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ABSTRACT

This dissertation investigates the application of a variety of computational intelli-

gence techniques, particularly clustering and adaptive dynamic programming (ADP) designs

especially heuristic dynamic programming (HDP) and dual heuristic programming (DHP).

Moreover, a one-step temporal-difference (TD(0)) and n-step TD (TD(λ)) with their gradi-

ents are utilized as learning algorithms to train and online-adapt the families of ADP. The

dissertation is organized into seven papers. The first paper demonstrates the robustness

of model order reduction (MOR) for simulating complex dynamical systems. Agglom-

erative hierarchical clustering based on performance evaluation is introduced for MOR.

This method computes the reduced order denominator of the transfer function by clustering

system poles in a hierarchical dendrogram. Several numerical examples of reducing tech-

niques are taken from the literature to compare with our work. In the second paper, a HDP

is combined with the Dyna algorithm for path planning. The third paper uses DHP with an

eligibility trace parameter (λ) to track a reference trajectory under uncertainties for a non-

holonomic mobile robot by using a first-order Sugeno fuzzy neural network structure for the

critic and actor networks. In the fourth and fifth papers, a stability analysis for a model-free

action-dependent HDP(λ) is demonstrated with batch- and online-implementation learning,

respectively. The sixth work combines two different gradient prediction levels of critic

networks. In this work, we provide a convergence proofs. The seventh paper develops a

two-hybrid recurrent fuzzy neural network structures for both critic and actor networks.

They use a novel n-step gradient temporal-difference (gradient of TD(λ)) of an advanced

ADP algorithm called value-gradient learning (VGL(λ)), and convergence proofs are given.

Furthermore, the seventh paper is the first to combine the single network adaptive critic

with VGL(λ).
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PAPER V

1 Schematic diagram for the adaptation of an online model-free n-step ADHDP
(NSHDP(λ)). This design uses two critic networks: the one-step critic network
(CN(0)) and the n-step critic network (CN(λ)). The CN(0) produces a one-step-
return value function (v̂0(t)) based on the ordinary temporal-difference (TD)
learning algorithm, while the CN(λ) produces the average of the n-step-return
value function (v̂λ(t)) based on a TD(λ) learning algorithm [27]. The TD(λ)
learned from the average of the n-step-return backups, where λ represents the
proportional average weight. λ−return (Rλt ) [16] is another name for the average
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equivalent to the one-step TDbackup (λ=0). It focuses on the recent information
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the bootstrapping eligibility trace parameters (λ and γ) give the CN(λ) the
ability to determine a depth (effecting via λ) and a width (effecting via γ)
from information during a sequence of events (i.e., the rewards in the backward
view of TD(λ), [21]). The CN(0) provides the value function that concentrates
on recent events. Therefore, the NSHDP(λ) design combines the details of
the current information (real-time data) with a sequence of predicted events.
This combination provides the optimal decisions [40] in the control/industry
field as well as [41] in the consumer/marketing field (correlation between real
time and history). The weights for CN(0) and CN(λ) are updated according
to the TD(0) error (blue dashed line) and the TD(λ) error (green dashed line),
respectively. The actor network (AN) that provides the action values is tuned
by two paths (backpropagating errors): one through the CN(0) path (e0

a(t)) and
the other through the CN(λ) path (eλa(t)). This strategy assists AN training to
correlate and combine the fluid information from CN(λ) and CN(0). These two
paths are filtered via a similar value of λ, and they combine to produce a total
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connection input nodes with the output nodes were zero. ω̂

0{h}
c represents

hidden weights, which are connected to the input layer with the hidden layer.
The output weights are indicated as ω̂0{o}

c , which connect both the input and
hidden layers with the output layer. ak(t) is the kth hidden node input of the
critic network, and bk(t) is the corresponding output of the hidden node. A
hyperbolic tangent threshold function (φ(.)) is applied to the hidden neurons. . . . 166
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3 A schematic diagram of the average n-step learning critic network (CN(λ)) in
NSHDP(λ). The ω̂λ{h}c represents the hiddenweightswhich are connected to the
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1 Schematic diagram for the adaptation of a novel online n-step value gradient
learning (NSVGL(λ)). Two critic networks and one actor network are used in
NSVGL(λ). A combination of two critic networks is presented to speed up
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and eligibility trace parameters. The weights for the one-step critic network
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c
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c
)
) are updated according
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)
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paths (backpropagating errors): one through Ĝ0 (xk, ω̂
0
c
)
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a) and the other
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(
Ĝλ

(
xk, ω̂

λ
c
)
path (eλa). This strategy can correlate and combine the

information from the two critic networks. These two paths are filtered via the
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SECTION

1. INTRODUCTION

1.1. SYSTEMSWITH REDUCING COMPLEXITY

Because there are numerous physical systems have high order mathematical models

in real world, these systems require a massive of a computational complexity to address,

solve and simulate. Many algorithms are used to make these systems less complicated,

while retaining the properties of the original system. These algorithms have a capability of

simulating affordable prototypes with fast and reliable responses. Model order reduction

(MOR) is applied inmany fields, such as computational biology, mechanics, fluid dynamics,

circuit design, and control systems. In this dissertation, the reduction focuses on control

area, which analyzes the characteristics and features of dynamic systems to reduce their

complexity while keeping their properties as possible as illustrated in the first paper in the

paper section of this dissertation.

1.2. ADVANCED ADAPTIVE DYNAMIC PROGRAMMING

Adaptive dynamic programming (ADP) is a powerful tool that allows an agent to

learn by interacting with its environment to obtain an optimal control policy. The ADP

technique uses a heuristic method to overcome a nonlinearity behavior system that generates

a difficulty to solve the Hamilton-Jacobi-Bellman equation instead of the Riccati equation.

The ADP technique allows agents to select an optimal action to minimize their long-term

cost value by solving the Bellman equation. A heuristic dynamic programming, a dual

heuristic programming and a globalized dual heuristic programming are three fundamental

categorizes for ADP technique. These categorizes consist of three approximation function
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networks, which are actor, critic and model networks that provide decision making, eval-

uation, and prediction, respectively. Because a model network, which predicts the future

system state, is included within these categorize, the ADP categorizes as a model-based

ADP design. If the action-dependent (AD) expression is used in the ADP, then the critic

network has the state and the action inputs. A model-free ADP design has been presented

for online learning, which is not required the model network. Many applications have used

the ADP techniques. A temporal-difference (TD) with eligibility trace parameter is a more

advanced learning algorithm than the traditional TD that combines basic TD learning with

an eligibility traces technique to further accelerate learning. The ADP technique is used to

train an actor network to give optimal actions based on minimizing a value function that is

produced from a critic network. In this dissertation, all networks are approximated by using

a multilayer perceptron neural network, and hybrid neuro-fuzzy networks. We investigate

in ADP with advanced TD learning and new novel structures that make system more robust,

fast and stable during training as presented in the second paper until seventh paper in paper

section of this dissertation.

1.3. RESEARCH CONTRIBUTIONS

This dissertation deals with the use of reducing complexity of models and applying

feature forward and backward views of eligibility trace procedures with ADP in various

benchmarks tasks. In concrete, we describe each paper’s contribution as follows:

1.3.1. Model Order Reduction Based on Agglomerative Hierarchical Cluster-

ing. The main contribution in this work is provided a model order Reduction (MOR)

technique that gives any required order of reduced model with a minimum MSE value.

Instead of neglecting some poles like traditional methods, our approach engages all prop-

erties of the original system by using agglomerative hierarchical clustering of system poles

depending on a performance evaluation. Therefore, the method will be called HC-PE.

HC-PE is effective for converting original high order ordinary differential equations to low
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order equations. HC-PE with PA or GA takes the output response(s), and it calculates the

MSE between the original model and the reduced model. It uses an improved modified pole

clustering center in every selected pole-cluster. The pole-clusters for the original system

are selected by using a performance evaluation method as a similarity criteria in agglom-

erative hierarchical clustering. This gives a major advantage in minimizing error between

the reduced and original models. Optimizing is achieved by the pole-clusters taking the

minimumMSE among all pole-clusters on a certain level in the hierarchy dendrogram. The

hierarchy starts from the bottom (nth order original system), merging pairs or more pole

clusters at each move up until the 2nd order. HC-PE deals with denominator parameters

of ordinary differential equations (transfer function) for the reduced order model while PA

or GA addresses the numerator parameters. By combining these two parts, we get the

best performance behavior. In other words, in addition to the optimal best minimum error,

HC-PE with PA (or GA) still retains stability and robustness for the reduced model

1.3.2. Heuristic Dynamic Programming forMobile Robot Path Planning Based

on Dyna Approach. The main contribution in this work is provided a combination be-

tween direct heuristic dynamic programming (HDP) and Dyna planning (Dyna-HDP). This

combination provides the fast online free-model learning comparing with other traditional

reinforcement learning algorithms (one step Q-learning, SARSA, Q(λ), SARSA(λ), and

Dyna-Q). Whereas, this work compares these algorithms with Dyna-HDP for control of a

differential-drive wheeledmobile robot navigation problem in an unknown two-dimensional

indoor environment. A Second contribution in this work is merge a fuzzy Logic Controller

(FLC) with Dyna-HDP to provide a collision-free navigation path for instead of staring

from initial position similar a regular reinforcement learning algorithms.

1.3.3. Mobile Robot Control Based on Hybrid Neuro-Fuzzy Value Gradient

Reinforcement Learning. The main contribution in this work is used a combination of

eligibility trace parameter in dual heuristic dynamic programming with a first-order Sugeno

fuzzy neural network structure. This combination is usedwith both critic and actor networks.
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This approach is used to track a reference trajectory under uncertainties by computing the

optimal left and right torque values for a nonholonomic mobile robot. The impacts of

unmodeled bounded disturbances with various friction values is handled with a significant

enhancement of the robot’s capability to absorb unstructured disturbance signals and friction

effects. Because of affine dynamic model for nonholonomic mobile robot, we use a critic

only to calculate a optimal control signal to reduce a computational complexity with faster

responses without needs an neural network identifier for system.

1.3.4. The Boundedness Conditions for Model-Free HDP(λ). This work over-

comes the drawback of using eligibility-trace storage in backward view property. Thus,

simplicity and performance is the first contribution of this work. The second contribution

is providing a stability proof to determine what suitable learning parameters (λ, γ and

critic/actor learning rates) should be used during training. Under certain conditions, we

use the Lyapunov theory to prove stability for the specific case of HDP(λ). We extend the

stability of model-free learning only for the one-step (λ = 0) HDP(0) approach into HDP

with a general λ parameter.

1.3.5. Online Model-Free N-Step HDP with Stability Analysis. A simple in-

terpretation and good performance are two well-known properties attached with TD(λ)

approach (eligibility trace temporal difference learning). But this approach suffers from

using an additional memory variable associated with each state to store the eligibility trace

parameter; therefore, a high computational complexity is adjoined with. Our previous work

(previous paper) solved this problem but for batch-implementation learning at least for first

epoch. Thework is designed is used for online-implementation learning. Thus, our structure

in this work has memory efficient since it overcomes the drawback of using eligibility-trace

storage and online learning. The online learning aspect with low computational is the first

contribution for this work. The second contribution is that it provided stability proofs to

present what a suitable learning parameters (λ, γ and critic/actor learning rates) should be

during training.



5

1.3.6. An Improved N-Step Value Gradient Learning Adaptive Dynamic Pro-

gramming Algorithm for Online Learning, with Convergence Proof and Case Studies.

The fundamental contributions of this paper are as follows: First, The theoretical foundation

analysis for NSVGL(λ) architecture is presented designing how the agent receives better

information about the control action than traditional DHP. Memory efficiency is provided

by NSVGL(λ) via online learning in contest with online VGL(λ) that uses a matrix for

eligibility trace parameters to store every signal state trajectory. Second, a theoretical con-

vergence analysis is provided for the NSVGL(λ) structure. Gradients of the one-step and

n-step value functions are learned. We demonstrate that both gradients are monotonically

nondecreasing and converges to their optimal values. These contributions are verified by

simulation in two case studies with provindig a Pseudocode of NSVGL(λ).

1.3.7. Convergence Analysis Proofs for Recurrent Neuro-Fuzzy Value-Gradi-

ent Learning with and without Actor. The main contribution in this work are: First,

the theoretical foundation analysis for n-step adaptive actor-critic approach of VGL(λ) ar-

chitecture with NF (NF-VGL(λ)) is presented that illustrate how the agent receives better

information about the control action than traditional DHP. Second, the single adaptive

n-step critic approach of VGL(λ) (SNVGL(λ)) is derived to created a pioneer architec-

ture of SNVGL(λ). SNVGL(λ) uses NF structures (NF-SNVGL(λ)) to compare with first

contribution. Third, a theoretical convergence analysis is provided for the VGL(λ) and

SNVGL(λ) architectures by using iterative ADP algorithm. We demonstrate that gradient

are monotonically nondecreasing and converges to optimal values. Final, these advantages

of VGL(λ) and SNVGL(λ) with and without recurrent feedback parameters are verified by

simulation with high-nonlinear dynamic model case study with various uncertainties.
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ABSTRACT

This paper presents an improved method for reducing high-order dynamical system models

via clustering. Agglomerative hierarchical clustering based on performance evaluation (HC-

PE) is introduced for model order reduction (MOR). This method computes the reduced

order denominator of the transfer functionmodel by clustering system poles in a hierarchical

dendrogram. The base layer represents an nth order system, which is used to calculate each

successive layer to reduce the model order until finally reaching a second order system. HC-

PE uses a mean squared error (MSE) in every reduced order, which includes a modified pole

placement process. The coefficients for the numerator of the reduced model are calculated

by using the Pade approximation (PA) or alternatively a genetic algorithm (GA). Several

numerical examples of reducing techniques are taken from the literature to compare with

HC-PE. Two classes of results are shown in this work. The first sets are single-input single-

output (SISO) models that range from simple models to 48th order systems. The second

sets of experiments are with a multi-input multi-output (MIMO) model. We demonstrate

the best performance for HC-PE through minimum MSEs compared with other methods.
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Furthermore, the robustness of HC-PE combined with PA or GA is confirmed by evaluating

the 3rd order reduced model for the triple link inverted pendulum model by adding a

disturbance impulse signal and by changing model parameters. HC-PE with PA slightly

outperforms its performance with GA, but both approaches are attractive alternatives to

other published methods.

Keywords: Hierarchical clustering (HC), model order reduction (MOR), Pade approxima-

tion (PA), genetic algorithm (GA), triple link inverted pendulum, linear quadratic regulator

(LQR), pole replacement.

1. INTRODUCTION

Numerous physical systems have high order mathematical models. Schilders [1]

shows many examples for systems that require high complexity computations to address and

simulate them. Many algorithms for MOR are used to make these systems less complicated,

while retaining the properties of the original system. These algorithms are capable of

simulating affordable prototypes with fast and reliable responses. MOR is applied in many

fields, such as computational biology, mechanics, fluid dynamics, circuit design, and control

systems. This work focuses on MOR for control, which analyzes the characteristics and

features of dynamic systemmodels to reduce their complexity while keeping their properties

as possible. Sandberg et al. [2] showed a variety of MOR algorithms. In this work,

a new method for reducing high order system models is presented. Many system model

descriptions exist in the literature [3]-[5], such as state space representation and transfer

function representation. The roots of the denominator of a transfer function (characteristic

polynomial of a system) generate frequency values, which are called poles, while the roots

of the numerator are called zeros. A zero-pole representation is a description of a system in

terms of the poles and zeros. A high order original system model (G(s)), which is formed
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by its zero-pole representation is given as follows:

G(s) =K (s − Zυ)(s − Zυ−1) . . . (s − Z2)(s − Z1)
(s − pn)(s − pn−1) . . . (s − p2)(s − p1)

, (1)

where K is the gain of the system, s is the Laplace complex variable, Zi (i = 1, 2, . . . , υ)

are zeros of the system, and pi (i = 1, 2, . . . , n) are its poles. In most transfer functions,

the degree of the numerator is less than the degree of the denominator (υ < n), which

is called strictly proper [4] . A strictly proper transfer function can easily transfer to a

state space representation. In this paper, we use a hierarchical clustering technique for

clustering the poles to reduce the order of any original model to an r th order reduced

model (Gr(s)). Therefore, this method takes all original system characteristics by testing

all system poles. It is not like traditional methods such as model truncation (Gramians

and Hankel singular values) via singular value decomposition [6] , [7] . For instance,

the Hankel approach deals with state energy by balancing controllability and observability

Gramians to satisfy the Lyapunov equation, and the final state space sorts states according

to their energy. There are many reduction techniques in the literature for both time and

frequency domains of discrete and continuous linear systems. Sinha and Pal [8] show

reduced order modeling based on freely collected clustering of the zeros and poles by

calculating the inverse distance measure in the time domain. Pal [9] demonstrates that the

reduced order model retains stability by using the PA. Neeraj and Anirudha [10] use fuzzy

C-means clustering of system poles to reduce a higher order interval discrete system using

the minimum Euclidean distance as a similarity criterion. Reduction in the continuous time

domain is discussed by Vishwakarma and Prasad [11] ; they address the original model with

state space matrices and modify Hankel matrices consisting of time-moment and Markov

parameter elements to less complex matrices through the minimal realization technique.

Singh et al. [12] present model order reduction in discrete frequency domain through

mixing Chebyshev polynomials and the pole clustering method. Beyene [13] used inverse
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distance measure for pole-clustering and rational-interpolation techniques in frequency and

time domain simulations. The main contribution in this work is provided a MOR technique

that gives any required order of reduced model with a minimum MSE value. Instead of

neglecting some poles like traditional methods, our approach engages all properties of the

original system by using agglomerative hierarchical clustering of system poles depending on

a performance evaluation. Therefore, the method will be called HC-PE. HC-PE is effective

for converting original high order ordinary differential equations to low order equations as

shown in Fig. 1. HC-PE with PA or GA takes the output response(s), and it calculates the

MSE between the original model and the reduced model. It uses an improved modified

pole clustering center in every selected pole-cluster. The pole-clusters for the original

system are selected by using a performance evaluation method as a similarity criteria in

agglomerative hierarchical clustering. This gives a major advantage in minimizing error

between the reduced and original models. Optimizing is achieved by the pole-clusters taking

the minimum MSE among all pole-clusters on a certain level in the hierarchy dendrogram.

The hierarchy starts from the bottom (nth order original system), merging pairs or more pole

clusters at each move up until the 2nd order. HC-PE deals with denominator parameters

of ordinary differential equations (transfer function) for the reduced order model, while

PA or GA addresses the numerator parameters. By combining these two parts, we get

the best performance behavior. In other words, in addition to the optimal best minimum

error, HC-PE with PA (or GA) still retains stability and robustness for the reduced model as

presented in Appendix A . We demonstrate this by comparing it with several examples of

other methods. All abbreviations and symbols used in the paper are summarized in Table

3. The remaining sections are organized as follows: The problem statement is in Section 2.

HC-PE, PA, and GA are described in Section 4. Simulation results with numerical examples

are in Section 4. The response outputs for the reduced multivariable model of a triple link

inverted pendulum controlled by proportional-integral-derivative (PID) controller tuning

by GA are shown in Section 5. The conclusion is in Section 6.
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Figure 1. General diagram for usingHC-PE to reduce high ordermodels. Any systemmodel
is built by deriving physical laws (physical modeling) or by observing data (identification
modeling). Some models are represented by partial differential equations (e.g. heat transfer
equation), and other models are built by ordinary differential equations (e.g. robotics).
Finite difference techniques are used to discretize partial differential equations to derive a
numerical approximation for ordinary differential equations [3]. In this work, we focus on
the models, which are built by using ordinary differential equations (G). In combination
with PAorGA,HC-PE improves the evaluation for the reducedmodel (Gr) through selecting
minimum MSEs of clusters made from poles. To find the minimum MSE, all MSE values
should be calculated for each level (order). MSE is calculated between the original model
and the reduced models which is represented by the blue dashed line.



11

2. PROBLEM STATEMENT

This work uses HC-PE and PA (or GA) to obtain the coefficients for a reduced order

model. A continuous linear time invariant nth ordermodel’s, transfer function representation

is

G(s) = an−1sn−1 + an−2sn−2 + . . . + a1s + a0

bnsn + bn−1sn−1 + bn−2sn−2 + . . . + b1s + b0
, (2)

where all coefficients are known. Because of the strictly proper transfer function as in (1),

we start the degree of the numerator’s order from n−1. Then, the HC-PE approach reduces

the nth order model (2) to an r th order of Gr(s):

Gr(s) =
cr−1sr−1 + cr−2sr−2 + . . . + c1s + c0

dr sr + dr−1sr−1 + dr−2sr−2 + . . . + d1s + d0
, (3)

where all coefficients are unknown. HC-PE is used to find the best coefficients that contain

the most significant features of the high order model to retain the best time and frequency

responses. HC-PE progresses by computing a next reduced model until reaching second

order. Specifically, a new Gr−1(s) is calculated by finding all unknown coefficients. The

HC-PE algorithm considers a new base model (an optimal model of r th order) to calculate

the next reducedmodel of r th−1 order and so on, until reaching the 2nd order. This procedure

is significantly affected by computational complexity, which requires simple, near-optimal,

and fast selection of clustered poles in stages as shown in the following sections.

3. HIERARCHICAL CLUSTERING SYSTEM POLES ALGORITHM

Hierarchical clustering algorithms organize data into levels according to a proximity

matrix; the results of hierarchical clustering are often depicted by a binary tree [14]. Many

techniques [15]-[17] determine similarity measures by calculating the distance between data

objects. In HC-PE, the MSE of a step response between the reduced model and the original

model is the similarity measurement. For comparison purposes, a traditional similarity
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measure (Euclidean-distance) in hierarchical clustering pole is discussed. There are three

cases to be considered during clustering poles by using either the Euclidean-distance or

the MSE as a similarity measure: clustering real and complex poles separately, applying

a full-state feedback approach (pole placement method) in unstable systems, and retaining

the poles in the imaginary axis and in the origin of the s-plane. Fig. 2 depicts these

considerations. In two hierarchical pole clustering approaches, the pole index labels, which

are mentioned in the binary tree diagram, are sorted in ascending order.

3.1. Choice of Distance Measure.

3.1.1. Hierarchical Cluster Poles Based on Euclidean-distance. The original

system poles are taken in a general agglomerative clustering algorithm procedure as in

[14], [15]. Collecting pole clustering [8], [12], are used to calculated a center for each

cluster. Improvements are then chosen for theses clusters [19]. This algorithm consists

of the following steps: First determine a distance between each pair of poles based on

Euclidean-distance. Second, iteratively group points into a binary hierarchical tree (using

single linkage clustering, see [15]). Third, cut the hierarchical tree depending on the

demanded order of the reduced model. Fourth, improve the modified pole clustering based

on the most dominant pole in this cluster. More descriptions for the third and fourth steps

are given by

1. Follow ascending order for absolute value of the poles in the cluster (real poles

(p1, p2, . . . , pl) or complex conjugate poles (p1 ± I1, p2 ± I2, . . . , pm ± Im) with |p1 | <

|p2 | < . . . < |ph | , where h is l for real poles and h is m for complex poles. The

imaginary parts are ordered according to real part.

2. Estimate a new cluster-pole center. If l poles are real, then the center is

qc =

(
l∑

k=1

( −1
|pk |

) 1
l

)−1

, (4)
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If m poles are complex then the center is

pc ± iIc =

(
m∑

k=1

( −1
|pk |

) 1
m

)−1

± i

(
m∑

k=1

( −1
|Ik |

) 1
m

)−1

, (5)

where pc is a cluster-center for m real parts of complex poles, and Ic is a cluster-center

for m imaginary parts of complex poles.

3. Compute the improved pole cluster center as:

Rj =

(
1
2

( −1
|p1 |
+
−1
|Rj−1 |

))−1

, j = 1, 2, . . . , h, (6)

where Rj is qc for real poles, Rj is pc for real parts of complex poles and Rj is Ic for

imaginary parts of complex poles.

3.1.2. Hierarchical Clustered Poles Based on MSE. The pole clusters for the

original system in the HC-PE algorithm are selected by using a performance evaluation

method. This method gives a major advantage for reducing error between the reduced and

original models, which takes an optimal pole cluster for the original system in any reduced

order. The optimality for selecting the pole clusters comes from taking the minimum

MSE among all pole clusters in appropriate levels of the hierarchical dendrogram. The nth

order original model is located in the bottom of the hierarchical dendrogram. The HC-PE

algorithm starts calculating the reduced model of r th order (nth−1), which becomes the base

model (an optimal simulated original model of r th order) for the next level. The next reduced

model r th−1 order is calculated according to the base model and so on until reaching the 2nd

order. HC-PE uses the improved modified pole clustering center in every selected cluster.

Fig. 3 depicts a flowchart for HC-PE. It starts by clustering the pair of poles. The clustered

poles are in ascending order of individual absolute values whether the poles are real or

complex. The center for this cluster is estimated by (4) and (5) for real and complex poles,

respectively. Improving the cluster center is done by taking an average inverse distance with
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Figure 2. Three cases that should be considered while clustering poles using either
Euclidean-distance or MSE as the similarity. The first case is clustering real and com-
plex poles separately. The second case is applying a full-state feedback approach (pole
placement method) in unstable systems. The third case is retaining the poles in the imagi-
nary axis and in the origin of the s-plane to the reduced model.

the most dominant pole in this cluster. The most dominant pole is the nearest real pole or

real part of the complex pole to the imaginary axis of s-plane. This procedure1 is repeated

twice if the poles are complex conjugates. In other words, the real pole center is improved

directly by using (6), while the complex conjugate pole center is improved also by using (6)

with a real part and imaginary part separately. When the improved center for this cluster is

found (j=h+1), the MSE is calculated for this cluster and then repeated with other clusters

in the same level of order in the hierarchy until all cluster options (z=n-1) are completed.

The new reduced order model is selected based on the minimum MSE among all MSEs for

z clusters as follows:

N z
cluster =argminMSE

(
∪z

j=1 M j
cluster

)
, (7)

1The time complexity of sorting operation (e.g. merge sort method) for n poles is O(nlog(n)), and of
calculating improved cluster center for both real and complex conjugate poles is O(n).
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where z is the number of cluster poles at certain levels in the binary tree, M j
cluster is a

MSE for j th cluster. Equation (7) is used with a single-input single-output (SISO) models.

This new reduced model becomes the base model to calculate the next reduced model.

Appendix A illustrates that a new improved center cluster poles have negative bounded

values; therefore the new reduced model is asymptotically stable (or marginally stable if

some poles are located on the imaginary axis).

3.2. Determining Transfer Function Coefficients. Whereas the reduced model

has denominator polynomial coefficients obtained from hierarchical cluster poles, coeffi-

cients for the numerator are determined by using PA or GA as follows:

3.2.1. PA Method. As in D. Xue et al. [4], expand the original system G(s) in a

Taylor series around s = 0 as follows:

G(s) =
∞∑

i=0

(
Tisi

)
, (8)

where Ti is defined as:

Ti =
1
i!

diG(s)
dsi . (9)

This model can be equivalently obtained from state space matrices as follows:

G(s) = C(sI − A)−1B + D, (10)

where A ∈ Rn×n is the state matrix; B ∈ Rn×n̂ is the input matrix, C ∈ Rm̂×n is the output

matrix, D ∈ Rm̂×n̂ the direct transition (or feedthrough) matrix, n is the number of system

states (i.e., it represents an nth order differential equation), n̂ is the number of system inputs,

and m̂ is the number of system outputs. The time moment, Ti can be also calculated by

using A and C matrices as follows:

Ti = −CA−(i−1)B, i = 1, 2 . . . ,∞. (11)
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Figure 3. Flowchart for the HC-PE algorithm, which starts from nth order and calculates the
reduced model in r th = nth − 1 order, which becomes the base model (an optimal simulated
original model at r th order) to calculate a next reduced model nth − 1 order and so on until
reaching the 2nd order.
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Singh et al. [19] present another expansion for G(s) in a Taylor series around s = ∞ (the

high frequencies) :

G(s) =
∞∑

i=0

(
δis−(i+1)

)
, (12)

where δ is a Markov parameter. The Markov parameter is calculated by using state space

matrices [4]
δ0 =CB + D,

δi =CAi B, i = 1, 2, . . . ,∞.
(13)

The coefficients of the reduced order numerator are evaluated [9]

c0 = d0T0; c1 = d0T1 + d1T0; . . . ; cα−1 = d0Tα−1 + d1Tα−2 + . . . + dα−1T0;

cr−β = drδβ−1 + dr−1δβ − 2 + . . . + dk−β+1δ0; . . . ; cr−1 = drδ0,

(14)

where α is the number of time moment parameters, and β is the number of Markov

parameters. From (14), the coefficients of the numerator are known; therefore all coefficients

required to represent a reduced order model are known. Kalaiselvi and Pratheep [20] expand

PA method by using a Kharitonov theorem. In this paper, we use α=r (the required order of

the reduced model) and β=0 for all testing models except for the building model of Section

4.B. The reason for selecting α=r and β=0 is that selections give the best performance as

illustrated in [19]. Therefore, we use also these selections in a triple link inverted pendulum

benchmark study case in Section 5. For the building model, a PA method was not used in

the literature to reduce this model; therefore, we use a fair distribution into α and β values

by selecting α=β=r/2.

3.2.2. GA Method. A GA is used to calculate the numerator polynomial coeffi-

cients for the reduced model for comparison with PA. MSE is used as a fitness function for

the step response of the original and reduced model as:

MSE =
1
V

V∑
i=1

(
G(s)i − Gr(s)i

)
, (15)



18

Table 1. GA operations selection approach

GA Properties Description
Number of Population 20 chromosomes for each generation
Selection Operator Roulette
Crossover Operator Stochastic uniform
Mutation Operator Uniform (uniform random flipping)
Termination GA no improvement for 100 generations

where V is the number of samples with 0.001 sec as a sample time during 10 sec. Table 1

illustrates the GA operators used in this paper.

4. SIMULATION AND ANALYSIS RESULTS WITH NUMERICAL EXAMPLES

4.1. Comparative Studies From Published Literature. Several high order model

examples are taken from the literature in order to compare and test the effectiveness of HC-

PE. From [19] and [21], the original 10 pole model is given as

G10(s) =
N10(s)
D10(s)

, (16)

where N10(s)= 5.407e19, and D10(s) = s10 + 1800s9 +1.37e6s8 + 5.76e8s7 + 1.45e11s6 +

2.27e13s5 + 2.14e15s4 + 1.15e17s3 + 3.13e18s3 + 3.24e19s + 5.407e19. The dendrogram

after applying hierarchical clustering of poles based on the Euclidean-distance combined

with the PA approach is shown in Fig. 4. According to MSE values, the system is unstable

for 6th, 7th, and 8th order reduction when cutting in these levels. The error becomes large

in 3th, 4th, and 5th. Fig. 5 illustrates the dendrogram after applying the HC-PE algorithm

combined with the PA approach (HC-PE-PA). Minimum error and stability in all order

reduced models are generated by using the HC-PE algorithm, which helps to select any

level (order of reduced model) is needed. For instance, in comparing [19] and [21], a 2nd
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order reduced model was found; the dendrogram at the 2nd level is cut as shown in Fig. 5.

The 2nd order reduced model from [19] is given as

Gr(s) =
−50.346s + 432.4174

s2 + 209.0177s + 432.4174
, (17)

which has MSE = 2.05e − 04 for a 10 sec of step input. The 2nd order reduced model from

[21] is given as:

Gr(s) =
−28.3902s + 647.6004

s2 + 359.999s + 647.6019
, (18)

which hasMSE= 1.53e−04 for a same input. The 2nd order reduced model fromHC-PE-PA

is:

Gr(s) =
−2.0549s + 37.3859

s2 + 20.3682s + 37.3857
, (19)

which has MSE=7.48e−06 for same input. Therefore, HC-PE-PA has the best performance

compared with [19] and [21]. Fig. 6 shows a comparison of the step responses for the

original, [19], [21], and HC-PE-PA. A second example is taken from [19]. The original

another high order model with eight poles is given

G8(s) =
N8(s)
D8(s)

, (20)

where N8(s) = 18s7 + 514s6 + 5982s5 + 36380s4 + 122664s3 + 222088s3 + 185760s+40320,

and D8(s) = s8 + 36s7 + 546s6 +4536s5 + 22449s4 + 67284s3 + 118124s3 + 109584s +

40320. This system demonstrates another limitation of using Euclidean-distance to cluster

the poles because the Euclidean-distances among all poles in (20) have the same value. In

contrast, Fig. 7 shows MSE levels with stability in all orders of the reduced model that is

generated by using the HC-PE-PA approach. The 3rd reduced model from [19] is given as:

Gr(s) =
15.56s2 + 62.64s + 18.43

s3 + 10.16s2 + 27.8s + 18.43
, (21)
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Figure 4. The dendrogram for hierarchical cluster poles based on Euclidean distance for
G10(s) combined with the PA approach. It clearly has large error values in most reduction
orders.

which has MSE = 7.98e − 04 for 10 sec step input. The 3rd order reduced model from the

HE-PE-PA algorithm is:

Gr(s) =
17.64s2 + 49.77s + 14.1

s3 + 10.01s2 + 23.12s + 14.1
, (22)

which has MSE = 3.96e − 06 with same input. Therefore, HC-PE-PA has the best

performance compared to [19]. Fig. 8 and Fig. 9 show a comparison to [19], and

HC-PE-PA in the step responses and Bode diagram, respectively.

A comparison with other works from the literature is illustrated in Appendix C,

which shows that HC-PE combined with GA (HC-PE-GA) and and PA (HC-PE-PA) has

the best performance.
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Figure 5. The dendrogram for hierarchical clusters poles based on the HC-PE-PA algorithm
for G10(s). Minimum error and stability in the levels are generated by using this algorithm.
Cutting is done at level two to generate the 2nd order reduced model for comparing [19] and
[21].

4.2. Case Study for Large Order System (Building Model Structure). Another

numerical example is presented to examine HC-PE performance. A building model (Los

AngelesUniversityHospital) is reduced by usingHC-PE-PA andHC-PE-GA, and the results

are compared with two other familiar reduction techniques (Hankel and balanced trunca-

tion). The structure building model and reduction techniques are described by Antoulas

[22], and by P. V. Dooren and Y. Chahlaoui [22]. The model of building consists of 8

floors each having 3 degrees of freedom, which are displacement in x axis, displacement

in y axis, and rotation around y axis. A second-order differential equation system of 24

variables generates 48th order in its state space representation. The transfer function for

this system is obtained after applying the state space representation for building model (10).

The SISO building model consists of a first variable (first state) for the input of the model.

The derivative of the first variable (25th state) is the output.
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Figure 6. The Time Step response for step responses for original, [19] and [21], and
HC-PE-PA.
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Figure 7. The dendrogram for hierarchical clustering of poles based on the HC-PE-PA
algorithm for G8(s). Stability and fluent minimum error tracking level is generated by using
this algorithm. Level three was cut to generate a 3rd order reduced model to compare with
[19].

Figure 8. The time step responses for the original, [19] and HC-PE-PA.
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Figure 9. Bode plot for step responses for the original, [19] and HC-PE-PA to show the
stability.



25

We reduced the building model to 6th order. Fig. 10 shows the clustered poles

of the building model. After applying the HC-PE technique to get the 6th order model,

there are six clusters distributed as three clusters in the positive imaginary axis with three

other poles mirrored in the negative imaginary axis. The cluster centers (new system

poles for the reduced model) are shown as the two big blue stars, two red circles, and two

green diamonds. In this case study, we illustrate the GA’s processing by showing a fitness

values during generations. We select a 6th order reduced model (level number six). Each

chromosome in this level has six genes (six numerator coefficients) with 20 chromosomes

for population, and other operations for the GA are presented in Table 1. In this test, we

terminate the GA processing if the number of generations reaches 10000, regardless of the

average change in the fitness value or number of generations without improvement. We run

GA with two modes. The first mode is random initial population by selecting random real

values for genes in all chromosomes. The secondmode is semi-random initial population by

selecting random real values for genes in 19 chromosomes. Chromosome number 20, which

has six values (genes) is replicated from PA coefficients. Fig. 11 demonstrates a comparison

between a random and semi-random initial population for 3 independent runs. The semi-

random initial population reaches the optimal fitness value around 3300 generations, while

requiring 7100 generations for the random initial population. A step signal for the first

variable (a motion in the first coordinate) of the building structure is applied to the 6th

order reduced model to obtain the output of the building structure (derivative of the first

coordinate motion). Fig. 12 shows the comparison of 20 seconds time step responses for the

48th order original building model and the 6th order reduced models, which are obtained by

HC-PE-PA, HC-PE-GA, Hankel and balanced truncation techniques. Appendix C describes

the MSEs and the 6th order transfer function reduced models for HC-PE-PA, HC-PE-GA,

Hankel and balanced truncation. Fig. 13 shows the Bode plot for frequency response of

the reduced systems of the building model. HC-PE-PA is the best approximation compared

with the others. From the lowest frequency range until 0.5Hz (rad/s), both Hankel and
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balanced truncation techniques are far from the original model. HC-PE-GA starts close to

the model at 0.02Hz. The HC-PE needs
1
6
· (n3 − n) to build all (n − 1) of the reduced

models (levels of the hierarchy dendrogram). Brute-force (exhaustive) search needs the

second kind of Stirling method, which is

1
r!

r∑
j=0

(
(−1)r− j ·

(
j
r

)
· jn

)
(23)

clusters to create only the r th reduced model as in [15]. Therefore, HC-PE is a large

improvement over the Brute-force method. For instance, HC-PE-GA finds 18424 clusters

in order to generate a hierarchy dendrogram for the 48th order building model, while the

brute-force method needs 6.2893 · 1044.

5. MODEL REDUCTION FOR A MULTIVARIABLE DYNAMIC MODEL BY US-
ING HC-PE

HC-PE is also applied to the reduction of a linear time invariant multi-input multi-

output (MIMO) system. We present two methods. The first method selects the optimal new

pole-cluster like a generalized form of equation (7):

N z
cluster = argminMSE

(
∪n̂

i=1 ∪
m̂
j=1 ∪

z
k=1 M k

cluster(i, j)

)
, (24)

where n̂ is the number of model inputs, and m̂ is the number of model outputs. The

optimal clustering is obtained by comparing among z clusters for all inputs and outputs by

taking k clusters in input i and output j, and doing the same procedure for input i with

output j + 1 until m̂ and repeating with i + 1 until n̂. This approach calculates the MSE

in a horizontal direction, while the other approach takes a vertical direction by calculating

MSE for fixed k at all n̂ inputs and m̂ outputs and repeating with k + 1 until z. These

methods retain the important characteristics of high order models such as the steady state

value (minimum MSE value) and stability, which is demonstrated by reducing the triple



27

Figure 10. Cluster poles of the Los Angeles building model. The blue star, red circle,
and green diamond shape symbols describe the best six clusters (three clusters in positive
imaginary axis part with 3 mirror them in negative imaginary axis part), which is obtained
by applying the HC-PE technique. The new system poles reducedmodel (six cluster centers)
show as two big symbols (blue stars, red circles, and green diamonds).



28

Figure 11. A comparison between random (mode 1) and semi-random (mode 2) initial
chromosomes in population for 3 independent runs. Bold blue and red curves are a mean
of mode 1 and mode 2, respectively, while thin blue and red curves are represented upper
and lower fitness values for 3 runs.
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Figure 12. The time step responses for the 48th order original building model and the 6th
order reducedmodels obtained via HC-PE-PA, HC-PE-GA, Hankel and balanced truncation
techniques. HC-PE has the best performance comparedwith the other two approaches. MSE
for HC-PE-PA, HC-PE-GA, Hankel and balanced truncation are 1.758e − 09, 6.807e − 10,
3.089e − 07, and 2.827e − 08, respectively.
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Figure 13. The Bode plot frequency responses for the 48th order original buildingmodel and
the 6th order reduced models obtained via HC-PE-PA, HC-PE-GA, Hankel and balanced
truncation techniques. HC-PE-PA has the best approximation compared with the others,
which is clear from the lowest frequency range until 0.5Hz.

linked inverted pendulum model with one input (n̂ = 1) and four outputs (m̂ = 4) by using

HC-PE-PA and HC-PE-GA. The inverted pendulum is one of the most publicized problems

in control systems that can be modeled as a rocket before launch, walking robots, flexible

space structures, or many others [23]. It is used as a benchmark for testing in many control

algorithms as in [23]-[26]. A main point in this section is examining the effectiveness of

HC-PE on the MIMO reduced model and also testing the robustness for this model after

changing model parameters and after applying an external disturbance signal on it. The

8th order dynamic model for the triple link inverted pendulum is taken as the benchmark

[27], [28]. This model is a multivariable, highly nonlinear, unstable system. The Lagrange

method is used to derive this model, which consists of three links (lower, middle, and upper

pendulums) mounted vertically on a movable cart on a straight line rail. Fig. 14 shows

the schematic representation for the triple link inverted pendulum. An external action force

(u) is applied displacing the cart (x) which changes the lower, middle, and upper pendulum
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angles (θ1, θ2, and θ3) with respect to the vertical line. The state space representation for

this model (single input, u, and four outputs: x, θ1, θ2 and θ3) is:

ÛX =AX + Bu,

Y =CX + Du
(25)

where

A =


0 Ic

E−1H E−1Gc

 , B =


0

E−1h0

 ,

E =



a0 a1 a2 m3l3

a1 b1 a2L1 m3L1l3

a2 a2L1 b2 m3L2l3

m3l3 m3L1l3 m3L2l3 J3 + m3l2
3


,

H =



0 0 0 0

0 a1g 0 0

0 0 a2g 0

0 0 0 m3l3g


, h0 =



1

0

0

0


,

Gc =



− f0 0 0 0

0 − f1 − f2 f2 0

0 f2 − f2 − f3 f3

0 0 f3 − f3


,

C =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0


,
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Ic is the 4 × 4 identity matrix, and D = [0]. Also, a0 = m0 + m1 + m2 + m3, a1 = m1l1 +

m2L1+m3L1, a2 = m2l2+m3L2, b1 = J1+m1l2
1 +m2L2

1 +m3L2
1 and b2 = J2+m2l2

2 +m3L2
2 .

All coefficients are given in [27], which are defined as: m0 is the cart mass, mζ is the ζ th

pendulum bar mass, f0 is the is the friction factor of cart and track Lζ is the ζ th pendulum

bar length, Jζ is the vth pendulum bar rotary inertia, and fζ is the ζ th friction factor of the

ζ th pendulum bar, where ζ = 1, 2, or 3, and g is the constant gravity force. Because the

system has four positive poles (eigenvalues), as shown in the first column of Table 2, it is

unstable. In order to apply the HC-PE approach, the system should become stable by using

full state feedback or the pole placement method. Pole placement is employed to place the

close-loop poles to arbitrary predetermined desired locations in the s-plane by multiplying

the system states with a feedback negative control gain matrix (K) to make a new input

vector to the system. A final stable state model can be obtained as:

ÛX =(A − BK)X . (26)

The pole placement approach does not apply for uncontrollable systems. The rank of the

controllability matrix of the triple link inverted pendulum model [B AB . . . A7B]

is eight, which is equal to the rank of the state matrix; therefore, it is controllable. The

second column in Table 2 shows new poles, selected randomly, and denoted randomly

controlled gains (RCG). The control gains for these poles are K= [0.2160, 42.5108, -

214.8757, 171.2896, -0.8791, 0.0141, -5.1804, and 7.8343].

The 3rd order reduced models after applying HC-PE-PA for the generated poles by

using RCG on the stable triple link inverted pendulum for x, θ1, θ2, and θ3 states are:

Gx
r (s) =

3.778s2 − 15.53s + 25.69
s3 + 5.72s2 + 10.19s + 5.55

, (27)

Gθ1
r (s) =

2.618s2 + 0.006302s − 3.267e−16

s3 + 5.72s2 + 10.19s + 5.55
, (28)
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Table 2. Poles values for unstable and stable for triple link inverted pendulum model

Poles for unstable system Random stable Poles Poles for stable system (LQR))
1.0502 − i27.2130 −12.5674 −1.0525 − i27.2129
1.0502 + i27.2130 −11.0345 −12.3133

11.0345 −6.0272 −11.3567
−12.5674 −4.2304 −5.5813

4.2304 −2.7213 −4.7042
−6.0272 −1.9248 −1.3665 + i0.0567
−1.9248 −1.0502 −1.3665 − i0.0567

Gθ2
r (s) =

2.617s2 + 0.007252s − 6.389e−16

s3 + 5.72s2 + 10.19s + 5.55
, (29)

Gθ3
r (s) =

2.617s2 + 0.008255s − 6.8369e−16

s3 + 5.72s2 + 10.19s + 5.55
. (30)

The original model is completely observable because the rank of the observability matrix

[C CA . . . CA7]T is eight, which is equal to rank of the state matrix, so the LQR

approach can be employed to obtain the optimal pole placements. This optimality comes

from finding the optimal K by balancing the control effect and system errors. LQR Control

Gains (LQRCG) are derived from minimization of a quadratic performance index or cost

function (J)

J =
∫ ∞

0

(
XTQX + uT Ru

)
dt, (31)

where the state-cost matrix Q is positive, semi-definite and symmetric, the index matrix R

is symmetric and positive definite, and K is calculated by

K = R−1BT P, (32)
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where the positive definite symmetric matrix P is obtained from the solution of the matrix

algebraic Riccati equation [29] as follows:

AT P + PA − PBR−1BT P +Q = 0. (33)

The stability proof for the closed loop system in LQR is in [29]. The initial value is R = 1

(one input control signal), while Q is equal to CTC with multiplying 2 with Q(1, 1) to

accelerate the cart displacement response. The third column in Table 2 shows the new

optimal poles by using the LQR approach to make the system stable. The control gains

for these poles are K = [1.4142,−43.4921, 6.3479, 52.7879, 1.4597,−1.1102, 5.2459, and

5.0146]. The 3rd order reduced models after applying HC-PE-PA for these poles (LQRCG)

on the stable triple link inverted pendulum for for x, θ1, θ2, and θ3 states are:

Gx
r (s) =

−0.07967s2 − 1.137s + 4.67
s3 + 6.974s2 + 11.79s + 6.604

, (34)

Gθ1
r (s) =

0.4762s2 + 0.001146s − 3.972e−16

s3 + 6.974s2 + 11.79s + 6.604
, (35)

Gθ2
r (s) =

0.4762s2 + 0.001318s − 4.28e−16

s3 + 6.974s2 + 11.79s + 6.604
, (36)

Gθ3
r (s) =

0.4763s2 + 0.001501s − 9.352e−16

s3 + 6.974s2 + 11.79s + 6.604
. (37)

Fig. 15 (a), (b), (c), and (d) shows the LQRCG and RCG results for the step response after

applying HC-PE-PA to reduce the final model of the triple link inverted pendulum to 3rd

order for x, θ1, θ2, and θ3, respectively.

Applying HC-PE-PA for optimal pole placement by using LQR not only achieves

the best performance in control effect, but also gives a minimum MSE value. The

MSE value calculated by (14) is 0.0051 for RCG and 7.64e − 05 for LQRCG. For

these reasons, the LQRCG reduced model is implemented with GA instead of PA with

the same operation as in Table 1. The numerators for the reduced model after apply-
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Figure 14. Configuration model of triple link inverted pendulum.

ing GA are −0.2228s2 − 1.1893s + 4.4673 for x, 0.3862s2 + 0.1195s − 0.0009 for θ1,

0.3702s2 + 0.1082s − 0.0009 for θ2, and 0.3628s2 + 0.1014s − 0.0008 for θ3. Fig.

16 (a), (b), (c), and (d) show the LQRCG results for the step response after applying

HC-PE-GA to reduce the final model of the triple link inverted pendulum into 3rd or-

der for for x, θ1, θ2, and θ3, respectively. GA has the best performance when com-

paring with the PA approach for this desired input, where the MSE is 0.7646e − 04

for PA and 0.6102e − 04 for GA. We examine the performance of HC-PE when the

internal parameters of the triple link inverted pendulum are changed. We change the

cart mass by adding an extra 2 kg, and we change the bar masses by adding 1 kg to

every bar mass. By using LQRCG, the control gains for a new model after chang-

ing parameters are K = [−1.4142,−1234.2483, 3014.6404,−2117.8318,−29.4697, 4.2548,

93.6118,−34.8808]. The 3rd order reduced models after applying HC-PE-PA for x, θ1, θ2,

and θ3, are:

Gx
r (s) =

−0.02914s2 + 0.1897s − 0.3561
s3 + 5.373s2 + 5.379s + 0.5036

, (38)
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Gθ1
r (s) =

−0.0363s2 − 4.753e−17s − 1.895e−18

s3 + 5.373s2 + 5.379s + 0.5036
, (39)

Gθ2
r (s) =

−0.0363s2 − 2.98e−17s − 1.464e−18

s3 + 5.373s2 + 5.379s + 0.5036
, (40)

Gθ3
r (s) =

−0.0363s2 + 5.883e−17s − 2.019e−18

s3 + 5.373s2 + 5.379s + 0.5036
. (41)

The numerators for the reducedmodel after applyingHC-PE-GAare−0.02976s2+0.1896s−

0.3561 for x, −0.0291s2−0.0012s+0.00008 for θ1, −0.0316s2−0.00107s+0.0001 for θ2,

and −0.02408s2 − 0.0009s− 0.00006 for θ3. Fig. 17 (a), (b), (c), and (d) show the 3rd order

reduced model results for the positive step response after changing the mass parameters.

Despite of large values for K variables to compensate the increasing in the model masses,

a slow displacement response as shown in Fig. 17 (a). Because of these changes, low

frequencies of pendulum bars and small magnitude angle values occur, as shown in Fig.

17 (b)-(c). Therefore, we increase the response time to 20 sec to display the required time

to make angels reach zero. GA has the best performance compared to the PA for this time

interval, where the MSE is 4.6199e−07 for PA and 3.66812e−07 for GA. But for long time

response, the PA has better steady state performance. For instance, if the response time is

2000 sec, the MSE is 4.6233e − 09 for PA and 2.5877e − 08 for GA. This also happened

when we change lengths of the pendulum bars. We add 0.3, 1.5, and 0.2 to the lengths

of lower, middle, and upper pendulum bars, respectively. For 20 sec of a time response,

the MSE is 1.4007e − 06 for PA and 8.1173e − 07 for GA. If for 2000 sec, the MSE is

1.4996e − 08 for PA and 5.2091e − 07 for GA.

As shown in Fig. 15 (a), Fig. 16 (a), and Fig. 17 (a), the desired cart position is

one, but the response does not follow the reference signal because the full-state feedback

approach does not compare the output with the desired signal. To address this, we can

calculate a feedforward scaling factor for certain desired input signals, but we use a PID

controller to handle different situations. The optimal gains for the PID are obtained by

using a GA for the step response of the desired cart position. These gains are given in the
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Figure 15. The step response results after applying HC-PE-PA to reduce the model of the
triple link inverted pendulum to 3rd order. (a) The cart displacement. (b) The lower angle.
(c) The middle angle. (d) The upper angle. The original 8th order model reduces after
applying RCG and LQRCG.
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Figure 16. The step response after applying HC-PE-PA and HC-PE-GA to reduce the model
of a triple link inverted pendulum to 3rd order. (a) The cart displacement. (b) The lower
angle. (c) The middle angle. (d) The upper angle. The original 8rd order model applies the
LQRCG method.
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Figure 17. The step response after applying HC-PE-PA and HC-PE-GA to reduce the model
of a triple link inverted pendulum to 3rd order after changing mass parameters. (a) The
cart displacement. (b) The lower angle. (c) The middle angle. (d) The upper angle. The
LQRCG method is applied to make the original 8th order model stable.



40

PID transfer function:
ux(s) = Kp + Ki

1
s
+ Kd

N

1 + N
1
s

, (42)

where Kp is proportional gain, Ki is integral gain, Kd is derivative gain, and N is the

first-order derivative filter gain (for reducing noise and distortions). The fitness function

is implemented to minimize the MSE between the actual and desired cart position. The

final optimal values for these gains are Kp = 2.0652, Kd = 1.2518, Ki = 1.6676, and

N = 172.6118. Fig. 18 illustrates a Simulink model for the original 8th order model after

applying LQRCG and reduced models (PA and GA). We tune PID gains for one model

(the original model) and then apply the same controller with other reduced models. This

PID controller has two main advantages: first, it can adapt with various reference signals

(desired cart positions); for instance, Fig. 19 (a) and (b) show a new cart displacement

position (x = 3) and θ1, respectively. Second, the PID controller can compensate the values

for Q and R elements instead of using a trial and error method. The control input signal

to the original and reduced model is bounded inside the range [−5, 5]. An impulse signal

at the 18th sec with a one sec pulse width has been added as the disturbance input to the

models (original and reduced), as shown in Fig. 18. Fig. 20 (a) and (b) show the results

for θ2 and θ3, respectively. The best performance for a reduced order model is provided

by HC-PE-GA. For the experiments, the step signals for the cart displacements of 1 and 3

were inserted. The MSE was evaluated over the subsequent 40 sec using equation (15). The

MSE values for HC-PE-PA are 0.00466 and 0.0350 for 1 and 3 displacement, respectively.

For HC-PE-GA, they are 0.00491 and 0.03616 for 1 and 3 displacement, respectively.

