has little effect on the amount of decomposition occurring 

with carbon gasification being almost equal for all solutions. The extent of water gas shift 

reaction is slightly higher with lower G/M ratios, but otherwise there is little change in 

the gas composition. The increase in the WGS reaction at lower G/M ratios is likely the 

result of an increase in the amount of carbon monoxide produced per carbon, since 

methanol produces more carbon monoxide than glycerin. This is due to methanol 

producing one carbon monoxide mole per mole of carbon, where glycerin at most can 

produce two moles of carbon monoxide and a mole of methane per every three carbon 

atoms, or 2/3 moles of carbon monoxide per mole of carbon.  The decomposition matches 

for some experimental runs, but there seems to be hydrogen that is unaccounted for, like 

in previous results.  

1.4.8 Empirical Equation. The trends of the different gaseous species being 

produced with increasing space time and temperature appear to be linear. This is very 

evident on Figures 45-47, which show the effect of increasing space time on the amount 

of each gaseous species being produced per gaseous carbon coming out in the effluent 

after the water gas shift reaction is undone (mathematically taken out) and the methanol 

results are removed. Using the data in Figures 45-47, an empirical correlation showing 

the combining the effects of temperature and space time on glycerin decomposition was 

formulated. All experiments used for the empirical equation had a reactor pressure of 

3500 psi, and used solutions with 4.22 water-to-carbon molar ratios and 7:3 glycerin-to-

methanol weight ratios. 
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First, the linear regression values for each of the carbon containing gaseous 

species were calculated. The regression values for hydrogen were not evaluated due to 

hydrogen reacting with liquid intermediates. Table 8 shows the slope, intercept, and 

correlation coefficient for carbon monoxide, methane, and ethane as a function of space 

time at each of the three temperatures. The correlation coefficient for all three gaseous 

species at 550°C is very good, with all species having a correlation coefficient above 

0.99.  

Then it was assumed that the slopes and intercepts shown in Table 8 were all 

functions of temperature, as shown in Equation 1. Assuming that the function with 

respect to temperature was linear, Equation 2 was formed.  Table 9 shows the linear 

regression values of the slopes and intercepts from Table 8 with respect to temperature.  

�����	��	�	�

�����	��	�	���
�	�	���
= ���� × τ + ����                                                          (1) 

�����	��	�	�

�����	��	�	���
�	�	���
= ���� +��� × τ + ��� + ��                                        (2) 

Table 3 shows that the linear fit with respect to temperature works very well, with 

only one of the six correlation coefficients below 0.9. Plugging in the values from Table 

3 into Equation 2, Equations 3-5 are created, where T is temperature in Kelvin and τ is 

space time in seconds. Using Equations 3-5, the gas compositions can be expressed in 

terms of temperature and space time as: 

�����	��	�	���	��������

�����	��	�	���
�	�	���
= �1.28 × 10#$� − 0.0125� × τ − 0.00190� + 2.26             (3) 

�����	��	��)*	��

�����	��	�	���
�	�	���
= �−5.03 × 10#,� + 0.0053� × τ + 0.00093� − 0.524           (4) 
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�����	��	�)*	��

�����	��	�	���
�	�	���
= �−2.98 × 10#,� + 0.0028� × τ + 0.00042� − 0.531           (5) 

To test the accuracy of Equations 3-5, experiments with the correct water-to-

carbon molar ratio, glycerin-to-methanol weight ratio, and pressure had their gas 

compositions compared to what was determined with the equations. Table 10 compares 

the results of the calculated gas values using the equations above to the experimental 

values. For experiments used to derive the formula, the values predicted by it are usually 

within 0.03 moles of gas per mole of gaseous carbon. Runs at 500˚C and 700˚C were also 

compared to see how accurate the equations were when extrapolated at temperatures 

above and below the experiments used to develop the equations. Only the methane values 

at higher temperatures shows a large discrepancy between the actual and calculated 

values. Overall the equations are fairly accurate, and the regression values indicate a 

strong linear relationship between space time, temperature, and the amount each gaseous 

product being formed.  

 

1.5 CONCLUSION 

The reaction parameters affecting the decomposition of crude glycerin in 

supercritical water were experimentally investigated with respect to the mechanistic and 

parallel reactions. For the experimental conditions and levels considered in this study, the 

two variables with the strongest effect for increasing carbon gasification are temperature 

and space time. Increasing the water-to-carbon ratio increases carbon gasification to a 

point, but after a certain dilution it does not have any additional effect. The highest 

carbon gasification was achieved at 3500 psi, with higher and lower pressures resulting in 
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less gaseous conversion of carbon. Glycerin-to-methanol weight ratio had no noticeable 

effect on carbon gasification, providing a justification of the mechanistic claim that 

methanol and glycerin have very similar kinetic behaviors of decomposition.  

The relative amount of the water gas shift reaction occurring increased with 

increasing temperature, space time, and water-to-carbon molar ratio up to a certain ratio. 

Changes in pressure seemed to have no effect on the water gas shift reaction, while 

increasing glycerin-to-methanol weight ratio decreases the amount of forward water gas 

shift reaction, since less carbon monoxide is produced per carbon in the solution.  

By undoing the water gas shift reaction in the results, the mechanism for crude 

glycerin decomposition was determined. Based on previous work, methanol was 

determined to decompose into mostly carbon monoxide and hydrogen under most 

experimental conditions, with substantial methane production only at higher temperatures 

and low water-to-carbon molar ratios.20  

Based on the liquid analysis of multiple samples, a comprehensive mechanistic 

pathway of glycerin decomposition to its final gaseous products was determined. Also 

based on the results of the Gibbs free energies of reaction for each of the reactions in the 

pathway, a favored reaction pathway was hypothesized as one where formaldehyde, 

acetaldehyde, acrolein, and propionaldehyde were produced and gasified.  

Using this thermodynamically favored reaction pathway, the amount of carbon 

monoxide being produced was compared to the amount of carbon monoxide that would 

theoretically be produced based on the amount of other gases exiting the reactor. The 

results correlated quite well for a number of experimental conditions, especially those 
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with high carbon conversion. For experiments where the carbon monoxide values did not 

match up, the reason was from lack of hydrogen in the gas. This suggests the hydrogen 

reacting with liquid intermediates, and thus not exiting in the gaseous effluent. 

Hydrogenation with a liquid intermediate would also explain why the mechanism fits 

better at higher carbon gasification, since there is much less carbon for the hydrogen to 

react with in the liquid effluent.  

The equations formulated using the linear regression of space time and 

temperature show a good fit to the experimental data. This suggests a linear relationship 

of the decomposition pathways of glycerin with both temperature and space time.  The 

equation finds a practical value in designing an optimal process system as well as in 

carrying out a process economic study. 
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Figure 1. The multi-fuel reformation reaction system at Ohio University. 
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Figure 2. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WCG-112M. 

WCG-112M
Residence time Species

2.06 Methyl Propionate
2.36 2-Butanone
2.79 1-Propanol
3.43 Allyl Alcohol
6.85 Cyclopentanone
8.13 Acetic Acid
8.75 Hydroxyacetone
9.63 Propionic Acid

13.06 Propylene Glycol
18.70-19.72 Phenols

23.71 Glycerin
12.47, 13.54,16.72 Silicon Based Column Bleed
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Figure 3. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WCG-140M. 

WCG-140M
Residence time Species

2.08 Methyl Propionate
2.38 2-Butanone
2.83 1-Propanol
3.45 Allyl Alcohol
6.81 Cyclopentanone
8.24 Acetic Acid
8.57 Hydroxyacetone

10.07 Propionic Acid
13.03 Propylene Glycol

18.70-19.72 Phenols
24.23 Glycerin

12.42,13.53,16.72 Silicon Based Column Bleed
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Figure 4. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WCG-116M. 

WCG-116M
Residence time Species

2.29 Methyl Propionate
2.39 2-Butanone
2.98 1-Propanol
3.63 Allyl Alcohol
6.9 Cyclopentanone
8.35 Acetic Acid
9.21 Hydroxyacetone

10.27 Propionic Acid
13.26 Propylene Glycol

18.70-19.72 Phenols
23.93 Glycerin

12.65,13.69,16.74 Silicon Based Column Bleed
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Figure 5. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WCG-122M. 

WCG-122M
Residence time Species

2.05 Methyl Propionate
2.35 2-Butanone
2.79 1-Propanol
3.43 Allyl Alcohol
6.9 Cyclopentanone
8.35 Acetic Acid
9.17 Hydroxyacetone
9.77 Propionic Acid

13.13 Propylene Glycol
18.70-19.72 Phenols

23.91 Glycerin
12.64,13.67,16.72 Silicon Based Column Bleed
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Figure 6. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WCG-139M. 

WCG-139M
Residence time Species

2.06 Methyl Propionate
2.36 2-Butanone
2.82 1-Propanol
3.45 Allyl Alcohol
6.78 Cyclopentanone
8.02 Acetic Acid
8.35 Hydroxyacetone
9.94 Propionic Acid

13.14 Propylene Glycol
18.70-19.72 Phenols

23.71 Glycerin
12.35,13.47,16.70 Silicon Based Column Bleed
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Figure 7. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WCG-138M. 

WCG-138M
Residence time Species

2.08 Methyl Propionate
2.4 2-Butanone
2.83 1-Propanol
3.46 Allyl Alcohol
6.9 Cyclopentanone
8.5 Acetic Acid
9.16 Hydroxyacetone
9.91 Propionic Acid

13.17 Propylene Glycol
18.70-19.72 Phenols

23.99 Glycerin
12.64,13.69,16.72 Silicon Based Column Bleed



 

 

56

 

 

Figure 8. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WCG-109M. 

