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ABSTRACT

Increased interest in complex interconnected systems like smart-grid, cyber manu-

facturing have attracted researchers to develop optimal adaptive control schemes to elicit a

desired performance when the complex system dynamics are uncertain. In this dissertation,

motivated by the fact that aperiodic event sampling saves network resources while ensuring

system stability, a suite of novel event-sampled distributed near-optimal adaptive control

schemes are introduced for uncertain linear and affine nonlinear interconnected systems in

a forward-in-time and online manner.

First, a novel stochastic hybrid Q-learning scheme is proposed to generate optimal

adaptive control law and to accelerate the learning process in the presence of random

delays and packet losses resulting from the communication network for an uncertain linear

interconnected system. Subsequently, a novel online reinforcement learning (RL) approach

is proposed to solve the Hamilton-Jacobi-Bellman (HJB) equation by using neural networks

(NNs) for generating distributed optimal control of nonlinear interconnected systems using

state and output feedback. To relax the state vector measurements, distributed observers

are introduced. Next, using RL, an improved NN learning rule is derived to solve the HJB

equation for uncertain nonlinear interconnected systems with event-triggered feedback.

Distributed NN identifiers are introduced both for approximating the uncertain nonlinear

dynamics and to serve as a model for online exploration.

Next, the control policy and the event-sampling errors are considered as non-

cooperative players and a min-max optimization problem is formulated for linear and affine

nonlinear systems by using zero-sum game approach for simultaneous optimization of both

the control policy and the event based sampling instants. The net result is the development

of optimal adaptive event-triggered control of uncertain dynamic systems.
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SECTION

1. INTRODUCTION

In the past decade, significant advances have occurred in the areas of computing

power, communication and control. These advances are enabling design of critical infras-

tructures related to manufacturing, energy and transportation which are ‘smart’in the sense

that they monitor themselves, communicate and self-govern [3]. Due to the complexity

of tasks performed by such critical systems, an efficient decision making component is

required which can reduce the communication, computational cost and guarantee a certain

degree of performance.

Nature is an ultimate source of motivation for researchers and most efficient solution

for complex problems can be found among several biological systems. Researchers have

been inspired by the biological systems and studied their functioning to improve the effi-

ciency of engineering systems and the way they are controlled. Especially, the science of

decision making in the face of uncertainties is a complex task which is carried out by every

biological species all the time. The use of artificial neural networks (NNs) in computation

and control is one of the many tools that emerged from the bio-inspired research. A com-

putational model of the decision making process which can be observed in the biological

systems is given in Fig. 1.1.

Fig. 1.1. Decision making process [25].
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Any biological species interacts with the environment and learns to respond to

a stimulus which results in maximum reward. This computational model is studied by

several researches in the field of reinforcement learning (RL) and control theory [30] to

develop optimal decisionmaking schemeswhich continuously learn and adapt online. These

learning schemes are popularly known as adaptive dynamics programming [4, 5, 31]. A

basic block diagram of such adaptive control scheme is given in Fig. 1. 2. The control

actions generated by the decision making body/actor are evaluated by a critic based on a

scalar reward and using the information from the critic, the actor learns to generate control

actions which results in maximum reward.

Fig. 1.2. Simplistic block diagram of reinforcement learning.

Currently, decentralized and distributed control of interconnected systems is finding

itself in wide range of applications like robotic systems, power grids, traffic control systems,

urban drainage system to name a few (Fig. 1.3). For systems which are spatially distributed,

having a centralized decision making body is very costly due to the communication and

computational resources required to ensure that the centralized controller has access to all

the subsystems-to gain the feedback information and send the control commands. More-

over, with such control architecture, adding or removing subsystems is a tedious task and

failure/maintenance of the controller requires shutting down the entire system. With the

advent of networked control system, using decentralized/distributed controllers which com-

municate with each other offers more flexibility and scalability.
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Moreover, for the large-scale critical infrastructures comprising of interconnected

systems, the centralized RL computational model in Fig.1.1 and the control scheme in

Fig.1.2 which considers the overall system is not very efficient. Going back to the biological

systems, some of the studies conducted on social creatures like honeybees [6], birds [7], ants

and fish [8] reveal that these groups of organisms, when performing a complex task, work

together to achieve a common goal efficiently by incorporating the principle of ‘division

of labor’. Recognizing these benefits, researchers have developed control and learning

schemes for interconnected large-scale systems composed of individual subsystems. Just

as the biological organisms described above distribute the overall objective among them to

complete their respective tasks more effectively, decentralized and distributed controllers

are designed at each subsystem to achieve a local goal in such a way that the overall objective

of the interconnected system is realized.

Fig. 1.3. Examples of large-scale interconnected systems a) Smart grid; b) Wireless sensor
networks; c) traffic network; d) Water distribution network [2].

However, to do this task efficiently without requiring the system dynamics, opti-

mization theory inspired by reinforcement learning is considered. In addition to the use of

optimization, event-driven computation [9], inspired by the biological processes of human

brain, is applied in designing processors to reduce the computations and power usage. For

example, using a bio-inspired design with event driven computing, the power density of

IBM neuromorphic chip is reported to be 1/10000th of the existing microprocessors. More-
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over, with the advent of networked control systems (NCS), many interconnected systems

share a communication network to transmit information between nodes. These nodes may

be another subsystem, sensor modules, actuator or a controller. In addition to the benefits

in terms of computations and power usage, event driven computing saves network resources

in NCS. A simplified block diagram for implementing an event triggered control scheme is

given in Fig. 1.4. The states of the plant/system (xk) are continuously monitored by a trigger

mechanism which decides when the controller requires the feedback information to update

the control action (uk). A zero-order-hold (ZOH) is used to hold the last updated state and

control at the controller and actuator, respectively. Considering the benefits of optimizing a

control task combined with reducing the computations and communication cost have stim-

ulated the interests in many researchers and the focus has shifted from controlling a single

system to controlling large-scale interconnected systems with event triggered feedback.

Fig. 1.4. Basic block diagram for event-triggered controller.

In summary, based on the current demands driven by scarcity of resources, economic

considerations and huge technological advancements in computing power and communica-

tion systems, event-driven control of large-scale interconnected systems is as an active area

of current research. While stabilization is the primary objective, cost-efficient performance

and optimization in the face of uncertain system dynamics is required to fulfill these current

demands. Next, an overview of existing control methodologies addressing the above issues

is presented.
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1.1. OVERVIEW OF CURRENT CONTROL METHODOLOGIES

Decentralized control scheme was first introduced by Siljak in 1978 [10]. Since

then, several control schemes for decentralized and distributed control of large-scale inter-

connected systems have been proposed. A detailed survey of decentralized control scheme

is carried out in [11], while a detailed account on distributed controllers is presented in

[12]. Decentralized controllers, which ignore the effects of interconnections, are found

to be inefficient when compared to the controllers that facilitate communication among

subsystems and enable controllers at each subsystem to utilize feedback information from

other subsystems [2, 28]. However, decentralized robust control approach using local state

information has been studied in the literature due to their simplicity and scalability [1]. On

the other hand, distributed controllers require information from neighboring subsystems to

generate a control action. One of the issues encountered in the distributed control scheme

is how often the subsystems should communicate their state and output information among

other subsystems.

Over the years, the controllers for large-scale systems have evolved to stabilize the

subsystems in the presence of uncertain interconnection matrix with limited communica-

tion [1]. Adaptive controllers were proposed to learn the interconnection terms, with which

suitable compensation was provided, but they were limited to handle weak interconnections

[10]. Later, reference models were utilized to provide information about the other sub-

systems [28]. However, it was demonstrated that ignoring the effects of interconnections

and using the information from the reference models can result in unacceptable transient

performance [28].

Further, developing optimal controllers for an interconnected system is a challenging

design problem. One of the methods to design optimal controllers is by model-predictive

control. By utilizing the communication network connecting subsystems, several dis-

tributed control algorithms to solve optimization problem for large-scale system using

model-predictive control (MPC) have been proposed. Although MPC based control al-
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gorithms are popular due to their inherent ability to handle input and state constraints

efficiently, distributed MPC algorithms are not as efficient as their centralized counterpart

due to the effect of coupling between the subsystems in large-scale systems. Also, MPC

based algorithms in general requires systemmodel to predict the future output over a limited

time horizon with which a desired cost-function is minimized iteratively.

The other approach to solve the optimal control problem for interconnected system

is by using game-theoretic formulation. Multi-player game formulation is one of the con-

trol design approaches presented in the literature to solve the optimal control problem for

interconnected systems [13]. The subsystems are considered to be cooperative and each

subsystem is controlled to work in tandem to achieve a common goal while minimizing

a cost function of the overall system. However, due to the nature of performance objec-

tive, implementing the control generated using the multiplayer game approach requires a

centralized scheme and scalability of such controllers due to curse-of-dimensionality is an

issue.

On the other hand, the distributed optimal controllers can be designed by breaking

down the objective of the overall system into several components corresponding to each

subsystem and designing controllers to satisfy the component objectives. However, such a

control scheme requires a well-defined method to decompose the performance objective of

the overall system for distributed control generation such that both the local cost function

and the aggregated overall cost function is minimized [13].

Moreover, the control schemes presented in [12] and the references therein, assume

that a dedicated communication network is available to continuously share the feedback

information among the subsystems. This significantly increases the communication cost.

Lately, aperiodic state dependent sampling is studied under various names, such as, multi

rate sampling, Lebesgue sampling [14], and interrupt driven triggering [15]. Recently,
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this scheme is studied under a formal name of “event-triggered”[16] sampling and various

theoretical and experimental results emphasizing its inherent advantages, in computation

and communication saving, are available in the literature [17, 18, 19, 20, 21, 22].

In general, an emulation-based approach is used for the event-triggered system

design where the controller is designed considering the periodic sampling and an event-

trigger condition is developed maintaining the stability intact. As a general rule the system

is assumed to be input to state stable (ISS) with respect to the measurement error, and an

event-trigger condition is designed considering the difference between the current state and

last sampled state as event-trigger error along with a state dependent threshold. Further,

a non-zero positive lower bound on the inter event time is also guaranteed to avoid Zeno

behavior. In addition, the event-triggered control approach is also extended to accommodate

other design considerations, such as, output feedback design, decentralized designs, and

trajectory tracking control [23]. All the above design approaches hold the system state

or output between any two trigger instants for controller implementation and usually a

zero order hold (ZOH) is used for this purpose. Alternatively, a model-based approach

[21, 24] is developed where the system state vector is reconstructed and, subsequently, used

for designing the control input. As the control input is based on the model, no feedback

transmission is required unless there is a significant change in the system performance due

to external disturbance or internal parameter variation. In this scheme, the authors in [24]

presented an input generator as a model to predict the system states which are used to

compute the control. Further, the authors in [21, 22] consider the nominal dynamics of the

system with uncertainty, usually of smaller magnitude and bounded, to form a model. The

asymptotic stability is guaranteed by designing the event-trigger condition. It is observed

that the model based approach reduces the event-trigger instants or transmission more

effectively when compared to the ZOH based approach, but, with a higher computational
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load due to induction of the model. Nevertheless, MPC based optimization and model-

based event triggering is an approach that can work well given in tandem an accurate system

model which is not always available.

Looking at the optimal control aspect of the event-based control, a few results are

available [18, 19, 20]. The problem is formulated as an optimal stopping problem and an

analytical solution is provided. Further, in [19], the authors characterized the certainty

equivalence controller to be optimal in a linear quadratic Gaussian (LQG) frame work

and derived a separation principle to design the control and optimal event-trigger instants

separately.

Despite these results from the literature on event-triggered control, these schemes

consider either the complete knowledge of the system dynamics or system with a smaller

uncertainty with known nominal dynamics. Moreover, the optimal solution of the event-

based control requires the system dynamics to be solved in backward in time manner,

requiring accurate knowledge of system dynamics to pre-calculate the sequence of control

actions. Thus, a forward in time and online solution to the optimal control problem in an

event-triggered context is required. To accommodate the uncertain dynamics and generate

optimal control policy with event based feedback, a control scheme using NNs is proposed

in [22]. The event driven function approximation property of the NN is studied. A strong

relationship between the frequency of events and approximation accuracy, convergence of

the learning algorithm is observed. Therefore, the time-driven ADP scheme is which gen-

erates online approximate optimal control takes longer time to converge. Despite several

efforts in developing a forward in time solution to optimal control problems using reinforce-

ment learning [25, 26], all the learning schemes use fixed iterative learning steps, rendering

them inefficient for event triggered implementation. For example, policy iteration requires

iterative updates until convergence of the Bellman error during both - the policy evaluation

and policy improvement steps; value iteration requires iterative updates until convergence
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of the Bellman error for the policy evaluation step and a single iteration in the policy im-

provement step; the time-driven learning algorithms requires single step policy evaluation

and improvement.

Motivated by the above facts, in this dissertation, a suite of novel event-triggered

adaptive optimal control designs for linear and nonlinear interconnected system are pre-

sented. Adaptive and neural network based learning methods are used to learn the unknown

parameters/dynamics and a forward in time solution is presented. In addition, Lyapunov

stability analysis is carried out to guarantee the stability of the closed-loop event triggered

system. First, the design of both control policy and the event-triggering mechanism is

formulated as a two-player zero-sum game. Here, a novel cost function is introduced as

a function of state vector, control policy and the measurement/event-triggering error. The

control policy and themeasurement error due to event-triggered feedback will be considered

as two non-cooperative players. The saddle point solution to this min-max problem results

in the minimization of the control policy while maximizing the measurement error.

The resulting measurement error from this minmax optimization problem is utilized

as the dynamic threshold in an event-trigger condition to determine the sampling instants.

Since the control policy explicitly accounts for the worst-case event-triggering error, the

stability and the performance of the system is preserved. Moreover, since the inter-event

time is directly proportional to the event-triggering error and utilizing the maximum event

trigger error as a dynamic threshold results in optimizing the inter-event time. This net result

is an optimal event-triggered controller which explicitly takes into account both generation

of event-triggered sampling instants and control policy. In addition, Lyapunov stability

analysis is carried out to guarantee the stability of the closed-loop event triggered system.

Next, the organization of the thesis is presented.



10

1.2. ORGANIZATION

In this dissertation, the control of large-scale interconnected systems is undertaken

while incorporating learning and adaptation with limited feedback information. This dis-

sertation is presented in five papers and their relation to one another is illustrated in Fig.

1.5. The underlying common theme of each paper is the control of interconnected system

with event triggered execution of control tasks incorporating optimization and learning

component.

Fig. 1.5. Outline of the dissertation.

The first paper deals with large-scale interconnected linear systems with uncertain

dynamics. A control scheme is proposed for distributed implementation of centralized

adaptive optimal control when the subsystems share their state information through a lossy

communication network. The random delays and packet drop-outs aremodelled and the sys-

tem dynamics are re-formulated and stochastic model free hybrid Q-learning algorithm for

facilitating convergence of the learning algorithmwith event sampled feedback is presented.

In the second paper, the hybrid learning algorithm is extended for nonlinear interconnected

systems. State and output feedback based approximate optimal controllers are proposed
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which reduce the number of times the control task is executed while guaranteeing desired

levels of performance. Instead of learning the centralized optimal value functions, dis-

tributed value functions are approximated using NNs and the Hamiltonian-Jacobi-Bellman

(HJB) equation in an online, forward-in-time manner.

Due to the reduction in the feedback instants, the traditional time-driven learning

schemes suffered from an increased time for convergence and the hybrid learning schemes

improved the learning process by decoupling the dependence of convergence time, approx-

imation accuracy with number of event triggering instants. To match the time taken by the

learning algorithm with continuous feedback for convergence and to potentially improve the

optimality of the control actions, in the third paper, reinforcement learning theory is studied

and a novel learning scheme using generalized policy iteration is proposed and an online

exploration strategy using identifiers is presented. On the other hand, in the fourth paper,

a robust adaptive optimal learning control scheme is proposed to generate decentralized

control actions at each subsystem. In contrast to the papers 1-3, the decentralized scheme

is advantageous as the design of Lyapunov function for each subsystem is easier than to de-

termine a Lyapunov function for the large-scale system. Further, existence of convex value

function for a large-scale system is not always guaranteed [2]; even if there exists a convex

value function for the overall system, due to curse of dimensionality, adding a subsystem to

the interconnected system exponentially increases the complexity of the solution for the op-

timal control problem which renders the learning problem intractable. However, designing

decentralized controllers without imposing any restrictions on the interconnection strengths

is a challenge and small-gain theorem for large scale interconnected system is employed to

provide robustness against the interconnections and quantify the performance bounds that

can be achieved with the proposed control policy. Finally, online implementation of integral

reinforcement learning in the event triggered feedback framework is proposed.
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In the first three papers, the event-triggered sampling instants are designed using

the Lyapunov function which explicitly accounts for the system stability but provides no

information or control over the system performance when the control policy is not updated

between the event based sampling instants. Therefore, in the fourth and the fifth papers,

adaptive near-optimal control schemes are proposed to simultaneously optimize the control

actions and ensure satisfactory system performance even when the control actions are not

frequently updated. Here, the control policy and the event-triggering errors are modelled

as non-cooperative players and a novel cost function is proposed as a function of states,

control policy and the event-triggering error. A zero-sum game based approach is followed

to develop a saddle point solution to the min-max optimization problem wherein the control

policy is applied to the system and the maximizing error obtained as the solution to the

optimization problem is utilized as a dynamic threshold for the event-triggering error to

determine the sampling instants. In contrast to the Papers I-III, the zero-sum game based

control schemes proposed in the Paper IV, V are advantageous as the trade-off between the

frequency of feedback and the system performance is optimized. While Paper IV focuses on

linear systems, Paper 5 presents a simultaneous optimization approach for nonlinear system,

wherein the event generating mechanism and the controllers are designed to balance the

system performance and frequency of events. In the Paper IV, a model-free approach using

hybrid Q-learning scheme is presented and the design approach is extended for distributed

control of interconnected linear systems. In Paper V, an approximation based hybrid

learning scheme is proposed to learn the NN weights which approximates the solution to

the Hamilton-Jacobi-Isaacs equation. A decentralized event-triggering solution is presented

for distributed control of nonlinear interconnected system. In all the Paper, comprehensive

simulation studies and Lyapunov based stability analysis is carried out and the results are

presented.
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1.3. CONTRIBUTIONS

This dissertation provides contributions to the field of control of interconnected

systems. The control laws developed in this dissertation in the context of event-triggered

feedback use adaptive optimal control and reinforcement learning theory. The major con-

tributions of Papers 1-3 include: (a) development of a novel hybrid Q-learning scheme

using event-sampled states, input vector and their history; (b) the derivation of a time-

driven and hybrid Q-learning scheme for an uncertain large-scale interconnected system

enclosed by a communication network without any assumptions on coupling terms; (c)

a decentralized event-sampling condition based on Lyapunov function without needing a

mirror estimator at the sensor; d) development of an approximately optimal controller for

nonlinear interconnected system using state and output feedback with event-triggered ADP

approach in the presence of communication; e) design of a novel hybrid learning scheme,

with full state measurements and for the case when only the outputs are available, to reduce

the convergence time of the learning scheme ; f) design of an adaptive event-triggering

mechanism using locally available information; g) design of extended nonlinear observers

that utilizes the event-triggered output vector at each subsystem to relax the need for the

entire state-vector to be measured and broadcasted; h) development of a RL based novel

learning control scheme suitable for event-triggered control implementation; i) a suite of

NN identifier designs to reconstruct unknown nonlinear functions in the system dynamics;

j) a novel NN weight adaptation rule to reconstruct and learn the approximated optimal

value function; k) an online exploration strategy using identifiers and e) stability analysis

using Lyapunov theory.

Further, the contributions of the Papers IV and V include: a) a novel optimal event-

triggering and controller co-design using zero-sum game formulation for linear and a class

of nonlinear systems; b) development of an optimal adaptive online Q-learning scheme

for generating the optimal control policy while maximizing the event-triggering intervals

in a forward-in-time manner when the system dynamics are uncertain; c) development of
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an online NN learning scheme for generating optimal control and event-triggering policies

when the system dynamics are uncertain; d) extension of the approximate optimal event-

triggered design to the distributed control of interconnected systems; e) derivation of

inter-event time or event triggered sampling instants for the cases of known and uncertain

system dynamics; f) Lyapunov stability analysis and verification of the proposed design

using numerical examples via simulation.
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PAPER

I. DISTRIBUTED ADAPTIVE OPTIMAL REGULATION OF UNCERTAIN
LARGE-SCALE INTERCONNECTED SYSTEMS USING HYBRID Q-LEARNING

APPROACH

ABSTRACT

In this paper, a novel hybrid Q-learning algorithm is introduced for the design of a lin-

ear adaptive optimal regulator for a large-scale interconnected system with event-sampled

inputs and state vector. Here, the time-driven Q-learning along with proposed iterative

parameter learning updates are utilized within the event-sampled instants to both improve

efficiency of the optimal regulator and obtain a more generalized online Q-learning frame-

work. The network-induced losses due to the presence of a communication network among

the subsystems are considered along with the uncertain system dynamics. Stochastic model-

free Q-learning and dynamic programming are utilized in the hybrid learning mode for the

optimal regulator design. The asymptotic convergence of the system state vector and bound-

edness of the parameter vector is demonstrated using Lyapunov analysis. Further, when

the regression vector of the Q-function estimator satisfies the persistency of excitation (PE)

condition, the Q-function parameters converge to the expected target values. The analytical

design is evaluated using numerical examples via simulation. The net result is the de-

sign of a data-driven event-sampled adaptive optimal regulator for an uncertain large-scale

interconnected system.
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1. INTRODUCTION

Optimal control [1] using adaptive dynamic programming (ADP) [2, 3, 4, 5, 6, 7]

has drawn more attention because of the forward-in-time solution to the optimal control

problems for uncertain systems. The ADP based control schemes use reinforcement learn-

ing to solve the Bellman or Hamilton-Jacobi-Bellman (HJB) equation[4] through online

parameterization and obtain optimal control policy. Among the ADP-based Q-learning

schemes, [2] proposed a policy iteration approach using the Bellman equation. Later, the

Q-learning scheme was extended in [3] to zero-sum-game formulation by using model-free

policy iteration.

Policy/value iteration based techniques use significant number of iterative parameter

updates within a sampling interval to maintain system stability, and its online implemen-

tation is not practically viable [5]. Therefore, online implementation for such iterative

techniques was presented in [4], where the parameters are updated after collecting sufficient

data-points. In contrast, the effort from [5] followed by [6, 7] introduced a time-based

model-free ADP scheme where the past data of the cost-to-go errors are used for construct-

ing the optimal value function.

On the other hand, control of large-scale interconnected systems [8] has been an

active area of research. Large-scale systems are complex systems composed of geographi-

cally distributed subsystems connected through a communication network. The traditional

centralized controller design for such systems is often impractical for computational rea-

sons and lack of control integrity [9]. Therefore, various decentralized/distributed control

schemes have been developed in the literature such that each subsystem has an independent

controller [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. The complexity in the control

design arises due to the structural constraint in the form of interconnection/coupling matrix

[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], which determines how the states/control of

one subsystem influence the dynamics of the other subsystems.
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Over the years, the controllers for large-scale systems have evolved to stabilize the

subsystems in the presence of uncertain interconnection matrix with limited communica-

tion [8, 9, 10]. Adaptive controllers were proposed to learn the interconnection terms,

with which suitable compensation was provided [9, 10, 11, 12], but they were limited to

handle weak interconnections. Later, reference models were utilized to provide information

about the other subsystems. However, it is reported in [13] that if the subsystems do not

communicate their state information with each other and use a reference model to obtain

this information, unsatisfactory transient performance will occur. Further, utilizing the

communication network connecting the subsystems, several distributed control algorithms

to solve optimization problem for large-scale system using model-predictive control (MPC)

have been proposed in [14, 15, 16, 17, 18] and the references therein.

Although MPC based control algorithms are popular due to their inherent ability to

handle input and state constraints efficiently, distributed MPC algorithms are not as efficient

as their centralized counterpart due to the effect of coupling between the subsystems in the

large-scale systems [14, 16, 18]. Also, MPC based algorithms in general requires system

model to predict the future output over a limited time horizon with which a desired cost-

function is minimized iteratively [14, 15, 16, 17, 18]. In contrast, the Q-function based

control algorithm developed in this work neither requires an accurate model for the system

nor utilizes significant iterations to solve the optimization problem. It should be noted

that the above mentioned works [14, 16, 17, 18, 19] use periodic feedback and utilize the

system dynamics to generate control. However, it is not feasible to communicate the state

information periodically due to the communication cost involved.

Recently, it was demonstrated that event-based sampling is advantageous over pe-

riodic sampling in terms of computational cost [6, 21, 22, 23]. The aperiodic event-based

sampling instants are determined by using a trigger condition while maintaining stability of

the system. Such an event-sampled approach for control design was extended to large-scale
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interconnected systems in [20, 21, 22] by assuming either weak interconnections [20, 21]

or control gain satisfying a strong matching condition, in order to decouple the subsystems

[22].

The presence of a communication network among the subsystems and in the

feedback-loop introduces random time delays and data-dropouts [24, 25, 26], which de-

grades control performance. It was shown in [7] that a linear time-invariant system with a

communication network within its feedback loop can be represented as a stochastic time-

varying linear system with uncertain dynamics. To the best knowledge of the authors, a

time-based Q-learning scheme with intermittent feedback is not reported for such uncertain

large-scale interconnected systems.

Therefore, in this paper, a novel hybrid model-free Q-learning scheme using event-

sampled state and input vector is introduced for a large-scale interconnected system that

is enclosed by a communication network. This algorithm enables a finite number of

proposed Q-function parameter updates iteratively within the event-sampled instants to

attain optimality faster without explicitly increasing the events when compared with the

algorithm in [6].

In the proposed algorithm, the temporal-difference based ADP schemes [6, 7] and

the policy/value iterations based ADP schemes [4, 27] become special cases. It also relaxes

the assumptions on the estimated control input utilized in [6, 7]. This makes the learning

algorithm more flexible than the existing model-free Q-learning based ADP schemes for

online control. Since the Q-function parameters at each subsystem are estimated online

with event-sampled input, state information along with past history and the data obtained

from other subsystems through the communication network, an overall system model is

not required. This makes the control scheme data-driven [28]. It is important to note

that the infinite horizon cost function associated can be evaluated only for an admissible

control policy [4]. This requires the control policy obtained using the learning process to

be admissible at every step.
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The contributions of the paper include: (a) development of a novel hybridQ-learning

scheme using event-sampled states, input vector and their history; (b) the derivation of

a time-driven and hybrid Q-learning scheme for an uncertain large-scale interconnected

system enclosed by a communication network without any assumptions on coupling terms;

(c) a decentralized event-sampling condition based on Lyapunov function without needing

a mirror estimator at the sensor; and (d) demonstration of closed-loop stability for such

system using Lyapunov analysis.

This paper uses,< to denote the set of all real numbers, Euclidean norm for vectors

and Frobenius norm for matrices. The next section introduces the system description

followed by the derivation of time-driven Q-learning scheme for large-scale interconnected

systems with periodic feedback.

2. BACKGROUND

2.1 System Description

Consider a linear time-invariant continuous-time system having N interconnected

subsystems shown in Fig. 2.1 with subsystem dynamics described by

Ûxi(t) = Ai xi(t) + Biui(t) +
∑N

j=1
j,i

Ai j x j(t),xi(0) = xi0, (1)

where xi, Ûxi ∈ <ni×1 represent the state vector and state derivatives respectively, ui ∈

<mi, Ai ∈ <ni×ni and Bi ∈ <ni×mi denote control input, internal dynamics and control gain

matrices of the ith subsystem, Ai j ∈ <ni×nj represents the interconnection matrix between

the ith and j th subsystem, i ∈ 1, 2, ..N . The overall system description can be expressed in

a compact form as

ÛX(t) = AX(t) + BU(t),X(0) = X0, (2)
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Fig. 2.1. Large-scale interconnected system.

where X ∈ <n,U ∈ <m, B ∈ <n×m, A ∈ <n×n, ÛX = [ ÛxT
1 , ., Ûx

T
N ]

T , A =

©«
A1 ...A1N

: ... :

AN1... AN

ª®®®®®¬
, B =

diag[B1, ., BN ],U = [uT
1 , ., u

T
N ]

T . The system dynamics Ai, Bi and the interconnectionmatrix

Ai j are considered uncertain. In the large-scale interconnected system, the subsystems

communicate with each other via Network 1, while each subsystem is also enclosed by

Network 2. Effects of the network-induced losses can be modeled along with the system

dynamics by utilizing the standard and mild assumptions as listed in [7, 24].

Assumption 1 The system (2) is considered controllable and the states are measurable.

Further, the order of subsystems is considered known.

With the network-induced delays and data-dropout, the original plant can be represented as

ÛX(t) = AX(t) + γca(t)BU(t − τ(t)), X(0) = X0, (3)

where γca(t) is the data-dropout indicator, which becomes In×n when the control input is

received at the actuator and 0n×n when the control policy is lost at time t. This only includes

the data loss in Network 2 and τ(t) is the total delay. Now, integrating the system dynamics

with network parameters over the sampling interval [7, 24], we get

Xk+1 = Ad Xk + γca,k Bk
0Uk + γca,k−1Bk

1Uk−1 + ... + γca,k−d̄ Bk
d̄Uk−d̄, X(0) = X0, (4)

where Xk = X(kTs), Ad = eATs , d̄ is the delay bound, Uk is the control input. Bk
0 , Bk

i ,

∀i = {1, 2, ...d̄} are all defined as in [7]. From the discretized system representation,

we can define an augmented state vector consisting of state and past control inputs as

X̄(k) = [XT
k UT

k−1 ...U
T
k−d̄
]T ∈ <n+d̄m.
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The new augmented system representation is given by

X̄k+1 = Ax̄k X̄k + Bx̄kUk, X̄(0) = X̄0, (5)

with the matrices Ax̄k =



Adγca,k−1Bk
1 · · ·γca,k−d̄ Bk

d̄

0 · · · 0 0
... Im

...
...