However, the response for the reduced triple linked inverted pendulum dynamic system

model by using HC-PE-GA is better than using HC-PE-PA. The overall average errors for

x, θ1, θ2, and θ3 in the 3rd order reduced model are 0.0124 for HC-PE-GA and 0.0128

for HC-PE-PA. This best performance for GA is achieved by applying the same input and

tuning the reduced model numerator coefficients. The reduced model using HC-PE-PA is

better than using HC-PE-GA for a different reference input, as shown in the zoomed-in
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portion of Fig. 20 (b). The overall average error for the reduced model for 3 displacement is

0.0888 for HC-PE-PA and 0.0913 for HC-PE-GA. This error increases in direct proportion

with the time that the pendulum cart is forced into large displacements. Fig. 21 (a), (b) and

(c) depict a 2-dimensional simulation for the reduced model by using HC-PE-PA technique

to move a cart from the 0 position to the final desired cart positions, which are 4, 6 and

10. Optimal control gains for a closed loop reduced system model can also be applied. In

other words, Kr is optimal control gain vector (Kr ∈ Rr×1), which is only used to control on

a r th reduced model. Asymptotic stability is easily verified for the reduced model with its

optimal controller, as proven in Appendix B.

6. CONCLUSION

This work demonstrates that the HC-PE algorithm has superior performance in

different situations when compared to other order reduction methods. The pole clusters for

the original system in the HC-PE algorithm are selected by using a performance evaluation

method for similarity criteria of agglomerative hierarchical cluster analysis. This method

gives a major advantage for reducing error. Optimizing the pole clusters is achieved by

taking the minimumMSE among all pole clusters at an appropriate level in the hierarchical

dendrogram. The HC-PE algorithm is considered a lower level in the hierarchy as the base

model, which is an optimal original model at r th order, and calculates a next reduced r th − 1

order, continuing until reaching the 2nd order reduced model. This procedure makes simple,

near-optimal, and fast selections of cluster poles in stages. We demonstrate the robustness

of the reduced model after applying various examples in SISO and MIMO cases.
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Figure 18. Simulink model of LQRCG applied to the triple link inverted pendulum for
original 8th and 3rd order reduced model after applying HC-PE for both Pade approximation
and GA control by PID control with a disturbance input.
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Figure 19. The responses after applying the disturbance signal on the cart displacement
state for comparison among LQRCG, HC-PE-PA, and HC-PE-GA reduced models.(a) The
cart displacement.(b) The lower angle.
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Figure 20. The responses after applying the disturbance signal on the first state (cart
displacement) to compare LQRCG, HC-PE-PA, and HC-PE-GA reduced models. (a) The
middle angle state. (b) The upper angle state. GA performs slightly better for the transient
response, but PA has acceptable transient and superior steady state performance.
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Figure 21. 2-D simulation for a triple linked inverted pendulum model. (a), (b) and (c)
show the simulation for the HC-PE-PA reduced model starting from the 0 position to the
final desired cart positions which are 4, 6 and 10, respectively.
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Table 3. List of abbreviations and symbols

Acronyms and Symbols Description
HC-PE Agglomerative hierarchical clustering based on performance evaluation
MOR Model order reduction
MSE Mean squared error

PA and GA Pade approximation and Genetic algorithm
G The ordinary differential equations for the original model.
n The order of an original model
Gr The reduced model
r The order of reduced model
u The vector of the system’s input (action force)
X The vector of the state variables
v The number of zeros in an original model

PID Proportional-integral-derivative controller.
s The Laplace complex variable
pl The lth real pole

pm ± Im The mth complex conjugate pole.
qc and pc ± iIc The center of cluster for real and complex pole.

R j The jth improved pole cluster center.
z The number of clusters in same level of dendrogram

N z
cluster

The optimal cluster among all z clusters
LQR Linear quadratic regulator
Ti The ith time moment of the system
A The state matrix
B The input matrix
C The output matrix
D The feed through matrix
δ Markov parameter
α The number of time moment parameters
β The number of Markov parameters

Nk (s) The numerator polynomial of k = n or r order system
Dk (s) The denominator polynomial of the k = n or r order system

HC-PE-PA The HC-PE algorithm combined with the PA approach
HC-PE-GA The HC-PE algorithm combined with the GA approach
θ1 , θ2 and θ3 The lower, middle, and upper pendulum angles, respectively

x The displacement of the inverted pendulum
m0 Cart mass
mv The vth pendulum bar mass
Lv The vth pendulum bar length
Jv The vth pendulum bar rotary inertia
g The constant gravity force
K The control gain matrix

RCG Random control gains
LQRCG LQR control gains

J The cost function
Q The state-cost matrix

Kp ,Ki , Kd and N Proportional, derivative, integral and first-order derivative filter gains, respectively
n̂ The number of model inputs
m̂ The number of model outputs
h The number of real or complex

poles in one cluster
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We prove that a generated pole, which is calculated by using HC-PE technique is

always located in the left half of the complex plane. Therefore, the new reduced model is

always stable.

Assumption A. Let the three consideration cases (Fig. 2) be satisfied, and the original

model is fragmented into z clusters by using HC-PE algorithm to create a zth order reduced

model. Let R be the number of poles in an H cluster, where H is an arbitrary selected

cluster in z clusters. Let I z
H is a new pole, which is an improved generated center pole of H

cluster.

Lemma A. Let assumption 1 hold. Then, improved center poles have a negative real parts,

which are always located in the left half of the complex plane.

Lemma A Proof. After applying HC-PA to obtain a center pole of H cluster as in equation

(4) and first term of equation (5), the new center pole is a negative real number denoted

as Cz
H , which is given by Cz

H = −R

( ∑R
k=1

( 1
|pk |

))−1

,where pk is the k th pole in H cluster.

For improving Cz
H value, equation (6) is applied R times as shown in Fig. 3. The final

improved center pole of H cluster is given by I z
H = −

2R |p1 | |Cz
H |

|p1 | + (2R − 1)|Cz
H |
, where p1 is the

most dominant pole in H cluster. I z
H is always a negative real number, which is located in

the left half of the complex plane. A similar procedure is applied on other clusters among

the z clusters to produce zth order reduced model. I z
i , where i = 1, 2, . . . , z, are poles for zth

order reduced model. Therefore, a new generated reduced model is asymptotic stable (or

marginally stable if the original model has poles on the imaginary axis).

sjamw3
Text Box
48
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B. STABILITY PROOF FOR A CLOSED LOOP REDUCED SYSTEM
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To assess stability, we show all reduced models by using HC-PE have a Hurwitz

matrix for its dynamics matrix, i.e., all eigenvalues or system real poles are in the left

half s-plane. Therefore, LQR can be applied on the reduced model itself, which guarantee

stability as follows:

Assumption B. Let Ûxr = Ar xr + Bru be a controllable reduced system model in a state

space domain by using HC-PE, where xr is the reduced system state vector, Ar ∈ Rr×r is

the reduced state matrix, Br ∈ Rr×n̂ is the reduced input matrix, u is the input vector, r

is the number of reduced system states (i.e., it represents an r th reduced order differential

equation),n̂ is the number of model inputs.

Lemma B. Let assumption 1 hold. Then the reduced model system is asymptotic stable.

Lemma B Proof. The closed loop system Ûxr = (Ar − Br Kr)xr , where Kr is optimal control

gain for the reduced model that can be found in same way for original model [29] as in

(32). A nominated Lyapunov function is Vr = xT
r Pr xr , where Pr is symmetric and positive

definite. The time derivative of Vr is given as:

ÛVr = ÛxT
r Pr xr + xT

r Pr ÛxT
r

=xT
r [Ar − Br Kr]T Pr xr + xT

r Pr[Ar − Br Kr]xr

=xT
r

[
(Pr Ar + AT

r Pr − Pr Br R−1
r BT

r Pr +Qr) −Qr − Br R−1
r BT

r Pr

]
xr,

(1)

where Qr is the state-cost matrix for reduced model that is positive, semi-definite and

symmetric, and Rr the index matrix for reduced model that is symmetric and positive

definite. Applying (33), which is similar to a Riccati equation solution with reduced model

(r order instead of n), we get

ÛVr =xT
r

[
−Qr − Br R−1

r BT
r Pr

]
xr . (2)

Thus Qr , Rr , R−1
r , and Pr are larger than zero (symmetric and positive definite), then ÛVr < 0;

therefore the closed loop is asymptotically stable.



51

C. TABLE 4 FOR COMPARISON OF HC-PE WITH OTHER REDUCTION
METHODS, COMBINING THE PADE APPROXIMATION APPROACH AND

GA. THE BEST MSE RESULTS ARE SHOWN IN BOLD.
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TABLE IV
.

Reduction Models Reduced Model MSE

Reducing

Models and References

HC-PE

PA Gr (s) = −2.0549s +37.3859

s2 +20.3682s +37.3857
7.4424e-06 10th to 2nd

Order

Reducting

[21] and [19]

GA Gr (s) = −2.0052s +37.3766

s2 +20.3682s +37.3857
7.2551e-06

[21] Gr (s) = −50.346s +432.4174

s2 +209.0177s +432.4174
2.0506e-04

[19] Gr (s) = −28.3902s +647.6004

s2 +359.999s +647.6019
1.5278e-04

HC-PE

PA Gr (s) = 17.64s2 +49.77s +14.1

s3 +10.01s2 +23.12s +14.1
3.9653e-06 8th to 3rd

Order Reduction,

[19]

GA Gr (s) = 17.7476s2 +49.6902s +14.1074

s3 +10.01s2 +23.12s +14.1
1.2062e-06

[19] Gr (s) = 15.56s2 +62.64s +18.43

s3 +10.16s2 +27.8s +18.43
7.9863e-04

HC-PE

PA Gr (s) = 21.3s +7.035

s2 +9s +7.035
0.0021

8th to 2nd

Order

Reductions,

[21] and

[30]-[32]

GA Gr (s) = 22.0774s +7.0731

s2 +9s +7.035
0.0015

[21] Gr (s) = 24.11429s +8

s2 +9s +8
0.0048

[30] Gr (s) = 7.0908s +1.9906

s2 +3s +2
0.0269

[31] Gr (s) = 11.3909s +4.4357

s2 +4.2122s +4.4357
0.0059

[32] Gr (s) = 17.9856s +500

s2 +13.24571s +500
0.1457

HC-PE

PA Gr (s) = 9.242s +23.379

s2 +2.677s +2.3379
0.0249 4th to 2nd

Order Redcution,

[21] and [33]

GA Gr (s) = 9.7157s +23.01

s2 +2.677s +2.3379
0.0225

[33] Gr (s) = 9.236s +23.366

s2 +2.677s +2.3366
0.025

HC-PE

PA Gr (s) = 16.97s3 +58.31s2 +254.1s +136.8

s4 +3.923s3 +20.13s2 +21.85s +6.129
0.0402 8th to 4th4th

Order Reduction,

[19]

GA Gr (s) = 15.575s3 +56.448s2 +255.017s +136.642

s4 +3.923s3 +20.13s2 +21.85s +6.129
0.0372

[19] Gr (s) = 19.824s3 +30.2549s2 +757.2845s +1436.5

s4 +10.28s3 +26.56s2 +143.8s +64.37
0.8546

HC-PE

PA Gr (s) = 0.0094s5 +0.0105s4 +1.157s3 +0.6293s2 +27.56s +1.04e −08

s6 +1.742s5 +245.1s4 +267.7s3 +1.23e04s2 +6628s +1.739e05
1.7581e-09

48th to 6th

Order Reduction,

[22]

GA Gr (s) = 0.0076s5 +0.0098s4 +1.11s3 +0.6312s2 +27.87s +0.1508

s6 +1.742s5 +245.1s4 +267.7s3 +1.23e04s2 +6628s +1.739e05
6.8066e-10

Hankel Gr (s) = 0.0047s5 +0.0359s4 +3.217s3 +16.27s2 +329.1s −1238

s6 +2.593s5 +681.2s4 +1120s3 +1.028e05s2 +9.17e04s +2.232e06
3.0895e-07

Balanced Truncation
Gr (s) = 0.0046s5 +0.0359s4 +3.217s3 +16.27s2 +329.1s −1238

s6 +3.506s5 +783.6s4 +1611s3 +1.261e05s2 +1.141e04s +2.925e06
2.8268e-08
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ABSTRACT

This paper presents a direct heuristic dynamic programming based on Dyna planning

(Dyna-HDP) for online model learning in the Markov decision process (MDP). This novel

technique is composed of HDP policy learning to construct the Dyna agent for speeding

up the learning time. We evaluate Dyna-HDP on a differential-drive wheeled mobile robot

navigation problem in a 2D maze. The simulation is introduced to compare Dyna-HDP

with other traditional reinforcement learning algorithms, namely one step Q-learning, Sarsa

(λ), and Dyna-Q, under the same benchmark conditions. We demonstrate that our method

has a faster near-optimal path than other algorithms with high stability. In addition, we also

confirm that the Dyna-HDP method can be applied in a multi-robot path planning problem.

The virtual common environment model is learned from sharing the robots’ experiences

which significantly reduces the learning time.

Keywords: Heuristic dynamic programming (HDP), Q-learning, Sarsa algorithm, Dyna

learning, mobile robot, maze navigation, path planning.
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1. INTRODUCTION

Exact path planning plays an important condition in the navigation of autonomous

mobile robots. It enables robots to track an optimal collision-free path from the starting point

to the target without colliding into obstacles. There are two categories for mobile robot path

planning: One is a global path planning (off-line) based on a priori complete information

about the environment (e.g., field testing) and the other is local path planning (on-line)

based on sensory information in uncertain environments where the size, shape and location

of obstacles are unknown. There are several Reinforcement Learning (RL) algorithms used

to solve mobile robot path planning problems. Q-learning has been frequently used [1] - [3].

The agent is evaluated by the value function for a given state. The finite MDP, occurs when

the states and actions space are finite [4]. According to Bellman’s optimality principle [5],

the optimal strategy is obtained by building an optimal policy for a subproblem, which can

be traced backward to previous solutions and can build on the optimal policies established

by other subproblems until entire process is covered. The Bellman’s optimality equation

can be written as [6]

J∗(s, a) = Pa
ss′[Ra

ss′ + γmax
a∈A

J∗(s′, a)] (1)

where J∗(s, a) is the value function of the current state s; Pa
ss′ is the transition probability to

move to the next state s′ after carrying out an action, a, which belongs to a set of all possible

actions A, Ra
ss′ transition reward from s to s′, and γ is the discount factor. In addition to

Q-learning, temporal difference (TD) learning is used to solve Bellman’s equation in the

Markov decision process (MDP). More sophisticated approaches such as Dyna-Q [7] and

TD (λ) [8] have been employed to improve the convergence speed for solving Bellman’s

principal of optimality problems. Another approach for solving Bellman’s equation has

been adaptive dynamic programming (ADP), which finds the optimal control policy over

time. The idea is to use a function approximation structure such as neural networks to

approximate the value function [9]. ADP has three fundamental approaches: Heuristic
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dynamic programming (HDP), dual heuristic programming, and globalized dual heuristic

programming [10] - [12], which consists of three neural networks (actor, critic, and model

networks) which provide decision making, evaluation, and prediction, respectively. If ADP

has only actor and critic networks, then it is referred to as action dependent ADP [10], [11],

[13]. Action dependent ADP with online learning [14] is mixed between adaptive critic

designs and Q-learning by online updating of the value function with policy. Improving

online ADP learning is done by adding dual critic networks for HDP designs [15], [16]

and for DHP designs [17]. ADP can be applied in many applications. In [18], the authors

prove that dual heuristic programming can control the operation of a turbo-generator more

efficiently than HDP. The dual heuristic programming approach can also improve power

performance in collective robotic search problem as shown in [19]. In [20], HDP controls

on motion planning for wheeled mobile robot to escape from sharp corners. This work

presents a new vision of HDP which is used in path planning based on Dyna algorithm; we

refer on it as Dyna-HDP, which is used to obtain the value function of intelligent mobile

robot navigation. Although the planning process is computationally intensive and time

consuming, the total project completion should also count equal time spend in acting,

model learning, and direct RL processes, which require little computation. In this work,

we also apply this novel technique with multi-robots. They are employed to share their

experiences by distributing the value functions among them. There are three points to

consider when arranging for mobile robot navigation in an unknown environment [21]: 1)

the mathematical model of the environment is generally unavailable, 2) sensory data are

uncertain and imprecise due to noise, and 3) real time operation is essential; therefore, a

fuzzy logic controller (FLC) is used in this work to prevent a robot from colliding against

any facing obstacle (or other robots). The FLC is an attempt to reduce the training time

needed. Moreover, FLC can make sure that a robot is able to move away from the trapping

situations while moving towards the target. We use FLC as in [22] with changing in

inputs and output function variables to adapt with our problem to deal with RL. In many
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RL algorithms, an ε-greedy method and Boltzmann selection method are often used as

action selection algorithms, but designers are required to adjust the value of ε (or τ in

the case of a Boltzmann selection) by trial and error in order to realize a good balance

between exploration and exploitation. There are dozens of researchers trying to solve this

balance such as [23] - [25]. For instance in [24], the authors define two types of agents:

an exploitation agent and another agent for exploration, and these agents can communicate

in order to combine their experiences. The remaining sections are organized as follows:

Section 2 presents a collision-free navigation. The fundamental RL algorithms are showed

in Section 4. Mobile robot path planning based on Dyna-HDP is demonstrated in Section

4. The simulation results and conclusion are presented in Section 5 and 6, respectively.

2. COLLISION-FREE NAVIGATION

2.1. Simulation of Mobile Robot Platform. Our simulated platform for a mobile

robot consists of nine infrared sensors, which aremounted on the exterior of the robot’s body

as shown in Fig. 1. It forms an 180◦ field of view in front of the robot with 22.5◦ separation

angle between every two neighboring sensors. The distance measurement sensor between

the mobile robot and the obstacles is labeled as (Sd1 − Sd9). The simulation is designed

with two driving wheels independently operated, left and right wheels, with one front caster

wheel to support the robot. The robot can sense a solid object about 20 centimeters away

from its body. The size of the robot’s body frame is 14 cm for both of width and length as

shown in Fig. 1. This independent drive system not only gives the mobile robot capability

to move in a straight line, and perform turns, but this system also allows the robot to have a

zero turning radius. This allows mobile robot to turn directly around from its center without

backward motion. A Matlab application was taken as the mobile robot platform.
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Figure 1. Differential wheeled mobile robot platform. It forms as 180◦ field of view in front
by nine sensors with 22.5◦ separation angle to sense an object about 0.2 meter away from
its body.

2.2. Description of the Fuzzy Controller for Obstacle Avoidance. The FLC is

applied to realize a mobile robot motion in an unknown environment with obstacles. It helps

to reduce training time by giving the ability to select suitable actions near to objectives.

Inputs into this fuzzy controller for obstacles avoidance (FCOA) are the outputs from the

sensors after a triangular calculation for left sensor group Sd1 − Sd5, and right sensor group

Sd5 − Sd9 to obtain: The left distance which is the lowest distance between mobile robot

and left obstacle, the left angle which is the angle between heading angle of the robot and

left obstacle, the right distance which is the lowest distance between mobile robot and right

obstacle, and the right angle which is the angle between heading angle of the robot and

right obstacle. The outputs of the FCOA are right and left wheels angular speed, Wr and

Wl respectively. The following membership functions for inputs (distance and angle) and

outputs (angular speeds) are:
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Figure 2. Distance fuzzy membership functions. These fuzzy set definitions are used
for input variable which are consisted from three triangular-shaped membership functions
(good, near, and far).

2.2.1. Distance. The distance membership functions represent robot conditions

which are good, near, and far from the obstacle as shown in Fig. 2.

2.2.2. Angle. The angle membership functions shown in Fig. 3 represent angle

conditions which are very negative, negative, zero, positive, and very positive.

2.2.3. Angular Speed. The left and right wheel angular speed membership func-

tions shown in Fig. 4 as five triangular wheel speed conditions for both wheels which are

backward, slow backward, stop, slow forward, and forward. All input variables of member-

ship functions are used in both right and left sides. The next step illustrates the appropriate

fuzzy logic rules. Two rule schemes were set up as follows: Right side control rules and

left side control rules. Table I illustrates the matrix of rules for right side controller rules,

while left side controller rules are illustrated in Table 1. The distance input is located on the

vertical column, and the angle input is located on the horizontal row. Based on the fuzzified

values of the inputs, the controller selects the appropriate angular speed conditions listed in
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Figure 3. Angle fuzzy membership functions. These fuzzy set definitions are used for
input variable which are consisted from five triangular-shaped membership functions (very
negative, negative, zero, positive, and very positive).

Figure 4. Angular speed fuzzy membership functions. These fuzzy set definitions are
used for output variables for both left and right wheels which are consisted from five
triangular-shaped membership functions (backward, slow backward, stop, slow forward,
and forward).
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Table 1. Right side controller rules matrix

Angle
very negative negative zero positive very positive

Distance
good RF, LSF RF, LSF RSF, LF RSB, LSF RSB, LSF
near RSF, LSB RSF, LSB RF, LF RSB, LSF RSB, LSF
far RSF, LSB RSF, LSB RF, LSF RSF, LF RSF, LF

Table 2. Left side controller rules matrix

Angular Speed Angle
very negative negative zero positive very positive

Distance
good RSF, LSB RSF, LSB RF, LSF RSF, LF RSF, LF
near RSF, LSB RSF, LSB RF, LF RSB, LSF RSB, LSF
far RF, LSF RF, LSF RS, LSF RSB, LSF RSB, LSF

the matrix (RSF a is right wheel slow forward, LSB is a left wheel slow backward, RF=right

wheel forward, LSF is a left wheel slow forward, LF is a left wheel forward, RSB is a right

wheel slow back, RS is a right wheel slow). The right side controller rules are used when

distance from any obstacle on the right side of mobile robot is less than left side distance of

obstacle and vice versa for left side controller rules.

In order to use right side control rules table, let assuming the distance measurement

of an obstacle in the right side is less than in the left, and angle input variable is negative

and distance input variable is near then the angular speed for the right wheel is slow forward

(RSF) and the angular speed for the left wheel is slow backward (LSB) which is indicated

that in a shadow box. In this work, there are two avoidance strategies. The first one is

updating an environment model. The agent tries to avoid the new obstacles with increasing

its experience. This strategy helps the agent to identify the environment model by using

RL. Another avoidance strategy happens if the distance between two or more agents is
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less than the distance measurement sensors by comparing with other agents position. This

strategy requires no updating experience for sensing agents while avoiding other agents

(with/without obstacles avoidance).

3. FUNDAMENTAL REINFORCEMENT LEARNING PARAMETERS

An online learning technique for RL depends on trial and error through repeated

interaction between an agent and environment. The agent receives the state of the environ-

ment via its sensors, and it tries to maximize the reward by selecting a correct action which

depends on a reinforcement signal. The mobile robot’s current position (xc, yc) is detected

by using an odometer sensor like an encoder with no slipping or sliding assumed. A target

position (xg, yg) is given. Dg is the distance between the current position and the target.θdi f f

is a difference angle between the robot’s heading angle (θg) and the goal angle (θr). In other

words, θr is the angle between the robot’s moving direction and a line connecting the target

with the mobile robot. The goal of RL is to teach the mobile robot to align θg with θr , or

in other words, to minimize θdi f f . The captured states in this work are represented by the

sensor readings (Sd5 − Sd9), the relative different angle θdi f f , and the relative distance Dg).

In order to minimize the size of learning space, we quantify the previous inputs into limited

variables. The sensor readings take two values, 0 if the obstacle is far away from current

robot position, or 1 if it is near. The target distance variable is quantified into five values

with respect to the distance between the robot and target (very far, far, middle, near, and very

near). Finally, the different angle is quantified into six parts graduating from good reward

into punishment as follows: 0◦−±15◦, ±15◦−±30◦,±30◦−±45◦, ±45◦−±60◦,±60◦−±75◦

, and ±75◦ − ±90◦. A lookup-table is used to learn the states. However, if there are too

many states, an approximated function can handle this problem [3], [26]. Three actions

(ai, i = 1, 2, 3) are used in this work which are: move 0.1 meter forward(a1), turn 45◦

in clockwise direction (a2), and turn 45◦ in counter clockwise direction (a3). RL selects
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an optimal behavior to get the optimal path for mobile robot based on previous learning

of the experienced series actions. The numerical reward (or punishment) returned from

the environment. The aim of this work is to arrive at the goal in the shortest time with

collision-free motion planning. In this work, Sd5 − Sd9, θdi f f , and Dg are used to design

a suitable reward or reinforcement signal from the environment. A reinforcement function

(rt) at state (st) after doing action (at) is designed as follows:

rt =


−∑9

i=1 CiSdi + Cd Dg + Cθθdi f f if st , Goal

2rt−1 if st = Goal
(2)

where, Ci, Cd ,and Cθ are small values used for balancing the weight parameters with sensor

reading variables, which are the relative different angle and the relative distance, respec-

tively. These values reflect the level of influence for each variable on mobile robot learning.

Because FCOA is used in our work, the robot continues navigating in the environment with-

out termination until reaching to target position which makes collecting the data flexible

fast, and easy. The three actions generated from FCOA compare the angular speed for left

Wl and right Wr wheels as follows:

Action =



a1 if |Wr −Wl | < β

a2 elseif Wr < Wl

a3 otherwise

(3)

where, β is the small tolerance value; the robot goes forward if the difference between left

and right wheels less than β, otherwise it should be turned into left or right depending on

a larger side of angular velocity of wheel than the other. We use two most popular RL

algorithms (Q-learning and Sarsa) as in [4] to compare with our approach.



66

Figure 5. Block diagram for Dyna-HDP Path Planning. ui
t is the action vector at time t

for robot i which is consisted of three actions (turn left, turn right, and moving forward)
denoting as ai

t . si
t is the input states vector for robot i at time t which are represented by the

nine sensor readings Sd5 − Sd9, the relative different angle (θdi f f ), and the relative distance
(Dg). A reinforcement function (r) can get from (2) for state si

t and ai. All robots share
the same virtual model to maximize the value function Ji

t for all agents at the same time.
The backpropagation path is shown by dashed lines for action and critic networks, and for
updating the rules for k-max certainty.

4. MOBILE ROBOT PATH PLANNING BASED ON DYNA-HDP

The main block diagram for the featured Dyna-HDP path planning method for is

illustrated in Fig. 5, which is showed the details for agent i with other blocks for multi-robot.

This section will describe all aspects of this method based on the following subsections.

4.1. Architecture of The Dyna-HDP System. Dyna-Q learning algorithm is an

integration of direct RL and a planning method strategy. The planning method takes model

as an input to updating according to Q value learning as follows: Qt(s, ai) = Qt(s, ai) +
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α
[
rt + γmaxai∈A,∀i

(
Qt+1(s, ai)

)
−Q(s, ai)

]
, where st is current state, ai

t is current action, α

is learning rate, and γ is discount factor. While in Dyna-HDP method, the updating model

happens by value function (Jt), which directly comes from critic neural network. The Dyna

algorithm is the integration of direct RL and planning methods. The planning method takes

model as an input. The model produces a prediction of the resultant next state and next

reward if it is given a state and an action; therefore, it is used to mimic the environment and

produce simulated experience. A real experience is generated by using direct RL method

to improve the policy and the value function while improving the model as well. The

transition probability in (1) can only take the value of 1 or 0 (whether directly applicable to

the selected action or not); therefore, we can be rewriting the Bellman’s optimality equation

as:

J∗(s, a) = max
a∈A

[
r(s, a) + γJ∗(s′, a)

]
(4)

The optimal control π∗(s) should satisfy:

π∗(s) = arg max
a∈A

[
r(s, a) + γJ∗(s′, a)

]
. (5)

HDP consists of blocks called the action network and critic network. It also uses online

learning for the neural networks [14]. The action network is used to generate a control signal

which is evaluated by the critic network. The multilayer perceptron structure is employed

for action and critic neural networks. In this work, one hidden layer is used to construct both

networks. The critic network is used to approximate the optimal cost function is defined as

in (4). The temporal difference (prediction error) for the critic network is defined as

δt = Jt−1 − (rt + γJt). (6)
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Therefore, the objective function to be minimized in the critic network is

Ec
t =

1
2
δ2

t . (7)

The gradient-based adaptation for the weights update rule in the critic network can be given

by

wc
t+1 = wc

t + 4wc
t . (8)

4wc
t = `

c
t

[
−
∂Ec

t

∂wc
t

]
. (9)

∂Ec
t

∂wc
t
=

[
∂Ec

t

∂Jt

∂Jt

∂wc
t

]
(10)

where `c
t is the learning rate of the critic network at time t, which decreases with time

until a certain small value, and (wc
t ) is the weight vector in the critic network. In order to

approximate the optimal control signal as in (5), the action network adapts indirectly. The

error between the desired ultimate objected (Uc) and the approximate value function (Jt) is

backpropagated through critic network. The desired ultimate objective value sets to straight

distance value from initial position of the mobile robot to the target, which maximizes the

total reward. The error function of an action network can be defined as

µt = Jt −Uc (11)

Therefore, the objective function in the action network is

Ea
t = 0.5µ2

t . (12)
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The weight updating in the action network is similar to the critic network. The gradient-

based adaptation for the weights update rule in the action network can be given by

wa
t+1 = wa

t + 4wa
t . (13)

4wa
t = `

a
t

[
−
∂Ea

t

∂wa
t

]
. (14)

∂Ea
t

∂wa
t
=

[
∂Ea

t

∂Jt

∂Jt

∂ua
t

∂ut

∂wa
t

]
. (15)

where `a
t is the learning rate of the action network at time t, which is also decreasing with

time until certain small value, and wa
t is the weight vector in the action network.

4.2. k-max Certainty Method. The main purpose of this work is to give the agent

ability to increase the optimum policy efficiency within a minimum number of trials. The

efficiency and minimum trials can be obtained by balancing the properties of exploration

intensive strategy (non-greedy) and exploitation intensive strategy (greedy). A large body of

research addresses related problems such as [23] - [25]. The exploration intensive strategy

needs numerous trials for increasing the optimality because it tries to collect all experiences.

The k-certainty exploration method [25] tries to identify the environment precisely with

the least number of trials. The k-certainty exploration method selects all sensory-action

pairs (rules) uniformly which increases the guarantee for efficient identification of the

environment. The drawback for this method is not influenced by positions of rewards.

This paper presents a modification which is called k-max certainty. The k-max certainty is

combined the k-certainty exploration method and exploitation method through decreasing ε

greedy value method. Fig. 6 depicts a flow chart for a k-max certainty method. The k-max

certainty method starts with a full exploration by setting a ε greedy value with a high value

and then decreases overtime by a small ratio (ε). The rule that has been selected k times is

called a k-certainty rule; otherwise, a new rule becomes a part of a k-uncertainty rules. In

the exploration part, if there are any k-uncertainty rules connected with the current state,
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an action is selected randomly among these uncertainty rules. If all rules belonged to the

current state have been taken, the action would be selected to transfer to another state which

own k-uncertainty rules. In other words, let say, there are four states connected with the

current state, three of them have k-uncertainty rules, then a random action would be selected

from these three states. These process called a k-uncertainty trail which is controlled by

flag signs in each state. These flags are also used to avoid repeatedly selecting of k-certain

rules that make returning case to the current state (k-certain looped). All sensing states have

raised flags except k-uncertainty rules with down flags. If the current state does not have any

k-uncertainty rules, the exploitation case has been triggered by taking a greedy action among

k-certainty rules. Any selected action among k-certainty rules for agent i is mentioned as

follows: π(si) = arg maxa∈Acen Ji
t (s, a), where Acen = ui = [ai

1, a
i
2, a

i
3] as shown in Fig. 6.

The identification environment level is directed proportionally with the k value. The k value

is set to one with increasing by one if no any uncertain rule (or trail) belongs to this state,

otherwise it resets to one. In case that the greedy value allows to go to the exploitation part

directly, the agent selects an action as follows: π(si) = arg maxa∈A Ji
t (s, a), where A = ui.

The k-max certainty will become idle if the robot senses any objects (obstacles or robots)

and the FCOA will apply two avoidance strategies as motioned in Section 2.

4.3. Knowledge Sharing for Distributed Mobile Robots. One of the most ef-

fective RL methods to integrate online planning is Dyna [27]. It uses real experience to

learn a model of a certain environment. In this work, we assign an architecture for sharing

information between all agents to learn the model which decreases learning time. As in

Fig. 5, the common virtual model takes the states and actions from all robots to predict the

next states and rewards. All robots share the same task, which means they try to reach to

the specific target position. In this work, we use two worlds (actual and planning worlds)

for updating value function. In order to avoid excessive time spent in the planning process

which is inherently computationally intensive, the requirement time to complete this process

should equal the time steps spent in: The acting, commonmodel learning, and the direct RL
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Figure 6. A flow chart for k-max certainty selection procedure for agent i. A green
dashed line border represents the exploitation approach which has been triggered by taking
a greedy action among k-certainty rules (sensory-action pairs). The exploration approach
is represented by a blue dashed line border which is selected action randomly among
uncertainty rules (or trail).
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process which requires little computation. In other words, the implementation time between

the actual world (with common model learning) and planning world becomes equal. Both

worlds have separated acting and learning approaches. In the acting approach, the mobile

robot connects with other robots to decide what action should be selected. This decision is

made on the basis of k-max certainty selection approach (exploitation part) if the robot does

not sense any objects. After running this action in the actual world, the robot moves from its

current real state to next real state. During this movement, the planning world starts to plan

by selecting an action based on k-max certainty sharing information with other remaining

robots in random common model state. The model for certain agent is same as the common

model. During real movement for them, all agents learn and update the common model

simultaneously. This learning is happened by updating the value functions as in (17). More

specifically, let Mi ∈ MG is the mobile robot i, where MG = M1, M2, , M f denotes of set

of f mobile robots. In certain state, let Mi has a plan to select a best action. Mi inquires

part of robots or whole group MG to identify this state. The other robots (or perhaps only

one other robot) announce the set of value functions with various actions applying in same

state. Mi decides to select an action according to maximum value functions as follows:

π(si) = arg max
a∈A

(
max ∪ f

j=1 J j(s, a)), 1 ≤ j ≤ f
)

(16)

The certain state could be a real current state in the actual world or a random common

model state in the planning world. In the learning approach, both worlds learn directly after

taking a decision for selecting a suitable action. The learning approach for both worlds is

done based on Bellman’s optimal policy equation as follows:

Ji(s, a) = r i(s, a) + γmax ∪ f
j=1

(
max

a∈Acer

J j(s′, a)
)
, (17)
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where f is the total number of mobile robots; r i(s, a) is the instant reward for robot i

(1 ≤ i ≤ f ) between current state (s) and next state (s′) during currying out action (a);

max ∪ f
j=1 (.) is the maximum value among all robots; maxa∈Acer J j(s′, a) is the maximum

value function for robot j in the next state among all certainty actions (Acer), which are

performed in this state by various other robots. The new sensory action pair updating

value function shares with all other robots; therefore, all robots eventually reach the optimal

policy with a short limit time. If Mi detects any objects, it will use the FCOA with two

avoidance strategies as follows: Mi updates its experiences by using (17) if the objects

are only obstacles, otherwise Mi tries to only avoid these objects without any updating

whereas the objects are robots with/without obstacles. In order to implement Dyna-HDP,

Ns possible states is taken for a deterministic and finiteMDPmaze environment. Therefore,

Bellman’s optimality equation can be written as

J∗(s, a) = arg max
a∈A

[
r(s, a) + γ

N∑
j=1

sJ∗(s′, a′)
]
, (18)

Where J∗(s, a) is the maximum total reward after taken an action a at state s. We introduce

the entire flowchart for Dyna-HDP with multi-agents with K-Max-certainty method in Fig.

7. The implementation steps can be described as follows:

1. Startwith an initial state position in the environment, which is the nine sensor readings,

the relative difference angle, and the relative distance.

2. Obtain the action vector from action network, which consists of three actions (turn

left, turn right, and moving forward).

3. Use the K-Max-certainty technique to select one action, balancing between exploita-

tion and exploration as in Fig. 9. Select one optimal action maximum of the value

function as (17) after comparing each agent’s generated action with other agents in

same state.
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4. Obtain a new state from the environment after applying the optimal action and update

the inputs for the critic network to obtain the new local value function.

5. Compere the value local function with other agents as (18).

6. Check if the agent moves near to any object? If yes, the fuzzy controller fuzzy

controller for obstacle avoidance (FCOA) generates angular velocities for left and

right wheels to avoid the object by selecting a new action (3); the action network

updates as assigned punishment according to the reinforcement function (2) while

updating the k-Max-certainty strategy; if no, agent moves to another step on the same

trail.

7. Check if the agent reaches the target position? If yes, the procedure turns to another

trial, while assigning the reward and loading the initial state in the start position; if

no, the agent moves to another step with same trail.

8. Share virtual model with all agents to maximize the value function.

9. Terminate the entire learning process if the comment value function table in the virtual

model remain unchanged. In other words, the value function table for all agents are

same.

In other word as shown in Fig. 7, the agent i starts at its initial state in the environment.

According to mobile robot sensors, the initial state for agent i (si
0) represents the nine

sensor readings, the relative angle difference, and the relative distance at initial time. The

action vector (ui
t) consists of three actions (turn left, turn right, and moving forward). k-max

certainty technique selects one action (ai
t), conforming to the balancing between exploitation

and exploration as in Fig. 5. Agent i compares its generated action with other f − 1 agents

in same related state to take which one gives a maximum of the value function as in (17).

After Agent i applies an optimal action, it obtains the new state from the plant and update

the inputs for the critic network, obtains the new value function (Ji
t (s, a)). According to
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Figure 7. Flowchart for implementation the multi-agents Dyna-HDP approach on maze
problem.
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(18), agent i updates its local value table. Checking the agent’s movement, if it is near to any

obstacle, the fuzzy controller FCOA generates angular velocities for left and right wheels

(Wl,Wr) to avoid the object by selecting a new action (3). At the same time, the action

network updates as assigned punishment according to the reinforcement function (2) while

updating the k-max-certainty strategy. If the agent is far away from any obstacle, it moves

to another step with same trail. When the agent reaches to the target position, the procedure

turns to another trial with assigning the reward and load the initial state in the start position,

otherwise, it moves to another step with same trail. All agents share the same virtual model

to maximize the value function Ji
t for all agents at the same time. The process is terminated

if the common value function table in the virtual model remain unchanged.

5. SIMULATION RESULTS AND ANALYSIS

In this section, we apply Dyna-HDP to learn the distribution of autonomous mobile

robots on an unknown environment. Walls surround this environment, with many obstacles

distributing on it. But before testing Dyna-HDP approach, we test k-max certainty approach

with traditional ε−greedy method in a simple environment as shown in Fig. 8 a. A final

optimal trajectory (collision-free path) presents in Fig. 8 b from starting point (0.2 for both

x-y axis with 0◦ for the orientation angle) to a target position. This final optimal collision-

free trajectory is obtained after 120 episodes by using tradition Q-learning algorithm. Fig.

8 c demonstrates that k-max certainty has better performance than ε−greedy. The x-axis

in Fig. 8 c gives the statistics of the learning periods (episodes), and the y-axis means the

number of steps for each episode. k-max certainty can reach to the stable running (finding

the optimal and safe path) after 72 episodes while 102 episodes for ε−greedy. Furthermore,

a number of steps over 120 episodes for k-max certainty is 3.5213e+04 for k-max certainty

approach and 7.6606e+04 for ε−greedy (54.033% improvement). We consider three cases

for testing our approach (Dyna-HDP) at the same complex environment. In the first case,
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Figure 8. a) The environment for testing the exploration/exploitation strategy which shows
the initial start position for this agent. b) The near-optimality trajectory from the starting
point to the target. c) The comparison between ε−greedy and k-max certainty by using
Q-learning algorithm.
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we compare Dyna-HDP as discussed in Section IV with other conventional algorithms, one

step Q-learning, Sarsa (λ), and Dyna-Q, for one agent (without sharing any information

with other agents and all algorithms use k-max certainty approach). The initial start position

for this agent is 0.2 for both x-y axis with 45◦Âř for the heading angle. Fig. 9 illustrates

the simulation results for this case. Dyna-HDP obtains a quicker near-optimality path than

one step Q-learning, Sarsa (λ), and Dyna-Q with more stability through a small value

of changing in the step number per each episode. Dyna-HDP improves about 47.667%

(3.5555e + 05 out of 6.7940e + 05) of number of steps compared with Dyna-Q algorithm;

moreover, Dyna-Q learning algorithm needs around of 192 episodes to reach to the near-

optimal path, while 145 episodes in Dyna-HDP (the near-optimality path length for this

case needs 107 steps). The stability comes from a sample mean of a number of steps

over a number of episodes and diversity for this sample. The sample mean for Dyna-Q

learning algorithm from 50 to 150 episodes is 3.2048e+03 steps while 1.1553e+03 steps

for Dyna-HDP. In a second case, two agents share their experiences by using Dyna-HDP

approach as shown in Fig. 10. Every agent has its own experience and tries to support

the other. This support is carried out by sharing information from high rate experience to

low rate at certain state. For instance, agents Mi has more experience in certain state (or

sensory information) than Mj in same state; therefore, Mi learns Mj about this state and

vice versa for learner-teacher interaction with other states. In the third case, all agents share

their experiences with the same approach. Fig. 11 shows the results for third cases. In these

figures (second and third cases), the results are stable with the improvement in the learning

speed of distributed autonomous agents by sharing their experiences. The environment,

which is used in three cases are shown in Fig. 12 with two (agent 1 and agent 2) and five

mobile robots for first and second case, respectively. The robots are distributed in random

start positions and the heading angles (orientations) to achieve a same task (reaching a

specific target area). Fig. 13 demonstrates the near-optimal trajectories for five agents from

start positions to target after applying the third case. Fig. 14 shows all cases together
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Figure 9. The first case comparison the number of steps per episodes. This compares
among Dyna-HDP with other conventional algorithms, one step Q-learning, Sarsa (λ), and
Dyna-Q, for one agent (no information sharing with the others).

Figure 10. The second case results (the cooperation between two agents by sharing their
experiences by using the Dyna-HDP approach). Every agent has own experience and tries
to support the other one.
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Figure 11. The Third case results (Cooperation among five agents by using the Dyna-HDP
approach).

Figure 12. Five mobile robots are distributed in unknown environment surrounding by wall
in meter scale with many obstacles on it. The robots are distributed in random start position
and heading angle to achieve same task (reaching to target position).
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Figure 13. The near optimality trajectories for the five mobile robots from start positions
to the same target position after applying the third case which is all agents share their
experiences with the same approach.

to demonstrate quality improvement due to cooperation among agents. The x-axis in all

three cases gives episodes, and the y-axis means the number of steps for each episode. In

this simulation, we scale the inputs to the action network to be in [0, 1], and we set four

independent runs (300 episodes for each run). Because each episode will be terminated

when the robot reaches the target position area, the numbers of steps are not necessarily

same. The final results take the average steps/episodic among all runs as shown in Fig.

14. For fair comparison, we used same parameters, which are required in traditional RL

algorithms (one step Q-learning, Sarsa (λ), Dyna-Q) and Dyna-HDP. The basic parameters,

which are used for this comparison are set as follows: the learning rate (α = 0.1), the

discount rate (γ = 0.95), the decay-rate parameter for eligibility traces (λ = 0.9) for Sarsa

(λ) learning algorithm, the staring decay-rate parameter for greedy selection (ε = 1), the

ratio value for reduction ε=0.99, which is used to decrease the greedy probability value by

ε = ε ∗ ε after each episode until reaching to minimum value (ε = 0.05); k=2 for k-max



82

Figure 14. Comparison among all three cases by using Dyna-HDP for average learning. In
third case, the results are stable with the improvement in the learning speed of distributed
autonomous agents by sharing their experiences.
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certainly selection action criteria, and let N=5 (N is the number of planning steps in the

planning world which is the same the transition time between any two states in the actual

world). For HDP parameters, the initial learning parameters are set as: `c
t =0.005 for critic

network and `a
t =0.003 for action network. Both learning rates are decreased via dividing

by 3 for every 30 episodes. The stopping criteria for the action and critic networks are 20,

30 respectively; the training for either network will be terminated if the error drops under

1e4 or if the number of iterations meets the stopping threshold. The number of neurons in

the hidden layer is nc=12 for critic network and na=10 for action network.

5.1. Applying Dyna-HDP in A New Environment (Building Map). In the previ-

ous environment testing, every agent has own experience and also tries to learn dependently

to achieve a single task. We implemented the Dyna-HDP learning method with another

environment as shown in Fig. 15 with same previous procedures. The new environment

has three tasks (targets). Two agents, M1 and M2, share to complete the first task to fine

the near-optimal trajectory as shown in Fig. 15 a while M3 and M4 share to implement

the second task as shown in Fig. 15 b, and the last simple task gives to single agent (M5)

as shown in Fig. 15 c. Fig. 15 d illustrates the simulation results for cooperative agents

to run own specific task. Because of the FCOA, the agent can avoid any new obstacles

encountered. We run the mobile robot in the same last task with an extra obstacle. We put

a new obstacle in the agent’s way in order to check the ability of this controller to adapt.

Fig. 16 demonstrates the capability of the mobile robot to complete the task successfully.

The mobile robot moves toward the goal point as main task; if the mobile robot senses an

obstacle by 9 sensors, it will immediately use the FCOA to avoid this collision.
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Figure 15. a) The trajectories for two agents to run Task 1 b) The trajectories for two agents
to run Task 2 c) The trajectories for one agent to run Task 3 d) The simulation result for
three tasks among Dyna-HDP.
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Figure 16. Path formobile robot to implement the third taskwith a change in the environment
by adding a new obstacle. FCOA gives the mobile robot the capability to adapt with this
changing.

6. CONCLUSION

This paper has presented a novel technique, Dyna-HDP, using ADP for the online

planning and learning algorithm in combination with the Dyna method. The performance

of Dyna-HDP was excellent during navigation of a mobile robot compared to one step

Q-learning, Sarsa (λ), and Dyna-Q. This paper has also demonstrated that Dyna-HDP in

multi-robots cooperative navigation has a significant advantage to enhance the efficiency of

the virtual common environment model. The simulation has confirmed how this group of

cooperative robots decreases their individual navigation time.
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ABSTRACT

This paper uses value gradient learning (VGL) to track a reference trajectory under uncer-

tainties, by computing the optimal left and right torque values for a nonholonomic mobile

robot. VGL is a high-performance algorithm in adaptive dynamic programming (ADP).

Here, it is used as a critic function after fitting a first-order Sugeno fuzzy neural network

(FNN) structure to critic and actor networks. Moreover, this work handles the impacts of

unmodeled bounded disturbances with various friction values. The simulation is introduced

to compare two approaches. The first uses an actor network that confirms the ability of the

mobile robot dynamic model to follow a desired trajectory. This approach demonstrates

a significant enhancement of the robot’s capability to absorb unstructured disturbance sig-

nals and friction effects. The second type of results use a critic-optimal-control approach,

calculating the optimal control signal for the affine dynamic model of the robot. This

completely removes the actor network to exploit reduced computational complexity with

faster responses. The simulation is introduced to compare both cases.

Keywords: Nonholonomic dynamic mobile robot, fuzzy neural network, Adaptive Dy-

namic Programming(ADP).
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1. INTRODUCTION

A nonholonomic mobile robot kinematic model is one where the state depends

on the taken path. It is one of the most well-known benchmarks in the literature. This

paper considers a two-wheeled dynamic, nonholonomic model. There are three classes of

mobile robot navigation [1]: tracking a reference trajectory, following a path, and point

stabilization. In this work, the tracking a reference trajectory is considered. To simplify the

nonholonomic tracking problem, the magnitude of disturbances is taken as a small value,

or, in many studies, it is ignored. In this article, we track a reference trajectory with various

values of disturbance to emulate a real robot. Fuzzy logic handles these uncertainties at

various levels [2]. This work uses a FNN design for the actor and critic networks. In ADP,

the optimal control problems are solved, which allows agents to select an optimal action to

minimize a long-term cost value through solving Bellman’s equation [3] and [4]:

J(xt) = 〈
∞∑

k=t

γk−tU(xk, u(xk))〉, (1)

where 〈.〉 is the expectation symbol, J(xt) is an value function (cost-to-go value) for a

state vector (x ∈ Rn) at time step t, γ ∈ [0, 1] is a constant discount factor, U(xk, uk) is an

instantaneous utility cost function at time step k for x after applying a certain action vector

u ∈ Rm, and F is a final time (independent actions). Equation (1) can be rewritten as

J(xt) = 〈U(xk, u(xk)) + γJ(xt+1)〉, (2)

where J xt+1 is an optimal value function for the next state (xt+1), which can be obtained

according to the environment model function ( f (xt, ut)). Reinforcement learning (RL) and

ADP are used to train the actor network to give the optimal actions based on minimizing the

cost-to-go value that is produced from the critic network. The actor function approximator

(A(xt,wa)) is denoted for the actor network with ωa parameters. This function produces
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ut after feeding it by the input system state at time t (xt), while ṽ(xt, ωc) is the function

approximator for the critic network with ωc parameters, which produces a cost-to-go value

for xt . After full training of these networks, the optimal action values are obtained from the

actor network as:

u∗t = arg min
u∈Rm
〈U(xk, u(xk)) + γṽ(xt+1, ωc)〉, (3)

ADP has three fundamental approaches: heuristic dynamic programming (HDP), dual

heuristic programming (DHP), and globalized dual heuristic programming [5] and [6],

which consists of three approximation function networks (actor, critic, and model networks)

that provide decision making, evaluation, and prediction, respectively. If the approach has

only actor and critic networks, it is referred to as action-dependent (AD), resulting in the

terminologyADHDP forHDP andADDHP forDHP. In [7] and [8], the authors implemented

an online learning value function for ADHDP and ADDHP, respectively. Improving online

ADP learning is done by adding dual critic networks for HDP and DHP [9] - [11]. Many

applications have used ADP techniques seen in [12] - [15]. Fairbank and Alonso [16],

inspired by TD(λ) approaches [17], extended DHP by including a bootstrapping parameter

(λ). They called it a value gradient learning (VGL) with λ for eligibility traces. In this

work, we use VGL(λ) with FNN to control a nonholonomic mobile robot to follow any

given reference trajectory. The remaining sections are organized as follows: Section 2

presents fundamental preliminaries for dynamic mobile robots, ADP, and FNN. The mobile

robot control by FNN-based VGL(λ) is presented in Section 2. The simulation results and

conclusion are presented in Section 4 and Section 5, respectively.

2. FUNDAMENTAL PRELIMINARIES

2.1. Dynamic Modeling of the Mobile Robot. A differential-drive mobile robot

contains two independently driven wheels mounted on the left and right of its chassis

at the same axis, and a castor wheel (free rotating wheel) at the front for balancing the
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mobile robot. An inertial Cartesian frame represents the position of the mobile robot, while

q = [xc, yc, θ]T is the set of coordinates for the center of mass of the robot and the robot

orientation with respect to the Cartesian frame. The two independent driving wheels are

provided with the necessary torque for generating a left angular velocity (wL) and a right

angular velocity (wR), which in turn generate a linear velocity (v1) and angular velocity (v2)

for the mobile robot as follows:


v1

v2

 =

0.5r̄ −0.5r̄

r̄
2b

− r̄
2b



wR

wL

 , (4)

where r̄ is wheel radius and b is half of the robot width. The different forces for the mobile

robot mechanical motion are considered in the literature for the dynamic model but not the

kinematic model. The kinematic model is considered only for the motion. As stated in

[18] - [20], the dynamic model of the mobile robot has n̄ dimensional configuration space,

which subjects to r constraints as described by

M(q) Üq + C(q, Ûq) Ûq + F( Ûq) + G(q) + τd = B(q)u + AT (q)Ψ, (5)

with A(q) Ûq = 0 as a constrained kinematic wheel, where q ∈ Rn̄ is coordinate vector,

M(q) ∈ Rn̄×n̄ is a is a symmetric positive definite inertia matrix, C(q, Ûq) ∈ Rn̄×n̄ is the

centripetal and Coriolis matrix, F( Ûq) ∈ Rn̄ is a surface friction force vector, G(q) ∈ Rn̄

is a gravity vector, τd ∈ Rn̄ is a bounded unknown disturbance, B(q) ∈ Rn̄×n is a input

transformation matrix, u ∈ Rn is the input torque vector, A(q) ∈ Rr×n̄ is the full rank matrix

associated with constraints, and Ψ ∈ Rr the Lagrange multiplier (constraint forces) vector.