WCG-109M
Residence time Species

2.07 Methyl Propionate
2.38 2-Butanone
2.83 1-Propanol
3.46 Allyl Alcohol
6.82 Cyclopentanone
7.99 Acetic Acid
8.64 Hydroxyacetone
9.5 Propionic Acid

13.11 Propylene Glycol
18.70-19.72 Phenols

23.76 Glycerin
12.45,13.55,16.71 Silicon Based Column Bleed
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Figure 9. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WCG-119M. 

 

WCG-119M
Residence time Species

2.06 Methyl Propionate
2.97 2,3-Butanone
3.65 Allyl Alcohol
6.19 Cyclopentanone
8.56 Acetic Acid
9.3 Hydroxyacetone

10.29 Propionic Acid
13.36 Propylene Glycol

18.70-19.72 Phenols
24.05 Glycerin

12.82,13.78,16.91 Silicon Based Column Bleed
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Figure 10. Total ion chromatograph of methyl propionate from WCG-139M. 
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Figure 11. Total ion chromatograph of 2-butanone from WCG-139M. 
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Figure 12. Total ion chromatograph of 1-propanol from WCG-139M. 
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Figure 13. Total ion chromatograph of allyl alcohol from WCG-139M. 
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Figure 14. Total ion chromatograph of acetic acid from WCG-112M. 
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Figure 15. Total ion chromatograph of hydroxyacetone from WCG-139M. 
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Figure 16. Total ion chromatograph of propanoic acid from WCG-112M. 
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Figure 17. Total ion chromatograph of phenol from WCG-112M. 
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Figure 18. Total ion chromatograph of 2-methyl phenol from WCG-112M. 
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Figure 19. Comprehensive mechanistic pathway of glycerin decomposition in 

supercritical water. 
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Figure 20. The thermodynamically favorable reaction pathways of glycerin 

decomposition based on ∆G analysis. 

 

 

 

Figure 21. The effect of temperature at a 4.22 water-to-carbon molar ratio and 60 

second space time on carbon gasification and gas composition (moles/moles carbon 

fed). 
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Figure 22. The effect of temperature at a 4.22 water-to-carbon molar ratio and 45 

second space time on carbon gasification and gas composition (moles/moles carbon 

fed). 

 

 

Figure 23. The effect of temperature at a 1.58 water-to-carbon molar ratio and 45 

second space time on carbon gasification and gas composition (moles/moles carbon 

fed). 
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Figure 24. The effect of temperature at a 4.22 water-to-carbon molar ratio and 60 

second space time on gas composition (moles/moles gaseous carbon). 

 

 

Figure 25. The effect of temperature at a 4.22 water-to-carbon molar ratio and 45 

second space time on gas composition (moles/moles gaseous carbon). 
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Figure 26. The effect of temperature at a 1.58 water-to-carbon molar ratio and 45 

second space time on gas composition (moles/moles gaseous carbon). 

 

 

Figure 27. The effect of temperature at a 4.22 water-to-carbon molar ratio and 60 

second space time on gas composition (moles/moles gaseous carbon) with the water 

gas shift reaction undone. 
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Figure 28. The effect of temperature at a 4.22 water-to-carbon molar ratio and 45 

second space time on gas composition (moles/moles gaseous carbon) with the water 

gas shift reaction undone. 

 

 

Figure 29. The effect of temperature at a 1.58 water-to-carbon molar ratio and 45 

second space time on gas composition (moles/moles gaseous carbon) with the water 

gas shift reaction undone. 
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Figure 30. The effect of temperature at a 4.22 water-to-carbon molar ratio and 60 

second space time on gas composition (moles/moles gaseous carbon) with the water 

gas shift reaction undone and predicted methanol decomposition results removed. 

 

 

Figure 31. The effect of temperature at a 4.22 water-to-carbon molar ratio and 45 

second space time on gas composition (moles/moles gaseous carbon) with the water 

gas shift reaction undone and predicted methanol decomposition results removed. 
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Figure 32. The effect of temperature at a 1.58 water-to-carbon molar ratio and 45 

second space time on gas composition (moles/moles gaseous carbon) with the water 

gas shift reaction undone and predicted methanol decomposition results removed. 

 

 

Figure 33. The effect of temperature at a 4.22 water-to-carbon molar ratio and 60 

second space time on the accuracy of the glycerin decomposition mechanism. 
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Figure 34. The effect of temperature at a 4.22 water-to-carbon molar ratio and 45 

second space time on the accuracy of the glycerin decomposition mechanism. 

 

 

Figure 35. The effect of temperature at a 1.58 water-to-carbon molar ratio and 45 

second space time on the accuracy of the glycerin decomposition mechanism. 
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Figure 36. The effect of space time at a 4.22 water-to-carbon molar ratio and 550°C 

on carbon gasification and gas composition (moles/moles carbon fed). 

 

 

Figure 37. The effect of space time at a 4.22 water-to-carbon molar ratio and 600°C 

on carbon gasification and gas composition (moles/moles carbon fed). 
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Figure 38. The effect of space time at a 4.22 water-to-carbon molar ratio and 650°C 

on carbon gasification and gas composition (moles/moles carbon fed). 

 

 

Figure 39. The effect of space time at a 4.22 water-to-carbon molar ratio and 550°C 

on gas composition (moles/moles gaseous carbon). 
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Figure 40. The effect of space time at a 4.22 water-to-carbon molar ratio and 600°C 

on gas composition (moles/moles gaseous carbon). 

 

 

Figure 41. The effect of space time at a 4.22 water-to-carbon molar ratio and 650°C 

on gas composition (moles/moles gaseous carbon). 
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Figure 42. The effect of space time at a 4.22 water-to-carbon molar ratio and 550°C 

on gas composition (moles/moles gaseous carbon) with the water gas shift reaction 

undone. 

 

 

Figure 43. The effect of space time at a 4.22 water-to-carbon molar ratio and 600°C 

on gas composition (moles/moles gaseous carbon) with the water gas shift reaction 

undone. 
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Figure 44. The effect of space time at a 4.22 water-to-carbon molar ratio and 650°C 

on gas composition (moles/moles gaseous carbon) with the water gas shift reaction 

undone. 

 

 

Figure 45. The effect of space time at a 4.22 water-to-carbon molar ratio and 550°C 

on gas composition (moles/moles gaseous carbon) with the water gas shift reaction 

undone and predicted methanol decomposition results removed. 
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Figure 46. The effect of space time at a 4.22 water-to-carbon molar ratio and 600°C 

on gas composition (moles/moles gaseous carbon) with the water gas shift reaction 

undone and predicted methanol decomposition results removed. 

 

 

Figure 47. The effect of space time at a 4.22 water-to-carbon molar ratio and 650°C 

on gas composition (moles/moles gaseous carbon) with the water gas shift reaction 

undone and predicted methanol decomposition results removed. 
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Figure 48. The effect of space time at a 4.22 water-to-carbon molar ratio and 550°C 

on the accuracy of the glycerin decomposition mechanism. 

 

 

Figure 49. The effect of space time at a 4.22 water-to-carbon molar ratio and 600°C 

on the accuracy of the glycerin decomposition mechanism. 
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Figure 50. The effect of space time at a 4.22 water-to-carbon molar ratio and 650°C 

on the accuracy of the glycerin decomposition mechanism. 

 

 

Figure 51. The effect of water-to-carbon molar ratio at 550°C and 45 second space 

time on carbon gasification and gas composition (moles/moles carbon fed). 
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Figure 52. The effect of water-to-carbon molar ratio at 600°C and 45 second space 

time on carbon gasification and gas composition (moles/moles carbon fed). 

 

 

Figure 53. The effect of water-to-carbon molar ratio at 650°C and 45 second space 

time on carbon gasification and gas composition (moles/moles carbon fed). 
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Figure 54. The effect of water-to-carbon molar ratio at 550°C and 45 second space 

time on gas composition (moles/moles gaseous carbon). 

 

 

Figure 55. The effect of water-to-carbon molar ratio at 600°C and 45 second space 

time on gas composition (moles/moles gaseous carbon). 
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Figure 56. The effect of water-to-carbon molar ratio at 650°C and 45 second space 

time on gas composition (moles/moles gaseous carbon). 

 

 

Figure 57. The effect of water-to-carbon molar ratio at 550°C and 45 second space 

time on gas composition (moles/moles gaseous carbon) with the water gas shift 

reaction undone. 
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Figure 58. The effect of water-to-carbon molar ratio at 600°C and 45 second space 

time on gas composition (moles/moles gaseous carbon) with the water gas shift 

reaction undone. 

 

 

Figure 59. The effect of water-to-carbon molar ratio at 650°C and 45 second space 

time on gas composition (moles/moles gaseous carbon) with the water gas shift 

reaction undone. 
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Figure 60. The effect of water-to-carbon molar ratio at 550°C and 45 second space 

time on gas composition (moles/moles gaseous carbon) with the water gas shift 

reaction undone and predicted methanol decomposition results removed. 

 

 

Figure 61. The effect of water-to-carbon molar ratio at 600°C and 45 second space 

time on gas composition (moles/moles gaseous carbon) with the water gas shift 

reaction undone and predicted methanol decomposition results removed. 
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Figure 62. The effect of water-to-carbon molar ratio at 650°C and 45 second space 

time on gas composition (moles/moles gaseous carbon) with the water gas shift 

reaction undone and predicted methanol decomposition results removed. 

 

 

Figure 63. The effect of water-to-carbon molar ratio at 550°C and 45 second space 

time on the accuracy of the glycerin decomposition mechanism. 