0 · · · Im 0


and Bx̄k =



γca,k Bk
0

Im

...

0


.

Remark 1 Note that the system dynamics are now stochastic due to the network-induced

delays and data-dropouts. The assumptions regarding the controllability, observability and

the existence of unique solution for the stochastic Riccati equation (SRE) are now dependent

on the Grammian functions [1].

Hence, the following assumption is needed to proceed further.

Assumption 2 The system is both uniformly completely observable and controllable [1].

The time-driven Q-learning and adaptive optimal regulation of such stochastic linear time-

varying interconnected system is presented next.

2.2 Periodically Sampled Time-Driven Q-Learning

For the system dynamics (5), the infinite horizon cost function is defined as

Jk = E
τ,γ

[
1
2

∑∞
t=k

X̄T
k Px̄ X̄k +UT

k Rx̄Uk

]
(6)

where Px̄ = diag(P, R
d̄
, .., R

d̄
), Rx̄ =

R
d̄
. The penalty matrices P, R are positive semidefinite

and positive definite respectively. E
τ,γ
(.) denotes the expected value of the stochastic process

(.).

The cost function (6) can also be represented as Jk = E
τ,γ
[X̄T

k Sk X̄k] with Sk being

the symmetric positive semi-definite solution of the SRE [1]. The next step is to define the

action-dependent Q-function for the stochastic system (5) with the cost-to-go function (6)

as

Q(X̄k,Uk) = E
τ,γ
[r(X̄k,Uk) + Jk+1

��X̄k ] = E
τ,γ
{[X̄T

k UT
k
]Gk[X̄T

k UT
k
]
T
} (7)
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where r(X̄k,Uk) = X̄T
k Px̄ X̄k +UT

k Rx̄Uk and Gk is a time-varying matrix. From the Bellman

equation, we get
X̄k

Uk


T

E
τ,γ
(Gk)


X̄k

Uk

 =

X̄k

Uk


T 

Px̄ + E
τ,γ
(AT

x̄k Sk+1 Ax̄k) E
τ,γ
(AT

x̄k Sk+1Bx̄k)

E
τ,γ
(BT

x̄k Sk+1 Ax̄k) Rx̄ + E
τ,γ
(BT

x̄k Sk+1Bx̄k)



X̄k

Uk

 (8)

where E
τ,γ
(Gk) =


E
τ,γ
(G x̄ x̄

k ) E
τ,γ
(G x̄U

k )

E
τ,γ
(GUx̄

k )Eτ,γ (G
UU
k )


From the matrix equation (8), the time-varying control gain can be expressed as

Kk = E
τ,γ
{[Rx̄ + BT

x̄k Sk+1Bx̄k]
−1

BT
x̄k Sk+1 Ax̄k} = E

τ,γ
{(GUU

k )
−1

GUx̄
k } (9)

The Q-function (7) in parametric form is given by

Q(X̄k,Uk) = E
τ,γ
(zT

k Gk zk) = E
τ,γ
(ΘT

k ξk) (10)

where zk = [(γsc,k X̄k)TUT
k
]
T
∈ <l̄ with l̄ = m + n + md̄, ξk = zT

k ⊗ zk is the regression

vector. ⊗ denotes Kronecker product, andΘk ∈ ΩΘ ⊂ <lg is formed by vectorization of the

parameter matrix Gk . γsc,k is a packet loss indicator, defined similar to γca,k . The estimate

of the optimal Q-function is expressed as

Q̂(X̄k,Uk) = E
τ,γ
(zT

k Ĝk zk) = E
τ,γ
(Θ̂T

k ξk) (11)

where Θ̂k ∈ <lg is the estimate of expected target parameter Θk . By Bellman’s principle

of optimality, the optimal value function satisfies

0 = E
τ,γ
(J∗k+1

��X̄k ) − E
τ,γ
(J∗k ) + E

τ,γ
(r(X̄k,Uk)) = E

τ,γ
(r(X̄k,Uk)) + E

τ,γ
(ΘT

k∆ξk), (12)

where ∆ξk = ξk+1 − ξk , and E
τ,γ
(J∗k+1

��X̄k ) is the expected cost-to-go at k + 1st instant, given

the state information of the k th instant. Since the estimated Q-function does not satisfy

(12), the temporal difference (TD) error will be observed as

eB(k) = E
τ,γ
(r(X̄k,Uk) + Θ̂T

k∆ξk) (13)
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Remark 2 In the iterative learning schemes [2, 4] the parameters of the Q-function esti-

mator (QFE) is updated by minimizing the error in (13) until the error converges to a small

value for every time step k. On the contrary, time-driven ADP schemes [6, 7] calculate the

Bellman error at each step and update once at the sampling instant and the stability of the

closed-loop system is established under certain mild assumptions on the estimated control

policy.

The overall cost function (6) for the large-scale system (5), can be represented as the sum of

the individual cost of all the subsystems as, Jk =
∑N

i=1 Ji,k , where Ji,k = E
τ,γ
{ 1

2
∑∞

s=k x̄T
i,k Px̄,i x̄i,k

+uT
i,k Rx̄,iui,k} is the quadratic cost function for ith subsystem with x̄i representing the aug-

mented states of the ith subsystem, Px̄ = diag{Px̄,1 · · · Px̄,N } and Rx̄ = diag{Rx̄,1 · · · Rx̄,N }.

The optimal control sequence to minimize the quadratic cost function (6) in a decentralized

framework is not straightforward because of the interconnection dynamics. The optimal

control policy for each subsystem, which minimizes the cost function (6), is obtained by

using the SRE of the overall system given the system dynamics Ax̄k and Bx̄k , as

u∗i,k = E
τ,γ
{−K∗i,k x̄i,k −

∑N

j=1, j,i
K∗i j,k x̄ j,k} (14)

where K∗i,k are the diagonal elements and K∗i j,k are the off-diagonal elements, of K∗k in (9). In

the following lemma, it is shown that, with the control law (14) designed at each subsystem,

the overall system is asymptotically stabilized in the mean square.

Lemma 1 Consider the ith subsystem of the large-scale interconnected system (5). Assum-

ing that the system matrices Ax̄k, Bx̄k are known along with Assumption-2. The optimal

control policy obtained from (14) renders the individual subsystems asymptotically stable

in the mean square.

Proof: Note that the optimal control input is stabilizing [1]. Therefore, the closed-

loop systemmatrix (Ax̄k−Bx̄k K∗k ) is Schur. The Lyapunov equation (Ax̄k − Bx̄k K∗k )
T P̄(Ax̄k−

Bx̄k K∗k ) − P̄ = −F̄, has a positive definite solution F̄. Consider the Lyapunov function

candidate Lk = E
τ,γ
(X̄T

k P̄X̄k), with P̄ being positive definite. The first difference, using
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the overall system dynamics with optimal control input is ∆Lk = −E
τ,γ
(X̄T

k F̄ X̄k). Since, F̄

can be chosen as a diagonal matrix, the first difference in terms of the subsystems can be

expressed as

∆Lk = −
∑N

i=1 E
τ,γ
(x̄T

i,k F̄i x̄i,k) ≤ −
∑N

i=1
q̄min E

τ,γ

x̄i,k
2 (15)

where q̄min is the minimum singular value of F̄. This implies the subsystems are asymp-

totically stable in the mean square. The results of this lemma will be used in the stability

analysis of the interconnected system where the need for the accurate knowledge of Ax̄k, Bx̄k

will be relaxed. The controller design using a novel hybrid Q-learning based ADP approach

for such large-scale interconnected system in the presence of network-induced losses and

with intermittent feedback will be discussed next.

3. DISTRIBUTED EVENT-BASED HYBRID Q-LEARNING SCHEME

In this section, a novel hybrid learning scheme, which utilizes time-driven Q-

learning based ADP approach, for the control of large-scale interconnected system to

improve the convergence time with event-sampled state and input vector will be introduced.

In the proposed algorithm, the idle-time between two events is utilized to perform limited

parameter updates iteratively in order to minimize the Bellman error. With the finite number

of iterations between any two events varying, the control policy need not necessarily

converge to an admissible policy and the stability of the closed-loop system cannot be

established either using the traditional iterative ADP schemes [4] or the time-driven Q-

learning schemes [6, 7].

An additional challenge is to estimate the Q-function parameters in (11) for the

system defined in (5) with intermittent feedback and in the presence of network-induced

losses. Since subsystems broadcast their states via the communication network, each local

subsystem can estimate the Q-function of the overall system so that a predefined reference
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model is not needed. Subsequently, the optimal control gains and the decoupling gains

for each subsystem can be computed without using the complete knowledge of the system

dynamics and interconnection matrix.

Although, the estimation of the Q-function at each subsystem increases the computa-

tion, this additional computation can be considered as trade-off for relaxing the assumption

on the strength of interconnection terms and estimating optimal control policy. With the

following assumption, the Q-function estimator design will be presented for intermittent

feedback.

Assumption 3 The target parameters are assumed to be slowly-varying [29].

3.1 Time-Driven Q-Learning With Intermittent Feedback

In the case of an event-sampled system, the system state vector X̄k is sent to the

controller at event-sampled instants. To denote the event-sampling instants, we define a

sub-sequence {kl}l∈N,∀k ∈ {0,N} with k0 = 0 being the initial sampling instant and N is

the set of natural numbers.

The system state vector X̄kl sent to the controller is held by ZOH until the next

sampling instant, and it is expressed as X̄e
k = X̄kl, kl ≤ k < kl+1. The corresponding error

referred to as an event-sampling error can be expressed as

eET (k) = X̄k − X̄e
k, kl ≤ k < kl+1, l = 1, 2, · · · (16)

Since the estimation of Gk must use X̄e
k , the Q-function estimate can be expressed as

Q̂(X̄e
k,Uk) = E

τ,γ
(ze,T

k Ĝk ze
k) = E

τ,γ
(Θ̂T

k ξ
e
k ), kl ≤ k < kl+1 (17)

where ze
k = [(γsc,k X̄e

k)
TUT

k
]
T
∈ <l̄ and ξe

k = ze,T
k ⊗ ze

k being the event-sampled regression

vector and Θ̂ is the result of vectorization of the matrix Ĝk . The Bellman error with

event-sampled state is

eB(k) = E
τ,γ

[
r(X̄e

k,Uk) + Θ̂T
k∆ξ

e
k

]
, kl ≤ k < kl+1 (18)
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where r(X̄e
k,Uk) = X̄e,T

k Px̄ X̄e
k +UT

k Rx̄Uk , ∆ξe
k = ξ

e
k+1 − ξ

e
k . The Bellman error (28) can be

rewritten as

eB(k) = E
τ,γ
{r(X̄k,Uk) + Θ̂T

k∆ξk + Ξs

(
X̄k, eET (k), Θ̂k

)
} (19)

where Ξs

(
X̄k, eET (k), Θ̂k

)
= r(X̄k − eET (k),Uk) − r(X̄k,Uk) + Θ̂T

k (∆ξ
e
k − ∆ξk).

Remark 3 By comparing (19) with (13), the Bellman error in (19) has an additional error

term which is Ξs

(
X̄k, eET (k), Θ̂k

)
. This additional error consists of errors in cost-to-go,

and the regression vector, which are driven by eET (k). Hence, the estimation of QFE

parameters depends upon the frequency of the event-sampling instants.

The QFE estimated parameter vector, Θ̂i
k , is tuned only at the event-sampling instants. The

superscript i denotes the overall system parameters at the ith subsystem and the estimated

control policy can be computed as

Ui
k = −K̂ i

k X̄ i,e
k = −(Ĝ

i,uu
k )
−1(Ĝi,ux

k )X̄
i,e
k (20)

By using (20), the event-based estimated control input for the ith subsystem is given by

ui,k = −K̂i,k x̄e
i,k −

∑N

j=1, j,i
K̂i j,k x̄e

j,k, kl ≤ k < kl+1 ∀i ∈ {1, 2, ..N} (21)

Remark 4 It should be noted that the optimal controllers designed at each subsystem takes

into account the structural constraint which are present in the form of the interconnection

matrix. However, the consideration of input, state and time constraints [1] as a part of the

optimal control problem is reserved for future work.

With the following assumption, the parameter update rule for the Q-function estimator will

be presented.

Assumption 4 The target parameter vector Θk is assumed to be bounded by positive con-

stant, such that ‖Θk ‖ ≤ ΘM . The regression function Z i(X̄k) is locally Lipschitz for all

X̄k ∈ Ωx .
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3.2 Parameter Update At Event-Sampling Instants

The QFE parameter vector Θ̂i
k , is tuned by using the past data of the Bellman

error (19) that is available at the event-sampling instants. Therefore, the auxiliary Bellman

error at the event-sampling instants is expressed as ΞB
i,e(k) = Πi,e

k + Θ̂
i,T
k Z i,e

k , for k =

kl, where Πi,e
k = [r(X̄ i

ki
l

,Ui
ki
l

) r(X̄ i
ki
l−1
,Ui

ki
l−1
· · · r(X̄ i

ki
l−v−1

,Ui
ki
l−v−1
)] ∈ <1×ν and Z i,e

k =

[∆ξi
ki
l

, ∆ξi
ki
l−1
, · · · ∆ξi

ki
l−v−1
] ∈ <lg×ν.

Remark 5 A larger time history may lead to faster convergence, but it results in higher

computation. The number of history values ν is not fixed and a value ν < l is found suitable

during simulation studies.

Next, select the update law [29] for the QFE parameter vector Θ̂i
k tuned only at the

event-sampling instants, as

Θ̂
i
k = Θ̂

i
k−1 +

W i
k−2Z i,e

k−1Ξ
i,eT
B (k − 1)

1 + Z i,eT
k−1W i

k−2Z i,e
k−1

, k = kl (22)

where

W i
k = W i

k−1 −
W i

k−1Z i,e
k−1Z i,eT

k−1W i
k−1

1 + Z i,eT
k−1W i

k−1Z i,e
k−1

, k = kl (23)

with W i
0 = βI, β > 0, a large positive value. The aperiodic execution of (22), saves compu-

tation, when compared to the traditional adaptive Q-learning techniques. The superscript i

indicating the overall system parameters at the ith subsystem, will be dropped from hereon.

In the time-driven Q-learning scheme [6], the parameters of the QFE are not updated during

the inter-event period. On the contrary, in the hybrid learning algorithm, the parameters are

updated during the inter-event period and the update rules are presented next.

3.3 Iterative Parameter Update

The recursive least square (RLS) algorithm was used in [2, 4] to perform iterative

updates within any two periodic sampling instants, using policy iteration. The update equa-

tion iteratively searches for a control policy that minimizes the Bellman error. Analytical

results are provided in [2, 4] to show that each iterative update resulted in a control policy

that is better than or as good as the existing control policy, in minimizing the Bellman error.
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Since significant numbers of iterative updates are not viable for online control,

the time-driven Q-learning [6, 7] was proposed which uses gradient descent based update

equations at the sampling instants to minimize the Bellman error. It was shown in [6, 7] that

as the sampling instants increases, the parameter estimation error converges to zero. In order

to improve the estimation error convergence rate, the RLS update (22),(23) is used at the

sampling instants in this work and convergence result similar to the time-driven Q-learning

holds for the proposed algorithm without the iterative parameter updates presented next.

To utilize the time between two event-sampling instants, parameters are updated

iteratively to minimize the error that was calculated during the previous event, which is

expressed as ΞB
j,e(k) = Π j,e

k + Θ̂
j,T
k Z j,e

k , k = kl, where j is the iteration index. The

Q-function parameters are updated using the equations

Θ̂(k j
l ) = Θ̂(k

j−1
l ) +

W(k j−2
l−2 )Z(k

j−1
l−1 )Ξ

T
B(k

j−1
l−1 )

1 + ZT (k j−1
l−1 )W(k

j−1
l−2 )Z(k

j−1
l−1 )

(24)

W(k j
l ) = W(k j−1

l−1 ) −
W(k j−1

l−1 )Z(k
j−1
l−1 )Z

T (k j−1
l−1 )W(k

j−1
l−1 )

1 + ZT (k j−1
l−1 )W(k

j−1
l−1 )Z(k

j−1
l−1 )

(25)

Whenever there is an event, the Q-function parameter vector which is updated

iteratively using (24),(25) is passed on to the QFE to calculate the new Bellman error. The

estimated control gain matrix can be obtained from the estimated parameter vector Θ̂k in

(22) at each event-sampled instants. In terms of the estimated parameters, the control gains

are given by (20), where

K̂k = (Ĝuu
k )
−1

Ĝux
k =


K̂1 · · ·K̂1N

...
. . .

...

K̂N1 · · · K̂N


(26)

is the estimated control gain. It is important to note that this control gain is obtained directly

from the Q-function parameters which are constructed with the past data and the current

feedback information, without using the system dynamics.
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In the proposed algorithm, the update equations (24),(25) together with (28) search

for an improved control policy during every inter-event period . Utilizing the Bellman error

equation (28) to evaluate the existing control policy, the Q-function is iteratively updated

between two event-sampling instants. However, in contrast to the algorithms in [2, 4], the

iteration index j in (24),(25) depends on the event-sampling mechanism, resulting in finite,

varying number of iterative updates between any two events.

Remark 6 The control policy for the individual subsystem is given by (21). Since it is

possible that Ĝuu
k might be rank-deficient during the learning phase, the following conditions

are checked before the control law is updated. If Ĝuu
k−1 is singular or if Ĝuu

k−1 − Rx̄ is not

positive definite, then, Ĝuu
k−1 is replaced by Rx̄ in the control policy. The conditions can be

checked easily by calculating the eigenvalues of Ĝuu
k−1.

Remark 7 The QFE parameter tuning law (22), (23) requires the state vectors Xkl to Xkl−v−1

for the computation of regression vector at k = kl . Therefore, the past values are required

to be stored at the value function estimator.

With the update rules presented in this section and the control gains selected from (36), the

assumption in [6, 7] that the inverse of Ĝuu
k exists when the updates utilize the time history

of the regression function and Bellman error is also relaxed. The analytical results for the

proposed learning algorithm is presented next.

3.4 Stability Analysis

Defining the QFE parameter estimation error E
τ,γ
(Θ̃k) = E

τ,γ
(Θk − Θ̂k), the error

dynamics using (22), (24) can be represented as

E
τ,γ
(Θ̃0

kl+1
) = E

τ,γ
(Θ̃ j

k +
W j

k Z j,e
k Ξ

j,eT

B (k)
1 + Ze j,T

k W j
k Z j,e

k

), k = k0
l (27)

E
τ,γ
(Θ̃ j+1

kl
) = E

τ,γ
(Θ̃ j

k +
W j

k Z j,e
k Ξ

j,eT

B (k)
1 + Ze j,T

k W j
k Z j,e

k

), k0
l < k < k0

l+1 (28)
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Remark 8 When there is no data-loss, the Q-function estimator is updated and the control

policy is updated as soon as it is computed. This requires the broadcast scheme to generate

an acknowledgment signal whenever the packets are successfully received at the subsystems

[22]. A suitable scheduling protocol has to ensure that the data lost in the network is kept

minimal.

Next an event-sampling condition has to be selected for the proposed scheme to work.

Consider a quadratic function f i(k) = x̄i(k)TΓi x̄i(k), with Γi > 0, for the ith subsystem.

The event-sampling condition should satisfy

f i(k) ≤ λ f i(kl + 1), ∀k ∈ [kl + 1, kl+1), (29)

for stability, when λ < 1, as shown in the next section.

Remark 9 The event-sampling condition presented here depends only on the local sub-

system state information. The Lyapunov function based event-sampling condition is also

presented in [23] for a single system. The hybrid learning algorithm presented in this paper

is independent of the event-sampling condition.

The following result will be used to prove the stability of the closed-loop system during the

learning period.

Lemma 2 Consider the system in (5) and theQFE (27). Define Ũ(kl−1) = U(kl−1)−Û(kl−1)

and G̃ux
kl−1
= Gux

kl−1
− Ĝux

kl−1
. If the control policy is updated such that, whenever Ĝuu

kl−1
− Rx̄ is

not positive definite or Ĝuu
kl−1

is singular, Ĝuu
kl−1

is replaced by Rx̄ in the control policy, then

E
τ,γ
(Ũ(kl−1)) ≤ E

τ,γ
{2

R−1
x̄

 Gux
kl−1

 X̄kl−1

 + R−1
x̄

 G̃ux
kl−1

 X̄kl−1

} (30)

Proof : See Appendix.

Definition 1 [29] A regression vector ϕ(xk) is said to be persistently exciting if there exists

positive constants δ,α− ,ᾱ and kd ≥ 1 such that α− I ≤ ∑k+δ
k=kd ϕ(xk)ϕT (xk) ≤ ᾱI, where I is

the identity matrix of appropriate dimension.
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Lemma 3 Consider both theQFE in (27) with an initial admissible control policyU0 ∈ <m.

Let the Assumption 1-4 hold, and the QFE parameter vector Θ̂(0) be initialized in a compact

setΩΘ. When the QFE is updated at the event-sampling instants using (22),(23) and during

the inter-sampling period using (24),(25), the QFE parameter estimation error E
τ,γ
(Θ̃ j

kl
) is

bounded. Under the assumption that the regression vector ξ j
kl
satisfies the PE condition, the

QFE parameter estimation error Θ̃ j
kl
for all Θ̂(0) ∈ ΩΘ converges to zero asymptotically in

the mean square, with event-sampled instants kl →∞.

Proof : See Appendix.

Remark 10 Covariance resetting technique [29] is used to reset W whenever W ≤ Wmin.

This condition will also be used in the Lyapunov analysis to ensure stability of the closed-

loop system. With the covariance resetting, the parameter convergence proof in Lemma 3

will still be valid [29].

Next, the Lyapunov analysis is used to derive the conditions for the stability of the

closed-loop system, with the controller designed in this section.

Theorem 1 Consider the closed-loop system (5), parameter estimation error dynamics (37)

along with the control input (20). Let the Assumptions 1-4 hold, and let U(0) ∈ Ωu be an

initial admissible control policy. Suppose the last held state vector, X̄e, j
kl
, and the QFE

parameter vector, Θ̂ j
kl
are updated by using, (22),(23) at the event-sampled instants, and

(24),(25) during the inter-sampling period. Then, there exists a constant γmin > 0 such that

the closed-loop system state vector X̄ j
kl
for all X̄(0) ∈ Ωx converges to zero asymptotically

in the mean square and the QFE parameter estimation error Θ̃ j
kl
for all Θ̂(0) ∈ ΩΘ remains

bounded. Further, under the assumption that the regression vector ξ j
kl

satisfies the PE

condition, the QFE parameter estimation error Θ̃ j
kl
for all Θ̂(0) ∈ ΩΘ converges to zero

asymptotically in the mean square, with event-sampled instants kl → ∞, provided the

inequality γmin > µ+ ρ1 is satisfied. γmin, µ, ρ1 are positive constants, defined in the proof.

Proof : See Appendix.
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The evolution of the Lyapunov function is depicted in Fig. 2.2a. During the event-

sampled instant, due to the updated control policy (21), the Lyapunov function decreases.

Due to the event-sampling condition (39) and the iterative learningwithin the event-sampling

instants, the Lyapunov function decreases during the inter-sampling period.

Since the iterative learning does not take place in the time-driven Q-learning [6],

the first difference of the parameter estimation error is zero for the inter-event period. This

makes the Lyapunov function negative semi-definite during this period. The evolution of

the Lyapunov function is depicted in Fig. 2.2b for the time-driven Q-learning.

Remark 11 The design constants Rx̄,Wmin,W0 are selected based on the inequalities that

are analytically derived in Theorem 1 using the bounds on Ax̄k, Bx̄k, Sk . Then, the constants

Γ and Π̄ can be found to ensure closed-loop system stability.

Remark 12 The requirement of PE condition is necessary so that the regression vector

is non-zero until the parameter error goes to zero. By satisfying the PE condition in the

regression vector, the expected value of the parameter estimation error Θ̃
k
will converge

to zero. This PE signal is viewed as the exploration signal in the reinforcement learning

literature [4].

Remark 13 An initial identification process can be used to obtain the nominal values of

Ax̄k, Bx̄k which can be used to initialize the Q-function parameters.

(a) (b)

Fig. 2.2. Evolution of the Lyapunov function (a) Hybrid learning. (b) TD learning.
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Remark 14 The algorithm proposed in this section can be used as a time-drivenQ-learning

scheme by not performing the iterative learning between the event-sampling instants, in

stochastic framework. Also, if the iteration index, j → ∞, for each kl , the algorithm

becomes the traditional policy iteration based ADP scheme.

The event-sampling and broadcast algorithm for the subsystems followed by the proposed

hybrid learning algorithm is summarized next.

3.5 Proposed Algorithm

For estimating the overall Q-function locally, we will use the following request-

based event-sampling algorithm. Consider an event occurring at the ith subsystem at the

sampling instant kl . This subsystem generates a request signal and broadcasts it with its

state information to the other subsystems. Upon receiving the broadcast request, the other

subsystems broadcast their respective state information to all the subsystems. This can be

considered as a forced event at the other subsystems.

Remark 15 The events at all the subsystem occur asynchronously based on the local

event-sampling condition, whereas the Q-function estimator and control policy remain

synchronized at each subsystem due to the forced event. The request signal is considered to

be broadcasted without any delay in Network 1 in Fig. 2.1.

The algorithm for the hybrid learning scheme is summarized as Algorithm 1. The proposed

control scheme is tested via simulation and the results are presented next.

4. SIMULATION RESULTS AND DISCUSSION

A system of N interconnected inverted pendulums, coupled by a spring is considered

for the verification of the analytical design. The dynamics are Ûx(t) =


0 1
g
l −

aik
ml2 0

 xi (t) +


0
1

ml2

 ui (t) +
∑

j∈Ni


0 0

hi j k
ml2 0

 x j (t) where l = 2, g = 10, m = 1, k = 5 and hi j = 1 for

∀ j ∈ {1, 2, .., N}. The system is open loop unstable.
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Algorithm 1 Hybrid Q-Learning for Intermittent feedback

1: Initialize Θ̂ j
0,W

j
0,U0

2: for Event-sampling instants: l = 0→∞ do
3: if Event = Yes then
4: Calculate Bellman Error eB(k j

l )
5: Update Θ̂ j

kl
,W j

kl
6: Update the control input at the actuator Ukl
7: Pass the parameters Θ̂0

kl
,W0

kl
, eB(k0

l ) for iterations
8: else
9: for Iterative Index: j = 0→∞ do
10: Update Θ̂ j

kl
,W j

kl
with eB(k j

l )
11: Calculate eB(k j+1

l )
12: if eB(k j+1

l )-eB(k j
l ) < ε or Event = Yes then

13: Pass the Parameters Θ̂ j
kl
,W j

kl
to QFE

14: Goto 4:
15: end if
16: j = j + 1
17: end for
18: end if
19: if eB(k0

l+1)-eB(k0
l ) < ε then

20: Stop PE Condition
21: end if
22: l = l + 1
23: end for

Ideal network: The system is discretized with a sampling time of 0.1 sec. With

Pi = I2×2 and Ri = 1, ∀i = 1, 2, 3, the initial states for the system was selected as x1 =

[2 − 3]T , x2 = [−1 2]T and x3 = [−1 1]T and W(0) = 500, λ = 0.6,Wmin = 250. For

the PE condition, Gaussian white noise with zero mean and 0.2 standard deviation was

added to the control inputs. The initial parameters of the QFE is obtained by solving the

SRE of the nominal model of the system. Under the ideal case, without network-induced

losses, the comparison between time-driven Q-learning versus the proposed hybrid learning

scheme shown in Fig. 2.3a, verifies that the convergence rate is faster in the hybrid learning

scheme with event-sampled feedback. This is due to the iterative parameter update within

the inter-event period.



35

0 50 100 150 200 250 300 350
0

5

10

15

Time (sec) (a)

||
Θ

−
ti

d
e
||

 

 

Time−driven Q−learning

Proposed Hybrid learning algorithm

0 1 2 3 4 5
−10

−5

0

5

(a)

S
ys

te
m

 S
ta

te
s(

x)

 

 

0 1 2 3 4 5
−5

0

5

Time (sec) (b)

C
o

n
tr

o
l i

n
p

u
t 

(u
)

 

 

u
1

u
2

u
3

Fig. 2.3. (a) Estimation error comparison - ideal network (b) State and control trajectories
with delays.

Monte-Carlo analysis: The simulation is carried out with random delays (d̄ = 2)

introduced by the network. The delay is characterized by normal distribution with 80

ms mean and 10 ms standard deviation and a Monte-Carlo analysis is carried out for 500

iterations. In the case where the random delays are considered, the state and control

trajectories are stable during the learning period as seen in Fig. 2.3b. The comparison

between the time-driven Q-learning and the proposed hybrid learning schemes as seen in

Fig. 2.4b shows that parameter error convergence in the hybrid scheme is much faster, which

shows that the hybrid learning algorithm is more robust than the time-driven Q-learning in

the presence of delays. This is partly due to augmented state vector and iterative parameter

learning within the event-sampled instants.
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Fig. 2.4. Estimation error comparison (a) with 10% packet loss. (b) without packet loss.
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Table 2.1. Comparison of parameter error convergence time.

Mean-delay
(in ms)

% Data-drop
out

Convergence time (in sec)

Time-driven
Q-learning

Hybrid Learn-
ing algorithm

0 0 13.6 10.7
30 10 61.0 36.9

25 246 190.0
80 10 632.0 317.0

25 486.5 269.0
100 10 239.0 198.0

25 637.3 239.8

Random packet-losses characterized with Bernoulli distribution is introduced keep-

ing the probability of data lost as 10%. All design parameters are kept the same. Table 2.1,

lists the convergence time for the parameter estimation error for the existing time-driven

Q-learning algorithm and the proposed hybrid learning algorithm. The error threshold was

defined as 10−2 and the design parameters were unchanged. In the ideal case, when there

are no network losses, the difference in the convergence time for the two algorithms is small.