In this case study, There are two control inputs, which are a left torque (τL) and a right

torque (τR). Since the system does not change in vertical position and has a constant value

for potential energy, G(q) is set to zero. The viscous and coulomb frictions are commonly
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used to represent the effecting of the fraction model by the following description [21]

f (w) = fvw + fcΓ(w), (6)

where w is the angular relative velocity between the contact bodies, fv > 0 is the viscous

parameter, and fc > 0 is the coulomb parameter, and Γ(.) is a sigmoid function. In order

to reduce the dynamic model as in (5) from n̄ to m = n̄ − r with riding the Lagrange

multiplier out, equation (5) is pre-multiplied by spanning the linear independent null space

of the A(q) Ûq matrix, which is denoted as Jacobian matrix of Sc(q) ∈ Rn̄×m. In this case, a

kinematic equation is given as follows:

Ûq = Sc(q)v, (7)

where

Ûq =


Ûxc

Ûyc

Ûθ


, Sc(q) =


cos(θ) −dsin(θ)

sin(θ) dcos(θ)

0 1


, v =


v1

v2

 ,
and d is a center of gravity. The final elegant affine dynamicmodel is obtained by substituting

the kinematic equation (77), its derivative ( Üq = ÛSc(q)v+Sc(q)Ûv), and (75) into (76) to obtain

Ûv = −M̄(q)−1
(
V̄(q, Ûq)v + F̄( Ûq) + τ̄d

)
+ M̄(q)−1τ̄, (8)

where M̄(q) is an invertible matrix, which is defined

M̄(q) =


mT + 2

Ib
YY

r̄2 0

0 mT d2 + IT + 2Ib
YY

b2

r̄2 − 4mwd2

 ,
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Sc(q) =


0 −dv2(mT − 2mw)

dv2(mT − 2mw) 0

 , τ̄d =


τ̄R

τ̄L

 ,
F̄( Ûq) = 1

r̄


fv(wR + wL) + fc(∆(wR) + ∆(wL))

b fv(wR − wL) + b fc(∆(wR) − ∆(wL))

 , and

τ̄ = B̄τ =


0.5r̄ −0.5r̄

r̄
2b

− r̄
2b



τR

τL

 (∆(.) is a sigmoid function).

All mobile robot dynamic mode parameters will be defined in the simulation results section

in Table 1. The unknown disturbance τ̄d is bounded as ‖τ̄d ‖. The variables of τ̄L and τ̄R are

unknown disturbances impacting on the left and the right wheels, respectively.

2.2. DP/RLAlgorithms. This section describes a simple view for the development

stages for ADP/RL approaches. Throughout this work, all defined vectors are columns,

and all time step subscribed on variables is summarized by subscripting them on the

first function variable; for instance: ṽt ≡ ṽ(xt,wc), At ≡ A(xt,wa), ft ≡ f (xt, ut),Ut ≡

U(xt, ut) ≡ U(xt, At(x, ω)), and g̃t+1 ≡ g̃( f (xt, ut), ωc). Backpropagation through time

(BPTT) by Werbos [23] is the first stage used in adaptive/optimal control. For any given

trajectory, this approach efficiently finds an optimal controller by combining the BPTT with

gradient descent parameters. The update for this approach is done as a partial derivative

for the value function as in (2) with respect to the approximation parameters for the control

function. Another stage in ADP/RL algorithms uses the critic function to determine the

optimal policy [5], [6], [23],[24]. The HDP algorithm is connected by the critic network to

the action network through the model function. Because the TD algorithm by Sutton [17]

has less complexity and more accurate than conventional prediction learning methods, we

use it to update the critic weights. The minimizing TD-error between the approximate-value

function (ṽt(x, ωc)) and target-value (v̄t) is used for updating citric weights. The weights
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for the actor network are updated for α learning rate as follows:

ωa = ωa − α
∂ṽt

∂ωa
, (9)

where
∂ṽt

∂ωa
is given as follows:

∂ṽt

∂ωa
=
∂At

∂ωa

(∂Ut

∂u
+ γ

∂ ft
∂u

∂ṽt+1
∂x

)
+ γ

∂ṽt+1
∂ωa

. (10)

Equation (10) is used also to update the actor network for the DHP algorithm, which is

equivalent to equation (10) from [5], unlike HDP with single output. The way to update

the action weights in HDP (or ADHDP) is by fixing the model and critic weights and then

applying
∂ṽt

∂ṽt
(i.e., a constant) as the backpropagated error signal. There are two different

ways to implement the critic network for DHP scheme [16]: the scalar-critic function, which

the outputs from critic network represent as the partial derivatives of the value function with

respect to the vector of system state (
∂ṽt

∂x
), and the vector-critic function, which the outputs

represents by g̃ (identical to
∂ṽt

∂x
) where g̃ is the approximate-value gradient function. The

critic network weights in DHP are updated by minimizing the TD-error between g̃ and

target-gradient value (ḡ) as follows:

ωc = ωc − β
F∑

t=1

( ∂g̃t

∂ωc
(ḡt − g̃t)

)
, (11)

where ḡt is given as

ḡt =
(∂Ut

∂x
+ γg̃t+1

∂ ft
∂x

)
+
∂At

∂x

(∂Ut

∂u
+ γg̃t+1

∂ ft
∂u

)
. (12)

This TD-error is equivalent to equations (6) and (7) from [5]; the Jacobian matrix ∂g̃t
∂ωc

can use either the vector-critic function, which is called as a DHP style critic, or a scalar-

critic function ( ∂2ṽt
∂x∂ωc

), which is called a GDHP style critic, where GDHP comes from
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globalized DHP. The GDHP uses the function value and its derivatives by combining both

HDP and DHP. The ADP methods discussed thus far rely on differentiated models of

acceptable accuracy. This accurate model function that interacts with the learner might not

be available a priori. Si and Wang [7] do not use any model function, preferring real-time

learning during interacting with the environment. Their approach is roughly like ADHDP,

but with a model-free. Instead of using a model, they store the previous value function and

combine with the current. ADHDP uses two inputs for the critic network [xt, ut]T , unlike

model-based, which use only the xt . VGL(λ) is a further step in ADP/RL fields introduced

by Fairbank and Alonso [16]. VGL(λ) extends DHP by including a bootstrapping parameter

(λ). It is similar to Sutton [17] by extending TD(0) to TD(λ), but with the DHP approach

(VGL(0) is equivalent to traditional DHP). In this work, the FNN is applied in the VGL(λ)

approach to control mobile robot motion in noisy ambiance.

2.3. FNN. Since the FNN approach combines the advantages for fuzzy and pure

neural methods, it has become a popular research topic [25]-[27]. The FNN is composed

of five layers (Fuzzification / premise, firing strength, normalization, defuzzification /

consequent, and output) with nodes for each one as in [27] and [28]. The corresponding lth

if-then rule from the fuzzy logic system with multi-outputs can be written as follows:

Rule l : IF x1 = Al
1 AND . . . AND xl

n THEN f l
j =

∑n
i=1

(
cl

i j xi + cl
(n+1) j

)
, where

Al
i represents the fuzzy linguistic variable for lth rule, i = 1, 2 . . . n (n is number of inputs

to the system, which is equaled to the number of mobile robot dynamic states); and f l
j ∈

V( j) ⊂ Rm is the j th output from the system and V( j) is the output universe of discourse.

The consequent parameters are cl
1 j, . . . , c

l
(n+1) j ∈ R for lth rule, j = 1, 2 . . .m (m is number

of outputs from the system, which is equaled to the number of input torques to the mobile

robot model). In this work, we used backpropagation gradient to update both premise

and consequent parameters. Further detail about the structure FNN for VGL(λ) will be

discussed in the next section.
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3. MOBILE ROBOT CONTROL BY FNN-BASED OF VGL(λ)

In this section, a novel simple first-order Sugeno FNN structure is designed to adapt

with the critic and actor networks for controlling the robot trajectory.

3.1. VGL(λ) Structure Learning by Using FNN. Fig. 1 shows a new structure

for FNN by converting the single output structure of FNN [27] into m outputs with only

three layers (premise, hidden, and consequent layers). Instead of connecting weights as a

conventional neural network, the premise (σl
i ,m

l
i ) parameters for the Gaussian membership

function and consequent (cl
1 j, . . . , c

l
(n+1) j) parameter coefficients for a first order linear

function are used. The Gaussian membership function corresponding to the linguistic label

of the input variable is given as follows:

µAl
i
(xi) = e

−
1
2

( xi − ml
i

σl
i

)2

,
(13)

where the premise parameters (σl
i ∈ Ui, ml

i > 0) are the mean and variance parameters at

lth rule in it h input fuzzy set (µAl
i
(xi)), where Ui ⊂ Rn is the input universes of discourse.

The approximation function for forward pass can be expressed as follows:

pl =

n∑
i=1

( xi − ml
i

σl
i

)2
,

sl = S(pl) = e
(
pl

2
)
,

(14)

ql =

R∑
l=1

sl hl = H(sl, pl) = sl

ql
(15)

y j =

R∑
l=1

f l
j hl, (16)

where i = 1, 2 . . . n, l = 1, 2 . . .R (R is the number of rules), and j = 1, 2...m. The partial
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Figure 1. Schematic diagram of FNN used in ADP. Premise (σl
i ,m

l
i ) and consequent

(cl
1 j, . . . , c

l
(n+1) j) parameters are updated by using the backpropagation gradient algorithm.

The weights between the premise and hidden layers are always one.

derivatives of the total output (y) with respect to cl
1 j and cl

(n+1) j for l rule are given as

follows:
∂y

∂cl
1 j

= hl xi,

∂y

∂cl
(n+1) j

= hi,

(17)

while partial derivatives of the y with respect to σl
i and ml

i for l rule are given as follows:

∂y

∂ml
i

=

m∑
j=1

f l
j
(1 − hl)

ql sl (xi − ml
i )

(σl
i )2

, (18)

∂y

∂sigmal
i

=

m∑
j=1

f l
j
(1 − hl)

ql sl (xi − ml
i )

2

(σl
i )3

, (19)
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where y is the sum of squared m errors. Palit et al. [29] presented the details about the

backpropagation output signals and chain rules for multi-input multi-output neuro-fuzzy

network. A partial derivative of the y with respect to the inputs xi (the ith state) for l rule is

required for implementing the VGL(λ) approach, which is given as follows:

∂y j

∂xi
= hlcl

1 j −
m∑

j=1
f l
j
(1 − hl)

ql sl (xi − ml
i )

(σl
i )2

, (20)

where
∂y j

∂xi
is yielded from the FNN structure by the propagated back output signal to the

consequence fuzzy part (first term of (20)) and to the premise fuzzy part (second term of

(20)).

3.2. Mobile Robot Control Based on FNN-VGL(λ). The structure of FNN shown

in Fig. 1 is similar to the multi-inputs multi-output conventional neural network; therefore,

we assume the premise parameters for the Gaussian membership function as the first layer

weights, while the last layer weights are the consequent parameter coefficients for first order

linear equations. The weights between the premise and consequent layers are always one.

The FNN is applied for both critic and actor networks, which can be calculated for the

forward pass as in (14) - (16). The total weights for critic and actor networks are denoted as

ωc and ωa, respectively. Finding an optimal actor network makes the mobile robot follows

a continuous differentiated desired trajectory with minimum torque values. This situation

subjects the influences of unstructured disturbance signals (τ̄d) and surface frictions (F̄).

As in (7) and (8), the mobile robot has two states: v1 and v2. These two states are denoted as

column vector vt at t. These states are entered into the actor and critic networks, as shown

in Fig. 2. The two outputs of the actor are a right torque (τR) and left torque (τL), which are

denoted as column vector τt at t. The two approximate-value gradient functions at t from the

actor network are equal to
∂ṽt

∂v1
for v1 state and

∂ṽt

∂v2
for v2 state. Since the DHP style critic

is used,
∂ṽt

∂v1
and

∂ṽt

∂v2
are denoted as g̃v1 and g̃v2 , respectively. In other words, the input state

for both critic and actor networks is x = [x1, x2]T , which is equivalent to vt = [v1(t), v2(t)]T ,
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while the output values for the FNN (y = [y1, y2]T ) are g̃t = [g̃v1)(t), g̃v2(t)]T for the critic

network and τt = [τR(t), τL(t)]T for the actor network. We define a quadratic utility cost

function as follows:

Ut(v, τ) = (vt − vd)TQ(vt − vd) + τT
t Rτt, (21)

where Q = QT ≥ 0 ∈ Rn×n, R = RT > 0 ∈ Rm×m and vd = [vd1, vd2]T , which has a constant

value for all finite horizon time. vd1 is a desired linear velocity, and vd2 is a desired angular

velocity for t = 0 to F − 1 where the cost function at the final step (t = F) is only equal

to the first term of (21). The main objective of this cost function is minimizing the error

between actual and desired velocities and minimizing the torque energy signals near to zero

values. The diagonal matrix elements in the weighing matrices (Q) and (R) determine the

value of minimizing the trajectory tracking and the energy, respectively.

3.2.1. Critic Network Training Algorithm. A new definition for v̄t , which is

identical to λ-Return as in [28], is presented as follows:

v̄t(v) = Ut + γ
(
λv̄t+1(v) + (1 − λ)ṽt+1(v)

)
. (22)

Equation (22) is related to Q-learning(λ) and Sarsa(λ) that plays an important role in the

learning algorithm of RL. Fairbank and Alonso [16] have derived and adapted the VGL(λ)

algorithm from (22), which has improved efficiency of learning control problems. The value

learning as in (22) for HDP(λ) should supplement a stochastic exploration (a randomization

of trajectory starting points, or policy) for learning in a deterministic environment to reach

into a local optimization. In VGL (or DHP) methods, a single trajectory needs to obtain a

local optimization without requiring any exploration approach. The sequential environment

is used in this work by storing all vector states and vector actions in the forward pathway.

The backward pathway is used to update the critic network from the final storing state until

the first one. Equation (11) is used to update the critic network weights for the VGL(λ) by

minimizing the TD-error between g̃t(v, ωc) and ḡt , as shown in Fig. 2, whereas ḡt is defined
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Figure 2. Adaptation in VGL(λ) for the mobile robot trajectory control tracking. In general,
forward pathways are represented by the solid lines while pathways of backpropagation are
shown by dashed lines, and the small solid black dots represent a connection. The sequential
environment is used in this work by storing all states (velocity vectors) and actions (torque
vectors) in forward pathways. The TD-error between g̃t and ḡt , as in (11), is used for
updating critic network weights with applying (23) for ḡt . MUX box is used to feed (23) as
one thick dashed line by gathering the signals. The actor weights are updated by applying
(24). For robustness testing, various values of F̄ and τ̄d are injected into this dynamic model
to examine the influences on τ(t). The robot pose trajectory (xc, yc, θ) is obtained by using
the mobile robot kinematic equation (7) with fourth order Runge-Kutta integration for the
derivative of the coordination and orientation of the robot. The Runge-Kutta integration
also uses to solve the dynamic model (8) within 0.01 sec for the sample time.
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as follows:

ḡt = γ
(∂ ft
∂v
+
∂ ft
∂τ

∂At

∂v

)
K +

(∂Ut

∂v
+
∂Ut

∂τ

∂At

∂v

)
, (23)

where K = λḡt+1 + (1 − λ)g̃t+1. All the partial derivative terms in (11) and (23) exist. The

partial derivative terms related to FNN are
∂At

∂v
and

∂g̃t

∂ωc
. The term

∂At

∂v
is implemented

by using (20) to replace the FNNs’ output vector (y) with τ and the FNNs’ input vector (x)

with v. The term
∂g̃t

∂ωc
is implemented by using (17)-(19) with taking into account that the

critics’ weights are premise and consequent parameters, and replacing the FNNs’ output

vector (y) with the value-gradient functions.

3.2.2. Actor Network Training Algorithm. As shown in Fig. 2, the actors’

weights are updated by applying g̃t(v, ωc) instead of ṽt(v, ωc) in (9), and the recursion

expanding of ∆(ωa) =
∂g̃t

∂ωa
is defined as follows

∆(ωa) =
∑
t≥0

γt ∂At

∂ωa

(∂Ut

∂τ
+ γg̃t+1

∂ ft
∂τ

)
. (24)

The terms in (24), which are related to FNN, are
∂At

∂ωa
and g̃t+1. The term

∂At

∂ωa
is imple-

mented by using (17)-(19) with taking into account that the actors’ weights are premise

and consequent parameters and replacing the FNN’s output vector (y) by τ, while the g̃t+1

term is the outputs from FNN at t + 1. Because the form for this dynamic system is an

affine system with the quadratic utility cost function, the actor network can be omitted. As

described by Dierks et al. [30], the optimal torque signal at time step t4 (τ∗t ), which is

equivalent to the right side of (3), can be derived. To calculate the optimal torque in the

VGL(λ) approach, we subject the gradient of HamiltonâĂŞJacobiâĂŞBellman to zero as

follows:
∂v̄t

∂τt
= min

τ∗t

(∂vT
t Qvt + τ

T
t Rτt

∂τt
+
γ∂λ

(
v̄∗t+1 + (1 − λ)ṽ

∗
t+1

)
∂τt

)
= 0, (25)

τ∗t = −
γ

2
R−1

(∂vt+1
∂τt

)T ∂
(
v̄∗t+1 + (1 − λ)ṽ

∗
t+1

)
∂vt+1

, (26)
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τ∗t = −
γ

2
R−1

(
M̄(q)−1B̄

)T (
ḡ∗t+1 + (1 − λ)g̃

∗
t+1

)
, (27)

where g̃∗t+1 and ḡ∗t+1 are the optimal target- and approximator-value gradient, respectively.

The actor network, in this case, is always fully trained to generate the optimal torque vector.

Case study number two in the simulation results section will demonstrate that this method

has the faster response comparing with the actor/critic method

4. SIMULATION RESULTS

Two case studies are presented in this section to demonstrate the performance of

the mobile robot behavior with VGL(λ) technique. In both cases, we build a simulation

for the mobile robot dynamic model to represent (8). Table 1 presents the parameters

that are used to implement the model. The common parameters used in both two cases

are: The adaptive learning rate for critic and actor networks starting at β = 10( − 6) and

α = 10( − 4), respectively, and these values decrease after each 10th iteration according

to β(orα) = β(orα) ∗ 0.999 when they exceed 800 iterations. The number of maximum

iterations is set to 10000. The sample time, which is used the fourth order Runge-Kutta

integration to solve the robot dynamic model, is set to 0.01 sec. The discount factor (γ) is

set to 0.95. The initial weights for premise and consequent parameters are set within the

range of [-5 5] withR = 240. The average of three successful trails is recorded. The average

expression is represented the average for all generated data in one iteration for the error,

approximate or target-value gradient, and control torque singles; for instance, the error or

the mean square error (MSE) for v1 at certain iterations is (
∑T

t=1 0.5(vd1− v1(t))2)/T , where

T is the total number of sampling time, which is 100 for 1 sec.

4.1. First Case (Effectiveness of λ value). This case shows the comparison for

state trajectories between λ = 0 and λ = 0.9. The initial system state values are assigned

to v(0) = [2 − 2]T , and the desired velocity vector is vd = [00]T during 1 sec. The weight

matrices for reinforcement instantaneous signal (Q and R) are set to the identity matrices. In
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Table 1. Parameters of the dynamic mobile robot

Symbol Description Value
mT The mass of chassis 10kg
mw The mass of each wheel 2kg
r̄ The wheel radius 0.05m
b The half of the robot width 0.1m
d The center of gravity offset form rear axle 0.1m

Ib
YY The wheel moment of inertial 1kg.m2

IT The platform total moment of inertia 5kg.m2

fv The viscous friction coefficient 0.001N .m.s
fc The Coulomb friction coefficient 0.001N .m.s

this case, there is not any impact for the friction coefficients ( fv = fc = 0) and unstructured

disturbances (τ̄d = [00]T ). Fig. 3 (a)-(c) show the control performance at λ = 0. The

system trajectories for both velocity states over time are demonstrated in Fig. 3 (a). Fig.

3 (b) presents the average of MSE for both velocities over iterations. Fig. 3 (c) shows the

average torques for the left and right wheels over iterations, which are bounded to |3×10−5 |.

Fig. 4 (a)-(c) show the performance at λ = 0.9 for trajectory, the average of MSE, torque

signal values which are bounded to |0.5×10−5 |, respectively. Fig. 3 and Fig. 3 demonstrate

the effectiveness of bootstrapping parameter. For instance, the MSE for the mean of the

two states in the final iteration for λ = 0 is 1.269e-04, while it is 2.765e-08 for λ = 0.9.

Moreover, Fig. 3 and Fig. 4 demonstrate that a high value of λ makes the system more

stable and fast learning. Fig. 5 (a)-(c) show the comparison performance between λ = 0

and λ = 0.9 in depth for the average of MSE, torques, and the value function as in (1),

respectively. The controller with λ = 0.9 reaches to the near-optimal stable value function

(J = 7.2) around 450 iterations while the controller with λ = 0 requires 2200 iterations.

4.2. Second Case (with/without Actor Network). The optimal torque vector is

used as in (27) instead of the actor network. The critic / optimal-torque approach is replaced

by a full training actor network. Because actor and critic networks (critic/actor approach) are
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Figure 3. The actor and critic performance at λ = 0. (a) Typical system trajectories for both
velocity states over time at last stable learning iteration. (b) The average of MSE for both
velocity states over iterations. (c) The average torques applying to the left and right wheels
over iterations.
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Figure 4. The control performance at λ = 0.9. (a) - (c) has same descriptions for (a) - (c)
as in Fig. 3.
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Figure 5. Comparison of the average performance at λ = 0 and λ = 0.9. (a) The MSE for
both velocity state errors. (b) Requirement torque values. (c) The function value, which is
calculated from (1).
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simultaneously trained, interference between these networks may occur. We demonstrate

that the critic/optimal-torque approach is faster than the critic/actor approach to reach into

stable behavior, but it is absorbs less noises. Without the actor network, the difficulty of

unpredictable intervention can be skipped. This study case shows full circle trajectories

at λ = 0.9 with disturbances. We use three layers multilayer perceptron neural network

(NN) with 85 neurons for hidden layer for comparing with FNN. The other requirement

learning parameters for NN can be found in [15]. Both FNN and NN have almost same

behavior with noise-free environment ( fv = fc = 0 and τ̄d = [00]T ) for both critic/actor

and critic/optimal-torque approaches. While NN becomes gradually worse response with

increasing the amplitude of the noise signals. Fig. 6 (a), Fig. 7 (b)-(c) and Fig. 8 (d)-(e)

demonstrate the performance for critic/actor and critic/optimal-torque approaches to follow

circle desired trajectory with a large impact of disturbances. The friction coefficients set to

fv = 0.2 and fc = 0.32, and the unstructured disturbance is bounded to ‖τ̄d ‖ ≤ 113.13 via

setting with ±80 bounded random value for both τ̄L and τ̄R. In this case study, the desired

velocity vector is vd = [3.5 6.5]T . Fig. 6 (a) X-Y trajectories for the mobile robot for NN

and FNN, where the optimal torque for the FNN approach is the best performance. Fig. 7

(b) shows the average of MSE over iterations, which is 0.09 ± 0.02 for the FNN actor/critic

approach and 2.6 ± 0.0001 × 10−3 for the FNN critic / optimal-torque approach, while for

the NN networks, the MSE’s are 0.4 ± 0.3 and 0.08 ± 0.09 an, respectively. Fig. 8 (c)

shows the absolute average values for the left and right control torques over iterations. In

the stable region of iterations, the torques are bounded 1.33 ± 0.02 for the FNN critic/actor

approach and 1.45 ± 0.1 for the FNN critic/optimal-torque approach. While for the NN

networks, the absolute average torques are 3.1 ± 0.13 for critic / optimal-torque approach

and 2.4 ± 0.17 for critic/actor approach. Fig. 8 (d) shows the FNN networks for right

and left torques over time in upper and lower figures, respectively, at the stable learning

iteration for both critic / actor and critic / optimal-torque approaches. Fig. 8 (e) shows the

value function for the FNN (1), which declines until iteration number around 300, where
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Figure 6. Critic/actor and critic/optimal-torque approaches set to follow a circular trajectory
at λ = 0.9 with disturbances for NN and FNN. (a) The X-Y trajectories for the mobile robot.

it becomes stable and equal to 50 ± 3 for the critic / optimal-torque approach, while it is

50 ± 15 near iteration 800 for the critic/actor approach. While for the NN networks, the

stable value function are 90±19 near iteration 600, and 90±24 near iteration 850, for critic

/ optimal-torque and critic/actor approaches, respectively. As shown in Fig. 7 (b) and

Fig. 8 (e) for FNN approach, critic/optimal-torque is faster and has better performance than

the critic/actor technique because it reaches into the stability of the optimal cost function

value with minimum MSE at iteration number 400, while the critic / actor technique needs

1200 to become stable. However, the critic / actor technique has better performance with
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Figure 7. Critic/actor and critic/optimal-torque approaches set to follow a circular trajectory
at λ = 0.9 with disturbances for NN and FNN. (b) and the average of MSE over iterations,
respectively. (c) The absolute average values for the left and right control torques over
iterations.
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Figure 8. Critic/actor and critic/optimal-torque approaches set to follow a circular trajectory
at λ = 0.9 with disturbances for NN and FNN. (d) The value of the torques over time for
the last learning iteration for FNN. The cost-to-go value is shown in (e).
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a noisy environment than the critic/optimal-torque. As shown in Fig. 7 (c) and Fig. 8 (d)

for FNN approach, critic/actor technique can absorb most unstructured disturbance signals

and friction effects to produce the relatively small amount of torque.

5. CONCLUSION

Tracking a reference trajectory for a mobile robot by using VGL(λ) has been pre-

sented. In this work, a new structure of the FNN is used to fit the VGL algorithm with both

critic and actor networks. The effectiveness of the λ value, and following trajectories with

disturbance impacts with optimal torques calculation are two case studies. The simulation of

the mobile robot can deal with the impacts of unmodeled bounded disturbances with various

friction parameter values. It successfully reaches the designated reference trajectory. The

critic / optimal-torque technique is faster and performs better than critic / actor technique

because it reaches into the stable value (the optimal cost function value and the minimum

MSE), but the critic / actor technique has better performance with a noisy environment.

The critic/actor technique can address the effects of most unstructured disturbance / friction

signals.
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ABSTRACT

This paper provides stability analysis for a model-free action-dependent heuristic dynamic

programming (HDP) approach with an eligibility trace long-term prediction parameter (λ).

HDP(λ) learns from more than one future reward. In this work, we prove its uniformly

ultimately bounded (UUB) property under certain conditions. Previous works present

a UUB proof for traditional HDP (HDP(λ = 0)), but we extend the proof with the λ

parameter. By using Lyapunov stability, we demonstrate the boundedness of the estimated

error for the critic and actor neural networks as well as learning rate parameters. Three

case studies demonstrate the effectiveness of HDP(λ). The trajectories of the internal

reinforcement signal nonlinear system are considered as the first case. We compare the

results with the performance of HDP. The second case study is a single link inverted

pendulum. We investigate the performance of the inverted pendulum by comparing HDP(λ)

with regular HDP, with different levels of noise. The third case study is a 3-D maze

navigation benchmark, which is compared with SARSA, Q(λ), HDP and HDP(λ). All these

simulation results illustrate that HDP(λ) has a competitive performance.

Keywords: Approximate dynamic programming (ADP), model-free, action dependent

(AD), heuristic dynamic programming (HDP), λ-return, Lyapunov stability, uniformly

ultimately bounded (UUB).
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1. INTRODUCTION

Adaptive dynamic programming (ADP) allows agents to select an optimal action

sequence by minimizing their long-term cost:

J(x(t)) = 〈
F∑

k=t

γk−tU(x(k), u(k))〉, (1)

where 〈.〉 is the expectation, J(x(t)) is a value function (cost-to-go value) for a state vector

(x ∈ Rm) at time step t, γ is a constant discount factor, and U(x(k), u(k)), denoted as U(k)

for short, is an instantaneous utility function at time step k for x after applying an action

vector u ∈ Rn. F is the final time. Thereby solving Bellman’s equation [1], we can find

the predicted value fuction. As reviewed in [2], [3], ADP trains an actor network to give

optimal actions based on minimizing the cost-to-go value that is produced from a critic

network. Both networks are approximated by using a multilayer perceptron. A(x(t),wa)

is the actor network with weights, wa that produces u(t). The v̂(x(k), u(k),wc) is the

function approximator for the critic networkwith weights, wc, which produces J(x(t)). ADP

has three fundamental categories: heuristic dynamic programming (HDP), dual heuristic

programming (DHP), and globalized DHP as shown in [2], [4]. Each category uses three

neural networks (actor, critic, and model) that provide decision making, evaluation, and

prediction, respectively. The action dependent (AD) method is another version of ADPwith

no model that takes both states and actions as inputs to the critic. Throughout this work, we

use a model-free AD method with HDP. We remove the “AD” abbreviation for simplicity

and because model-free approaches are always AD. Our approach does not require a priori

information about the environment during learning. Online learning happens through

interacting with the environment. In [5], Si and Wang implemented an online learning

value function for HDP, while Ni et al. [6] also implemented a model-free method with

DHP. Online ADP learning can be improved by adding another network to support the

critic network, which is shown in [7], [8] for HDP and [9] for DHP. Many applications have
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used ADP. In [10], DHP controlled a turbo-generator more efficiently than HDP. Collective

robotic search problems were solved by using DHP [11]. Lian and Xu [12] applied HDP

to allow a mobile robot to escape from sharp corners. Al-Dabooni and Wunsch [13]

applied HDP with a Dyna algorithm [3] to obtain an optimal path by cooperating multi-

robot navigation. Inspired by the temporal-difference (TD) approach with an eligibility

trace long-term prediction parameter (λ)in [14], Fairbank and Alonso [15] (see also [16])

introduced a new ADP algorithm that extends DHP by including a λ parameter. They

called it value-gradient learning. We used value-gradient learning to track a reference

trajectory under uncertainties, by computing the optimal left and right torque values for

a nonholonomic mobile robot [17]. Simple interpretation and good performance are two

well-known properties attached with TD(λ) as presented in [3], [13]-[24]. But these works

use an extra variable associated with each state, which increases computational complexity.

This paper overcomes the drawback of using eligibility-trace storage, improving simplicity

and performance. This paper also provides a stability proof to determine what suitable

learning parameters (λ, γ and critic/actor learning rates) should be used during training.

The general stability of ADP is an open problem [25]. Under certain conditions, we use

Lyapunov theory to prove stability for the general case of HDP(λ). Prior contributions [25],

[26] proved stability of model-free learning only for the one-step (λ = 0) HDP(0) case.

We explain the HDP(λ) structure in Section 2. Section 3 presents a boundedness stability

analysis; Section 6 presents simulation results, and Section 7 is the Conclusion.

2. STRUCTURE OF MODEL-FREE HDP(λ)

2.1. HDP(λ) Learning Views. The general nonlinear system model is represented

as:

x(t + 1) = f (x(t), u(t)), (2)
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where x is the m-dimensional system state vector and u is the n-dimensional control vector.

HDP solves the recursive form of (1) [27]:

J∗(t) = min
u(t)
{U(t + 1) + γJ∗(t + 1)}, (3)

where J∗ denotes the optimal value function of (1), and the instantaneous cost (U(t) ∈ [0, 1])

is bounded. Equation (1) is solved by using a one-step TD, or equivalently HDP(0). As in

[3], the Bellman equation for a one-step-return R(1)t , two-step-return R(2)t , and n-step-return

R(n)t are given as follows:

R(1)t = U(t) + γJ(t + 1), (4)

R(2)t = U(t) + γU(t + 1) + γ2J(t + 2), (5)

R(n)t =U(t) + γU(t + 1) + . . . + γn−1U(t + n − 1) + γnJ(t + n) =
n∑

k=0
γkU(t + k), (6)

where R(i)t is an i-step-return value, which is a summation of the instantaneous costs from

t to i. An average of the n-step-return is a technique to achieve fair cost distribution. For

instance, the average calculation of a 4-step-return can be done via a half of 2-step-return

and half of a 4-step-return such that RAv(2,4)
t = ω2R(2)t + ω4R(4)t , where ω2 = 0.5, and

ω4 = 0.5. The proportional weights (ωi), i = 1, 2 . . ., are positive and sum to 1. The

λ parameter represents the proportional weights. Therefore, we refer to λ as a long-term

prediction parameter. For instance, ω1 = (1−λ) to average a one-step-return (λ = 0), which

is equivalent to (4) (R(1)t = Rλ=0
t ); to average a two-step-return, RAv(1,2)

t = ω1R(1)t + ω2R(2)t ,

where ω1 = (1− λ) and ω2 = λ, and so on. In Section 3 Theorem 2, we prove that λ should

be within 0 ≤ λ < 1. This is in contrast to previous literature, which have different rules for

λ value (included bounded from 0 to 1). The λ-return (Rλt ) is another name for the average
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of an n-step-return, which is defined in general as:

Rλt = (1 − λ)
∞∑

n=1
λn−1R(n)t . (7)

For simplicity, we denote the n-step expression instead of the average of n-step-return. The

previous approach is called the forward view of a learning algorithm. Because each step

uses the knowledge of what will happen many steps later, the forward view is not directly

implementable. The backward view provides an extra variable associated with each state,

which is called an eligibility trace (et(x)). An accumulating trace method by Sutton [14] is

a first technique that updates an et(x) variable for every step as follows (i.e., Q(λ)-learning

algorithm):

et(t) =

γλet−1(x) i f x , x(t)

γλet−1(x) + 1 i f x = x(t),
(8)

where λ here is used as a trace-decay parameter. Doya [28] derives continuous time

eligibility traces in more detail. Because the traces increase with repeated visits to a state

in accumulating traces, a truncating method is suggested by Sutton [24] to overcome the

accumulative behavior. HDP(λ) does not use any eligibility trace parameters by re-deriving

the λ-return as in (7), which is used to train the parameters for the approximate value

function. Fairbank [29] denotes the λ-return at time t (Rλt ) as a target-value (v̄(t)), which is

defined in (8). We rederive Rλt associated with the γ value to prove that Rλt is equivalent to

v̄(t) as follows: By substituting (4) into (7) and assuming the v̂(t) = J(t), we obtain:

Rλt = (1 − λ)
∞∑

n=1
λn−1

( [ n−1∑
k=0

γkU(t + k)
]
+ γnv̂(t + n)

)
.

= (1 − λ)
( [ ∞∑

n=1
λn−1

n−1∑
k=0

γkU(t + k)
]
+

∞∑
n=1

λn−1γnv̂(t + n)
)
.

(9)
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Expanding (6) yields

Rλt =(1 − λ)
[
λ0 (γ0U(t)

)
+ λ1 (γ0U(t) + γ1U(t + 1)

)
+ λ2 (γ0U(t) + γ1U(t + 1)+

γ2U(t + 2)
)
+ . . . + λ∞

∞∑
k=0

(
γkU(t + k)

) ]
+ (1 − λ)

∞∑
n=1

[
λn−1γnv̂(t + n)

]
.

(10)

Further arranging for (10) results in

Rλt =(1 − λ)
[
γ0U(t)

(
λ0 + λ1 + . . . + λ∞

)
+ γ1U(t + 1)

(
λ1 + . . . + λ∞

)
+

. . . + γ∞U(t +∞)
(
λ∞

) ]
+ (1 − λ)

∞∑
n=1

[
λn−1γnv̂(t + n)

]
.

(11)

Simplifying the first term of (11), we obtain:

Rλt =
∞∑

n=0

[
γnU(t + n)

( ∞∑
k=n

λk − λ
∞∑

k=n

λk ) ] + (1 − λ) ∞∑
n=1

[
λn−1γnv̂(t + n)

]
(12)

With more rearranging and extraction (12), we obtain:

Rλt =
∞∑

n=0
γnU(t + n)

[ (
λn + λn+1 + . . . + λ∞

)
−

(
λn+1 + λn+2 + . . . + λ∞

) ]
+

(1 − λ)
∞∑

n=0

[
λnγn+1v̂(t + n + 1)

]
,

(13)

and therefore,

Rλt =
∞∑

n=0

[
λnγn

(
U(t + n) + (1 − λ)γv̂(t + n + 1)

)]
,

=U(t) + λγ
(
U(t + 1) + λγ

(
U(t + 2) + λγ

(
U(t + 3) + . . .+

λγ
(
U(∞) + (1 − λ)γJ(∞)

)
+ . . . + (1 − λ)γJ(t + 4)

)
+ (1 − λ)γ

J(t + 3)
)
+ (1 − λ)γJ(t + 2)

)
+ (1 − λ)γJ(t + 1),

(14)
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where U(∞) = v̄(∞), which is the instantaneous cost at the infinite horizon terminal state.

The final target-value according to (7) is

v̄(t) = Rλt = U(t) + λγv̄(t + 1) + (1 − λ)γv̂(t + 1). (15)

Using (8), we construct the HDP(λ) schematic, which consists of two components,

the critic and actor, as shown in Fig. 1. The initial target (v̄(t)) for the first trial is provided

by substituting λ = 0 in (8), which is identical to the HDP(0) approach.

Many function approximators are used to implement ADP [10], [17], [31], [32].

For instance, a radial basis function neural network, [32], [33], is one option, but we keep

first-layer weights constant during training for both critic and actor networks; therefore, a

feedforward neural network is appropriate. Because of the elegant and extendable structure

of a fully connected neural network [30], we use it in the actor and critic networks.

Figure 1. Schematic for the adaptation of the novel model-free HDP(λ) structure design
according to (8). Forward pathways are represented by solid lines, while backpropagation
pathways are shown by dashed lines. The small solid black dots represent a connection
path. The initial target-values (v̄(t)) are provided by substituting λ = 0 with (8), which is
identical to the traditional HDP. The TD-error between v̄(t − 1) and v̂(t − 1), as in (76), is
used to update critic network weights (84), which is represented by red dashed line. The
actor network weights are estimated by back-propagating the prediction error (blue dashed
line), which is equal to the value function (v̂(t−1)) through the critic network, and updating
the actor’s weights according to (28).
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2.2. The Critic Neural Network. The structure of the critic network is shown in

Fig. 2. A fully connected three-layer feed-forward neural network is used in this work. The

output is v̂(t) that learns to approximate J(t) as in (1). The inputs for the critic network are

the action values (u1(t), u1(t), . . . , un(t)) and the system states (x1(t), x2(t), . . . , xm(t)). hc is

the number of hidden neurons, m is the number of system states, and n is the number of

control action values.

The hidden weights are indicated as ω̂{h}c , which can be represented in a (m+n)× hc

dimension matrix. The output weights are ω̂{o}c , which can be represented in a hc × 1

dimension matrix.

The activation function for the hidden nodes is the hyperbolic tangent φ(x) =

(1 − e−x)/(1 + e−x). The forward propagating output signal according to Fig. 1 and Fig. 2

is

s(k)(t) =
m∑

i=1
ω̂
{h}
c(k,i) x(i)(t) +

n∑
j=1

ω̂
{h}
c(k, j+m)u( j)(t), k = 1, 2, . . . , hc, (16)

r(k)(t) = φ(s(k)(t)), k = 1, 2, . . . , hc, (17)

v̂(t) =
hc∑

k=1
ω̂
{o}
c(k)r(k)(t), (18)

where s(k)(t) is the kth hidden node input of the critic network, and r(k)(t) is the correspond-

ing output of the hidden node. The weights for hidden (ω{h}c ) and output (ω{o}c ) layers can

be implemented by back-propagating the prediction error of the critic network, which is

ec(t) = U(t) + λγv̄(t) + (1 − λ)γv̂(t) − v̂(t − 1). (19)

The objective function for the critic network is to minimize Ec(t) = 0.5
(
ec(t)

)2 by

updating the value for the weights according to the gradient descent algorithm:

ω̂c(t + 1) =ω̂c(t) + 4ω̂c(t) = ω̂c(t) − `c
∂Ec(t)
∂ω̂c(t)

, (20)
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Figure 2. Schematic diagram of the critic network in HDP(λ). As mentioned by Werbos in
[30], this structure is more general than a traditional three-layer feedforward neural network
by fully connecting all neurons. It models a variety of functional forms [34]. We set all
weights that connect input nodes with output nodes to zero; therefore, it is similar to a
three-layer feedforward neural network structure. ω̂{h}c represents a hidden weights, which
connect the input layer with the hidden layer. The output weights are indicated as ω̂{o}c ,
which connect both input and hidden layers with the output layer. sk(t) is the kth hidden
node input of the critic network, and rk(t) is the corresponding output the hidden node.
Here, we only apply a hyperbolic tangent threshold function (φ(.)) to the hidden neurons.

and the chain propagation path can be represented as

∂Ec(t)
∂ω̂c(t)

=
∂Ec(t)
∂v̂(t) ·

∂v̂(t)
∂ω̂c(t)

. (21)

Then, the adaptation of the output weights is

ω̂c(t + 1) =ω̂c(t) − `cγ(1 − λ)φc(t)[γλv̄(t) + γ(1 − λ)ω̂T
c (t)φc(t) +U(t)−

ω̂T
c (t − 1)φc(t − 1)]T,

(22)

where φc = [r1, r2, . . . , rhc ]T , ω̂c = ω̂
{o}
c , and v̂(t) = ω̂T

c (t)φc(t). Following [2], we chose

the hidden critic weights (ω̂{h}c ) initially at random and kept them constant while updating

the output critic weights (ω̂{o}c ≡ ω̂c).
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2.3. The Actor Neural Network. The actor network is used to generate a near-

optimal policy. Fig. 4 illustrates the structure of the actor network, which is similar to

critic network structure but with multi-output. The system state is the input to this network

(x1(t), x2(t), . . . , xm(t)), while the outputs are the actions (u1(t), u2(t), . . . , un(t)). ha is the

number of hidden neurons, m is the number of system states, and n is the number of

control action values. The hidden weights are indicated as ω̂{h}a , which can be represented

in a m × ha dimension matrix. The output weights are indicated as ω̂{o}a , which can be

represented in a ha × n dimension matrix. The activation function for the hidden nodes

is the hyperbolic tangent. The activation function for the hidden nodes is the same as the

critic network. The forward propagating output signal according to Fig. 1 and Fig. 4 can

be expressed as follows:

p(k)(t) =
m∑

i=1
ŵ
{h}
a(k,i) x(i)(t), k = 1, 2, . . . , ha, (23)

q(k)(t) = φ(p(k)(t)), k = 1, 2, . . . , ha, (24)

û( j)(t) =
ha∑

k=1
ŵ
{o}
a(j,k)q(k)(t), j = 1, 2, . . . , n, (25)

where p(k)(t) is the kth hidden node input of the actor network, and q(k)(t) is the corre-

sponding output of the hidden node.

The actor network weights are adapted by back-propagating the prediction error of

the actor network (ea(t) = v̂(t) −Uc), where Uc is the desired ultimate cost-to-go objective

value. As in [5], Uc is set to “0,” corresponding to “success.” The objective function for

this network is to minimize Ea(t) = 0.5
(
ea(t)

)2 by updating the weights as follows:

ω̂a(t + 1) =ω̂a(t) + 4ω̂a(t) = ω̂a(t) − `a
∂Ea(t)
∂ω̂a(t)

=ω̂a(t) −
1
2
`a

(∂Ea(t)
∂v̂(t) ·

∂v̂(t)
∂u(t) ·

∂u(t)
∂ω̂a(t)

)
,

(26)
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Figure 3. Schematic diagram of the actor network in HDP(λ). We set all weights that
connect input nodes with output nodes to zero as well as the connected weights between
the outputs themselves. ω̂{h}a represents hidden weights which connect the input layer with
the hidden layer. The output weights are indicated as ω̂{o}a , which connect both input and
hidden layers with the output layer. pk(t) is the kth hidden node input of the actor network,
and qk(t) is the corresponding output of the hidden node. Here, we only apply a hyperbolic
tangent threshold function (φ(.)) on the hidden neurons.

where
∂v̂(t)
∂u(k)(t)

=

hc∑
i=1

∂v̂(t)
∂s(i)(t)

·
∂s(i)(t)
∂r(i)(t)

·
∂r(i)(t)
∂u(k)(t)

, (27)

where k = 1, 2, . . . n. The final adaptation of the action network’s weights between the

hidden and output layers is

ω̂a(t + 1) =ω̂a(t) − `aφa(t)[ω̂T
c (t)CBP(t)][ω̂T

c (t)φc]T, (28)

where φa = [q1, q2, . . . , qha]T , ω̂a = ω̂
{o}
a , u(t) = ω̂T

a (t)φa(t),CBP(t) is amatrix of hc×n, and

the elements for this matrix areCBP(k, j)(t) = 0.5
(
1−φ2

c(k)(t)
)
ω̂
{h}
c(k,m+j)(t)where k = 1, 2, . . . hc

and j = 1, 2, . . . n. The actor’s hidden weights (ω̂{h}a ) are kept constant while its updating

output weights (ω̂{o}a ≡ ω̂a) [2].
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3. STABILITY ANALYSIS

This section discusses stability for the critic and actor networks by employing

Lyapunov functions.

3.1. Lyapunov Approach. Let ω∗c and ω∗a denote the optimal weights for the critic

and actor networks as follows: ω∗c = argminω̂c ‖U(t)+ γ(λv̄(t)+ (1−λ)v̂(t)) − v̂(t −1)‖ and

ω∗a = argminω̂a ‖v̂(t)‖. The weight estimation error for both critic and actor networks is:

ω̃(t) = ω̂(t) − ω∗. (29)

A more general discrete time dynamic system for weight update rules in (84) and (28)

for critic and actor networks define a dynamic system of estimation errors for a general

nonlinear function (g(.)) as:

ω̃(t + 1) = ω̃(t) − g(ω̂(t), ω̂(t − 1), φ(t), φ(t − 1)). (30)

Therefore, the stability properties of the system in (39) express the asymptotic behavior of

the estimation error of the weights (ω̃(t)).

Definition 1. A discrete time dynamic system (39) solution is UUB ε > 0, if and only if,

for all δ > 0 and t0 > 0, there exists a positive number N = N(δ, ε) independent of t0, such

that ‖ω̃(t)‖ ≤ ε for all t ≥ N + t0 when ‖ω̃(t)‖ ≤ δ.

Theorem 1 (A property for UUB). The discrete time dynamic system (39) has a Lyapunov

function L(ω̃(t), t) such that for all ω̃(t0) in a compact set K , L(ω̃(t), t) is positive definite and

the first difference, 4L(ω̃(t), t) < 0 for ‖ω̃(t)‖ > ε, for ε > 0, such that ε− neighborhood

of ω̃(t) is contained in K . Thus, the dynamic system is UUB and the norm of the state is
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bounded within a neighborhood of ε.

According to Theorem 1, an appropriate function L is selected to determine the UUB

property for (39) subject to Assumptions C and A below.

3.2. Preliminaries. In this subsection, two lemmas will be presented, which are

used to prove the main theorem.

Assumptions C (for the critic). Let ω̃∗c(t) be the optimal weights for the critic network:

ω∗c =argminω̂c ‖U(t) + γ(λv̄(t) + (1 − λ)v̂(t)) − v̂(t − 1)‖

=argminω̂c ‖γλv̄(t) + γ(1 − λ)ω̂T (t)φc(t) +U(t) − ω̂T (t − 1)φc(t − 1)‖,
(31)

assuming ω̃∗c(t) is bounded by some positive constant, i.e., ‖ω∗c ‖ ≤ ωmax
c .

Lemma C. Let assumption C hold. Then the first difference of Lc(t) = 1
`c

tr(ω̃T
c (t)ω̃c(t)),

where tr is the trace of a matrix, is expressed as follows:

4Lc(t) ≤ −β2‖ξc(t)‖2 − β2(1 − `cβ
2‖φc(t)‖2) × ‖ξc(t) + ω∗

T

c φc(t) + β−1γλv̄(t)

+ β−1U(t) − β−1ω̃T
c (t − 1)φc(t − 1)‖2 + 2‖βω∗Tc φc(t) + γλv̄(t) +U(t)−

1
2
ω̂T

c (t − 1)φc(t − 1) − 1
2
ω∗

T

c φc(t − 1)‖2 + 1
2
‖ξc(t − 1)‖2,

(32)

where ξc(t) = ω̃c(t)φc(t) is the approximation error of the critic network output and β =

γ(1 − λ).

Lemma C Proof. The first discrete difference of the nominated Lyapunov function is given

as follows:

4Lc(t) =
1
`c

tr(ω̃T
c (t + 1)ω̃c(t + 1) − ω̃T

c (t)ω̃c(t)). (33)

By the updating rule of (38) and ω̃c(t + 1) as in (84), we get:

ω̃c(t + 1) = − `cβφc(t)
[
γλv̄(t) + βω∗Tc (t)φc(t) +U(t) − ω̂T (t − 1)φc(t − 1)

]T
+[

I − `cβ
2φc(t)φT

c (t)
]
ω̃c(t).

(34)
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Assuming P =
[
I−`cβ

2φc(t)φT
c (t)

]
andQ =

[
γλv̄(t)+ βω∗Tc (t)φc(t)+U(t)−ω̂T (t−1)φc(t−

1)
]
, then by substituting P, Q, and (43) into (42), we get:

4Lc(t) =
1
`c

(
tr

(
ω̃T

c (t)PT Pω̃c(t)
)
− tr

(
`cβω̃

T
c (t)PTφc(t)QT

)
− tr

(
`cβQφT

c (t)Pω̃c(t)
)
+ tr

(
`2

c β
2QφT

c (t)φc(t)QT
))
,

(35)

4Lc(t) = −β2‖ξc(t)‖2 − β2
(
1 − `cβ

2‖φc(t)‖2
)
‖ξc(t)‖2

− 2βtr

((
1 − `cβ

2‖φc(t)‖2
)
ξc(t)QT

)
+ `cβ

2‖φc(t)‖2

‖βω∗Tc φc(t) + γλv̄(t) +U(t) − ω̃T
c (t − 1)φc(t − 1)‖2.

(36)

By applying the Cauchy-Schwarz inequality, we get:

4Lc(t) ≤ −β2‖ξc(t)‖2 − β2
(
1 − `cβ

2‖φc(t)‖2
)
× ‖ξc(t) + ω∗

T

c φc(t)+

γλβ−1v̄(t) + β−1U(t) − β−1ω̃T
c (t − 1)φc(t − 1)‖2+

‖βω∗Tc φc(t) + γλv̄(t) +U(t) − 1
2
ω̂T

c (t − 1)φc(t − 1)

− 1
2
ω∗

T

c φc(t − 1) + ξc(t − 1)‖2.

(37)

With further arrangement, we get (41).

Assumptions A (for the actor). Let ω̃∗a(t) be the optimal weights for the actor network

bounded by a positive constant, i.e., ‖ω∗a‖ ≤ ωmax
a . Let ξa(t) = [ω̂a(t) − ω∗a]Tφa(t) =

ω̃T
a (t)φa(t) be the approximation error of the actor network output.

Lemma A. Let Assumption A hold. Then the first difference of La(t) = 1
α`a

tr(ω̃T
a (t)ω̃a(t))

is expressed as follows:
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4La(t) ≤
1
α

(
−

(
1 − `a(t)‖φa(t)‖2‖ω̂T

a (t)CBP(t)‖2
)
× ‖ω̂T

c (t)φc(t)‖2

+ ‖ξa(t)(ω̂T
a (t)CBP(t))‖2 + 4‖ξc(t)‖2 + 4‖ω∗Tc φc(t)‖2

)
,

(38)

where α is a weighting factor, which will be defined in (57).

Lemma A Proof. The asymptotic behavior of the estimation error of the actor weights

(ω̃a(t)) is analyzed by studying the stability of (39). The first discrete difference of the

nominated Lyaponov function is given as follows:

4La(t) =
1
α`a

tr

(
ω̃T

c (t + 1)ω̃a(t + 1) − ω̃T
a (t)ω̃a(t)

)
, (39)

By updating the rule of (38) and ω̃a(t + 1) as in (28), we get:

ω̃a(t + 1) =ω̃a(t) − `aφa(t)ω̂T
c (t)CBP(t)

[
ω̂T

c (t)φc(t)
]T
. (40)

By substituting (54) into (53), we get:

4La(t) =
1
α`a

tr

(
− 2`aξa(t)ω̂T

c (t)CBP(t)
[
ω̂T

c (t)φc(t)
]T
+

`2
a ‖φa(t)‖2 |ω̂T

c (t)CBP(t)‖2‖ω̂T
c (t)φc(t)‖2

)
,

(41)

4La(t) =
1
α

(
‖ω̂T

c (t)φc(t) − ξa(t)ω̂T
c (t)CBP(t)‖2 − ‖ξa(t)ω̂T

a (t)CBP(t)‖2−

‖ω̂T
c (t)CBP(t)‖2 + `a‖φa(t)‖2‖ω̂T

c (t)CBP(t)‖2‖ω̂T
c (t)φc(t)‖2

)
.

(42)
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By applying the Cauchy-Schwarz inequality, we obtain:

4La(t) ≤
1
α

(
4‖ξc(t)‖2 + 4‖ω∗Tc φc(t)‖2 + ‖ξa(t)ω̂T

c (t)CBP(t)‖2−

‖ω̂T
c (t)φc(t)‖2 + `a‖φa(t)‖2‖ω̂T

c (t)CBP(t)‖2‖ω̂T
c (t)φc(t)‖2

)
.

(43)

With a simple arrangement, we get (52).

3.3. TheDynamical SystemStability Analysis. The Lyapunov candidate function

is analyzed in this subsection to prove the bound of the system estimation error.