 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

M
o

le
s 

o
f 

g
a

s/
 M

o
le

s 
o

f 
g

a
se

o
u

s 
ca

rb
o

n

W/C molar ratio

Effect of W/C molar ratio @ 650 C and 45 sec ST

H2

CO

CH4

Ethane

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

M
o

le
s 

ca
rb

o
n

 m
o

n
o

x
id

e
/ 

M
o

le
s 

o
f 

g
a

se
o

u
s 

ca
rb

o
n

W/C molar ratio

Effect of W/C ratio @ 45sec ST and 550 C 

Real CO

Calculated CO



 

 

90

 

Figure 64. The effect of water-to-carbon molar ratio at 600°C and 45 second space 

time on the accuracy of the glycerin decomposition mechanism. 

 

 

Figure 65. The effect of water-to-carbon molar ratio at 650°C and 45 second space 

time on the accuracy of the glycerin decomposition mechanism. 

 

 

 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

M
o

le
s 

ca
rb

o
n

 m
o

n
o

x
id

e
/ 

M
o

le
s 

o
f 

g
a

se
o

u
s 

ca
rb

o
n

W/C molar ratio

Effect of W/C ratio @ 45sec ST and 600 C 

Real CO

Calculated CO

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

M
o

le
s 

ca
rb

o
n

 m
o

n
o

x
id

e
/ 

M
o

le
s 

o
f 

g
a

se
o

u
s 

ca
rb

o
n

W/C molar ratio

Effect of W/C ratio @ 45sec ST and 650 C 

Real CO

Calculated CO



 

 

91

 

Figure 66. The effect of pressure on carbon gasification and gas composition 

(moles/moles carbon fed). 

 

 

Figure 67. The effect of pressure on gas composition (moles/moles gaseous carbon). 
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Figure 68. The effect of pressure on gas composition (moles/moles gaseous carbon) 

with the water gas shift reaction undone. 

 

 

Figure 69. The effect of pressure on gas composition (moles/moles gaseous carbon) 

with the water gas shift reaction undone and predicted methanol decomposition 

results removed. 
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Figure 70. The effect of pressure on the accuracy of the glycerin decomposition 

mechanism. 

 

 

Figure 71. The effect of glycerin-to-methanol weight ratio on carbon gasification 

and gas composition (moles/moles carbon fed). 
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Figure 72. The effect of glycerin-to-methanol weight ratio on gas composition 

(moles/moles gaseous carbon). 

 

 

 

Figure 73. The effect of glycerin-to-methanol weight ratio on gas composition 

(moles/moles gaseous carbon) with the water gas shift reaction undone. 
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Figure 74. The effect of glycerin-to-methanol weight ratio on gas composition 

(moles/moles gaseous carbon) with the water gas shift reaction undone and 

predicted methanol decomposition results removed. 

 

 

Figure 75. The effect of glycerin-to-methanol weight ratio on the accuracy of the 

glycerin decomposition mechanism. 
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Table 1. The weight, molar compositions, and critical points of solutions of crude 

glycerin and water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Water/Carbon 
molar ratio

Glycerin/Methanol 
weight ratio Water% Glycerin% Methanol% Water% Glycerin% Methanol%

Critical 
Temp (°C)

Critical 
Pressure (psi)

4.22 70:30 71.0 20.3 8.7 88.9 5.0 6.1 401 3116
4.22 60:40 70.9 17.5 11.6 87.7 4.2 8.1 397 3131
4.22 80:20 71.1 23.1 5.8 90.1 5.7 4.1 409 3116
1.58 70:30 47.9 36.5 15.6 75.1 11.2 13.7 416 2764
6.47 70:30 79.0 14.7 6.3 92.5 3.4 4.1 396 3234

Critical PointWeight percent Mole percentSolution Type
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Table 2. Experimental run conditions summary. 

 

 

Run No. Temp Pressure Water Fuel
Glycerin 

wt%
MeOH 
wt%

W/C ratio

(
o
C) (psig) (g/min)

WCG-97M 598 3469 8.6 CG Soln 70/30 20.3 8.7 4.22

WCG-98M 598 3486 8.8 CG Soln 70/30 20.3 8.7 4.22

WCG-99M 648 3415 8.0 CG Soln 70/30 20.3 8.7 4.22

WCG-100M 499 3496 11.6 CG Soln 70/30 20.3 8.7 4.22

WCG-101M 549 3472 9.8 CG Soln 70/30 20.3 8.7 4.22

WCG-102M 599 3468 11.5 CG Soln 70/30 20.3 8.7 4.22

WCG-103M 648 3464 10.3 CG Soln 70/30 20.3 8.7 4.22

WCG-104M 498 3508 15.7 CG Soln 70/30 20.3 8.7 4.22
WCG-105M 549 3513 12.8 CG Soln 70/30 20.3 8.7 4.22
WCG-106M 598 3486 17.8 CG Soln 70/30 20.3 8.7 4.22
WCG-107M 599 3739 12.7 CG Soln 70/30 20.3 8.7 4.22
WCG-108M 548 3497 19.6 CG Soln 70/30 20.3 8.7 4.22
WCG-109M 599 3242 10.9 CG Soln 70/30 20.3 8.7 4.22
WCG-110M 698 3427 9.6 CG Soln 70/30 20.3 8.7 4.22
WCG-111M 698 3489 7.6 CG Soln 70/30 20.3 8.7 4.22
WCG-112M 598 3503 11.8 CG Soln 70/30 20.3 8.7 4.22
WCG-113M 648 3511 7.8 CG Soln 70/30 20.3 8.7 4.22
WCG-114M 599 3718 12.6 CG Soln 70/30 20.3 8.7 4.22
WCG-115M 648 3501 16.2 CG Soln 70/30 20.3 8.7 4.22
WCG-116M 599 3499 14.5 CG Soln 70/30 36.5 15.6 1.58
WCG-117M 648 3494 13.3 CG Soln 70/30 36.5 15.6 1.58
WCG-118M 500 3507 20.4 CG Soln 70/30 36.5 15.6 1.58
WCG-119M 548 3503 17.6 CG Soln 70/30 36.5 15.6 1.58
WCG-120M 698 3488 12.4 CG Soln 70/30 36.5 15.6 1.58
WCG-121M 549 3474 11.8 CG Soln 70/30 14.7 6.3 6.47
WCG-122M 599 3489 10.6 CG Soln 70/30 14.7 6.3 6.47
WCG-123M 648 3468 10.2 CG Soln 70/30 14.7 6.3 6.47
WCG-124M 599 3497 12.2 CG Soln 80/20 25.4 6.3 4.22
WCG-125M 599 3493 11.4 CG Soln 60/40 16 10.7 4.22
WCG-138M 599 3483 11.8 CG Soln 80/20 23.1 5.8 4.22
WCG-139M 598 3463 11.6 CG Soln 60/40 17.5 11.6 4.22
WCG-140M 598 3487 11.5 CG Soln 70/30 20.3 8.7 4.22

WCG-141M 598 3743 12.7 CG Soln 70/30 20.3 8.7 4.22

WCG-142M 549 3455 12.7 CG Soln 70/30 14.7 6.3 6.47
WCG-143M 599 3462 11.0 CG Soln 70/30 14.7 6.3 6.47
WCG-144M 648 3477 10.0 CG Soln 70/30 14.7 6.3 6.47
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Table 3. Experimental run results summary. 

 

 

Run No.
Product 

Gas Flow

(L/min) H2 CO CH4 CO2 C2H4 C2H6

WCG-97M 3.40 0.91 0.45 0.13 0.22 0.00 0.03
WCG-98M 3.85 1.09 0.43 0.12 0.26 0.00 0.02
WCG-99M 4.20 1.34 0.21 0.18 0.53 0.00 0.03
WCG-100M 0.71 0.15 0.09 0.01 0.02 0.00 0.00
WCG-101M 1.44 0.33 0.23 0.03 0.05 0.00 0.00
WCG-102M 3.76 0.74 0.43 0.10 0.14 0.00 0.02
WCG-103M 4.71 1.10 0.46 0.15 0.26 0.00 0.04

WCG-104M 0.73 0.12 0.07 0.00 0.01 0.00 0.00
WCG-105M 1.52 0.29 0.17 0.02 0.04 0.00 0.00
WCG-106M 3.70 0.48 0.29 0.05 0.08 0.00 0.01
WCG-107M 3.53 0.63 0.37 0.08 0.12 0.00 0.02
WCG-108M 1.80 0.23 0.12 0.01 0.04 0.00 0.00
WCG-109M 2.85 0.61 0.35 0.07 0.10 0.00 0.01
WCG-110M 4.75 1.25 0.11 0.24 0.56 0.00 0.02
WCG-111M 3.61 1.12 0.09 0.31 0.55 0.00 0.02
WCG-112M 4.12 0.79 0.48 0.10 0.13 0.00 0.02
WCG-113M 3.66 1.19 0.33 0.14 0.36 0.00 0.04
WCG-114M 2.91 0.48 0.35 0.08 0.08 0.00 0.02
WCG-115M 5.48 0.75 0.48 0.11 0.11 0.00 0.03
WCG-116M 4.63 0.32 0.30 0.07 0.06 0.00 0.02
WCG-117M 7.91 0.70 0.46 0.14 0.12 0.00 0.04
WCG-118M 0.86 0.05 0.03 0.00 0.01 0.00 0.00
WCG-119M 1.78 0.10 0.11 0.01 0.02 0.00 0.00
WCG-120M 9.62 0.96 0.36 0.20 0.32 0.00 0.05
WCG-121M 1.43 0.38 0.27 0.03 0.05 0.00 0.00
WCG-122M 2.33 0.64 0.47 0.10 0.10 0.00 0.03
WCG-123M 3.02 0.88 0.54 0.15 0.17 0.00 0.05
WCG-124M 3.36 0.51 0.40 0.08 0.08 0.00 0.02
WCG-125M 2.87 0.64 0.39 0.07 0.09 0.00 0.02
WCG-138M 3.20 0.53 0.35 0.11 0.15 0.00 0.04
WCG-139M 3.80 0.78 0.34 0.09 0.20 0.00 0.03
WCG-140M 3.58 0.70 0.37 0.10 0.16 0.00 0.03
WCG-141M 3.43 0.56 0.36 0.09 0.14 0.00 0.03
WCG-142M 1.59 0.42 0.17 0.04 0.12 0.00 0.01
WCG-143M 2.28 0.63 0.33 0.09 0.18 0.00 0.03
WCG-144M 2.71 0.86 0.34 0.14 0.25 0.00 0.05

Gas Yield (mol gas/mol carbon fed)
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Table 4. Reactions of glycerin decomposition in supercritical water. 