As the network losses are increased, the parameter error converges to the threshold much

faster with the proposed hybrid learning algorithm. It is clear that with the hybrid learn-

ing scheme the estimation error converges much quicker than the time-driven Q-learning

scheme per the information given in the Table 2.1.

The total number of events, the state and control policy during the learning period is

shown in Fig. 2.5a and 2.5b respectively. With the hybrid learning algorithm, the stability

of the system is not affected during the learning period. As the events are spaced out, more

number of iterative parameter updates takes place within the inter-event period. Simulation

figures for all the cases are not included due to space consideration.
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Fig. 2.5. (a) Inter-event time and cumulative events. (b) State and control trajectories with
packet-loss.

5. CONCLUSIONS

The proposed hybrid Q-learning based scheme for a large-scale interconnected

system appears to guarantee a desired performance. The stability conditions for the closed-

loop system during the learning period is derived using the Lyapunov stability analysis.

Q-function parameters for the entire system are estimated at each subsystem with the event-

sampled inputs, states and past state vectors. This control scheme does not impose any

assumptions on the interconnection strengths. The mirror estimator is not used in the event-

sampling mechanism and reference models for each subsystems are not needed. With the

help of the simulation study, the proposed analytical design is verified. From the simulation

results the proposed algorithm appears to provide advantages over the existing model-free

Q-learning scheme for online control.

The proposed hybrid approach utilizes past input and state information for each

subsystems and state information from other systems via communication network and

therefore the net result is the design of a data-driven optimal regulator for a class of large-

scale interconnected systems.
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APPENDIX

Proof of Lemma2: The control inputUkl always satisfies
Ukl

 < Rx̄
−1 Ĝux

kl

 Xkl

.
From Remark 6, two different possible control laws can emerge: One possibility is

Ĝuu
kl−1

is non-singular and Ĝuu
kl−1

> Rx̄ . Therefore,
Ukl−1

 = (Ĝuu
kl−1
)−1

Ĝux
kl−1

X̄kl−1

 ≤(Ĝuu
kl−1
)−1

 Ĝux
kl−1

 X̄kl−1

 . Since, Frobenius norm is used [30], we getUkl−1

 ≤ Rx̄
−1 Ĝux

kl−1

 X̄kl−1

 .
For the other possible conditionUkl−1

 = Rx̄
−1Ĝux

kl−1
Xkl−1

 ≤ Rx̄
−1 Ĝux

kl−1

 X̄kl−1

 (31)
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Therefore, the error in the control law can be written as E
τ,γ
(Ũkl−1) = E

τ,γ
(U∗kl−1 − Ûkl−1).

Taking the norm operator, using the definitions from (20) to getE
τ,γ
(Ũkl−1)

 ≤ E
τ,γ
{(

(Guu
kl−1
)−1Gux

kl−1

 + (Ĝuu
kl−1
)−1

Ĝux
kl−1

) X̄kl−1

} (32)

Since Guu
kl−1

> Rx̄ , we get
E
τ,γ
(Ũkl−1)

 ≤ E
τ,γ

Rx̄
−1 (Gux

kl−1

+ Ĝux
kl−1

) X̄kl−1

. By using the
triangle inequality after representing the estimates in terms of the parameter error, we getE

τ,γ
(Ũkl−1)

 ≤ E
τ,γ
{2

Rx̄
−1 Gux

kl−1

 X̄kl−1

 + Rx̄
−1 G̃ux

kl−1

 X̄kl−1

} (33)

Thus the required inequality is obtained.

Proof of Lemma 3:

• During the event-sampling instants: Let the Lyapunov candidate function be

Li,Θ̃(k
j
l ) = E

τ,γ
Θ̃

T (k j
l )W

−1(k j
l−1)Θ̃(k

j
l ) (34)

where j is the iteration index. From (23),using matrix inversion lemma, we have

W(k j
l ) =

W(k j
l−1)

1 + Z(k j
l )W(k

j
l−1)ZT (k j

l )
(35)

Substituting in the error dynamics (37), we get Θ̃(k j
l ) = W(k j

l−1)W
−1(k j

l−2)Θ̃(k
j
l−1).

Using the definition of Θ̃ and using (35), for all the value function estimators, the first

difference becomes∑N

i=1
∆Li,Θ̃(k

j
l ) ≤ −N E

τ,γ

Θ̃T (k j
l−1)Z(k

j
l−1)Z

T (k j
l−1)Θ̃(k

j
l−1)

1 + ZT (k j
l−1)W(k

j
l−1)Z(k

j
l−1)

(36)

• During the inter-sampling instants: The parameters are updated iteratively using

(24),(25). Let the Lyapunov candidate function be (34). Using similar arguments as

in the previous case, the first difference is

∆Li,Θ̃ = −E
τ,γ

Θ̃T (k j−1
l−1 )Z(k

j−1
l−1 )Z

T (k j−1
l−1 )Θ̃(k

j−1
l−1 )

1 + ZT (k j−1
l−1 )W(k

j−2
l−2 )Z(k

j−1
l−1 )

(37)
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Since the regression vector can become zero, we can only conclude that the Lyapunov

function (34) is negative semi-definite. However, if the regression vector satisfies PE

condition (Definition 1), 0 < Z(k j−1
l−1 )Z

T (k j−1
l−1 )

1+ZT (k j−1
l−1 )W(k

j−2
l−2 )Z(k

j−1
l−1 )
≤ 1 in (36),(37), this results in∑N

i=1
∆Li,Θ̃(k

j
l ) ≤ −Nκmin E

τ,γ

Θ̃T (k j
l−1)

2
(38)

with 0 < κmin ≤ 1. Thus, with the regression vector satisfying PE condition, the parameter

estimation error is strictly decreasing both during the event-sampling instants and the inter-

event period. This implies that as k j
l → ∞, the QFE parameter estimation error converges

to zero asymptotically in the mean-square. This completes the proof. Proof of Theorem 1:

Case 1: The periodic feedback case will be analysed first. Let the Lyapunov function

be

L(X̄, Θ̃) = E
τ,γ

X̄T
k−1ΓX̄k−1 + E

τ,γ
Π̄

∑N

i=1
Li,Θ̃ (39)

Π̄ = η
‖W0‖ρ2

N with η > 1. Consider the first term, the first difference is written as ∆Lx̄ =

E
τ,γ
{X̄T

k ΓX̄k − X̄T
k−1ΓX̄k−1}. Substituting the system dynamics with the estimated control

input, with the definition Kk
∗ = K̂k − K̃k , we get

∆Lx̄ = E
τ,γ
{X̄T

k−1(A
T
x̄k,c
− (Bx̄k K̃k−1)

T )Γ(Ax̄k,c − Bx̄k K̃k−1)X̄k−1 − X̄T
k−1ΓX̄k−1} (40)

where Ax̄k,c = Ax̄k − Bx̄k K∗k is Schur with the optimal control policy U∗k and there exists a

positive definite solution Γ̄ for the Lyapunov equation. The first difference is given by

∆Lx̄ ≤ −γmin E
τ,γ

X̄k−1
2
+ 2 E

τ,γ

X̄T
k−1(Bx̄k K̃k−1)

T
Γ

 Ax̄k,c X̄k−1
 + E

τ,γ

ΓBx̄k K̃k−1 X̄k−1
2

(41)

Applying Young’s inequality, we get

∆Lx̄ ≤ −γmin E
τ,γ

X̄k−1
2
+ E
τ,γ

ε2 Ac X̄k−1
2
+ E
τ,γ

(Γ + Γ2

ε2
)BmaxŨk−1

2

,

where γmin is the minimum singular value of Γ̄ and ε2 is a positive constant. Recalling

Lemma 2

E
τ,γ

Ũ(k − 1)
2 ≤ E

τ,γ
{2

R−1
x̄

 Gux
k−1

 X̄k−1
 + R−1

x̄

 G̃ux
k−1

 X̄k−1
}2 (42)
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Using Assumption 4, and with GM as the bound on Gux
k , we get

≤ E
τ,γ
{4GM

R−1
x̄

2X̄k−1
2
+

R−1
x̄

2G̃ux
k−1

2X̄k−1
2

+2ε
X̄k−1

2
+

2G2
M

R−1
x̄

4

ε

G̃ux
k−1

2X̄k−1
2} (43)

where ε is a positive constant. On simplification, it yields that

E
τ,γ

Ũ(k − 1)
2 ≤ E

τ,γ
{(4GM

R−1
x̄

2
+2ε)

X̄k−1
2
+(

R−1
x̄

2
+

2G2
M

R−1
x̄

4

ε
)
G̃ux

k−1
2X̄k−1

2}

(44)

Using the fact that E
τ,γ

G̃ux
k−1

 < E
τ,γ

G̃k−1
, we obtain

E
τ,γ

Ũ(k − 1)
2 ≤ E

τ,γ
{(4GM

R−1
x̄

2
+2ε)

X̄k−1
2
+(

R−1
x̄

2
+

2G2
M

R−1
x̄

4

ε
)
Θ̃k−1

2X̄k−1
2}

(45)

Using (45), the first difference of the Lyapunov function becomes

∆Lx ≤ −(γmin − µ − ρ1)E
τ,γ

X̄k−1
2
+ ρ2 ‖Γ‖ E

τ,γ

Θ̃k−1
2X̄k−1

2
, (46)

where ρ1 =
(Γ + Γ2

ε2
)Bmax

2
(4GM

R−1
x̄

2
+ 2ε), µ = ‖ε2 Ac‖2,

ρ2 = ‖Γ‖
(1 + Γε2

)Bmax

2
(
R−1

x̄

2
+

2G2
M

R−1
x̄

4

ε
).

Recalling Lemma 3, when 0 < ‖Γ‖ ≤ Wmin (from Remark 10), substitute (35) in place of

‖Γ‖ in (46). Since the history values are used, ‖Zk−1‖2 ≥
X̄k−1

2, then the first difference

becomes

∆L ≤ −(γmin − µ − ρ1)E
τ,γ

X̄(k − 1)
2 − (Π̄N − ‖W0‖ ρ2)κmin E

τ,γ

Θ̃(k − 1)
2
, (47)

with 0 ≤ α ≤ 1. Substituting the value of Π̄, the second term is always negative. Therefore,

L(k + 1) < L(k), ∀k ∈ N.

Case 2: To extend the stability results for the event-based control scheme, it is

required to prove that between any two aperiodic sampling instants, the Lyapunov function

is non-increasing. Let the Lyapunov function be given by (60), taking the first difference

∆Lk = E
τ,γ
{X̄T

k ΓX̄k − X̄T
k−1ΓX̄k−1 + Π̄

∑N

i=1
∆Li,Θ̃} kl ≤ k < kl+1, ∀l ∈ N (48)
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When the events occurring at kl and kl+1 = kl + 1, the Lyapunov function is decreasing

due to (47). When the event-sampling does not occur consecutively at kl, kl + 1, the

interval [kl, kl+1) = [kl, kl + 1) ∪ [kl + 1, kl+1). During [kl, kl + 1), the Lyapunov function

is decreasing because of the control policy updated at kl . In the interval [kl + 1, kl+1) due

to the event-sampling algorithm the inequality in (39) is satisfied. Therefore, ∆L(X̄, Θ̃) =

E
τ,γ
{X̄T

k ΓX̄k − λX̄T
kl+1ΓX̄kl+1} + ∆Li,Θ̃. Using the results from Lemma 3 and for λ̄ < 1, we

get

∆Lk = −(1 − λ̄)E
τ,γ
{X̄T

klΓX̄kl } − Nκmin E
τ,γ

Θ̃T (k j
l−1)

2
(49)

Therefore, ∆L(x̄, Θ̃) < 0 during the inter-sampling period. From Lemma 1,∑N

i=1
∆L(x̄i, Θ̃

i) < 0.

Combining Case 1 and Case 2, the Lyapunov equation satisfies the following inequality,

L(kl+1) < L(kl + 1) < L(kl), ∀{kl}l∈N. (50)

This completes the proof.
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II. EVENT-TRIGGERED DISTRIBUTED APPROXIMATE OPTIMAL STATE
AND OUTPUT CONTROL OF AFFINE NONLINEAR INTERCONNECTED

SYSTEMS

ABSTRACT

This paper presents an approximate optimal distributed control scheme for a known in-

terconnected system composed of input affine nonlinear subsystems using event-triggered

state and output feedback via novel hybrid learning scheme. First, the cost function for the

overall system is redefined as the sum of cost functions of individual subsystems. A dis-

tributed optimal control policy for the interconnected system is developed using the optimal

value function of each subsystem. To generate the optimal control policy, forward-in-time,

neural networks (NNs) are employed to reconstruct the unknown optimal value function at

each subsystem online. In order to retain the advantages of event triggered feedback for

an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the

convergence time for the learning algorithm. The development is based on the observa-

tion that, in the event triggered feedback, the sampling instants are dynamic and results

in variable inter event time. To relax the requirement of entire state measurements, an

extended nonlinear observer is designed at each subsystem to recover the system internal

states from the measurable feedback. Using a Lyapunov-based analysis it is demonstrated

that the system states, observer errors remain locally uniformly ultimately bounded (UUB)

and the control policy converge to a neighborhood of the optimal policy. Simulation results

are presented to demonstrate the performance of the developed controller.
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1. INTRODUCTION

Control of complex interconnected systems is one of the actively pursued areas of

research in the control community [1, 2, 3, 4, 5, 6]. The composition of interacting subsys-

tems presents a unique challenge in designing control algorithms for such interconnected

systems. Various control schemes for such interconnected system have been developed

which can be broadly categorized into strictly decentralized design, adaptive controllers,

robust controllers and distributed controllers. The interactions between subsystems are

assumed to be weak and decentralized controllers are designed [1] while in robust con-

trol approach, in addition to the decentralized control policy, a compensation term for the

interconnections is added [2, 3].

In the design approach which uses adaptive controllers, the additional compensation

term is adaptive and it is designed to learn the interconnection terms to cancel their effects

[5, 6]. In summary, the controllers in [1, 2, 3, 4, 5, 6] are designed at each subsystem as

function of local states. By communicating the states to other subsystems and using the

states of the neighboring subsystems, it was demonstrated that the transient performance

of each subsystem could be improved [6]; further, various distributed control schemes are

given in [7, 8, 9] and the references therein.

One of the impediments for implementing distributed control algorithms is the

communication cost involved due to sharing of states among subsystems. To mitigate these

costs, event-triggered controllers were proposed [7, 9, 10, 11, 12, 13, 14, 15]. Initially, the

focus of the event triggered control research was to design an event triggering mechanism to

reduce the frequency of control implementation using latest sensor measurements without

compromising the system stability. However, in addition to stability, optimality is desired.

When the system dynamics are linear and known, optimal control problem can

be solved to obtain a backward-in-time solution using Riccati equation [16]. When the

system dynamics are nonlinear, solution to the Hamilton-Jacobi-Bellman (HJB) equation is

required for optimal policy. Since the HJB equation does not have a closed-form solution
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[17], inspired by the reinforcement learning (RL) techniques [18], a suite of learning

algorithms based on dynamic programming were proposed. These learning algorithms

generate an approximation of the optimal value function and an approximate optimal control

policy [1, 2, 3, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27] and are broadly classified as

approximate dynamic programming (ADP) schemes.

The optimal value function is approximated by using an artificial neural network

(NN) without solving the HJB equation directly. In order to learn the NN weights which

minimize the approximation error, HJB residual error, the continuous time equivalent of

Bellman error, is used. Starting with the policy/value iteration (PI/VI) based techniques

proposed in [3, 15, 21], several improvements were suggested to implement the algorithms

online. For PI/VI algorithms to converge, sufficiently large number of iterations are needed

within each sampling interval [20, 23]. In contrast, several online ADP schemes are

proposed in [1, 14, 20, 21, 23, 26, 28] which are suitable for online implementation.

These results of ADP based learning controllers were used to develop decentralized

control schemes for interconnected systems using continuous/periodic feedbackwhich guar-

antee stability and optimality [1, 3]. The RL based online ADP methods [1, 3] applied to

interconnected systems typically requires extensive computations and exchange of feedback

information among subsystems through a communication network. Comparing with the

traditional ADP design, the event based method samples the state and updates the controller

only when it is necessary. Therefore, the computation and transmission costs are reduced.

The authors in [14, 15] developed near optimal controllers using event-triggered

feedback when the system dynamics are nonlinear and uncertain by using one step temporal

difference learning (TD ADP) [14] and PI based control scheme [15]. The event triggering

condition introduced in [14] facilitated learning during the initial learning period. The

event-triggering mechanism used estimated NN weights to determine the sampling instants
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and hence, required a mirror estimator. Moreover, the design [14, 15] requires an initial

stabilizing control policy while TD learning demands longer convergence time, PI algorithm

demands larger inter-event time.

In RL methods, to relax the need for accurate knowledge of the state transition prob-

ability and reward distribution, generalized policy iteration (GPI) [18] algorithm based on

the classical dynamic programming was proposed. In the GPI algorithm, policy evaluation

and improvement are two iterative steps. Depending on the number of iterations in each

of these steps, several RL schemes are developed to generate a sequence of control actions

which maximize certain reward function. The policy evaluation step learns the optimal

value function and the policy improvement step learns the greedy action. For online con-

trol algorithms, the temporal difference learning (TDL) based RL schemes with one-step

policy evaluation are more suitable. In TDL methods, using the one step feedback and the

estimated future cost (bootstrapping), the value function parameters are updated [18].

Inspired by the TD ADP design in [23], this paper presents an online learning

framework for interconnected systems by using event triggered state and output information.

Several NNs [29] will be designed for estimating the optimal value functions by minimizing

the HJB error [18]. Using the event-based control framework, the communication and

computational resource utilization are significantly reduced.

To overcome the requirement of larger inter-event time as demanded by the event

based PI algorithm and to reduce the convergence time of the event based TD learning

algorithm, a TDADP scheme combined with iterative learning between two event sampling

instants is developed. As the event triggering instants are decided based on a dynamic

condition, the time between any consecutive events is not fixed. Therefore, embedding

finite number of iterations to tune the NN weights while assuring stable operation is non-

trivial; especially due to the fact that the initial NN parameters and the initial control policy

play a vital part in determining the stability during the learning phase. The net result is the
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development of a novel hybrid learning scheme using RL approach for approximate optimal

regulation of interconnected dynamical systems with event triggered feedback information.

First, the state vector of each subsystem is communicated to others.

Next, to relax the requirement of measuring the entire state vector, nonlinear ob-

servers are designed at each subsystem to estimate overall system state vector using outputs

that are communicated only at event based sampling instants from the other subsystems.

The hybrid learning scheme with the observers is analyzed using Lyapunov technique. It is

shown that closed-loop system is stable with both event triggered state and output feedback.

Finally, two simulation examples are used to evaluate the effectiveness of the analytical

design presented in the paper.

The contributions of this paper include: 1) development of an approximately optimal

controller for the interconnected system using state and output feedbackwith event-triggered

ADP approach in the presence of communication; 2) design of a novel hybrid learning

scheme, with full state measurements and for the case when only the outputs are available,

to reduce the convergence time of the TD learning algorithm ; 3) design of an adaptive event-

triggering mechanism using locally available information; 4) design of extended nonlinear

observers that utilizes the event-triggered output vector at each subsystem to relax the need

for the entire state-vector to be measured and broadcasted, and 5) demonstration of local

uniform ultimate boundedness (UUB) of the closed-loop system using Lyapunov analysis.

In the following presentation, N is used to denote the set of natural numbers, <

is used to denote the set of real numbers. The norm operator ‖.‖ for a vector denotes its

Euclidean norm and for a matrix, its Frobenius norm; ∪ denotes the set union operation,

A ⊆ B implies A is a subset of B and A ∈ B denotes A is a member of the set B, ∃a ∈ <

implies there exists a real number a.
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2. BACKGROUND

2.1 System Dynamics

Consider a nonlinear input affine system composed of N interconnected subsystems.

Let the dynamics of each subsystem be represented as

Ûxi(t) = fi(xi) + gi(xi)ui(t) +
∑N

j=1
j,i
∆i j(xi, x j),

xi(0) = xi0, yi = Ci xi

(1)

where xi ∈ Si ⊆ <ni×1 represents the state vector, Ûxi ∈ <ni×1 represents the state deriva-

tive with respect to time for the ith subsystem, ui ∈ <mi represents the control action,

fi(xi) : <ni → <ni , gi(xi) : <ni → <ni×mi , ∆i j : <ni×nj → <ni , represents the nonlinear

dynamics, input gain function and the interconnection map between the ith and j th subsys-

tems, respectively; yi ∈ <pi is the output vector with Ci ∈ <pi×ni , a constant matrix and Si

is a compact set. The dynamics of the augmented system are expressed as

ÛX(t) = F(X) + G(X)U(t), X(0) = X0 (2)

where X ∈ S ⊆ <n×1, U ∈ <m, G(X) : <n → <n×m, F(X) : <n → <n, U =

[u1
T, ., uN

T ]T , m =
∑N

i=1 mi, n =
∑N

i=1 ni, ÛX = [ ÛxT
1 , ., Ûx

T
N ]T , G(X) = diag(g1(x1), ., gN (xN )),

F(X) = [( f1(x1)+
∑N

j=2 ∆1 j)T, ., ( fN (xN )+
∑N−1

j=1 ∆N j)T ]T and S is a compact set obteined as

a result of finite union of Si. The following standard assumptions on the system dynamics

are needed in order to proceed further.

Assumption 1 Each subsystem described by (1) and the interconnected system (2) are

controllable.

Assumption 2 The nonlinear maps F(X),G(X) are Lipschitz functions [30] in the compact

set S.

Assumption 3 There exists gim,giM > 0 : gim < ‖gi(xi)‖ ≤ giM, ∀i ∈ {1, .., N}.
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Assumption 4 The feedback controller using event-triggered states assumes that the states

are measurable. This will be relaxed in the subsequent design using outputs and extended

nonlinear observers. Delay and packet loss in the communication network are assumed to

be absent.

Note that the dynamics of the system (2) and the component subsystems (1) do

not explicitly describe how the subsystems are interconnected. Interconnected systems

with state interactions will be the focus of this paper and the systems with output/control

interactions are not dealt in this paper. The control scheme for the augmented system (2) is

represented in the form of a block diagram in Fig. 3.1.

As seen in Fig. 3.1, at each subsystem an event-sampling mechanism monitors

the subsystem states/outputs to determine the feedback/broadcast instants. For the case of

output feedback, only the outputs from each subsystem are broadcast and the output vector

is used to reconstruct the states of all the subsystems to be used in the controller. Due

to the flexibility offered by the networked control architecture, the interconnected system

represented in Fig. 1 consisting of two networks is preferred. The Network 1 enables

information exchange between subsystems, while Network 2 is a local communication

network which closes the feedback control loop of each subsystem. The communication

resources involved in the control design of such systems motivated the use of event based

feedback.

Define a subsequence {tk}k∈N ⊂ t to represent the event triggering instants. The

state of the ith subsystem at the sampling instant tk is denoted as xi(tk). During the inter-

event period, latest sensor measurements are not updated at the controller. The difference

between the actual state and the states available at the controller results in an event-sampling

error given by

ei(t) = xi(t) − xi(tk), tk ≤ t < tk+1. (3)
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Fig. 3.1. Interconnected system.

This error is reset to zero at the sampling instants due to the feedback update. A brief

background on the design of optimal controller using aperiodic, event-triggered feedback

is presented in the next subsection.

2.2 Event Based Optimal Control Policy

Let the performance of the interconnected system (2), be evaluated using the fol-

lowing function

V(X,U) =
∫ ∞

t
[Q(X) +UT (τ)RU(τ)]dτ (4)

where R ∈ <m×m, Q(X) : <n → < with Q(0) = 0, represent positive definite functions

which penalize the states and control action, respectively. Define a compact set B. Use the

integral in (4) to denote the infinite horizon value function V(X(t)) defined in B. If V(X(t))

and its derivative are continuous in its domain, the time derivative of the V(X(t)) (4) is

given by [16, 23]

ÛV(X(t)) = −
[
Q(X) +UT (t)RU(t)

]
. (5)

Assuming that a minimum of the value function exists and it is unique [21], the optimal

control/greedy policy can be obtained as

U∗ = −R
2

−1
GT (X) ∂V

∂X

∗
. (6)
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Substituting (6) in (5), the HJB equation [23] is obtained as

H = Q(X) + ∂V∗

∂X

T
F(X) − 1

4
∂V
∂X

∗T

G(X)R−1GT (X) ∂V
∂X

∗
. (7)

When the feedback is aperiodic and event-based, the Hamiltonian in (7) between events can

be represented using a piecewise continuous control input as

H =
[
Q(X) +U∗

T (tk)RU∗(tk)
]
+
∂V∗T

∂X
ÛX . (8)

The piecewise continuous control policy which minimizes the Hamiltonian in (8) is defined

as

U∗(tk) = −
R
2

−1
GT (Xe)

∂V
∂Xe

∗
(9)

with Xe = X(tk), the state held at the actuator using a zero order hold (ZOH) circuit between

tk ,tk+1, for all k ∈ N.

Remark 1 The control policy will be piecewise continuous due to the limited feedback

availability and ZOH. The system dynamics can be considered to be driven by the event-

sampling error (3) which is nonzero between events.

The function approximation property of NNs with with event-triggered feedback is

presented next.

2.3 Neural Network Approximation Using Event Based Feedback

With the following standard assumption, the effect of the aperiodic event based

feedback on the approximation property of the NN observed in [14] is stated next.

Assumption 5 The NN reconstruction error and its derivative, εi(x),∇xεi(x), the constant

target weights θ∗i and the activation function φ(x), which satisfies φ(0) = 0, are bounded in

the compact set S.

Given, χ : A ⊆ <n → <, a smooth function in a compact set A and εM > 0,

∃θ∗ ∈ <P×1 : χ(x) = θ∗
T
φ(xe) + εe, tk ≤ t < tk+1, with ‖εe‖ < εM, ∀xe ∈ A, where,

φ(xe) is a basis function driven by the inputs x(t), e(t) and εe = θ
∗T (φ(xe + e) − φ(xe)) + ε,

the reconstruction error driven by e(t). The error e(t) is due to the difference between

x(tk), x(t).
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Remark 2 The NN approximation with state vector sampled at event triggering instants as

input is a function of event-sampling error. Since the reconstruction error εe depends on

the error due to event sampling, a direct relationship between approximation accuracy and

the frequency of events is revealed.

Remark 3 One of the motivations behind the proposed learning algorithm is to decouple

the relationship between the accuracy of approximation and the sampling frequency. In

[14], this trade-off is handled by designing the event triggering condition based on the

estimated weights and the states of the system. This resulted in a inverse relationship

between the inter-event time and the weight estimation error, thereby forcing more events

when the difference between the estimated NN weight and the target weights is large.

In the next section, the control scheme is introduced and the stability results are

presented in section IV.

3. DISTRIBUTED CONTROLLER DESIGN

In this section, firstly, a novel hybrid learning scheme is used in the design of

distributed approximately optimal controller with state feedback. Using a NN based online

approximator, optimal value function is approximated at each subsystem. Taking into

account the interactions between subsystems, the distributed control law is desired to be a

function of X(t). Later, nonlinear observers are introduced to relax the requirement of full

state measurements. In order to avoid redundancy, only the important results are presented

for the output feedback controllers.

With the following assumption, the design of distributed control policy is introduced.

Assumption 6 V∗(X) ∈ C1(S) is a unique solution to the HJB equation, where C1(S)

represents the class of continuous functions defined in S and have continuous derivatives in

S.
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Proposition [26]: Consider the augmented system dynamics in (2) with the indi-

vidual subsystems (1), ∀i ∈ {1, 2, .., N}, ∃u∗i which is a function of X(t), such that the cost

function (4) is minimized.

Proof: First, consider the infinite horizon value function defined by (4) for the

augmented system in (2). Define R = diag(R1, R2, .., RN ), Q(X) = ∑N
i=1 Qi(X), U(X(t)) =

[uT
1 , ., u

T
N ]

T ,
∂VT

∂X
=

[
∂VT

1
∂x1

,
∂VT

2
∂x2

.......
∂VT

N

∂xN

]
,

V(X(t)) =
∫ ∞

t

(
N∑

i=1

[
Qi(X) + ui

T Riui
] )

dτ =
∫ ∞

t

N∑
i=1

Vi(X(τ))dτ. The Hamiltonian (8) be-

comesH(X) =
[
∂VT

1
∂x1

, .,
∂VT

N

∂xN

]
[ ÛxT

1 , ., Ûx
T
N ]

T
+

(
N∑

i=1

[
Qi(X) + ui

T Riui
] )
=

N∑
i=1

Hi(X, ui) : Hi(X, ui) =(
∂VT

i

∂xi
Ûxi +Qi(X) + ui

T Riui

)
. For optimality, each subsystem should generate a control policy

from Hi(x, ui) as

ui
∗ = −1

2
Ri
−1gi

T (xi)
∂Vi
∗

∂xi
, ∀i ∈ 1, 2, ..N . (10)

By designing controllers at each subsystem to generate (10), cost function (4) of the aug-

mented system is minimized.