Theorem 2 (UUB for critic and actor network). Let assumptions C and assumptions A hold

with a bounded reinforcement signal. Let gradient descent be used to update the weight

of both citric and actor networks as (84) and (28), respectively. The errors between the

optimal weights for both networks (ω∗c, ω∗a) and their estimates (ω̂c(t), ω̂a(t)) are UUB, if

the following conditions are achieved:

`c <
1

γ2(1 − λ)2‖φc(t)‖2
, `a <

1
‖φa(t)‖2

,

0 < γ ≤ 1, 0 ≤ λ < 1, α >
4

γ2(1 − λ)2
− 1

2

. (44)

Theorem 2 Proof. The definition of a candidate of the Lyapunov function is given as

follows:

L(t) = Lc(t) + La(t) + Lp(t), (45)

where Lp(t) =
1
2
‖ξc(t −1)‖2, and the first difference for it is given as 4Lp(t) =

1
2
(‖ξc(t)‖2−

‖ξc(t − 1)‖2). The first difference of the Lyapunov function (60) is given as follows:



130

4L(t) ≤ −β2‖ξc(t)‖2 − β2
(
1 − `cβ

2‖φc(t)‖2
)
× ‖ξc(t) + ω∗

T

c φc(t) + β−1γλv̄(t)+

β−1U(t) − β−1ω̃T
c (t − 1)φc(t − 1)‖2 + 2‖βω∗Tc φc(t) + γλv̄(t) +U(t)−

1
2
ω̂T

c (t − 1)φc(t − 1) − 1
2
ω∗

T

c φc(t − 1)‖2 + 1
2
‖ξc(t − 1)‖2 + 1

α

(
− ‖ω̂T

c (t)

φc(t)‖2 + `a(t)‖φa(t)‖2‖ω̂T
c (t)CBP(t)‖2‖ω̂T

c (t)φc(t)‖2 + ‖ξa(t)

ω̂T
c (t)CBP(t)‖2 + 4‖ξc(t)‖2 + 4‖ω∗Tc φc(t)‖2

)
+

1
2
‖ξc(t)‖2 −

1
2
‖ξc(t − 1)‖2.

(46)

To simplify, we add and subtract the extra term (± 1
α
‖ω̂T

c (t)φc(t)‖2‖ω̂T
c (t)CBP(t)‖2) into (63)

while extracting β. The first difference of L(t) can be rewritten as follows:

4L(t) ≤ −
(
γ2(1 − λ)2 − 4

α
− 1

2

)
× ‖ξc‖2 − γ2(1 − λ)2 ×

(
1 − `cγ

2(1 − λ)2‖φc(t)‖2
)

× ‖ξc(t) + ω∗
T

c φc(t) +
1

γ(1 − λ) ×
(
λv̄(t) +U(t) − ω̃T

c (t − 1)φc(t − 1)
)
‖2

− 1
α

(
‖ω̂T

c (t)φc(t)‖2‖ω̂T
c (t)CBP(t)‖2 − `a‖φa(t)‖2‖ω̂T

c (t)φc(t)‖2‖ω̂T
c (t)

CBP(t)‖2
)
+ 2‖γ(1 − λ)ω∗Tc φc(t) + γλv̄(t) +U(t) − 1

2
ω̂T

c (t − 1)φc(t − 1)−
1
2
ω∗

T

c φc(t − 1)‖2 + 1
α
‖ξa(t)ω̂T

c (t)CBP(t)‖2 +
4
α
‖ω∗Tc φc(t)‖2 −

1
α
‖ω̂T

c (t)

φc(t)‖2 +
1
α
‖ω̂T

c (t)φc(t)‖2‖ω̂T
c (t)CBP(t)‖2.

(47)

To guarantee that the second term in (47) is negative, the learning rate for the critic network

(`c) has to be (1 − `cγ
2(1 − λ)2‖φc(t)‖2) > 0; therefore, the critic learning rate should obey

the condition:

`c <
1

γ2(1 − λ)2‖φc(t)‖2
, (48)

where 0 < γ ≤ 1, 0 ≤ λ < 1.
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To guarantee the third term for (47) to be negative, the learning rate for the actor net-

work (`a)has to be (‖ω̂T
c (t)φc(t)‖2‖ω̂T

c (t)CBP(t)‖2−`a‖φa(t)‖2‖ω̂T
c (t)φc(t)‖2‖ω̂T

c (t)CBP(t)‖2) >

0; therefore, the actor learning rate should obey the condition:

`a <
1

‖φa(t)‖2
. (49)

To guarantee that the first term in (47) is negative, the discount factor is chosen with

0 < γ ≤ 1, and the weighting factor (α) is selected to satisfy:

α >
4

γ2(1 − λ)2
− 1

2
. (50)

4L(t) can be rewritten as follows:

4L(t) ≤ −
(
γ2(1 − λ)2 − 4

α
− 1

2

)
‖ξc(t)‖2 − γ2(1 − λ)2

(
1 − `cγ

2(1 − λ)2‖φc(t)‖2
)

× ‖ξc(t) + ω∗
T

c φc(t) +
1

γ(1 − λ)

(
λv̄(t) +U(t) − ω̃T

c (t − 1)φc(t − 1)
)
‖2

− 1
α

(
‖ω̂T

c (t)φc(t)‖2‖ω̂T
c (t)CBP(t)‖2 − `a‖φa(t)‖2‖ω̂T

c (t)φc(t)‖2

‖ω̂T
c (t)CBP(t)‖2

)
− 1
α
‖ω̂T

c (t)φc(t)‖2 + R2,

(51)

where R2 is defined as the positive terms in (47), which is given as follows:

R2 = 2‖γ(1 − λ)ω∗Tc φc(t) + γλv̄(t) +U(t) − 1
2
ω̂T

c (t − 1)φc(t − 1) − 1
2
ω∗

T

c φc(t − 1)‖2

+
1
α
‖ξa(t)ω̂T

c (t)CBP(t)‖2 +
4
α
‖ω∗Tc φc(t)‖2 +

1
α
‖ω̂T

c (t)φc(t)‖2‖ω̂T
c (t)CBP(t)‖2.

(52)
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Simplifying, R2 can be rewritten as:

R2 ≤ 4
(
γ2(1 − λ)2‖ω∗Tc φc(t)‖2 + γ2λ2v̄2(t) +U2(t) + 1

4
‖ω̂T

c (t − 1)φc(t − 1)‖2+
1
4
‖ω∗Tc φc(t − 1)‖2

)
+

1
α
‖ω̂T

c (t)CBP(t)‖2
(
‖ω̂T

a (t)φa(t)‖2 + ‖ω∗
T

a φca(t)‖2
)
+

4
α
‖ω∗Tc φc(t)‖2 +

1
α
‖ω̂T

c (t)φc(t)‖2‖ω̂T
c (t)CBP(t)‖2,

(53)

by substituting the upper bounds forωc (ω∗c and ω̂c),ωa (ω∗a and ω̂a), φc, φa,CBP, andU(t) to

ωcm, ωam, φcm, φam,Cm, and Um, respectively. Because all critic weights are upper-bounded

by ωcm, the target-value (v̄(t)) is also bounded according to (8), which is denoted as (v̄cm);

therefore R2 can be rewritten as follows:

R2 ≤
(
4γ2(1 − λ)2 + 2 +

4
α

)
ω2

cmφ
2
cm + γ

2λ2v̄2
cm +U2

m +
2
α
ω2

cmC2
mφ

2
am +

1
α
ω4

cm

C2
mφ

2
cm +

4
α
ω2

amφ
2
am +

2
α
ω2

cmC2
mω

2
amφ

2
am = R2

m.

(54)

If (57) holds, then any

‖ξc(t)‖ >
Rm√

γ2(1 − λ)2 − 1
2
− 4
α

,
(55)

where 0 < γ ≤ 1, 0 ≤ λ < 1 as mentioned in (48), and α in (50), makes 4L(t) ≤ 0,

meaning that the errors between the optimal weights for both networks (ω∗c, ω∗a) and their

estimates (ω̃c(t), ω̃a(t)) are UUB.

Corollary 1: From (57), the actor learning rate condition for HDP(λ) is similar to HDP,

because it is independent of λ and γ. In contrast, the critic learning rate for HDP(λ) depends

on λ and γ, which is different from HDP. Thus, to ensure that the critic and actor networks

are stable during learning, the λ value should not be 1, and γ should not be 0. As in [26],

where ‖φc‖2 ≤ hc and ‖φa‖2 ≤ ha, the learning rates for citric and actor networks can be

set as

`c <
1

γ2(1 − λ)2hc
and `a <

1
ha
. (56)
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4. SIMULATION RESULTS

Three case studies are taken to verify the effectiveness of HDP(λ). The trajectories

of the internal reinforcement signal 2-D nonlinear system are considered as the first case.

We compare the results with the performance of traditional HDP. The second case study is a

single link inverted pendulum. We investigate the performance of the inverted pendulum by

comparing the HDP(λ) approach with the HDP approach in different noise exposure effects.

The third case study is a 3-D maze navigation benchmark and comparing SARSA(0)1 and

Q(λ) [3] with HDP and HDP(λ).

4.1. Case I: Nonlinear System Problem. Consider the following nonlinear system

derived from [35]:

x1(t + 1) = −sin
(
0.5x2(t)

)
x2(t + 1) = −cos

(
1.4x2(t)

)
sin

(
0.9x1(t)

)
+ u(t),

(57)

where x(t) = [x1(t) x2(t)]T ∈ R2 is the state vector (m = 2), and u(t) ∈ R1 is the control

action (n = 1). The external instantaneous cost function isU(t) = xT (t)x(t)+uT (t)u(t). The

discount factor (γ) is 0.9, and the eligibility trace long-term prediction parameter (λ) is 0.95.

The number of hidden nodes (hc) is 7 for the critic network. The number of hidden nodes

in the actor network (ha) is 5; and the initial learning parameters are set as `c = `a = 0.01

for both the critic and actor networks. The training for either network will be terminated if

the error drops under 10−6 or if the number of iterations meets the stopping threshold for

the internal cycle (30 iterations for the critic network and 40 iterations for actor network).

The initial weights for all networks are the same for fair comparison, which are randomly

chosen within [−0.3, 0.3]. As mentioned before, we fix the hidden weights (ŵ{h}c , ŵ
{h}
a )

and train the output weights (ŵ{o}c , ŵ
{o}
a ). We compare HDP(λ) and the traditional HDP

approaches with similar learning parameters. We choose the initial critic/actor weights in

1The SARSA (State-Action-Reward-State-Action) algorithm is used to find the series state-action pairs by
using one-step learning; therefore, we write it as SARSA(0).
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Figure 4. Comparisons of system responses (the state vector trajectories and the action
sequence) with HDP(λ = 0.95), and traditional HDP(λ = 0).

the HDP(λ) approach similar to the initial critic/actor weights for the HDP approach. Fig. 6

illustrates the state trajectories and the control action sequence for 30 time steps. The results

are taken from the last training iteration (iteration number 2000). We set the initial state to

x(0) = [0.5 0.5]T . HDP(λ) can drive the states to converge faster than traditional HDP.

Compared to HDP, the improvement according to a mean-square error technique is 29.54%.

The upper part of Fig. 8 shows the cost error over iterations, which clearly illustrates faster

learning. HDP(λ) has smooth learning compared to the fluctuations appearing with HDP.

The critic and actor errors at the last learning iteration for the HDP and HDP(λ) approaches

are shown at the middle and lower figures in Fig. 8. In the last iteration, Fig. 10 illustrates

the corresponding weight trajectories for both HDP and HDP(λ) approaches, which shows

that the weights reached their optimal fixed values.

4.2. Case II: Inverted Pendulum. In this section, a cart-pole system has been

implemented as an unstable nonlinear system. The controller (actor network) is self-

learning because of no prior knowledge about the environment. The controller balances a
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Figure 5. Cost error over iteration and 30 time step critic and actor errors. The upper figure
shows the cost error over iterations, which clearly illustrates fast and stable learning, while
traditional HDP shows fluctuations during learning. The critic and actor errors at the last
learning iteration for HDP and HDP(λ) are shown in the middle and lower figures.

pole mounted on a cart by moving the cart to the left or right. The actor network learns via

a reinforcement signal, which is either “−1” or “0” corresponding to a fallen or balanced

pole, respectively. As in [5], the cart pole system model as shown in Fig. 11 is given by:

Üθ =
g sin θ + cos θ

(
− F − ml Ûθ2 sin θ + µcσ( Ûx)

)
−
µp Ûθ
ml

l
(4
3
− m cos2 θ

mc + m

) , (58)

Üx =
F + ml

(
Ûθ2 sin θ − Üθ cos θ

)
− µcσ( Ûx)

mc + m
, (59)

where g = 9.8[m/s2], the acceleration due to gravity; mc = 1.0[kg], the mass of the cart;

m = 0.1[kg], the mass of the pole; l = 0.5[m] the half-pole length; µc = 0.0005, the

coefficient of friction of the cart on the track; µp = 0.000002, the coefficient of friction of

the pole on the cart; F = ±10[N] the force applied to the cart’s center of mass; and σ(.)
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Figure 6. Learning weights for critic and actor networks for HDP and HDP(λ).

Figure 7. Configuration model of the cart-pole balancing system.
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is a sigmoid function. The fourth-order Runge-Kutta method is used to solve nonlinear

differential equations (73) and (74) with 0.02 s for the sample step. The pole-cart model has

four states: θ(t) is the angle of the pole with respect to the vertical axis, x(t) is the position

of the cart, Ûθ(t) is the angular velocity of the pole, and Ûx(t) is the linear velocity for the

cart. In our simulation, a run has 60 consecutive trials. The run is considered successful

if the last trial has balanced the pole. The first trial starts with λ = 0, while the remaining

trials are set with λ = 0.95. Each successful trial has 1000 time steps to complete the

balancing task. The pole has fallen if it is beyond the range of [−12◦, 12◦], and also if

the cart moves outside the range [−2.4, 2.4] meter from the initial position. In spite of the

binary force F applied to the cart, the control signal (u(t)) provided to the critic network is

continuous. To stabilize this system, assign the critic and actor neural network parameters

to match the conditions of theorem 2. The discount factor (γ) is 0.95; the number of hidden

nodes (hc) is 20 for the critic network; the number of hidden nodes in the actor network

(ha) is 24; and the initial learning parameters are set as (`c = 0.001) for the critic network

and (`a = 0.003) for the action network. Both learning rates are decreased via dividing

by 3 every 30 time steps. The stopping criteria for the action and critic networks are 120

and 100, respectively; the training for either network will be terminated if the error drops

under 10−6 or if the number of iterations meets the stopping threshold. We apply HDP(λ)

without any noise impact with small deviation in the initial pole-angle. In this test, we set

the initial states at θ = 0.1◦, x = 0 [m], Ûθ = 0.5 [deg/s], and Ûx = 0 [m/s]. Fig. 8 shows the

value function and the target-value for the last trial without noise. The output of the critic

network in HDP(λ) follows the target-value (8) as shown in the enlarged Fig. 9. From top

to bottom, Fig. 10 illustrates the forces applied to the center of the cart, the cart position,

and the angle trajectory for the cart pole. In the noise-free system, the angle oscillates

within limits ±0.3495◦ as shown in Fig. 11. For more challenging and realistic behavior,

we have started with an initial deviation pole-angle, and we add random noise to the angle

state measurement and action network output sensor noise and actuator noise, respectively.
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Figure 8. The value function and target value for the last trial without noise. The initial
angle θ(t) is 0.1◦.

Figure 9. Zoom-in between 80 to 220 time steps for Fig. (8).
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Figure 10. Simulated results of balancing the inverted pendulum for control signal, θ(t),
and x(t) when the system is free of noise; initial angle θ(t) is 0.1◦.

Figure 11. Zoom-in between 400 to 520 time steps for Fig. (10).
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Specifically, the sensor and actuator noises are θ(t) = θ(t)+η and u(t) = u(t)+η, where η is

a uniformly distributed random variable. We assume that the initial angle has a disturbance

of θ = 10◦ with respect to the vertical axis, with no change in the initial values. Fig. 12

show the value function and the target-value. The output of the critic network follows the

target-value as shown in Fig. 13, and it settles down after 450 iterations. The corresponding

system responses with forcing signal are shown in Fig. 14. Fig. 15 demonstrates how the

actor network in HDP(λ) overcomes this large initial angle disruption during 15 iterations,

converging in 250 time steps.

Figure 12. The value function and target value for the last trial when the system is free of
noise; initial angle θ(t) is 10◦.

We examine the HDP(λ) structure with another large disruption by adding 3%

uniform random sensor noise during 1000 time steps with θ = 10◦ as the initial angle

derivation. Figs. 16 and 17 demonstrate how the system also successfully passes this

challenge by showing the cost values and system responses, respectively. ±0.9536◦ is the
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Figure 13. Zoom-in between 0 to 150 time steps for Fig. (12).

Figure 14. Simulated results of balancing the inverted pendulum for control signal, θ(t),
and x(t) when the system is free of noise; initial angle θ(t) is 10◦.
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Figure 15. Zoom-in between 0 to 100 time steps for for Fig. 14.

limited oscillating angle after step number 280. For more a challenging test, we set a 5%

uniformly random actuator noise to occur during 1000 time steps with θ = 10◦ initial angle

derivation. The system successfully passes this test as shown in Figs. 18 and 19 for the

cost values and system responses, respectively. The limited oscillating angle is bounded

by ±4.0215◦ after step number 200. For more detailed viewing of actual and target value

functions, Fig. 20 illustrates a squared critic error (Ec) for all previous testing scenarios.

Table I summarizes the simulation results through 100 averaged runs for 1000 time steps

and 100 iterations. HDP(λ) is 13.7% better than traditional HDP, reducing the average

number of iterations at various noise levels.

4.3. Case III: 3-DMaze Problem. Maze navigation has been proposed as an ADP

benchmark [37]-[40], but most of them have been 2-D. In this case, we compare HDP(λ)

in the 3-D maze navigation benchmark with various alorithms: SARSA(0), Q(λ) and HDP.

Sutton [3] presents an explanation about SARSA(0) and Q(λ). In this case study, the

data that agent uses to learn is: 1) current state vector x(t) = [x1, x2, x3]T , where x1, x2
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Figure 16. Simulated results of balancing the inverted pendulum for control signal, θ(t),
and x(t) when the system has uniform 3% sensor noise; initial angle θ(t) is 10◦.

Figure 17. Simulated results of balancing the inverted pendulum for control signal, θ(t),
and x(t) when the system has uniform 3% sensor noise; initial angle θ(t) is 10◦.
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Figure 18. The value function and target value for the last trial when the system has uniform
5% actuator noise; initial angle θ(t) is 10◦.

Figure 19. Simulated results of balancing the inverted pendulum for control signal, θ(t),
and x(t) when the system has uniform 5% actuator noise; initial angle θ(t) is 10◦.
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Figure 20. Squared critic error (Ec) for noise-free with 0.1◦ to initial angle, noise-free with
10◦ to initial angle, uniform 3% sensor noise, and uniform 5% actuator noise.
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Table 1. Performance evaluation of HDP(λ) learning controller when balancing the inverted
pendulum dynamic system. The second and third columns depict the average number of
trials it took to learn to balance the pole for 1000 time steps forHDP andHDP(λ) approaches,
respectively. The average is based on 100 successful runs at 1000 iterations each. ∗ actuators
are subjected to noise; # sensors are subjected to noise

Noise Type HDP(λ) HDP

Uniform∗ 5% 13.85 13.36
Uniform∗ 10% 13.93 15.63
Uniform# 5% 13.77 14.1
Uniform# 10% 57.38 63.86
Uniform∗# 5% 19.35 21.28

Noise Free with 8◦ initial angle 27.79 40.48

and x3 are the coordinate of x axis, y axis and z axis, respectively; 2) selected action

u(t) = [u1, u2, u3, u4, u5, u6]T , where u1, u2, u3, u4, u5 and u6 are the direction of forward,

right, backward, left, up and down, respectively; 3) external reward U(t) = 1 if agent

reaches the target position, U(t) = −0.001 if agent hits an obstacle or exceeds the board,

and U(t) = 0 if agent moves in free space. In the SARSA(0) algorithm, the agent takes an

action ui, where i = 1, 2, . . . , 6, to move from x(t) to next state (x(t)), and it gains U(t).

There are many strategies to select actions. If the agent always chooses the action with

the highest state-action pair value, it is a greedy strategy. An ε−greedy strategy selects the

greedy action with probability of (1-ε). Otherwise, the agent chooses a random action. In

this situation, one says that the agent is exploring the environment. for other strategies,

see [3], [13] and [36]. After learning trials are completed, the collected data is put in a

lookup-table (Q table). The Q table values of all state-action pairs can be updated in the

SARSA(0) algorithm by the Bellman formula:

Q(x(t), ui(t)) = Q(x(t), ui) + `
(
U(t) + γQ(x(t + 1), ui) −Q(x(t), ui)

)
, (60)
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where x(t) is state vector, ` is the learning rate and ui, i = 1, 2, . . . , 6, is a selected action (the

direction of movement). Q(λ) is similar to SARSA except for two issues 1) the updating

occurs as in (60) but with a greedy actionmaxui∈u(t)
(
Q(x(t+1), ui

)
instead ofQ

(
x(t+1), ui

)
;

2) the eligibility trace is a temporary record to be stored. There are two main steps to update

eligibility traces for the Q table. The first step is setting all state action pairs to zero when a

non-greedy action is taken. Otherwise, they are declining by γλ as described in (8). In the

second step, the eligibility trace is reset to one if it is identical to the current state-action pair.

Updating Q-learning by using only a critic network was presented in [41]. We also use only

a critic neural network to approximate the value function but for n-steps of the eligibility

trace. Algorithm 1 generates and updates a table of Q values according to state-action pairs

(step 2 in Algorithm 1) as well as generating greedy actions (ui(t)) in step 3 of Algorithm

1. The same procedure is used to generate and update a Q table for the HDP by taking one

critic network. In contrast with the previous two case studies that required minimizing the

cost value, the agent has to maximize a reward in order to solve the maze problem. We

assume that an agent starts at an initial location in the cube environment, which is (0,0,0) as

shown in Fig. 20 with 12 obstacles included. The agent can learn online through interacting

with its environment to obtain an optimal collision-free path from the start point to the

target point, which is taken as (5,5,5). A declining ε−greedy learning method is used in all

approaches, which is used to balance between exploration and exploitation [3], [13]. We

evaluate HDP(λ) by comparing with other methods according to the Q reference values. the

Q reference evaluation method is presented in [43], [44]. The Q reference table is calculated

depending on the distance between the current state location and target location. All states

around a target are set to 1, while other states are assigned by finding 1/(L +W + D) for

each step, where L, W and D is the maximum number of possible state in length, width and

depth directions, respectively. In other words, Q references (Qre f ) can be calculated in 3-D
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Algorithm 1 Critic(λ)-Only Q-Learning for Maze Navigation
v̂(t) ← fc(xc(t), ω̂c(t)), value function approximation
fc: the critic network
xc(t) = [x(t), ui]T : input of critic network, where i = 1, 2, . . . , 6
ω̂c(t): weights in critic network

• Step 1:
– Q(x, ui) = 0 for all states and actions
– v̄(x, ui) = 0 for all states and actions
– t = 0, Tc = 10−5 with Nc = 110 andCc = 0 are stopping learning critic network

parameters, goal = [5, 5, 5], and set all other learning parameters
• Step 2 (Policy evaluation) updating the Q-table by:

– v̄(x(t), ui) = U(t) + γ
(
λv̄(x(t + 1), ui) + (1 − λ)v̂(t + 1)

)
– while (Ec(t) > Tc)or(Cc < Nc) do
– ω̂c(t) = ω̂c(t) + 4ω̂c(t); equations (71) - (84)
– v̂(t) = fc(xc(t), ω̂c(t))
– Derr(t) = v̄(x(t), ui) − v̂(t)

– Ec(t) = 0.5
(
Derr(t)

)2

– Cc = Cc + 1
– end while
– Q(x(t), ui) = Q(x(t), ui) + `Derr(t) (` is a leaning rate)

• Step 3 (Policy improvement) updating content policy while taking the ε-learning
strategy into a consideration:
– ui = argmaxui∈u(t)

(
Q(x(t), ui

)
• Step 4:

– if x(t) = goal then
– stop and do other episode
– else
– x(t) = x(t + 1)
– t = t + 1
– go back to step 2 and continue
– end if
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as follows:

Qre f (x1, x2, x3) =1 − 1
L +W + D

(
L − x1 +W − x2 + D − x3 − 1

)
. (61)

Equation (61) is calculated for the desired values of all cubes of the 3-D maze including

the obstacle cubes. But obstacles are used in our 3-D maze benchmark (Fig. 20); therefore,

we assign obstacle cubes as zero in Qre f because the agent cannot enter to them to update

Qre f . Greedy Q table values (Qgreedy) are used to calculate mean-square-error (MSE),

where Qgreedy
(
(x(t)

)
= maxui∈u(t)

(
Q(x(t), ui

)
. MSE is obtained by

MSE =
1
2

Sn∑
i=1

(
Qgreedy(i) −Qre f (i)

)2
, (62)

where Sn is the number of states of the 3-D maze (L × W × D). The common general

parameters shared with all approaches are: learning rate for the Q table (`) is 0.01; γ=0.95;

λ=0.95 for Q(λ) and HDP(λ), and λ=0 for SARSA(0) and HDP(0); ε-greedy parameter

starts at 1 and decreases by ε = ε ∗ 0.992 after each episode, stopping at ε =0.05; we take

a 20-run (loop,) and each run has 300 consecutive episodes (episode loops); moreover, at

each episode the agent navigates in the maze until reaching the target. Certain learning

parameters are related only to the HDP(0) and HDP(λ) approaches. Thus, the number of

neurons in the critic network (hc) is 24; the initial learning parameters are set at (`c = 0.001)

for the critic network. The stopping criteria for the critic networks is 110; the training for

either network will be terminated if the error drops under Tc = 10−5 or if the number of

iterations meets the stopping threshold (Nc = 110). Fig. 21 demonstrates that the MSE

of the HDP(0) and HDP(λ) approaches drop faster than those with SARSA(0), and Q(λ)

methods. HDP(λ) can also converge faster than HDP(0) to achieve the best performance in
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Figure 21. Diagram of 3-D maze (5 × 5 × 5) with obstacles. The dark blue cube (0, 0, 0)
represents the initial position. The green cube (4, 4, 4) represents the target position. 12
obstacles are located in (0, 3, 0), (2, 4, 1), (2, 4, 2), (2, 3, 2), (2, 2, 2), (2, 1, 2), (4, 0, 0 − 4) and
(3, 0, 4), which are represented by the red cubes. Otherwise, the agent can move in free
space. Three modes allow the agent to receive reward/cost values. First, The agent will
receive reward 1 when it arrives to the target cube. Second, the agent will be punished by
receiving -0.001 if it hits obstacles or passes the boundary. Third, the agent will receive 0
value as a reward in a free space. At any position in the maze, the agent has to select 1 action
(direction) out of six actions in order to to move one step. The six actions are forward,
right, backward, left, up and down, which can be seen in the figure as u1, u2, u3, u4, u5 and
u6, respectively. We sketch this figure by using the isometric drawing tool [42].
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this test. Another test is related to the accumulative reward over episodes. The goal for this

test is to discover, which algorithm can calculate a maximum of accumulated rewards over

each episode fastest.

Figure 22. Mean-squared-error (MSE) learning curves for SARSA(0), Q(λ = 0.95), HDP(0)
and HDP(λ = 0.95) for the 3-D maze navigation benchmark as shown in Fig. 20. The mean
values from 20 independent runs are taken for all methods. The shaded color represents the
20 runs, while the solid line represents the mean for all 20 runs. The HDP(0.95) approach
has the fastest learning with a lower MSE compared to other approaches.

Fig. 22 illustrates that HDP(λ) approach has a large accumulated reward value

during exploration. Determination of the most likely exploration episodes is mostly done

between episode number 0 until 200, which is shown in detail in Fig. 23. Fig. 23 shows

the number of steps per episode over reducing the probability of exploration (via decreasing

of ε value). Therefore, the Q(λ), HDP(0) and HDP(λ) approaches converge together to

the optimal accumulative reward value after episode number 200 because of exploitation

navigation behavior, while SARSA(0) method needs more episodes to reach the optimal.
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Figure 23. Summation of accumulative reward for every single episode of SARSA(0),
Q(λ = 0.95), HDP(0) and HDP(λ = 0.95) approaches, which is applied in the 3-D maze
navigation benchmark as shown in Fig. 20. The mean values from 20 independent runs are
taken for allmethods. The shaded color represents the 20 runs, while the solid line represents
the mean for all 20 runs. The HDP(0.95) approach reaches the largest accumulative reward
compared to other methods. Because ε−greedy learning will reset the accumulative reward
value every episode, the accumulative reward values for Q(0.95), HDP(0) and HDP(0.95)
converge over episodes.
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Figure 24. ε−greedy learning curves for SARSA(0), Q(λ = 0.95), HDP(0) and HDP(λ =
0.95) approaches for 3-D maze navigation benchmark as shown in Fig. 20. These curves
represent the number of steps per episode, where the agent returns back to the start cube
only when it reaches the target cube. The mean values from 20 independent runs are taken
for all methods. The shaded color represents the 20 runs, while the solid line represents
the mean for all 20 runs. HDP(0.95) and HDP(0) have an almost identical number of steps
over episodes, which are less than those in both Q(0.95) and SARSA(0) methods.

5. CONCLUSION

This work shows stability proofs for model-free HDP with arbitrary values of the

eligibility trace long-term prediction parameter (λ). Previous works on HDP only apply

when λ = 0. By using Lyapunov theory under reasonable conditions, we extend the stability

proof for the HDP(λ) approach, proving that the weights and network outputs for both

critic and actor networks are UUB.We examine the HDP(λ) approach with three simulation

studies. With these results, we have made a step forward to improve the learning efficiency,

computational complexity and robustness performance for ADP algorithms using eligibility

traces.
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ABSTRACT

Since a backward view learning of eligibility traces requires pre-episode updating (off-line

tuning), this paper presents a novel adaptive dynamic programming (ADP) architecture with

a forward view learning that is useful for online updating. Three neural networks are used

with this architecture: the critic network with one-step temporal-difference (TD) learning

(TD(0)), a critic network with n-step TD learning (TD(λ)) and a action network. This design

is called the online model-free n-step action-dependent heuristic dynamic programming

(NSHDP(λ)). NSHDP(λ) has low computational costs and is memory efficient because

it uses direct implementation without storing the trajectory for every state. The design

architecture and their relative learning algorithms are illustrated in detail. Furthermore,

stability is proved for NSHDP(λ) under certain conditions by using Lyapunov analysis to

obtain the uniformly ultimately bounded (UUB) property. Moreover, a complex nonlinear

system, an inverted pendulum and a 2-D maze problem are three simulation benchmarks

that are used to examine NSHDP(λ) performance as it compares with other ADP methods.

Keywords: Approximate dynamic programming (ADP), action dependent heuristic dy-

namic programming (ADHDP), λ-return, Lyapunov stability, uniformly ultimately bounded

(UUB).
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1. INTRODUCTION

Because of the behavior of a nonlinear system, solving theHamilton-Jacobi-Bellman

(HJB) equation instead of the Riccati equation is very hard. Adaptive/approximate dynamic

programming (ADP) is used to overcome this challenge via heuristic techniques with an

approximate solution of the HJB equation [1]. ADP has three fundamental families [2]

and [3]: heuristic dynamic programming (HDP), dual heuristic programming (DHP) and

globalized DHP. Each of them consists of three neural networks: actor, critic and model that

provide decision making, evaluation and prediction, respectively. If the action-dependent

(AD) is used in ADP (ADHDP for HDP and ADDHP for DHP), the critic network has

state-action pair input. In [5], Si andWang implemented the online learning ADHDP, while

the online learning of ADDHP is introduced by Ni et al. [6]. Online ADP learning is also

improved by Haibo He via adding dual critic networks for ADHDP as in [7], [8] and for

ADDHP as in [9]. Many applications have used the ADP techniques. Venayagamoorthy

ea al. in [10] used DHP to control the operation of a turbo-generator that has a better

performance than HDP. Collective robotic search problems are solved with DHP by N.

Zhang andD.Wunsch [11]. Lian andXu [12] applied HDP to allow amobile robot to escape

from sharp corners. Al-Dabooni andWunsch [13] applied ADHDP to the Dyna algorithm to

obtain an optimal path by cooperating multi-robot navigation in an unknown environment.

Similar to [13], VolodymyrMnih et al. [14] presented asynchronous actor networks in single

multi-core CPU (threads) but with a common critic network in another thread, and they

called it asynchronous deep reinforcement learning. The asynchronous deep reinforcement

learning is applied in various state-of-the-art forms in the Atari domain, but the most

important one is StarCraft II [15]. A temporal-difference (TD) with λ parameter is a more

advanced learning algorithm than traditional TD learning. Sutton in [16], [17] illustrated a

combination between basic TD learning with eligibility traces further accelerating learning.

Inspired by [16], Fairbank and Alonso [18], [19] introduced new ADP algorithms that
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extend DHP by including a bootstrapping parameter (λ) for eligibility traces. They called it

value-gradient learning (VGL( λ)). The VGL(λ) is used to track a reference trajectory under

uncertainties to control a nonholonomic mobile robot [20]. As reviewed in [2], ADP trains

the actor (controller) network to give optimal actions byminimizing the value function that is

produced from the critic network. Both networks are approximated by using a feedforward

artificial neural network of multilayer perceptron. The paper denotes the actor network

with ωa parameters as AN(x, ωa), or only AN for simplicity, which produces an action

vector (u). This work uses two critic networks. The first critic network is learned by using

a one-step TD learning error. The function approximator for the one-step critic network

with ω0
c parameters is CN(x, u, ω0

c), or CN(0) for simplicity. The second critic network is

learned by using an average of the n-step TD learning error. The function approximator for

the average of the n-step critic network with ωλc parameters is AN(x, u, ωλc ), or CN(λ) for

simplicity. A simple interpretation and good performance are two well-known properties

of TD(λ) as presented in [16], [17], [21] - [28]. But these works used an additional

memory variable associated with each state to store the eligibility traces; therefore, they

suffer from high computational complexity. In [29], Al-Dabooni and D. Wunsch solved this

problem, but that was for batch-implementation learning. The NSHDP(λ) design is used

for online-implementation learning. Thus, the NSHDP(λ) structure is memory efficient

since it overcome the drawbacks of using eligibility-trace storage and online learning. The

online learning aspect with low computational cost is the first contribution for this work.

The second contribution is that it provides stability proofs for NSHDP(λ) architecture. The

general stability of ADP is an open problem [30]. The stability of the one-step model-free

ADHDP is introduced by Feng Liu et al. [31] and Yury Sokolov et al. [30]. Haibo He et al.

[32] provided UUB proofs for critic/reference neural networks and a fuzzy logic controller.

This work expands the stability of model free learning from one-step (λ = 0) ADHDP(0)
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Figure 1. Schematic diagram for the adaptation of an online model-free n-step ADHDP
(NSHDP(λ)). This design uses two critic networks: the one-step critic network (CN(0))
and the n-step critic network (CN(λ)). The CN(0) produces a one-step-return value function
(v̂0(t)) based on the ordinary temporal-difference (TD) learning algorithm, while the CN(λ)
produces the average of the n-step-return value function (v̂λ(t)) based on a TD(λ) learning
algorithm [27]. The TD(λ) learned from the average of the n-step-return backups, where
λ represents the proportional average weight. λ−return (Rλt ) [16] is another name for
the average of the n-serp-return. The v̂λ(t) value is identical to Rλt , [29]. This design is
equivalent to the one-step TD backup (λ=0). It focuses on the recent information to predict
the value function via CN(0). Online learning is another advantage of this design, where it
speeds up the tuning without requiring any initial backup for v̂λ(t). Furthermore, this design
is a model-free learning design that does not require prior knowledge about a mathematics
dynamic model. Despite the bootstrapping eligibility trace parameters (λ and γ) give the
CN(λ) the ability to determine a depth (effecting via λ) and a width (effecting via γ) from
information during a sequence of events (i.e., the rewards in the backward view of TD(λ),
[21]). The CN(0) provides the value function that concentrates on recent events. Therefore,
the NSHDP(λ) design combines the details of the current information (real-time data) with
a sequence of predicted events. This combination provides the optimal decisions [40] in the
control/industry field as well as [41] in the consumer/marketing field (correlation between
real time and history). The weights for CN(0) and CN(λ) are updated according to the
TD(0) error (blue dashed line) and the TD(λ) error (green dashed line), respectively. The
actor network (AN) that provides the action values is tuned by two paths (backpropagating
errors): one through the CN(0) path (e0

a(t)) and the other through the CN(λ) path (eλa(t)).
This strategy assists AN training to correlate and combine the fluid information from CN(λ)
and CN(0). These two paths are filtered via a similar value of λ, and they combine to
produce a total backpropagating actor error (red dashed line).
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to ADHDP with λ. Section 2 shows the NSHDP(λ) structure. The remaining sections are

organized as follows: Section 3 presents the UUB stability analysis for CN(0), CN(λ) and

AN, Section 6 illustrates the simulation results, and Section 7 is the Conclusion.

2. THE ONLINE MODEL-FREE NSHDP(λ)

2.1. NSHDP(λ) Architecture. The ADP technique allows agents to select optimal

actions to minimize their long-term cost, which is given [33]:

J
(
x(t)

)
=

∞∑
k=t

γk−tU
(
x(k), u(k)

)
, (1)

where J(x(t)) is the value function (long-term cost) of the state vector (x ∈ Rm) at time step

t. γ denotes the discount factor, and U(x(k), u(k)) ≡ U(k) is called the utility function at

time step k for x after applying the action vector u ∈ Rn. The TD learning with an eligibility

traces parameter (λ) helps fill the gaps between the sequence of predicted events and the

training data [17], [27], [28]. This work combines the TD(λ) learning technique with the

model-free ADHDP. It uses two critical networks to criticize and learn the actor network.

Haibo He et al. introduced dual-critic with ADHDP, which is called the goal representation

HDP (GrHDP) [7], [34]. GrHDP used the one-step TD learning for both critic networks.

In contrast, this paper uses the one-step TD for learning a first critic network, while the

second critic is learned by using n-step TD learning. Fig. 1 illustrates the main architecture

for this paper’s approach, which is the online model-free n-step ADHDP (NSHDP(λ)), and

the “AD” abbreviation is removed for simplicity. This design not only accomplished the

GrHDP function, but it also applied the advantages of TD(λ) learning technique (good

fast performance, low computational cost and simple interpretation). The details of all the

blocks are explained in this section. The general discrete-time nonlinear system model is

represented as:

x(t + 1) = f
(
x(t), u(t)

)
, (2)
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where x is the m-dimensional system state vector and u is the n-dimensional control vector.

NSHDP(λ) is used to solve the Bellman equation [4], [35]

J(t) = U(t + 1) + γJ(t + 1), (3)

to satisfy the optimal performance discrete-time HJB equation [1]:

J∗(t) = min
u(t)
{U(t + 1) + γJ∗(t + 1)}, (4)

where J∗ denotes the optimal value function and the instantaneous cost (the utility function)

should be bounded (U(t) ∈ [0, 1]). Equation (3) is called a one-step TD that learns

the critic and actor in traditional ADHDP(0)2. As in [21], the Bellman equation for a

one-step-return (total discounted future reward depending on one-step TD error) is given as

R(1)t = U(t)+γJ(t+1), and for a two-step-return is given as R(2)t = U(t)+γU(t+1)+γ2J(t+2),

while for an n-step-return (R(n)t ) is given as follows:

R(n)t = U(t) + γU(t + 1) + . . . + γn−1U(t + n − 1) + γnJ(t + n) =
n∑

k=t

γk−tU(t + k), (5)

where R(i)t is the i-step-return value, which is the summation of instantaneous costs from t

to i. An average of the n-step return is a technique to achieve the fair cost value distribution.

For instance, the average calculation of the four-step return can be done via half of the

two-step return and half of the four-step return such that RAv(2,4)
t = ω2R(2)t + ω4R(4)t , where

ω2 = 0.5 and ω4 = 0.5 are the proportional weights. The proportional weights (ωi),

i = 1, 2..., are positive and add up 1. A λ parameter represents these proportional weights.

For instance, ω1 = (1−λ) for an average of one-step return(R(1)t ); for an average of two-step

return, RAv(1,2)
t = ω1R(1)t + ω2R(2)t , where ω1 = (1 − λ) and ω2 = λ; and so on. Section 3

shows a stability proof for selecting λ to fit with NSHDP(λ), which should be 0 < λ < 1

2the zero denotes a one-step learning (λ=0)
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rather than 0 ≤ λ ≤ 1, which is used frequently with the regular TD(λ) reinforcement

learning algorithms (i.g. Q(λ)-learning). The λ-return is another name for the average of

the n-step-return, which is defined in general as:

Rλt = (1 − λ)
∞∑

n=1
λn−1R(n)t . (6)

For simplicity, the average of the n-step-return is henceforth denoted as the n-step expression.

The previous method is called the forward view of the TD(λ) learning algorithm. Since

each step uses the knowledge of what will happen many steps later, the forward view is

not directly implementable. The backward view provides an extra variable associated with

each state, which is called an eligibility trace. NSHDP(λ) does not use any eligibility trace

parameters by redriving the λ-return as in (5), which is used to train the parameters of the

approximate value function (critic network). By substituting (5) into (5), the following is

obtained 3:

Rλt = (1 − λ)
∞∑

n=1
λn−1

( [ n−1∑
k=0

γkU(t + k)
]
+ γnJ(t + n)

)
.

= (1 − λ)
( [ ∞∑

n=1
λn−1

n−1∑
k=0

γkU(t + k)
]
+

∞∑
n=1

λn−1γnJ(t + n)
)
.

(7)

Expanding and re-arranging (6) yield

Rλt =U(t) + λγ
(
U(t + 1) + λγ

(
U(t + 2) + λγ

(
U(t + 3) + . . . + λγ

(
U(∞) + (1 − λ)γ

J(∞)
)
+ . . . + (1 − λ)γJ(t + 4)

)
+ (1 − λ)γJ(t + 3)

)
+ (1 − λ)γJ(t + 2)

)
+

(1 − λ)γJ(t + 1),

(8)

3The detail derived is presented in [29]
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where v̄(∞) = U(∞). Then, the target-value according to (8) is given as follows:

v̄(t) = U(t) + γλv̄(t + 1) + γ(1 − λ)J(t + 1), (9)

where v̄(t) in (8) is identical to Rλt . The NSHDP(λ) design uses a λ-return value as a target

value to train the weights in the critic neural network as an approximation function for the

n-step value function. We called this network the n-step critic network (CN(λ)). CN(λ)

uses v̂λc (t) as the approximated output symbol. The other critic network provides v̂0
c (t).

v̂0
c (t) is an approximated function value for J(t) in (3), which is similar to R(1)t . For this

reason, the other critic network is called a one-step critic network (CN(λ = 0) or CN(0)).

Therefore, the Bellman equations for the one- and n-step TD learning are given as:

v̂0(t) =U(t) + γv̂0(t + 1), (10)

and

v̂λ(t) =U(t) + γλv̂λ(t + 1) + γ(1 − λ)v̂0(t + 1), (11)

respectively. The online free-model design for NSHDP(λ) was inspired from [5] and [37].

Both the previous (t − 1) step and the current (t) step are stored. Similar to [5], the delayed

errors for the one- and n-step critic networks are adopted, as well as the actor network,

and they use the gradient descent technique to update the weights in all the networks over

time steps. Since structure of a fully connected neural network structure by Werbos [38]

is so elegant and extendable, it is used in the all three networks (AN, CN(0), and CN(λ))

as a universal function approximator. All the weights that connect the input nodes with the

output nodeswere set to zero; therefore, it is similar to the traditional three-layer feedforward

neural network structure. However, this structure might be useful for models that require

direct connections between the input and output nodes without passing through the hidden

layers.
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Figure 2. A schematic diagram of CN(0) in NSHDP(λ). As mentioned by Werbos in [38],
this structure is more general than a traditional three-layer feed-forward neural network
that is fully connected among all neurons. It models a variety of functional forms as
demonstrated in [39]. All weights were set so that the connection input nodes with the
output nodes were zero. ω̂0{h}

c represents hidden weights, which are connected to the input
layer with the hidden layer. The output weights are indicated as ω̂0{o}

c , which connect both
the input and hidden layers with the output layer. ak(t) is the kth hidden node input of
the critic network, and bk(t) is the corresponding output of the hidden node. A hyperbolic
tangent threshold function (φ(.)) is applied to the hidden neurons.

2.2. The One-Step Critic Network (CN(0)). The structure of the CN(0) consists

of a three-layer feed-forward neural network including one hidden layer neural network. As

shown in Fig. 2, the output of the CN(0) is v̂0(t), which is an approximation value of J(t)

in (1). The inputs for the CN(0) are the system states (s1(t), s2(t), . . . , sm(t)) and the actions

(u1(t), u2(t), . . . , un(t)). h0
c is the number of hidden neurons, m is the number of system

states, and n is the number of actions. The hidden weights are indicated as ω̂0{h}
c , which can

be represented in a ((m + n) × h0
c) dimension matrix. The output weights are indicated as

ω̂
0{o}
c , which can be represented in a (h0

c × 1) dimension matrix. The activation function for

the hidden nodes is the hyperbolic tangent threshold function (φ(x) = (1 − e−x)/(1 + e−x)).

The forward propagating output signal according to Fig. 1 and Fig. 2 is

a(k)(t) =
m∑

i=1
ω̂

0{h}
c(k,i) s(i)(t) +

n∑
j=1

ω̂
0{h}
c(k,(j+m))u( j)(t), (12)
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b(k)(t) = φ(a(k)(t)), (13)

v̂0(t) =
h0
c∑

k=1
ω̂

0{o}
c(k) b(k)(t), (14)

where k = 1, 2, . . . , h0
c , a(k)(t) is the kth hidden node input of the CN(0) network, and b(k)(t)

is the corresponding output in the hidden node. The weights for the hidden (ω̂0{h}
c ) and

output (ω̂0{o}
c ) layers are tuned by backpropagating the prediction error of the critic network,

which is given as follows:

e0
c(t) = U(t) + γv̂0(t) − v̂0(t − 1). (15)

The objective function for the CN(0) is to minimize E0
c (t) = 0.5

(
e0

c(t))2 by updating the

value for the weights according to the gradient descent algorithm:

ω̂0
c(t + 1) =ω̂0

c(t) + 4ω̂0
c(t) = ω̂0

c(t) − `0
c
∂E0

c (t)
∂ω̂0

c(t)
, (16)

and the chain propagation path can be represented as

∂E0
c (t)

∂ω̂0
c(t)
=
∂E0

c (t)
∂v̂0

c (t)
· ∂v̂

0
c (t)

∂ω̂0
c(t)

. (17)

Then, the adaptation of the CN(0) output weight is

ω̂0
c(t + 1) =ω̂0

c(t) − `0
cγφ

0
c(t)

[
γω̂0T

c (t)φ0
c(t) +U(t) − ω̂0T

c (t − 1)φ0
c(t − 1)

]T
, (18)

where φ0
c = [b1, b2, . . . , bh0

c
]T , ω̂0

c = ω̂
0{o}
c , and v̂0(t) = ω̂0T

c (t)φ0
c(t). Following [31], the

initial hidden weights (ω̂0{h}
c ) were chosen randomly and kept constant while the output

weights (ω̂0{o}
c ≡ ω̂0

c) were updated.
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Figure 3. A schematic diagram of the average n-step learning critic network (CN(λ)) in
NSHDP(λ). The ω̂λ{h}c represents the hidden weights which are connected to the input layer
through the hidden layer. The output weights are indicated as ω̂λ{o}c , which connect both
the input and hidden layers with the output layer. ck(t) is the kth hidden node input of the
critic network, and dk(t) is the corresponding output to the hidden node. Here, only apply
a hyperbolic tangent threshold function (φ(.)) is applied to the hidden neurons.

2.3. The N-Step Critic Network (CN(λ)). Fig. 3 illustrates the structure for

CN(λ), which has a similar configuration to the CN(0), but with its own hidden and output

weights. The output of CN(λ), v̂λ(t), learns to approximate Rλt as in (8). The inputs for the

CN(λ) are the actions (u1(t), u2(t), . . . , un(t)) and the system states (s1(t), s2(t), . . . , sm(t)).

hλc is the number of hidden neurons of the CN(λ), m is the number of system states, and n is

the number of actions. The hidden weights are indicated by ω̂λ{h}c , which can be represented

in a ((m + n) × hλc ) dimension matrix. The output weights are indicated as ω̂λ{o}c , which

can be represented in a (hλc × 1) dimension matrix. The activation function for the hidden

nodes is the hyperbolic tangent threshold function. The forward propagating output signal

according to Fig. 1 and Fig. 3 is expressed as follows:

c(k)(t) =
m∑

i=1
ω̂
λ{h}
c(k,i) s(i)(t) +

n∑
j=1

ω̂
λ{h}
c(k,(j+m))u( j)(t), (19)
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d(k)(t) = φ(c(k)(t)), (20)

v̂λ(t) =
hλc∑

k=1
ω̂
λ{o}
c(k) q(k)(t), (21)

where k = 1, 2, . . . , hλc , c(k)(t) is the kth hidden node input of the CN(λ) network, and d(k)(t)

is the corresponding output of the hidden node. The weights for the hidden (ω̂λ{h}c ) and

output (ω̂λ{o}c ) layers are implemented by backpropagating the prediction error of the critic

network

eλc (t) = U(t) + γ
(
λv̂λ(t) + (1 − λ)v̂0(t)

)
− v̂λ(t − 1). (22)

The objective function for the CN(λ) is to minimize Eλ
c (t) = 0.5

(
eλc (t))2 by updating the

value for the weights according to the gradient descent algorithm:

ω̂λc (t + 1) =ω̂λc (t) + 4ω̂λc (t) = ω̂λc (t) − `λc
∂Eλ

c (t)
∂ω̂λc (t)

, (23)

and the chain propagation path can be represented as

∂Eλ
c (t)

∂ω̂λc (t)
=
∂Eλ

c (t)
∂v̂λc (t)

· ∂v̂
λ
c (t)

∂ω̂λc (t)
. (24)

Then, the adaptation of the CN(λ) output weights is

ω̂λc (t + 1) =ω̂λc (t) − `λc λγφλc (t)
[
γλω̂λ

T

c (t)φλc (t) + γ(1 − λ)ω̂0T
c (t)φ0

c(t) +U(t)−

ω̂λ
T

c (t − 1)φλc (t − 1)
]T
,

(25)

where φλc = [d1, d2, . . . , dhλc ]
T , ω̂λc = ω̂

λ{o}
c , and v̂λ(t) = ω̂λ

T

c (t)φλc (t). As in CN(0), the

initial hidden layer weights (ω̂λ{h}c ) are kept constant while updating the output critic

weights (ω̂λ{o}c ≡ ω̂λc ).
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2.4. Actor Network (AN). The AN generates near-optimal control actions (policy)

that are illustrated in Fig. 4. Werbos [38] suggests that there are extra weights connected

among the outputs themselves. This work sets extra weights equal to zero to become similar

to the outputs in a traditional multi-output feed-forward neural network. The system states

are the input to AN, which are represented by (s1(t), s2(t), . . . , sm(t)), while the outputs are

the control actions (u1(t), u2(t), . . . , un(t)). ha is the number of hidden neurons of the AN,

m is the number of system states, and n is the number of action values. The hidden weights

are indicated as ω̂{h}a , which can be represented in a (m× ha) dimension matrix. The output

weights are indicated as ω̂{o}a , which can be represented in a (ha × n) dimension matrix.

The activation function for the hidden nodes is the hyperbolic tangent threshold function.

The forward propagating output signal according to Fig. 1 and Fig. 4 can be expressed as

follows:

p(k)(t) =
m∑

i=1
ω̂
{h}
a(k,i)s(i)(t), k = 1, 2, . . . , ha, (26)

q(k)(t) = φ(p(k)(t)), k = 1, 2, . . . , ha, (27)

u( j)(t) =
ha∑

k=1
ω̂
{o}
a(j,(k))q(k)(t),

j = 1, 2, . . . , n,

(28)

where p(k)(t) is the kth hidden node input of the AN network and q(k)(t) is the corresponding

output of the hidden node. The actor network weights are adapted by combining the

backpropagating signals for errors of the actor network (e0
a(t) = v̂0(t) − Uc and eλa(t) =

v̂λ(t) −Uc), where Uc is the desired ultimate cost-to-go objective value. As in [5], Uc is set

to “0,” corresponding to “success.” The objective function for this network is minimizing

the actor error, which is given as follows:

Ea(t) =0.5
(
(1 − λ)E0

a (t) + λEλ
a (t)

)
= 0.5

(
BE0

a (t) + BEλ
a (t)

)
, (29)



171

Figure 4. A schematic diagram of the actor network (AN) in NSHDP(λ). All of the weights
that connect input nodes with output nodes are set to zero, as well as the connected weights
between the outputs themselves. ω̂{h}a represents the hidden weights which are connected
the input layer with the hidden layer. The output weights are indicated as ω̂{o}a , which
connect both input and hidden layers with the output layer. pk(t) is the kth hidden node
input of the critic network, and qk(t) is the corresponding output to the hidden node. A
hyperbolic tangent threshold function (φ(.)) is applied in the hidden neurons.

where E0
a = e0

a
2 and Eλ

a = eλa
2. Updating the weight vector by applying the chain rule is

given as follows:

ω̂a(t + 1) =ω̂a(t) + 4ω̂a(t) = ω̂a(t) − `a
∂Ea(t)
∂ω̂a(t)

=ω̂a(t) −
1
2
`a

(
(1 − λ)∂E0

a (t)
∂v̂0

c (t)
· ∂v̂

0
c (t)

∂u(t) ·
∂u(t)
∂ω̂a(t)

+ λ
∂Eλ

a (t)
∂v̂λc (t)

· ∂v̂
λ
c (t)

∂u(t) ·

∂u(t)
∂ω̂a(t)

)
,

(30)

where
∂v̂0

c (t)
∂u(k)(t)

=

h0
c∑

i=1

∂v̂0
c (t)

∂a(i)(t)
·
∂a(i)(t)
∂b(i)(t)

·
∂b(i)(t)
∂u(k)(t)

,

∂v̂λc (t)
∂u(k)(t)

=

hλc∑
i=1

∂v̂λc (t)
∂c(i)(t)

·
∂c(i)(t)
∂d(i)(t)

·
∂d(i)(t)
∂u(k)(t)

, k = 1, 2, . . . , n.