1. Glycerin → Hydroxyacetone + 
Water 

12. Propionaldehyde → Ethane + 
Carbon Monoxide 

C3H5(OH)3 → CH3COCH2OH + H2O COHCH2CH3 → C2H6  + CO 

2. Glycerin → 3-Hydroxypropanal 
+Water 

13. Propylene Glycol → Acetone + 
Water 

C3H5(OH)3 → COHCH2CH2OH + 

H2O 

COHCH2CH3 → CH3COCH3 + H2O 

3. 3-Hydroxypropanal → Acrolein + 
Water 

14. Propionaldehyde + Hydrogen → 
1-Propanol 

COHCH2CH2OH → COHCH=CH2 + 

H2O 

COHCH2CH3 + H2 → 

CH3CH2CH2OH 

4. Acrolein → Ethylene + Carbon 
Monoxide 

15. Acetone → Methane + Ethanone 

COHCH=CH2 → C2H4 + CO CH3COCH3 → CH4 + CH2=C=O 

5. Acrolein + Hydrogen → 
Propionaldehyde 

16. 2 Ethanone → Ethylene +2 
Carbon Monoxide 

COHCH=CH2 + H2 → COHCH2CH3 2. CH2=C=O → C2H4 + 2 CO 

6. Hydroxyacetone → Acetaldehyde 
+ Formaldehyde 

17. Acetone + Hydrogen → 
Isopropanol 

CH3COCH2OH → COHCH3 + COH2 CH3COCH3 + H2 → CH3CHOHCH3 

7. 3-Hydroxypropanal → 
Acetaldehyde + Formaldehyde 

18. 1-Propanol → Acetaldehyde + 
Methane 

CH3COCH2OH → COHCH3 + COH2 CH3CH2CH2OH → COHCH3 + CH4 

8. Acetaldehyde → Methane + 
Carbon Monoxide 

19. 1-Propanol → Propylene + Water 

COHCH3 → CH4 + CO CH3CH2CH2OH → CH3CH=CH2 + 

H2O 

9. Formaldehyde → Hydrogen + 
Carbon Monoxide 

20. Isopropanol → Propylene + Water 

COH2 → H2 + CO CH3CHOHCH3 → CH3CH=CH2 + 

H2O 

10. Hydroxyacetone + Hydrogen → 
Propylene Glycol 

21. Propylene + Hydrogen → Propane 

CH3COCH2OH + H2 → 

CH3CHOHCH2OH 

CH3CH=CH2 + H2 → CH3CH2CH3 

11. Propylene Glycol → 
Propionaldehyde + Water 

22. Propane  → Ethylene + Methane 

CH3CHOHCH2OH → COHCH2CH3 

+ H2O 

CH3CH2CH3 → C2H4 + CH4 
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Table 5. Glycerin-to-final products pathways. 

 

 

 

 

 

 

 

 

Pathway H2 CO CH4 C2H6 H2O

1
Glycerin/hydroxyacetone/ 
acetaldehyde+formaldehyde 1 2 1 0 1

2
Glycerin/3-hydroxypropanal/ 
acetaldehyde+formaldehyde 1 2 1 0 1

3 Glycerin/3-hydroxypropanal/acrolein -1 1 0 1 2

4
Glycerin/3-hydroxypropanal/ 
acrolein/propionaldehyde -1 1 0 1 2

5
Glycerin/hydroxyacetone/propylene 
glycol/propionaldehyde -1 1 0 1 2

6

Glycerin/hydroxyacetone/propylene 

glycol/acetone/ethanone -1.5 1 1 0.5 2

7
Glycerin/3-hydroxypropanal/propionaldehyde/ 
1-propanol/acetaldehyde -2 1 2 0 2

8

Glycerin/hydroxyacetone/propylene 
glycol/propionaldehyde/1-propanol/ 
acetaldehyde -2 1 2 0 2

9

Glycerin/hydroxyacetone/propylene 

glycol/propionaldehyde/1-propanol/ 
propylene/propane -4 0 1 1 3

10
Glycerin/hydroxyacetone/propylene glycol/ 
acetone/isopropanol/propylene/propane -4 0 1 1 3

11

Glycerin/3-hydroxypropanal/propionaldehyde/ 
1-propanol/propylene/propane -4 0 1 1 3

Net Final Products
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Table 6. Enthalpies and Gibbs free energies of reaction. 

 

 

 

 

Table 7. Mean bond energies of bonds containing carbon, oxygen, and hydrogen.
62

 

 

Reaction  # Reaction ∆H ∆G ∆H ∆G

1 Glycerin → Hydroxyacetone + Water -0.01251 -0.05027 -32.83 -131.99

2 Glycerin → 3-Hydroxypropanal +Water -0.00603 -0.04304 -15.82 -112.99
3 3-Hydroxypropanal → Acrolein + Water 0.00916 -0.02330 24.06 -61.17

4 Acrolein → Ethylene + Carbon Monoxide 0.00433 -0.02440 11.36 -64.06

5 Acrolein + Hydrogen → Propionaldehyde -0.05208 -0.02352 -136.75 -61.75

6 Hydroxyacetone → Acetaldehyde + Formaldehyde 0.01452 -0.01902 38.11 -49.93

7 3-Hydroxypropanal → Acetaldehyde + Formaldehyde 0.01452 -0.01902 38.11 -49.93

8 Acetaldehyde → Methane + Carbon Monoxide -0.00190 -0.02663 -5.00 -69.93

9 Formaldehyde → Hydrogen + Carbon Monoxide 0.01031 -0.01618 27.06 -42.49

10 Hydroxyacetone + Hydrogen → Propylene Glycol -0.02616 0.00387 -68.68 10.17
11 Propylene Glycol → Propionaldehyde + Water -0.01028 -0.04345 -27.00 -114.09

12 Propionaldehyde → Ethane + Carbon Monoxide 0.00077 -0.02678 2.02 -70.31

13 Propylene Glycol → Acetone + Water -0.02056 -0.05644 -53.98 -148.19

14 Propionaldehyde + Hydrogen → 1-Propanol -0.02699 0.00156 -70.86 4.11

15 Acetone → Methane + Ethanone 0.03101 0.00199 81.41 5.22

16 2 Ethanone → Ethylene +2 Carbon Monoxide -0.01379 -0.03531 -36.20 -92.70

17 Acetone + Hydrogen → Isopropanol -0.02181 0.00979 -57.26 25.71
18 1-Propanol → Acetaldehyde + Methane 0.00016 -0.03136 0.41 -82.34

19 1-Propanol → Propylene + Water 0.01085 -0.02421 28.49 -63.56

20 Isopropanol → Propylene + Water 0.01085 -0.02421 28.49 -63.56

21 Propylene + Hydrogen → Propane 0.01595 -0.01944 41.87 -51.05

22 Propane  → Ethylene + Methane 0.02847 -0.00073 74.74 -1.91

in atomic energy units in kJ/mol

Bond Energy (KJ/mol)

Carbon-Carbon 348

Carbon Oxygen 360

Carbon-Hydrogen 412

Oxygen-Hydrogen 463

Carbon-Carbon 

double bond 612

Carbon-Oxygen 

double bond 743
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Table 8. Linear regression values of the effect of space time on gas composition 

(moles of gas/mole of gaseous carbon) with water gas shift undone and methanol 

results removed. 

 

 

 

 

Table 9. Linear regression values of the slopes and intercepts from the space time 

regression with respect to temperature. 

 

 

 

Temp

deg C m b R
2

m b R
2

m b R
2

550 -0.00201 0.709 0.997 0.00105 0.015 0.995 0.000352 -0.007 1.000
600 -0.00116 0.563 0.645 0.00119 0.062 0.806 0.000172 0.024 0.506
650 -0.00073 0.519 0.921 0.00055 0.108 0.842 0.000054 0.036 0.737

Carbon Monoxide Methane Ethane

m1 m2 R
2

b1 b2 R
2

1.284E-05 -0.00900 0.97 -0.00190 1.74 0.91

m1 m2 R
2

b1 b2 R
2

-5.028E-06 0.00395 0.56 0.00093 -0.50 1.00

m1 m2 R
2

b1 b2 R
2

-2.983E-06 0.00198 0.99 0.00042 -0.24 0.94

b(T)

CH4=m(T)*tau+B(T)

C2H6=m(T)*tau+B(T)

m(T) b(T)

m(T)

m(T)

CO=m(T)*tau+B(T)

b(T)
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Table 10. Comparison of experimental and calculated values from equations. 