Remark 4 A strictly decentralized controller can be realized by designing (10) as a func-

tion of xi(t). Despite the simplicity of such controller, the efforts in [6] highlighted the

unacceptable performance observed, especially in the transient period, as a result of such

design approach. Therefore, the control policy in equation (10) is desired to be a function

of X(t) and it can be considered as

ui
∗ = −1

2
Ri
−1gi

T (xi)
∂V∗i,i
∂xi
− 1

2
Ri
−1gi

T (xi)
∑N

j=1
j,i

∂V∗i, j
∂xi

(11)

where V∗i, j is the cost due to interconnections and V∗i,i is the optimal cost of the ith subsystem

when the interconnections are absent and V∗i = V∗i,i + V∗i, j . The control policy as expressed

in (11) is composed of two parts. The first part denotes the optimal control policy for

a decoupled subsystem wherein the interconnections are absent while the second part

compensates for the interconnections.
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Remark 5 Note that the control policy (10) is considered to be distributed and it is equiva-

lent to (11). In the decentralized control policy, the second term in (11) is zero [1]. This term

explicitly takes into account the interconnection terms in the subsystem dynamics and it is

expected to compensate for the interconnections. An equivalent control policy for the linear

interconnected system using Riccati solution can be obtained as u∗i = −kii xi −
∑N

i=1
i, j

ki j x j .

Here, kii,ki j are the diagonal and off-diagonal entries of the Kalman gain matrix corre-

sponding to the optimal controller for the interconnected system (2), with linear dynamics.

The design using state feedback is presented next.

3.1 State Feedback Controller Design

We use the artificial NNs [29] to represent the optimal value function in a para-

metric form using NN weights and a set of basis function with a bounded approxima-

tion error. Using the parameterized representation, the value function is represented as

V(X) = θTφ(X) + ε(X), where φ(X) is a basis function and ε(X) is the bounded approxi-

mation/reconstruction error.

Let the target NN weights be θ∗i and the estimated NN weights be θ̂i at the ith

subsystem. The parameterized HJB equation with approximate optimal value function can

be obtained as

Qi(X) + θ∗Ti ∇xφ(x)
_
f i(x) −

1
4
θ∗Ti ∇xφ(x)Di∇T

xφ(x)θ∗i

+ εiHJB = 0
(12)

where εiHJB = ∇xεi
T (

_
f i(x) − Di

2 (∇T
xφ(x)θ∗i + ∇xεi)) + 1

4∇xεi
T Di∇xεi,

_
f i(x) = fi(xi) +∑N

j=1
j,i
∆i j(xi, x j), the partial derivative of the optimal cost function V∗i

T with respect to

xi is ∇T
xφ(x)θ∗i and Di = Di(xi) = gi(xi)Ri

−1gi
T (xi). Let ‖∇T

xφ(x)θ∗i ‖ ≤ VxiM, ‖Di‖ ≤

DiM . Now, using the estimated weights θ̂i, the control input (10), can be written as

ûi = −0.5R−1
i gT

i θ̂
T
i ∇xφ(x) and the parameterized Hamiltonian equation is derived as

Ĥi = Qi(X) + θ̂T
i ∇xφ(x)

_
fi (x) −

1
4
θ̂T

i ∇xφ(x)Di∇T
xφ(x)θ̂i . (13)
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In the GPI literature, equation (7) is used to evaluate the value function for the

given policy. Since it is a consistency condition, if the estimated value function is the

true optimal value function for the control policy (10), then Ĥi = 0. Due to the estimated

quantity θ̂i, the value function calculated using the estimated weights is not equal to the

optimal value function. This will result in a HJB residual error and Ĥi = 0 is no longer

true. The estimates θ̂i are now updated such that the HJB residual error is minimized.

Levenberg-Marquardt algorithm [21] can be used as a weight update rule and the weight

estimates evolve based on the dynamic equation given by Û̂θi =
−αi1σi Ĥi

(σT
i σi+1)2

, where αi1 is the

learning step and σi =
∂Ĥi

∂θ̂i
= ∇xφ(x)

_
fi (x) − 1

2∇xφ(x)Di∇T
xφ(x)θ̂i. This weight tuning rule

ensures the HJB residual error convergence while stability of the closed-loop system when

the estimated weights are used in the control policy is not a given, especially, if the initial

control policy is not stabilizing. Therefore, to relax the dependence on the initial control

policy in dictating the stability of the closed-loop system, a conditional stabilizing term

was appended in the weight update rule proposed in [23]. Here, we propose the following

weight update rule

Û̂θi(t) = −
αi1

(σT
i σi + 1)2

σiĤi +
1
2
βi∇xφ(x)Di Lix(x) − κi θ̂i (14)

where κi, βi are positive design parameters, Lix(x) is the partial derivative of the positive

definite Lyapunov function for the ith subsystemwith respect to the state. Since the controller

has access to the feedback information only when an event is triggered, (14) will have to be

slightly modified and this will be presented in the next subsection.

Remark 6 By utilizing the nonlinear maps gi, the stabilizing term in (14) is appended to

the NN weight tuning rule to relax the requirement of initial stabilizing control [23]. In

the event-triggered implementation of the controller presented in this paper, the stabilizing

term in the update rule ensures stability of the closed-loop system at the event based

sampling instants and the sigma-modification term ensures that the weights are bounded in

the presence of parameter drift.

The event triggered state feedback controller design is introduced next.
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3.2 Event Triggered State Feedback Controller

For the near optimal distributed control design with event-triggered state feedback,

the error (3) introduced due to aperiodic feedback will drive the control policy between two

event based sampling instants. With the estimated optimal value function and the estimated

optimal control policy, the Hamiltonian is represented as

Ĥi(X, ûi,e) =
∂V̂T

i

∂xi
Ûxi,e + [Qi(Xe) + ûT

i,e(t)Riûi,e(t)] (15)

where (.)e denotes the influence of (3) due to event-based feedback and this notation will

be followed henceforth. Using the parameterized representation of the approximate value

function, we get

Ĥi = Qi(Xe) + θ̂T
i ∇xφ(xe)

_
fi (xe)

− 1
4
θ̂T

i ∇xφ(xe)Di,ε∇T
xφ(xe)θ̂i

(16)

where Di,ε = Di(xi,e). Finally, we propose the NN weight tuning rule which minimizes the

HJB residual error, with ρ = (σT
i,eσi,e + 1), as

Û̂θi(t) =

−αi1
ρ2 σiĤi +

1
2 βi∇xφ(x)Di Lix(x) − κi θ̂i, t = tk

0, t ∈ (tk, tk+1).
(17)

The estimated NN weights, θ̂i, at each subsystem are not updated between events.

To determine the time instants tk , a decentralized event-triggering condition is required.

Define a locally Lipschitz Lyapunov candidate function Li(xi), for the ith subsystem such

that Li(xi) > 0, ∀xi ∈ S\{®0}. Events are generated such that the following condition is

satisfied

Li(xi(t)) ≤ (1 + tk − t)Γi Li(xi(tk)), tk ≤ t < tk+1 (18)

with 0 < Γi < 1.
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Remark 7 Note that the event-triggering condition (18) requires only the local states. Also

note that the k th event sampling instant at any two subsystems need not be the same and tk

used in the equations above represents the time instant of the occurrence of the k th event at

the ith subsystem. Since the estimated weights are not used in (18) a mirror estimator is not

required [14].

Next, the nonlinear observer which utilizes the output from the subsystems obtained

at event-based sampling instants to reconstruct the internal state information is presented

which requires the following standard assumption.

Assumption 7 The subsystems are assumed to be observable. This is required to enable

reconstruction of the states from the measured outputs.

3.3 Event Triggered Output Feedback Controller

Output feedback controllers use themeasured quantity to estimate the internal system

states using observers. The estimated states are then utilized to design the controllers. Since,

it is desired that the outputs be communicated among subsystems, the observers at each

subsystem are designed so that they estimate the state vector of all the subsystems using the

event-triggered outputs.

To avoid redundancy, all the equations for the controller are not explicitly presented

for output feedback based design. For the implementation of output feedback controller,

estimated stateswill replace the actual states in the design equations presented in the previous

subsection. However, the stability analysis for output feedback controller is presented in

detail. In order to develop an event-triggering condition, we could substitute the outputs in

place of the states in (18). In the analysis, the event-triggering condition can be represented

in terms of the state vector using the linear map Ci.

Next, the observer which estimates the state vector using the measured output with

measurement error is presented.
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In order to estimate the system state vector using the output information obtained at

the event-based sampling instants, consider the observer at ith subsystem with dynamics

Û̂X i(t) = F(X̂i) + G(X̂i)Ui,e(t) + µi[Yi,e(t) − CX̂i(t)] (19)

where X̂i, µi,Yi,e represent the overall estimated state vector, observer gain matrix and event-

triggered output vector of the overall system, respectively, at the ith subsystem, C is the

augmented matrix composed of Ci, each with appropriate dimensions. The output vector

is a function of the measurement error since the output from each subsystem is shared only

when an event is triggered.

Defining the difference between the actual state and the estimated state vectors at

the ith subsystem as the state estimation error, X̃i(t) = Xi(t) − X̂i(t), the evolution of the

state estimation error is described by the differential equation
Û̃X i(t) = F(Xi) + G(Xi)Ui,e(t) − [F(X̂i) + G(X̂i)Ui,e(t)]

− µi[Yi,e(t) − CX̂i(t)].
(20)

Next, the boundedness of the state estimation error with event-triggered output

feedback is presented assuming the distributed control policy is admissible.

Lemma 4 For the augmented system given in (2) composed of interconnected subsystems

given in (1), consider the proposed observer (19) at each subsystem with the error dynamics

(20) and let the measurement error (3) be bounded. The observer estimation error is locally

UUB, provided the control policy is admissible and the observer gains are chosen such that

ηi,o1, ηi,o2 > 0, where the design variables ηi,o1, ηi,o2 are defined in the proof.

Proof: See appendix.

Since the separation principle does not hold for nonlinear systems, the stability of

the controllers together with the observers, operating online, should be analyzed.

Note that the convergence of the NN weights is coupled with the number of events

when the weight update rule (17) is used. This significantly reduces the convergence time

[14]. To decouple this relationship between the number of events and the learning time, a

new NN weight adaption rule is introduced in the next subsection.
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3.4 Hybrid Learning Algorithm

The results of event based function approximation [14] shows that the approximation

error in the optimal value function and the optimal control action generated will depend on

the frequency of events. The TD ADP scheme in [14] presents a NN approximator wherein

the NN weight updates occur only at the event triggering instants tk . In contrast, the ADP

scheme in [15] performs iterative learning, assuming significant iterations could be carried

out during the inter-event period resulting in a greedy policy at every event-triggered update

of the control action. It should be noted that the iterative updates can be related to the GPI

in RL wherein the finite iterations using the past values reduce the HJB error and aid the

estimated weights move towards their target weights.

Thus, the learning scheme proposed here is inspired by the GPI and the NN weights

are tuned using the weight tuning rule

Û̂θi(t) =

−αi1
ρ̂2 σ̂iĤi +

1
2 βi∇xφ(x̂)D̂i Lix(x̂) − κi θ̂i, t = tk

− αi1
ρ̂2(tk )

σ̂i,e(tk)Ĥi,e(θ̂i(t)) − κi θ̂i(t), tk < t < tk+1.

(21)

To denote the use of estimated states from the observer, (.̂) notation is used for the

functions Di, ρi, σi. Whenever an event occurs, new feedback information is updated at the

controller and broadcast to the neighboring subsystems. The weights are tuned with the

new feedback information and the updated weights are used to generate the control action

which is applied at the actuator. In the inter-event period, past feedback values are used to

evaluate the value function and the policy using the HJB equation. This is done by adjusting

the estimated weights in the inter-event period according to (21) so that θ̂i moves towards

θ∗i . The stability of the system is preserved as a consequence of the additional stabilizing

term in (21). Using the actual states in place of the estimated states, the update rules for the

hybrid learning scheme can be derived for the state feedback controller.

Remark 8 As the time between two successive events increases, more time is available

for the iterative weight updates. Therefore, HJB residual error is reduced considerably

resulting in an approximately optimal control action at every event triggering instant [15].
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Remark 9 The event-sampling condition [10] was demonstrated to have large average

inter-event period than the existing event sampling schemes. It should be noted that the

proposed learning algorithm can be implemented with any event-triggering condition.

Remark 10 In the traditional RL literature, the GPI is used and a family of TD algorithms

are presented, such as TD(0), n-TD, TD(λ) [18]. All these learning algorithms [18] have

a fixed number of iterative weight updates for policy evaluation or value function updates.

In contrast, the event-triggered control framework cannot ensure fixed inter-event time and

hence, the proposed hybrid algorithm is most relevant and applicable in the event based

online learning control framework.

For the stability analysis, first, using the fact that the optimal control policy results in

a stable closed-loop system, a time-varying bound on the closed-loop dynamics are defined

[23] as ‖F(X) + G(X)U∗‖ ≤ ψ ‖X ‖ , with ψ > 0. It was also shown in [23] that there

exists positive constant ζ1 such that, ‖Lx(X)‖ ‖ f (X) + g(X)U∗‖ ≤ −ζ1‖Lx(X)‖2, with the

Lyapunov function L(X), its derivative Lx(X), with respect to the state vector. Choosing

L(X) = 0.5(XT X), we get
XT

 ‖ f (X) + g(X)U∗‖ ≤ −ζ1‖X ‖2, which will be used to

analyze the proposed controller. With these results, the stability analysis of the proposed

state-feedback controller, output feedback controller with event-triggered feedback will be

presented in the next section.

4. STABILITY ANALYSIS

In this section, Lyapunov stability theory [30] is used to analyze the closed loop sta-

bility of the nonlinear interconnected system with the proposed event-triggered distributed

controller using state and output feedback. For the analysis of the event-triggered controller,

first, we prove that the proposed distributed controller admits a Lyapunov function for the

closed loop system which satisfies local input-to-state stability like conditions, resulting in

local UUB of all the states, weight estimation error and state estimation error. Further,
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the stability during the inter-event time and sampling instants are analyzed. This ensures

that the event based implementation of the controller will result in stable operation of the

closed-loop system.

With the following equations, the stability results are presented next. Let the error

in the NN weight estimate be defined as θ̃i = θ
∗
i − θ̂i, and the target weights be constants

and bounded by θiM . Consider the Hamiltonian (16), and the ideal HJB equation given in

(12), adding and subtracting Qi(X) in (16) and rewriting the Hamiltonian in terms of θ̃i, we

get the following equations:

Ĥi,e = −θ̃T
i σi,e +

1
4
θ̃T

i ∇xφ(xe)Di,ε∇T
xφ(xe)θ̃i +Qi(xe)

+ θ∗Ti [∇xφ(xe)
_
fi (xe) − ∇xφ(x) f̄i(x)] − εiHJB −Qi(X)

+
1
4
θ∗Ti [∇xφ(x)Di∇T

xφ(x) − ∇xφ(xe)Di,ε∇T
xφ(xe)]θ∗i .

(22)

Similarly, for the case of output feedback, we have

Ĥi = −θ̃T
i σ̂i,e +

1
4
θ̃T

i ∇xφ(x̂e)D̂i,ε∇T
xφ(x̂e)θ̃i +Qi(X̂e)

+
1
4
θ∗Ti [∇xφ(x)Di∇T

xφ(x) − ∇xφ(x̂e)D̂i,ε∇T
xφ(x̂e)]θ∗i

− εiHJB + θ
∗T
i (∇xφ(x̂e)

_
fi (x̂e) − ∇xφ(x)

_
f i(x)) −Qi(X).

(23)

First, the stability results of the output feedback control scheme are presented in

detail.

Theorem 1 Consider the nonlinear dynamics of the augmented system (2) with the equi-

librium point at origin. Let the initial states xi0, X̂i0 ∈ S and let θ̂i(0) be defined in a

compact set Ωiθ . Use the update rule defined in (14), with the estimated states, to tune

the NN weights. With the estimated states evolving according to the observer dynamics

given by (20), there exists ηi′s > 0 such that θ̃i, X(t) and the observer error dynamics are

locally uniformly ultimately bounded by ξicl in the presence of a bounded external input.

The constants, ηi′s and the bound, ξicl , are defined in the proof.

Proof: Refer to the Appendix.
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Remark 11 This analytical result in Theorem 1 is equivalent to the local ISS condition

[30] when the reconstruction and the measurement errors are bounded. There errors can

be considered as a bounded external inputs to the system. However, the boundedness

of the event-based measurement error will be established in the next theorem using the

decentralized event-triggering condition.

Theorem 2 Consider the nonlinear interconnected system described by (2) wherein the

initial states xi0, X̂i0 ∈ S, and let the NN weights be initialized in a compact set Ωiθ .

Consider the weight tuning rule defined in (21) using the estimated states and the event-

triggering mechanism satisfying (18), with the measured outputs at each subsystem. With

the estimated states evolving according to the observer dynamics given by (20), there exists

ηi′s > 0 such that θ̃i, X(t) and the observer error dynamics are locally uniformly ultimately

bounded by ξicl wherein the bound is obtained independent of the measurement error. The

constants, ηi′s and the bound, ξicl , are defined in the proof.

Proof: Refer to the Appendix.

Corollary: 1) Consider the nonlinear interconnected system given by (2) with origin

being the equilibrium point and the initial states xi0, X̂i0 ∈ S, and let θ̂i(0) be defined in

a compact set Ωiθ . Use the update rule defined in (14) to tune the NN weights at each

subsystem. Then, there exists computable positive constants αi1, βi, κi such that θ̃i and X(t)

are locally uniformly ultimately bounded with the bounds ξθ, ξx respectively, when there is

a non-zero bounded measurement error. 2) Using the event-sampling condition (18), it can

be shown the closed-loop system is locally UUB when the NN weights are tuned using (17)

and (21).

Proof: Since the stability results for the state feedback controller can be directly

obtained from Theorem 1 and Theorem 2 by setting the observer estimation error to zero,

detailed derivations are not provided for the corollary. Refer to the Appendix for the main

results.



66

Remark 12 Results from Theorems 1 and 2 can be used along with Assumption 2 to

establish the non-zero minimum inter-event time [7, 9, 10]. However, since the inter-event

time is dynamically changing, ensuring sufficient time availability to carry out significantly

large number of weight updates between any successive events is not feasible. Therefore,

algorithms like policy iteration or value iteration are restrictive for event based control

implementation.

Remark 13 Redundant events can be prevented by using a dead-zone operator as soon as

the states of each subsystem converge to their respective bounds.

Remark 14 The learning algorithm and the corresponding stability results derived for the

closed-loop nonlinear system can be easily extended for linear interconnected system.

Remark 15 The event-sampling mechanism at each subsystem operates asynchronously,

resulting in lesser network congestion. However, suitable communication protocol is re-

quired to be utilized along with the proposed controller to minimize the packet losses due to

collision and other undesired network performance [7, 9]. Further, it is shown that the event

triggering condition ensures continuity of the Lyapunov function for states at the sampling

instants [10].

Remark 16 The weight tuning rules for the online approximator in (21) are used for event-

triggered implementation of state and output feedback controllers. The bounds ξicl can be

made arbitrarily small by appropriate choice of αi1, βi, κi in the weight update rule satisfying

the Lyapunov stability results.

Remark 17 The iterative learning, presented in [3, 15, 21], results in the value function

approximate that yield approximately optimal, hence, stabilizing control input at each time

step. This yields θ̃i = 0 in each of the algorithms [3, 15, 21] which reduces the complexity

of analysis. In this paper, the stabilizing term 1
2 βi∇xφ(x̂)D̂i Lix(x̂) in the weight tuning rule

(21) is used to ensure stability of the closed loop system in the presence of non-zero θ̃i.
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Remark 18 In the adaptive control theory, the sigma/epsilon modification [29] terms

in the adaptation rule ensures that the actual weights are bounded in the presence of

bounded disturbances. It also helps in avoiding the parameter drift and also relaxes the PE

condition. In all the ADP designs [21], the PE condition is required for convergence of the

weight estimation errors and it is achieved by adding random signal to the control policy

[14, 20, 23]. This also had an additional benefit of being an exploratory signal. In RL

literature, the dilemma of exploration versus exploitation is greatly discussed [18]. For a

learning problem, the exploratory noise signal helps the learning mechanism to explore the

search space to find the exact solution and ensures observability conditions while learning

[21]. However, for the online control problem, stability is more important and is given

priority. Therefore, explicitly adding random exploratory signal to the control policy is

undesirable.

Remark 19 In the RL literature, the one step TD algorithm is proven to have convergence

issues [18] due to bootstrapping. This occurs as the parameter values that approximate the

value function grow unbounded as the approximation is based on ’guesses’ [18]. However,

convergence results for online one-step TD algorithms are presented in [14, 20, 23] under

certain conditions. These algorithms utilize the stabilizing terms in the parameter update

rule and present local convergence.

Remark 20 For the output feedback controller, an additional uncertainty due to estimated

states is introduced during the learning period. Moreover, the computations are increased

due the observer present at each subsystem. The state estimation error forces frequent

events when compared to the state feedback controller where the state estimation error is

absent. However, for practical applications, all the states are not measured and with output

feedback, only the output vector is broadcast through the network when compared to the

entire state vector. Typically, pi ≤ ni in (1) and the packet size of the outputs are expected to

be smaller than that of the states. Therefore, the output feedback controller requires much

lower network resources when compared to state feedback controller.
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Remark 21 The location of the observer is crucial and there are several locations which

are feasible to place an observer operating with event-triggered feedback, as discussed in

the literature [11, 15]. For the interconnected system, the extended observers discussed here

are placed along with the controller for the following reasons − a) only the output from each

subsystem is broadcast through the network; b) using the outputs from all the subsystem, the

overall state vector can be reconstructed at each subsystem, as required by the distributed

controllers. These advantages are lost when the observers are placed along with the sensors

at each subsystem. In order to eliminate an additional event-sampling mechanism at each

subsystem, the observer states are held constant between the event sampling instants.

Simulation results are presented in the next section for two examples to substantiate

the analytical design.

5. SIMULATION RESULTS

In this section, two examples are considered to verify the analytical design presented

in the paper. The first example includes a system of two inverted pendulums connected by

spring. The applicability of the proposed control algorithm for linear system is verified by

considering the linear dynamics first and then the nonlinear dynamics are considered. In the

second example, a more practical nonlinear system with three interconnected subsystems

is considered. Example 1: The example used here has two inverted pendulum connected

by spring [4], which can be represented of the form (2). A NN with one layer and 5

neurons together with polynomial basis set wherein the control variables α1 = 25, β = 0.01,

Li(x) = 1
2 xT

i βxi and φ(x) =
[
x1,1

2, x1,2
2, x2,1

2, x2,2
2, xT x

]T ; the initial conditions are defined

in the interval [0,1] and the initial weights of the NN are chosen randomly from [-1,1].

The dynamics of the system are given by Ûxi1 = xi2, Ûxi2 = (migr
Ji
− kr2

4Ji
) sin xi1 +

kr
2Ji
(l − b)+ ui

Ji
+ kr2

4Ji
sin x j1. For the linear dynamics, refer [9]. The parameters in the system

dynamics are m1= 2,m2= 2.5,J1= 5,J2= 6.25, k = 10, r = 0.5, l = 0.5, and g = 9.8, b = 0.5.

The controller design parameters are chosen as R1=.03,R2= 0.03,Qi = 0.1XT X . The
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Fig. 3.2. State trajectories (Linear example).

results in Fig. 3.2 shows the distributed controller performance for the linear system for

various initial conditions. Fig. 3.3 shows the cumulative events for the linear interconnected

system, which demonstrates the advantage of event based feedback.

Next, the results for the event-triggered controller are presented with the distributed

control scheme for the nonlinear dynamical system. For the event-triggered controller, the

initial states and the weights are chosen as in the previous case. The design parameters are

Γ = 0.95, α1 = 20, β = 0.01, Ri = 0.03, Q = 2XT X . The system state trajectories with

event-triggered controller are stable during the learning phase.
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70

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

Time in sec

x

State trajectory

 

 
x1 x2 x3 x4

Fig. 3.4. State trajectories (Nonlinear example - 1).

This can be verified from Fig. 3.3 for both the subsystems. The results in Fig. 3.4

include the state trajectories for various initial states. The HJB residual error for the TD

ADP based controller and the proposed hybrid learning based controller are compared. It is

evident from the results in Fig. 3.5 that the iterative weight updates between event-triggering

instants seems to reduce the learning time.
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Fig. 3.5. HJB error (Nonlinear example - 1).
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Fig. 3.6. Observer performance (Output estimation error): Example 2 and State trajectory
of walking robot.

The observer performance is presented in Fig. 3.4. The plots of estimated and

actual outputs with the event-triggered feedback are compared when the hybrid learning

algorithm is employed to generate the control policy online. The event triggered feedback

and aperiodic update of the observer results in a piecewise continuous estimate of the actual

states. The observer error convergence is essential for the stability of the controlled system.

Due to space consideration all the simulation figures are not included. Efficiency

of the event-triggering condition designed for the two subsystems, SS1 for subsystem 1

and SS2 for subsystem 2; the convergence time for the observer estimation error and the

HJB error for various initial conditions are recorded in Table 3.1. The results of a second

example considered for the simulation analysis is presented next.

Example 2: For the second example, a more practical system which is composed of three

interconnected subsystems is considered. The three subsystems describe the dynamics of

knee and thigh in a walking robot [8]. Let γ1(t) be the relative angle between the two thighs,

γ2(t) and γ3(t) be the right and left knee angles relative to the right and the left thigh. The

dynamical equations of motion (in rad/sec) are

Üγ1(t) = 0.1[1 − 5.25γ2
1(t)] Ûγ1(t) − γ1(t) + u1(t)
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Üγ2(t) = 0.01
[
1 − p2(γ2(t) − γ2e)2

]
Ûγ2(t) − 4(γ2(t) − γ2e)

+ 0.057γ1(t) Ûγ1(t) + 0.1( Ûγ2(t) − Ûγ3(t)) + u2(t)

Üγ3(t) = 0.01
[
1 − p3(γ3(t) − γ3e)2

]
Ûγ3(t) − 4(γ3(t) − γ3e)

+ 0.057γ1(t) Ûγ1(t) + 0.1( Ûγ3(t) − Ûγ2(t)) + u3(t).

The parameter values used in the simulation are (γ2e, γ3e, p2, p3) = (−0.227, 0.559, 6070, 192).

The control objective is to design torque commands and bring the robot to a halt. The pro-

posed control scheme with a NN to approximate V∗i (X) at each subsystem is designed.

The angles were initialized as 40◦ ± 3◦, 3◦ ± 1◦,−3◦ ± 1◦ and the angular velocities were

initialized at random to take values between 0 and 1. Two layer NNs with 12 neurons in the

hidden layer are used at each subsystem. The NN weights of the input layer were initialized

at random to form random vector functional link network [29] and the second layer weights

are initialized to take values between 0 and 1.

The states of each subsystem generated using the proposed learning approach for

different initial conditions are recorded. It can be observed that the states reach their

equilibrium point (0,-0.227,0.559) every time, ensuring stable operation, for both state

and output feedback control implementation (Fig. 3.6). The convergence of the observer

estimation error can be verified from Fig. 3.6. This demonstrates that the distributed

identifier at each subsystem is able to reconstruct the system internal states using the

subsystem outputs which are available at discrete aperiodic time instants.

The hybrid algorithm converges faster and reaches steady state before the time

driven ADP. The observer estimation error converged to a neighborhood of origin. In the

analysis, different initial values for xi(0) and X̂i(0)were chosen to test the algorithm and the

results are tabulated. It is observed that whenever the observer error persists, performing
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Table 3.1. Simulation analysis.

Example Algorithm

Cumulative cost
(Normalized)

Convergence time
in sec Feedback utilization

State feedback
(SF)

Output feedback
(OF)

HJB error Observer error SF OFSF OF

1 TD 1 1 10.13 12.89 3.13 0.3716 0.8
Hybrid 0.988 0.912 6.35 10.74 2.90 0.398 0.7824

2 TD 1 1 4.8 37.20 30.654 0.2 0.4825
Hybrid 0.86 0.5916 4.1 31.62 27.13 0.3 0.55

iterative weight updates did not improve the learning rate. Therefore, the observer should

be designed in such a way that the observer error converges faster and in this case the hybrid

algorithm with output feedback controller outperformed the time driven ADP (Table 3.1).

The control torques generated using the hybrid learning algorithm with event trig-

gered feedback and TD ADP are presented in Fig.3.7. Also, the feedback utilization (ratio

the event triggered feedback instants and the sensor samples) are presented for simulations

carried out for 500 different initial conditions (Fig. 3.7).

The cumulative cost is calculated using the cost function defined in (4). The

comparison of the cumulative cost calculated for the hybrid learning approach with that of

the TDADP reveals that the proposed hybrid scheme results in a lower cumulative cost. Fig.

3.9 shows the ratio of costs due to hybrid algorithm over TD algorithm for different initial

conditions. For the output feedback case, due to the presence of the observer estimation

error, the convergence of the HJB error takes more time when compared to state feedback.

The improvement in the learning scheme is due to the learning process in the inter-sampling

period. For analysis, the sensor sampling time was fixed at 10ms and the control scheme

was simulated to record the number of times the weight update rule was executed in the

inter-event period (Fig. 3.8). It can be seen that the inter-event time is not uniform and

hence, the number of weight updates are varying.
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Initially, the events are not spaced out and therefore, the iterative updates do not take

place, but with time, the events become spaced out, but still with varying intervals. This

results in a varying number of iterative weight updates. The comparison of HJB residual

error for TD ADP and the learning scheme proposed in this paper reveals that the learning

scheme introduced in this paper requires less time for convergence. Table 1 summarizes the

comparison of the two learning algorithms. Feedback utilization is the ratio of events with

respect to the sensor samples, when the sensor operates with a sampling period of 10ms.

6. CONCLUSIONS

This paper presents an approximation based distributed controller with event trig-

gered state and output feedback that seeks optimality for a class of nonlinear interconnected

system. The event-triggered control execution significantly reduces the communication and

computational resource utilization by reducing the frequency of feedback instants. The

proposed hybrid learning scheme seems to accelerate the learning of the NN weights with

event-triggered feedback while reducing the communication costs.