(31)
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The final adaptation of the action network’s weights between the hidden layer and the output

later is
ω̂a(t + 1) =ω̂a(t) − `a

(
(1 − λ)φa(t)ω̂0T

c (t)C0[ω̂0T
c (t)φ0

c(t)]T+

λφa(t)ω̂λ
T

c (t)Cλ[ω̂λTc (t)φλc (t)]T
)
,

(32)

where φa = [q1, q2, . . . , qha]T , ω̂a = ω̂
{o}
a , û(t) = ω̂T

a (t)φa(t),C0(t) is the feedbackweighting

values for CN(0), and Cλ(t) are the feedback weighting values for CN(λ). C0(t) is a matrix

of h0
c × n, and the elements for this matrix are

C0
(i, j)(t) =

1
2

(
1 −

(
φ0

c(i)(t)
)2

)
ω̂

0{h}
c(i,m+j)(t), (33)

where i = 1, 2, . . . , h0
c and j = 1, 2, . . . , n. Likewise Cλ(t) is a matrix of hλc × n, and the

elements for this matrix are

Cλ
(i, j)(t) =

1
2

(
1 −

(
φλc(i)(t)

)2
)
ω̂
λ{h}
c(i,m+j)(t), (34)

where i = 1, 2, . . . , hλc and j = 1, 2, . . . , n. Similar to the updated strategy of the critic

networks, hidden actorweights (ω̂{h}a ) are kept at randomconstantswhile updating the output

actor weights (ω̂{o}a ≡ ω̂a). Werbos et at. [30] shows the details about backpropagating

signals and the gradient decent learning algorithm.

3. STABILITY ANALYSIS FOR NSHDP(λ)

The Lyapunov function provides the UUB property for dynamical systems without

solving the state equations. This section discusses the stability for CN(0), CN(λ) and AN

networks by using the Lyapunov function.
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3.1. Basics of The Lyapunov Approach. Let ω0∗
c and ωλ

∗
c denote the optimal

weights for the one- and n-step critic networks, ω∗a is the optimal weight for the actor

network. the optimal weights for the three networks are defined as follows:

ω0∗
c = argminω̂0 ‖U(t) + γv̂0(t) − v̂0(t − 1)‖, (35)

ωλ
∗

c = argminω̂λ ‖U(t) + γ
(
λv̂λ(t) + (1 − λ)v̂0(t)

)
− v̂λ(t − 1)‖, (36)

and

ω∗a = argminω̂a ‖λv̂λ(t) + (1 − λ)v̂0(t)‖. (37)

The weight estimation error for all three networks (CN(0), CN(λ) and AN networks) is:

ω̃(t) = ω̂(t) − ω∗. (38)

A more general discrete time dynamic system for weight update rules (equation

(18) and for the one-step critic network, (25) n-step critic network and (32) actor network)

defines a dynamic system of estimation errors for a general nonlinear function (Φ(.)) as

ω̃(t + 1) = ω̃(t) − Φ
(
ω̂(t), ω̂(t − 1), φ(t), φ(t − 1)

)
. (39)

Therefore, the stability properties of the system in (39) express the asymptotic behavior of

the estimation error of the weights (ω̃(t)).

Definition 1. cf [31] Within a bounded positive value (ε > 0), a discrete time dynamic

system (39) solution is UUB, if and only if for any δ > 0 and t0 > 0, there exists a positive

number N = N(δ, ε) independent of t0, such that ‖ω̃(t)‖ ≤ ε for all t ≥ N + t0 when

‖ω̃(t)‖ ≤ δ.

Theorem 1. The discrete time dynamic system (39) has a Lyapunov function L(ω̃(t)) such

that for all ω̃(t0) in a compact set K , L(ω̃(t)) is positive definite and the first difference,
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4L(ω̃(t)) < 0 for ‖ω̃(t)‖ > ε, where ε > 0, such that ε− neighborhood of ω̃(t) is contained

in K . Thus, the dynamic system is UUB and the norm of the state is bounded within a

neighborhood of ε.

According to Theorem 1, an appropriate function L is selected to determine the UUB

property for (39) subject to Assumptions C0, Cλ and A below.

3.2. Assumptions. The main theorem are proven according to three lemmas as

follows:

Assumptions C0C0C0. Let ω0∗
c (t) be the optimal weights for CN(0):

ω0∗
c =argminω̂0

c
‖e0

c(t)‖

=argminω̂0
c
‖U(t) + γω̂0T

c (t)φ0
c(t) − ω̂0T

c (t − 1)φ0
c(t − 1)‖.

(40)

Assume it is bounded by a positive constant (i.e., ‖ω0∗
c (t)‖ ≤ ω0

cmax
) where ‖.‖ represents

2-norm.

LemmaC0C0C0. LetAssumptionC0 hold. Then, the first difference of L0
c (t) = 1

`0
c
tr

(
ω̃0T

c (t)ω̃0
c(t)

)
for CN(0) is expressed as follows:

4L0
c (t) ≤ −γ2‖ξ0

c (t)‖2 − γ2(1 − `0
cγ

2‖φ0
c(t)‖2) × ‖ξ0

c (t) + ω0∗T
c φ0

c(t) + γ−1U(t)−

γ−1ω̂0T
c (t − 1)φ0

c(t − 1)‖2 + 2‖γω0∗T
c φ0

c(t) +U(t) − 1
2
ω̂0T

c (t − 1)φ0
c(t − 1)

− 1
2
ω0∗T

c φ0
c(t − 1)‖2 + 1

2
‖ξ0

c (t − 1)‖2,

(41)

where ξ0
c (t) =

(
ω̂0

c(t) − ω0∗
c

)
φ0

c(t) = ω̃0
c(t)φ0

c(t), which is the approximation error of the

CN(0) output.

Lemma C0C0C0 Proof. The first discrete difference of the nominated Lyapunov function is

given as follows:

4L0
c (t) =

1
`0

c
tr

(
ω̃0T

c (t + 1)ω̃0
c(t + 1) − ω̃0T

c (t)ω̃0
c(t)

)
. (42)
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By updating rule (38) and ω̃0
c(t + 1) as in (18), the following is obtained:

ω̃0
c(t + 1) =ω̃0

c(t) − `0
cγφ

0
c(t)

(
γφ0T

c (t)ω̃0
c(t) +

[
γω0∗T

c φ0
c(t) +U(t) − ω̂0T

c (t − 1)

φ0
c(t − 1)

]T
) (43)

By assuming P0 = [I−`0
cγ

2φ0
c(t)φ0T

c (t)], and Q0 = [γω0∗T
c φ0

c(t)+U(t)− ω̂0T
c (t−1)φ0

c(t−1)]

and substituting P0, Q0 and (43) into (42) yields

4L0
c (t) =

1
`0

c
tr

( [
ω̃0T

c (t)P0T − `0
cγQ0φ0T

c (t)
] [

P0ω̃0
c(t) − `0

cγφ
0
c(t)Q0T

]
−

ω̃0
c(t)ω̃0T

c (t)
)
.

(44)

Applying the Cauchy-Schwarz inequality obtains

4Lc(t) ≤ −γ2‖ξ0
c (t)‖2 − γ2

(
1 − `0

cγ
2‖φ0

c(t)‖2
)
‖ξ0

c (t)‖2 − 2
(
1 − γ2`0

c ‖φ0
c(t)‖2

)
‖γξ0

c (t)‖‖Q0‖ + `0
cγ

2‖φ0
c(t)‖2‖Q0‖2.

(45)

With further arrangement (41) is acquired.

AssumptionsCλCλCλ. Let ωλ∗c (t) be the optimal weight for CN(λ), which is defined as follows:

ωλ
∗

c =argminω̂λc ‖e
λ
c (t)‖ = argminω̂λc ‖U(t) + γλω̂

λT

c (t)φλc (t) + γ(1 − λ)ω̂0T
c (t)

φ0
c(t) − ω̂λ

T

c (t − 1)φλc (t − 1)‖.
(46)

Assume it is bounded by a positive constant (i.e., ‖ωλ∗c (t)‖ ≤ ωλcmax
).

LemmaCλCλCλ. LetAssumptionCλ hold. Then, the first difference of Lλc (t) = 1
α`λc

tr(ω̃λTc (t)ω̃λc (t))

for CN(λ) is expressed as follows:
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4Lλc (t) ≤ −
γ2λ2

2
‖ξλc (t)‖2 −

γ2λ2

α
(1 − `λc γ2λ2‖φλc (t)‖2) × ‖ξλc (t) + λ−1(1 − λ)

ω̂0T
c (t)φ0

c(t) + ωλ
∗T

c φλc (t) + γ−1λ−1U(t) − γ−1λ−1ω̂λ
T

c (t − 1)φλc (t − 1)‖2+
2
α
‖γλωλ∗

T

c φλc (t) +U(t) + γ(1 − λ)ω̂0T
c (t)φ0

c(t) −
1
2
ω̂λ

T

c (t − 1)φλc (t − 1)−
1
2
ωλ
∗T

c φλc (t − 1)‖2 + 1
2α
‖ξλc (t − 1)‖2,

(47)

where ξλc (t) = (ω̂λc (t) − ωλ
∗

c )φλc (t) = ω̃λc (t)φλc (t), which is the approximation error of the

CN(λ) output, and α is a weighting factor (α > 0).

Lemma CλCλCλ Proof. The first discrete difference of Lλc (t) is

4Lλc (t) =
1
α`λc

tr(ω̃λTc (t + 1)ω̃λc (t + 1) − ω̃λTc (t)ω̃λc (t)). (48)

By updating rule (38) and ω̃λc (t + 1) as in (25), which yields

ω̃λc (t + 1) =ω̃λc (t) − `λc γλφλc (t)
[
U(t) + γλω̃λTc (t)φλc (t)γ(1 − λ)ω̂0T

c (t)φ0
c(t)−

ω̃λ
T

c (t − 1)φλc (t − 1)
]T

(49)

By assuming Pλ = [I − `λc γ2λ2φλc (t)φλ
T

c (t)] and Qλ = [U(t) + γ(1 − λ)ω̂0T
c (t)φ0

c(t) +

γλωλ
∗T

c φλc (t)− ω̂λ
T

c (t −1)φλc (t −1)] and substituting Pλ, Qλ and (49) into (48), the following

is obtained:

4Lλc (t) =
−γ2λ2

α

[
‖ξλc (t)‖2 + (1 − `λc ‖φλc (t)‖2)‖ξλc (t)‖2

]
− 2γλ

α
tr

(
(1 − γ2λ2`λc

‖φλc (t)‖2) +
γ2λ2`λc
α
‖φλc (t)‖2‖U(t) + γ(1 − λ)ω̂0T

c (t)φ0
c(t) + ωλ

∗T

c φλc (t)−

ω̂λ
T

c (t − 1)φλc (t − 1)‖2.

(50)



177

By applying the Cauchy-Schwarz inequality, the 4Lλc (t) becomes

4Lc(t) ≤ −
1
α
‖γλξλc (t)‖2 −

γ2λ2

α

(
1 − γ2λ2`λc ‖φλc (t)‖2

)
‖ξλc (t) + γ−1λ−1

[
U(t)

+ γ(1 − λ)ω̂0T
c (t)φ0

c(t) + γλωλ
∗T

c φλc (t) − ω̂λ
T

c (t − 1)φλc (t − 1)
]
‖2 + 2

α

‖γλωλ∗
T

c φλc (t) + γ(1 − λ)ω̂0T
c (t)φ0

c(t) +U(t) − 1
2
ω̂λ

T

c (t − 1)φλc (t − 1)−
1
2
ωλ
∗T

c φλc (t − 1)‖2 + 1
2α
‖ξλc (t − 1)‖2.

(51)

With further arrangement, (47) is reached.

Assumption A. Let ω̃∗a be the optimal weight for AN, which is bounded by a positive

constant, i.e., ‖ω∗a‖ ≤ ωmax
a . Let ξa(t) = [ω̂a(t) − ω∗a]Tφa(t) = ω̃T

a (t)φa(t), which is the

approximation error of the actor network output.

LemmaA.Let assumptionAhold. Then, the first difference of La(t) = 1
α1`a

tr(ω̃T
a (t)ω̃a(t)) is

4La(t) ≤
1
α1

(
(1 − λ)

(
4‖ξ0

c (t)‖2 + 4‖ω0∗T
c φ0

c(t)‖2 + ‖ξaω̂
0T
c (t)C0‖2 − ‖ω̂0T

c (t)

φ0
c(t)‖2

)
+ λ

(
4‖ξλc (t)‖2 + 4‖ωλ∗

T

c φλc (t)‖2 + ‖ξaω̂
λT

c (t)Cλ‖2 − ‖ω̂λTc (t)

φλc (t)‖2
)
+ `a(1 − λ)2‖φa‖2‖ω̂0T

c (t)C0‖2‖ω̂0T
c (t)φ0

c(t)‖2 + `aλ
2‖φa‖2

‖ω̂λTc (t)Cλ‖2‖ω̂λTc (t)φλc (t)‖2 +
1
2
`aλ(1 − λ)‖φa(t)‖2

(
‖ω̂0T

c (t)φ0
c(t)‖2

‖ω̂λTc (t)φλc (t)‖2 + ‖ω̂0T
c (t)φ0

c(t)‖2‖ω̂λ
T

c (t)Cλ‖2 + ‖ω̂λTc (t)φλc (t)‖2‖ω̂0T
c (t)

C0‖2 + ‖ω̂0T
c (t)C0‖2‖ω̂λTc (t)Cλ‖2

))
,

(52)

where α1 > 0, which is a weighting factor.

Lemma A Proof. As in (39), the asymptotic behavior of the estimation error of the actor

weight (ω̃a(t)) is to be analyzed by studying the stability of (39). The first discrete difference

of La(t) is given as follows:

4La(t) =
1

α1`a
tr

(
ω̃T

c (t + 1)ω̃a(t + 1) − ω̃T
a (t)ω̃a(t)

)
. (53)
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By updating rule (38) and ω̃c(t + 1) as in (32), the following is obtained:

ω̃a(t + 1) =ω̃a(t) − `a

(
(1 − λ)φa(t)ω̂0T

c (t)C0[ω̂0T
c (t)φ0

c(t)]T + λφa(t)ω̂λ
T

c (t)Cλ

[ω̂λTc (t)φλc (t)]T
)
.

(54)

Substituting (54) into (53) yields

4La(t) =
1

α1`a
tr

(
− 2`a(1 − λ)ξa(t)ω̂0T

c (t)C0[ω̂0T
c (t)φ0

c(t)]T − 2`aλξa(t)

ω̂λ
T

c (t)Cλ[ω̂λTc (t)φλc (t)]T + 2`2
aλ(1 − λ)‖φa(t)‖2ω̂0T

c (t)φ0
c(t)

[ω̂0T
c (t)C0]T ω̂λTc (t)Cλ[ω̂λTc (t)φλc (t)]T + `2

a(1 − λ)2‖φa(t)‖2‖ω̂0T
c (t)

C0‖2‖ω̂0T
c (t)φ0

c(t)‖2 + `2
aλ

2‖φa(t)‖2‖ω̂λ
T

c (t)Cλ‖2‖ω̂λTc (t)φλc (t)‖2
)
.

(55)

By applying the Cauchy-Schwarz inequality, the following is obtained:

4La(t) ≤
1

α1`a

(
`a(1 − λ)

(
4‖ξa(t)‖2 + 4‖ω0∗T

c φ0
c(t)‖2 + ‖ξa(t)ω̂0T

c (t)C0‖2−

‖ω̂0T
c (t)φ0

c(t)‖2
)
+ `aλ

(
4‖ξa(t)‖2 + 4‖ωλ∗

T

c φλc (t)‖2 + ‖ξa(t)ω̂λ
T

c (t)Cλ‖2

− ‖ω̂λTc (t)φλc (t)‖2
)
+ 2`2

aλ(1 − λ)‖φa(t)‖2
(
− 1

2
‖ω̂0T

c (t)φ0
c(t)‖2 −

1
2

‖ω̂0T
c (t)C0‖2

) (
− 1

2
‖2ω̂λTc (t)φλc (t)‖2 −

1
2
‖ω̂λTc (t)Cλ‖2

)
+ `2

a(1 − λ)2

‖φa(t)‖2‖ω̂0T
c (t)C0‖2‖ω̂0T

c (t)φ0
c(t)‖2 + `2

aλ
2‖φa(t)‖2‖ω̂λ

T

c (t)Cλ‖2

‖ω̂λTc (t)φλc (t)‖2
)
.

(56)

With further arrangement, (52) is reached.

3.3. The Stability Analyses for The Dynamical System. The Lyapunov candidate

functions for all networks in NSHDP(λ) are analyzed in this subsection to prove the bound

estimation errors.

Theorem 2 (UUB for CN(0), CN(λ) and AN). Let Assumptions C0, Cλ and A hold with

a bounded reinforcement signal. Let gradient descent be used to update the weights of
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both one-step and n-step critic networks as (18), (25), respectively. The gradient descent is

also used to update the weight of the actor network by using (32). The errors between the

optimal weights for all networks (ω0∗
c , ωλ∗c , ω∗a) and their estimates (ω̂0

c(t), ω̂λc (t), ω̂a(t)) are

UUB if the following conditions are met

`0
c <

1
γ2‖φ0

c(t)‖2
, `λc <

1
γ2λ2‖φλc (t)‖2

,

`a <
(1 − λ)‖ω̂0T

c (t)φ0
c(t)‖2 + λ‖ω̂λ

T

c (t)φλc (t)‖2

‖φa(t)‖2Ψ
, 0 < λ < 1,

1
√

2
< γ ≤ 1,

(57)

where Ψ is described in (65), and the constraints on the weighting factors are

α <
(1 − λ)(1 − 2γ2λ2)

λ(1 − 2γ2)
, (58)

and

α1 <
−8(1 − λ)
1 − 2γ2 . (59)

Theorem 2 Proof. The definition of the Lyapunov function for NSHDP(λ) is given as

follows:

L(t) = L0
c (t) + Lλc (t) + La(t) + L0

p(t) + Lλp (t), (60)

where L0
p(t) =

1
2
‖ξ0

c (t − 1)‖2, and Lλp (t) =
1
2
‖ξλc (t − 1)‖2. The first difference for L0

p(t) and

Lλp (t) are given as

4L0
p(t) =

1
2

(
‖ξ0

c (t)‖2 − ‖ξ0
c (t − 1)‖2

)
, (61)

and

4Lλp (t) =
1
2

(
‖ξλc (t)‖2 − ‖ξλc (t − 1)‖2

)
, (62)
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respectively. The first difference of the Lyapunov function (60) is

4L(t) ≤ −
(
γ2 − 4(1 − λ)

α1
− 1

2

)
‖ξ0

c (t)‖2 −
(γ2λ2

α
− 4λ
α1
− 1

2α

)
‖ξλc (t)‖2 − γ2

(
1 − γ2

`0
c ‖φ0

c(t)‖2
)
‖ξ0

c (t) + ω0∗T
c φ0

c(t) + γ−1U(t) − γ−1ω̂0T
c (t − 1)φ0

c(t − 1)‖2−

γ2λ2

α

(
1 − γ2λ2`λc ‖φλc (t)‖2

)
‖ξλc (t) + ωλ

∗T

c φλc (t) + γ−1λ−1U(t) + λ−1

(1 − λ)ω̂0T
c (t)φ0

c(t) − γ−1λ−1ω̂λ
T

c (t − 1)φλc (t − 1)‖2 − 1
α1

(
(1 − λ)‖ω̂0T

c (t)

φ0
c(t)‖2 + λ‖ω̂λ

T

c (t)φλc (t)‖2 − `a‖φa(t)‖2Ψ
)
+ 2‖γω0∗T

c φ0
c(t) +U(t)−

1
2
ω̂0T

c (t − 1)φ0
c(t − 1) − 1

2
ω0∗T

c φ0
c(t − 1)‖2 + 2

α
‖γλωλ∗

T

c φλc (t) +U(t)+

γ(1 − λ)ω̂0T
c (t)φ0

c(t) −
1
2
ω̂λ

T

c (t − 1)φλc (t − 1) − 1
2
ωλ
∗T

c φλc (t − 1)‖2+
(1 − λ)
α1

(
4‖ω0∗T

c φ0
c(t)‖2 + ‖ξ0

c (t)ω̂0T
c (t)C0‖2

)
+
λ

α1

(
4‖ωλ∗

T

c φλc (t)‖2

+ ‖ξλc (t)ω̂λ
T

c (t)Cλ‖2
)
,

(63)

where Ψ is given as follows:

Ψ = (1 − λ)2‖ω̂0T
c (t)C0‖2‖ξ0

c (t)‖2 − λ2‖ω̂λTc (t)Cλ‖2‖ξλc (t)‖2 −
1
2
λ(1 − λ)

(
‖ξλc (t)‖2 + ‖ω̂λ

T

c (t)Cλ‖2
) (
‖ξ0

c (t)‖2 + ‖ω̂0T
c (t)C0‖2

)
,

(64)

which Ψ is equivalent to

Ψ = (1 − λ)2‖ω̂0T
c (t)C0‖2‖ω̂0T

c (t)φ0
c(t)‖2 − λ2‖ω̂λTc (t)Cλ‖2‖ω̂λTc (t)φλc (t)‖2−

1
2
λ(1 − λ)

(
‖ω̂0T

c (t)φ0
c(t)‖2‖ω̂λ

T

c (t)φλc (t)‖2 + ‖ω̂0T
c (t)φ0

c(t)‖2‖ω̂λ
T

c (t)Cλ‖2+

‖ω̂λTc (t)φλc (t)‖2‖ω̂0T
c (t)C0‖2 + ‖ω̂0T

c (t)C0‖2‖ω̂λTc (t)Cλ‖2
)
.

(65)

To guarantee that the third and fourth terms of (63) are negative, the learning rate for the

one-step critic network (`0
c ) and the n-step critic network (`λc ) have to be 1−γ2`0

c ‖φ0
c(t)‖2 > 0

and 1 − γ2λ2`λc ‖φλc (t)‖2 > 0, respectively; similar procedure is taken to guarantee the fifth
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term of (63). From the first and second terms of (63), the weighting factors are calculated.

The first difference of L(t) can be rewritten as follows:

4L(t) ≤ −
(
γ2 − 4(1 − λ)

α1
− 1

2

)
‖ξ0

c (t)‖2 −
(γ2λ2

α
− 4λ
α1
− 1

2α

)
‖ξλc (t)‖2 − γ2

(
1 − γ2

`0
c ‖φ0

c(t)‖2
)
‖ξ0

c (t) + ω0∗T
c φ0

c(t) + γ−1U(t) − γ−1ω̂0T
c (t − 1)φ0

c(t − 1)‖2−

γ2λ2

α

(
1 − γ2λ2`λc ‖φλc (t)‖2

)
‖ξλc (t) + ωλ

∗T

c φλc (t) + γ−1λ−1U(t) + λ−1

(1 − λ)ω̂0T
c (t)φ0

c(t) − γ−1λ−1ω̂λ
T

c (t − 1)φλc (t − 1)‖2 − 1
α1

(
(1 − λ)‖ω̂0T

c (t)

φ0
c(t)‖2 + λ‖ω̂λ

T

c (t)φλc (t)‖2 − `aΨ

)
+ Γ2,

(66)

where Γ2 is defined as a positive term in (63), which is given as follows:

Γ
2 = 2‖γω0∗T

c φ0
c(t) +U(t) − 1

2
ω̂0T

c (t − 1)φ0
c(t − 1) − 1

2
ω0∗T

c φ0
c(t − 1)‖2 + 2

α
‖γλ

ωλ
∗T

c φλc (t) +U(t) + γ(1 − λ)ω̂0T
c (t)φ0

c(t) −
1
2
ω̂λ

T

c (t − 1)φλc (t − 1) − 1
2
ωλ
∗T

c

φλc (t − 1)‖2 + (1 − λ)
α1

(
4‖ω0∗T

c φ0
c(t)‖2 + ‖ξ0

c (t)ω̂0T
c (t)C0‖2

)
+
λ

α1

(
4‖ωλ∗

T

c

φλc (t)‖2 + ‖ξλc (t)ω̂λ
T

c (t)Cλ‖2
)
.

(67)

With further simplifying, Γ2 can be rewritten as follows:

Γ
2 ≤ 4

(
γ2‖ω0∗T

c φ0
c(t)‖2 +U(t)2 + 1

4
‖ω̂0T

c (t − 1)φ0
c(t − 1)‖2 1

4
‖ω0∗T

c φ0
c(t − 1)‖2

)
+

2
α

(
γ2λ2‖ωλ∗

T

c φλc (t)‖2 +U(t)2 + γ2(1 − λ)2‖ω̂0T
c (t)φ0

c(t)‖2 +
1
4
‖ω̂λTc (t − 1)

φλc (t − 1) + 1
4
‖ωλ∗

T

c φλc (t − 1)‖2
)
+
(1 − λ)
α1
‖ω̂0T

c (t)C0‖2
(
‖ωT

aφa(t)‖2 + ‖ω∗
T

a

φa(t)‖2
)
+
λ

α1
‖ω̂λTc (t)Cλ‖2

(
‖ωT

aφa(t)‖2 + ‖ω∗
T

a φa(t)‖2
)
+

4(1 − λ)
α1

‖ω0∗T
c

φ0
c(t)‖2 +

4λ
α1
‖ωλ∗

T

c φλc (t)‖2.

(68)
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The upper bounds for ω0
c (ω0∗

c and ω̂0
c), ωλc (ωλ∗c and ω̂λc ), ωa (ω∗a and ω̂a), φ0

c, φ
λ
c, φa,C0,Cλ

andU(t) are substituted toω0
cm, ω

λ
cm, ωam, φ

0
cm, φ

λ
cm, φam,C0

m,C
λ
m andUm, respectively. There-

fore, Γ2 can be rewritten as follows:

Γ
2 ≤ ω02

cmφ
02

cm

(
4γ2 + 1 +

2
α
γ2(1 − λ)2 + 4(1 − λ)

α1

)
+ ωλ

2

cmφ
λ2

cm

( 2
α
γ2λ2 +

1
α
+
λ

α1

)
+

2(1 − λ)
α1

ω02

cmC02

m ω
2
amφ

2
am +

2λ
α1
ωλ

2

cmCλ2

m ω2
amφ

2
am = Γ

2
m.

(69)

If (57) holds, then any

‖ξ0
c ‖ >

Γm√
γ2 − 4(1 − λ)

α1
− 1

2
(70)

or,
‖ξλc ‖ >

Γm√
γ2λ2

α
− 4λ
α1
− 1

2α

,
(71)

where 0 < λ < 1,
1
√

2
< γ ≤ 1, α is defined in (58), and α1 is defined (59), making

4L(t) ≤ 0, meaning that the estimated errors, which are the deference between ω0∗
c , ωλ∗c ,

ω∗a and their estimates (ω̂0
c(t), ω̂λc (t), ω̂a(t)) are UUB.

4. SIMULATION STUDY

The trajectories of the internal reinforcement signal 2-D nonlinear system are con-

sidered the first case study to verify the effectiveness of the NSHDP(λ). Here, the results

are compared with the performance of ADHDP and GrHDP. The second case study is a

single link inverted pendulum. The performance of the inverted pendulum is investigated

by comparing NSHDP(λ) with GrHDP in different noise exposure effects. The third case

study is a 2-D maze benchmark. NSHDP(λ) and ADHDP are also compared, along with

other reinforcement algorithms, which are SARSA(0)4 and Q(λ) [21].

4The SARSA (State-Action-Reward-State-Action) algorithm is used to find the series state-action pairs by
using one-step learning; therefore, it is written as SARSA(0).
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4.1. First Case: Nonlinear System Problem. Consider the following nonlinear

system derived from [42]:

x1(t + 1) = −sin(0.5x1(t) + u(t))

x2(t + 1) = −sin(x1(t) + 0.5x2(t)),
(72)

where x(t) = [x1(t) x2(t)]T ∈ R2, is the state vector (m = 2), and u(t) ∈ R1 is the control

action (n = 1).

The external instantaneous cost function isU(t) = xT (t)x(t)+uT (t)u(t). The discount

factor (γ) is 0.9, and λ is 0.95. The number of hidden nodes in both critic networks is 7

(h0
c = hλc = 7).

The number of hidden nodes for AN is also 5 (ha = 5), and the initial learning

parameters for all the networks are `0
c = `

λ
c = 0.05 for both the CN(0) and the CN(λ), and

`a = 0.01 for the action network. The training for either network will be terminated if the

error drops under 10−6 or if the number of iterations meets the stopping threshold for the

internal cycle (40 iterations for both critic networks and 50 iterations for the actor network).

The initial weights for all the networks are randomly within [-0.3, 0.3]. As previ-

ously mentioned, the hidden weights (ŵ0{h}
c , ŵ

λ{h}
c , ŵ

{h}
a ) are fixed, and the output weights

(ŵ0{o}
c , ŵ

λ{o}
c , ŵ

{o}
a ) are trained. The NSHDP(λ), GrHDP and ADHDP are compared with

similar learning parameters. An initial CN(0) in the NSHDP(λ) is chosen that is similar

to the reference network in the GrHDP structure, and the initial CN(λ) is the same as the

critic network in the GrHDP, while the ADHDP has one critic network that has an initial

weight that is similar to the CN(0) in the NSHDP(λ) with λ = 0. The actor networks for

NSHDP(λ), GrHDP and ADHDP have similar initial weights.

Fig. 5 shows that NSHDP(λ) is more efficient because it learn faster than the

ADHDP and the GrHDP.
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Fig. 5 shows also mean squared errors (MSEs) during iteration. Fig. 6 illustrates

the state trajectories and the control actions for 25 time steps.

The initial state is set to x(0) = [−0.5 0.5]T . The NSHDP(λ) and the GrHDP are

derived from the system states to converge faster than the ADHDP. Compareding to the

ADHDP, the improvement (according to an MSE technique) is 5.12% for the NSHDP(λ),

while it is 3.506% for the GrHDP.

Figure 5. Mean squared error comparisons over iterations among the NSHDP(λ), the
GrHDP and the traditional ADHDP. NSHDP(λ) has a faster learning speed than the GrHDP
and the ADHDP.
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Figure 6. Comparisons of system response trajectories, which are the two system states and
the actions for the NSHDP(λ), GrHDP and ADHDP.

The value functions and their targets for the NSHDP(λ) and the GrHDP are shown

in Fig. 7. After three online learning time steps, the critic errors for CN(0) and CN(λ) have

converged to its equilibrium value, which is clearly shown in the lowest figure of Fig. 8. The

GrHDP needs four time steps (as shown in the upper figures of Fig. 7 and Fig. 8). The critic

error for the NSHDP(λ = 0) is shown in the middle figure in Fig. 8. Fig. 9 demonstrates

the squared backpropagation actor errors through critic networks for all methods (GrHDP,

ADHDP and NSHDP(λ)). The corresponding weight trajectory for the NSHDP(λ) and the

GrHDP are shown in Fig. 10, which illustrate that the weights for both networks reach their

optimal fixed values.
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Figure 7. Comparisons for the value functions with their targets between the NSHDP(λ)
and the GrHDP. The upper figure shows the value function and its target for the GrHDP
(see [7]), which is represented by a red dashed line in the upper figure part of Fig. 8. The
middle and upper figures show the value functions of CN(0) and CN(λ) of the NSHDP(λ)
with their targets (the left sides of Equations (10) and (11)), respectively. The solid green
line in the lower part of Fig. 8 represents the difference of the middle figure, while the
dashed red line represents the difference of the lower figure.
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Figure 8. The squared critic errors. The upper figure shows the squared errors for critic
and reference networks in the GrHDP structure (see [7] Equations(4) and (5)). The squared
critic errors for NSHDP(λ) for both critic networks (CN(0) and CN(λ)) are illustrated in the
middle and upper figures when λ = 0.95 and λ = 0, respectively. The squared error for the
reference network in the GrHDP is represented by “Er”.
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Figure 9. The upper figure shows the squared backpropagating actor error after passing
a critic network in the GrHDP. The middle and lower figures show BE0

a (t) and BEλ
a (t)

(see (29)) of the NSHDP(λ) when λ = 0.95 and λ = 0, respectively. The lower figure
(NSHDP(0.95)) converges faster than the upper (GrHDP) and middle (ADHDP) figures
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Figure 10. Learning weights for the NSHDP(λ) and the GrHDP. The upper, middle and
lower figures in the first column show the learning weights during the time steps for CN(0),
CN(λ) and AN in the NSHDP(λ), respectively. The upper, middle and lower figures of the
second column show the learning weights during the time steps for goal representation or
the reference network (RN), critic network and actor network of GrHDP.

4.2. Second Case: Inverted Pendulum.

4.2.1. Description for The Inverted Pendulum Dynamic Model. The inverted

pendulum dynamic model is simulated for the second case study. The NSHDP(λ) is self-

learning without prior knowledge of the systemmodel. The actor network allows the cart to
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be moved to the left or right in order to balance a pole (inverted pendulum) mounted on the

cart. A binary reinforcement signal is used to learn the actor network. the reinforcement

signal is either “-1” or “0” in correspondence to a fallen or balanced pole, respectively.

As in [5] and [29], the cart pole system model shown in Fig. 11 is given by

Figure 11. The configuration schematic diagramof the inverted pendulumbalancing system.

Üθ =
g sin(θ) + cos(θ)

(
− F − ml Ûθ2 sin(θ) + µcσ( Ûx)

)
−
µp Ûθ
ml

l
(4
3
− m cos2(θ)

mc + m

) , (73)

Üx =
F + ml

(
Ûθ2 sin(θ) − Üθ cos(θ)

)
− µcσ( Ûx)

mc + m
, (74)

where g = 9.8[m/sec2], the acceleration due to gravity; mc = 1.0[kg], the mass of the

cart; m = 0.1[kg], the mass of the pole; l = 0.5[m], the half-pole length; µc = 0.0005, the

coefficient of friction of the cart on the track; µp = 0.000002, the coefficient of friction of

the pole on the cart; F = ±10[N], the force applied to the cart’s center of mass; and σ(.)

is a Sigmund function. The fourth-order Runge-Kutta method is used to solve nonlinear



191

differential equations (73) and (74)with 0.02 sec for the sample step. The inverted pendulum

model has four states:
[
x(t) θ(t) Ûx(t) Ûθ(t)

]
, where x(t) is the position of the cart, θ(t)

is the angle of the pole with respect to the vertical axis, Ûx(t) is the linear velocity for the

cart, and Ûθ(t) is the angular velocity of the pole.

4.2.2. Simulation Results. In this simulation, the NSHDP(λ) and the GrHDP are

compared. This comparison focuses on various uniform random noise and initial pole

angles. The pole has fallen if it is beyond the range of (−12◦, 12◦), and also, if the cart

moves outside the range (−2.4, 2.4 meter) its initial position. The control action (u(t)) is

a continuous signal, although the cart requires a binary value. The force (F= 10 [N]) is

applied on the cart if u(t) ≥ 0; otherwise, F= -10 [N]. Each run has 60 consecutive trials.

The run is considered successful if the last trial has balanced the pole. Each successful trial

has 2000 time steps to complete the balancing task. γ is 0.9, and λ is 0.95. The number

of hidden nodes is 22 for h0
c and hλc . The number of hidden nodes for AN is 20 (ha = 20),

and the initial learning parameters are set to `0
c = `

λ
c = 0.005 for both critic networks and

`a = 0.003 for the action network. The learning rates are decreased by dividing by 3 every

30 time steps. The training for either network is terminated if the error drops under 10−6 or

if the number of iterations meets the stopping threshold for the internal cycle (100 iterations

for both critic networks and 130 iterations for the actor network). The initial weights for

all networks are within [-0.3, 0.3] by fixing the hidden weights and training the output

weights. All figures are shown for the last iteration. Fig. 12 - Fig. 15 show the noise-free

system responses (states, action, and the cost-to-go values,) for the NSHDP(λ) during 2000

time steps with an initial angle θ(t) of 0.1◦. The bottom figure of Fig. 14 and Fig. 15

show the backpropagating actor error through both CN(0) and CN(λ), which are defined as:

Be0
a(t) = (1 − λ)e0

a(t) and Beλa(t) = λeλa(t).
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Figure 12. Simulated results of balancing the inverted pendulum for u(t), θ(t), and x(t)
when the system is free of noise. The initial angle θ(t) is 0.1◦.

Figure 13. Zoom-in between 1000 to 1250 time steps for Fig. 12.
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Figure 14. The value functions and their targets without noise. The backpropagating actor
errors are Be0

a and Beλa through CN(0) and CN(λ), respectively. The initial angle θ(t) is
0.1◦.

Figure 15. Zoom-in between 1000 to 1250 time steps for Fig. 14.
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In order to simulate realistic behavior, the NSHDP(λ) was challenged with ±12◦ as

the initial deviation of the pole angle. Furthermore, random noise was uniformly injected

into the actuator and sensor. Particularly, the sensor is θ(t) = θ(t) + η, while the actuator

noises are determined by u(t) = u(t) + η. Fig. 16 illustrates the situation results for the

system responses (u(t), θ(t), x(t)) with disturbances: 1) θ(0) = −12◦. 2) sensor-effected

noise is 3%. 3) actuator-effected noise is 3%. Fig. 17 shows the value functions (CN(0)

and CN(λ)) and backpropagating actor errors with similar disturbances in Fig. 16. Fig. 18

and Fig. 19 demonstrate the system responses, value functions and backpropagation actor

errors with the challenge of effecting sensor and actuator noises similar to Fig. 16 but with

θ(0) = 12◦

Figure 16. Simulated results of balancing the inverted pendulum to show u(t), θ(t) and x(t),
when the system is injected with 3% uniform noise to the actuator and sensor. The initial
angle θ(t) is −12◦.
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Figure 17. The value functions and their target values with similar disturbances are in
the caption of Fig. 16 (upper and lower figures for CN(0) and CN(λ), respectively). The
backpropagation actor errors through CN(0) (Be0

a) and CN(λ) (Beλa) are shown in the lower
figure. The initial angle θ(t) is −12◦.

Figure 18. Simulated results of balancing the inverted pendulum to show u(t), θ(t) and x(t),
when the system is injected with 3% uniform noise to the actuator and sensor. The initial
angle θ(t) is −12◦.
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Figure 19. The function values with errors with the initial angle θ(t) is 12◦. The actuator
and sensor disturbances are similar to what in the caption of Fig. 18

For further comparison, the NSHDP(λ) is compared with the GrHDP as they are

examined under different noise/θ levels as shown in Table I. Table I summarizes the simula-

tion results through 100 averaged runs for 100 time steps and 10 iterations for each run. The

average number of iterations for all columns in Table 1 is 3.62 and 4.19 for the NSHDP(λ)

and GrHDP, respectively. Therefore, the NSHDP(λ) improves by 13.48% more than the

GrHDP by reducing the average number of iterations at various noise levels.

4.3. Third Case: 2-D Maze Problem. Maze navigation has been proposed as

an ADP benchmark [44]-[47]. In this case, the NSHDP(λ) is examined in a 2-D maze

navigation benchmark with various other approaches (e.g. SARSA(0), Q(λ), ADHDP).

Sutton [21] presents a perfect explanation about SARSA(0) and Q(λ). Briefly, the SARSA

algorithm is used to find the series state-action pairs by using one-step learning; therefore,

SARSA(0) is written. In this case study, the data that the agent uses to learn is: 1) current

state vector x(t) = [x1(t), x2(t)]T , where x1 and x2 are the coordinates of the x axis and the

y axis, respectively; 2)selected action u(t) = [u1, u2, u3, u4]T , where u1, u2, u3 and u4 are the
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Table 1. Performance evaluation of the NSHDP(λ) learning controller when balancing
the inverted pendulum dynamic system. The third and fourth columns depict the average
number of trials it took to learn to balance the pole for 100 time steps for the GRHDP and
the NSHDP(λ), respectively. The average is taken over 100 successful runs for 5 iterations
each. ∗ actuators are subjected to noise; # sensors are subjected to noise

Noise Type Initial Angle (θ(0)◦) NSHDP(λ) GrHDP

Noise free 0.1◦ 2.44 3.33
Noise free 5◦ 3.42 3.95

Uniform∗ 5% 0.1◦ 3.04 3.37
Uniform∗ 10% 0.1◦ 3.84 4.49
Uniform∗ 5% 5◦ 2.99 4.1
Uniform∗ 10% 5◦ 3.15 4.25
Uniform# 5% 0.1◦ 3.56 4.23
Uniform# 10% 0.1◦ 4.47 4.62
Uniform# 5% 5◦ 4.12 4.42
Uniform# 10% 5◦ 4.36 4.51
Uniform∗# 5% 0.1◦ 4.44 4.86

direction of forward, right, backward and left, respectively; 3) external reward U(t) = 1 if

the agent reaches the target position, U(t) = −0.001 if the agent hits the obstacle or exceeds

the board and U(t) = 0 if the agent moves in a free space. In the SARSA(0) algorithm, the

agent takes an action ui, where i = 1, 2, ..., 4, to move from x(t) to the next state (x(t + 1)),

and it gains U(t). There are many strategies to select actions. If the agent always chooses

the action with the highest value of the value function (state-action pair value), it is a

greedy strategy. An ε−greedy strategy selects the greedy action with a probability of (1-ε).

Otherwise, the agent chooses a random action. In a non-greedy action strategy, the robot

selects a random action that the agent is exploring inside the environment. There are other

strategies that can be found in the literature [13], [21] and [29]. After the learning trials have

been completed, the collected data is put in a lookup-table (Q table). The Q table values

of all of the state-action pairs can be updated in the SARSA(0) algorithm learning by the
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Bellman formula: Q(x(t), ui(t)) = Q(x(t), ui)+`
(
U(t)+γQ(x(t+1), ui)−Q(x(t), ui)

)
, where

x(t) is the state vector, ` is the learning rate and ui, i = 1, 2, ..., 4, is the selected action (the

direction of movement). Q(λ)-learning is similar to the SARSA-learning, except: 1) The

updating occurs as in SARSA-learning but with a greedy action maxui∈u(t)
(
Q(x(t + 1), ui

)
instead of Q(x(t + 1), ui and 2) the eligibility trace is a temporary record to be stored. There

are two main steps to update the eligibility traces for the Q table. The frist step involves

setting all state action pairs to zero when a non-greedy action is taken. Otherwise, they

are declining. Second, the eligibility trace is reset to one if it is identical with the current

state-action pair. Updating Q-learning by using only a critic network was presented by [40].

In this study case, only critic neural networks are used to approximate the value function for

the n-step as well as the one-step. Algorithm 1 is used to avoid solving discrete-time HJB

(4). Algorithm 1 generates and updates a table of Q values according to the state-action pairs

(step 2 in Algorithm 1). It also as generates greedy actions (ui(t)) as in step 3 of Algorithm

1. The same procedure is used to generate and update the Q table for ADHDP by using one

critic network. In the previous two case studies, the cost value should minimize over time,

while here, the agent has to maximize a reward intake in order to solve the maze problem.

This paper assumes that an agent starts at an initial location in an environment, which is

(0,0) as shown in Fig. 20 with 11 obstacles included. The agent can learn through by online

techniques by through interacting with its environment to obtain an optimal collision-free

path from the starting point to the target point, which is taken (6,6). The declining ε−greedy

learning method is used in all approaches as a way of balancing between exploration and

exploitation [13] and [21]. The NSHDP(λ) method is evaluated by comparing it with

other methods according to Q reference value table. The Q reference evaluation method

is presented [49], et al., [50]. The Q reference table is calculated dependent on a distance

between the current state location and the target location. All states around the target are set

to 1, while the other states are assigned by droning 1/(L +W) for each step, where L and W

are the maximum number of possible states in the length and width directions, respectively.
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Figure 20. Diagram of a 2-D maze (7 × 7) with obstacles. The point(0,0) represents the
initial position. The point (6,6) represents the target position. Eleven obstacles are located at
(5,0), (6,0), (2,1), (5,2), (6,2), (2,3), (3,3), (6,3), (3,6), (0,6) and (3,6), which are represented
as red squares. Otherwise, the agent can move in the free space. There are three modes
where that the agent can receive reward/cost values. First, the agent will a receive reward
of 1 when it arrives at the target. Second, the agent will be punished by receiving -0.001 if
hits obstacles or passes the bound. Third, the agent will receive a 0 value as a reward in a
free space. At any position in the maze, the agent has to select 1 action (direction) out of
4 actions in order to move one step. The 4 actions are forward, right, backward and left,
which can be seen in the figure as u1, u2, u3 and u4, respectively.
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The Q reference (Qre f ) is calculated as

Qre f (x1, x2) =1 − 1
L +W

(
L − x1 +W − x2 − 1

)
. (75)

Equation (76) is calculated for the desired values of all of all squares of the 2-D maze,

including the obstacle square. However, obstacles are used in the 2-D maze benchmark

(Fig. 20); therefore, the obstacle square is assigned as zero in Qre f because the agent cannot

enter them to update Qre f . Greedy Q table values (Qgreedy) are used to calculate the MSE,

where Qgreedy((x(t)) = maxui∈u(t)
(
Q(x(t), ui

)
. The MSE is obtained

MSE =
1
2

Sn∑
i=1

(
Qgreedy(i) −Qre f (i)

)2
, (76)

where Sn is the number of states of the 2-D maze (L ∗W). The common general parameters

that are shared with all testing algorithms are: the learning rate for Q table (`) is 0.01;

γ=0.95; λ=0.95 for Q(λ) and the NSHDP(λ) and λ=0 for SARSA(0) and the ADHDP;

ε-greedy parameter starts at 1 and decreases by ε = ε ∗ 0.99 after each episode and stops at

ε =0.05. There are 20 runs (run loop), and each run has 300 consecutive episodes (episode

loop); moreover, at each episode the agent navigates in the maze until reaching to the target

(time steps loop). The learning parameters related with only-critic ADHDP and NSHDP(λ)

are: the number of neurons in both critic networks (h0
c = hλc ) is 24; the initial learning

parameters are set as (`0
c = `

λ
c = 0.001) for both critic networks. The stopping threshold for

both critic networks are 110 iterations; the training for either network will be terminated

if the error drops under T0
c = Tλ

c = 10−5 or if the number of iterations meets the stopping

threshold (N0
c = 110 and Nλ

c = 110 ). Fig. 21 demonstrates that the MSE of the ADHDP

and the NSHDP(λ) has a faster dropping rate than those that used the SARSA(0) and Q(λ)

methods. Those using the NSHDP(λ) can also converge faster than the ADHDP to achieve

the best performance in this test. Both the ADHDP and the NSHDP(λ) fuse together after
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Algorithm 2Markov-Critic Networks To Support Q-Learning in Maze Navigation
v̂0(t) ← f 0

c (xc (t), ω̂0
c (t))

v̂λ (t) ← f λc (xc (t), ω̂λ
c (t))

f 0
c : one-step critic network for value function approximation
f λc : n-step critic network for value function approximation
xc (t) = [x(t), ui ]T : input of both critic networks, where i = 1, 2, ..., 4
ω̂0
c (t): weights in one-step critic network

ω̂λ
c (t): weights in n-step critic network

• Step 1:

– Q(x, ui ) = 0 for all states and actions

– v̄λ (x, ui ) = 0 for all states and actions

– t = 0, T0
c = Tλ

c = 10−5 with N0
c = Nλ

c = 110 are parameters for stopping learning for both critic networks, initial counters are C0
c = 0 and Cλ

c = 0,
goal = [6, 6], and set all other learning parameters

• Step 2 (Policy evaluation) updating the Q-table by:

– v̄0(x(t), ui ) =U(t) + γv̂0(t + 1)
– while (E0

c (t) > T0
c )or(C0

c < N0
c ) do

– ω̂0
c (t) = ω̂0

c (t) + 4ω̂0
c (t); equations (84) - (18)

– v̂0(t) = f 0
c (xc (t), ω̂0

c (t))
– D0

err (t) = v̄0(x(t), ui ) − v̂0(t)

– E0
c (t) = 0.5

(
D0

err (t)
)2

– C0
c = C0

c + 1
– end while

– v̄λ (x(t), ui ) =U(t) + γ
(
λv̂λ (t + 1) + (1 − λ)v̂0(t + 1)

)
– while (Eλ

c (t) > Tλ
c )or(Cλ

c < Nλ
c ) do

– ω̂λ
c (t) = ω̂λ

c (t) + 4ω̂λ
c (t); equations (23) - (25)

– v̂λ (t) = fc (xc (t), ω̂λ
c (t))

– Dλ
err (t) = v̄λ (x(t), ui ) − v̂λ (t)

– Eλ
c (t) = 0.5

(
Dλ

err (t)
)2

– Cλ
c = Cλ

c + 1
– end while
– Q(x(t), ui ) = Q(x(t), ui ) + `Dλ

err (t)

• Step 3 (Policy improvement) updating content policy while taking the ε -learning strategy into a consideration:

– ui = argmaxui ∈u(t )
(
Q(x(t), ui

)
• Step 4:

– if x(t) = goal then
– stop and do other episode
– else
– x(t) = x(t + 1)
– t = t + 1
– go back to step 2 and continue
– end if
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Figure 21. MSELearning curves for the SARSA(0), Q(λ = 0.95), ADHDPandNSHDP(λ =
0.95) methods for a 2-D maze navigation benchmark as shown in Fig. 20. The mean values
from 20 independent runs are taken for all methods. The shaded color represents the 20
runs, while the solid line represents the mean for all 20 runs. The NSHDP(0.95) method
learns the fastest and has the MSE compared to other methods.

150 episodes to the sub-optimal values (near zero). Those using the SARSA(0) and Q(λ)

methods merge after 180 episodes, and they need more episodes for learning by increasing

the exploration mode (decreasing the rate of the ε doping value). Another test is related with

accumulative rewards over episodes. The goal for this test is to discover which algorithm

can calculate the maximum accumulative rewards over each episode the fastest. Fig. 22

illustrates that the NSHDP(λ) has a large accumulative reward value during the exploration

episodes. Most likely, the exploration episodes are mostly done between episode 0 and

100, as shown in detail in Fig. 23. Fig. 23 shows the number of steps per episodes over

reducing the probability of exploration (by decreasing the ε rate value). Therefore, the

NSHDP(λ) and the ADHDP converge together to reach the optimal accumulative reward

value after episode 100 because of the exploitation navigation behavior, while the Q(λ) and

SARSA(0) methods need more exploration episodes to reach the optimal value.
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Figure 22. A summation of the accumulative reward for every single episode for the
SARSA(0), Q(λ = 0.95), ADHDP and NSHDP(λ = 0.95) methods, which are applied
in a 2-D maze navigation benchmark as shown in Fig. 20. The mean values from 20
independent runs are taken for all methods. The shaded color represents the 20 runs,
while the solid line represents the mean for all 20 runs. The NSHDP(0.95) method has the
largest accumulative reward compared to the other methods in the explorationmovingmode.
Because the ε−greedy deceasing rate learning will reset the accumulative reward value at
every episode, the accumulative reward values for the Q(0.95), ADHDP and NSHDP(0.95)
are convergence over episodes.

Figure 23. ε−greedy learning curves for the SARSA(0), Q(λ = 0.95), ADHDP and
NSHDP(λ = 0.95) methods for a 2-D maze navigation benchmark as shown in Fig. 20.
These curves represent the number of steps per episode, where the agent returns to the
starting point only when it reaches the target cube. The mean values from 20 independent
runs are taken for all methods. The shaded color represents the 20 runs, while the solid line
represents themean for all 20 runs. TheNSHDP(0.95) and theADHDPhave a nearly similar
number of steps over episodes, which are less than both the Q(0.95) and the SARSA(0).
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5. CONCLUSION

This paper presents a new ADP architecture (NSHDP(λ)) that consists of one-step

critic, n-steps critic, and actor networks. NSHDP(λ) presents the combination between

TD(0) and TD(λ) via a structure of NSHDP(λ). Good performance is demonstrated by

examining a simulation analysis on a nonlinear system and a inverted pendulum benchmark

problem in various circumstances, as well as solving a 2-D maze problem. Moreover, this

work proves all three networks’ stability by using a Lyapunov approach with reasonable

conditions. It also shows that the weights and network outputs for both critic networks, as

well as the actor network, are bounded. With these results, this paper has made steps to

improve ADP learning efficiency, robustness, and control performance.
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ABSTRACT

Adaptive dynamic programming (ADP) is the dominant approach to reinforcement learn-

ing because of its ability to respond to noise, uncertainty, time lags, disturbances, high

dimensionality and other challenges for control, optimization and decision problems. In

problems with complex dynamics and challenging state spaces, the dual heuristic program-

ming (DHP) algorithm has been shown theoretically and experimentally to perform well.