 

 

 

 

 

 

 

 

 

 

 

 

Temp Res Time

°C sec CO CH4 C2H6 CO CH4 C2H6

598 30 0.54 0.09 0.03 0.56 0.09 0.02
598 45 0.50 0.13 0.03 0.54 0.10 0.03

598 60 0.50 0.13 0.03 0.52 0.12 0.03

548 30 0.65 0.05 0.00 0.64 0.05 0.01

548 45 0.62 0.06 0.01 0.61 0.07 0.01

549 60 0.59 0.08 0.01 0.58 0.09 0.02
648 30 0.50 0.12 0.04 0.48 0.13 0.04

648 45 0.48 0.14 0.04 0.47 0.14 0.04

648 60 0.48 0.14 0.04 0.46 0.15 0.04

499 60 0.64 0.05 0.01 0.63 0.05 0.00

698 60 0.36 0.29 0.02 0.41 0.18 0.05
498 45 0.62 0.04 0.01 0.67 0.03 0.00

698 45 0.43 0.23 0.02 0.41 0.17 0.05

Experimental Values Calculated Values
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2. ROLES OF HYDROXYL GROUP IN THE SUPERCRITICAL WATER 

REACTION OF POLYHDRIC ALCOHOLS 

 

2.1 ABSTRACT 

Supercritical water reformation is a novel process that can be used to produce 

hydrogen for transportation fuels. The process is non-catalytic and can be used on a wide 

variety of feedstocks, such as diesel, jet fuel, sucrose, ethanol, methanol, and glycerin. 

With such a wide variety of fuels that can be used with supercritical water, gaining a 

better understanding of the chemistry behind supercritical water reformation and 

decomposition is important. One aspect of the process chemistry that seems to have a 

large impact on the supercritical water reformation and decomposition of hydrocarbons is 

the amount of hydroxyl functional groups present in the molecular structure of the feed 

oxygenated hydrocarbon. To examine the discerning effect of hydroxyl groups, 

experiments were performed using hydrocarbons of the same length with differing 

numbers of hydroxyl groups. Those hydrocarbons were isopropanol, propylene glycol, 

and glycerin, i.e., monohydric, dihydric, and trihydric alcohols of C3. The experiments 

used a custom-designed Haynes® Alloy 282 reactor system, and experiments were 

conducted at temperatures of 550, 600, and 650°C for each chemical feed. Other run 

conditions include a water-to-fuel molar ratio of 8, a pressure of 3500 psi, and a reactor 

space time of 45 seconds. A thorough the analysis of carbon gasification, gaseous 

effluent compositions, and liquid effluent compositions, the mechanisms for supercritical 

water reformation or decomposition, and the impact of hydroxyl groups on those reaction 

mechanisms was conducted. 
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2.2 INTRODUCTION 

A supercritical fluid is any fluid above its critical point. The critical point of water 

is 374°C and 217.7 atm.6  When water becomes supercritical, it dissolves nonpolar 

molecules more readily and becomes a highly energetic reaction medium. The critical 

points and other physical properties of isopropanol, propylene glycol, glycerin, and water 

are shown in Table 1. With the exception of glycerin’s critical temperature, all critical 

values for the pure species of these chemicals are below that of water.  

Supercritical water reformation and decomposition of hydrocarbons is a versatile 

and non-catalytic process to produce hydrogen.  A variety of hydrocarbon feedstocks can 

be used as fuel, such as ethanol, jet fuel, ethanol, sucrose, methanol, and glycerin.7-9, 12, 15, 

19 Even with the wide variety of hydrocarbon fuels, the end products are always 

hydrogen, carbon monoxide, methane, carbon dioxide, ethylene, ethane, and trace 

propane and propylene for larger hydrocarbons.  

While all hydrocarbon fuels break down to make hydrogen, each reacts differently 

with supercritical water. Some fuels undergo supercritical water reformation and react 

with the water and produce hydrogen and carbon monoxide. Other fuels do not react with 

the supercritical water, and instead use it as a medium for decomposition. Understanding 

the different mechanisms is important, and one factor that bears considerable significance 

is the presence and quantity of hydroxyl groups in the molecular structure.   

In the presence of supercritical water, glycerin tends to undergo decomposition, as 

opposed to reacting with supercritical water for reformation.14 In glycerin decomposition, 
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the first step is dehydration into either hydroxyacetone or 3-hydroxypropanal. Both of 

these intermediates can decompose into formaldehyde and acetaldehyde.24, 27, 57 The 

formaldehyde decomposes readily into carbon monoxide and hydrogen, while 

acetaldehyde decomposes into methane and carbon monoxide.14, 49 3-hydroxypropanal 

can also undergo dehydration to make acrolein, and then acrolein decomposes into 

carbon monoxide and ethylene.50, 51 Ethylene produced then reacts with hydrogen to 

produce ethane. Other liquid intermediates from hydroxyacetone and acrolein include 

propionaldehyde, acetone, propylene glycol, 1-propanol, allyl alcohol, 2-butanone, 

cyclopentanone, and phenol.23, 24, 26 

Like glycerin, propylene glycol has multiple decomposition mechanisms in the 

presence of supercritical water. The first pathway for propylene glycol decomposition is 

dehydrogenation to hydroxyacetone.45 This is followed by decomposition to 

formaldehyde and acetaldehyde, which can decompose further into carbon monoxide and 

hydrogen and carbon monoxide and methane, respectively.14, 49 Another mechanism of 

propylene glycol decomposition is dehydration to propionaldehyde, which subsequently 

decomposes to ethane and carbon monoxide. 47, 48  

There are many decomposition pathways that isopropanol can go through before 

making all gaseous products. Isopropanol can first decompose by dehydrogenating and 

becoming acetone.34, 35 From there, it decomposes further into methane and ethanone.36 

Two ethanone molecules can then react to produce ethylene and two carbon monoxide 

molecules.36, 37 It is also possible that acetone may undergo free radical decomposition by 

dissociation to methyl and acetyl radicals.40 
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Another possible mechanism for isopropanol decomposition starts with 

dehydration to become propylene.41, 42 Propylene can then undergo a series of free radical 

decomposition reactions which produce primarily methane, ethylene, and hydrogen, with 

small quantities of higher hydrocarbons.43 Propylene can also be hydrogenated by the 

hydrogen produced from the other decomposition pathway to produce propane, which 

can then undergo its own series of decomposition reacitons.44 Propylene may also under 

go supercritical water reformation.  

Any carbon monoxide produced in these reactions may then undergo a forward 

water gas shift reaction to produce carbon dioxide and hydrogen, if the imposed condition 

is appropriate. While the reaction is of a reversible kind, the forward reaction is dominant 

at temperatures below 815°C.16 As the water gas shift reaction is the only reaction to 

produce carbon dioxide, it is easy to determine the extent of water gas shift reaction 

taking place.  

 

2.3 EXPERIMENTAL  

2.3.1 Materials. The chemicals used for these experiments were deionized water, 

99.7 percent pure glycerin from the chemistrystore.com, 99 percent extra pure propylene 

glycol from Acros Organics, and 70 percent isopropanol and 30 percent water solution 

from Fisher Scientific. Glycerin above 80 percent purity by weight is hygroscopic and 

will absorb atmospheric water. To prevent unknown quantities of water from diluting the 

glycerin and confounding the experimental results, freshly unsealed containers were pre-

diluted with water to 75 percent purity. The solutions for these experiments were mixed 
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so there was a water-to-fuel molar ratio of 8. The molar and weight compositions of these 

solutions are shown in Table 2.  

2.3.2 Reactor System. These experiments were performed on the Multi-Fuel 

Supercritical Water Reformer of Ohio University’s Sustainable Energy and Advanced 

Materials Laboratory. The multi-fuel reformer is a custom-designed mini-pilot scale 

supercritical reforming system consisting of a solution feed system, a preheating system, 

a reactor with a zone heater, a liquid effluent collection/analysis system and a gas 

sampling/analysis system.  The entire process system is controlled using Labview® data 

acquisition and control system. Figure 1 shows a schematic diagram of the entire reaction 

system. 

The solution feed system includes an Eldex piston pump to continuously feed 

water and fuel solution and get the system up to pressure. The solution then enters the 

preheat system which consists of an integrated heat exchanger where hot reactor effluent 

warms the incoming solution. The preheat system also warms solution with heat tape and 

prevents heat loss with ceramic insulation.  

The reactor system consists of a Haynes® Alloy 282 reactor with a zone heater. 

Haynes® Alloy 282 contains primarily nickel with of chromium, cobalt, molybdenum, 

titanium, aluminum, and iron.53 Thermocouples in a thermowell running through the 

center of the reactor are used to monitor the temperature in the reactor. Inside the reactor 

is where the solution reaches the temperature specified for the experiment.  

 The solution then goes back through the integrated heat exchanger to heat 

incoming feed solution, followed by a water-cooled heat exchanger. The solution then 
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flows through a control valve where it is returned to ambient pressure and the liquid and 

gaseous effluents are separated. Samples of the liquid are collected for further analysis. 

The gaseous effluent flows through a wet-test meter where the volumetric flow rate can 

be determined, and then gas samples can be taken through a septum with a gas sample 

syringe.  

2.3.3 Analysis. The analysis of the gas samples for these experiments was 

performed on a HP 5890 Series A gas chromatograph with a thermal conductivity 

detector. Argon was used as a carrier gas for the gas samples, and the column was 

calibrated with a standard from Praxair to detect hydrogen, air, carbon monoxide, 

methane, carbon dioxide, ethylene, ethane, propylene, and propane. 

Samples of the liquid effluent were collected at ambient conditions and stored in 

screw-top bottles. The samples were then analyzed using a Thermo Scientific ISQ gas 

chromatograph/mass spectrometer system. Before analysis, each sample was diluted 

using methanol to a 1/5 sample-to-methanol solution to aid in separation and reduce noise 

peaks in the sample.  