The event triggering condition is independent of the estimated parameters and an

additional estimator at the event-triggering mechanism is not required. The event-triggering

mechanism is decentralized, asynchronous and ensures that the system is stable during the

inter-event period. The requirement of initial stabilizing control policy is relaxed by utilizing

the dynamics of the system.

REFERENCES

[1] S. Mehraeen and S. Jagannathan, “Decentralized optimal control of a class of inter-

connected nonlinear discrete-time systems by using online hamilton-jacobi-bellman

formulation,” IEEE Transactions on Neural Networks, vol. 22, no. 11, pp. 1757–1769,

Nov 2011.



75

[2] D. Wang, D. Liu, H. Li, and H. Ma, “Neural-network-based robust optimal control

design for a class of uncertain nonlinear systems via adaptive dynamic programming,”

Information Sciences, vol. 282, pp. 167–179, 2014.

[3] D. Liu, D.Wang, and H. Li, “Decentralized stabilization for a class of continuous-time

nonlinear interconnected systems using online learning optimal control approach,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 2, pp.

418–428, Feb 2014.

[4] J. T. Spooner and K. M. Passino, “Decentralized adaptive control of nonlinear systems

using radial basis neural networks,” IEEE Transactions on Automatic Control, vol. 44,

no. 11, pp. 2050–2057, Nov 1999.

[5] S. Huang, K. K. Tan, and T. H. Lee, “Decentralized control design for large-scale

systems with strong interconnections using neural networks,” IEEE Transactions on

Automatic Control, vol. 48, no. 5, pp. 805–810, May 2003.

[6] K. S. Narendra and S. Mukhopadhyay, “To communicate or not to communicate: A

decision-theoretic approach to decentralized adaptive control,” in Proceedings of the

2010 American Control Conference, June 2010, pp. 6369–6376.

[7] X. Wang and M. D. Lemmon, “Event-triggering in distributed networked control

systems,” IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 586–601,

March 2011.

[8] W. B. Dunbar, “Distributed receding horizon control of dynamically coupled nonlinear

systems,” IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1249–1263,

July 2007.



76

[9] M. Guinaldo, D. V. Dimarogonas, K. H. Johansson, J. SÃąnchez, and S. Dormido,

“Distributed event-based control for interconnected linear systems,” in 2011 50th IEEE

Conference on Decision and Control and European Control Conference, Dec 2011,

pp. 2553–2558.

[10] X. Wang and M. Lemmon, “On event design in event-triggered feedback systems,”

Automatica, vol. 47, no. 10, pp. 2319 – 2322, 2011.

[11] P. Tallapragada and N. Chopra, “On event triggered tracking for nonlinear systems,”

IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2343–2348, Sept 2013.

[12] M. Mazo and P. Tabuada, “Decentralized event-triggered control over wireless sen-

sor/actuator networks,” IEEE Transactions on Automatic Control, vol. 56, no. 10, pp.

2456–2461, Oct 2011.

[13] E. Garcia and P. J. Antsaklis, “Model-based event-triggered control for systems with

quantization and time-varying network delays,” IEEE Transactions on Automatic Con-

trol, vol. 58, no. 2, pp. 422–434, Feb 2013.

[14] A. Sahoo, H. Xu, and S. Jagannathan, “Neural network-based event-triggered state

feedback control of nonlinear continuous-time systems,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 27, no. 3, pp. 497–509, March 2016.

[15] X. Zhong and H. He, “An event-triggered adp control approach for continuous-time

system with unknown internal states,” IEEE Transactions on Cybernetics, vol. PP,

no. 99, pp. 1–12, 2016.

[16] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Dynamic

programming and optimal control. Athena Scientific Belmont, MA, 1995, vol. 1,

no. 2.



77

[17] P. J. Werbos, “Optimization methods for brain-like intelligent control,” in Decision

and Control, 1995., Proceedings of the 34th IEEE Conference on, vol. 1, Dec 1995,

pp. 579–584 vol.1.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press

Cambridge, 1998, vol. 1, no. 1.

[19] D. V. Prokhorov, R. A. Santiago, and D. C. Wunsch, “Adaptive critic designs: A case

study for neurocontrol,” Neural Networks, vol. 8, no. 9, pp. 1367–1372, 1995.

[20] H.Xu andS. Jagannathan, “Stochastic optimal controller design for uncertain nonlinear

networked control system via neuro dynamic programming,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 24, no. 3, pp. 471–484, March 2013.

[21] F. L. Lewis, D. Vrabie, andK. G. Vamvoudakis, “Reinforcement learning and feedback

control: Using natural decision methods to design optimal adaptive controllers,” IEEE

Control Systems, vol. 32, no. 6, pp. 76–105, Dec 2012.

[22] A. G. Barto, W. B. Powell, J. Si, and D. C. Wunsch, “Handbook of learning and

approximate dynamic programming,” 2004.

[23] T. Dierks and S. Jagannathan, “Optimal control of affine nonlinear continuous-time

systems,” in Proceedings of the 2010 American Control Conference, June 2010, pp.

1568–1573.

[24] Z. Chen and S. Jagannathan, “Generalized hamilton-jacobi-bellman formulation -

based neural network control of affine nonlinear discrete-time systems,” IEEE Trans-

actions on Neural Networks, vol. 19, no. 1, pp. 90–106, Jan 2008.

[25] D. Wang, D. Liu, Q. Zhang, and D. Zhao, “Data-based adaptive critic designs for

nonlinear robust optimal control with uncertain dynamics,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. PP, no. 99, pp. 1–12, 2015.



78

[26] N. Vignesh and S. Jagannathan, “Distributed event-sampled approximate optimal

control of interconnected affine nonlinear continuous-time systems,” in 2016American

Control Conference (ACC), July 2016, pp. 3044–3049.

[27] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based optimal control

for a class of unknown discrete-time nonlinear systems using globalized dual heuristic

programming,” IEEE Transactions on Automation Science and Engineering, vol. 9,

no. 3, pp. 628–634, July 2012.

[28] V. Narayanan and S. Jagannathan, “Approximate optimal distributed control of uncer-

tain nonlinear interconnected systems with event-sampled feedback,” in 2016 IEEE

55th Conference on Decision and Control (CDC), Dec 2016, pp. 5827–5832.

[29] F. Lewis, S. Jagannathan, and A. Yesildirak, Neural network control of robot manipu-

lators and non-linear systems. CRC Press, 1998.

[30] H. K. Khalil and J. Grizzle, Nonlinear systems. Prentice hall New Jersey, 1996,

vol. 3.

APPENDIX

Proof of Lemma 1:

Consider the Lyapunov candidate function Li(X̃i) = 1
2 X̃T

i γi X̃i +
1
4 (X̃T

i γi X̃i)
2, with

the first derivative given by ÛLi(X̃i) = X̃T
i γi
Û̃X i + X̃T

i γi X̃i X̃T
i γi
Û̃X i. Using the estimation error

dynamics (20), and Assumptions 3-4, we get

ÛLi ≤ X̃T
i γi(F(Xi) − F(X̂i) + (G(Xi) − G(X̂i))Ui,e

− µiC(Xi,e − X̂i)) + X̃T
i γi X̃i X̃T

i γi(F(Xi) − F(X̂i)

+ (G(Xi) − G(X̂i))Ui,e − µiC(Xi,e − X̂i)).

(24)
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We use the definition of the control policy and apply the norm operator in (24). Further,

Young′s inequality is utilized to obtain

ÛLi ≤ −(‖γi‖ ‖µi‖ ‖C‖ − ‖γi‖ L f −
3
2
)
X̃i

2

− (‖γi‖2 ‖µi‖ ‖C‖ − ‖γi‖2L f −
6
2
)
X̃i

4

+
1
8

G4
M ‖γi‖8

R−1
i GT (X̂e)∇T

xΦ(x̂e)Θ̃i
4

+
1
2

G2
M ‖γi‖2

R−1
i GT (X̂e)∇T

xΦ(x̂e)Θ̃i
2

+
1
8
‖γi‖8‖µi‖4‖C‖4‖e‖4 +

1
2
‖γi‖2‖µi‖2‖C‖2‖e‖2

+
1
8

G4
M ‖γi‖8

U∗i
4
+

1
2

G2
M ‖γi‖2

U∗i
2

(25)

where L f , e are Lipschitz constant, measurement error, respectively. Further simplification

reveals,
ÛLi ≤ −ηi,o1

X̃i
2 − ηi,o2

X̃i
4
+ ξi1,obs +

1
8

G2
M

‖γi‖2(G2
M ‖γi‖4

R−1
i GT (X̂e)∇T

xΦ(x̂e)Θ̃i
4

+ 4
R−1

i GT (X̂e)∇T
xΦ(x̂e)Θ̃i

2)

(26)

where ηi,o1 = ‖γi‖ ‖µi‖ ‖C‖ − ‖γi‖ L f −1.5, ηi,o2 = ‖γi‖2 ‖µi‖ ‖C‖ − ‖γi‖2L f −3, ξi1,obs =

1
8 ‖γi‖8‖µi‖4‖C‖4‖e‖4+1

2 ‖γi‖2‖µi‖2‖C‖2‖e‖2+1
8G4

M ‖γi‖8
U∗i

4
+1

2G2
M ‖γi‖2

U∗i
2. Since

the control policy is assumed to be admissible, Ũi = 0 and therefore, Θ̃ = 0. This concludes

the proof.

Proof of Theorem 1:

Consider the Lyapunov function

Li(xi, θ̃i, X̃i) = Li1(xi) + Li2(θ̃i) + Li3(X̃i).
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Consider the term Li(θ̃i), taking the first derivative to get

ÛLi2 =
αi1

ρ̂2
i,e

θ̃T
i σ̂i,e{−θ̃T

i σ̂i,e +
1
4
θ̃T

i ∇xφ(x̂e)D̂i,ε∇T
xφ(x̂e)θ̃i

+Qi(x̂e) −Qi(X) − εiHJB + θ
∗T
i [∇xφ(x̂e)

_
fi (x̂e)

− ∇xφ(x) f̄i(x)] +
1
4
θ∗Ti [∇xφ(x)Di∇T

xφ(x)

− ∇xφ(x̂e)D̂i,ε∇T
xφ(x̂e)]θ∗i } + θ̃T

i $i1

(27)

with ρ̂i,e = σ̂
T
i,eσ̂i,e + 1, $i1 is the sum of stabilizing term and the sigma modification term

in the weight adaptation rule. Using the Lipschitz constant LQ and on simplification, we get

ÛLi2 ≤ −
αi1

ρ̂2
i,e

(θ̃T
i σ̂i,e)

2
+

αi1

4ρ̂2
i,e

θ̃T
i σ̂i,ePi1 + θ̃

T
i $i1 +

αi1

ρ̂2
i,e

θ̃T
i σ̂i,e

{LQ X̃i,e − εiHJB + θ
∗T
i [∇xφ(x̂e)(

_
fi (x̂e) −

_
fi (x))

+ (∇xφ(x̂e) − ∇xφ(x)) f̄i(x)] +
1
4
θ∗Ti [∇xφ(x)Di∇T

xφ(x)

− ∇xφ(x̂e)D̂i,ε∇T
xφ(x̂e)]θ∗i }

with Pi1 = θ̃
T
i ∇xφ(x̂e)D̂i,ε∇T

xφ(x̂e)θ̃i .

Here, X̃i,e is the event triggered state-estimation error. This is defined as X̃i,e = Xi,e − X̂i,e =

Xi − X̂i − e. Applying the norm operator, we get

ÛLi2 ≤ −
αi1

ρ̂2
i,e

(θ̃T
i σ̂i,e)

2
+

αi1

4ρ̂2
i,e

θ̃T
i σ̂i,ePi1 + θ̃

T
i $i1+

αi1

ρ̂2
i,e

θ̃T
i σ̂i,e{∇xε Ûx∗i + θ∗Ti [∇xφ(x̂e)L f̄i X̃i,e

+ Lφi X̃i,e f̄i(x)] + Bi1 + LQ X̃i,e}

 ,
Bi1 =

1
4
∇xεDi∇T

x ε +
1
4
θ∗Ti [∇xφ(x)Di∇T

xφ(x)]θ∗i .

(28)

The second term can be simplified as
αi1

4ρ̂2
i,e

θ̃T
i σ̂i,ePi1 =

αi1

4ρ̂2
i,e

θ̃T
i {∇xφ(x̂e) ˆ̄f i,e −

1
2
∇xφ(x̂e)

D̂i,ε∇T
xφ(x̂e)θ∗i +

1
2
∇xφ(x̂e)D̂i,ε∇T

xφ(x̂e)θ̃i}Pi1

≤ αi1

8ρ̂2
i,e

θ̃T
i {∇xφ(x̂e)(2L f̄i X̃i,e + D̂i,εLφi X̃i,eθ

∗
i + f̄i)−

∇xφ(x̂e)D̂i,ε∇T
xφ(x)θ∗i + ∇xφ(x̂e)D̂i,ε∇T

xφ(x̂e)θ̃i}Pi1.

(29)
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Substituting (30) in (29), we obtain

ÛLi2(θ̃) ≤ +
αi1

4ρ̂2
i,e

{θ̃T
i ∇xφ(x̂e)L f̄i X̃i,e + θ̃

T
i ∇xφ(x̂e) f̄i + 0.5

θ̃T
i ∇xφ(x̂e)D̂i,εLφi X̃i,eθ

∗
i − 0.5θ̃T

i ∇xφ(x̂e)D̂i,ε∇T
xφ(x)θ∗i

+
1
2
θ̃T

i ∇xφ(x̂e)D̂i,ε∇T
xφ(x̂e)θ̃i}Pi1 + θ̃

T
i $i1−

αi1

ρ̂2
i,e

(θ̃T
i σ̂i,e)

2
+

αi1

ρ̂2
i,e

θ̃T
i σ̂i,eθ

∗T
i ∇xφ(x̂e)L f̄i X̃i,e


+

αi1

ρ̂2
i,e

θ̃T
i σ̂i,e∇xε Ûx∗i

 +
αi1

ρ̂2
i,e

θ̃T
i σ̂i,eθ

∗T
i Lφi X̃i,e f̄i(x)


+

αi1

ρ̂2
i,e

θ̃T
i σ̂i,e + Bi1 + LQ X̃i,e

 .
Using Young’s inequality and on simplification, we get

≤ αi1

8ρ̂2
i,e

Pi1Pi1 +
3

8ρ̂2
i,e

‖Pi1‖2 + θ̃T
i $i1 −

αi1

ρ̂2
i,e

(θ̃T
i σ̂i,e)

2

+
1
2

L f̄ie
2
+

3αi1

2ρ̂2
i,e

θ̃T
i σ̂i,e

2
+

1
4ρ̂2

i,e

θ̃T
i ∇xφ(x̂e)

4

+
1
2

L f̄i X̃i,e

2
+

1
2
∇xε Ûx∗i

2
+

1
16ρ̂2

i,e

αi1 f̄i
2

+
1
2
θ∗Ti Lφi X̃i,e f̄i(x)

2
+

1
2
LQ X̃i

2
+ Bi2

+
1

32ρ̂2
i,e

αi1DiM Lφi X̃i,eθ
∗
i

4
+

1
16ρ̂2

i,e

αi1L f̄i X̃i,e

4
,

Bi2 =
1
2
Bi1 + LQe

2
+

1
32ρ̂2

i,e

αi1DiM Lφieθ
∗
i

4
+

αi1

4ρ̂2
i,eσ̂i,eθ

∗T
iM

4
+

1
16ρ̂2

i,e

(2
αi1L f̄ie

4
+

αi1DiM∇T
xφ(x)θ∗i

4).

Rearranging the equation, after simplifying, the first derivative becomes

ÛLi2 ≤ (
αi1

8ρ̂2
i,e

+
3

8ρ̂2
i,e

+
1

4ρ̂2
i,eD2

iM

)‖Pi1‖2

− (κi −
|αi1 |

σ̂i,e
2

ρ̂2
i,e

−
3α2

i1

2ρ̂2
i,e

− 1
2
)
θ̃T

i

2

+
1
2
∇xε Ûx∗i

2
+

1
16ρ̂2

i,e

αi1 f̄i
2
+ Bi2 +

κiθ
∗
i

2

2
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+
1
2
θ∗Ti Lφi X̃i,e f̄i(x)

2
+

1
2
LQ X̃i

2

+
1

32ρ̂2
i,e

αi1DiM Lφi X̃i,eθ
∗
i

4
+

1
2

L f̄i X̃i,e

2

+
1

16ρ̂2
i,e

αi1L f̄i X̃i,e

4
− 1

2
θ̃T

i ∇x(x̂e)D̂i,εLix(x̂i,e).

Taking the derivative of the first term in the Lyapunov candidate function, we have

ÛLi1(xi) = Lix(xi) Ûxi = Lix(xi)[ f̄i(x) + gi(xi)ûi,e]

= Lix(xi) Ûx∗i + Lix(xi)Bi3 +
1
2

Lix(xi)D̂i,e∇T
xφ(x̂e)θ̃i

+ Lix(xi)DiM Lφi X̃iθ
∗
i ,

Bi3 =
1
2
(Di(∇T

xφ(x)θ∗i + ∇T
x ε) + DiM∇T

xφ(x)θ∗i

+ DiM Lφieθ
∗
i .

(30)

Using (31), ÛLi(xi, θ̃i) = ÛLi1(xi) + ÛLi2(θ̃i), grouping similar terms to get

ÛLi(xi, θ̃i) ≤ −ηiθ4‖Pi1‖2 − ηix2
xT

i

2 − ηix4
xT

i

4

− ηiθ2
θ̃T

i

2
+ (1

4
θ∗Ti Lφi

4
+

1
32ρ̂2

i,e

αi1DiM Lφiθ
∗
i

4

+
1

16ρ̂2
i,e

αi1L f̄i

4
+

1
4
‖LiL LiD‖2 +

1
4
θ∗i 4

+
1
8
)
X̃i

4

+ (1
4
‖LiLeLiD‖2 +

1
4
‖LiL LiDe‖2 + 1

2
LQ

2
+

1
2

L f̄i

2

+
1
4
‖LiL DiM ‖2 +

1
2
Lφiθ

∗
i

2)
X̃i

2
+ ξi1cl(e)

(31)

where the constants are defined as follows ηiθ2 = (κi − |αi1 | − 3α2
i1 − 0.5), ξi1cl = Bi4 +

0.5‖βi Bi3‖2+0.25‖βi Bi3‖4, ηix2 = βiζi− 1
16ρ̂2

i,e

αi1L f̄i N
2
− 1

4 ‖LiD‖2− 1
2 ‖∇xεζ1‖2+ 1

2, ηix4 =

(βiζi − 1
4

L f̄i N
4
− 5

8 ‖DiM ‖4 − 3
2 −

1
4
DiM Lφi

4). From Lemma 1 and (32), we get

ÛLi(xi, θ̃i, X̃i) ≤ −ηiθ̃4 ‖Pi1‖2 − ηix2
xT

i

2 − ηi,o1
X̃i

2

− ηix4
xT

i

4 − ηiθ2
θ̃T

i

2 − ηi x̃4
X̃i

4 − ηi x̃2
X̃i

2
+ ξicl

(32)

where ηi x̃2 = (ηi,o1 − 1
4 ‖LiLeLiD‖2 − 1

4 ‖LiL LiDe‖2 − 1
2
LQ

2 − 1
2

L f̄i

2
− 1

4 ‖LiL DiM ‖2 −
1
2
Lφiθ

∗
i

2),

ξicl = ξi1,obs +
1
16

R−1
i GT

4
+ ξi1cl(e),
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ηiθ̃4 = ηiθ4−(0.25NR−1
i GM+N)\16D2

iM,

ηi x̃4 = (ηi,o2 −
1
4
θ∗Ti Lφi

4 − 1
32ρ̂2

i,e

αi1DiM Lφiθ
∗
i

4

− 1
16ρ̂2

i,e

αi1L f̄i

4
− 1

4
‖LiL LiD‖2 −

1
4
θ∗i 4 − 1

8
).

The parameters αi1,βi, κi, µi can be chosen to ensure that the constants in (33) are positive.

The sigma modification term in the weight tuning equation gives the negative term in θ̃i,

independent of the states.

Proof of Theorem 2:

First, recalling the results from the previous theorem, it can be observed that when

the event-sampling error is set to zero, the bounds obtained in Theorem 1 will be further

reduced. Now, consider the time-driven algorithmbetween any two event triggering instants.

Case 1: In the event based TD learning scheme, the weights of the NN are held

constant and are not tuned between events. Hence, the derivative of the second term of the

Lyapunov function will be zero. Using the event-sampling condition for the output feedback

and using the definition of the observer estimation error, we get L1i(X̃i) = 1
2 (XT

i γi Xi −

2XT
i γi X̂i + X̂T

i γi X̂i). Now, using the event-sampling condition and X̂(t) = X̂(tk), tk ≤

t < tk+1, we arrive at a bounding function, L1i(X̃i) ≤
∑N

i=1 Li(xi) + X̂T
i γi X̂i. Now using

the Lyapunov function from Theorem 1, the first derivative is obtained as ÛLi(xi, θ̃i, X̃i) =

ÛLi(xi) + ÛLi(θ̃i) + ÛLi(X̃i). Substituting the bounds obtained above reveals

ÛLi(xi(t), θ̃i(t), X̃i(t)) ≤ 2
∑N

i=1
−Γi Li1(xi(tk)).
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Case 2(Event-triggered hybrid learning algorithm): In this case, the weights of the value

function estimator are tuned using the past feedback information using (21). Select the

Lyapunov function from Theorem 1, now the first derivative is given by

ÛLi(xi(t), θ̃i( j), X̃i(t)) ≤ 2
∑N

i=1
−Γi Li1(xi(tk)) + Hx2 ‖X ‖2

− ( |αi1 |
8ρ̂2

i,e

− 3
8ρ̂2

i,e

− 1
4ρ̂2

i,eD2
iM

)‖Pi1‖2 + Hx4 ‖X ‖4

+ Hx̃2
X̃i

2 − (κi −
|αi1 | ‖σ̂i‖2

ρ̂2
i

−
3α2

i1

2ρ̂2
i

− 1
2
)
θ̃T

i

2

+ Hx̃4
X̃i

4
+ Bi2 +

κiθ
∗
i

2

2

with j being the iteration index for the weights θ̃i and Hx4 = 0.25
θ∗Ti Lφi L f̄i

2
, Hx̃2 =

0.5
LQ

2
+

L f̄i

2
, Hx2 = 1

2 ‖∇xεψ‖2 + 1
16ρ̂2

i

αi1L f̄i

2
, Bi3 = Bi2 +

1
2
κiθ

∗
i

2,

Hx̃4 =
1

32ρ̂2
i

αi1DiM Lφiθ
∗
i

4
+

1
16ρ̂2

i

αi1L f̄i

4
+

1
4

θ∗Ti Lφi L f̄i

2
.

We obtain the first derivative as
ÛLi(xi(t), θ̃i( j), X̃i(t)) ≤ 4

∑N

i=1
−Γi Li1(xi(tk))

− ( |αi1 |
8ρ̂2

i,e

− 3
8ρ̂2

i,e

− 1
4ρ̂2

i,eD2
iM

)‖Pi1‖2

− (κi −
|αi1 | ‖σ̂i‖2

ρ̂2
i

−
3α2

i1

2ρ̂2
i

− 1
2
)
θ̃T

i

2
+ HM

X̂i
2
+ Bi3

(33)

where HM is the maximum of {Hx̃2,Hx̃4,Hx2,Hx4}. With the proposed iterative weight

tuning, the Lyapunov first derivative is decreasing when the states and the weight estimation

errors are outside the ultimate bound obtained from (34).
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Proof of Corollary :

When ei = 0, recalling the results obtained for the output feedback case in Theorem

1, it is evident that when the event-sampling error is bounded, ISS like results can be

obtained with state estimation error set to zero. Further, setting the measurement error to

zero, the bounds can be obtained for the state feedback controller operating in continuous

time . Now, consider the inter event period with TD (case 1) and hybrid algorithm (case 2).

Case 1: The weights of the NN are not updated between events in time-driven ADP,

the derivative of the second term will be zero. Therefore, the first derivative can be written

as ÛLHJB =
∑N

i=1 (β ÛLi1(x) + 0). From the event-sampling condition, the first derivative is

given as

ÛLi(xi(t)) ≤ −αLi1(x(tk)),t ∈ [tk, tk+1).

Hence, it can be concluded that the Lyapunov derivative is negative semi-definite and reveals

that the Lyapunov function non-increasing between events.

Case 2 (Event-triggered hybrid learning algorithm): Select the Lyapunov function

candidate as in case 1. The first derivative is
.
LHJB =

∑N
i=1 (Lix(xi) Ûxi + ÛLiθ̃). The derivatives

can be used from Theorem 2, case 2 with the observer estimation error set to 0. This gives

a stronger result when compared to the TD ADP.
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III. EVENT-TRIGGERED DISTRIBUTED CONTROL OF NONLINEAR
INTERCONNECTED SYSTEMS USING ONLINE REINFORCEMENT

LEARNINGWITH EXPLORATION

ABSTRACT

In this paper, a distributed control scheme for an interconnected system composed of

uncertain input affine nonlinear subsystems with event triggered state feedback is presented

by using a novel hybrid learning scheme based on approximate dynamic programming with

exploration. First, an approximate solution to the Hamilton-Jacobi-Bellman (HJB) equation

is generated with event sampled neural network approximation and subsequently, a near

optimal control policy for each subsystem is derived. Artificial neural networks (NN) are

utilized as function approximators to develop a suite of identifiers and learn the dynamics

of each subsystem. The NN weight tuning rules for the identifier and event triggering

condition are derived using the Lyapunov stability theory. Taking into account, the effects

of NN approximation of system dynamics and boot-strapping, a novel NN weight update is

presented to approximate the optimal value function. Finally, a novel strategy to incorporate

exploration in online control framework, using identifiers, is proposed to reduce the overall

cost during the initial learning period. System states and the NN weight estimation errors

are regulated and local uniformly ultimately bounded (UUB) results are achieved. The

analytical results are substantiated using simulation exercise.
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1. INTRODUCTION

Advanced control [1] schemes are necessary for efficient and cost effective operation

of engineering systems in a variety of applications. The adaptive dynamic programming

(ADP) design [1] aims to address the problem of optimization over time through learning

without needing apriori knowledge of the system dynamics. Solution to the Hamilton-

Jacobi-Bellman (HJB) equation [2] provides the optimal value function and optimal control

policy for a nonlinear system. Due to the difficulty in solving HJB equation directly,

nonstandard techniques [3] which are inspired by the reinforcement learning (RL) [4], are

employed to construct an approximate solution.

In the applications involving real-time online control, iterative learning approach

to generate control actions is undesirable [5, 6] due to the large iterations required for

convergence. Reducing the computations considerably, the time-driven ADP approach

introduced in [6] was designed to adjust its adaptive parameters once at each sampling

instant. This approach was motivated by the one step temporal difference learning (TDL)

of RL. Due to the reduction in the iterations, the optimality of the control sequence in

the intermediate time steps was affected and learning algorithm converged asymptotically

under some conditions [6]. Nevertheless, the stability results of the TDL scheme, despite the

reduction in iterative learning steps and suboptimal control, attracted further investigation

in online control applications [7, 8].

The RL-ADP approach is expected tomimic human intelligence as highlighted in [1]

for control with four desired characteristics. The ability to solve the optimization over time,

through learning; involving a critic to generate reinforcement signal; use of reinforcement

signal to generate the control action; and finally, use an adaptive component to emulate

the system and estimate the internal states. With the advent of networked control systems,

computational efficiency, reduced communication resource utilization and reduced learning

time are also desired for an advanced control scheme.
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However, all the learning schemes in [5] and the references therein, are designed to

work in periodic or continuous feedback framework requiring substantial computations. To

mitigate computational aspects without sacrificing performance, event- triggered control [7]

design was introduced. The event triggered controllers are guaranteed to retain the stability

of the system despite using limited, aperiodic sensor measurements.

In the event triggered controller design presented in [7] using NNs with the time-

driven (TD) ADP, the event-triggering mechanism was derived as a function of estimated

weights of the NN. The rationale behind such a design was to increase the events during

the initial learning period. As a consequence, the event-triggering mechanism generated

frequent events when the NN weight estimation error was significant. This ensured that

the learning process was unaffected by the aperiodic event based feedback. Developing an

event-triggered learning control schemewhich preserves stability and the learning efficiency

while retaining fully the benefits of event triggered feedback is still a challenging design

problem.

Later, an event-triggered control schemewith adaptive dynamics programming using

policy iteration (PI) algorithm was proposed in [9]. In order to ensure faster convergence

and real time implementation, a more flexible online learning framework was proposed in

[8] for a large scale interconnected system. However, the scope of the work presented in

[8] was limited to linear systems and the learning algorithm utilized the state-action value

function or the Q-function [4] to determine the optimal control sequence.

ADP based distributed optimal control for interconnected system was considered

in the literature [10, 11]. For such systems, distributed control [12] is preferred with a

learning component. Though the learning schemes in [10, 11] are proven to be efficient, [11]

presents amulti-player non-zero sum game formulation for the distributed control while [10]

presents a robust design approach and both follows an iterative learning approach to obtain

the optimal/Nash equilibrium solution. Moreover, all the control schemes [10, 11, 12, 13]

are presented when continuous feedback is available.
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In contrast, the main focus of this paper is to develop a distributed learning control

scheme for a nonlinear interconnected systemwith the subsystems coupled by states such that

both the stability and the learning efficiency is preserved when the feedback is aperiodic

and event based. The uncertain dynamics and unknown nonlinear interconnections are

reconstructed using identifier NNs designed at each subsystem. The proposed learning

scheme enables TD learning, with the current feedback information, at the event-triggering

instants and iterative learning, using past data, between events to enhance approximation

accuracy of the NNs employed by the learning scheme.