This was recently extended by an approach called value gradient learning (VGL). VGL was

inspired by a version of temporal difference (TD) learning that uses eligibility traces. The

eligibility traces create an exponential decay of older observations with a decay parameter

(λ). This approach is known as TD(λ) and its DHP extension is known as VGL(λ), where

VGL(0) is identical to DHP. VGL has presented convergence and other desirable properties,

but is primarily useful for batch learning. Online learning requires an eligibility-trace-

work-space matrix, the dimensions of which are x × w, where x is the dimensionality of

the input vector and w is the number of weights in the entire neural network. This is not

required for the batch learning version of VGL. Since online learning is desirable for many

applications, it is important to remove this computational and memory impediment. This

paper introduces a dual-critic version of VGL, called N-Step VGL (NSVGL) that does not
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need the eligibility-trace-work-space matrix, thereby allowing online learning. This paper

includes convergence proofs for NSVGL and case studies that demonstrate its superior

performance.

Keywords: Adaptive dynamic programming (ADP), value-gradient learning (VGL), online

reinforcement learning, eligibility traces, convergence analysis, temporal differences (TD).

1. INTRODUCTION

Adaptive dynamic programming (ADP) is a powerful tool that allows an agent to

learn by interacting with its environment to obtain an optimal control policy [1] - [6]. It

is a heuristic to solve the Hamilton-Jacobi-Bellman (HJB) equation instead of the Riccati

equation [7] - [10]. ADP allows agents to select an action to minimize their long-term cost:

J(xi) = 〈
∞∑

k=i

γk−iU
(
xk, u(xk)

)
〉, (1)

where 〈.〉 is the expectation symbol, J(xi) is a value function (cost-to-go value or long-

term cost) for a state vector (x ∈ Rm) at initial time i, γ is a constant discount factor, and

U(xk, u(xk)) is an instantaneous utility function at time step k for x after applying an action

vector u ∈ Rn. Heuristic dynamic programming (HDP), dual heuristic programming (DHP)

and globalized DHP (GDHP) are three fundamental categories for ADP [12] - [15]. These

use three approximation function networks, which are actor, critic and model networks that

provide decisionmaking, evaluation and prediction, respectively. Because amodel network,

which predicts the future system state, is included, these ADP categories are model-based

ADP [12] - [17]. If the action-dependent (AD) prefix is used (i.e., ADHDP for HDP and

ADDHP for DHP), the critic network has the state and the action inputs in these model-free

variants. In [18] - [22], model-free ADP designs were presented for online learning.
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There are many applications have used ADP. In [23], DHP controlled a turbo-

generator more efficiently than HDP. Collective robotic search problems can be solved

with improved performance by using DHP as in [24]. Lian and Xu [25] applied HDP to

allow a mobile robot to escape from sharp corners. Al-Dabooni and Wunsch [26] applied

model-free ADHDP in the Dyna algorithm to obtain an optimal path by using multi-robot

navigation in an unknown environment. Other theoretical and practical works in ADP are

presented in [27] - [31].

Stability of ADP in the general case is an open problem [32]. Stability of the one-

step model-free ADHDP learning approach is introduced by Liu et al. [33] and by Werbos

et al. [32] with critic/actor neural networks and by He et al. [34] with critic/reference

neural networks and a fuzzy logic controller. Al-Tamimi et al. in [35] demonstrate a

convergence analysis of value-iteration based on HDP for general discrete-time nonlinear

systems. Many other publications on the theoretical analysis and proofs for ADP are shown

in [36] - [40]. The GDHP convergence analysis proof and comparison with the HDP and

the DHP approaches is presented by Liu [41], [42].

Sutton et al. in [43] - [46] show the efficient performance of temporal difference

(TD) learning with eligibility trace long-predation parameter denoted by λ. Inspired by

[43], Fairbank and Alonso [47], [48] introduced a new ADP algorithm to extend DHP by

including λ. They called it value-gradient learning. The value-gradient learning approach

was used in [49] to track a reference trajectory under uncertainties by computing the

optimal left and right torques for a nonholonomic mobile robot. As reviewed in [12], the

ADP technique is used to train an actor network to give optimal actions based onminimizing

a value function that is produced from a critic network. Both networks are approximated

by using a multilayer perceptron.

In this paper, we present a novel ADP structure, which is called online n-step value-

gradient learning with a eligibility trace parameter (NSVGL(λ)). This design uses two

critic networks. The first critic network is called a one-step critic network, which is learned
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based on the gradient of TD. The second critic network is called an n-step critic network,

which is learned based on the gradient of TD(λ). The one-step critic network provides a

gradient of the one-step value function with respect to system states, while the n-step critic

network provides a gradient of the n-step value function with respect to system states. The

NSVGL(λ) uses one actor network that learns from both critic networks. In this work, we

also provide a theoretical analysis of convergence for the NSVGL(λ). The fundamental

contributions of this paper are summarized as follows:

1. The theoretical foundation analysis for NSVGL(λ) architecture is presented designing

how the agent receives better information about the control action than traditional

DHP. Memory efficiency is provided by NSVGL(λ) via online learning in contest

with online VGL(λ) that uses a matrix for eligibility trace parameters to store every

signal state trajectory.

2. A theoretical convergence analysis is provided for the NSVGL(λ) structure. Gradients

of the one-step and n-step value functions are learned. We demonstrate that both

gradients are monotonically nondecreasing and converges to their optimal values.

3. These advantages of NSVGL(λ) are verified by simulation in two case studies.

4. Pseudocode of NSVGL(λ) is provided in this paper.

The schematic structure for NSVGL(λ) is presented in Section 2. Section 3 provides a

convergence stability analysis for the NSVGL(λ) design. The neural network architecture

design used in NSVGL(λ) is presented in Section 4. The simulation results and the

conclusion are presented in Section 6 and Section 7, respectively.
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Figure 1. Schematic diagram for the adaptation of a novel online n-step value gradient
learning (NSVGL(λ)). Two critic networks and one actor network are used in NSVGL(λ).
A combination of two critic networks is presented to speed up the tuning for online learn-
ing without needing the initial backup value function and eligibility trace parameters.
The weights for the one-step critic network (Ĝ0 (xk, ω̂

0
c
)
) and the n-step critic network

(Ĝλ
(
xk, ω̂

λ
c
)
) are updated according to gradient of TD(0) error (blue dashed line) and gradi-

ent of TD(λ) error (green dashed line), respectively. The actor network (Â
(
xk, ω̂a

)
) is tuned

by two paths (backpropagating errors): one through Ĝ0 (xk, ω̂
0
c
)
path (e0

a) and the other
through

(
Ĝλ

(
xk, ω̂

λ
c
)
path (eλa). This strategy can correlate and combine the information

from the two critic networks. These two paths are filtered via the same values of λ, and
they are added together to produce a total backpropagating actor error (red dashed line).
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2. THE ONLINE NSVGL(λ) STRUCTURE DESIGN

Fig. 1 is shown a main schematic diagram for the online NSVGL(λ) structure. The

online NSVGL(λ) approach has five fundamental advantages described in subsections II.

A-E:

2.1. Improved Leaning of Temporal Sequences. NSVGL(λ) fills the gaps be-

tween a sequence of predicted events and tuning data via TD(λ) learning. TD(λ) is a

fundamental contribution in reinforcement learning [44] - [46]. ADP is used to solve the

recursive form of the Bellman equation [11], [50]:

J∗(xk) = min
u(xk )
{Uk+1 + γJ∗(xk+1)}, (2)

where J∗ denotes the optimal value fuction, and the instantaneous cost (U(xk, u(xk)) ≡ Uk)

is bounded. As in [52], the Bellman equations for one-step (total discounted future reward

depending on one-step TD error) and for two-steps are given as

R(1)k = J(xk) = Uk + γJ(xk+1), (3)

and

R(2)k = Uk + γUk+1 + γ
2J(xk+1), (4)

while for n-steps, R(n)k is given as follows:

R(n)k =Uk + γUk+1 + . . . + γ
n−1Uk+n−1 + γ

nJ(xk+n) =
n∑

i=k

γi−kUi, (5)

where R(i)k denotes the actual return for the value function from k to i. An average of

an n-step-return is a technique for accelerating the optimization. For instance, a 4-step

average can be done via half of a two-step-return and a half of a four-step-return such that

RAv(2,4)
k = ω2R(2)k + ω4R(4)k , where ω2 = 0.5 and ω4 = 0.5. The proportional weights (ωi),
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i = 1, 2 . . ., are positive and sum to 1, which is controlled by λ, where λ represents the

proportional weight for the actual return value function. For instance, ω1 = (1 − λ) for a

one-step average return (λ = 0), which is equivalent to R(1)k ; for a two-steps average return,

RAv(1,2)
k = ω1R(1)k +ω2R(2)k , where ω1 = (1−λ) and ω2 = λ; for a three-steps average return,

RAv(1,2,3)
k = ω1R(1)k +ω2R(2)k +ω3R(3)k , where ω1 = (1−λ), ω2 = (1−λ)λ, and ω3 = λ

2. This

procedure continues until n-steps average return. [55] shows a stability proof for selecting λ,

which should be 0 < λ < 1 (in contrast to previous literature, which are included bounded

from 0 to 1). The λ-return is another name for the average of the n-step-return, which is

defined in general as

Rλk = (1 − λ)
∞∑

n=1
λn−1R(n)k . (6)

By substituting (5) into (5), we obtain:

Rλk = (1 − λ)
( ∞∑

n=1
λn−1

[ n−1∑
i=0

γiUk+i

]
+

∞∑
n=1

λn−1γnJ(xk+n)
)
. (7)

Expanding and rearranging (6) yields:

Rλk =
∞∑

n=0
γnUk+n

[ (
λn + λn+1 + . . . + λ∞

)
−

(
λn+1 + λn+2 + . . . + λ∞

) ]
+ (1 − λ)

∞∑
n=0[

λnγn+1J(xk+n+1)
]
,

(8)

with v̄(∞) = U(∞) (the final target-value at the infinite horizon terminal state). Then, the

target value is given as follows:

v̄(xk) = Uk + γλv̄(xk+1) + γ(1 − λ)J(xk+1), (9)
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(derived in [56]), where v̄(xk) in (8) is identical to Rλk . The Bellman equation for one-step

TD learning (TD(0)) with J = v̂0 is given as

v̂0(xk) =Uk + γv̂
0(xk+1), (10)

and for n-step TD learning5 (TD(λ)) with v̄ = v̂λ and J = v̂0, it is given as

v̂λ(xk) =Uk + γλv̂
λ(xk+1) + γ(1 − λ)v̂0(xt+1), (11)

where v̂0(xk) and v̂λ(xk) are function approximators for the one-step value function and

n-step value function, respectively.

2.2. Improved Exploration\Exploitation Trade-off. Fairbank and Alonso [47]

illustrate that the value function has to be learned over all immediately neighboring tra-

jectories in order to reach a locally-extremity optimal trajectory. Therefore, a stochastic

exploration (a randomization of trajectory starting points, or policy) should be supple-

mented with any value function approaches. A gradient of a value function handles this

requirement. In VGL, the Bellman equation is solved via a greedy policy, with few tra-

jectories (even a single one), instead of learning in all of the state space. Therefore, the

value function approaches have a high probability to fail without exploration, while the

gradient of a value function has perfect learning without any exploration, as well as fast

stable learning. Therefore, the second advantage of NSVGL(λ) is that it uses the gradient

of both the one-step and n-step value functions. VGL has a critic network that estimates the

gradients of the one-step value function (J in (3)) with respect to the vector of the state (xk).

VGL(λ) also has one critic network that estimates the derivatives of the n-step target-value

function (v̄(xk) in (8)) with respect to the state vector. In NSVGL(λ), we combine two critic

networks (one-step and n-step critics). The gradient of the Bellman equation with respect

5We henceforth denote the average of the n-step by only n-step for simplicity
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to the system states for the one-step critic is:

∂v̂0(xk)
∂xk

=
∂U(xk, µ̂(xk)) + γv̂0( f (xk, µ̂(xk)), ω̂0

c)
∂xk

, (12)

where µ̂(xk) is a control action vector, which is provided from the approximator actor

network Â(xk, ω̂a)with parameter vector ω̂a, and the general discrete-time nonlinear system

model is represented as

xk+1 = f (xk, µ̂(xk)). (13)

For shorthand notation, we denoteU(xk, µ̂(xk)) ≡ Uk , Â(xk, ω̂a) ≡ Â(xk) and f (xk, µ̂(xk)) ≡

fk . By applying the chain rules in Equation (12), ∂v̂0(xk)/∂xk is given as

∂v̂0(xk)
∂xk

=
(∂Uk

∂xk
+

∂Uk

∂ µ̂(xk)
∂ Â(xk)
∂xk

)
+ γ

∂v̂0(xt+1)
∂xt+1

( ∂ fk
∂xk
+

∂ fk
∂ µ̂(xk)

∂ Â(xk)
∂xk

)
. (14)

The one-step critic network Ĝ0(xk, ω̂
0
c) is a function approximator with parameter vector

ω̂0
c . Ĝ0(xk, ω̂

0
c) function network provides the estimated gradient of a one-step value

approximator function with respect to the system state vector (∂v̂0(xk)/∂xk). There are two

different ways to implement the critic network for DHP [49]: a scalar critic method and

a vector critic method. The scalar critic method makes the output critic network equal to

∂v̂0(xk)/∂xk , while the vector critic method makes ∂v̂0(xk)/∂xk equal to Ĝ0(xk, ω̂
0
c) and

provides one-step gradient value function (ĝ0(xk)). We use the vector criticmethod because

it is a smooth and stable vector output [47], [48], [51]. In other words, the critic network

in the VGL scheme estimates the partial derivatives of the value function with respect to

the system’s state vector. In order to learn Ĝ0(xk, ω̂
0
c), the left-hand side of (14) has to be a

target value g0(xk) (a one-step target value), which is given as

g0(xk) =
(∂DU
∂DX

)
k
+ γĝ0(xk+1)

( ∂DF
∂DX

)
k
, (15)
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where (∂DU
∂DX

)
k
=
∂Uk

∂xk
+

∂Uk

∂ µ̂(xk)
∂ Â(xk)
∂xk

, (16)

and ( ∂DF
∂DX

)
k
=
∂ fk
∂xk
+

∂ fk
∂ µ̂(xk)

∂ Â(xk)
∂xk

. (17)

During each iteration, a one-step critic error (e0
c) should be minimized, where e0

c is given as

e0
c(xk) =g0(xk) − ĝ0(xk), (18)

where ĝ0(xk) is an estimated output vector from Ĝ0(xk, ω̂
0
c) network. The gradient of the

Bellman equation with respect to system states for the n-step critic network is

∂v̂λ(xk)
∂xk

=
∂

∂xk

(
Uk + γ

(
λv̂λ( fk+1) + (1 − λ)v̂0( fk+1)

))
. (19)

Applying the chain rules to (9) yields

∂v̂λ(xk)
∂xk

=
(∂Uk

∂xk
+

∂Uk

∂ µ̂(xk)
∂ Â(xk)
∂xk

)
+ γ

(
λ
∂v̂λ(xk+1)
∂xk+1

( ∂ fk
∂xk
+

∂ fk
∂ µ̂(xk)

∂ Â(xk)
∂xk

)
+

(1 − λ)∂v̂
0(xk+1)
∂xk+1

( ∂ fk
∂xk
+

∂ fk
∂ µ̂(xk)

∂ Â(xk)
∂xk

)
.

(20)

The n-step critic network Ĝλ(xk, ω̂
λ
c ) is a function approximator with parameter vector

ω̂λc . The Ĝλ(xk, ω̂
λ
c ) function network provides the estimated gradient of an n-step value

approximator function with respect to system state vector (∂v̂λ(xk)/∂xk). During training,

the n-step critic error (eλc ) should be minimized, where eλc is given as

eλc (xk) =gλ(xk) − ĝλ(xk), (21)
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where ĝλ(xk) is an estimated output vector from Ĝλ(xk, ω̂
0
c) network, and gλ(xk) is the

n-step target value, which is given (according to the vector critic method):

gλ(xk) =
(∂DU
∂DX

)
k
+ γ

(
λĝλ(xk+1) + (1 − λ)ĝ0(xk+1)

) ( ∂DF
∂DX

)
k
. (22)

2.3. Memory Efficiency. A direct implementation without the requirement to store

the trajectory is the third advantage of NSVGL(λ). In other words, all the approximator

parameters for the one-step and n-step critic networks, as well as the actor network update

in a single forward pass of the trajectory. Therefore, higher memory efficiency is achieved

than the batch-mode method implementation. Furthermore, NSVGL(λ) has a forward view

property. The forward view is defined by Sutton [43], [52], which is a knowledge of far

future rewards for each state. Eligibility trace variables are suggested by Sutton [53] by

adding an extra memory variable associated with each state, tuning in backward iteration;

therefore, it is known as backward view. Many strategies shown in the literature use eligi-

bility trace method. For instance, incremental method provides an incremental mechanism

for approximating the forward view [43]. A replacing traces method that provides a solution

to the accumulating traces by truncating the valve of eligibility trace variably. [53]. Doya

[54] derives continuous time domain eligibility traces. Fairbank and Alonso [47] show that

the eligibility trace method has high computational complexity in online implementation,

which requires and consumes resources to carry out matrix-matrix multiplications over the

entire time for the whole trajectory. NSVGL(λ) has no extra required variables for storing

eligibility traces for each state. NSVGL(λ) is used only the bootstrapping eligibility trace

parameters (λ and γ) to learn the Ĝλ(xk, ω̂
λ
c ) network directly via implementation of (22)

through minimizing a gradient-TD(λ) error, which will be illustrated in Section 4.



220

2.4. Improved Actor Network Training. A procedure that is used in NSVGL(λ)

to learn the actor network gives a fourth advantage. The actor network (controller) is used

to make a system learn to behave optimally. The optimal decision is obtained from a com-

bination between a quantity of current information (the details recent data) and a quality

of near history [60], [61]. The Ĝλ(xk, ω̂
λ
c ) network has the bootstrapping eligibility traces

parameters λ and γ that have the ability to determine a depth and a width of information. For

instance, Equation (4) has two future steps that are determined by the λ value via λ-return,

and γ controls the amount of summation U value for each step. The Ĝ0(xk, ω̂
0
c) network

provides a gradient of value function that concentrates on recent events. Therefore, a com-

bination between Ĝ0(xk, ω̂
0
c) and Ĝλ(xk, ω̂

λ
c ) provide an optimal decision. The NSVGL(λ)

design achieves this combination via learning the actor network. The actor network is tuned

by minimizing an actor error (ea(xk)) by summation of two backpropagating error paths:

one path through Ĝ0(xk, ω̂
0
c) (e0

a(xk)) and the other path through Ĝλ(xk, ω̂
λ
c ) (eλa(xk)). These

two paths are filtered via a similar value of λ. A final actor error ea(xk) is calculated by

combination between one- and n-step actor errors as follows:

ea(xk) =λeλa(xk) + (1 − λ)e0
a(xk), (23)

where

e0
a(xk) =

∂v̂0
c (xk, ω̂

0
c)

∂ µ̂(xk)
=

∂Uk

∂ µ̂(xk)
+ γĝ0(xk+1)

∂ fk
∂ µ̂(xk)

, (24)

and

eλa(xk) =
∂v̂λc (xk, ω̂

λ
c )

∂(xk)
=

∂Uk

∂ µ̂(xk)
+ γ

(
λĝλ(xk+1) + (1 − λ)ĝ0(xk+1)

) ∂ fk
∂ µ̂(xk)

. (25)

The combination of the critic errors is also found in GDHP [41], [42] to minimize an actor

error, which is used to tune a critic network by integrating a critic error with respect to the

value function and its derivative.
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GDHP uses a merging parameter to adjust how HDP and DHP combine in GDHP,

while our approach merges VGL (or DHP) and VGL(λ) (or DHP(λ)) to tune an actor net-

work. Amerging parameter, λ, is used to adjust flow information betweenVGL andVGL(λ).

2.5. Faster Convergence Via Two-Critic Iteration. The fifth advantage is that

NSVGL(λ) cooperates iterative learning between Ĝ0(xk, ω̂
0
c) and Ĝλ(xk, ω̂

λ
c ) that can ac-

celerate learning rather than working individually. NSVGL(λ) has an efficient convergence

process to obtain the optimal cost function quite rapidly. The following section proves that

NSVGL(λ) converges both the cost function and control law sequences to their optimal

values.

3. CONVERGENCE PROOF

In this section, we present convergence proofs for the online value-iteration-based

NSVGL(λ) to solve the value function and hence the optimal control policy for a nonlinear

discrete-time system.

3.1. One-step and n-stepDT-HJBEquations. Consider an affinenonlinear discrete-

time dynamical system described by

xk+1 = f (xk) + g(xk)u(xk), (26)

where k is a discrete time index, x ∈ Rm is the state vector, u(xk) ∈ Rn is the control vector,

and both f (xk) and g(xk) are differential functions with an equilibrium state at x = 0 (e.g.,

f (0) = g(0) = 0). Assume that (26) is Lipschitz continuous and stable on a compact set

Ω0 ∈ Rm.

Definition 1 cf [35] and [42] (stabilization system): A nonlinear system is stable on

a compact setΩ0 ∈ Rm, if a control input u(xk) ∈ Rn exists for all initial conditions x0 ∈ Rm
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such that the state xk → 0 as k → 0. The infinite-horizon cost function is given as

J(xk) =
∞∑

i=k

γi−kU(xi, ui), (27)

where the utility function (U) is chosen as the quadratic form, U(xi, ui) = xT
i Qxi + uT

i Rui,

where Q = QT > 0 ∈ Rm×m and R = RT > 0 ∈ Rn×n. Then, the objective function

to minimize (39) is to find the admissible control action, which is given in the following

definition.

Definition 2: If u(xk) is continuous on a compact set Ωu ∈ Rn with u(0) = 0, and

J(xk) is finite for ∀x0 ∈ Ω0, then u(xk) is defined to be admissible with respect to (39). The

definition of the infinite horizon optimal cost function is

J∗(xk) = inf
u∈Λ

{
xT

k Qxk + uT
k Ruk + γJ∗(xk+1)

}
, (28)

where Λ is a set of all infinite horizon admissible control sequences of xk . According to

Bellman’s optimality principle, the optimal cost function in finite horizon that satisfies the

discrete time HJB (DT-HJP) is

J∗(xk) = min
uk

{
xT

k Qxk + uT
k Ruk + γJ∗(xk+1)

}
. (29)

For one-step TD learning (TD(0) learning method) with J = v0, (39) is written as

v0(xk) = xT
k Qxk + uT

k Ruk + γv
0(xk+1). (30)

Then, the optimal value function for one-step TD learning is

v0∗(xk) = min
uk

{
xT

k Qxk + uT
k Ruk + γv

0∗(xk+1)
}
. (31)
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The gradient of the right-hand side of (31) with represent to uk gives the optimal control

u∗, which satisfies the first-order necessary condition

∂
(
xT

k Qxk + uT
k Ruk

)
∂uk

+ γ
(∂xk+1
∂uk

)T ∂
(
v0∗(xk+1)

)
∂xk+1

= 0. (32)

Thus,

u∗(xk) = −
γ

2
R−1gT (xk)

∂v0∗(xk+1)
∂xk+1

. (33)

For the n-step TD learning (TD(λ) learning method) with v̄ = vλ (v̄ in (8)) and J = v0, (39)

can be written as

vλ(xk) = xT
k Qxk + uT

k Ruk + γ
(
λvλ(xk+1) + (1 − λ)v0(xk+1)

)
. (34)

The optimal value function for the n-step TD learning is

vλ
∗(xk) = min

uk

{
xT

k Qxk + uT
k Ruk + γ

(
λvλ

∗(xk+1) + (1 − λ)v0∗(xk+1)
)}
. (35)

Because vλ∗(xk), v0∗(xk) and J∗(xk) represent the optimal value functions, Equations (31)

and (35) are equivalent. The gradient of the right-hand side of (35) with represent to uk

gives the optimal control u∗ as

0 =
∂

∂uk

(
xT

k Qxk + uT
k Ruk

)
+ γ

(∂xk+1
∂uk

)T ∂

∂xk+1

(
λvλ

∗(xk+1) + (1 − λ)v0∗(xk+1)
)
. (36)

Therefore, u∗(xk) for the n-step, which is equivalent to (33) because of vλ∗(xk) = v0∗(xk) =

J∗(xk) is given as

u∗(xk) = −
γ

2
R−1gT (xk)

(
λ
∂vλ

∗(xk+1)
∂xk+1

+ (1 − λ)∂v
0∗(xk+1)
∂xk+1

)
. (37)
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The optimal control policy with the n-step method is used to prove convergence of the

NSVGL(λ) iteration algorithm.

3.2. Derivation of Iteration NSVGL(λ) Algorithm. The initial values of one-step

and n-step cost functions are v0
0(.) = 0 and vλ0 (.) = 0, respectively. These solve the initial

policy µ0 by

µ0(xk) =arg min
uk

{
xT

k Qxk + uT
k Ruk + γ

(
λvλ0 (xk+1) + (1 − λ)v0

0(xk+1)
)}
. (38)

Then, the iteration on the one-step value function is

v0
1(xk) =min

uk

{
xT

k Qxk + uT
k Ruk + γv

0
0(xk+1)

}
,

=xT
k Qxk + µ

T
0 (xk)Rµ0(xk) + γv0

0( f (xk) + g(xk)µ0(xk)),
(39)

and the iteration on the n-step value function is

vλ1 (xk) =min
uk

{
xT

k Qxk + uT
k Ruk + γ

(
λvλ0 (xk+1) + (1 − λ)v0

0(xk+1)
)}
,

=xT
k Qxk + µ0(xk)T Rµ0(xk) + γ

(
λvλ0 ( f (xk) + g(xk)µ0(xk))+

(1 − λ)v0
0( f (xk) + g(xk)µ0(xk))

)
.

(40)

For i = 1, 2, . . ., the action policy, µi, in the value iteration algorithm uses a greedy update

as follows:

µi(xk) =arg min
uk

{
xT

k Qxk + uT
k Ruk + γ

(
λvλi (xk+1) + (1 − λ)v0

i (xk+1)
)}
, (41)

and the one-step value function, which is

v0
i+1(xk) =min

uk

{
xT

k Qxk + uT
k Ruk + γv

0
i (xk+1)

}
,

=xT
k Qxk + µ

T
i (xk)Rµi(xk) + γv0

i ( f (xk) + g(xk)µi(xk)),
(42)
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as well as the n-step value function, which is

vλi+1(xk) =min
uk

{
xT

k Qxk + uT
k Ruk + γ

(
λvλi (xk+1) + (1 − λ)v0

i (xk+1)
)}
,

=xT
k Qxk + µ

T
i (xk)Rµi(xk) + γ

(
λvλi ( f (xk) + g(xk)µi(xk))+

(1 − λ)v0
i ( f (xk) + g(xk)µi(xk))

)
,

(43)

where i is the iteration index of the action policy as well as the value functions (one-step and

n-step value functions), while k is the time index of state and control for system trajectories.

3.3. Convergence of Iterative NSVGL(λ) Algorithm. The convergence proof de-

pends on the iterations of (42) to the optimal value function v0
i → J∗ and (43) to the optimal

value function vλi → J∗ as i → ∞. We prove that both vλi and v0
i reach the optimal value

J∗. Furthermore, we present the convergence of the iteration process of (41) to the optimal

control value (i.e., µi → u∗ as i →∞).

Lemma 1: Let υi be any arbitrary sequence of control policies, and µi be the control policy

sequence described in (41). Let Υ0
i and Υλi be

Υ
0
i+1(xk) =xT

k Qxk + υ
T
i (xk)Rυi(xk) + γΥ0

i ( f (xk) + g(xk)υi(xk)), (44)

and
Υ
λ
i+1(xk) =xT

k Qxk + υ
T
i (xk)Rυi(xk) + γ

(
λvλi ( f (xk) + g(xk)υi(xk))+

(1 − λ)Υ0
i ( f (xk) + g(xk)υi(xk))

)
,

(45)

respectively. v0
i and vλi are defined as in (42) and (43), respectively. If v0

0 = vλ0 = Υ
0
0 =

Υλ0 = 0, then v0
i+1(xk) ≤ Υ0

i+1(xk) and vλi+1(xk) ≤ Υλi+1(xk), ∀i.

Proof: Because µi(xk) minimizes the right-hand side of (42) with respect to the control µi,

and because v0
0 = Υ

0
0 = 0, then by induction it follows that v0

i+1(xk) ≤ Υ0
i+1(xk),∀i.

Because µi(xk)minimizes the right-hand side of (43) with respect to the control µi, and be-

cause vλ0 = Υ
λ
0 = 0, then by induction it follows that vλi+1(xk) ≤ Υλi+1(xk),∀i. �
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Lemma 2: Let the one-step value function v0
i be defined as in (42). If the system is

controllable, then there is an upper bound Y1 such that 0 ≤ v0
i ≤ Y1, ∀i. Similarly, set the

n-step value function vλi be defined as in (43). If the system is controllable, then there is an

upper bound Y2 such that 0 ≤ vλi ≤ Y2, ∀i

Proof: First, similar to [42], we prove the one-step value function v0
i , which is defined as in

(42), has an upper bound Y1 such that 0 ≤ v0
i ≤ Y1, ∀i as follows: Let ζi(xk) be a sequence

of admissible control policies, and v0
0(.) = Λ

0
0(.) = 0, where v0

i is defined and updated as in

(42) and Λ0
i is defined and updated by

Λ
0
i+1(xk) =xT

k Qxk + ζ
T
i (xk)Rζi(xk) + γΛ0

i (xk+1), (46)

where xk+1 = f (xk) + g(xk)ζi(xk). Because the DT-HJB equation develops backward

(i = i − 1) for the next time index (k = k + 1), then

Λ
0
i (xk+1) =xT

k+1Qxk+1 + ζ
T
i−1(xk+1)Rζi−1(xk+1) + γΛ0

i−1(xk+2), (47)

where xk+2 = f (xk+1) + g(xk+1)ζi−1(xk+1).

Equation (46) expands with U(xk, ζi(xk)) = xT
k Qxk + ζ

T
i (xk)Rζi(xk) to be

Λ
0
i+1(xk) =U(xk, ζi(xk)) + γΛ0

i (xk+1)

=U(xk, ζi(xk)) + γ
(
U(xk+1, ζi−1(xk+1)) + γΛ0

i−1(xk+2)
)

=U(xk, ζi(xk)) + γ
(
U(xk+1, ζi−1(xk+1)) + γ

(
U(xk+2,

ζi−2(xk+2)) + γΛ0
i−2(xk+3)

))
...

=U(xk, ζi(xk)) + γU(xk+1, ζi−1(xk+1)) + γ2U(xk+2,

ζi−2(xk+2)) + . . . + γiU(xk+i, ζ0(xk+i)) + γi+1
Λ

0
0(xk+i+1),

(48)
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where Λ0
0(xk+i+1) = 0

(
because Λ0

0(.) = 0
)
. Therefore

Λ
0
i+1(xk) =

i∑
j=0

γ jU(xk+ j, ζi− j(xk+ j))

=

i∑
j=0

γ j
(
xT

k+ jQxk+ j + ζ
T
i− j(xk+ j)Rζi− j(xk+ j)

)
.

(49)

Taking limi→∞ of (49), we obtain

Λ
0
i+1(xk) ≤ lim

i→∞

i∑
j=0

γ j
(
xT

k+ jQxk+ j + ζ
T
i− j(xk+ j)Rζi− j(xk+ j)

)
. (50)

Because Definition 1 shows that ζi(xk) is an admissible control policies and xk → 0 as

k →∞, there exists an upper bound Y1 such that

∀i : Λ0
i+1(xk) ≤ lim

i→∞

i∑
j=0

γ jU(xk+ j, ζi− j(xk+ j)) = Y1. (51)

Therefore, by using Lemma 1 with µi(xk) = ζi(xk) and Υ0
i+1(xk) = Λ0

i+1(xk), we obtain

0 ≤ v0
i+1(xk) ≤ Λ0

i+1(xk) ≤ Y1, ∀i. Second, we will prove the n-step value function vλi ,

which is defined as in (43), has an upper bound Y such that 0 ≤ vλi ≤ Y2, ∀i as follows: Let

ζi(xk) be a sequence of admissible control policy, and v0
0(.) = vλ0 (.) = Λ

0
0(.) = Λ

λ
0(.) = 0,

where v0
i and vλi are defined and updated as in (42) and (43), respectively, while Λ0

i is

defined and updated as in (46), and Λλi is defined and updated by

Λ
λ
i+1(xk) =xT

k Qxk + ζ
T
i (xk)Rζi(xk) + γ

(
λΛλi (xk+1) + (1 − λ)Λ0

i (xk+1)
)
, (52)

where xk+1 = f (xk) + g(xk)ζi(xk). Because the DT-HJB equation develops backward for

the next time index and U(xk, ζi(xk)) = xT
k Qxk + ζ

T
i (xk)Rζi(xk), then equation (52) expands

to be
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Λ
λ
i+1(xk) =U(xk, ζi(xk)) + γ

[
λΛλi (xk+1) + (1 − λ)Λ0

i (xk+1)
]
= U(xk, ζi(xk))+

γ

[
λ

(
U(xk+1, ζi−1(xk+1)) + γ

[
λΛλi−1(xk+2) + (1 − λ)Λ0

i−1(xk+2)
]
+

(1 − λ)Λ0
i (xk+1)

)]
= U(xk, ζi(xk)) + γ

[
λ

(
U(xk+1, ζi−1(xk+1))+

γ
[ (

U(xk+2, ζi−2(xk+2)) + γ
[
λΛλi−2(xk+3) + (1 − λ)Λ0

i−2(xk+3)
] )
+

(1 − λ)Λ0
i−1(xk+2)

]
+ (1 − λ)Λ0

i (xk+1)
)]
,

=U(xk, ζi(xk)) + (γλ)U(xk+1, ζi−1(xk+1)) + (γλ)2U(xk+2, ζi−2(xk+2))+

(γλ)3Λλi−2(xk+3) + (γλ)2γ(1 − λ)Λ0
i−2(xk+3) + (γλ)γ(1 − λ)

Λ
0
i−1(xk+2) + γ(1 − λ)Λ0

i (xk+1),
...

=U(xk, ζi(xk)) + (γλ)U(xk+1, ζi−1(xk+1)) + (γλ)2U(xk+2, ζi−2(xk+2))+

. . . + (γλ)iU(xk+i, ζ0(xk+i)) + (γλ)i+1
Λ
λ
0(xk+i+1) + (γλ)iγ(1 − λ)

Λ
0
0(xk+i+1) + (γλ)i−1γ(1 − λ)Λ0

1(xk+i) + . . . + (γλ)γ(1 − λ)Λ0
i−1(xk+2)

+ γ(1 − λ)Λ0
i (xk+1),

(53)

where Λλ0(xk+i+1) = 0 ,
(
because Λλ0(.) = 0

)
, and Λ0

0(xk+i+1) = 0,
(
because Λ0

0(.) = 0
)
.

Therefore,

Λ
λ
i+1(xk) =

i∑
j=0

[
(γλ) jU(xk+ j, ζi− j(xk+ j))

]
+ γ(1 − λ)

i−1∑
j=0

[
(γλ) j

Λ
0
i− j(xk+ j+1)

]
.

(54)
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According to (49), Equation (54) is rewritten as

Λ
λ
i+1(xk) =

i∑
j=0

[
(γλ) jU(xk+ j, ζi− j(xk+ j))

]
+ γ(1 − λ)

i−1∑
j=0

[
(γλ) j

i− j−1∑
l=0

[
(γlU(

xk+l, ζi− j−l−1(xk+l))
] ]
.

(55)

Because Definition 1 demonstrates that ζi(xk) is an admissible control policy and xk → 0

as k →∞, there exists an upper bound Y2 such that

∀i : Λλi+1(xk) ≤ lim
i→∞

(
i∑

j=0

[
(γλ) j

(
xT

k+ jQxk+ j + ζ
T
i− j(xk+ j)Rζi− j(xk+ j)

)]
+

γ(1 − λ)
i−1∑
j=0

[
(γλ) j

i− j−1∑
l=0

[
γl

(
xT

k+lQxk+l + ζ
T
i− j−l−1(xk+l)

Rζi− j−l−1(xk+l)
)] ])

= Y2.

(56)

Therefore, by using Lemma 1 with µi(xk) = ζi(xk) and Υλi+1(xk) = Λλi+1(xk), we obtain 0 ≤

vλi+1(xk) ≤ Λλi+1(xk) ≤ Y2, ∀i. �

Lemma 3: If Lemma 2 holds, then both upper bounds (Y1 and Y2) are equal, such

that limi→∞Λ0
i (xk) = limi→∞Λλi (xk) = Y1 = Y2 = Y .

Proof: LetU(.) = 1 for∀ j (or, letU(.) be any constant value for the entire trajectory), then the

difference between (51) and (56) is zero, such that % = limi→∞Λλi+1(xk)−limi→∞Λ0
i+1(xk) =

0, which is illustrated as follows:

% = lim
i→∞

(
i∑

j=0

[
(γλ) j

]
+ γ(1 − λ)

i−1∑
j=0

[
(γλ) j

i− j−1∑
l=0

[
γl

] ])
− lim

i→∞

(
i∑

j=0

[
(γ) j

])
,

= lim
i→∞

(
1 − (γλ)i+1

1 − γλ +
(1 − λ)γ

1 − γ

[
1 − (γλ)i
1 − γλ −

(1 − λ)γi

1 − λ

])
− lim

i→∞

(
1 − γi+1

1 − γ

)
=

1 − γλ
1 − γ − γλ + γ2λ

− 1
1 − γ = 0.

(57)
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Theorem 1: Consider sequences for the action policy µi, the one-step value function v0
i

and the n-step value function vλi defined as in (41), (42) and (43), respectively. Then, v0
i

and vλi are non-decreasing sequences such that v0
i ≤ v0

i+1 and vλi ≤ vλi+1, ∀i.

Proof: First, we will prove v0
i ≤ v0

i+1. Define µi and v0
i from (41) and (42), respectively. A

new one-step value function Γ0
i is defined by

Γ
0
i+1(xk) =xT

k Qxk + µ
T
i (xk)Rµi(xk) + γΓ0

i (xk+1), (58)

where xk+1 = f (xk)+ g(xk)µi(xk) and Γ0
0 = v0

0 = 0. Mathematical induction illustrates that

Γ0
i ≤ v0

i+1 as follows: For i = 0, consider

v0
1(xk) =xT

k Qxk + µ
T
0 (xk)Rµ0(xk) + γv0

0(xk+1), (59)

with v0
0(.) = Γ

0
0(.) = 0. Then,

v0
1(xk) − Γ0

0(xk) = xT
k Qxk + µ

T
0 (xk)Rµ0(xk) ≥ 0. (60)

Thus, Γ0
0(xk) ≤ v0

1(xk). A similar procedure is continuous, and assuming it reaches and

holds for i − 1, then Γ0
i−1(xk) ≤ v0

i (xk). For i, considering that

v0
i+1(xk) =xT

k Qxk + µ
T
i (xk)Rµi(xk) + γv0

i (xk+1), (61)

and

Γ
0
i (xk) =xT

k Qxk + µ
T
i (xk)Rµi(xk) + γΓ0

i−1(xk+1), (62)

we obtain

v0
i+1(xk) − Γ0

i (xk) = γ
(
v0

i (xk+1) − Γ0
i−1(xk+1)

)
≥ 0. (63)
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Then, Γ0
i (xk) ≤ v0

i+1(xk). Because of Γ0
i (xk) ≥ v0

i (xk) according to Lemma 1 and Γ0
i (xk) ≤

v0
i+1(xk), we obtain v0

i (xk) ≤ v0
i+1(xk).

Second, we will prove vλi ≤ vλi+1. Define µi and vλi from (41) and (43), respectively. A new

n-step value function Γλi is defined by

Γ
λ
i+1(xk) =xT

k Qxk + µ
T
i (xk)Rµi(xk) + γ

(
λΓλi (xk+1) + (1 − λ)Γ0

i (xk+1)
)
, (64)

where xk+1 = f (xk) + g(xk)µi(xk). Mathematical induction illustrates that Γλi ≤ vλi+1 as

follows: For i = 0,

vλ1 (xk) =xT
k Qxk + µ

T
0 (xk)Rµ0(xk) + γ

(
λvλ0 (xk+1) + (1 − λ)v0

0(xk+1)
)
, (65)

with Γ0
0 = v0

0 = Γ
λ
0 = vλ0 = 0. Then,

vλ1 (xk) − Γλ0 (xk) = xT
k Qxk + µ

T
0 (xk)Rµ0(xk) ≥ 0. (66)

Thus, Γλ0 (xk) ≤ vλ1 (xk). A similar procedure is continuous, and assuming it reaches and

holds for i − 1, then Γλi−1(xk) ≤ vλi (xk). We note that Γ0
i−1(xk) ≤ v0

i (xk). Therefore, for i,

after considering that

vλi+1(xk) =xT
k Qxk + µ

T
i (xk)Rµi(xk) + γ

(
λvλi (xk+1) + (1 − λ)v0

i (xk+1)
)
, (67)

and

Γ
λ
i (xk) =xT

k Qxk + µ
T
i (xk)Rµi(xk) + γ

(
λΓλi−1(xk+1) + (1 − λ)Γ0

i−1(xk+1)
)
, (68)
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we obtain

vλi+1(xk) − Γλi (xk) =γ
(
λvλi (xk+1) + (1 − λ)v0

i (xk+1) − λΓλi−1(xk+1) − (1 − λ)

Γ
0
i−1(xk+1)

)
≥ 0.

(69)

Then, Γλi (xk) ≤ vλi+1(xk). Because Γλi (xk) ≥ vλi (xk) according to Lemma 1 and Γλi (xk) ≤

vλi+1(xk), we obtain vλi (xk) ≤ vλi+1(xk). �

Theorem 2: The one-step value function (v0
i ) and the n-step value function (vλi ) can be

defined as in (42) and (43), respectively, and v0
i = vλi = 0. Define limi→∞ v0

i (xk) = v0
∞(xk)

and limi→∞ vλi (xk) = vλ∞(xk) as the infinite limits of the one-step and n-step value functions.

With controllable system states, both v0
i and vλi are limited by J∗(xk), where J∗ is described

in (28). That is, v0
∞(xk) = vλ∞(xk) = J∗.

Proof: First, let ζi(xk) be a sequence of admissible control policies, and v0
0(.) = H0

0 (.) = 0,

where v0
i is defined and updated as in (42) and H0

i+1 is defined and updated by

H0
i+1(xk) =xT

k Qxk + ζ
T
i (xk)Rζi(xk) + γH0

i (xk+1). (70)

From the first part of Lemma 1 and Lemma 2, we have v0
i+1(xk) ≤ H0

i+1(xk) ≤ Y1, ∀i. By

defining limi→∞ H0
i (xk) = H0

∞(xk), we obtain v0
∞(xk) ≤ H0

∞(xk) ≤ Y1 for all admissible

control policy sequences. If ζ(xk) = u∗(xk), and the first part of Lemma 2 is applied, we

obtain

Y1 = lim
i→∞

i∑
j=0

(
γ j

(
xT

k Qxk + ζ
T
i− j(xk)Rζi− j(xk)

))
, (71)

such that J∗(xk) ≤ Y1, where J∗ is described in (28). Therefore, from first part of Lemma 2

and v0
∞(xk) ≤ H0

∞(xk) ≤ Y1, we obtain v0
∞(xk) ≤ J∗(xk). Because J∗(xk) is the infimum of

the cost function that derives from all other admissible control sequences, we conclude that

J∗(xk) ≤ v0
∞(xk). This implies that J∗(xk) ≤ v0

∞(xk) ≤ J∗(xk), and hence, v0
∞(xk) = J∗(xk).
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Second, let ζi(xk) be a sequence of admissible control policies, and v0
0(.) = vλ0 (.) = H0

0 (.) =

Hλ
0 (.) = 0, where v0

i and vλi are defined and updated as in (42) and (43). Equation (70) is

used to update H0
i+1 and Hλ

i+1:

Hλ
i+1(xk) =xT

k Qxk + ζ
T
i (xk)Rζi(xk) + γ

(
λHλ

i (xk+1) + (1 − λ)H0
i (xk+1)

)
. (72)

From the second part of both Lemma 1 and Lemma 2, we have vλi+1(xk) ≤ Hλ
i+1(xk) ≤ Y2,

∀i. By defining limi→∞ Hλ
i (xk) = Hλ

∞(xk), we obtain vλ∞(xk) ≤ Hλ
∞(xk) ≤ Y2 for all

admissible control policy sequences. If ζ(xk) = u∗(xk) with applying the second part of

Lemma 2, then

Y2 = lim
i→∞

(
i∑

j=0

[
(γλ) j

(
xT

k+ jQxk+ j + ζ
T
i− j(xk+ j)Rζi− j(xk+ j)

)]
+ γ(1 − λ)

i−1∑
j=0

[
(γλ) j

i− j−1∑
l=0

[
γl

(
xT

k+lQxk+l + ζ
T
i− j−l−1(xk+l)Rζi− j−l−1(xk+l)

)] ])
,

(73)

such that J∗(xk) ≤ Y2, where J∗ is described in (28). Therefore, from the second part of

Lemma 2 and vλ∞(xk) ≤ Hλ
∞(xk) ≤ Y2, we obtain vλ∞(xk) ≤ J∗(xk). Because J∗(xk) is the

infimum of the cost function that derives from all other admissible control sequences, we

conclude that J∗(xk) ≤ vλ∞(xk). This implies that J∗(xk) ≤ vλ∞(xk) ≤ J∗(xk), and hence,

vλ∞(xk) = J∗(xk). According to Lemma 3 and by applying ζ(xk) = µ(xk) in (51) and (56),

we conclude that v0
∞(xk) = vλ∞(xk) = J∗(xk).

According to Theorem 2, v0
i (xk) and vλi (xk) → J∗(xk) as i →∞. Because g0

i (xk) =
∂v0

i (xk)
∂xk

and gλi (xk) =
∂vλi (xk)
∂xk

, we conclude that g0
i (xk) and gλi (xk) → g∗(xk) as i → ∞, where g∗

is an optimum of the value gradient function.
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Figure 2. General feed-forward neural network, which is used in the one-step critic network,
the n-step critic network, and the actor network in NSVGL(λ).

Corollary 1: The action policy µi, the one-step value function v0
i and the n-step

value function vλi are defined as in (41), (42) and (43), respectively. If the system state

xk is controllable, then the v0
i and vλi force the controller (actor network) to converge to

the optimal control u∗ as i → ∞ (i.e., limi→∞ µi(xk) = u∗(xk)). Similar conclusions can

apply with gradients of vλi (xk) and v0
i (xk) with respect to xk (i.e., g0

i (xk) and gλi (xk) reach

an optimal value gradient function as i →∞).

4. NEURAL NETWORK ARCHITECTURE DESIGN

We use a feed-forward neural network, which is shown in Fig. 2, for all three

networks
(
Ĝ0

c(.), Ĝλ
c (.), and Â(.)

)
as universal function approximator, which is explained in

detail in the following subsections.

4.1. The One-Step Critic Network
(
Ĝ0 (xk, ω̂

0
c
) )

. The structure of Ĝ0 (xk, ω̂
0
c
)
is

shown in Fig. 2, where ω̂0
c represents a combination of hidden and output weights for the

one-step critic network. In Fig. 2, the inputs are the system state (Ik = [I1, . . . , Ip]T ≡ xk =

[x1, . . . , xm]T ); the output is ĝ0(xk), which is an approximation m dimension vector of a

gradient of the one-step value function (Ô = [Ô1, . . . , Ôq]T ≡ ĝ0(xk) = [ĝ0
1, . . . , ĝ

0
m]T ); h0

c

(≡ hx) represents the number of hidden neurons; the hidden weights are indicated as ω̂0{h}
c (

≡ ω̂{h}x ), which can be represented in matrix form with (m × h0
c) dimension; and the output
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weight matrix is indicated as ω̂0{o}
c (≡ ω̂{o}x ), which can be represented in matrix form with

(h0
c ×m) dimension. The activation function for the hidden nodes is the hyperbolic tangent

threshold function (φ(x) = (1 − e−x)/(1 + e−x)). The forward propagating output signal is

expressed as:

ĝ0
i (xk) =

(
ω̂

0{o}
c

)T
i φ

( (
ω̂

0{h}
c

)T
i xk

)
, (74)

where i is the iteration index and k is the time index. With quadratic form of the utility

function (U(xk, µi(xk)) = xT
k Qxk + µ

T
i (xk)Rµi(xk))) and (3) for the system state equation,

the one-step target value, which is defined in (15) in the general form, is given:

g0
i (xk) =

∂

∂xk

(
xT

k Qxk + µ
T
i−1(xk)Rµi−1(xk) + γv̂0

i−1( f (xk, µ̂i−1(xk))
)
,

=2Qxk + 2
(∂µi−1(xk)

∂xk

)T
Rµi−1(xk) + γg0

i−1(xk+1)×(∂ f (xk, µ̂i−1(xk))
∂xk

+
∂ f (xk, µ̂i−1(xk))

∂ µ̂i−1(xk)
∂ Âi−1(xk)
∂xk

)
.

(75)

The weights for hidden (ω̂0{h}
c ) and output (ω̂0{o}

c ) layers are tuned by backpropagating the

prediction error of the critic network, which is given as:

e0
ci(xk) = g0

i (xk) − ĝ0
i (xk). (76)

The objective function for the Ĝ0
ci(xk, ω̂

0
c) network is to minimize E0

ci(xk) = 0.5
(
e0

ci(xk))2 by

updating the value for the weights (ω̂0
c) according to the gradient descent algorithm inside

the local inner-loop, which is given by:

ω̂
0{h}
ci = ω̂

0{h}
ci + `0

c
∂E0

ci

∂ω̂
0{h}
ci

= ω̂
0{h}
ci + `0

c
∂Ĝ0

ci

∂ω̂
0{h}
ci

e0
ci(xk),

ω̂
0{o}
ci = ω̂

0{o}
ci + `0

c
∂E0

ci

∂ω̂
0{o}
ci

= ω̂
0{o}
ci + `0

c
∂Ĝ0

ci

∂ω̂
0{o}
ci

e0
ci(xk),

(77)

where `0
c is the one-step critic learning rate.
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4.2. The n-step Critic Network (Ĝλ
(
xk, ω̂

λ
c
)
). The structure of Ĝλ

(
xk, ω̂

λ
c
)
is

shown in Fig. 2, where ω̂λc represents a combination of hidden and output weights for

the n-step critic network. In Fig. 2, the inputs are the system state (Ik = [I1, . . . , Ip]T ≡

xk = [x1, . . . , xm]T ); the output is ĝλ(xk), which is an approximation m dimension vector

of a gradient of the n-step value function (Ô = [Ô1, . . . , Ôq]T ≡ ĝλ(xk) = [ĝλ1, . . . , ĝ
λ
m]T );

hλc (≡ hx) represents the number of hidden neurons; the hidden weights are indicated as

ω̂
0{h}
c ( ≡ ω̂{h}x ), which can be represented in matrix form with (m × hλc ) dimension; and the

output weights are indicated as ω̂λ{o}c (≡ ω̂{o}x ), which can be represented in matrix form

with (hλc × m) dimension.

The activation function for the hidden nodes is the hyperbolic tangent threshold

function. The forward propagating output signal is expressed as follows:

ĝλi (xk) =
(
ω̂
λ{o}
c

)T
i φ

( (
ω̂
λ{h}
c

)T
i xk

)
, (78)

where i is the iteration index and k is the time index. With quadratic form of the utility

function and (3) for the system state equation, the one-step target value, which is defined in

(22) in the general form, is

gλi (xk) =
∂

∂xk

(
xT

k Qxk + µ
T
i−1(xk)Rµi−1(xk) + γ

(
λv̂λ( f (xk, µ̂i−1(xk)) + (1 − λ)

v̂0( f (xk, µ̂i−1(xk))
))
,

=2Qxk + 2
(∂µi−1(xk)

∂xk

)T
Rµi−1(xk) + γ

(
λĝλi−1( f (xk, µ̂i−1(xk)) + (1 − λ)

ĝ0
i−1( f (xk, µ̂i−1(xk))

) (∂ f (xk, µ̂i−1(xk))
∂xk

+
∂ f (xk, µ̂i−1(xk))

∂ µ̂i−1(xk)
∂ Âi−1(xk)
∂xk

)
.

(79)
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The weights for hidden and output layers are tuned by back-propagating the prediction error

of the critic network, which is

eλci(xk) = gλi (xk) − ĝλi (xk). (80)

The objective function for n-step critic network is to minimize Eλ
ci(xk) = 0.5

(
eλci(xk))2 by

updating the related critic weights (ω̂λc ) according to the gradient descent algorithm inside

the local inner-loop, which is given by

ω̂
λ{h}
ci = ω̂

λ{h}
ci + `λc

∂Eλ
ci

∂ω̂
λ{h}
ci

= ω̂
λ{h}
ci + `λc

∂Ĝλ
ci

∂ω̂
λ{h}
ci

eλci(xk),

ω̂
λ{o}
ci = ω̂

λ{o}
ci + `λc

∂Eλ
ci

∂ω̂
λ{o}
ci

= ω̂
λ{o}
ci + `λc

∂Ĝλ
ci

∂ω̂
λ{o}
ci

eλci(xk),
(81)

where `λc is the n-step critic learning rate.