2.3.4 Procedure. The Multi-Fuel Reformer reactor system was regularly 

cleaned with supercritical and sub-critical water before and after each day that 

experimental runs were being conducted. Each experimental run would continue until 

steady state conditions were achieved. An experiment was considered to have reached 

steady state when two gas samples showed matching percentages of all of the effluent 

gases. During the same time period there also need to be no significant changes in the 

volumetric flow rate of the gas or any process variables, such as temperature or pressure. 

Table 3 shows a summary of the experimental runs conducted. 



 

 

110

2.3.5 Definitions. The reactor space time given for each experimental run was 

calculated using the internal volume of the Haynes® Alloy 282 reactor and the estimated 

volumetric flow rate of the solution at the reactor conditions. The volumetric flow rate 

was calculated at the reactor temperature and pressure with Aspen®-Plus simulation 

software using Peng-Robinson equation of state with Wong-Sandler mixing rules. This 

ensures that a uniform volumetric flow rates enter the reactor regardless of temperatures 

and pressure changes that effect density.  

 The carbon gasification for each of the experiments is defined the moles of carbon 

exiting in the gaseous effluent divided by the moles of carbon entering. The amount of 

carbon exiting in the gaseous effluent is calculated using the volumetric flow rate of the 

gaseous effluent and the gaseous composition from the gas chromatograph results. The 

amount of moles of carbon entering the reactor system is based on the mass flow rate 

entering the reactor and the composition of the feed solution.  

 The hydrogen conversion is based on the amount of hydrogen gas coming out in 

the gaseous effluent divided by the theoretical maximum that could be produced from 

supercritical water reformation. The theoretical maximum assumes that all hydrocarbon 

breaks down into carbon monoxide and hydrogen through supercritical water 

reformation,  and that all carbon monoxide then undergoes the water gas shift reaction to 

produce more hydrogen and carbon dioxide. The theoretical maximum moles of 

hydrogen that can be produced per mole of glycerin, propylene glycol, and isopropanol 

are seven, eight, and nine, respectively.  

 The preliminary gas composition results are based on moles of the gaseous 

species per mole of carbon entering the reaction system. These results show overall 
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amounts of each gaseous species being produced at the different conditions, but it is 

difficult to tell what is happening with regard to reaction selectivity since the amount of 

all gaseous species tends to increase with increasing carbon gasification. 

 The next set of gas results show the amount of gaseous species per mole of 

gaseous carbon exiting the reactor. These results are obtained by dividing the moles of 

gaseous species per moles of carbon fed by the carbon gasification. Normalizing all 

experiments this way better displays trends in the selectivity of gaseous products rather 

than actual amount being produced.  

 Another operation that can be done to the gaseous results is to mathematically 

undo the water gas shift reaction. To do this, the moles of carbon dioxide per moles of 

gaseous carbon in the results are taken out, and the same value is subtracted from the 

hydrogen results and added to the carbon monoxide results. Undoing the results of the 

water gas shift reaction gives a clearer view of what is happening with regards to 

decomposition by eliminating the reaction that consumes the products of the 

decomposition.  

 

2.4 RESULTS AND DISCUSSION 

The results of each hydrocarbon species with increasing temperature will be 

examined first, followed by the effect of increasing the amount of hydroxyl groups at a 

given temperature. The primary gases produced in these experiments were hydrogen, 

carbon monoxide, methane, carbon dioxide, ethane, and ethylene. No noticeable 
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quantities of propane or propylene were produced. Table 4 shows the results of the 

experimental runs. 

2.4.1 Glycerin. With increasing temperature, the amount of gasification of 

carbon in a glycerin solution increases, starting at 22% at 550°C and reaching 91% at 

650°C. Likewise, the amount of moles of each gaseous species being produced per mole 

of carbon fed increase with increasing temperature. This increase of all gaseous species 

corresponds more to the increasing gasification rather than any change in reaction 

selectivity. Figure 2 shows the effect of temperature on glycerin.  

To determine what is happening to the reaction selectivity with temperature, a gas 

composition was determined using a basis of moles of gaseous carbon exiting the reactor 

rather than moles of carbon fed. The results are shown in Figure 3. Carbon dioxide stays 

approximately constant, indicating little increase in the water gas shift reaction with 

temperature at these conditions. Hydrogen also stays relatively constant, while carbon 

monoxide decreases and ethane and methane increase. Figure 4 shows the gas results 

with the water gas shift reaction undone, to better show the decomposition products of 

glycerin, and again carbon monoxide decreases while methane and ethane increase.  

A liquid sample from experimental run WG-127M was analyzed to determine the 

liquid intermediates that are produced in the gasification of glycerin in supercritical 

water, and the results are shown in Figure 5. WG-127M was performed at 600°C, 3500 

psi, 8/1 water-to-glycerin molar ratio, and 45 sec space time. Results from the liquid 

analysis show the primary liquid intermediates produced were hydroxyacetone, acetic 

acid, propanoic acid, and methyl propionate. Minor products include 2-butanone, 1-

propanol, allyl alcohol, phenol, and 2-methyl phenol. Acetaldehyde and propionaldhyde 
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oxidize to acetic acid and propanoic acid, respectively, when exposed to atmospheric 

acid, which explains their absence in the liquid sample.54 

Using the mechanism developed in Figure 19 in Paper 1: Determination of a 

Comprehensive Mechanistic Reaction Pathway and the Effects of Reaction Conditions on 

the Decomposition of a Crude Glycerin Solution in Supercritical Water, two primary 

reaction pathways for glycerin decomposition to gaseous products were determined. In 

the first pathway, glycerin was dehydrated to produce hydroxyacetone or 3-

hydroxypropanal, both of which can decompose to formaldehyde and acetaldehyde.14, 27, 

55 Formaldehyde decomposes readily into carbon monoxide and hydrogen, while 

acetaldehyde gasifies to become methane and carbon monoxide.14, 49 The second 

mechanistic pathway involves the decomposition of propionaldehyde into ethane and 

carbon monoxide.48 Propionaldehyde can be produced from the hydrogenation of 

hydroxyacetone to propylene glycol which is then dehydrated, or it can be produced from 

the dehydration of 3-hydroxypropanal to acrolein which is then hydrogenated.24, 27  

The favored mechanism for glycerin decomposition, as shown in Paper 1 Figure 

20, was then analyzed. This was accomplished by comparing the amount of carbon 

monoxide actually produced to the amount calculated by the proposed mechanism and 

the amounts of other gaseous species present. The results are shown in Figure 6. At lower 

temperatures, the mechanism does not work well, while the values are approximately the 

same at 650°C when there is almost complete carbon gasification. The discrepancy at 

lower temperatures is believed to be the result of hydrogen produced reacting with liquid 

intermediates, and therefore being depleted from the gaseous effluent. When carbon 
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gasification is close to completion and there is very little liquid intermediates remaining, 

the favored glycerin decomposition mechanism’s predictability improves.   

2.4.2 Propylene Glycol. The amount of propylene glycol gasification increases 

with increasing temperature, with very little carbon gasifying at 550°C and almost 90 

percent conversion at 650°C. The amounts of most gaseous species increased with 

increasing temperature, with only carbon dioxide and hydrogen staying about constant 

going from 600°C to 650°C. These trends are shown in Figure 7. 

 Looking at the gas composition in moles of gaseous species per mole of gaseous 

carbon exiting the reactor, as shown in Figure 8, increasing temperature led to decreased 

hydrogen and carbon monoxide. Carbon dioxide is only produced as a product of the 

water gas shift reaction, indicating a decrease in the relative amount of that reaction. The 

methane and ethane produced increase with increasing temperature. Figure 9 shows the 

gas composition of propylene glycol decomposition in supercritical water with the water 

gas shift reaction undone.  

 Figure 10 displays the results of the liquid analysis of run WPG-130M, which 

used propylene glycol as fuel. The experiment was carried out at 600°C, 3500 psi, 8/1 

water-to-propylene glycol molar ratio, and 45 sec space time. The liquid species present 

appear to be very similar to those produced by glycerin, with hydroxyacetone being one 

of the primary products. Therefore, one of the primary pathways is the dehydrogenation 

of propylene glycol to hydroxyacetone, which is followed by the formation of 

acetaldehyde and formaldehyde and their respective gaseous products.14, 45  
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Another primary pathway involves the dehydration of propylene glycol to 

propionaldehyde, which is subsequently broken down into carbon monoxide and 

ethane.48 Finally, because of the increased presence of 1-propanol compared to the liquid 

sample from the glycerin experiment, creation of 1-propanol from propionaldehyde 

hydrogenation must be occurring more readily. 1-propanol can decompose to produce 

acetaldehyde and methane.58 The 2-ethyl-4-methyl-1,3 dioxolane and 2-methyl 1,3 

dioxane are the likely condensation products of propylene glycol and propionaldehyde, 

and propylene glycol with acetaldehyde, respectively.63 These larger molecules are not 

believed to contribute to the gaseous products, and are therefore not included in the 

analysis of a primary reaction pathway. Figure 11 shows the hypothesized propylene 

glycol decomposition pathway. 

 The proposed decomposition pathways were checked against the actual results. 

Figure 12 shows the calculated carbon monoxide produced using the mechanism plotted 

against the actual carbon monoxide. This decomposition mechanism appears to be 

consistent with the observed data at all temperatures, so gaseous species reacting with 

liquid intermediates is probably at a minimum. This is because the propylene glycol 

decomposition pathway only contains carbon-oxygen double bonds to hydrogenate and 

not the more thermodynamically favored carbon-carbon double bonds. This is different 

from glycerin decomposition which has a carbon-carbon double bond in acrolein.  