However, the event based learning schemes in [7, 9] focuses on implementation of

the controller in the event based feedback setting to reduce network resource utilization and

reduce computations. This however reduces the efficiency of the learning mechanism in

the following ways: a) the learning time is increased due to intermittent feedback; b) the

sampling instants are dynamic, therefore, the sampling interval is time-varying, restricting

the use of iterative learning algorithms with fixed iterations; c) All the sensor samples are

not utilized during the learning process as the feedback instants are decided by the event

triggering mechanism. Therefore, an improved learning algorithm utilizing the identifiers

is introduced and a new learning rule is developed, which seems to considerably improve

the learning efficiency of the event triggered ADP algorithms at the cost of additional

computations.

Further, one of the classical problems of RL is the dilemma of exploration vs

exploitation, a problem also observed in forward-in-time ADP based optimal controllers.

This problem is highlighted and a few challenges involved in designing exploration strategies

for control are discussed. A novel exploration strategy, inspired by [14], using identifiers is

proposed. Normally, identifiers are designed to estimate the local states at each subsystem to

implement the hybrid learning control scheme whereas for exploration, an identifier which

can estimate the state vector of the overall interconnected system is required. Exploration

enhances optimality at the expense of computations which can be considered as a trade-off.
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Finally, UUB regulation of the system, identifier states to a neighborhood of origin and

convergence of the developed policy to a neighborhood of the optimal policy are achieved

when the distributed controller using proposed learning scheme with exploration is utilized

and this is demonstrated using Lyapunov analysis. Simulation results are presented to

show the advantages of using the proposed learning control scheme with exploration and

emphasize the challenges involved.

The major contributions of this paper include: a) A RL based novel learning control

scheme suitable for event-triggered control implementation; b) a suite of NN identifier

designs to reconstruct unknown nonlinear functions in the system dynamics; c) a novel NN

weight adaptation rule to reconstruct and learn the approximated optimal value function;

d) an online exploration strategy using identifiers and e) stability analysis using Lyapunov

theory.

This paper is organized as follows: Section II introduces the dynamics of the system

being investigated and presents a brief background on optimal control, the distributed

optimal control formulation of interconnected system. Section III briefly talks about the

existing event based ADP algorithms and introduces the hybrid learning scheme. Section IV

presents the modified/improved hybrid learning algorithm and discussions on exploration;

System stability analysis and simulation results are included in SectionVandVI respectively.

The conclusions drawn from this study are reported in Section VII.

2. BACKGROUND AND PROBLEM STATEMENT

2.1 Notations

The subscript (•)i will be used to denote the variables of the ith subsystem in the

interconnected system and (•̂) is used to indicate that the variable is an estimated quantity;

(•̃) denotes that the quantity is an estimation or approximation error. The variables <,N

denote the sets of real and natural numbers respectively; <n denotes the n dimensional
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Euclidean space; <n×m denotes the product space generated by <n,<m. In the analysis,

when x ∈ <n, ‖x‖ denotes the Euclidean norm; for A ∈ <n×m, ‖A‖ denotes its Frobenius

norm. The analysis of the event triggered controller will follow the sampled data approach.

2.2 System Description

Consider a nonlinear input affine continuous-time system composed of N intercon-

nected subsystems, described by the differential equation

Ûxi = fi(xi) + gi(xi)ui +
∑N

j=1
j,i
∆i j(xi, x j), xi(0) = xi0 (1)

where xi(t) ∈ Bi ⊆ <ni×1 represents the state vector of the ith subsystem and Ûxi(t) its

time derivative, Bi is a compact set, ui(t) ∈ <mi is the control input, fi : Bi → <ni ,

gi : Bi → <ni×mi are uncertain nonlinear maps and ∆i j : <ni×nj → <ni is the uncertain

nonlinear interconnection between ith and j th subsystem. The augmented system dynamics

are

Ûx = F(x) + G(x)u, x(0) = x0 (2)

where F = [( f1+
∑N

j=2 ∆1 j)T, ., ( fN +
∑N−1

j=1 ∆N j)T ]
T , x = [xT

1 , ., xT
N ]

T ∈ B ⊆ <n, B =
N⋃

i=1
Bi,

u = [uT
1 , .., u

T
N ]

T ∈ <m, m =
∑N

i=1 mi, n =
∑N

i=1 ni and G = diag([g1(x1).., gN (xN )]). The

following assumptions are needed for the control design.

Assumption 1 The dynamics (1) and (2) are stabilizable with equilibrium point at the

origin. Full state measurements are available for control. The communication network

which facilitates information sharing among subsystems is lossless.

Assumption 2 The nonlinear map gi(xi) is bounded such that 0 < gim < ‖gi(xi)‖ ≤ giM ,

in Bi for every subsystem.

Assumption 3 The functions fi(xi), ∆i j(xi, x j), gi(xi) are locally Lipschitz continuous on

compacts.

In the next subsection, the notion of event-triggered feedback and greedy policy

design with aperiodic event based feedback is presented.
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2.3 Event-Triggered Feedback And Optimal Control

Consider a sequence of time instants, {tk}∞k=0, to denote the event-sampling instants.

Let xi(ti
k) be the state of the ith subsystem at time instant ti

k . Between successive event-

sampling instants ti
k, t

i
k+1, the state vector is denoted as ^xi(t) = xi(ti

k), ∀k ∈ 0 ∪ N. Using

the zero-order-hold (ZOH), the last updated states and control are held at actuators and

controllers between events. To denote the difference between the actual system states and

the state available at the controller, an event-sampling error is defined as

ei(t) = xi(t) − xi(ti
k), ti

k ≤ t < ti
k+1.

(3)

By rewriting ^xi(t) using (3), the feedback between events can be defined as a continuous

function ^xi(t) = xi(t)−ei(t). Next, define the infinite horizon cost function of the augmented

system (2), as

V(x(t)) =
∫ ∞

t

[
Q(x) + uT (τ)Ru(τ)

]
dτ (4)

where Q(x) > 0, ∀x ∈ B\{0}, Q(0) = 0, R > 0 are the penalty functions of appropriate

dimensions. Let V(.) and its time-derivative be continuous on a compact set B. Then,

ÛV(x(t)) = −
[
Q(x) + uT (t)Ru(t)

]
. Using the infinitesimal version of (4), define the Hamil-

tonian function H(x, u) =
[
Q(x) + uT (t)Ru(t)

]
+ (∂VT/∂x) Ûx. The optimal control policy

which minimizes (4) (assuming a unique minimum exists) is obtained by using the stationar-

ity condition as u∗ = −1
2 R−1GT (x)∂V∗/∂x and it is called greedy policy with respect to (4).

The Hamiltonian function can be defined between two event-triggering instants, [tk, tk+1),

as

H(x(t), u(tk)) =
[
Q(x) + uT Ru

]
+ (∂VT/∂x) Ûx. (5)

The greedy policy with event-triggered state becomes

u∗(t) = −1
2 R−1GT (^x)(∂V∗/∂^x) (6)

with ^x(t) = x(tk), t ∈ [tk, tk+1).
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Remark 1 Substituting (6) in (5) reveals the continuous time equivalent of the Bellman

equation which is called the HJB equation and its solution, the optimal value function

V∗(x(t)), is required to obtain the greedy policy (6). Using a zero-order hold (ZOH), we

can ensure that the control is piecewise continuous (6).

Now, for the interconnected system (2) under consideration, the ith subsystem dy-

namics (1) are influenced by the states of the j th subsystem satisfying ∆i j(xi, x j) , 0. To

compensate for this interaction, ui(t) is desired to be a function of both xi(t), x j(t).

Proposition 1: [15] Consider the ith subsystem in (1) and the cost function (4) for

(2), then ∃u∗i (t) ∈ <mi , given by

ui
∗ = −0.5Ri

−1gi
T (xi)(∂Vi

∗(x)/∂xi), ∀i ∈ 1, 2, ..N . (7)

as a function of xi(t), x j(t), for all j ∈ 1, 2, .., N, : ∆i j , 0, where Vi
∗(x) represent the

optimal value function of the ith subsystem, Ri is a positive definite matrix, such that the

cost function (4) is minimized.

Remark 2 The control policy (7) is obtained by rewriting the cost function of the overall

system as the sum of cost functions of individual subsystems [15].

The greedy policy for the augmented system (2) can be obtained using (7) at each

subsystem, given the system dynamics and the optimal value function. Since the system

dynamics and the optimal value function are unknown function approximators are used to

approximate the same.

2.4 Event Sampled NN Approximation

With the objective of finding the approximate optimal value function as an approxi-

mate solution to the HJB using aperiodic event-triggered feedback, the event-based NN ap-

proximation [7] is utilized. Define a smooth function, χ : B→<, in a compact set B ⊆ <n.

Given εM > 0, ∃θ∗ ∈ <p×1 : χ(x) = θ∗
T
φ(xe) + εe. The event-triggered approximation

error εe is defined as εe = θ
∗T (φ(xe + e) − φ(xe)) + ε(x), satisfying ‖εe‖ < εM, ∀xe ∈ B,
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where x, xe are continuous and event triggered variables, e is the measurement error due to

event sampling, ε(x) is the bounded NN reconstruction error and φ(xe) is an appropriately

chosen basis function.

Remark 3 An important relationship between the accuracy of NN approximation and

frequency of events is revealed by the representation of the NN approximation with event-

triggered aperiodic inputs [7], introducing a trade-off between the sampling frequency and

approximation accuracy.

The following assumption is required for the ADP design.

Assumption 4 The solution for the HJB (5) is unique, real-valued, smooth and satisfies

V∗(x) = ∑N
i=1 V∗i (x). Further, φ(x) is chosen such that φ(0) = 0, the activation function and

its derivative and the constant, target NN weights are assumed to be bounded [5, 6].

The parameterized representation of the optimal value function using NN weights

θ∗ and basis function φ(xe) with event based inputs is given as

V∗(x) = θ∗T φ(xe) + ε(xe) (8)

where ε(xe) is the event driven reconstruction error. Define the target NN weights as θ∗i at

the ith subsystem. Using a parameterized representation (8) for V∗i (x), HJB equation [6, 15]

can be derived as

θ∗
T

i ∇xφ(x)
_
f i −

θ∗
T

i ∇xφ(x)Di∇T
xφ(x)θ∗i

4

+ εiHJB +Qi(x) = 0
(9)

where Qi(x) > 0, Di = gi(xi)Ri
−1gi

T (xi),
_
f i = fi(xi) +

∑N
j=1
j,i
∆i j and εiHJB = ∇xε

T
i (

_
f i −

0.5Di(∇T
xφ(x)θ∗i + ∇xεi) + 0.25Di∇xεi). The estimated value function is given by V̂i(x) =

θ̂T
i φ(x), where θ̂i is the NN estimated weights and its gradient along the states is given by

∂V̂i/∂xi = θ̂T
i ∇xφ(x) and ∇xφ(x) is the gradient of the activation function φ(x) along x.

The Hamiltonian function using V̂i(xe) = θ̂T
i φ(xe) reveals

Ĥ =Qi(xe) + θ̂T
i ∇xφ(xe)

_
f i

− 0.25θ̂T
i ∇xφ(xe)Di,ε∇T

xφ(xe)θ̂i

(10)
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where Di,ε = Di,ε(xi,e) = gi(xi,e)Ri
−1gi

T (xi,e). The estimated optimal control input is

obtained from (10) as

ui,e = −0.5Ri
−1gT

i (xi,e)θ̂T
i ∇xφ(Xe), ∀i ∈ 1, 2, ..N . (11)

Note that (10) is used as the forcing function to tune θ̂i. The NN identifier design with

event triggered feedback is introduced in the next subsection. The identifiers are utilized to

generate the uncertain nonlinear functions and also for the purpose of exploration, which

will be discussed in section IV.

3. EVENT DRIVEN ADAPTIVE DYNAMIC PROGRAMMING

In this section, first, NN identifiers are designed at each subsystem to approximate the

uncertain nonlinear functions in (1). Then, the event-triggered hybrid learning algorithm

for constructing an approximately optimal control sequence using the identifier NN is

introduced.

3.1 Identifier Design For The Interconnected System

For approximating the subsystem dynamics, consider a distributed identifier at each

subsystem, which operates with event triggered feedback information

Û̂xi = f̂i(x̂i) + ĝi(x̂i)ui,e +
∑N

j=1
j,i
∆̂i j(x̂i, x̂ j) − Ai x̃i,e (12)

where x̃i,e = xi,e − x̂i, is the event-driven state estimation error and Ai > 0 is a positive

definite matrix which stabilizes the NN identifier. Using NN approximation, the parametric

equations for the nonlinear functions in (1) are gi(xi) = Wigσig(xi) + εig(xi), f̄i(x) =

Wi fσi f (x)+ εi f (x); where Wi• denotes the target NN weights, σi• denotes the bounded NN

activation functions and εi• denotes the bounded reconstruction errors.
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Using the estimate of the NN weights, Ŵi•, define ˆ̄f i(x) = Ŵi fσi f (x) and ĝi(x̂i) =

Ŵigσig(x̂i). Now, to analyze the stability of (12), define the state estimation error x̃i(t) =

xi(t) − x̂i(t). Using (12) and (1), the equation describing the evolution of x̃i(t) is revealed as

Û̃xi = W̃i fσi f (x) +Wi f σ̃i f − W̃i f σ̃i f + [W̃igσig(xi)+

Wigσ̃ig − W̃igσ̃ig]ui,e + εigui,e + εi f + Ai x̃i + Aiei

(13)

with σ̃i• = σi•(x) − σi•(x̂), W̃i• = Wi• − Ŵi•.

Remark 4 Note that the approximation of f̄ (x) requires the states of the ith, j th subsystem

satisfying ∆i j(xi, x j) , 0. Therefore, the inputs to the NN are x̂i, x j,e, x̃i. Due to the presence

of x j,e as input, the identifier is considered to be distributed.

With the proposed NN identifiers at each subsystem, the control design equations

(10) and (11) can be re-derived as Ĥ = Qi(xe)+θ̂T
i ∇xφ(xe) ˆ̄f i−0.25θ̂T

i ∇xφ(xe)D̂i,ε∇T
xφ(xe)θ̂i

and ui,e = −0.5Ri
−1ĝT

i (xi,e)θ̂T
i ∇xφ(xe), D̂i,ε = ĝi(xi,e)Ri

−1ĝT
i (xi,e). To this end, all the design

equations to learn the greedy policy u∗i (t) without requiring the nonlinear functions f̄i, gi

and V∗i are developed. Next, define the following positive definite, radially unbounded

Lyapunov candidate function for the identifier

JiI(x̃i, W̃i f , W̃ig) = Ji x̃ + Ji f̃ + Jig̃ (14)

with Ji x̃ = 0.5µi1 x̃T
i Pi x̃i, Ji f̃ = 0.5µi2W̃T

i f W̃i f + 0.25µi4(W̃T
i f W̃i f )

2, Jig̃ = 0.5µi3W̃T
igW̃ig +

0.25µi5(W̃T
igW̃ig)

2
+ 0.125µi6(W̃T

igW̃ig)
4; where µi j, Pi > 0, j = 1, 2, ., 6. Local UUB

regulation of x̃i(t), W̃i•(t) is achieved when (13) is injected with a non-zero bounded input

ei(t) and this result is summarized next.

Lemma 5 Consider the identifier dynamics (12). Using the estimation error, x̃i(t), as a

forcing function, define NN weight tuning using the Levenberg-Marquardt scheme with

sigma modification term to avoid parameter drift as

Û̂W i f =
αi fσi f x̃T

i,e

ci f +

x̃T
i,e

2 − κi f Ŵi f ,

Û̂W ig =
αigσigui,e x̃T

i,e

ci f +

x̃T
i,e

2uT
i,e

2 − κigŴig

(15)



98

where αi f , αig, κi f , κig, ci f are positive design constants. The error dynamics using (15) are

obtained as
Û̃W i f =

−αi fσi f x̃T
i,e

ci f +

x̃T
i,e

2 + κi f Ŵi f ,

Û̃W ig =
−αigσigui,e x̃T

i,e

ci f +

x̃T
i,e

2uT
i,e

2 + κigŴig .

(16)

If ui,e(t) is stabilizing, then ∃αi f , αig, κi f , κig, Ai > 0 such that (13) and (16) are stable and

x̃i(t), W̃i•(t) are locally uniformly ultimately bounded (UUB).

Proof: See appendix.

Remark 5 The assumption that the control input is stabilizing and the measurement error

acting as an input ei(t) is bounded will be relaxed in the closed loop stability analysis (See

Section V). The stability of the identifier in the presence of measurement errors is required

to employ the identifiers for the purpose of exploration, wherein the measurement errors in

(13) are replaced by bounded exploratory signals.

Now, an event-triggered implementation of the distributed controller design for (2)

using hybrid learning algorithm is presented.

3.2 Event Based Hybrid Learning Scheme

A brief discussion on the hybrid learning scheme [15] with uncertain dynamics is

presented here. An event triggering mechanism is required at each subsystem to determine

the discrete time instants when: 1) the ith subsystem controller receives xi(t); 2) ui(t) is

updated with the latest states at the actuator and 3) xi(t) is broadcast to the neighboring

subsystems. Define a positive definite, continuous function Ji(xi) = xT
i Γi xi, with Γi > 0.

For 0 < αi < 1 and k ∈ N, design the event-triggering mechanism to satisfy the condition

Jix(xi(t)) ≤ (1 + ti
k − t)αi Jix(xi(ti

k)), t ∈ [ti
k, t

i
k+1). (17)

with ti
0 = 0, ∀i ∈ 1, 2, .., N .
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Remark 6 Note that ti
k and t j

k, for i , j are independent. The objective of this paper is

to develop learning algorithms which accelerates the learning process when the feedback

from the system is available only at aperiodic, event triggered time instants. Therefore,

the learning algorithms presented in the paper are independent of the event triggering

condition.

The optimality of the value function in the event based temporal difference (TD)

algorithm in [7] is directly related with the frequency of event-triggering instants. To

improve the estimate of the optimal value function, past data can be used in between events

to further bring down the HJB residual error which reduces the NN weight estimation error

θ̃i = θ
∗
i − θ̂i. Also note that the time between consecutive events is not constant. Therefore,

the RL based iterative algorithms which perform iterative learning until a stopping criterion

is satisfied require strong conditions on the inter-event period. This stopping criterion is

pre-decided as a minimum threshold on the HJB errors.

In the hybrid learning scheme, the weights of the value function approximator NN

are tuned during ti
k < t < ti

k+1, using the HJB residual error calculated at ti
k . With the

approximated dynamics using identifiers, the weight update rule for the proposed hybrid

scheme is given by

Û̂θi =


− (αivψ̂iĤi)/(1 + ψ̂T

i ψ̂i)
2
+ 0.5µi1∇xφD̂T

i Pi x̃i

− κ3θ̂i + 0.5αiv∇xφD̂i xi, t = ti
k

−(αivψ̂iĤi)/(1 + ψ̂T
i ψ̂i)

2
, ti

k < t < ti
k+1, ∀k ∈ N.

(18)

where ψ̂i = ∂Ĥi/∂θ̂i, D̂i = ĝi(xi)Ri
−1ĝT

i (xi) and µi1, Pi, κ3, αiv > 0 are design constants. As

a consequence of the weight updates in the interval (tk, tk+1), the convergence time for the

learning algorithm is reduced.

Remark 7 The estimated Hamiltonian in (18) utilizes the approximation ˆ̄f i, ĝi to calculate

the HJB error. The term 0.5µi1∇xφD̂T
i Pi x̃i in (18) can be viewed as a compensation for

the identification errors (13) and κ3θ̂i in (18) is the sigma modification term to relax the

persistent excitation (PE) condition and avoid parameter drift.
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Remark 8 If the ti
k+1 − ti

k is large, sufficient time is available to tune the NN weights such

that the HJB error reduced to a value very close to zero. This provides a value function

estimate very close to the optimal value function.

The proposed hybrid learning scheme is best suitable for online implementation.

Nevertheless, the hybrid learning scheme seem to be inefficient due to the fact that it does

not utilize the feedback information and the reward signal available during the inter-event

period. The classical problem of exploration vs exploitation and a modified/enhanced

learning algorithm which overcomes the drawbacks of the hybrid learning scheme are

introduced next.

4. LEARNINGWITH EXPLORATION FOR ONLINE CONTROL

The basic idea behind the enhanced hybrid learning scheme is presented first and

the role of the identifiers will be highlighted. The identifiers presented in the previous

section are used to approximate the subsystem dynamics. In contrast, in this section the

NN identifiers which approximate the overall system dynamics will be designed at each

subsystem to aid in the implementation of the modified weight update rule which will be

introduced in this section. Finally, the role of exploration and the challenges involved in

online control will be discussed.

4.1 Enhanced Hybrid Learning

The state and control information along the state trajectory during the inter-event

period is unused in the existing algorithms leading to inefficient learning. Instead, this

information during the inter-event period can be stored and used to update the weights of the

value function NN at the event sampling instant. It should be noted that the state information

during the inter-event period is not available at the controller/learning mechanism though

it is measured and utilized at the event triggering mechanism.
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Therefore, the state and control information can be stored at the trigger mechanism

and transmitted to the controller at the event sampling instants. This means that for the

interconnected system, the states are to be transmitted from the sensor to the controller at

each subsystem and broadcasted to other subsystems. As a consequence, the communication

overhead is increased as the packet size will increase due to fewer events.

To mitigate this problem, the identifier located at each subsystem can be used

to generate this data and can be used in the learning process. However, the use of online

identifier and the controller together results in an unreliable set of data for the value function

estimator as demonstrated later in the simulation section. By tuning the identifier weights

first, the data generated by the identifier can be utilized for learning the optimal value

function. Let the sensor sampling frequency be defined as τs. Consider the weight tuning

rule

Û̂θi =



− αi1vψ̂iĤi

(1 + ψ̂T
i ψ̂i)

2 −
αi2vΨ̂iH̄i

(1 + Ψ̂T
i Ψ̂i)

2 − κ3θ̂i+

0.5αiv∇xφD̂i xi + 0.5µi1∇xφ(x)D̂T
i Pi x̃i, t = ti

k

−(αivψ̂iĤi)/(1 + ψ̂T
i ψ̂i)

2
, ti

k < t < ti
k+1, ∀k ∈ N.

(19)

with the design variables similar to (18) and H̄i, Ψ̂i are the estimated Hamiltonian and

its derivative with respect to the NN weights calculated using the estimated states during

the inter-event period. Since H̄i is a function of the overall states, a NN identifier which

approximates the overall system can provide the overall state estimate at each subsystem

and the design of such an identifier is briefly presented next.

Remark 9 From the simulation analysis, it is observed that gains satisfying αi1v > αi2v

yields better results.

4.2 Identifiers For The Enhanced Hybrid Learning Scheme

Consider the NN identifier at each subsystem as

Û̂X i = F̂i(X̂i) + Ĝi(X̂i)Ui,e − Ai X̃i,e (20)
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where the subscript i indicates variables available at the ith subsystem; F̂i, Ĝi are the

approximated functions of the overall dynamics F,G; X̂ is the estimate of x in (2) and U

is the augmented control u. In contrast to (12), the identifier described by (20) estimates

the states of the interconnected system (2) to collect the state information and calculate the

reinforcement signal for the inter event period. The actual and estimated weights for the

functions Fi,Gi can be defined as in Section III. A and equations similar to (13)-(16) can

be derived for the observer in (20).

Remark 10 The observer design procedure for (20) is similar to that in (12). Therefore, all

the details are not included. However, there are a few major differences in the NN design.

Since the observer in (20) approximates the nonlinear mapping of the overall system, first,

the NN takes as input, the vector [x̂T
i x̂T

j ]
T
, ∀ j = 1, 2, ..N instead of x̂i; second, the number

of neurons in the hidden layer are to be increased as the domain of the nonlinear map being

approximated are of higher dimensions.

The local UUB of the identifier presented in Section III is applicable to the identifier

designed in this section. Therefore, to avoid redundancy, the results are not re-derived at

this point. With this NN identifier, the weight update rule (19) can be realized.

Remark 11 The use of function approximators to learn the optimal value function and

system dynamics adds to the uncertainty of bootstrapping [4] in finding the optimal control

inputs. In addition, since the learning scheme is based on asynchronous generalized

policy iteration (GPI) [4], the initial weights of the function approximators affect the state

trajectory and cumulative cost (return).

Remark 12 The proposed enhanced hybrid learning scheme can be viewed from the RL

perspective as follows: in the inter event period, the system generates reinforcement signal

along the state trajectories which are not fed back to the controller. This âĂŸexperienceâĂŹ

is not utilized by the learning schemes presented in [7, 9, 15]. Therefore, the additional

term, αi2vΨ̂iH̄i/(1 + Ψ̂T
i Ψ̂i)

2, in (19) uses the âĂŸexperienceâĂŹ in the inter event period

to provide a better optimal value function estimate.
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4.3 Role Of Identifiers And Exploration In Online Control

One of the classical problems in the RL literature [4, 14] is the dilemma of explo-

ration vs exploitation. To understand this problem let us consider the RL decision making

problem. The decision making process consists of constructing maps of states to expected

future reward using reinforcement signals [4]. The future actions are influenced by this

prediction of future reward, i.e. using the feedback signal, the HJB error is computed and

the approximate optimal value function is updated based on the HJB error; the estimated

value function is then used to obtain the future control action. If the control action is of the

form (11), then it is a greedy policy and hence, exploitative. This is due to the fact that the

control policy exploits the current knowledge of the optimal value function and minimizes

the Hamiltonian (10). In contrast, if a control policy that is not greedy is applied to the

system, then the control policy is said to be explorative. One has to ensure stability when

such a policy is used in online control.

The PE condition is an important requirement for the ADP control methods in [5] for

the convergence of the estimated parameters to its target values. This condition ensures that

sufficient data is collected to learn the unknown function before the system states settle at

an equilibrium point. Adaptive control theorists developed sigma and epsilon modification

techniques [3, 16] to prevent parameter drift and relax PE condition requirement. However,

from a learning perspective the sigma and epsilon modification techniques inhibit the

learning algorithm from exploring.

To perturb the system and to satisfy the PE condition a control policy of the form

$e(t) = u(t)+ξ(t)was used in the learning algorithms presented in [5, 6] and the references

therein, where ξ(t) is seen as an exploratory signal and u is a stabilizing/greedy control

policy. For example, random noise signal was used as ξ(t) in the simulations; while [17]

explicitly considered the control law with ξ(t) to develop an actor-critic based ADP design.

To relax the PE condition, sufficient data can be collected to satisfy the rank condition, as

indicated in traditional adaptive control [16]. It should also be considered that exploration
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signal ξ(t) is not easy to design. Although several exploration policies are investigated for

finite Markov decision processes [4] and offline learning schemes [4, 14], an exploration

policy which can provide guaranteed time for convergence to a near optimal policy for an

online control problem is not available.

Also, in control, issues of stability and robustness are non-trivial. The system can

become unstable in the process of exploration due to the application of ξ(t) in the control

action. Inspired by the work on efficient exploration in [14], a novel technique to incorporate

exploration in the learning controller is developed next.

4.4 Exploration Using Identifiers

The TD learning [4, 6, 7] and the hybrid learning schemes [8, 15] reduce the HJB

error but Ĥi(x, ui) , 0 every time the control action is updated; i.e., optimality is achieved

only in the limit (t →∞, V̂ → V∗). Further, in asynchronous learning [4], the optimal value

function is learnt only along the state trajectory and not the entire state space. Therefore,

the initial weights of the value function approximator affect the cumulative cost of operating

the system. To minimize the cost during the learning period an exploration strategy using

identifiers is presented next.

First, consider the identifier described by (20). We will consider two sets of initial

weights, one of which will be used by the controller to generate the control action$(1)ie (t) =

u(1)i (t) + ξ
(1)
i (t), such that ξ(1)i (t) = 0; the other one will be exploratory policy $(2)ie (t) =

u(2)i (t) + ξ
(2)
i (t) with ξ

(2)
i (t) , 0, used with the identifier. Fig. 4.1 is a simplified block

diagram representation for implementing the proposed exploration strategy. It can be

observed that in order to incorporate exploration without affecting the performance of the

existing controller, an addition identifier and value function estimator are required.

Let Θ̂1i, Θ̂2i be the weight vectors at the ith subsystem. Calculate the Hamiltonian as

Ĥ(p)i (x̂e) = Qi + Θ̂
T
pi∇xφ(x̂e) ˆ̄f i − 1

4Θ̂
T
pi∇xφ(x̂e)D̂i∇T

xφ(x̂e)Θ̂pi where p = 1, 2 for each initial

weights. We can construct the cost function trajectory with the value function estimator
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Fig. 4.1. Block diagram representation of exploration strategy.

using the NNweights Θ̂1i, Θ̂2i for both the policies$(1)ie , $
(2)
ie . Similar to (7), the stationarity

condition can provide the ui,e from Ĥ(p)i . Using the Hamiltonian error, the NN weights are

tuned using the weight update rule (19).

Thus, we can obtain two policies, one exploitative and the other using an exploration

policy. For example a random exploration policy can be used. For each initial NN weights,

a cost function, control policy, Hamiltonian error and state trajectory is generated. During

the learning period, using the performance index, the cumulative cost be calculated, for

p ∈ {1, 2}, using the integral

V (p)i (t) =
∫ tswitch

t

[
Qi(x) +$(p)

T

ie (τ)Ri$
(p)
ie (τ)

]
dτ. (21)

Note that the value function trajectories for the two policies start at the same initial

cost and evolve based on the function Qi(x) + $(p)
T

ie (τ)Ri$
(p)
ie (τ). Let the time instant

t = tswitch denote the time at which the difference between the cumulative rewards due

to the two control policies start to increase steadily. Define V̂∗i (Θ) = min{V1
i (t),V2

i (t)}.