4.3. Actor Network (Â
(
xk, ω̂a

)
)). Themain goal for an actor network is to generate

a near-optimal control policy. We also use the general multilayer perceptron neural network

to represent the structure of Â(xk) ≡ Â
(
xk, ω̂a

)
as shown in Fig. 2, where ω̂λc represents

a combination of the hidden and output actor network weights. In Fig. 2, the inputs are

the system state (Ik = [I1, . . . , Ip]T ≡ xk = [x1, . . . , xm]T ); the outputs are µ̂(xk), which is

an approximation n dimension vector of control actions (Ô = [Ô1, . . . , Ôq]T ≡ ĝ0(xk) =

[µ̂1, . . . , µ̂n]T ); ha (≡ hx) represents the number of hidden neurons; the hidden weights

are indicated as ω̂{h}a ( ≡ ω̂
{h}
x ), which can be represented in matrix form with (m × ha)

dimension; and the output weights are indicated as ω̂{o}a (≡ ω̂{o}x ), which can be represented

in matrix form with (ha × n) dimension. The activation function for the hidden nodes is the

hyperbolic tangent threshold function. The forward propagating output signal is expressed

as follows:

µ̂i−1(xk) =
(
ω̂
{o}
a

)T
i−1φ

( (
ω̂
{h}
a

)T
i−1xk

)
. (82)



238

As mentioned in (23), ea(xk) combines the actor error path through the one-step critic

network (e0
a(xk)) as in (13) and the actor error path through the n-step critic network

(e0
a(xk)) as in (25). With quadratic form of the utility function and (3) for the system state

equation, ea(xk) is

ea(i−1)(xk) =λ
(
2Rµ̂i−1(xk) + γ

(
λgλi−1(xk+1) + (1 − λ)λg0

i−1(xk+1)
)
∂ f (xk, µ̂i−1(xk))

∂ µ̂i−1(xk)

)
+ (1 − λ)

(
2Rµ̂i−1(xk) + γλg0

i−1(xk+1)
∂ f (xk, µ̂i−1(xk))

∂ µ̂i−1(xk)

)
.

(83)

The objective function for the Â
(
xk, ω̂a

)
) network is tominimize ea(i−1) by updating the actor

weights (ω̂a) according to the gradient descent algorithm (with Ea(i−1)(xk) =
(
ea(i−1)(xk)

)2
)

inside the local inner-loop, which is given by

ω̂
{h}
a(i−1) = ω̂

{h}
a(i−1) − `a

∂ Â(i−1)(xk)
∂ω̂
{h}
a(i−1)

ea(i−1)(xk),

ω̂
{o}
a(i−1) = ω̂

{o}
a(i−1) − `a

∂ Â(i−1)(xk)
∂ω̂
{o}
a(i−1)

ea(i−1)(xk),
(84)

where `0
a is the actor learning rate. If a system type is affine, as in (26), then a greedy action

can be calculated for a one-step critic network as follows:

µ0
i−1(xk) = −

γ

2
R−1gT (xk)ĝ0

i−1(xk+1), (85)

and for n-step critic network as

µλi−1(xk) = −
γ

2
R−1gT (xk)

(
λĝλi−1(xk+1) + (1 − λ)ĝ0

i−1(xk+1)
)
, (86)

and then used instead of estimated control actions from critic networks. (85) can also

be used as the one-step target control to train the one-step critic network similar to [41].

Likewise, (86) can be used as the n-step target control to train the one-step critic network
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as follows:
e0

a(i−1)(xk) = µ0
i−1(xk) − µ̂i−1(xk),

eλa(i−1)(xk) = µλi−1(xk) − µ̂i−1(xk).
(87)

The objective function for this network is minimizing the actor error, which is given by

Ea(i−1)(xk) = 0.5
(
(1 − λ)E0

a(i−1)(xk) + λEλ
a(i−1)(xk)

)
, (88)

where E0
a(i−1)(xk) =

(
e0

a(i−1)(xk)
)2

and Eλ
a(i−1)(xk) =

(
eλa(i−1)(xk)

)2
. The actor weights are

updated by minimizing Ea(i−1)(xk) according to the gradient descent algorithm inside the

local inner-loop as follows:

ω̂
{h}
a(i−1) =ω̂

{h}
a(i−1) − `a

∂Ea(i−1)(xk)
∂ω̂
{h}
a(i−1)

= ω̂
{h}
a(i−1) − `a

∂ Â(i−1)(xk)
∂ω̂
{h}
a(i−1)

ea(i−1)(xk),

ω̂
{o}
a(i−1) =ω̂

{o}
a(i−1) − `a

∂Ea(i−1)(xk)
∂ω̂
{o}
a(i−1)

= ω̂
{o}
a(i−1) − `a

∂ Â(i−1)(xk)
∂ω̂
{o}
a(i−1)

ea(i−1)(xk),
(89)

where ea(i−1)(xk) = (1 − λ)e0
a(i−1)(xk) + λeλa(i−1)(xk), which is similar to (23).

5. SIMULATION STUDIES

Two case studies are taken to verify and demonstrate the effectiveness of the

NSVGL(λ) method. The trajectories of 2-D nonlinear system responses are considered as

the first case. The second case study is considered a two-wheeled dynamic, nonholonomic

mobile robot model. The theoretical analysis is provided for both cases to demonstrate the

performance index during learning. We compare the performance results for two cases with

DHP and NSVGL(λ) with λ = 0.5 and λ = 0.99. For a fair comparison, we set similar

values of global parameters during ten independent runs.
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5.1. Case I: Nonlinear SystemProblem . Consider the following nonlinear system

derived from [62]:

xk+1 =


x1k+1

x2k+1

 =

−sin(0.5x1k + µ(xk)

−sin(x1k + 0.5x2k)

 , (90)

where xk = [x1k x2k]T ∈ R2 is the state vector (m = 2), and µ(xk) ∈ R1 is the control

action (n = 1). The external instantaneous cost function is chosen as Uk = xT
k Qxk +

µT (xk)Rµ(xk), where Q is 2-D identity matrix and R = 1. The discount factor (γ) is 0.95.

The number of hidden nodes is 5, which is equal to h0
c and hλc for the one-step critic network

(Ĝ0 (xk, ω̂
0
c
)
)) and the n-step critic network (Ĝλ

(
xk, ω̂

0
c
)
)), respectively. The number of

hidden nodes for actor network (Â
(
xk, ω̂a

)
)) is also 5 (ha). Therefore, the structure of the

three-layer feed-forward neural network for the critic networks is 2-5-2 (two input nodes,

five hidden nodes, and two output nodes), and the structure for the actor network is 2-5-1.

The initial learning-rate parameters are set to `0
c = `

λ
c = `a = 0.01 for all networks. The

training will be terminated if the error drops under 10−6 or if the number of iterations meets

the stopping threshold for the internal cycle (20 iterations for both critic networks and 30

iterations for the actor network). The initial weights for all networks are randomly chosen

within [-0.3, 0.3] range. The initial state is x0 = [1, 1]T . We compare NSVGL(λ) with

λ = 0.5 and λ = 0.99 and the traditional DHP for ten independent runs. Each run has 400

iterations to train ADP to control the system for 10 time steps. As demonstrated in Fig.

3, which is the mean squared error (MSE) values over iteration for ten runs, NSVGL(λ) is

more efficient and faster than DHP. Fig. 4 - Fig. 6 illustrate the state trajectory curves and

the corresponding control action inputs for 10 time steps. We can see the improvement for

the system responses as it learns.
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Figure 3. The mean-squared-error (MSE) comparisons over iteration among NSVGL(λ =
0.99), NSVGL(λ = 0.5) and the DHP approaches. The mean values from 10 independent
runs are taken for all methods. The shaded region represents 10 runs, while the solid line
represents the mean for all 10 runs. NSVGL(λ) provides a faster learning speed than DHP.
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Figure 4. The control input during iteration for NSVGL(λ = 0.99), NSVGL(λ = 0.5) and
the DHP. The mean values from 10 independent runs are taken for all methods. The shaded
region represents the 10 runs, while the solid line represents the mean for all 10 runs.

Figure 5. The state trajectories for the x1 state during iteration for NSVGL(λ = 0.99),
NSVGL(λ = 0.5) and the DHP. The mean values from 10 independent runs are taken for
all methods. The shaded region represents the 10 runs, while the solid line represents the
mean for all 10 runs. NSVGL(λ) improves faster than DHP.
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Figure 6. The state trajectories for the x2 state during iteration for NSVGL(λ = 0.99),
NSVGL(λ = 0.5) and the DHP. The mean values from 10 independent runs are taken for
all methods. The shaded region represents the 10 runs, while the solid line represents the
mean for all 10 runs. NSVGL(λ) improves faster than DHP.

Fig. 7 and Fig. 8 demonstrate the convergence process of the gradient of the cost

functions during iterations for NSVGL(λ = 0.99). The convergence of the gradient of the

cost functions (g0
i (xk) and gλi (xk)) to the optimal cost function indicates the effectiveness

of NSVGL(λ).
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Figure 7. The average gradient trajectories of the value functions for the first system state
in NSVGL(λ = 0.99. The gradient of the cost functions

(
g0

i (x1k) and gλi (x1k)
)
converge

to the optimal value function.

Figure 8. The average gradient of the second cost function trajectories for the both critic
networks in the NSVGL(λ = 0.99) approaches. The convergence of the gradient of the value
functions for the second system state

(
g0

i (x2k) and gλi (x2k)
)
to the optimal cost function is

clearly shown starting from iteration number 200.
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5.2. Case II: Mobile Robot Dynamic Model. A differential-drive mobile robot

contains two independently driven wheels mounted on the left and right of its chassis at

the same axis, and a castor wheel (free rotating wheel) mounted at the front for balancing

the mobile robot. An inertial Cartesian frame represents the position of the mobile robot,

while q = [xc, yc, θ]T is the set of coordinates for the center of mass of the robot and the

robot orientation with respect to the Cartesian frame.

Two independent driving wheels are provided with the necessary torque for gener-

ating a left angular velocity (wL) and a right angular velocity (wR), which in turn generate

a linear velocity (v1) and angular velocity (v2) for the mobile robot as follows:


v1

v2

 =

0.5r̄ −0.5r̄

r̄
2b

− r̄
2b



wR

wL

 , (91)

where r̄ is wheel radius and b is half of the robot width. The different forces for the mobile

robot mechanical motion are considered in the literature for the dynamic model but not the

kinematic model. The kinematic model is considered only for the motion.

As stated in [49], [66] - [68], the dynamic model of the mobile robot has n̄ dimen-

sional configuration space subjected to r constraints as described by

M(q) Üq + C(q, Ûq) Ûq + F( Ûq) + G(q) + τd = B(q)u + AT (q)Ψ, (92)

with A(q) Ûq = 0 as a constrained kinematic wheel, where q ∈ Rn̄ is coordinate vector,

M(q) ∈ Rn̄×n̄ is a is a symmetric positive definite inertia matrix, C(q, Ûq) ∈ Rn̄×n̄ is the

centripetal and Coriolis matrix, F( Ûq) ∈ Rn̄ is a surface friction force vector, G(q) ∈ Rn̄

is a gravity vector, τd ∈ Rn̄ is a bounded unknown disturbance, B(q) ∈ Rn̄×n is a input

transformation matrix, u ∈ Rn is the input torque vector, A(q) ∈ Rr×n̄ is the full rank matrix
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associated with constraints, andΨ ∈ Rr is the Lagrangemultiplier (constraint forces) vector.

In this case study, There are two control inputs, which are a left torque (τL) and a right

torque (τR).

Since the system does not change in vertical position and has a constant value for

potential energy, G(q) is set to zero. Using Lagrange multipliers to reduce the dynamic

model from n̄ to m = n̄ − r , (76) is pre-multiplied by spanning the linear independent null

space of the A(q) Ûq matrix, (which is denoted as the Jacobian matrix of Sc(q) ∈ Rn̄×m). In

this case, a kinematic equation is given as follows:

Ûq = Sc(q)v, (93)

where

Ûq =


Ûxc

Ûyc

Ûθ


, Sc(q) =


cos(θ) −dsin(θ)

sin(θ) dcos(θ)

0 1


, v =


v1

v2

 ,
and d is a center of gravity. The final affine dynamic model is obtained from the kinematic

equation (77) as fallows: By taking the derivative of (77)

Üq = ÛSc(q)v + Sc(q)Ûv. (94)

Substitute (75), (77) and (78) into (76) to obtain

Ûv = −M̄(q)−1
(
V̄(q, Ûq)v + F̄( Ûq) + τ̄d

)
+ M̄(q)−1τ̄. (95)
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M̄(q) is an invertible matrix:

M̄(q) =


mT + 2

Ib
YY

r̄2 0

0 mT d2 + IT + 2Ib
YY

b2

r̄2 − 4mwd2

 ,

Sc(q) =


0 −dv2(mT − 2mw)

dv2(mT − 2mw) 0

 ,

τ̄d =


τ̄R

τ̄L

 , F̄( Ûq) =
1
r̄


fv(wR + wL) + fc(∆(wR) + ∆(wL))

b fv(wR − wL) + b fc(∆(wR) − ∆(wL))

 ,

(96)

and

τ̄ = B̄τ =


0.5r̄ −0.5r̄

r̄
2b

− r̄
2b



τR

τL

 , (∆(.) is a sigmoid function). (97)

All mobile robot dynamic mode parameters are given in Table 2. We assume a noise-free

environment and therefore ignore unknown disturbances impacting the left and the right

wheels by setting τ̄L = 0 and τ̄R = 0, respectively. In this case study, the first state (x1k) and

the second state (x2k) are the linear velocity (v1) and the angular velocity (v2), respectively,

whereas xk = [x1k x2k]T ∈ R2 is the state vector (m = 2). The µ(xk) = [τR τL]T ∈ R2

is the control action (n = 2). The external instantaneous cost function is chosen as

Uk = xT
k Qxk + µ

T (xk)Rµ(xk), where Q and R are 2-D identity matrices. The discount factor

(γ) is 0.95. The number of hidden nodes is 24, which is equal to h0
c and hλc for the one-step

critic network (Ĝ0 (xk, ω̂
0
c
)
)) and the n-step critic network (Ĝλ

(
xk, ω̂

0
c
)
)), respectively. The

number of hidden nodes for the actor network (Â
(
xk, ω̂a

)
)) is also 30 (ha). The initial

learning rate parameters are set to `0
c = `

λ
c = 0.0001 for the critic networks and `a = 0.001

for actor network. The training for each iteration of either network will be terminated if

the error drops under 10−6 or if the number of iterations meets the stopping threshold for
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the internal cycle (30 iterations for actor and critic networks). The initial weights for all

networks are randomly chosen within [-0.3, 0.3] range. The initial state is x0 = [0.5, 0.5]T .

We compare NSVGL(λ) with λ = 0.5 and λ = 0.99 and DHP for ten independent runs.

Each run has 5000 iterations to train the ADP algorithms to control the system for 100 time

steps. Fig. 9 illustrates the average MSE for the two velocity states during iterations for ten

runs. NSVGL(λ) is more efficient and faster to learn than DHP.

Figure 9. The average mean-squared-error for two velocity states during iterations among
NSVGL(λ = 0.99), NSVGL(λ = 0.5) and the DHP. The mean values from 10 independent
runs are taken for all methods. The shaded region represents the 10 runs, while the solid
line represents the mean for all 10 runs. NSVGL(λ) illustrates faster learning than DHP.

Fig. 10 - Fig. 13 illustrate the state trajectory curves and the corresponding control

action inputs for 100 time steps. We can see the improvement for system responses during

increasing the iterations.
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Figure 10. The first control input (left torque) during iterations among NSVGL(λ = 0.99),
NSVGL(λ = 0.5), and the DHP. The mean values from 10 independent runs are taken for
all methods. The shaded region represents the 10 runs, while the solid line represents the
mean for all 10 runs.
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Figure 11. The second control input (right torque) during iterations among NSVGL(λ =
0.99), NSVGL(λ = 0.5), and the DHP. The mean values from 10 independent runs are taken
for all methods. The shaded region represents the 10 runs, while the solid line represents
the mean for all 10 runs.
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Figure 12. Comparisons of state trajectory for the first state (linear velocity) during iterations
for NSVGL(λ = 0.99), NSVGL(λ = 0.5), and DHP approaches. The mean values from
10 independent runs are taken for all methods. The shaded region represents the 10 runs,
while the solid line represents the mean for all 10 runs. NSVGL(λ) has better performance
than DHP, whereas it is faster improved during iteration.
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Figure 13. Comparisons of the state trajectories for the second state (angular velocity) for
NSVGL(λ = 0.99), NSVGL(λ = 0.5), and DHP. The mean values from 10 independent
runs are taken for all methods. The shaded region represents the 10 runs, while the solid
line represents the mean for all 10 runs. NSVGL(λ) learns faster than DHP.
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Fig. 14 and Fig. 15 demonstrate the convergence of the gradient of the cost

functions during iterations for NSVGL(λ = 0.99). The convergence of the gradient of the

cost functions (g0
i (xk) and gλi (xk)) to the optimal cost function indicates the effectiveness

of the iterative NSVGL(λ).

Figure 14. The average gradient of the first state of value function trajectories for both
critic networks in the NSVGL(λ = 0.99). The gradient of the value functions (g0

i (x1k) and
gλi (x1k)) are converged to the optimal cost function.

Figure 15. The average gradient of the second state of the value function trajectories for
both critic networks for NSVGL(λ = 0.99).
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Algorithm 3 Pseudocode of Online NSVGL(λ)
Initializing MaxEpisode parameter
CntI = 0 % counter for Iteration (Episode)
while (CntI < MaxEpisode) do

Init. x0, ŵ
0
c, ŵ

λ
c , ŵa, T

0
c , T

λ
c , N

λ
c , Ω, `

0
c, `

λ
c , `a and N0

c
Cntk = 0 % step counter from x(0) until finial state x(F)
while (Cntk < F) do

µ̂(xk ) ← Â(xk , ŵa )
xk+1 ← f (xk , µ̂(xk ))[
Uk ,

∂Uk

∂xk
,
∂Uk

∂µ(xk )

]
; (i.e.Uk = xT

k
Qxk + µ

T (xk )Rµ(xk ))

ĝ0(xk+1) ← Ĝ0(xk+1, ŵ
0
c )

ĝλ (xk+1) ← Ĝλ (xk+1, ŵ
λ
c )

—————————————————————
P0 = ĝ0(xk+1)
Cnt0

c = 0 % counter for one-step critic network loop
while (Cnt0

c < N0
c ) ‖ (E0

c (xk ) > T0
c ) do

DUX (xk ) =
( ∂Uk

∂xk

)
+

( ∂Uk

∂µ(xk )

) ( ∂Â(xk )
∂xk

)
DFX (xk ) =

( ∂ fk
∂xk

)
+

( ∂ fk
∂µ̂(xk )

) ( ∂Â(xk )
∂xk

)
g0(xk ) = DUX (xk ) + γDFX (xk )P0

e0
c (xk ) = g0(xk ) − ĝ0(xk )

E0
c (xk ) = 0.5

(
e0
c (xk ))2

ω̂0
c (xk ) = ω̂0

c (xk ) + `0
c

( ∂Ĝ0(xk )
∂ω̂0

c (xk )

)
e0
c (xk )

P0 = ĝ0(xk+1)
Cnt0

c = Cnt0
c + 1

end while
Pλ = λĝλ (xk+1) + (1 − λ)ĝ0(xk+1)
Cntλc = 0 % counter for n-step critic network loop
while (Cntλc < Nλ

c ) ‖ (Eλ
c (xk ) > Tλ

c ) do

DUX (xk ) =
( ∂Uk

∂xk

)
+

( ∂Uk

∂µ(xk )

) ( ∂Â(xk )
∂xk

)
DFX (xk ) =

( ∂ fk
∂xk

)
+

( ∂ fk
∂µ̂(xk )

) ( ∂Â(xk )
∂xk

)
gλ (xk ) = DUX (xk ) + γDFX (xk )Pλ

eλc (xk ) = gλ (xk ) − ĝλ (xk )
Eλ
c (xk ) = 0.5

(
eλc (xk ))2

ω̂λ
c = ω̂

λ
c + `

λ
c

( ∂Ĝλ (xk )
∂ω̂λ

c

)
eλc (xk )

Pλ = λĝλ (xk+1) + (1 − λ)ĝ0(xk+1)
Cntλc = Cntλc + 1

end while
Cnta = 0 % counter for the actor network loop
while (Cnta < Na ) ‖ (Ea (xk ) > Ta ) do

P0 = ĝ0(xk+1)
e0
a (xk ) =

( ∂Uk

∂µ̂(xk )

)
+ γ

( ∂ fk
∂µ̂(xk )

)
P0

Pλ = λĝλ (xk+1) + (1 − λ)ĝ0(xk+1)
eλa (xk ) =

( ∂Uk

∂µ̂(xk )

)
+ γ

( ∂ fk
∂µ̂(xk )

)
Pλ

ea (xk ) = λeλa (xk ) + (1 − λ)e0
a (xk )

Ea (xk ) = 0.5
(
ea (xk ))2

ω̂a = ω̂a − `a
( ∂Â(xk )
∂ω̂a

)
ea (xk )

Cnta = Cnta + 1
end while
Cntk = Cntk + 1

end while
CntI = CntI + 1

end while
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Table 1. Parameters of the dynamic mobile robot

Symbol Description Value

mT Mass of the chassis 10kg

mw The mass of each wheel 2kg

r̄ The wheel radius 0.05m

b Half of the robot width 0.1m

d The center of gravity offset form the rear axle 0.1m

Ib
YY The wheel moment of inertial 1kg.m2

IT The platform total moment of inertia 5kg.m2

fv The viscous friction coefficient 0.001N .m.s

fc The Coulomb friction coefficient 0.001N .m.s

6. CONCLUSION

This paper presents a new ADP architecture, which merges between one- and n-step

critic networks. The gradient of TD(0) error is used to learn the one-step critic network,

while the gradient of TD(λ) error is used to learn the n-step critic notwork. The actor

network is tuned by using these two TD errors via two filtering paths with a similar λ value.

In addition to the gradient of TD(λ) providing the fast convergence learning to a locally-

extreme optimal trajectory without exploration, this design provides direct implementation

(online-mode) without the trajectory storage as in batch-mode implementation. Moreover,

our design is more memory efficient by overcoming the drawback of using eligibility-trace

storage for system states in online-mode implementation, which requires high computational

complexity. Convergence proofs are provided for both gradients of one- and n-step value

functions with respect to system states. We apply neural networks to implement our

approach in two simulation case studies to verify the theoretical analyses in this work.
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ABSTRACT

A gradient of the n-step temporal-difference (TD(λ)) is utilized as a learning algorithm

to train an advanced Adaptive Dynamic programming (ADP) algorithm, which is called

value-gradient learning (VGL(λ)). The VGL(λ) architecture with a single adaptive actor

network (SNVGL(λ)) is derived and implemented to be compared with the regular VGL(λ).

Moreover, a recurrent hybrid neuro-fuzzy (RNF) and a first-order Takagi-Sugeno RNF

(TSRNF) are two structures that are presented to build the critic and actor networks for

VGL(λ) and the critic network for SNVGL(λ). The fuzzy rules and the membership

functions’ (MFs) adjusted parameters are trained by a backpropagation gradient descent

technique. Furthermore, convergence theoretical analysis proofs are demonstrated based on

the iterative ADP strategy. A mobile robot simulation case study is presented with various

amount of uncertainties and frictions to verify the performance and the theoretical analysis.

Keywords: Adaptive dynamic programming (ADP), recurrent neuro-fuzzy, Takagi-Sugeno

neuro-fuzzy, eligibility traces, convergence analysis, mobile robot, single network adaptive

critic.
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1. INTRODUCTION

Adaptive dynamic programming (ADP) is a useful mechanism tool for solving the

Hamilton-Jacobi-Bellman (HJB) equation instead of the Riccati equation [1] - [11].

Heuristic dynamic programming (HDP), dual heuristic programming (DHP) and

globalized DHP (GDHP) are three fundamental categories for ADP [11] - [14]. Three

approximation function networks are used to perform actor, critic and model networks that

provide decision making, evaluation and prediction, respectively. Since a model network

that predicts the future system state, is included, these ADP categories are model based ADP

[11] - [17]. If the action-dependent (AD) prefix is used (i.e., ADHDP for HDP and ADDHP

for DHP), the critic network has the state and the action inputs and model-free variants. In

[18] - [22], model-freeADP designswere presented for online learning. As reviewed in [11],

the ADP technique is used to train an actor network to give optimal actions by minimizing

a value function that is produced from a critic network. Both networks are approximated by

using a multilayer perceptron. Many applications have used ADP. In [23], DHP controlled a

turbo-generator more efficient than HDP. Collective robotic search problems can be solved

with improved performance by using DHP as in [24]. Lian and Xu [25] applied HDP to

allow a mobile robot to escape from sharp corners. Maze navigation has been proposed as

an ADP benchmark [26]-[31], but most of mazes have been 2-D. Al-Dabooni and Wunsch

[32] use ADHDP(λ) in the 3-D maze navigation benchmark. Also, the previous authers

[33] applied model-free ADHDP in the Dyna algorithm to obtain theoptimal path by using

multi-robot navigation in an unknown environment. Other theoretical and practical works

in ADP are presented in [34] - [38].

The stability of ADP in general cases is an open problem [39]. The stability of

the one-step model-free ADHDP learning approach is introduced by Liu et al. [40] and

by Werbos et al. [39] with critic/actor neural networks and by He et al. [41], [42] with

critic/reference neural networks and a fuzzy logic controller. The stability for an n-step
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model-free ADHDP is presented in [32], [29]. Al-Tamimi et al. in [43] demonstrates a

convergence analysis of value iteration based on HDP for general discrete-time nonlinear

systems. Many other publications regarding the theoretical analysis and proofs for ADP

are shown in [44] - [47]. The GDHP convergence analysis proof and its comparison with

the HDP and the DHP approaches is presented by Liu [48], [49]. Sutton et al. in [50] -

[54] show the efficient performance of temporal difference (TD) learning with an eligibility

trace long-predation parameter denoted by λ.

Inspired by [50], Fairbank and Alonso [55] - [57] introduced a new ADP algorithm

to extend DHP by including λ. They called it value-gradient learning (VGL(λ)). VGL(λ)

was used in [58] to track a reference trajectory under uncertainties by computing the optimal

left and right torques for a nonholonomic mobile robot. Al-Dabooni and Wunsch in [59]

use on-line learning of VGL(λ) without requiring an eligibility-trace-work-space matrix.

Other papers exist in the literature that use hybrid neuro fuzzy (NF) systems for ADP.

D. Zhao et al. in [60] explains how to use anNFwithmonotonicmembership functions in the

first (premise/ antecedent) layer with regular connected weights in the output (consequent)

layer. They use ADHDP with a traditional feed-forward neural network for the critic

network and NF with an actor network for controlling the two benchmarks: a two-link

robot arm and cart-pole balancing. The authors in [60] illustrate how the systems become

steady and robust with uncertainties. S. Mohagheghi et al. in [61] and [62] use ADHDP

to control on a multi-machine power system via a static compensator. The authors use

an adaptive neuro-fuzzy inference system (ANFIS) in the actor network with a zero-order

Takagi-Sugeno fuzzy. Y. Zhu et al. in [63] also uses ADHDPmixed with an NF network for

control on a rotational inverted pendulum. Y. Tang et al. in [41] presents a new structure that

uses ADHDP and adds another network. The new structure is called a goal representation

HDP (GrHDP); therefore, GrHDP has three networks: actor, critic and goal networks. Both

critic and actor are represented by using a regular feedforward neural network, while the

actor network is built by using monotonic membership functions in the premise layer with
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regular connected weights in the consequent layer. They test their structure with a cart-

pole plant, a ball-and-beam system and a multi-machine power system control. Model-free

GrHDPmixing with NF strucure is also presented in [64] by Y. Tang et al. It uses a damping

controller for superconducting magnetic energy storage. H. Zhang et al. in [65] shows how

a consensus problem of multiagent differential games is solved by using this paper and

an NF for the critic network. The authors implement the actor network and use a policy

iteration algorithm to find the optimal action sequence that provides uniformly ultimately

bounded proofs. The NF structure in a critic network without an actor network is also

shown by J. Zhang et al. in [66] by solving HJB. Using ANFIS with eligibility traces of

ADP is introduced in [67] by X. Bai et al. to solve a multiple ramps metering problem. The

authors use a backward view for eligibility traces with an ADHDP scheme. ANFIS is also

used with ADHDP for both critic and actor networks, which is presented by X. Luo et al.

in [68] to evaluate the quality of a wen service by providing ultimately uniformly bounded

stability proofs.

This paper uses the VGL(λ) approach with various NF structures to summarize the

following fundamental contributions of this paper

1. A theoretical foundation analysis for an n-step adaptive actor-critic approach of

VGL(λ) architecture with NF (NF-VGL(λ)) is presented that illustrates how the agent

receives better information from the control action than traditional DHP.

2. A single adaptive n-step critic approach of VGL(λ) (SNVGL(λ)) is derived to create a

pioneer architecture of SNVGL(λ). SNVGL(λ) uses NF structures (NF-SNVGL(λ))

to compare with the first contribution.

3. One of the NF structure that uses in VGL(λ) and SNVGL(λ) is similar to [60], [63] -

[64] but with a different membership function (MF) and with a feedback loop in one

of the premise parameters as a recurrent network. The other NF structure is similar
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to ANFIS as in [61], [62], [67], [68] but with a feedback loop in one of the premise

parameters to store history information. It uses backpropagation gradient descent

technique to train the fuzzy rules and MFs as well.

4. A theoretical convergence analysis proofs are provided for theVGL(λ) and SNVGL(λ)

architectures by using an iterative ADP algorithm. This paper demonstrates that

gradients are monotonically nondecreasing and converge to optimal values.

5. These advantages of VGL(λ) and SNVGL(λ) with and without recurrent feedback

parameters of NF structures are verified by simulation with a high-nonlinear dynamic

model case study with various uncertainties.

The schematic architectures for VGL(λ) and SNVGL(λ) are presented in Section

2. The NF structures are shown in Section 3. Section 4 provides a convergence stability

analysis for the VGL(λ) and SNVGL(λ) designs. Harmonizing an iterative algorithm for

VGL(λ) and SNVGL(λ) with NF structures is presented in Section 5. The simulation results

and the conclusion are presented in Section 6 and Section 7, respectively.

2. THE ACTOR-CRITIC AND SINGLE-CRITIC OF VGL(λ) ARCHITECTURE
DESIGNS

ADP allows agents to select an action to minimize their long-term cost:

J(i) = 〈
∞∑

k=i

γk−iU
(
x(k), u

(
x(k)

) )
〉, (1)

where 〈.〉 is the expectation symbol, J(i) is a value function (cost-to-go value or long-

term cost) for a state vector (x ∈ Rp) at initial time i, γ is a constant discount factor, and

U
(
x(k), u

(
x(k)

) )
is an instantaneous utility cost function at time step k for x after applying

an action vector u ∈ Rq. NF-VGL(λ) uses TD(λ) learning that helps to fill the gaps between

predicted events and training parameters. [51] - [54] illustrate that TD(λ) learning has
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fundamental advantages in reinforcement learning. In this paper, a gradient of TD(λ) is

used with ADP to solve the recursive form of the optimal Bellman equation [10], [69]:

J∗(k) = min
u
(
x(k)

){U (
x(k), u

(
x(k)

) )
+ γJ∗(k + 1))}, (2)

where J∗ denotes the optimal value function, and the instantaneous cost, U
(
.), is bounded.

For simplicity, we denote J∗
(
k
)
= J∗

(
x(k)

)
, and J∗

(
k + 1

)
= J∗

(
x(k + 1)

)
. x(k + 1) is a

next state that is provided from discrete-time nonlinear system as follows:

x(k + 1) = f
(
x(k), u

(
x(k)

) )
. (3)

As in [70], the Bellman equations for one-step (R(1)(k)), two-step (R(2)(k)) until n-step

(R(n)(k)) are

J(k) =R(1)(k) = U
(
x(k), u

(
x(k)

) )
+ γJ(k + 1),

=R(2)(k) = U
(
x(k), u

(
x(k)

) )
+ γU

(
x(k + 1), u

(
x(k + 1)

) )
+ γ2J(k + 2),
...

=R(n)(k) = U
(
x(k), u

(
x(k)

) )
+ γU

(
x(k + 1), u

(
x(k + 1)

) )
+ . . . + γn−1U

(
x(k + n − 1), u

(
x(k + n − 1)

) )
+

γnJ(k + n) =
n∑

j=0

[
γ jU

(
x(k + j), u

(
x(k + j)

) )]
.

(4)

where R(i)(k) = R(i)
(
x(k)

)
, which is denoted as an actual return for the value function

from state time k to i. The average of an n-step-return is a technique for accelerating the

optimization [32], [52], [70]. The λ-return, Rλ(k) = Rλ
(
x(k)

)
, is another name for the
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average of the n-step-return [70], which is defined in general as

Rλ(k) = (1 − λ)
∞∑

n=1
λn−1R(n)(k). (5)

This paper’s authors’ previous work [32] shows a stability proof for selecting λ, which

should be 0 ≤ λ < 1 by using TD(λ) learning (in contrast to previous literature, which are

included bounded from 0 to 1). By substituting (4) into (5), authors obtain:

Rλ(k) = (1 − λ)
∞∑

n=1
λn−1

(
n−1∑
l=0

[
γlU

(
x(k + l), u

(
x(k + l)

) )]
+ γnJ(k + n)

)
.

= (1 − λ)
( ∞∑

n=1

(
λn−1

n−1∑
l=0

[
γlU

(
x(k + l), u

(
x(k + l)

) )] )
+

∞∑
n=1

[
λn−1γnJ(k + n)

])
.

(6)

Expanding and rearranging (6) yields:

Rλ(k) =
∞∑

n=0

[
λnγn

[
U

(
x(k + n), u

(
x(k + n)

) )
+

(1 − λ)γJ(k + n + 1)
] ]
,

=U
(
x(k), u

(
x(k)

) )
+ λγ

[
U

(
x(k + l), u

(
x(k + l)

) )
+

λγ

[
U

(
x(k + 2), u

(
x(k + 2)

) )
+ λγ

[
U

(
x(k + 3),

u
(
x(k + 3)

) )
+ . . . + λγ

[
U

(
x(∞), u

(
x(∞)

) )
+

(1 − λ)γJ(∞)
]
+ . . . + (1 − λ)γJ(k + 4)

]
+ (1 − λ)

γJ(k + 3)
]
+ (1 − λ)γJ(k + 2)

]
+ (1 − λ)γJ(k + 1),

(7)
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where U
(
x(∞), u

(
x(∞)

) )
= Rλ(∞), which is the instantaneous cost at the infinite horizon

terminal state. The final target-value according to (7) is

Rλ(k) = U
(
x(k), u

(
x(k)

) )
+ λγRλ(k + 1) + (1 − λ)γJ(k + 1), (8)

(derived in [32]). A stochastic exploration should be supplemented with any value function

that approaches as shown by Fairbank and Alonso [55]. But in the VGL method, a gradient

of a value function handles this requirement via a greedy policy, with few trajectories,

instead of learning in all of the state space [55]. The FN-VGL(λ) uses the gradient of the

n-step value function. The n-step value function, which is the output vector from critic

network Ĝ(x(k), ω̂c) is a function approximator with parameter vector ω̂c. Ĝ(x(k), ω̂c).

The function network provides the estimated gradient of the n-step value approximator

function with respect to the system state vector (∂J(k)/∂x(k)). There are two different

ways to implement [58]: The scalar critic method makes the output critic network equal

to ∂J(k)/∂x(k). The vector critic method takes a direct vector output from Ĝ(x(k), ω̂c)

to provide the n-step gradient value function. This paper uses the vector critic method

because it provides a smooth and stable vector output [55], [57], [56], specifically. The

VGL(λ) with two hybrid recurrent fuzzy neural network structures for both the critic and

actor networks. Furthermore, this work eliminates the actor network from NF-SNVGL(λ)

structure by calculating the optimal control and co-state equations.

2.1. Adaptive Actor-Critic Approach. Fig. 1 shows a schematic diagram for the

NF-VGL(λ) structure.

2.1.1. The n-step Critic Network. The critic network in the FN-VGL(λ) scheme

estimates the partial derivatives of the value function with respect to the system’s state

vector. In order to learn a critic network, which is represented as Ĝ(x(k), ω̂c), the left-hand
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Figure 1. A schematic diagram for the adaptation of actor-critic VGL(λ). The weights for
the critic network (Ĝ

(
x(k), ω̂c

)
) are updated according to the gradient of the TD(λ) error

(black dashed line). The actor network (Â
(
x(k), ω̂a

)
) is tuned by backpropagating the actor

error (ea) through Ĝ
(
x(k), ω̂c

)
network (red dashed line).
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side of (8) is derived with respect to the state vector for a target value of gλ(k):

∂Rλ(k)
∂x(k) = gλ(k) = ∂

∂x(k)

(
U

(
x(k), µ̂

(
x(k)

) )
+ γλRλ(k + 1) + γ(1 − λ)J(k + 1)

)
, (9)

where µ̂
(
x(k)

)
is a control action vector, which is provided from the approximating actor

network Â
(
x(k), ω̂a

)
with parameter vector ω̂a (details about the actor network will be

presented in the next subsection). Applying the chain rules to (9) yields an n-step costate

equation, which is

gλ(k) =
(∂U

(
x(k), µ̂

(
x(k)

) )
∂x(k) +

[∂ Â
(
x(k), ω̂a

)
∂x(k)

]T ∂U
(
x(k), µ̂

(
x(k)

) )
∂ µ̂

(
x(k)

) )
+ γ

(
λ

[∂ f
(
x(k), µ̂

(
x(k)

) )
∂x(k) +

∂ f
(
x(k), µ̂

(
x(k)

) )
∂ µ̂

(
x(k)

)
∂ Â

(
x(k), ω̂a

)
∂x(k)

]T

gλ(k + 1) + (1 − λ)
[∂ f

(
x(k), µ̂

(
x(k)

) )
∂x(k) +

∂ f
(
x(k), µ̂

(
x(k)

) )
∂ µ̂

(
x(k)

) ∂ Â
(
x(k), ω̂a

)
∂x(k)

]T

g(k + 1)
)
.

(10)

As shown in Fig. 1, the n-step critic error (ec(k)) should be minimized during training by

following

ec(k) =gλ(k) − ĝ(k), (11)

where ĝ(k) is an estimated output vector that is provided from the Ĝ(x(k), ω̂0
c) network.

2.1.2. The Actor Network. The actor is used to make a system learn to select an

optimal decision. The adaptive actor-critic approach has two separated networks (actor and

critic) as shown in Fig. 1. As in [11], [55], [58], [59], the actor network function learns via

minimizing
∂J(k)

∂ µ̂
(
x(k)

) to zero. Because using J value, it was called as a one-step optimal

control equation. In this work, the actor network function learns via minimizing
∂Rλ(k)
∂ µ̂

(
x(k)

)
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to zero (an n-step optimal control equation). Therefore the actor error ea is defined by

ea(k) =
∂U

(
x(k), µ̂

(
x(k)

) )
∂ µ̂

(
x(k)

) + γ

[∂ f
(
x(k), µ̂

(
x(k)

) )
∂ µ̂

(
x(k)

) ]T

κ, (12)

where

κ = λgλ(k + 1) + (1 − λ)ĝ(k + 1). (13)

2.2. Single Adaptive n-step Critic Approach. Fig. 2 shows a schematic diagram

for a neuro-fuzzy single n-step adaptive critic network VGL(λ) (NF-SNVGL(λ)) structure.

Because of the elimination of the actor network, the NF-SNVGL(λ) has a low computational

load that comes from the simple structure.

2.2.1. The n-step Optimal Control Equation. The necessary condition for the

n-step optimal control equation is given by

∂Rλ(k)
∂ µ̂

(
x(k)

) = ∂U
(
x(k), µ̂

(
x(k)

) )
∂ µ̂

(
x(k)

) + γ

[∂ f
(
x(k), µ̂

(
x(k)

) )
∂ µ̂

(
x(k)

) ]T

κ = 0. (14)

2.2.2. The n-step Critic Network. The n-step costate equation is similar to (10)

with further arrangement, which becomes

gλ(k) =
(
∂U

(
x(k), µ̂

(
x(k)

) )
∂x(k) + γ

[∂ f
(
x(k), µ̂

(
x(k)

) )
∂x(k)

]T

κ

)

+

[∂ Â
(
x(k), ω̂a

)
∂x(k)

]T
(
∂U

(
x(k), µ̂

(
x(k)

) )
∂ µ̂

(
x(k)

) + γ

[∂ f
(
x(k), µ̂

(
x(k)

) )
∂ µ̂

(
x(k)

) ]T

κ

)
,

(15)

where κ is defined in (13). By using (14) in (15), the n-step costate equation is 6

gλ(k) =
(
∂U

(
x(k), µ̂

(
x(k)

) )
∂x(k) + γ

[∂ f
(
x(k), µ̂

(
x(k)

) )
∂x(k)

]T

κ

)
. (16)

6During training, the n-step critic network is tuned by minimizing ec(k) = gλ(k) − ĝ(k) (see Fig. 2).
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Figure 2. A schematic diagram for the adaptation of a single n-step critic network of
VGL(λ)(SNVGL(λ)). The weights for the critic network (Ĝ

(
x(k), ω̂c

)
) are updated accord-

ing to the gradient of the TD(λ) error (black dashed line). The general n-step optimal control
equation (14) (or (73) for Affine systems with the quadratic form of a utility function) is
used to generate an optimal control signal.
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3. NF STRUCTURES FOR VGL(λ) AND SNVGL(λ) APPROACHES

3.1. Recurrent Neuro-Fuzzy (RNF) Structure. For simplicity, Fig. (3) illustrates

a structure for RNF for three inputs (n = 3), two outputs (p = 2) and two MFs (m = 2)

for each input. This structure is similar to [71] but with a “grid” input space partitioning,

which is used in many existing NF in ADP [61], [41], [64]. The grid-type partition divides

the input space according to the number of MFs for each input variable (see [72]). This

structure has three layers:

1. The first layer (premise layer) has premise parameters (mn×m,σn×m, θn×m), where the

bold symbol is the matrix with n×m dimension. This layer has Gaussian membership

functions (GMFs), which is denoted as G f
i , represented by

O f
i

(
xi(k)

)
= e
−
( xi(k) +O f

i

(
xi(k − 1)

)
θ

f
i (k) −m

f
i (k)

σ
f

i (k)

)2

,
(17)

where i = 1, 2, . . . , n and f = 1, 2, . . . ,m, xi is the i input variable, m f
i ∈ Ui is the

mean parameter that belong to the i input universe of discourse with the MF number

f (Ui ⊂ Rn), and σ f
i > 0 are the variance parameters at f MF for input i. As shown

in Fig. (3), the θ f
i is a recurrent parameter for f MF in i input. θ f

i works as memory in

the NF structure to store the past information and merge with the current information.

2. The second layer (rule layer) has mn rule nodes (grid-type partitioning), which applies

the AND operation in each rule node to yield a fired strength of a rule as follows:

π`(k) =
n∏

i=1

(
O
α`i
i

(
xi(k)

) )
, (18)

where ` = 1, 2, . . . ,mn, and α`i is illustrated in Table 1.
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Table 1. The values for α`i . α
`
i depend on i and `. The rows for the last column (i = n)

increase by one with each ` and replicate each m. The rows for the column with i = n − 1
increase by one each with each ` = m and republicate each m2 and so on.

α`i
i

1 2 . . . n − 1 n

1 1 1 . . . 1 1
2 1 1 . . . 1 2
...

...
...

...
...

...
m − 1 1 1 . . . 1 m − 1
m 1 1 . . . 1 m
m + 1 1 1 . . . 2 1
m + 2 1 1 . . . 2 2

`
...

...
...

...
...

...
2m − 1 1 1 . . . 2 m − 1
2m 1 1 . . . 2 m
...

...
...

...
...

...
mn − m m m . . . m 1
mn − m + 1 m m . . . m 2
...

...
...

...
...

...
mn − 1 m m . . . m m − 1
mn m m . . . m m

3. The third layer (consequent/output layer) has consequent parameters (ωp×mn ). This

layer proceeds the defuzzification operation by a linear combination of the consequent

parameters with firing strengths to yield the output fuzzy value as follows:

y j(k) =
mn∑̀
=1

(
ω j`π`(k)

)
, (19)

where j = 1, 2, . . . , p.

Equations (17) - (19) illustrate the feedforward propagation of the signal, while the

backpropagation gradient algorithm with the chain rule is used as backward propagation

of the signal to train both the consequent and premise parameters. In both NF-VGL(λ) or
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NF-SNVGL(λ) structures, the partial derivatives of the outputs (y j , where j = 1, 2, . . . , p),

with respect to the premise and consequent parameters, are required as well as the partial

derivatives of the outputs, with respect to the inputs (xi, where i = 1, 2, . . . , n) as follows:

1. Tuning the consequent parameters (ωp×mn ):

∂y j(k)
∂ω j`(k)

=π`, (20)

where j = 1, 2, . . . , p and ` = 1, 2, . . . ,mn (mn is the total number of the fuzzy rule).

2. Tuning The premise parameters (mn×m,σn×m, θn×m):

∂y(k)
∂m

f
i (k)

=

p∑
j=1

(
∂y j(k)
∂Π`(k)

∂Π`(k)
∂O f

i

(
xi(k)

) ∂O f
i

(
xi(k)

)
∂m

f
i (k)

)
,

=

p∑
j=1

(
ω j`(k).

n∏
r=1,r,i

(
Oα`r

r
(
xi(k)

) )
.2O f

i

(
xi(k)

)
(
xi(k) +O f

i

(
xi(k − 1)

)
θ

f
i (k) −m

f
i (k)

)
(
σ

f
i (k)

)2

)
,

(21)

where y(k) = ∑p
j=1

(
y j(k)

)
.

∂y(k)
∂σ

f
i (k)

=

p∑
j=1

(
∂y j(k)
∂Π`(k)

∂Π`(k)
∂σ

f
i (k)

)
=

p∑
j=1

(
ω j`(k).2Π`(k)

.

(
xi(k) +O f

i

(
xi(k − 1)

)
θ

f
i (k) −m

f
i (k)

)2(
σ

f
i (k)

)3

)
,

(22)

where

∂Π`(k)
∂σ

f
i (k)

=
∂Π`(k)

∂O f
i

(
xi(k)

) ∂O f
i

(
xi(k)

)
∂σ

f
i (k)

=

n∏
r=1,r,i

(
Oα`r

r
(
xi(k)

) )
.2O f

i

(
xi(k)

)
=2Π`(k).

(23)
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∂y(k)
∂θ

f
i (k)

=

p∑
j=1

(
∂y j(k)
∂Π`(k)

∂Π`(k)
∂θ

f
i (k)

)
,

= −
p∑

j=1

(
ω j`(k).2Π`O f

i

(
xi(k − 1)

)
.

(
xi(k) +O f

i

(
xi(k − 1)

)
θ

f
i (k) −m

f
i (k)

)
(
σ

f
i (k)

)2

)
.

(24)

3. The i, j element for the Jacobean matrix of the partial derivatives of the j output with

respect to the i input is derived by

∂y j(k)
∂xi(k)

=
∂y j(k)
∂Π`(k)

∂Π`(k)
∂O f

i

(
xi(k)

) ∂O f
i

(
xi(k)

)
∂x f

i (k)
= −

(
ω j`(k)

.2Π`(k)

(
xi(k) +O f

i

(
xi(k − 1)

)
θ

f
i (k) −m

f
i (k)

)
(
σ

f
i (k)

)2

)
.

(25)

3.2. Takagi-Sugeno Recurrent Neuro-Fuzzy (TSRNF) Structure. Fig. (4) il-

lustrates a structure for TSRNF for three inputs (n = 3), two outputs (p = 2) and two MFs

(m = 2) for each input with a grid-type partition for the input space. This structure is similar

to [72] - [76], with except for the feedback premise recurrent parameters in the first layer,

where this structure has five layers:

1. The first layer (premise layer) has premise’s parameters, which is similar to the first

layer of RFN structure as follows:

O f
i

(
xi(k)

)
= e
−
( xi(k) +O f

i

(
xi(k − 1)

)
θ

f
i (k) −m

f
i (k)

σ
f

i (k)

)2

.
(26)
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Figure 3. A structure for RNF that uses both actor and critic networks for VGL(λ) and
NSVGL(λ). RNF consists of three layers. The first layer is the premise layer, which has
premise parameters (mn×m,σn×m, θn×m). The second layer is the rule layer, which has mn

rule nodes. The third layer is the consequent/output layer, which has consequent parameters
(ωp×mn ). The premise and consequent parameters are trained by using a backpropagation
gradient algorithm. To simplify the appearance of this diagram, the number of inputs, MFs
and outputs are represented by n = 3, m = 2 and p = 2, respectively.
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2. The second layer (rule layer) has mn rule nodes, which is also similar to the second

layer of the RFN structure as follows:

π`(k) =
n∏

i=1

(
O
α`i
i

(
xi(k)

) )
. (27)

3. The third layer (normalization layer) is used to calculate the ratio of the ith rule node

output (ith rule’s firing strength) to get the sum of all the rules’ node outputs:

ω̄`(k) =
Π`(k)∑mn

r=1

(
Πr(k)

) , (28)

where ` = 1, 2, . . . ,mn,

4. The fourth layer (consequent/defuzzification layer) has consequent parameters (amn

p×(n+1),

where a), which is a 3-dimension matrix with p×mn×(n+1). This layer performs the

defuzzification operation by using a linear combination of the consequent parameters

as follows:

f `j (k) =
n∑

i=1

(
a`ji xi(k)

)
+ a`j(n+1), (29)

where ` = 1, 2, . . . ,mn, and j = 1, 2, . . . , p.

5. The fifth layer (output layer) calculates the summation of the normalized firing

strengths from the normalization layer with the outputs of the consequent layer:

y j(k) =
mn∑̀
=1

(
f `j (k)ω̄`(k)

)
, (30)

where j = 1, 2, . . . , p.

Equations (26) - (30) illustrate the feedforward propagation of the signal, while the

chain backpropagation gradient algorithm is used as a backward propagation of the signal

to train both the consequent and premise parameters. As previously mentioned, the NF-
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VGL(λ) and NF-SNVGL(λ) structures require the partial derivatives of the outputs with

respect to the premise parameters, consequent parameters and the inputs to adapt the critic

and actor approximation parameters as follows:

1. Tuning the consequent parameters (amn

p×(n+1)):

∂y j(k)
∂a`ji(k)

=
∂y j(k)
∂ f `j (k)

∂ f `j (k)
∂a`ji(k)

= ω̄`(k)xi(k), (31)

where i = 1, 2, . . . , n, ` = 1, 2, . . . ,mn, and j = 1, 2, . . . , p. The free coefficients’

consequence parameters, which are not related with input variables, can be updated

by
∂y j(k)

∂a`j(n+1)(k)
=
∂y j(k)
∂ f `j (k)

∂ f `j (k)
∂a`j(n+1)(k)

= ω̄`(k). (32)

2. Tuning the premise parameters (mn×m,σn×m, θn×m):

∂y(k)
∂m

f
i (k)

=

p∑
j=1

(
∂y j(k)
∂ω̄`(k)

∂ω̄`(k)
∂Π`(k)

∂Π`(k)
∂m

f
i (k)

)
,

=

p∑
j=1

(
f `j (k).

( ∑mn

r=1

[
Πr(k)

]
− Π`(k)

)
( ∑mn

r=1

[
Πr(k)

] )2 .2Π`(k)(
xi(k) +O f

i

(
xi(k − 1)

)
θ

f
i (k) −m

f
i (k)

)
(
σ

f
i (k)

)2

)
,

(33)

where y(k) = ∑p
j=1

(
y j(k)

)
.
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∂y(k)
∂σ

f
i (k)

=

p∑
j=1

(
∂y j(k)
∂ω̄`(k)

∂ω̄`(k)
∂Π`(k)

∂Π`(k)
∂σ

f
i (k)

)
,

=β

p∑
j=1

(
f `j (k).

( ∑mn

r=1

[
Πr(k)

]
− Π`(k)

)
( ∑mn

r=1

[
Πr(k)

] )2 .2Π`(k)

(
xi(k) +O f

i

(
xi(k − 1)

)
θ

f
i (k) −m

f
i (k)

)2(
σ

f
i (k)

)3

)
.

(34)

∂y(k)
∂θ

f
i (k)

=

p∑
j=1

(
∂y j(k)
∂ω̄`(k)

∂ω̄`(k)
∂Π`(k)

∂Π`(k)
∂θ

f
i (k)

)
,

= −
p∑

j=1

(
f `j (k).

( ∑mn

r=1

[
Πr(k)

]
− Π`(k)

)
( ∑mn

r=1

[
Πr(k)

] )2 .2Π`(k)(
xi(k) +O f

i

(
xi(k − 1)

)
θ

f
i (k) −m

f
i (k)

)
(
σ

f
i (k)

)2 .O f
i

(
xi(k − 1)

))
.

(35)

3. As illustrated in Fig. (4), the inputs (xi(k), i = 1, 2, . . . , n) deal with the premise

and consequent layers. Therefore, the i, j element for input/output Jacobean matrix is

derived by combining two paths: the first path,
(∂y j(k)
∂xi(k)

) (p1)
, derives from backprop-

agating the output signal through the consequent fuzzy part, while the second path,(∂y j(k)
∂xi(k)

) (p2)
, is derived from backpropagating the output signal through the premise

fuzzy part as follows:
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∂y j(k)
∂xi(k)

=

(
∂y j(k)
∂xi(k)

) (p1)

+

(
∂y j(k)
∂xi(k)

) (p2)

=

(
∂y j(k)
∂ f `j (k)

∂ f `j (k)
∂xi(k)

) (p1)

+(
∂y j(k)
∂ω̄`(k)

∂ω̄`(k)
∂Π`(k)

∂Π`(k)
∂xi(k)

) (p2)

=

(
ω̄`(k)a`ji(k)

)
−

(
f `j (k)

.