2.4.3 Isopropanol. Figure 13 shows the carbon gasification and gas 

composition, in moles of gaseous species per mole of carbon fed, of isopropanol 

decomposition. With increasing temperature, carbon gasification increases reaching over 

90 percent at 650°C. The amount of methane produced appears to increase at a similar 
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rate as carbon gasification, and the amounts of most other gaseous species produced 

increases with increasing temperature. The only gaseous species to show any decrease is 

hydrogen, which decreases substantially with increasing temperature. This is indicative of 

decomposition occurring instead of supercritical water reformation, since at higher 

temperatures more reformation would occur producing more hydrogen.  

 The gaseous composition for isopropanol based on moles of gas species per mole 

of gaseous carbon are shown in Figure 14. In Figure 14 the moles of hydrogen produced 

per moles of carbon coming out in the gaseous effluent is very high at low temperatures, 

with almost 3.5 hydrogen molecules coming out per carbon at 550°C. This is indicative 

of isopropanol dehydrogenation to produce acetone occurring substantially at lower 

temperatures, while the subsequent decomposition reactions of acetone not occurring as 

easily. This leads to a small amount of carbon-containing molecules being present in the 

gaseous effluent. At higher temperatures where more carbon is gasified, the amount of 

hydrogen per gaseous carbon is much smaller. The relative amount of carbon dioxide 

produced decreases with increasing temperature, meaning less water gas shift reaction is 

occurring per carbon atom. The amounts of ethane, ethylene, and carbon monoxide 

increase with increasing temperature, while methane decreases slightly. 

The liquid effluent from experimental run WI-133M, which was conducted at 

600˚C, 3500 psi, 8/1 water-to-isopropanol molar ratio, and 45 sec space time, was 

analyzed. The species with the highest relative abundance was isopropanol, which is the 

result of WI-133M only achieving only 22.9 percent carbon gasification. Other liquid 

species were 2-butanone, 2-pentanone, 2-hexanone, acetic acid, methyl isobutyl ketone, 

and 2,5-hexadione. Due to the amount of hydrogen produced from run WI-133M at such 
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low carbon gasification, one would expect to find acetone, which is suspiciously absent 

from this liquid sample. The lack of acetone in this liquid sample could be the result of 

acetone being a short-lived intermediate species in supercritical water, or it could be the 

result of poor liquid separation from the large isopropanol peak. The results of the liquid 

analysis are shown in Figure 15. 

These liquid species are indicative of isopropanol dehydrogenating to acetone, 

and then undergoing a series of free radical reactions. The first step involves acetone 

dissociating to a methyl radical and acetyl radical.40 The methyl radical can then react 

with other acetone molecules to produce 2-butanone and a hydrogen radical. Methyl 

radicals can continue to chain to produce 2-pentanone, methyl isobutyl ketone, and 2-

hexanone. Methyl radicals may also react with hydrogen radicals to produce methane, 

which there is a significant amount in the gaseous effluent. If an acetone loses two methyl 

radicals then a carbon monoxide is produced, while two methyl radicals can react to 

produce ethane. The hydrogen radicals can react with the acetyl radicals to produce 

acetaldehyde. Two acetone molecule can also react to produce 2,5 hexadione and 

hydrogen gas.   

Due to the wide variety of reactions that can occur with free radical isopropanol 

decomposition, a stoichiometric evaluation of the mechanistic pathway could not be 

performed. At 500°C there is very little carbon gasification occurring, but a great deal of 

hydrogen being produced, indicative of dehydrogenation to acetone. Based on the liquid 

intermediates found at 600°C, it seems the primary reaction pathway is free radical 

decomposition of acetone, and not decomposition of acetone to ethanone or dehydration 

to propylene. Because of the low hydrogen and carbon monoxide values at 650°C, it is 



 

 

118

apparent that the supercritical water reformation of isopropanol does not become a 

prominent reaction until higher temperatures.  

2.4.4 Effect of Increasing Number of Hydroxyl Groups. The effect of 

increasing hydroxyl groups on the different C3 hydrocarbons was then analyzed. Figures 

16-21 show the trends in carbon gasification as well as gas composition at 550, 600, and 

650°C. Points with hydroxyl group to carbon ratios of 0.33, 0.66, and 1 correspond to 

isopropanol, propylene glycol, and glycerin, respectively.  

In Figure 16, which shows the gasification and decomposition results at 550°C, 

increasing the number of hydroxyl functional groups increases carbon conversion as well 

as carbon monoxide produced, which makes sense since there are more oxygenated 

carbons present with more hydroxyl groups.  In other words, more hydroxyl groups make 

the chemical species that much easier to reform or decompose. Carbon dioxide and 

ethane show little increase with more hydroxyl groups, and both hydrogen and methane 

appear be at a minimum with propylene glycol. This difference in hydrogen is likely due 

to differences in decomposition mechanisms between isopropanol and propylene glycol. 

Isopropanol produces a great deal of hydrogen from dehydrogenation to acetone, for the 

ranges of temperatures studied. 

To see a clearer view of the selectivity of different gaseous products, Figure 17 

shows the results of the gas composition per mole of gaseous carbon. With an increasing 

ratio of hydroxyl groups to carbons, the amount of carbon monoxide produced steadily 

rises while methane decreases. This result is expected as molecules with more 

oxygenated carbons will be more prone to producing carbon monoxide, while molecules 



 

 

119

with fewer oxygenated carbons are more likely to produce methane. The amount of 

hydrogen being produced per gaseous carbon is very high for isopropanol and propylene 

glycol. This is due to dehydrogenation reactions occurring that produce gaseous 

hydrogen, but very little gaseous carbon. With increasing number of hydroxyl groups in a 

molecule there is also a decrease in carbon dioxide, likely due to a decrease in the water 

gas shift reaction, and ethane production reaches a maximum with propylene glycol 

decomposition. This is the result of propylene glycol producing ethane directly through 

propionaldehyde decomposition.  

Figure 18 shows the gas results for increasing hydroxyl groups at 600°C. Carbon 

gasification increases substantially going from isopropanol to propylene glycol, but then 

seems to level off going to glycerin meaning the addition of a third hydroxyl group has 

little effect on additional carbon conversion at 600°C. With increasing hydroxyl groups 

the amount of carbon monoxide increases and methane decreases, as expected. Hydrogen 

production is decreasing with increasing hydroxyl group-to-carbon-ratio, though not as 

drastically as it was at 550°C. Finally carbon dioxide and ethane appear to reach a 

maximum at propylene glycol, though with the large change in carbon gasification it is 

difficult to tell if it is due to a change in the selectivity of reactions. 

To find out how reaction selectivity is changing with the number of hydroxyl 

groups on the fuel, Figure 19 shows the gas composition per gaseous carbon. The trends 

appear identical to Figure 17, with increasing carbon monoxide, and decreasing hydrogen 

and methane. Carbon dioxide is again decreasing, meaning less of the water gas shift 

reaction, and ethane has it maximum value with propylene glycol due to propionaldehyde 

decomposition.    
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At 650°C, Figure 20 shows that all of the hydrocarbon starting materials have a 

uniform carbon conversion of around 90 percent, meaning that at 650°C the ratio of 

number of hydroxyl groups to carbon in the molecule has little effect in gasification. 

Other trends with increasing the number of hydroxyl groups are similar to the previous 

temperatures, with increasing carbon monoxide, decreasing methane, decreasing carbon 

dioxide, and ethane having a maximum with propylene glycol. The only difference is that 

hydrogen is increasing with increasing number of hydroxyl groups. This is likely due to 

an increase in isopropanol decomposing via dehydration to propylene rather than 

dehydrogenation, and increased hydrogen production from glycerin. Increased hydrogen 

production in glycerin is due to very little hydrogen reacting with liquid intermediates 

because gasification is almost complete. Also because propylene glycol has a larger 

ethane peak than glycerin, propylene glycol favors the propionaldehyde decomposition 

pathway more than glycerin. This supports the fact that propylene glycol produces less 

hydrogen than glycerin, since the propionaldehyde decomposition pathway produces no 

hydrogen. Figure 21 shows the results per gaseous carbon, which are basically the same 

as Figure 20 due to almost uniform carbon gasification.  

 

2.5  CONCLUSION 

 There are a number of meaningful conclusions that can be drawn from the 

experimental results. By increasing the number of hydroxyl functional groups on the 

molecule, an increase in gasification was found at each temperature, except at 650°C 

were the carbon conversion was approximately 90 percent for each fuel. The reason more 

oxygenated hydrocarbons decompose and gasify more readily is due to the presence of 
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more carbon-oxygen bonds, which break much more readily than carbon-hydrogen 

bonds.  

Also with an increasing amount of hydroxyl groups, the relative amount of carbon 

monoxide produced increased, while the amount of carbon dioxide and methane 

decreased. Hydrogen produced decreased with increasing hydroxyl-to-carbon ratio at 

lower temperatures, but hydrogen production increased at 650°C. This was due to the 

isopropanol decomposition favoring dehydration to produce propylene at higher 

temperatures rather than the dehydrogenation to produce acetone which occurs at lower 

temperatures. At 650°C, very little carbon monoxide and hydrogen are produced from 

isopropanol, indicating that little to no direct reformation is occurring at those 

temperatures, and will likely occur at higher temperatures. Also more hydrogen is 

produced from glycerin decomposition at higher temperatures due to fewer liquid 

intermediates the hydrogen can react with. 