Using the value function approximator NN that corresponds to the estimate V̂∗i (Θ) generate

the greedy policy at the event based sampling instants ti
k ≥ tswitch, ∀k ∈ N. If both the

policies result in the same cumulative cost V1
i (t),V2

i (t), the reliability of the cost function

estimate can be evaluated by using their HJB error. Choose the estimated value function V̂∗i
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such that θ̂i satisfies the condition θ̂i = min(arg min
Θ1

(Ĥ1
i ), arg min

Θ2

(Ĥ2
i ) ). Thus, V̂∗i which

is close to the optimal value function is used to generate the control action and potentially

minimize the cost during the learning period. Note that the exploration policy need not

necessarily yield a reduced cost function trajectory during the learning period. However, it

is observed during the simulation analysis that the appropriate choice of exploration policy

can significantly reduce the cost during the learning period.

Remark 13 In contrast to [14], the exploration strategy presented here evaluates the

cumulative cost due to the two policies and by relying on the cumulative cost observed

from the past experience, chooses the approximated value function learnt using the policy

which resulted in lower cumulative cost.

Remark 14 The sigma/epsilon modification term (κ3θ̂i) added in the learning rule (19)

ensures that the approximated value function reach a neighborhood of the optimal value

function, without compromising the stability. Further, the control action $ie generated

using the proposed learning algorithm without the exploration strategy (ξi = 0) is always

exploitative as$ie = ui,e, minimizing the cost function (4). Therefore, injecting exploratory

signal ξi, to the identifier and searching for a better policy using the proposed exploration

strategy is not going to affect the system performance or stability. In contrast, it can only

improve the optimality of the control action. Therefore, it is a very efficient tool for online

learning and control applications.

Remark 15 The learning schemes which collect data online using stabilizing controller

and then use the data collected to update the value functions can also use this scheme during

the initial learning period to collect sufficient data points. The advantage is that the control

policy minimizes the cost function even during the learning period and sufficiently ’rich’

data can be collected using the proposed exploration strategy [5].

Using Lyapunov based analysis, the stability results for the closed loop system is

presented next.
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5. STABILITY ANALYSIS

In this section, first, a more generic result which establishes the fact that the contin-

uously updated closed-loop system admits a local input-to-state practically stable Lyapunov

function in the presence of bounded external input (measurement error). This result is

required to ensure that the event triggering mechanism does not exhibit zeno behavior.

Further, it is shown using two cases that as the event sampling instants increase, the states,

weight estimation errors and the identifier errors reach a neighborhood of origin. Using the

fact [6] that the optimal controller renders the closed-loop dynamics bounded reveals

‖ f (x) + g(x)u∗‖ ≤ ‖δ(x)‖ = C1 ‖x‖ (22)

where δ(x) ∈ <n, C1 ∈ <.

Theorem 1 Consider the subsystem dynamics (1). Define the NN weight update rule (18)

for the value function approximator and (15), for the identifiers. Then, ∃αiv, µi, κ3 > 0 and

computable positive constants which define the bounds for θ̃i, W̃i f , W̃ig and x, x̃i and all the

closed loop signals are locally uniformly ultimately bounded when a bounded measurement

error is introduced in the feedback.

Proof: See appendix.

Theorem 2 Consider the augmented nonlinear system (2) and its component subsystems

(1). Define the NN weight update rule (18) for the value function approximator and (15),

for the identifiers. Let events be generated when (17) is violated. Then, computable positive

constants that define the bounds for θ̃i, W̃i f , W̃ig and x, x̃i exist and all the closed loop signals

are locally uniformly ultimately bounded.

The proof of Theorem 2 is a special case of Theorem 3 and therefore, all the details

are not provided to avoid redundancy.
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Remark 16 From the results of Theorem 1 the closed-loop system admits a Lyapunov

function which satisfies the local input-to-state practical stablility (ISpS) when the mea-

surement error is bounded. By analyzing the same Lyapunov function during the inter-event

period, using the event-triggering condition, the boundedness of the measurement can be

established.

Remark 17 Appropriate choice of design parameters will result in lower bounds on x, x̃i

and θ̃i, W̃i f , W̃ig. Redundant events can be avoided using a dead-zone operator [7].

Remark 18 Define the minimum time between two events as τmin = min{tk+1−tk}, ∀k ∈ N.

Then τmin > 0 as a result of Assumption 3, Theorems 1 and 2 [7].

Now the close-loop stability results with the modified learning algorithm and ex-

ploration is presented.

Theorem 3 Consider the augmented nonlinear system (2) and its component subsystems

(1). Define the NN weight update rule (15) for the identifiers (20). Define the event-

triggering condition (17). Then positive constants can be computed that define bounds

on the NN weight estimation error θ̃i, W̃i f , W̃ig, the interconnected system states and x̃(t)

are locally bounded. Further, when the NN weights are tuned based on the rule (19), the

state vector and weight estimation error for the value function estimator monotonically

decreases for all t. Under the assumptions prescribed in the previous sections, the value

function estimator error and the identifier states corresponding to each value function

estimator NN remain locally uniformly ultimately bounded.

Proof: See appendix.

A walking robotic system is used as the simulation example to verify the theoretical

results.
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Fig. 4.2. State Trajectories (Dotted Lines - Hybrid vs Enhanced hybrid algorithm).

6. SIMULATION RESULTS

In this section, three coupled nonlinear subsystems are considered for application

of the distributed ADP algorithms presented in this paper. The three subsystems are

physically meaningful in that they capture the thigh and knee dynamics of a walking robot

experiment [13]. In the following, γ1(t) is the relative angle between the two thighs,

γ2(t) is the right knee angle (relative to the right thigh) and γ3(t) is the left knee angle

(relative to left thigh). The controlled equations of motion in units of (rad/sec) are Üγ1(t) =

0.1[1− 5.25γ2
1(t)] Ûγ1(t) − γ1(t)+ u1(t), Üγ2(t) = 0.01

[
1 − p2(γ2(t) − γ2e)2

]
Ûγ2(t) − 4(γ2(t) −

γ2e)+0.057γ1(t) Ûγ1(t)+0.1( Ûγ2(t)− Ûγ3(t))+u2(t), Üγ3(t) = 0.01
[
1 − p3(γ3(t) − γ3e)2

]
Ûγ3(t)−

4(γ3(t)−γ3e)+0.057γ1(t) Ûγ1(t)+0.1( Ûγ3(t)− Ûγ2(t))+u3(t)where Üγi correspond to the dynamics

of the ith subsystem (SSi). The control objective is to bring the robot to a stop in a stable

manner. The parameter values (γ2e, γ3e, p2, p3)(t) can be considered in the model taking on

the values (-0.227,0.559,6070,192).
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The control scheme proposed in this paper requires 3 NNs at every subsystem.

All the NNs were designed to have two layers and formed random vector functional link

networks [3]. The NN that approximated fi(x)+∆i j(x),was designed with 25 neurons in the

hidden layer. The other two NNs that approximated gi,V∗i were designed with 7,6 hidden

layer neurons respectively. The following initial conditions were set for the simulation:

xi(0) ∈ [−1, 1], x̂(0) = 0, θ̂i(0), Ŵi f (0), Ŵig(0) ∈ [0, 1].

The controller parameters are: αi1v = 40, αi2v = 0.03, µi = 1.95, Pi = 2, κ3 = 0.001,

Qi = 20, Ri = 1, Ai = 80, Ci f = 0.5, κi f = κig = 0.0001, αi f = αig = 100 and Γi = 0.99.

The robotic system is simulated with the torques generated using the control al-

gorithm with hybrid and enhanced (modified) hybrid approach and exploration. It can be

observed that the states reach their equilibrium point faster in the modified hybrid approach

(Fig. 4.2).

The magnitude of the control torque for the hybrid ADP based learning scheme and

the enhanced hybrid approach are compared in Fig. 4.3 using the event triggered feedback.

The enhanced hybrid scheme converges faster due to the improved learning as a result of

using the reinforcement signals during the inter event period for tuning the NN weights.
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Convergence of the identification error ensures that the reinforcement signals used

to learn optimal value function and policy are reliable. To test the analytical results for

the identifier, 500 different initial conditions and exploration signals like random noise and

trigonometric functions of different frequency but restricted in magnitude to 0.1 were used.

The states estimation errors converged on each of these simulations as seen in Fig. 4.4.

The optimal value function is learnt using the consistency condition dictated by

the HJB equation. A lower Hamiltonian/HJB residual error implies that the value func-

tion weight estimate is close to the target weights. Evidently, from Fig. 4.5, the en-

hanced/modified weight tuning rule improves the optimality due to faster convergence of

the HJB residual error. This can be attributed to the fact that with the enhanced weight

tuning, more information about the states and the corresponding value is utilized to tune

the weights. This information is extracted from the reward signal obtained during the

inter-event time with the estimated identifier states.
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Fig. 4.5. Comparison of HJB error and Comparison of cost.

To verify the proposed learning scheme, the cumulative cost calculated for the

hybrid learning algorithm and the modified update rule taking into account the states and

reinforcement evaluated in the inter event period are compared in Fig. 4.5. For 500 randomly

chosen initial values of states of the system and identifier, the ratio of the cumulative cost

at the end of 20s for hybrid and the proposed learning algorithm is recorded in Fig. 4.5.

Due to the dependence of the learning scheme on the identifier, the convergence of the

identification errors should precede the convergence of the controller.

The improvement in the learning scheme is a result of the weights updated between

events using the past data and the exploration strategy. Finally, four additional NN ap-

proximators were utilized, each initialized with the weights randomly selected in [0,2]. To

demonstrate the efficiency of the proposed strategy in off-setting the effects of initial NN

weights, each of the randomly picked weights were used to generate a control policy and

the cost function over time using additional identifiers for each NN weights. These cost

trajectories are compared with the cost function trajectory of the systemwith the exploration

strategy presented in the paper.

The variable Θ∗1(t) is the estimated NN weights which are used to generate the con-

trol action sequence, selected by the exploration strategy, online. This seems to optimize

the performance of the system better than the other policies as seen in Fig. 4.6. Since

multiple NNs are used to generate the cost function trajectories using the identifier states,

computations are increased. However, the effect of the initial weights of the NN approxi-
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mator on the cost function trajectory is reduced and the learning algorithm eventually uses

the optimal approximated value function which yields the best sequence of control policy,

in terms of the cost function. This again can be considered as choosing the cost function

estimate which has yielded better reinforcement signals in the past. In doing so, the choice

initial weights play far lesser role in the resulting cumulative cost during the learning period

and hence, the transient performance.

To test the event triggering mechanism, the sensors were sampled at 1 ms and the

number of events generated are recorded. The ratio of total number of events from the

3 subsystems with the total number of sensor samples collected are computed as 0.5108

for the enhanced hybrid learning scheme and 0.4981 for the hybrid learning scheme. This

demonstrates the benefits of the enhanced NN weight update rule when compared with the

hybrid learning rule as almost 51% of the sensor information sampled at the event triggering

mechanism is not used by the learning algorithm in the hybrid learning scheme.



114

7. CONCLUSIONS

A novel enhanced hybrid learning scheme is introduced with exploration by using

a model which in turn is utilized for the control of interconnected systems. Local UUB

regulation of the system states, NN weights estimation errors and the identification errors

are achieved with the proposed. The NN identifiers approximated the system nonlinearities

and also aided in evaluating the exploration signals to gather useful information about the

system dynamics which improved the optimality of the control actions. The proposed

learning scheme seems to match and better the performance of continuous time TD ADP

learning scheme with limited feedback information with some addition computations.
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APPENDIX

Proof of Lemma 1:

Consider the followingLyapunov candidate function JiI(X̃i, W̃i f , W̃ig) = Ji x̃+Ji f̃ +Jig̃

with Ji x̃ =
1
2 µi1 X̃T

i Pi X̃i, Ji f̃ =
1
2 µi2W̃T

i f W̃i f +
1
4 µi4(W̃T

i f W̃i f )
2 and Jig̃ =

1
2 µi3W̃T

igW̃ig +

1
4 µi5(W̃T

igW̃ig)
2
+ 1

8 µi6(W̃T
igW̃ig)

4
, where µi j, Pi, j = 1, 2, ., 6, are positive constants of appro-

priate dimensions. Consider the first term in the Lyapunov function. Taking the derivative
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and substituting the estimation error dynamics yields

ÛJi x̃ = µi1 X̃T
i Pi Ai X̃i + µi1 X̃T

i Pi(W̃i fσi f (Xi) − W̃i f σ̃i f

+ [W̃igσig(Xi) − W̃igσ̃ig]Ui,e + εigUi,e +Wigσ̃igUi,e

+ εi f +Wi f σ̃i f + AiEi)
where Ei is the vector of event triggering errors from all subsystems. Applying the norm

operator and choosing the design matrix Ai as Hurwitz results in

ÛJi x̃ ≤ −λmin(µi1q̄i)
X̃i

2
+ ‖µi1‖

X̃T
i

 ‖Pi‖
W̃i f

σi f (X̂i)
 + ‖µi1‖

X̃T
i

 ‖Pi‖ [
W̃ig

 σig(X̂i)
 + εig


+

Wig
 σig(Xi) − σig(X̂i)

] Ui,e
 + ‖µi1‖

X̃T
i

 ‖Pi‖

[
εi f

 + Wi f
 σi f (Xi) − σi f (X̂i)

 + ‖Ai‖ ‖Ei‖]
where the solution to the Lyapunov equation for the pair (Ai, Pi), 2q̄i is used; λmin indicates

the minimum eigenvalue; ‖σi•‖ ≤ Nio•, the number of hidden layer neurons, the subscript

M with the weight variables denote the bounds on the target/ideal weights, ‖Ei‖ ≤ EiM and

εi•M is the bound on the reconstruction errors.

Using the Youngs inequality (∀a, b, ε > 0, ab ≤ a2

2ε +
εb2

2 ), the Lyapunov derivative

becomes
ÛJi x̃ ≤ −λmin(µi1q̄i −

7
2
)
X̃i

2
+

1
2
‖µi1‖2‖Pi‖2

W̃i f
2

Nio f +
1
2
‖µi1‖2‖Pi‖2

W̃ig
2Niog

Ui,e
2
+ 0.5‖µi1‖2

‖Pi‖2ε2
igM

Ui,e
2
+ 2‖µi1‖2‖Pi‖2

Wig
2Niog

Ui,e
2

+ 0.5‖µi1‖2‖Pi‖2(ε2
i f M + 4W2

i f M Nio f + ‖Ai‖2E2
iM).

Utilizing the definition of the control policy, we haveUi,e
2 ≤

R−12
W2

igM Niog
∇T

xΦ(xi,e)Θ∗i
2
+

R−12
Niog

W̃ig
2∇T

xΦ(xi,e)Θ∗i
2

+
R−12

Niog
W̃ig

2∇T
xΦ(xi,e)Θ̃i

2
+

R−12
W2

igM Niog
∇T

xΦ(xi,e)Θ̃i
2
.
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Using this in the Lyapunov function derivative and expanding the terms and applying

YoungâĂŹs inequality, the first derivative is simplified as

ÛJi x̃ ≤ −λmin(µi1q̄i − 3.5)
X̃i

2
+ 0.5

W̃i f
4
+ 1.5

W̃ig
4
+ ηiox̃B + (

1
2
R−14

+ 4)
W̃ig

8

+ (11
2
+

1
8
‖µi1‖4‖Pi‖4N4

iog)
∇T

xΦ(xi,e)Θ̃i
4

(23)

where the bounds on the gradient of the optimal value function, V∗ixM , is used to define the

term ηiox̃B as

ηiox̃B = 0.125‖µi1‖4‖Pi‖4
R−14

W4
igM N2

iogV
∗4

ixM(
ε4

igM

V∗4ixM

+ 16N2
iog + 4N2

iogW2
igM/V∗

4

ixM + N2
iog + ε

4
igM/W4

igM

+ N2
iog/W4

igM) + 0.125‖µi1‖4‖Pi‖4N2
io f + 0.125‖µi1‖8

‖Pi‖8
R−18

W8
igM N4

iog(N2
iog + 0.0625N2

iog +
ε8

igM

16W8
igM

)

+ 0.5‖µi1‖2‖Pi‖2(ε2
igM

R−12
W2

igM NiogV∗
2

ixM + 4W4
igM

N2
iog

R−12
V∗

2

ixM + ε
2
i f M + 4W2

i f M Nio f + ‖Ai‖2E2
iM).

Now consider the second term in the Lyapunov candidate function. Taking the derivative

and using the weight estimation error dynamics reveals

ÛJi f̃ = −
µi2W̃T

i fαi fσi f X̃T
i,e

ci f + X̃T
i,e X̃i,e

+ µi2W̃T
i f κi f Ŵi f

−
µi4(W̃T

i f W̃i f )W̃T
i fαi fσi f X̃T

i,e

ci f + X̃T
i,e X̃i,e

+ µi4(W̃T
i f W̃i f )W̃T

i f κi f Ŵi f

Using the fact that a/(1 + aT a) ≤ 1, ∀a ∈ < and the Youngs inequality, we get

ÛJi f̃ ≤ − (λmin(µi2κi f ) − 1)
W̃i f

2

− (λmin(µi4κi f ) − 2)
W̃i f

4
+ ηio f B

(24)

where the bounded term is given by

ηio f B = 0.5‖µi2‖2
αi f

2(N2
io f +W2

i f M

κi f
2/

αi f
2)

+ 0.125‖µi4‖4
αi f

4(N4
io f +W4

i f M

κi f
4/

αi f
4).
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Finally, consider the last term in the Lyapunov candidate function. Taking the derivative

and substituting the weight estimation error dynamics yields

ÛJig̃ = µi3W̃T
ig(−(αigσigUi,e X̃T

i,e/ρ̂) + κigŴig)

+ µi5(W̃T
igW̃ig)(W̃T

ig(−(αigσigUi,e X̃T
i,e/ρ̂) + κigŴig))

+ µi6(W̃T
igW̃ig)

3(W̃T
ig(−(αigσigUi,e X̃T

i,e/ρ̂) + κigŴig))
Similar to the simplification procedure above, we get

ÛJig̃ ≤ −λmin(µi3κig − 1)
W̃ig

2 − λmin(µi5κig − 2)
W̃ig

4

− λmin(µi6κig − 3)
W̃ig

8
+ ηiogB

(25)

where ρ̂ = ci f + X̃T
i,e X̃i,eUT

i,eUi,e and the bounded term

ηiogB = 0.0078µ8
i6α

8
ig(N

4
iog +W8

igM κ
8
ig/α

8
ig) + 0.5α2

igµ
2
i3

(Niog +W2
igM κ

2
ig/α2

ig) + 0.125µ4
i5α

4
ig(N2

iog +W4
igM

κ4
ig

α4
ig

).

The first derivative of the Lyapunov function is obtained as

ÛJiI ≤ −λmin(µi1q̄i −
7
2
)
X̃i

2 − λmin(µi3κig − 1)
W̃ig

2

+ ηioB − λmin(µi5κig −
7
2
)
W̃ig

4 − (λmin(µi2κi f ) − 1)W̃i f
2 − λmin(µi6κig − 3 − (0.5

R−14
+ 4))

W̃ig
8

− (λmin(µi4κi f ) − 2.5)
W̃i f

4

+ (5.5 + 0.125‖µi1‖4‖Pi‖4N4
iog)

∇T
xΦ(xi,e)Θ̃i

4
.

Since the control policy is bounded and the final Lyapunov derivative expression reveals

ÛJiI ≤ −λmin(µi1q̄i − 3.5)
X̃i

2 − λmin(µi3κig − 1)
W̃ig

2

− λmin(µi5κig − 3.5)
W̃ig

4 − (λmin(µi2κi f ) − 1)
W̃i f

2

− (λmin(µi4κi f ) − 2.5)
W̃i f

4

− λmin(µi6κig − 3 − (0.5
R−14

+ 4))
W̃ig

8
+ ηioB

where the bounds are defined as

ηioB = ηiogB + ηio f B + ηiox̃B + (5.5 + 0.125‖µi1‖4‖Pi‖4N4
iog)

∇T
xΦ(xi,e)Θ̃i

4
.
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This reveals that the identification and weight estimation errors of the identifiers at each

subsystem are locally UUB if the control policy is bounded.

Proof of Theorem 1 (local ISS):

Consider the Lyapunov function for the interconnected system

J =
∑N

i=1
Ji(xi,θ̃i, X̃i, W̃i f , W̃ig),

with the individual terms defined as Ji = Jix + Jiθ̃ + JiI(X̃i, W̃i f , W̃ig), Jix = 0.5αivxT
i xi,

Jiθ̃ = 0.5θ̃T
i γi θ̃i. The derivative of Jiθ̃ can be obtain using the weight estimation error

dynamics as
ÛJiθ̃ = (θ̃T

i γiαivψ̂i,eĤi,e/ρ̄2) + θ̃T
i γiκ3θ̂i−

0.5(βiv θ̃
T
i γi∇xφD̂i,εxi,e + µi1θ̃

T
i γi∇xφ(xe)D̂T

i,εPi x̃i,e).

This derivation follows the derivation in [6]. In [6], the derivations do not include the

identification error and the event triggering error, these additional terms due to event

triggering and the identifiers are grouped as A1, B1 in the next step and are simplified.

Substituting the expression for Ĥi,e, ψ̂i,e and simplification of terms reveals that the

first term (θ̃T
i γiαivψ̂i,eĤi,e)/ρ̄2 is

≤
©«
(1
2
γi

θ̃T
i ∇xφ(xe)

2
+
γi

ρ̄2 (4α
4
iv +

1
16
+ 2ε4

iM)
 Ûx∗i 4) γi

32ρ̄2 (−υθ̃
θ̃T

i ∇xφ(xe)
4

+ (α2
iv + 2)16‖B1‖2) + 10γiα

2
iv

(θ̃T
i A1( f̃ , g̃, x)

)2
/8ρ̄2 + Biθ̃/ρ̄2

ª®®®¬
where ρ̄ = 1 + ψ̂T

i,eψ̂i,e, υθ̃ = 4αiv
D̂i,ε,min

2 − 17
D̂i,ε

2 − 0.625, Biθ̃ = +α
2
ivD2

iMε
2
M +

2α4
ivD4

iMε
4
M+2ε8

iM D4
i max+(0.5α2

iv+2)2ε4
iM D2

i max+32(0.5α2
iv + 2)2ε2

iM+64α4
iv+40γiα

2
ivL4

i f E4
i +

4.1γiα
2
ivD4

iMV4
ixM + 172γiα

2
ivV

4
ixM D4

iM + 4713γiα
2
ivV

8
ixM D4

iM

R−1
i

4
.

Now, simplifying the terms B1, A1

‖B1‖2 ≤ 4.5
θ̃T

i ∇xφ(xe)
4
+ 20

g̃T
i (xe)

8
+ 8.5

 ˜̄f i(xe)
4

+ 25.6
g̃T

i (xe)
8

V4
ixM

R−14
+ 0.75

g̃T
i (xe)

4
+ Biθ̃1.

1.25
(θ̃T

i A1

)2
≤ 0.47

θ̃T
i ∇xφ(xe)

4
+ 20

 ˜̄f i(xe)
4
+ 12.5

g̃T
i,e

8

+ 18V4
ixM

R−1
i

4‖g̃i(xe)‖8 + 40L4
i f E4

i + 177V4
ixM D4

iM + 4713V8
ixM D4

iM

R−1
i

4
.

(26)
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Collecting the bounded terms from (24) and (23), we have Biθ̃1 = 256V8
ixM

R−1
4
+

16D2
iMV4

ixM+512V8
ixM D2

iM

R−1
2
+16L2

iqE2
i +16D4

iMV4
ixM+32L4

i f E4
i +16V2

ixM L2
i f +32V4

ixM+

256D4
iMV4

ixM+6553.6D4
iMV8

ixM

R−1
4
+4D2

iMV4
ixM .Using the expression θ̃

T
i γiαivψ̂i,eĤi,e/ρ̄2

and substituting the inequalities obtained in equations (23) and (24), we get

ÛJiθ̃ ≤

©«

− (γiκ3 −
1
2
− γi

2ρ̄2∇xφ
2
min)

θ̃i
2
+
γi

ρ̄2 (
8α4

iv

2
+

2
32
+ 2ε4

iM)
 Ûx∗i 4 − (

υθ̃
32
−
α2

iv

2
− 9

4
(α2

iv + 2))θ̃T
i ∇xφ(xe)

4 γi

ρ̄2 +
γi

ρ̄2 (10(α2
iv + 2) + 5

4
α2

iv)g̃T
i,e

8
+

3
8ρ̄2 γi(α2

iv + 2)
g̃T

i,e

4
+ (17

4
(α2

iv + 2)

+ 20α2
iv)

 ˜̄f i(xe)
4
γi/ρ̄2 + (12.8γi(α2

iv + 2)

+ 18γiα
2
iv)V4

ixM

R−1
i

4‖g̃i(xe)‖8/ρ̄2 +
Biθ̃

ρ̄2

− µi1γi

2
θ̃T

i ∇xφ(xe)D̂T
i,εPi x̃i,e

− βivγi

2
θ̃T

i ∇xφD̂i,εxi,e.

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
Consider the first term of the Lyapunov function of the ith subsystem, taking its derivative

and substituting the subsystem dynamics, we get

ÛJix = αivxT
i [ f̄i(xi) + gi(xi)ui,e].

≤ −( ¯̄qαiv)‖xi‖2 + 0.125(5
xT

i

2
+ 4N4

iog

W̃T
ig

8

+ 2
∇T

xφ(xe)θ̃i
4) + 1

8
(N2

iog

W̃T
ig

4
+ α8

ivD4
iM

Ri
−14)

+ .5(α2
ivD2

iMε
2
M + α

2
ivD2

iMV2
ixM)

+ 0.5(α4
ivD4

iM + α
2
ivV

2
ixM D2

iM + α
4
ivV

4
ixM D2

iM

Ri
−12).
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In order to combine the Lyapunov derivative of the online value function estimator and

identifiers (Lemma 1). Define

Biθ̃ = α
2
ivD2

iMε
2
M + 2α4

ivD4
iMε

4
M + 2ε8

iM D4
i max + (0.5α2

iv + 2)2ε4
iM D2

i max + 32(
α2

iv

2
+ 2)

2

ε2
iM

+ 64α4
iv + γiα

2
iv(40L4

i f E4
i +

41
10

D4
iMV4

ixM + 172V4
ixM D4

iM + 4713V8
ixM D4

iM

R−1
i

4)

+ .5γ2
i κ

2
3θ

2
iM + 0.5γi(α2

iv + 2)Biθ̃1 + ρ̄
2(ηioB + γ

4
i + 2‖Piei‖2 + 0.25‖ei‖2),

υ f̃ = λmin(µi4κi f ) −
5
2
− 4γi

ρ̄2 (6.07α2
iv + 2.14)N2

io f ,

υg̃2 = 3 − 1
2
R−14

+ 4 − 18γi

ρ̄2 (
71.2
100
(α2

iv + 2) + α2
iv)N4

iog(1 +
R−1

i

4
V4

ixM),

υx = ( ¯̄qαiv − 0.875 − γi(4α4
iv + 0.0625 + 2ε4

iM)C4
i /ρ̄2),

ηicl =
Biθ̃

ρ̄2 +
α8

iv

8
D4

iM

Ri
−14
+
α2

iv

2
D2

iM(ε2
M + V2

ixM) +
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Using the results of Lemma 1 and combining ÛJix, ÛJiθ̃ reveals
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where the derivative ÛJi is negative definite as long as ‖xi‖ >

√
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X̃i
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. The overall bounds are obtained as ηX1 =
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i=1
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and ηΘ1 =
N⋃

i=1
ηiΘ̃1. This concludes the proof.

Proof of Theorem 3: Consider the Lyapunov candidate function J(x, Θ̃, X̃, W̃) =∑N
i=1 Ji(xi,θ̃i, X̃i, W̃i f , W̃ig), with Ji(xi,θ̃i, X̃i, W̃i f , W̃ig) = Jix + Jiθ̃ + JiI(X̃i, W̃i f , W̃ig). We will

consider two cases corresponding to measurement error being zero and non-zero.
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Case 1: Consider the Lyapunov function term for the identifier JiI(X̃i, W̃i f , W̃ig).

From Lemma 1, we have
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Now consider the second term in the Lyapunov candidate function. Taking the derivative

and using the weight estimation error dynamics reveals
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Finally, consider the last term in the Lyapunov candidate function. Taking the derivative

and substituting the weight estimation error dynamics yields
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The first derivative of JiI(X̃i, W̃i f , W̃ig) is thus obtained as
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Now, combining the Lyapunov derivative of the online value function estimator ÛJiθ̃ from

the previous theorem and identifiers, we get
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first derivative is less than zero and
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The overall bounds for the interconnected system states and the optimal value function

estimation error is obtained as ηX =
N⋃

i=1
ηiX and ηΘ =

N⋃
i=1
ηiΘ̃. The objective is to ensure

that the event sampled implementation of the closed loop system is stable and the states and

weight estimation errors, identification errors reach the bound described by case 1.

Case 2: Consider the event triggering condition Jix(t) ≤ (1 + ti
k − t)αi Jix(ti

k), t ∈

[ti
k, t

i
k+1), ∀k ∈ {0,N}. It is easy to see that the first derivative of the triggering condition

results in ÛJix(t) ≤ −αi Jix(ti
k), t ∈ [ti

k, t
i
k+1), ∀k ∈ {0,N}. Next, consider the identifier

Lyapunov function and the Lyapunov function for the value function estimator. Using the

definition of the event triggering error, we have
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Combining all the Lyapunov function derivatives, we get the time derivative of the

combined Lyapunov function of the closed loop system as
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It can be observed that the bounds obtained for the states, weight estimation errors and

identifier errors are larger than the corresponding bounds obtained in case 1. In order to

conclude the proof, it is sufficient to show that the bounds in the inter event period are

decreasing as the events {ti
k} → ∞. It can be observed that the Lyapunov function based

event triggering condition is a continuous function. Therefore, x(t) is decreasing as long as

‖xi‖ > ηiX and if the gains satisfy the stability conditions obtained in Theorem 1 and 2.