( ∑mn

r=1

[
Πr(k)

]
− Π`(k)

)
( ∑mn

r=1

[
Πr(k)

] )2 .2Π`(k)

.

(
xi(k) +O f

i

(
xi(k − 1)

)
θ

f
i (k) −m

f
i (k)

)
(
σ

f
i (k)

)2

)
.

(36)

4. CONVERGENCE ANALYSIS OF THE VGL(λ) AND SNVGL(λ) APPROACHES

Because the VGL(λ) and SNVGL(λ) approaches use an n-step critic network, and

the n-step optimal control equation is spacial greedy case for the general optimal control

form, the following proofs perform with both approaches (VGL(λ) and SNVGL(λ)) as will

be demonstrated in Definition 2.

4.1. DT-HJB Equation for Rλ(k). The n-step TD leaning with Rλ(k) is given as

Rλ(k) =U
(
u(k), x(k)

)
+ γλRλ(k + 1) + γ(1 − λ)J(k + 1), (37)

where J(k) is a function approximated for the value function at k (k is a discrete time index),

and consider an affine nonlinear discrete-time (DT) dynamic system described by

x(k + 1) = f
(
x(k)

)
+ g

(
x(k)

)
u
(
x(k)

)
, (38)

x ∈ Rp is the state vector, u
(
x(k)

)
∈ Rq is the control vector, and both f

(
x(k)

)
and g

(
x(k)

)
are differential functions with an equilibrium state at x = 0 (e.g., f (0) = g(0) = 0). It

should be assumed that (38) is Lipschitz continuous and stable on a compact set Ω0 ∈ Rp.
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Figure 4. A structure for TSRNF that uses VGL(λ) and NSVGL(λ). TSRNF consists
of five layers. The first layer represents the premise layer, which has premise parameters
(mn×m,σn×m, θn×m). The second layer is the rule layer, which has mn rule nodes. The third
layer is the normalization layer to normalize the output values coming from the rule layer.
The fourth layer is the consequent layer, which has consequent parameters (amn

p×(n+1)). The
fifth layer is the output layer to obtain the final output signal. The premise and consequent
parameters are trained by using a backpropagation gradient algorithm. The number of
inputs, MFs and outputs are represented by n = 3, m = 2 and p = 2, respectively.
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Definition 1 cf [43] (stabilization system): A nonlinear system is stable on a compact

set Ω0 ∈ Rp, if a control input u
(
x(k)

)
∈ Rq exists for all initial conditions x(0) ∈ Rp such

that the state x(k) → 0 as k →∞.

The infinite-horizon cost function is given as

J(k) =
∞∑

i=k

γi−kU
(
x(i), u

(
x(i)

) )
, (39)

where the utility function is chosen as the quadratic form, such as U
(
x(i), u

(
x(i)

) )
=

xT (i)Qx(i) + uT (
x(i)

)
Ru

(
x(i)

)
, where Q = QT > 0 ∈ Rp×p and R = RT > 0 ∈ Rq×q. Then,

the objective of the function to minimize (39) is to find the admissible control action, which

is given in the following definition.

Definition 2: If u
(
x(k)

)
is continuous on a compact set Ωu ∈ Rq with u(0) = 0, and

J(k) is finite for ∀x(0) ∈ Ω0, then u
(
x(k)

)
is defined to be admissible with respect to (39).

The definition of the infinite horizon optimal cost function is

J∗(k) = inf
u
(
x(k)

)
∈Θ

{
xT (k)Qx(k) + uT (

x(k)
)
Ru

(
x(k)

)
+ γJ∗(k + 1)

}
, (40)

where Θ is a set of all infinite horizon admissible control lows. According to Bellman’s

optimality principle, the optimal cost function in a finite horizon that satisfies the DT-HJB

is

J∗(k) = min
u
(
x(k)

) {
xT (k)Qx(k) + uT (

x(k)
)
Ru

(
x(k)

)
+ γJ∗(k + 1))

}
. (41)

Then, the optimal value function for n-step TD learning is

Rλ
∗(k) = min

u
(
x(k)

) {
xT (k)Qx(k) + uT (

x(k)
)
Ru

(
x(k)

)
+ γ

(
λRλ

∗(k + 1)+

(1 − λ)J∗(k + 1)
)}
.

(42)
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The gradient on the right-hand side of (42) with respect to u
(
x(k)

)
gives the optimal control

u∗, which satisfies the first-order necessary condition

0 =
∂

∂u
(
x(k)

) (xT (k)Qx(k) + uT (
x(k)

)
Ru

(
x(k)

) )
+ γ

(∂x(k + 1)
∂u

(
x(k)

) )T

∂

∂x(k + 1)

(
λRλ

∗(k + 1) + (1 − λ)J∗(k + 1)
)
.

(43)

Thus, u∗(.) for the n-step is given as

u∗
(
x(k)

)
= −γ

2
R−1gT (

x(k)
) (
λ
∂Rλ

∗(k + 1)
∂x(k + 1) + (1 − λ)

∂J∗(k + 1)
∂x(k + 1)

)
. (44)

The optimal control policy with the n-step method is used to prove the convergence of the

VGL(λ) iteration algorithm and the SNVGL(λ) iteration algorithm as well.

4.2. Derivation of Iteration VGL(λ). The initial values of n-step cost functions

and their targets are J0(.) = 0 and Rλ0 (.) = 0, respectively. These solve the initial policy µ0

by

µ0
(
x(k)

)
=arg min

u
(
x(k)

) {
xT (k)Qx(k) + uT (

x(k)
)
Ru

(
x(k)

)
+

γ
(
λRλ0 (k + 1) + (1 − λ)J0(k + 1)

)}
.

(45)

Then, we update the Rλ(.) is updated according to the previous iteration of Rλ(.) and the

value function, J(.), to give

Rλ1 (k) = min
u
(
x(k)

) {
xT (k)Qx(k) + uT (

x(k)
)
Ru

(
x(k)

)
+ γ

(
λRλ0 (k + 1) + (1 − λ)

J0(k + 1)
)}
= xT (k)Qx(k) + µT

0
(
x(k)

)
Rµ0

(
x(k)

)
+ γ

[
λRλ0

(
f (k)+

g(k)µ0
(
x(k)

) )
+ (1 − λ)J0

(
f (k) + g

(
x(k)

)
)µ0

(
x(k)

) )]
.

(46)
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For I = 1, 2, . . ., the iteration values for µI and RλI are given as

µI(
(
x(k)

)
) =arg min

u
(
x(k)

) {
xT (k)Qx(k) + uT (

x(k)
)
Ru

(
x(k)

)
+ γ(

λRλI (k + 1) + (1 − λ)J0
I (k + 1)

)}
,

(47)

and

RλI+1(k) = min
u
(
x(k)

) {
xT (k)Qx(k) + uT (

x(k)
)
Ru

(
x(k)

)
+ γλRλI (x(k + 1))+

γ(1 − λ)JI(k + 1)
}

=xT (k)Qx(k) + µT
I
(
x(k)

)
RµI

(
x(k)

)
+ γλRλI (k + 1) + γ(1 − λ)JI(k + 1),

(48)

respectively, where I is the iteration index of the action policy as well as the value func-

tion and its target, while k is the time index of the state and the control for system trajectories.

4.3. Convergence of Iterative VGL(λ) Algorithm. The proofs that show Rλi to

the optimal valued function with I → ∞ leads to JI → J∗ with I → ∞ are presented.

Moreover, This paper proves that µI → u∗ as I →∞.

Lemma 1: Let vI be any arbitrary sequence of control policies, and µI(.) has already been

defined in (47). Let Ψλ
I be

Ψ
λ
I+1(k) =xT (k)Qx(k) + vT

I
(
x(k)

)
RvI

(
x(k)

)
+ γλΨλ

I

(
f (k) + g

(
x(k)

)
vI

(
x(k)

) )
+ γ(1 − λ)JI

(
f (xk) + g

(
x(k)

)
vI

(
x(k)

) )
,

(49)

RλI is defined in (48). If Rλ0 = Ψ
λ
0 = 0, then RλI+1(k) ≤ Ψ

λ
I+1(k), ∀I.

Proof: Because RλI+1(k)minimizes the right-hand side of (48) with respect to µI
(
x(k)

)
, and

because Rλ0 = Ψ
λ
0 = J0 = 0, then by induction it follows that RλI+1(k) ≤ Ψ

λ
I+1(k),∀I.

Lemma 2: Let RλI (.) be defined as in (47); if the system is controllable, then there is an

upper bound of Y such that RλI (.) ≤ Y , ∀I.
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Proof: Let ξI
(
x(k)

)
be a sequence of admissible control policies, and J0(.) = Rλ0 (.) =

J0(.) = Θλ0(.) = 0, where Jλk is defined and updated as in (48), and JI is defined and updated

by (To simplify, U
(
x(k), ξI

(
x(k)

) )
is denoted as U(k, ξI

(
k
)
))

Θ
λ
I+1(k) =U

(
x(k), ξI

(
x(k)

) )
+ γ

(
λΘλi (k + 1) + (1 − λ)JI(k + 1)

)
, (50)

where U
(
x(k), ξI

(
x(k)

) )
= xT (k)Qx(k)+ ξT

I

(
x(k)

)
RξI

(
x(k)

)
. Equation (50) expands to be

Θ
λ
I+1(k) =U(k, ξI

(
k
)
) + γ

[
λ

(
U(k + 1, ξI−1

(
k + 1

)
) + γ

[
λ

Θ
λ
I−1(k + 2) + (1 − λ)JI−1

(
k + 2

) ]
+ (1 − λ)Ji(k + 1)

)]
.

(51)

By expanding further, the following is obtained:

Θ
λ
I+1(k) =U(k, ξI

(
k
)
) + γ

[
λ

(
U(k + 1, ξI−1(

(
k + 1

)
)+

γ
[
U(k + 2, ξI−2

(
k + 2

)
) + γ

[
λΘλI−2(k + 3) + (1 − λ)

JI−2(k + 3)
]
+ (1 − λ)JI−1(k + 2)

]
+ (1 − λ)JI(k + 1)

)]
,

=U(k, ξI
(
k
)
) + (γλ)U(k + 1, ξI−1

(
k + 1

)
) + (γλ)2

U(k + 2, ξI−2
(
k + 2

)
) + (γλ)3ΘλI−2(k + 3) + (γλ)2γ

(1 − λ)JI−2(k + 3) + (γλ)γ(1 − λ)JI−1(k + 2) + γ

(1 − λ)JI(k + 1).

(52)

With further expanding, we obtain
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Θ
λ
I+1(k) =U(k, ξI

(
k
)
) + (γλ)U(k + 1, ξI−1

(
k + 1

)
) + (γλ)2

U(k + 2, ξI−2
(
k + 2

)
) + . . . + (γλ)IU(k + I, ξ0

(
k + i

)
)+

(γλ)I+1
Θ
λ
0(k + I + 1) + (γλ)Iγ(1 − λ)J0(k + I + 1)+

(γλ)I−1γ(1 − λ)J1(k + I) + . . . + (γλ)γ(1 − λ)

JI−1(k + 2) + γ(1 − λ)JI(k + 1),

(53)

where Θλ0(k + I + 1) = J0(k + I + 1) = 0, because Θλ0(.) = J0(.) = 0. Thus,

Θ
λ
I+1(k) =

I∑
j=0

[
(γλ) jU(k + j, ξI− j

(
k + j

)
)
]
+ γ(1 − λ)

I−1∑
j=0

[
(γλ) j JI− j(k + j + 1)

]
.

(54)

From (4) that J(υ) = ∑n
l=0

[
γlU(υ + l, u

(
υ + l

)
)
]
with υ = k + j + 1 and u(.) = ξ(.) at the

same iteration trajectory number (n = I − j), the ΘλI+1(k) is

Θ
λ
I+1(k) =

I∑
j=0

[
(γλ) jU(k + j, ξI− j

(
k + j

)
)
]
+ γ(1 − λ)

I−1∑
j=0

[
(γλ) j

I− j∑
l=0

[
γlU(k + j + 1 + l, ξl

(
k + j + 1 + l

)
)
] ]
.

(55)

Because Definition 1 shows that ξI is an admissible control policies and x(k) → 0

as k →∞, there exists an upper bound of Y such that
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∀I : ΘλI+1(xk) ≤ lim
I→∞

(
I∑

j=0

[
(γλ) j

(
xT (k + j)Qx(k + j)+

ξT
I− j

(
x(k + j)

)
RξI− j

(
x(k + j)

) )]
+ γ(1 − λ)

I−1∑
j=0

[
(γλ) j

I− j∑
l=0

[
γl

(
xT (k + j + 1 + l)Q

x(k + j + 1 + l) + ξT
l
(
x(k + j + 1 + l)

)
Rξl

(
x(k + j + 1 + l)

) )] ] )
.

= Y .

(56)

According to Lemma 1, µI(x(k)) = ξI
(
x(k)

)
and Ψλ

I+1(k) = Θ
λ
I+1(k). Therefore, RλI+1(k) ≤

ΘλI+1(k) ≤ Y , ∀I can be obtained.

Theorem 1: Consider µI and RλI as defined in (47), and (48), respectively. Then, RλI

is non-decreasing such that RλI ≤ RλI+1, ∀I.

Proof: Define µI and RλI from (47) and (48), respectively. A new n-step value function ΓλI
is defined by

Γ
λ
I+1(k) =xT (k)Qx(k) + µT

I
(
x(k)

)
RµI

(
x(k)

)
+ γλΓλI (k + 1) + γ(1 − λ)JI(k + 1). (57)

Mathematical induction illustrates that ΓλI ≤ RλI+1 as follows: For I = 0, Rλ1 (k) =

xT (k)Qx(k)+µT
0
(
x(k)

)
Rµ0

(
x(k)

)
+γ

(
λRλ0 (k+1)+(1−λ)J0(k+1)

)
; with Γ0

0 = J0 = Rλ0 = 0.

Then,

Rλ1 (k) − Γ
λ
0 (k) = xT (k)Qx(k) + µT

0
(
x(k)

)
Rµ0

(
x(k)

)
≥ 0. (58)
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Thus, Rλ1 (k) ≥ Γ
λ
0 (k). A similar procedure is used, and assuming it reaches and holds for

I − 1, then RλI (k) ≥ Γ
λ
I−1(k). For I, considering that

RλI+1(k) =xT (k)Qx(k) + µT
I
(
x(k)

)
RµI

(
x(k)

)
+ γ

(
λRλI (k + 1) + (1 − λ)JI(k + 1)

)
, (59)

and

Γ
λ
I (k) =xT (k)Qx(k) + µT

I
(
x(k)

)
RµI

(
x(k)

)
+ γ

(
λΓλI−1(k + 1) + (1 − λ)JI−1(k + 1)

)
,

(60)

the following is obtained:

RλI+1(k) − Γ
λ
I (k) =γ

(
λRλI (k + 1) + (1 − λ)JI(k + 1)

)
−

γ
(
λΓλI−1(k + 1) + (1 − λ)JI−1(k + 1)

)
.

(61)

With further rearranging and applying (4) so that J(υ) = ∑n
l=0

[
γlU(υ + l, u

(
υ + l

)
)
]
with

υ = k + 1 and u(.) = µ(.) at similar iteration trajectories, it can be determined that

RλI+1(k) − Γ
λ
I (k) =γ

(
λ
(
RλI (k + 1) − ΓλI−1(k + 1)

)
+

(1 − λ)
(
JI(k + 1) − JI−1(k + 1)

))
,

=γ

(
λ
(
RλI (k + 1) − ΓλI−1(k + 1)

)
+

(1 − λ)
( I∑

l=0

[
γlU(k + 1 + l, µl

(
k + 1 + l

)
)
]
−

I−1∑
l=0

[
γlU(k + 1 + l, µl

(
k + 1 + l

)
)
] ))

.

(62)

Because

1. RλI (k) ≥ Γ
λ
I−1(k),
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2.
∑I

l=0

[
γlU(k + 1+ l, µl

(
k + 1+ l

)
)
]
= γ IU(k + 1+ l, µI

(
k + 1+ l

)
)+∑I−1

l=0

[
γlU(k +

1 + l, µl
(
k + 1 + l

)
)
]
,

3. U(k + 1+ l, µl
(
k + 1+ l

)
) = xT (k + 1+ l)Qx(k + 1+ l)+ µT

l (k + 1+ l)Rµl(k + 1+ l),

then RλI+1(k) − Γ
λ
I (k) ≥ 0. Because RλI+1(k) ≥ Γ

λ
I (k) and Γ

λ
I (k) ≥ RλI (k) (Lemma 1), then

RλI+1(k) ≥ RλI (k).

Theorem 2: Define limI→∞ RλI (k) = Rλ∞(k) as the infinite limits of the n-step value func-

tions, where RλI is defined as in (48). With controllable system states and Rλ0 (.) = J0(.) = 0

, RλI is limited by J∗(k), where J∗ is described in (40). That is, Rλ∞(k) = J∗.

Proof: let ζI
(
x(k)

)
be an arbitrary sequence of admissible control policies, and let

vλ0 (.) = J0(.) = Λλ0(.) = 0, where RλI is defined and updated as in (48). ΛλI+1 is updated by:

Λ
λ
I+1(k) =xT (k)Qx(k) + ζT

I
(
x(k)

)
RζI

(
x(k)

)
+ γ

(
λ

Λ
λ
I (k + 1) + (1 − λ)JI(k + 1)

)
.

(63)

From Lemma 1 and Lemma 2, it can be concluded that RλI+1(k) ≤ Λ
λ
I+1(k) ≤ Y , ∀i.

By defining limI→∞ΛλI (k) = Λ
λ
∞(k), and it can be obtained that Rλ∞(k) ≤ Λλ∞(k) ≤ Y for

all admissible control policy sequences. If ζ
(
x(k)

)
= u∗

(
x(k)

)
with the results of Lemma

2, then

Y = lim
I→∞

(
I∑

j=0

[
(γλ) j

(
xT (k + j)Qx(k + j) + ξT

I− j
(
x(k + j)

)
RξI− j

(
x(k + j)

) )]
+ γ(1 − λ)

I−1∑
j=0

[
(γλ) j

I− j∑
l=0

[
γl

(
xT (k

+ j + 1 + l)Qx(k + j + 1 + l) + ξT
l
(
x(k + j + 1 + l)

)
Rξl

(
x(k + j + 1 + l)

) )] ] )
,

(64)



292

such that Y ≥ J∗(k), where J∗ is described in (40). Therefore, from Lemma 2 with

Rλ∞(k) ≤ Λλ∞(k) ≤ Y , it is obtained that Rλ∞(k) ≤ J∗(k). Because J∗(k) is the infimum

of the cost function that derives from all other admissible control sequences, this paper

concludes that J∗(k) ≤ Rλ∞(k). This implies that J∗(k) ≤ Rλ∞(k) ≤ J∗(k), and hence,

Rλ∞(k) = J∗(k). Because Rλ∞(k) is the target value that is used to train the value function to

yield J∞(k), then JI(k) → J∗(k) as I →∞.

According to Theorem 2, RλI (k) → J∗(k) as I → ∞. Because gλI (k) =
∂RλI (k)
∂x(k) and

gI(k) =
∂JI(k)
∂x(k) , it can be concluded that gλI (k) and gI(k) → g∗(k) as I → ∞, where g∗ is

the gradient of the optimum value function.

Corollary 1: µI
(
x(k)

)
and RλI are defined as in (47) and (48), respectively. If x(k) is

controllable, then the RλI forces the controller (neuro-fuzzy actor network) to converge to

u∗
(
x(k)

)
as I → ∞ (i.e., limI→∞ µI

(
x(k)

)
= u∗

(
x(k)

)
). Similar conclusions can apply to

gradients of RλI (k) and JI(k) with respect to x(k) to yield gλI (k) and gI(k) with I → ∞,

respectively.

5. COMPACTINGTHENF-VGL(λ)ANDNF-SNVGL(λ) ITERATIVEALGORITHM
WITH RNF AND TSRNF STRUCTURES

In this section, the value iterative ADP algorithm based on NF-VGL(λ) and NF-

SNVGL(λ) is performed. Let ω̂c in Ĝ
(
x(k), ω̂c

)
(see Fig. (1) and Fig. (2)) represent a

combination of premise and consequent parameters, which is denoted as ω̂{p}c and ω̂{c}c ,

respectively. Because the inputs of the critic network in the VGL (or DHP) approach has

the same number of outputs, which is equal to the number of states (p), the inputs and

outputs for the RNF and TSRNF structures are equal to p (p = n = p). In other words,

ω̂
{p}
c =

[
m,σ, θ

]
p×3m

for both RNF and TSRNF structures. ω̂{c}c =
[
ω

]
p×mp

for RNF, while

ω̂
{c}
c =

[
a
]
p×mp×(p+1)

for TSRNF. Also, let ω̂a in Â
(
x(k), ω̂a

)
(see Fig. (1)) represents a

combination of ω̂{p}a and ω̂{c}a for premise and consequent parameters, respectively. Because
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the inputs of the actor network are equaled to p and the outputs are q (the number of control

signals), the inputs and outputs for the RNF and TSRNF structures are equal to p and q,

respectively. In other words, ω̂{p}a =
[
m,σ, θ

]
p×3m

for both RNF and TSRNF structures

(n = p). ω̂{c}c =
[
ω

]
q×mp

for RNF (p = p), while ω̂{c}c =
[
a
]
q×mp×(p+1)

for TSRNF (p = p).

5.1. The Value-Iteration-based NF-VGL(λ).

5.1.1. The n-step Critic Network. The forward propagation output signal for the

critic network is expressed for RNF as:

y j(k) =
mp∑̀
=1

[
ω j`

p∏
i=1

[
O
α`i
i

(
xi(k)

) ] ]
, j = 1, . . . ,p, (65)

and for TSRNF as:

y j(k) =
1∑mp

r=1

[∏p

i=1

[
O
αri
i

(
xi(k)

) ] ] mp∑̀
=1

[
p∑

i=1

[
a`ji xi(k)

]
+ a`j(p+1)×

p∏
i=1

[
O
α`i
i

(
xi(k)

) ] ]
,

j = 1. . . . ,p,

(66)

Thus, ĝI(k) = [y1(k), y2(k), . . . , yp(k)]TI , where I is the iteration index and k is the time

index. With the quadratic form of the utility function, U
(
x(k), µI

(
x(k)

) )
= xT (x)Qx(k) +

µT
I

(
x(k)

)
RµI

(
x(k)

)
and (38) for the system state equation, the target value, which is defined

in (10) with the general U(.), is given by

gλI (k) =2Qx(k) + 2
[∂µI−1

(
x(k)

)
∂x(k)

]T
RµI−1

(
x(k)

)
+

[
∂ f

(
x(k), µ̂I−1

(
x(k)

) )
∂x(k) +

∂ f
(
x(k), µ̂I−1

(
x(k)

) )
∂ µ̂I−1

(
x(k)

)
∂ ÂI−1

(
x(k), ω̂a

)
∂xk

]T (
γλgλI−1(k + 1) + γ(1 − λ)ĝI−1(k + 1)

)
,

(67)
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where (25) is used to obtain
∂ ÂI−1

(
x(k), ω̂a

)
∂xk

for RNF, while (36) is used for TSRNF. The

premise weight matrix (ω̂{p}c ) and consequent weight matrix (ω̂{c}c ) are tuned by backprop-

agating the prediction error of the critic network, which is given as:

ecI(k) = gλI (k) − ĝI(k). (68)

The objective function for the ĜcI
(
x(k), ω̂c

)
network is to minimize EcI(k) = 0.5

(
ecI(k)

)2

by updating the value for the weights (ω̂c) according to the gradient descent algorithm inside

the local inner-loop, which is given by:

ω̂
{p}
cI = ω̂

{p}
cI + `c

∂EcI(k)
∂ω̂
{p}
cI

= ω̂
{p}
cI − `c

∂ĜcI
(
x(k), ω̂c

)
∂ω̂
{p}
cI

ecI(k),

ω̂
{c}
cI = ω̂

{c}
cI + `c

∂EcI(k)
∂ω̂
{c}
cI

= ω̂
{c}
cI − `c

∂ĜcI
(
x(k), ω̂c

)
∂ω̂
{c}
cI

ecI(k),
(69)

where `c is the critic learning rate.

5.1.2. The Actor Network. The forward propagation output signal for the RNF

actor network is represented by (65), while (66) is the forward propagation equation for the

TSRNFactor networkwith j = 1, . . . , q. Therefore, µ̂I−1
(
x(k)

)
= [y1(k), y2(k), . . . , yq(k)]TI−1.

A target action vector is calculated with an n-step critic network as

ea(I−1)(k) =2Rµ̂I−1
(
x(k)

)
+ γ

[
∂ f

(
x(k), µ̂I−1

(
x(k)

) )
∂ µ̂I−1

(
x(k)

) ]T

×
(
λgλI−1(k + 1)+

(1 − λ)λĝI−1(k + 1)
)
.

(70)
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The objective function for this network is minimizing the actor error, which is given by

using the gradient descent algorithm, which is obtained by

ω̂
{p}
a(I−1) =ω̂

{p}
a(I−1) − `a

∂ Â(I−1)
(
x(k), ω̂a

)
∂ω̂
{p}
a(I−1)

ea(I−1)(xk),

ω̂
{c}
a(I−1) =ω̂

{c}
a(I−1) − `a

∂ Â(I−1)
(
x(k), ω̂a

)
∂ω̂
{c}
a(I−1)

ea(I−1)(xk),
(71)

where `a is the actor learning rate.

5.2. The Value-Iteration-based NF-SNVGL(λ).

5.2.1. The n-step Critic Network. The estimated output of the gradient value

function (ĝI(k) = [y1(k), y2(k), . . . , yp(k)]TI ) is obtained in a manner that is similar to (65)

and (66) by using RNF and TSRNF, respectively. The target value, which is defined in (16)

is represented with the quadratic form of the utility function by

gλI (k) =2Qx(k) +
[
∂ f

(
x(k), µI−1

(
x(k)

) )
∂x(k)

]T (
γλgλI−1(k + 1) + γ(1 − λ)ĝI−1(k + 1)

)
.

(72)

The premise weight matrix (ω̂{p}c ) and consequent weight matrix (ω̂{c}c ) are tuned by back-

propagating the prediction error of the critic network as in (68) and (69).

5.2.2. The n-step Optimal Control. The optimal control equation, which is de-

fined in (14) with the quadratic form of the utility function and the affine type of state

equation, is given by

µI−1
(
x(k)

)
= − γ

2
R−1gT (

x(k)
) (
λgλI−1(k + 1) + (1 − λ)ĝI−1(k + 1)

)
. (73)

Then, the actor error is calculated by

ea(I−1)(k) = µI−1
(
x(k)

)
− µ̂I−1

(
x(k)

)
. (74)
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The objective function for this network is minimizing the square of the actor error, which

is given by Ea(I−1)(k) = 0.5
(
ea(I−1)(k)

)2
. The actor weights are updated by minimizing

Ea(I−1)(k) according to the gradient descent algorithm as in (71).

6. SIMULATION STUDY

To examine this paper’ approaches, a complex nonlinear model is used, which is

a two-wheeled dynamic nonholonomic mobile robot model. The performance results of

VGL(λ) are compared with DHP. Combining RNF and TSRNF structures with VGL(λ) is

another test to show the robust structure appropriate for VGL(λ). Furthermore, VGL(λ) and

SNVGL(λ) are evaluated with various ambient noises (unmodeled bounded disturbances

and left/right wheel friction). To demonstrate the effect of the recurrent parameter (θ) in

both RNF and TSRNF structures, two tables are presented including mean-squared-errors

(MSEs). In this paper, MSE is calculated by taking the average of the utility function (U(.))

for two states during the iterations.

6.1. TheNonlinearDynamicModel ofMobileRobot. Adifferential-drivemobile

robot contains two independently driven wheels mounted on the left and right of its chassis

at the same axis, and a castor wheel (free rotating wheel) mounted at the front for balancing

the mobile robot. An inertial Cartesian frame represents the position of the mobile robot,

while q = [xc, yc, θ]T is the set of coordinates for the center of mass of the robot and the

robot’s orientation with respect to the Cartesian frame. The two independent driving wheels

are provided with the necessary torque for generating a left angular velocity (wL) and a right

angular velocity (wR), which in turn generate a linear velocity (v1) and angular velocity (v2)

for the mobile robot as follows:


v1

v2

 =

0.5r̄ −0.5r̄

r̄
2b

− r̄
2b



wR

wL

 , (75)
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where r̄ is the wheel radius and b is half of the robot width. The different forces for the

mobile robot mechanical motion are considered in the literature for the dynamic model

but not the kinematic model. The kinematic model is only considered for the motion. As

stated in [58] and [77] - [79], the dynamic model of the mobile robot has n̄ dimensional

configuration space subjected to r constraints as described by

M(q) Üq + C(q, Ûq) Ûq + F( Ûq) + G(q) + τd = B(q)u + AT (q)Ψ, (76)

with A(q) Ûq = 0 as a constrained kinematic wheel, where q ∈ Rn̄ is a coordinate vector,

M(q) ∈ Rn̄×n̄ is a is a symmetric positive definite inertia matrix, C(q, Ûq) ∈ Rn̄×n̄ is the

centripetal and Coriolis matrix, F( Ûq) ∈ Rn̄ is a surface friction force vector, G(q) ∈ Rn̄

is a gravity vector, τd ∈ Rn̄ is a bounded unknown disturbance, B(q) ∈ Rn̄×q is an input

transformation matrix, u ∈ Rq is the input torque vector, A(q) ∈ Rr×n̄ is the full rank matrix

associated with the constraints, and Ψ ∈ Rr is the Lagrange multiplier (constraint forces)

vector. In this case study, there are two control inputs, which are a left torque (τL) and a

right torque (τR). Since the system does not change in vertical position and has a constant

value for the potential energy, G(q) is set to zero. Using Lagrange multipliers to reduce

the dynamic model from n̄ to p = n̄ − r , (76) is pre-multiplied by spanning the linear

independent null space of the A(q) Ûq matrix, (which is denoted as the Jacobian matrix of

Sc(q) ∈ Rn̄×p). In this case, a kinematic equation is given as follows:

Ûq = Sc(q)v, (77)

where

Ûq =


Ûxc

Ûyc

Ûθ


, Sc(q) =


cos(θ) −dsin(θ)

sin(θ) dcos(θ)

0 1


, v =


v1

v2

 ,
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and d is the center of gravity. The final affine dynamic model is obtained from the kinematic

equation (77) as follows: By taking the derivative of (77)

Üq = ÛSc(q)v + Sc(q)Ûv. (78)

Substitute (75), (77) and (78) into (76) to obtain

Ûv = −M̄−1(q)
(
V̄(q, Ûq)v + F̄( Ûq) + τ̄d

)
+ M̄−1(q)τ̄. (79)

M̄(q) is an invertible matrix:

M̄(q) =


mT + 2

Ib
YY

r̄2 0

0 mT d2 + IT + 2Ib
YY

b2

r̄2 − 4mwd2

 ,

Sc(q) =


0 −dv2(mT − 2mw)

dv2(mT − 2mw) 0

 ,

τ̄d =


τ̄R

τ̄L

 , F̄( Ûq) =
1
r̄


fv(wR + wL) + fc(∆(wR) + ∆(wL))

b fv(wR − wL) + b fc(∆(wR) − ∆(wL))

 ,

(80)

and

τ̄ = B̄τ =


0.5r̄ −0.5r̄

r̄
2b

− r̄
2b



τR

τL

 , (∆(.) is a sigmoid function). (81)

All mobile robot dynamic parameters are defined in Table 2. A noisy environ-

ment was assumed and therefore unknown bounded frictions ( fv and fc) and unstructured

disturbances for the left wheel (τ̄L) and the right wheel (τ̄R) were added.
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Table 2. Parameters of the dynamic mobile robot.
% is various random values to test the dynamic model performance in different frictions

Symbol Description Value

mT Mass of the chassis 10[kg]
mw The mass of each wheel 2[kg]
r̄ The wheel radius 0.05[m]
b Half of the robot width 0.1[m]
d The center of gravity offset form the rear axle 0.1[m]

Ib
YY The wheel moment of inertial 1[kg.m2]
IT The platform total moment of inertia 5[kg.m2]
fv The viscous friction coefficient 5 × %[N .m.s]
fc The Coulomb friction coefficient 8 × %[N .m.s]

6.2. Simulation Results. In this case study, the first state (x1(k)) and the second

state (x2(k)) are the linear velocity (v1) and the angular velocity (v2), respectively, whereas

x(k) = v(k) = [x1(k) x2(k)]T = [v1(k) v2(k)]T ∈ R2 is the state vector (p = 2). The

µ
(
x(k)

)
= [τR τL]T ∈ R2 is the control action (q = 2). The external instantaneous cost

function, which is also used for calculating the MSE for evaluation, is

U
(
x(k), µ

(
x(k)

) )
=
[
x(k) − xd(k)

]T
Q

[
x(k) − xd(k)

]
+ µT (

x(k)
)
Rµ

(
x(k)

)
, (82)

where xd(k) = [xd1(k) xd2(k)]T is a desired velocity state vector, which takes constant

values for all finite horizon time; xd1 is a desired value of the linear velocity state for the

mobile robot, while xd2 is the desired angular velocity state; Q and R are 2-D identity

matrices. In this work, xd(k) = [3 6.5]T for all time steps in order to make a circle

trajectory after applying the kinematic equation (77). The discount factor (γ) is 0.95. The

number of MFs for each input for both critic and actor networks, which is used in both RNF

and TSRNF structures, is 12 (m = 12); therefore, the number of rules is mp = 122 = 144.

The initial learning rate parameters are set to `c = 0.001 for the critic networks and
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`a = 0.001 for the actor network. The training for each iteration of either network will be

terminated if the error drops under 10−6 or if the number of iterations meets the stopping

threshold for the internal cycle (30 iterations for actor and critic networks). The initial state

is x(0) = [5 5]T .

The first evaluation is the effectiveness of λ value to show the comparison between

VGL(0) (or DHP) and VGL(λ). The RNF structure is selected to perform the critic and

actor networks for five independent runs. Each run has 12000 iterations to train the ADP

algorithm for 100 time steps each. The friction coefficients are set to 5 for fv and 8 for fc.

Both fv and fc multiply by %. % is a parameter that multiplies by a random one digit value,

which is applied during each time step over the iterations. The unstructured disturbances

are set to 8 for τ̄R and τ̄L multiplying by %. In this study case, % is set to 0.001. Fig. 5

illustrates the average MSEs for the two velocity states during the iterations for five runs.

RNF-VGL(λ = 0.98) is more efficient and faster to learn than RNF-VGL(λ = 0). [59], [58],

[55] illustrated how λ value performs better for VGL with lambda than DHP when using

the feed feedforward neural network. The input universes of discourse for the two velocity

states are presented in Fig. 6 and Fig. 7 for the critic network and the actor network,

respectively. Twelve GMFs (m = 12) are distributed between -20 and 30 for the input

universe of discourse. The initial recurrent parameters (θ) for critic and actor networks

are randomly chosen within [-1.2, 1.2]. The initial output parameters, ω for RNF and a

for TSRNF are randomly selected within [0.3 -0.3]. For one selected run, Fig. 6 - Fig.

13 show the initial and the finial learning distribution of GMFs, and they also show the

learning θ during training. The initial distribution for GMFs for the two input velocity states

to the critic network in RNF-VGL(0) is illustrated in Fig. 6, and it also shows the GMFs

for the final shape after learning in the last iteration (12000th). Fig. 7 illustrates the initial

and final distribution for GMFs for the two input velocity states using the actor network in

RNF-VGL(0). Fig. 8 demonstrates the learning of twelve θ recurrent parameters during all
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Figure 5. Average of MSEs for the two states for comparisons RNF-VGL(λ = 0) and
RNF-VGL(λ = 0.98) with an impact on disturbances and frictions. Five independent runs
are taken. The shaded region represents the runs, while the solid line represents the mean
of runs. RNF-VGL(λ = 0.98) allows for faster learning than RNF-VGL(λ = 0).

Figure 6. Initial and final learned Gaussian membership functions (GMFs) for both input
states (linear and angular velocities) to the critic network in RNF-VGL(0).
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Figure 7. Initial and final learned GMFs for both linear and angular velocity input states to
the actor network in RNF-VGL(0).

of the total training steps (12000 iteration with 100 time steps) in the critic network for both

of the input states in RNF-VGL(0). Fig. 9 demonstrates learning θ during the total training

steps for the actor network in RNF-VGL(0).

Fig. 10 - Fig. 13 is similar to Fig. 6 - Fig. 9 except for RNF-VGL(λ). Obviously,

most GMFs in both critic and actor networks train within [-10, 10] of the universe of

discourse for both input states for RNF-VGL(0) andRNF-VGL(λ) approaches. Furthermore,

most θ parameters in RNF-VGL(λ) reach stable values faster than they do in RNF-VGL(0)

The second evaluation is a comparison between the VGL(λ) and SNVGL(λ) ap-

proaches. The RNF structure is used for both approaches. The initial parameters for

the θ, ω, a, the number of rules, impact of disturbances and frictions with % value, and

GNFs distribution are set similar to the previous test. Fig. 14 illustrates the average

MSEs for the two velocity states during the iterations for five runs using RNF-VGL(λ) and
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Figure 8. Deviation of the recurrent parameters (θ) for both input velocity states from the
initialized values of the critic network of RNF-VGL(0) during all of the total training steps,
which is 12000 iteration with 100 time steps each.
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Figure 9. Deviation of the recurrent parameters (θ) for both input velocity states from the
initialized values of the actor network of RNF-VGL(0) during the total training steps.
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Figure 10. Initial and final learned GMFs for both linear and angular velocity input states
to the actor network in RNF-VGL(λ).

Figure 11. Initial and final learned GMFs for both input states to the actor network in
RNF-VGL(λ).
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Figure 12. Deviation of θ for both input velocity states from the initialized values of the
critic network of RNF-VGL(λ) during all the total training steps.
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Figure 13. Deviation of θ for both input velocity states from the initialized values of the
actor network of RNF-VGL(λ) during the total training steps.
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RNF-SNVGL(λ). RNF-SNVGL(λ) is more efficient and faster to learn than RNF-VGL(λ).

However, RNF-SNVGL(λ) is faster than RNF-VGL(λ) at reaching a stable performance.

The stable MSE value starts at iteration number 45 for RNF-SNVGL(λ), while for RNF-

SNVGL(λ), the stable MSE ranging from iteration number 280 as demonstrated in Fig. 15.

The MSE value starting at iteration number 280 to 12000 using RNF-VGL(λ) is smaller

than RNF-SNVGL(λ) (as discussed in Table 3). Fig. 15 shows the circular trajectory

in the second, twentieth, three-hundredth, and 12000th iterations. Fig. 16 presents the

torques for the right and left mobile robot wheels during the iterations for RNF-VGL(λ)

and RNF-SNVGL(λ) for five independent runs. As shown in the enlarged figures for both

torques, RNF-SNVGL(λ) reaches stability faster than RNF-VGL(λ). Fig. 17 demonstrates

the convergence of the gradient of the cost functions during the iterations for the states of

RNF-VGL(λ) and RNF-SNVGL(λ) in one selected run. The convergence of the gradient of

the cost functions (gλI (k) and gI(k)) to the optimal cost function indicates the effectiveness

of the iterative RNF-VGL(λ) and RNF-SNVGL(λ).

For further comparison, the RNF-VGL(λ) and RNF-SNVGL(λ) are examined under

different noise levels as shown in Table 3. Table 3 summarizes the simulation results

of average MSEs through 12000 iterations with 100 time steps. Two types of MSEs are

presented in Table 3, which are all-iteration (All Iter) and final-iteration (Final Iter). The

all-iteration is the average of 12000 MSEs, while the final-iteration is the MSE at the last

iteration (12000th). MSEs for the final iteration values demonstrate that:

1. RNF-SNVGL(λ) has a better performance than the RNF-VGL(λ) in free or small

amounts of noise impact (% = 0.0001) with and without θ parameters, but the

performance becomes worse when the noise is gradually increased.

2. RNF-VGL(λ) with θ parameters is more efficiency than without θ parameters, with

an improvement of 21.178% in a decreasing percentage format of MSEs over all %

values.
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Figure 14. Average of MSEs for the two states for comparisons: RNF-VGL(λ) and RNF-
SNVGL(λ) with % = 0.001. Five independent runs are taken. The shaded region represents
the runs, while the solid line represents the mean of the runs. RNF-SNVGL(λ) learns faster
a faster learning than RNF-VGL(λ).

3. RNF-SNVGL(λ) with θ parameters is more efficient than without θ parameters, with

an improvement of 11.778% in a decreasing percentage format of MSEs over all %

values.

4. The overall improvementwith θ parameters for bothRNF-VGL(λ) andRNF-SNVGL(λ)

is 15.421% in a decreasing percentage format of MSEs over all % values.

The MSEs for the all-iteration values show that RNF-SNVGL(λ) requires fewer iterations

than RNF-SNVGL(λ) to reach stable training when considering the first pointof the previous

point. The third evaluation is a comparison between the VGL(λ) and SNVGL(λ) approaches

with a TSRNF structure. The initial parameters for the θ, ω, a, the number of rules, impact

of disturbances and frictions with % value, and the GNFs distribution set is similar to the

previous test. Fig. 18 illustrates the average MSEs for the two velocity states during the

iterations for five runs for TSRNF-VGL(λ) and TSRNF-SNVGL(λ). TSRNF-SNVGL(λ)
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Figure 15. The X-Y circle trajectories for RNF-VGL(λ) and RNF-SNVGL(λ) with % =
0.001. The mean of five independent runs is shown. RNF-SNVGL(λ) is faster, but RNF-
VGL(λ) performs better and improves with long training iterations.
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Figure 16. The average of the right and left input torques for the dynamic mobile robot for
RNF-VGL(λ) and RNF-SNVGL(λ) with % = 0.001. The shaded region represents the runs,
while the solid line represents the mean of the runs.
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Figure 17. The average gradient of the two input velocity states of the value function
trajectories for the critic network in both RNF-VGL(λ) and RNF-SNVGL(λ).
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Table 3. MSE values for RNF-VGL(λ) and RNF-SNVGL(λ) with and without θ recurrent
parameters at various noise levels (different % values). All-iteration (All Iter) is the average
of 12000 MSE, while final-iteration (Final Iter) is the MSE at the last iteration (12000th).

MSE

RNF Structure for Critic and Actor Networks
θ θ = 0

RNF-VGL(λ) RNF-SNVGL(λ) RNF-VGL(λ) RNF-SNVGL(λ)
All Iter Final Iter All Iter Final Iter All Iter Final Iter All Iter Final Iter

%

0.0001 2.2758 0.0032 0.0056 0.0022 0.3578 0.0039 0.0051 0.0027
0.001 1.6735 0.0058 0.0193 0.0185 0.4052 0.0062 0.0196 0.0197
0.01 6.5847 0.0065 0.0220 0.0216 0.4206 0.0069 0.0216 0.0218
0.1 1.0404 0.0071 0.0270 0.0271 0.2484 0.0096 0.0213 0.0237
1 0.3749 0.0403 0.0468 0.0421 0.1685 0.0532 0.0562 0.0585

is more efficient and faster to learn than RNF-VGL(λ). However, TSRNF-SNVGL(λ) is

faster than TSRNF-VGL(λ) at reaching a stable performance. The stable MSE value starts

at iteration number 25 for TSRNF-SNVGL(λ), while for TSRNF-SNVGL(λ), the stable

MSE starts at iteration number 45 as demonstrated in Fig. 19. Fig. 19 shows the circular

trajectory in the second, twentieth, three-hundredth, and 12000th iterations. Fig. 20 presents

the torques for the right and left mobile robot wheels during iterations for TSRNF-VGL(λ)

and TSRNF-SNVGL(λ) for five independent runs. As shown in enlarged figures for both

torques, the TSRNF-SNVGL(λ) is faster than TSRNF-VGL(λ) to reach stable. Fig. 21

demonstrates the convergence of the gradient of the cost functions during iterations for the

two states of TSRNF-VGL(λ) and TSRNF-SNVGL(λ) in one selected run. The convergence

of the gradient of the cost functions (gλI (k) and gI(k)) to the optimal cost function indicates

the effectiveness of the iterative TSRNF-VGL(λ) and TSRNF-SNVGL(λ).

TSRNF-VGL(λ) and TSRNF-SNVGL(λ) are examined under different noise levels

as shown in Table 4 for the two types of MSEs (all-iteration and final-iteration). MSEs for

the final iteration values demonstrate that:

1. TSRNF-SNVGL(λ)performs better than TSRNF-VGL(λ) in a free or small amount

of noise impact (% = 0.0001) with and without θ parameters, but the performance

become worse when the % value is increased gradually.
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Figure 18. The average of the MSEs for comparing the two states of TSRNF-VGL(λ) and
TSRNF-SNVGL(λ) with % = 0.001. Five independent runs are taken. The shaded region
represents the runs, while the solid line represents the mean of the runs. TSRNF-SNVGL(λ)
learns faster than TSRNF-VGL(λ).
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Figure 19. The X-Y circle trajectories for TSRNF-VGL(λ) and TSRNF-SNVGL(λ) with
% = 0.001. The mean of five independent runs is shown. TSRNF-SNVGL(λ) learns faster,
but TSRNF-VGL(λ) perfoms better ad improves with long training iterations.
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Figure 20. The average of the right and left input torques to the dynamic mobile robot for
TSRNF-VGL(λ) and TSRNF-SNVGL(λ) with % = 0.001. The shaded region represents
the runs, while the solid line represents the mean of the runs.
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Figure 21. The average gradient of the two input velocity states of the value function
trajectories for the critic network in both TSRNF-VGL(λ) and TSRNF-SNVGL(λ).
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Table 4. MSE values for TSRNF-VGL(λ) and TSRNF-SNVGL(λ) with and without θ
recurrent parameters at various noise levels (different % values). All-iteration (All Iter) is
the average of 12000 MSE, while final-iteration (Final Iter) is the MSE at the last iteration
(12000th).

MSE

TSRNF Structure for Critic and Actor Networks
θ θ = 0

NF-VGL(λ) TSRNF-SNVGL(λ) TSRNF-VGL(λ) TSRNF-SNVGL(λ)
All Iter Final Iter All Iter Final Iter All Iter Final Iter All Iter Final Iter

%

0.0001 0.0105 0.0025 0.0059 0.0012 0.0113 0.0028 0.0064 0.0015
0.001 0.0417 0.0051 0.0190 0.0184 0.0549 0.0064 0.0189 0.0184
0.01 0.0239 0.0053 0.0132 0.0126 0.0079 0.0072 0.0189 0.0183
0.1 0.0215 0.0073 0.0182 0.0177 0.0120 0.0073 0.0182 0.0178
1 0.0226 0.0093 0.0128 0.0124 0.0682 0.0093 0.0128 0.0125

2. TSRNF-VGL(λ) with θ parameters is more efficient than it is without θ parameters,

with an improvement of 10.606% and a decreasing percentage of MSEs over all %

values.

3. TSRNF-SNVGL(λ) with θ parameters ismore efficient than it is without θ parameters,

with an improvement of 9.051% and a decreasing percentage of MSEs over all %

values.

4. The overall improvement with θ parameters for both TSRNF-VGL(λ) and TSRNF-

SNVGL(λ) is 9.556% with decreasing percentage of MSEs over all % values.

MSEs for the all-iteration values present with TSRNF-SNVGL(λ) require fewer iterations

than those presentwith TSRNF-SNVGL(λ) to reach stable training. Overall, the comparison

between RNF- for VGL(λ) and SNVGL(λ) and TSRNF- VGL(λ) and SNVGL(λ) are

1. With θ, TSRNF with both VGL(λ) and SNVGL(λ) has a better performance than

RNF with 47.362% and decreasing percentage of MSEs for the final-iteration with

all % values.
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2. Without θ, TSRNF with both VGL(λ) and SNVGL(λ) has a better performance than

RNF with 50.775% and a decreasing percentage of MSEs for the final-iteration with

all % values.

3. With and without θ, TSRNF with both VGL(λ) and SNVGL(λ) has a better perfor-

mance improvement than RNF with 96.965% in a decreasing percentage format of

all-iteration MSEs for all % values.

7. CONCLUSION

VGL(λ) is the high-performance algorithm in ADP that is used in this work, which

is inspired by a gradient of TD(λ). VGL(λ) is implemented by using two networks (critic

and actor). This work derives and performs the VGL(λ) architecture with a single adaptive

critic network (SNVGL(λ)). The SNVGL(λ) is compared with regular VGL(λ) to track a

reference trajectory of a simulation of a nonlinear dynamicmodel of a nonholonomicmobile

robot. Because a noisy environment is more realistic in the real world, the controller (actor

network in VGL(λ) or optimal control equation in SNVGL(λ)) is tuned under uncertainties

to compute the optimal right and left torques. Therefore, two-hybrid neuro-fuzzy structures

were used in both actor and critic networks (RNF and TSRNF). Moreover, convergence

proofs were proved to demonstrate the application of an ADP iteration algorithm with the

VGL(λ) and SNVGL(λ) approaches.
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SECTION

2. SUMMARY AND CONCLUSIONS

2.1. MODEL ORDER REDUCTION BY CLUSTERING SYSTEM POLES

Two main subjects are investigated in this dissertation. First, the model order

reduction algorithms are used to make systems less complexity for addressing with retaining

the original system properties. Second, adaptive dynamic programming algorithm is used

in optimal control field to obtain an approximating solution for Hamilton-Jacobi-Bellman

equation by interacting with its environment to obtain an optimal control policy. In the

model order reduction part that is illustrated as the first paper in this dissertation, we create a

new novel algorithm that uses agglomeration hierarchical clustering based on performance

evaluation. Many advantages are demonstrated in this work that can be used with single-

input single-output large order models and multi-input multi-outputs large order models.

This method gives a major advantage for reducing error to produce a robust reduced simple

model that has response(s) similar to the original model. Optimizing the pole clusters is

achieved by taking the minimumMSE among all pole clusters at an appropriate level in the

hierarchical dendrogram. The agglomeration hierarchical clustering based on performance

evaluation algorithm is considered a lower level in the hierarchy as the base model. Our

reduction algorithm procedure are continued processing level by level until reaching to the

second order of reduced model (top level). We demonstrate the simplicity and robustness

of the reduced model after applying various cases.
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2.2. ADAPTIVE DYNAMIC PROGRAMMING WITH N-STEP PREDICTION PA-
RAMETER

In adaptive dynamic programming part, heuristic dynamic programming is com-

bined with Dyna algorithm method, which is the second paper in this dissertation. This

combination gives a powerful tool for system responses with the robust results. This novel

technique is used for path planing of mobile robot in unknown environment fill with obsta-

cles. We obtain excellent performance by comparing with one step Q-learning, Sarsa (λ)

and Dyna-Q-learning algorithms. The multi-robots cooperative navigation are performed

that has a significant advantage to enhance the efficiency of the virtual common environment

model. A modern adaptive dynamic programming algorithm, which is the extension of dual

heuristic dynamic programming is used as a third paper in this dissertation. This paper is

used for racking a reference trajectory for a mobile robot with the impacts of unmodeled

bounded disturbances with various friction parameter values. Therefore, we use a hybrid

fuzzy neural network to deal with these noise affections in both citric and actor networks.

The combination structure address the effects of most unstructured disturbance / friction

signals. Model-free action dependence heuristic dynamic programming with n-step for

prediction cost values is illustrated as the fourth paper in this dissertation. The uniformly

ultimately bounded stability proofs with n-step are provided as a pioneer project in adap-

tive dynamic programming algorithm with testing the performance with three simulation

studies. The fifth paper is addressed what lamination in the fourth paper. Whereas the

forth paper should provided the value functions for first iteration (similar to policy iteration

algorithm by providing the initial policy). In the fifth paper presents the on-line learning for

model-free action dependence heuristic dynamic programming with n-step for prediction

cost by adding extra citric network. Good performance is demonstrated in the fifth paper for

this dissertation by examining a simulation analysis on a nonlinear system and a inverted

pendulum benchmark problem in various circumstances, as well as solving a 2-D maze

problem. The uniformly ultimately bounded stability proofs with on-line learning of n-step
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prediction cost values are provided in the fifth paper. The sixth and seventh papers deal

with the gradient of TD(λ) for adaptive dynamic programming, which called value-gradient

learning. The batch-mode and direct on-line implementation is provided for the sixth and

seventh papers, respectively. The on-line design is more memory efficient by overcoming

the drawback of using eligibility-trace storage for system states in online-mode implemen-

tation. Both papers (sixth and seventh in the dissertation) are provided the convergence

proofs are provided for both gradients of one- and n-step value functions with respect to

system states. We apply neural networks, the recurrent hybrid neuro-fuzzy and a first-order

Takagi-Sugeno recurrent hybrid neuro-fuzzy to implement our approaches in for last two

paper in the dissertation to verify the theoretical analyses.
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