 Also mechanisms for glycerin and propylene glycol decomposition were 

evaluated. The proposed glycerin decomposition mechanism was had good predictability 

with more carbon gasification, but at lower temperatures the carbon monoxide values that 

were calculated based on the proposed mechanism were much lower than the actual 

experimental values. This is likely due to some of the hydrogen produced at lower 

temperatures reacting with liquid intermediates and not coming out in the gaseous 

effluent. The proposed propylene glycol mechanism was found to correlate well for all 

temperatures. A mechanism was proposed for isopropanol decomposition as well, but due 

to the complexity of the free radical reactions involved, it could not be evaluated like the 

glycerin and propylene glycol mechanism.  
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Figure 1. The multi-fuel reformation reaction system at Ohio University. 

 

 

 

 

Figure 2. The effect of temperature on the carbon gasification and gas composition 

(moles/moles carbon fed) of glycerin decomposition. 
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Figure 3. The effect of temperature on the gas composition (moles/moles gaseous 

carbon) of glycerin decomposition. 

 

 

 

Figure 4. The effect of temperature on the gas composition (moles/moles gaseous 

carbon) of glycerin decomposition with the water gas shift reaction undone. 
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Figure 5. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WG-127M. 

WG-127M
Residence time Species

2.07 Methyl Propionate
2.38 2-Buntanone
2.94 1-Propanol
3.49 Allyl Alcohol
6.86 Cyclopentanone
8.51 Acetic Acid
9.64 Hydroxyacetone
9.81 Propionic Acid

13.13 Propylene Glycol
18.69-19.44 Phenols

23.71 Glycerin
12.84,14.03,16.74 Silicon Based Column Bleed
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Figure 6. The effect of temperature on the accuracy of the glycerin decomposition 

mechanism. 

 

 

 

 

 

Figure 7. The effect of temperature on the carbon gasification and gas composition 

(moles/moles carbon fed) of propylene glycol decomposition. 
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Figure 8. The effect of temperature on the gas composition (moles/moles gaseous 

carbon) of propylene glycol decomposition. 

 

 

 

 

Figure 9. The effect of temperature on the gas composition (moles/moles gaseous 

carbon) of propylene glycol decomposition with the water gas shift reaction undone. 
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Figure 10. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WPG-130M. 

WPG-130M

Residence time Species

2.08 Methyl Propionate

2.34 1,3 Dioxane, 2-Methyl
3.06 1,3 Dioxolane, 2-Ethyl-4methyl

3.30 1-Propanol

6.88 Cyclopentanone
8.44 Acetic Acid

9.32 Hydroxyacetone
9.59 Propionic Acid

13.8 Propylene Glycol
18.7-19.72 Phenols

13.02,14.88 Silicon Based Column Bleed
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Figure 11. Preferred propylene glycol decomposition pathway. 

 

 

 

 

Figure 12. The effect of temperature on the accuracy of the propylene glycol 

decomposition mechanism. 
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Figure 13. The effect of temperature on the carbon gasification and gas composition 

(moles/moles carbon fed) of isopropanol decomposition. 

 

 

Figure 14.* The effect of temperature on the gas composition (moles/moles gaseous 

carbon) of isopropanol decomposition. 

* The hydrogen produced at 550°C was 3.48 moles/moles gaseous carbon. The data point 
was omitted so that the trends in other gaseous species are more visible. 
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Figure 15. Gas chromatography/mass spectrometry results of liquid sample from 

experiment WI-133M. 

 

WI-133M
Residence time Species

2.18 Isopropanol

2.41 2-Butanone

3.13 2-Pentanone

3.44 Methyl Isobutyl Ketone
4.48 2-Hexanone

8.59 Acetic Acid

14.65 2,5-Hexadione

12.45 Silicon Based Column Bleed
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Figure 16. The effect of increasing hydroxyl-to-carbon ratio at 550°C on the carbon 

gasification and gas composition (moles/moles carbon fed) of hydrocarbons. 

 

 

Figure 17.* The effect of increasing hydroxyl-to-carbon ratio at 550°C on the gas 

composition (moles/moles gaseous carbon) of hydrocarbons. 

* The hydrogen produced at from isopropanol (OH/C=.333) was 3.48 moles/moles 
gaseous carbon. The point was omitted so that the trends in other gaseous species are 

more visible. 
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Figure 18. The effect of increasing hydroxyl-to-carbon ratio at 600°C on the carbon 

gasification and gas composition (moles/moles carbon fed) of hydrocarbons. 

 

 

 

 

Figure 19. The effect of increasing hydroxyl-to-carbon ratio at 600°C on the gas 

composition (moles/moles gaseous carbon) of hydrocarbons. 
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Figure 20. The effect of increasing hydroxyl-to-carbon ratio at 650°C on the carbon 

gasification and gas composition (moles/moles carbon fed) of hydrocarbons. 

 

 

 

 

Figure 21. The effect of increasing hydroxyl-to-carbon ratio at 650°C on the gas 

composition (moles/moles gaseous carbon) of hydrocarbons. 
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Table 1. Physical properties of glycerin, propylene glycol, isopropanol, and water. 

 
Property Glycerin Prop. 

Glycol 

Isopropanol Water 

Molecular Weight (g/mol) 92.09 76.09 60.09 18.02 
Density at 25 ˚C and 1 bar  (g/cm3) 1.26 1.032 0.786 0.99 

Melting Point (˚C) 17 -60 -88 0 
Boiling Point (˚C) 287 189 82 100 

Critical Temperature (˚C) 577 353 236 375 
Critical Pressure (atm) 74.02 60.2 48.35 217.7 

 

 

 

 

 

 

 

 

 

Table 2. Weight and mole percent of the water/fuel solutions. 

 

 

 

 

 

 

 

 

Fuel Water/fuel molar ratioWater% Fuel% Water% Fuel%

Glycerin 8.00 61.03 38.97 88.89 11.11

Propylene Glycol 8.00 65.45 34.55 88.89 11.11
Isopropanol 8.00 70.58 29.42 88.89 11.11

Solution Type Weight percent Mole percent
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Table 3. Summary of experimental run conditions. 

 

 

 

 

 

Table 4. Summary of experimental run results. 

 

 

 

 

 

Run No. Temp Pressure Water Fuel Fuel wt%
Water/Fuel 

ratio

(
o
C) (psig) (g/min)

WG-126M 549 3498 17.1 Glycerin 38.97 8
WG-127M 599 3485 14.4 Glycerin 38.97 8
WG-128M 648 3452 13.0 Glycerin 38.97 8
WPG-129M 549 3510 13.5 Prop. Gly. 34.55 8
WPG-130M 599 3480 12.2 Prop. Gly. 34.55 8
WPG-131M 648 3456 11.2 Prop. Gly. 34.55 8
WI-132M 549 3501 12.3 Isopropanol 29.42 8
WI-133M 598 3485 11.1 Isopropanol 29.42 8
WI-134M 649 3499 10.6 Isopropanol 29.42 8

Run No.
Product Gas 

Flow

(L/min) H2 CO CH4 CO2 C2H4 C2H6

WG-126M 1.48 0.08 0.15 0.02 0.02 0.00 0.01
WG-127M 3.21 0.20 0.34 0.09 0.04 0.00 0.03
WG-128M 4.46 0.29 0.48 0.18 0.09 0.00 0.08

WPG-129M 0.50 0.06 0.02 0.01 0.02 0.00 0.01
WPG-130M 3.09 0.25 0.19 0.11 0.11 0.01 0.09
WPG-131M 3.65 0.23 0.25 0.25 0.12 0.00 0.13
WI-132M 0.64 0.11 0.00 0.02 0.01 0.00 0.00
WI-133M 1.89 0.27 0.02 0.12 0.04 0.00 0.01
WI-134M 3.52 0.17 0.08 0.41 0.12 0.05 0.09

Gas Yield (mol gas/mol carbon fed)
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CONCLUSIONS 

In summary, the effect supercritical water on a crude glycerin solution and other 

polyols was thoroughly analyzed. Through evaluation of the liquid and gas compositions 

of the experiments conducted, and comprehensive decomposition mechanism of glycerin 

in supercritical water was elucidated. Using Gaussian modeling software to evaluate the 

thermodynamic properties of the reactions that were occurring, it was determined that the 

primary reactions pathways were those that produced acetaldehyde, formaldehyde, and 

propionaldehyde. This preferred decomposition pathway was evaluated by comparing the 

gas composition of carbon monoxide determined experimentally to the value of carbon 

monoxide calculated using the proposed decomposition pathway. For experiments with 

high carbon gasification the preferred model matches with the experimental data, while 

the model deviates from the experimental values for experiments with low carbon 

gasification due to hydrogen reacting with acrolein and other intermediate liquid species.  

The effect of temperature, space time, water-to-carbon molar ratio, pressure, and 

glycerin-to-methanol weight ratio on the gas composition and carbon gasification was 

determined as well. Overall, increasing temperature, space time, and water-to carbon 

molar ratio increased the amount of carbon gasification. Increased methane and ethane 

with decreasing hydrogen and carbon monoxide selectivity was observed with increasing 

temperatures and space times. Changing the glycerin-to-methanol weight ratio had no 

effect on the amount of carbon gasification, showing that glycerin and methanol 

decompose at the same rate. Additionally, a set of empirical equations for carbon 

monoxide, methane, and ethane were elucidated to show the linear trend in the selectivity 

of the gases with temperature and space time.  
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Finally the role of the hydroxyl group in supercritical water was determined by 

conducting experiments using glycerin, propylene glycol, and isopropanol. 

Decomposition mechanisms for all three hydrocarbons were determined, and the 

mechanisms for glycerin and propylene glycol were evaluated by comparing them to gas 

compositions found experimentally. In addition, it was shown that increasing the 

hydroxyl group-to-carbon ratio increased the amount of carbon gasification as well as the 

amount of carbon monoxide produced. Species with fewer hydroxyl groups were shown 

to produce more methane.  
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