Therefore, the bounds ηicl2 converges to ηicl as t → ∞. Thus, combining case 1

and case 2, the closed loop Lyapunov function derivative, ÛJ < 0, as long as the conditions

derived in the Theorems are satisfied. If the NN weights are tuned using (19), the terms

corresponding to the data collected in the interevent period will result in an expression for

ÛJiθ̃ similar to the expressions in Theorem 1 with slightly different bounds and coefficients,

without affecting the final result on the stability. Due to space consideration, the details

are not included here. Finally,
V∗ − V̂

 ≤ Θ̃ ‖Φ(x)‖ + εM ≤ ηΘ1ΦM + εM ≡ ηṼ and

‖u∗ − u‖ ≤ λmax(R−1)((VxM + ηṼ )ηg̃
√

Niog + εgM + GMηṼ ). From Lemma 1, identifiers

exhibit local-ISS like behavior and if the exploratory signal is bounded, the exploratory

policy and the identifier states used to update the NN weights with the exploratory policy

will be locally UUB. This concludes the proof.
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IV. ADAPTIVE OPTIMAL EVENT-TRIGGERED CONTROL OF LINEAR
DYNAMIC SYSTEMS

ABSTRACT

Event-triggered control implementation is considered as an alternative to the traditional

periodic implementation of control tasks. The advantage of such event-triggered control

implementation is that the cost of communication and computations are considerably scaled

down without affecting the fidelity of the controller. To determine the event-triggering in-

stants, a state dependent threshold function is designed that bounds the event-triggering error

which is defined as the deviation between the actual system state and the state information

available at the controller. In this paper, a novel approach for optimizing the event-triggering

instants and optimal state feedback controller co-design is proposed for linear dynamical

systems using zero-sum game theory. The design task is formulated as a problem of finding

the maximizing threshold for generating events and minimizing control policy to ensure

satisfactory system performance. First, a solution to this min-max, optimization problem

is proposed using the zero-sum game theory, when the system dynamics are known and

then, a novel adaptive optimal solution using Q-learning is proposed for the case when the

system dynamics are uncertain. Finally, an adaptive optimal decentralized event-triggering

mechanism and distributed control co-design for a class of linear-interconnected system is

presented. Theoretical results are substantiated by numerical examples via simulation.
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1. INTRODUCTION

The study of event-triggered feedback and control implementation dates back to

the early sixties [1]. A state based adaptive sampling method for a sampled data servo

mechanism is first proposed in [5] wherein the adaptive sampling rate is controlled by the

absolute value of the rate of change of the error signal with time. Further, the advantages of

event-based sampling over the traditional feedback approach are presented for a first-order

system byK.J. Astrom et al. [1]. Later, the theoretical framework for event-triggered control

is formalized and an emulation based approach for event-triggered control implementation

is presented for a networked control system and various results emphasizing its inherent

advantages in computation and communication cost saving are studied [20].

In the emulation based design the continuous controller is presumed to be stabiliz-

ing and an event-triggering condition is developed to implement the controller such that

the system stability is preserved. In the earlier works [9, 12, 13, 20, 24] the controlled

system is assumed to be input-to-state stable (ISS) with respect to the measurement error

and event-triggering conditions are designed to reduce the frequency of feedback instants

while guaranteeing asymptotic stability. A non-zero positive lower bound on the inter-event

times is also guaranteed to avoid accumulation point and zeno behavior. Further, various

event-triggered control schemes are presented to accommodate other design considerations,

such as, stochastic feedback control design [9], state-feedback design [12], state-estimation

problem [18], decentralized event-triggering for wireless sensor networks [13] and dis-

tributed control design [24], trajectory tracking control [21] and robust controller design

[4, 11].

In all the above design approaches, the sensor measurements and the control input

are held between two consecutive events by a zero order hold (ZOH) circuit at the controller

and actuator, respectively. In contrast, a model of the system is used to reconstruct the

system state vector and, subsequently, used for designing the control input when the actual

feedback is unavailable [6, 8]. As the control input is based on the model states, no feedback
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transmission is required unless there is a significant change in the system performance due

to external disturbance or internal parameter variation. The asymptotic stability of system

states is guaranteed by designing the event-triggering condition with this model-based

approach. It is observed that the model-based approach reduces the number of events more

effectively when compared to the ZOH based approach, but, requires an accurate model of

the system.

It should be noted that in all the approaches, [1, 5, 9, 12, 20], [4, 6, 8, 11, 21, 24],

the event-triggering instants are designed to ensure system stability. On the other hand,

few results are available in the literature which presents an optimization based approach

for generating events. Notably, the authors in [14] characterized a certainty equivalence

controller to be optimal in a linear quadratic Gaussian (LQG) frame work. The optimal

control input and the optimal event-triggering instants are designed using the separation

principle. Furthermore, a suite of optimal event-triggering design is studied in [15].

In [15, 22], the event-triggering mechanism is optimized by formulating a cost

function that penalizes the number of events and successive event-triggering instants are

identified by minimizing the cost function assuming the knowledge of system dynamics.

Further, an event-triggering mechanism is proposed for a discrete time model-predictive

controller scheme wherein events are generated whenever the states evolve and leave a

polytope obtained using quadratic programming. Further, authors in [13] propose a heuristic

algorithm for generating the event-triggering instants. More recently, a dynamic event-

triggering mechanism is proposed wherein an additional adaptive parameter is introduced

in the event-triggering condition for a system with known dynamics and the inter-event time

is obtained as the function of this adaptive parameter [7]. In summary, the optimal event-

triggering and controller design are, in general, considered as independent problems and

various approaches are proposed to tune the parameters of each of them to elicit a desired
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performance from the controlled system. However, to the best knowledge of the authors,

the optimal co-design of controllers and the event-triggering mechanism is not considered

in the literature.

Motivated by the above facts, in this paper, a novel optimal event-triggered control

design scheme for linear systems is presented. Firstly, the design of control policy and

the event-triggering mechanism is formulated as a two player zero sum game (min-max)

problem. Therefore, a novel cost function is proposed as a function of states, control

policy and the measurement/event-triggering error. The saddle point solution to this min-

max problem results in a minimizing control policy and a maximizing measurement error

policy that can be injected into the system. In the proposed design, the maximizing

policy is utilized as the dynamic threshold to the event-triggering error to generate events

while the minimizing control policy is applied to the system. Since the control policy

explicitly accounts for the worst-case event-triggering error, the performance of the system

is preserved. Moreover, since the inter-event time is directly proportional to the event-

triggering error, utilizing the maximizing policy as a dynamic threshold for the event-

triggering error, results in an increased inter-event time. This results in an optimal event-

triggered controller which explicitly takes into account event-triggering and control policy

design.

Further, an optimal adaptive event and control co-design scheme is proposed which

relaxes the requirement of accurate knowledge of system dynamics. A Q-learning scheme

is presented to determine the optimal control and event-triggering instants forward-in-

time. Lyapunov stability analysis is used to guarantee stability of the closed-loop system.

Finally, a decentralized event-triggered control implementation for distributed control of

interconnected system is presented. An optimal distributed control law and an optimal

decentralized event-triggering rule at each subsystem is generated. The problem is addressed

for linear time invariant system in continuous time with uncertain dynamics.
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The contributions of the paper include: 1) A novel optimal event-triggering and

controller co-design using zero sum game; 2) Development of an adaptive optimal online

Q-learning scheme for learning the optimal control and event-triggering policy; 3) Design

of decentralized adaptive optimal event-triggering for distributed control of interconnected

systems; 4) Lyapunov based stability analysis and verification of the proposed design using

numerical examples via simulation.

The paper is organized as follows. In the section II, the system dynamics is intro-

duced and the problem statement is presented. In section III, the main results are presented

for the case when the system dynamics are known. In section IV, a model free Q-learning

approach is proposed to solve the optimization problem forward-in-time, online, when the

system dynamics are uncertain. Section V presents an optimal adaptive event-triggered

distributed controller for interconnected system using the proposed method. Finally, sim-

ulation results are provided to show the effectiveness of the controller designed in section

VI. Conclusions follow in section VII.

In this paper,< denotes the set of all real numbers; N denotes the set of all natural

numbers. Euclidean norm is used for vectors and Frobenius norm is used for matrices.The

next section presents a brief background on the system dynamics and recall some of the

results on ISS and optimal control.

2. BACKGROUND AND PROBLEM STATEMENT

2.1 System Description

Consider the dynamical system represented by

Ûx(t) = Ax(t) + Bu(t),, x(0) = x0 (1)
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where x ∈ <n is the state vector of the system; u : <n → <m is the control input,

A : <n → <n, B : <n → <n×m are linear maps representing internal dynamics and input

gain matrix. The control signal for the system (1) is of the form

u(t) = K x(t) (2)

where K is a linear map.

In the event-triggered control framework, the feedback information is utilized only

at certain discrete event-based sampling instants to update the control action. To represent

these event-triggering instants, define a sequence of time instants {tk}k∈{0,N} ⊆ t, such that

0 = t0 < t1 < ... Using a ZOH, the control input will be held at the actuator such that

u(x(t)) = u(^x(t)) where in ^x(t) = x(tk), ∀t ∈ [tk, tk+1). Hence, the control signals are

piecewise continuous.

To determine the event-triggering rule, define the (measurement error) event-

triggering error as the difference between the actual state measured and the states available

at the controller

e(t) = ^x(t) − x(t), ∀t ∈ [tk, tk+1). (3)

It can be observed that at the sampling instants ei(t) = 0.

Assumption 1: The time required to read the state from the sensors and compute the

control signal and update the actuators is considered negligible. Next, the optimal design

of the sequence {tk}, and the optimal control (2) co-design problem is defined.

2.2 Problem Statement

Consider the controllable linear time-invariant continuous-time system represented

by (1). Let the control policy (2) be implemented with event-triggered feedback. Then, the

system dynamics (1) can be re-written as

Ûx(t) = Ax + Bu(^x). (4)

Define the performance measure for (1) to be

‖ζ(t)‖2 = xT (t)Qx(t) + uT (t)Ru(t) (5)
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Fig. 5.1. Networked control system and event-triggered feedback.

where Q is a positive semidefinite and R being a positive definite matrices respectively.

A block diagram of the control architecture for event-triggered implementation of

feedback control is given in the Fig. 5.1. The event-triggering mechanism determines the

time-instants to close the feedback loop so that the latest state vector is used to generate

the control signal. The gain and the control policy in (2) are generated by solving a

minimization problem associated with the performance measure (5) whereas the event-

execution rule determines the sampling instant sequence by designing an upper bound for

the measurement error (3) based on the stability of the controller system.

In this paper, the objective is to develop an optimal state âĂŞfeedback control policy

which minimizes (5) while simultaneously minimizing the number of events and meeting

the performance of the system (5).

Remark 1: To determine the event-triggering instants, the state vector is sampled as

a function of the event-triggering error by using the stability criterion [20]. Alternatively,

in the inter-event period, Lyapunov function is utilized explicitly to determine the event-

triggering instants [24]. Nevertheless, in general, stability of the system is considered to

determine the event-triggering instants. The block diagram in Fig. 5.1 is a synchronous

triggering scheme wherein the occurrence of an event closes the switch on either sides

of the controller. Asynchronous event-triggering schemes require two event-triggering

mechanisms one for each switch.
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In the next section, a zero-sum game based control scheme is presented which

satisfies the objectives defined in this section. The resulting synchronous event-triggering

mechanism increases the time between successive events while the optimal control policy

ensures system performance.

3. PROPOSED SOLUTION

In this section, the control input and the measurement error due to event-triggered

feedback will be considered as two non-cooperative players applied to the system. A

cost function is defined as a function of system state vector, control input vector and

the measurement error. It will be demonstrated that the objectives listed in the previous

section will be achieved by determining a saddle point solution to the optimization problem

associated with the cost function. The maximizing measurement error will act as the

threshold to generate events while the optimal control policy will be applied to the system

with the feedback generated at these events. Existence of such saddle point solution to

the min-max optimization problem depends on some fundamental properties of the system

which are presented in Lemma 1.

Utilizing the system dynamics (4) and the definition of the measurement error (3),

we can rewrite the dynamics as

Ûx(t) = Ax + Bu + Dη (6)

where η = Ke, D = B. Now, define the infinite horizon cost function using the performance

measure (5) as

J(x, η, u) =
∫ ∞

t
[‖ζ(t)‖2 − σ2ηTη]dτ. (7)

where σ > 0 represents the attenuation constant. The objective is to find an optimal

saddle-point solution (u∗, η∗) so that the optimal value function satisfies

V∗(x(t)) = min
u

max
η

J(u, η) = max
η

min
u

J(u, η). (8)
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Using the infinitesimal version of the cost function (7) and the system dynamics (6), the

Hamiltonian function can be defined as

H = xTQx + uT Ru − σ2ηTη + VT
x [Ax + Bu(t) + Dη(t)] (9)

where Vx = ∂V/∂x, V(x) is the value function defined by using the integral in (7). The

optimal policies are obtained as

u(x,V∗x ) = −
1
2

R−1BTV∗x (10)

η(x,V∗x ) =
1

2σ2 DTV∗x = η
∗(x,V∗x ) (11)

whereV∗x is the gradient of the optimal value function with respect to the states. Substituting

the optimal policies in theHamiltonian results in the continuous-time game algebraic Riccati

equation (GARE).

Lemma 1:([3, 10]) Consider the infinite horizon cost function (7) and the linear

system dynamics (6). Let the pair A, B be controllable and the pair A,C be observable, with

Q = CTC. Then, there exists a positive definite solution P∗ for the GARE when σ > σ∗,

where σ∗ is the H∞ gain of the system. Moreover, the optimal cost function is quadratic

and satisfies V∗(x0) = xT
0 P∗x0.

Remark 2: Note that if there is a positive definite solution to the GARE, then the

optimal cost function is finite and the control policy asymptotically stabilizes the system.

The proof for Lemma 1 can be found in [2].

Lemma 2: Consider the infinite horizon cost function (7) and the linear time-

invariant system dynamics (6). Let P∗ > 0 be the positive definite solution for the GARE,

then the optimal policy given by

u(x, P∗) = K∗x(t) = −1
2

R−1BT P∗x(t) (12)

generates an ISS Lyapunov function for (6) with respect to the measurement error e(t).

Proof: See Appendix.
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Remark 3: The smooth function L(x) satisfy, xTλmin(P∗)x ≤ xT P∗x ≤ xTλmax(P∗)x,

where λmin(.)andλmax(.) represent the minimum and maximum singular values of the ma-

trix (.). Further, from the proof of Lemma 2, we have ‖x‖ ≥ γ ‖e‖ implies ÛLx < 0, where

γ = ‖P∗DK ‖ /
δx,m

, δx,m is a constant defined in the proof of Lemma 2 using QandR.

Next, the main results of this section are presented.

Theorem 1: Consider the infinite horizon cost function (7) and the linear time-

invariant system dynamics (6). Let P∗ > 0 be the positive definite solution for the GARE,

then the optimal policy given by (12) be applied to the system with the following event-

triggering condition given by

‖η(t)‖ ≤ ‖η∗(t)‖ , t ∈ [tk, tk+1), ∀k ∈ N. (13)

Then, the closed-loop system is asymptotically stable when Q, R, σ are selected such that

δx,m >
1

2σ2 P∗D2. (14)

In addition, a positive minimum inter-event time, τ, exists, such that

τ ≥ 1
‖DK∗‖ log( ‖DK∗‖

Xm
‖e∗‖ + 1). (15)

where e∗(t) = K+η∗(t), K+ is the generalized inverse of K∗ in (12) and Xm > 0 is a positive

scalar value.

Proof: See Appendix.

Remark 4: The matrix K∗ may not have an inverse as it may not be a square matrix.

The generalized inverse of K∗ is used in (15) to quantify the minimum inter-event time and

it is not used to derive the control policy or event-triggering condition.

Remark 5: The proposed event-trigger condition (13) allows the measurement

error to grow until the system performance defined by the performance measure (5) is not

deteriorated. This increases the inter-event time based on the relation between inter-event

time and event-triggering threshold derived in the proof of Theorem 1. In comparison to

the literature, the proposed design optimizes the system performance while reducing the

frequency of feedback instants and controller implementation.
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Remark 6: If the system dynamics are re-written as Ûx(t) = Ax + Bu + Dη, with

D = BK and η ∈ <n. The cost function (7) can be used to formulate a maximization

problem such that the optimal cost V∗(x(t)) = max
e

J(e) and the event-triggering condition

can be defined as ‖e(t)‖ ≤ ‖η∗(t)‖. In this formulation, at each sampling instant, the

control gain, K is fixed and a maximum threshold, η∗, for the event-triggering error, is

determined. In contrast, the proposed min-max based optimization scheme determines the

optimal control policy and the event-triggering condition, simultaneously.

Remark 7: The expression for the inter-event time derived in the proof of Theorem

1 can be used to find the successive event-triggering instants and can be used to develop

an optimal self-triggering control scheme. Such a scheme does not require checking the

event-triggering condition (13) continuously as the time instants {tk} are pre-computed.

In the next section, the system matrices A, B will be considered uncertain and

an optimal adaptive event-triggered control design using hybrid Q-learning approach is

presented.

4. CONTROLLER DESIGN Q-LEARNING

The saddle point solution for the proposed min-max problem formulated for the

event-triggered control design can be learned online, forward-in-time using model free

Q-learning approach. This also relaxes the requirement of accurate knowledge of matrices

A, B in the system dynamics. A block diagram of the proposed learning scheme is given in

Fig. 5.2. It can be observed that in order to learn the optimal control policy and the optimal

event-triggering threshold, two Q-function estimators are required one at the controller and

the other at the event-triggering mechanism.
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Fig. 5.2. Adaptive optimal event sampled control system.

First, the Q-function is formulated and to formulate the Q-function, consider the

optimal cost function in quadratic form as

V(x(t)) = xT (t)Px(t). (16)

Taking the time-derivative of (16) and using the system dynamics (6), we have

ÛV = xT PAx + xT PBu + xT PDη + xT AT Px

+uT BT Px + ηT DT Px.
(17)

Using the infinitesimal version of the cost function (7), we get

ÛV = −xTQx − uT Ru + σ2ηTη. (18)

Using (18) in (17) and adding (16) on both sides yields

V = xT PAx + xT PBu + xT PDη + xT AT Px+

uT BT Px + eT DT Px + xTQx + uT Ru − σ2ηTη + xT Px.
(19)

Using (19), the action-dependent value function or the Q-function can be defined as

Q(x, u, η) =
x(t)

u(t)

η(t)



T 
AT P + PA +Q + PPB PD

BT P R 0

DT P 0 −σ2



x(t)

u(t)

η(t)


(20)

Q = ZT (t)GZ(t) = ZT (t)


GννGνµGνe

GµνGµµGµe

GeνGeµGee


Z(t)

= θTφ(t)

(21)
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where θ ∈ <
(2n+m)(m+2n+1)

2 ×1 is the G matrix parameters represented in vector form, φ(t) ∈

<
(2n+m)(m+2n+1)

2 ×1 is the kronecker product given by [xT (t)uT (t)ηT (t)] ⊗ [xT (t)uT (t)ηT (t)]T .

The unknown parameter, θ can be estimated adaptively when the matrix G in (21) is

uncertain. To derive an update equation, consider the time derivative of the optimal value

function

ÛV∗ = V∗Tx [Ax(t) + Bu∗(t) + Dη∗(t)]. (22)

Using the definition of the optimal policies (10) an (11)

ÛV∗ = V∗Tx Ax(t) − 2u∗T (t)Ru∗(t) + 2σ2η∗T (t)η∗(t). (23)

From GARE, we have

−Q(x) + 1
4

V∗Tx BR−1BTV∗x −
1

4σ2 V∗Tx DT DV∗x = V∗Tx Ax. (24)

Using (24) in (23) to get

ÛV∗ = −2u∗T (t)Ru∗(t) + 2σ2η∗T (t)η∗(t) − xTQx

+1
4 xT P∗BR−1BT P∗x − 1

4σ2 xT P∗DT DP∗x
. (25)

With the definitions (10) and (11), (25) is simplified as

ÛV∗ = −xTQx − u∗T (t)Ru∗(t) + σ2η∗T (t)η∗(t). (26)

Integrating both sides of (26), in the interval [tk, tk+1), reveals

V∗(tk+1) − V∗(tk) =∫ tk+1

tk
(−xTQx − u∗T Ru∗ + σ2η∗Tη∗)dτ.

(27)

The Bellman equation is a fixed point equation with the optimal value function being

the fixed point solution. Therefore, if the optimal value function and control policies in (27)

are replaced by the estimated quantities, there would be an error, referred to as the Bellman

or temporal difference error.
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Define the estimate of the optimal value function as V̂ . Now, replacing the optimal

value function in (27) with the estimated optimal value function reveals [10]

Ek+1(t) =
∫ tk+1

tk
(xTQx + uT Ru − σ2ηTη)dτ

+ V̂(tk+1) − V̂(tk)
(28)

where Ek+1 is the Bellman residual error/ temporal difference error calculated at the occur-

rence of k + 1 event. Define the estimated parameter vector θ̂ and the estimated Q-function

Q̂(x, u.e) = ZT (t)Ĝ(t)Z(t) = θ̂Tφ(t). (29)

The forcing function for the parameter update equation is obtained as

Ek+1(t) =
∫ T

0
(xTQx + uT Ru − σ2ηTη)dτ + θ̂T

∆φ(∆T) (30)

where ∆φ(∆T) = φ(tk+1) − φ(tk) and Ek+1(t) is the residual error calculated at the event-

sampling instant tk+1. Define parameter estimation error as θ̃ = θ − θ̂. Then one step cost

calculated using (27) with the target parameters θ and the one step cost calculated using

(30) with the estimated parameter θ̂, reveals

− Ek+1(t) = θT (t)∆φ(∆T) − θ̂T (t)∆φ(∆T)

= θ̃T (t)∆φ(∆T)
. (31)

Theorem 2: Consider the infinite horizon cost function (7) and the linear time-

invariant system dynamics (6). Let θ be the time-invariant, bounded, target parameter

vector and θ̂(0) be an initial estimated parameter vector defined in a compact set. Select the

control policy

u(t) = −1
2

R−1Ĝµν(t)x(t), (32)

to be applied on the system with Ĝµν being the estimated submatrix in (21). Let the

event-triggering condition be satisfying

‖η(t)‖ ≤ ‖η̂(t)‖ , t ∈ [tk, tk+1), ∀k ∈ N. (33)
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where η̂ = 1
2σ2 Ĝeν(t)x(t), Ĝeν is the estimate of the matrix Geν in (21). Consider the

Q-function parameter adaptation rule given by

Û̂θ = −α [∆φ(∆T)]
(1 + [∆φ(∆T)]T [∆φ(∆T)])2

ET
k+1(t), ∀k = 0, 1, .. (34)

Then, the state vector and the parameter estimation error converges asymptotically to

zero with the event-triggering instants k → ∞, provided the design parameters α,Q, R, σ

are chosen such that the following inequalities hold: δ̄x > 2K2
M,

α
ρ > 1

2 ‖R‖
2 where

ρ = (1 + [∆φ(∆T)]T [∆φ(∆T)])2, ‖K∗‖ ≤ KM , δ̄x = [Q + 1
4 P∗BR−1BT P∗ − 1

4σ2 P∗DDT P∗],

α > 0 is the learning step, KM > 0 is a constant.

Proof: See Appendix.

Remark 8: The Bellman error, Ek is calculated at every event-triggering instant,

tk and the parameters are updated continuously using (34) both at the event sampling and

inter-event intervals. The update rule utilizes the new information obtained at the event-

triggering instant to calculate the Bellman error, Ek(t) and the updates in the inter-event

period, [tk, tk+1) tries to reduce the Bellman error calculated at the last event-triggering

instant, tk . In contrast to the traditional policy-iteration [10, 19] scheme, the parameter

tuning proposed in (34) is a hybrid learning scheme [16] which can be implemented online.

In the next section, the hybrid Q-learning zeroâĂŞsum game theoretic formulation

is extended to the distributed control of interconnected systems and the decentralized event-

triggering conditions are presented.

5. EVENT-TRIGGERED DISTRIBUTED CONTROL

Consider an inter-connected system operating in continuous time with N intercon-

nected subsystems, each of the form

Ûxi(t) = Ai xi(t) + Biui(t) +
N∑

j=1
j,i

Ai j x j(t), xi(0) = xi0 (35)
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where xi, Ûxi ∈ <ni×1 are the states and state derivatives of the ith subsystem; ui ∈ <mi, Ai ∈

<ni×ni, Bi ∈ <ni×mi, are the control inputs, internal dynamics and control gain matrices of

the ith subsystem, and Ai j ∈ <ni×nj represents the interconnection between the ith and j th

subsystems. The overall system description is given by

Ûx(t) = Ax(t) + Bu(t)x(0) = x0 (36)

where x ∈ <n, u ∈ <m, B ∈ <n×m, A ∈ <n×n, u = [uT
1 , ., u

T
N ]T , A = (Ai j)i, j=1,.,N, Aii =

Ai, B = diag[B1, ., BN ].

Assumption 2: The overall system described by (36) is controllable and all the states

are measurable. The subsystems share their state information through a lossless network.

Further, the order of the subsystems is known.

Lemma 3: Consider the subsystem (35) of the interconnected system (36). The

control policy which stabilizes (36) renders the individual subsystems asymptotically stable.

Proof: See Appendix.

A distributed control law can be obtained if a centralized optimal controller is

designed for the overall system, which is not feasible and hence, the Q-function is estimated

at each subsystem to obtain a distributed control law at each subsystem, thereby minimizing

the Hamiltonian and cost function of the overall subsystem. A hybrid Q-learning scheme

which incorporates random delays and packet losses for distributed control is presented in

[16]. The event-triggering mechanism, however, is designed using the Lyapunov function.

In contrast, the control scheme proposed in this paper can be used to obtain an optimal

adaptive even-triggering and distributed control co-design. To avoid redundancy only the

main result is introduced next.

Corollary: Consider the infinite horizon cost function (7) and the linear time-

invariant system dynamics (35). Let θ be the time-invariant, bounded, target parameter

vector for the Q-function estimator. Let the control policy

ui(t) = −
1
2

R−1
i Ĝµν(t)x(t), (37)
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be applied to the subsystems and let the decentralized event-triggering condition satisfies

‖ei(t)‖ ≤
e∗i (t)

 , t ∈ [tk, tk+1), ∀k ∈ N (38)

where R = diag(Ri), e∗ = [e∗T1 e∗T2 .. e∗TN ]T = K+η̂(t). Let the Q-function parameters at

each subsystem be updated using

Û̂θ = −α [∆φ(∆T)]
(1 + [∆φ(∆T)]T [∆φ(∆T)])2

ET
k+1(t), ∀k = 0, 1, .. (39)

Then, the state vector and the parameter estimation error converges asymptotically to

zero with the event-triggering instants k → ∞, provided the following inequalities hold:

δ̄x > 2K2
M,

α
ρ > 1

2 ‖R‖
2 where ρ = (1 + [∆φ(∆T)]T [∆φ(∆T)])2, ‖K∗‖ ≤ KM , δ̄x = [Q +

1
4 P∗BR−1BT P∗ − 1

4σ2 P∗DDT P∗].

Proof: In order to complete this proof, Theorem 2 and the results of Lemma 4

are utilized to show that the subsystems states and the parameter estimation error at each

subsystem converges to zero asymptotically.

In the next section, simulation results are provided to verify the theoretical claims.

6. SIMULATION RESULTS

Example 1: For the simulation results, first, consider the unstable linear batch reactor

dynamics in continuous-time as

Ûx =



1.38 −0.21 6.71 −5.67

−0.581−4.29 0 0.67

1.067 4.27 −6.65 5.89

0.048 4.27 1.34 −2.10


x +



0 0

5.67 0

1.13−3.1

1.13 0


u

with x = [x1x2x3x4]T and u = [uT
1 uT

2 ]
T . To verify the advantages of the proposedmethod, we

compare the results of our approach with that of an LQR controller with the event-triggering

condition of the form [20]. For the case of uncertain system dynamics, the proposed hybrid

Q-learning based approach is compared with the traditional event-triggered Q-learning

scheme [17, 23].
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Fig. 5.3. Comparison of state trajectories.

Case 1: (Known systemdynamics) The simulation analyses carried outwith different

deign parameters and the values of the penalizing matrices Q, R are taken as 10I, 0.2I. The

value of σ is taken as 0.7. These values are chosen as they resulted in comparable control

effort and state trajectories.

Figs. 5.3 and 5.4 depict the convergence of the closed-loop system state vector, and

control input. The proposed method is contrasted with the event-triggered implementation

of LQR. The continuous time LQR is considered as a benchmark for the state and control

trajectories as well as the cumulative cost.

Fig. 5.4. Comparison of control signals.
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Fig. 5.5. Performance comparison of event-triggering mechanism (ETM).

The parameter σ is varied to demonstrate the advantages of the proposed adaptive

optimal designwith the traditional event-triggering approach and the results are summarized

in Table 5.1 for the case when the system dynamics are uncertain. Due the space considera-

tion, all the simulation figures are not included and the important results are summarized in

Table 5.1, where ET is expanded as event-triggered, P.M is expanded as proposed method,

IET is expanded as inter-event time.

Furthermore, the lower bound on the inter-event times is observed to be 0.001 s.

It is clear from Fig. 5.5 that the event-triggering threshold with the proposed approach is

considerably higher than the traditional approach. This in turn elongated the inter-event

time thus reducing the resource utilization which is one of the primary objectives of the

design. Fig. 5.6 shows the inter-event times. Due to the optimal choice of the control policy

and the threshold for the event triggering error, the inter-event time is optimized and it is

observed that this time can be designed to be larger with the proposed design for similar

design parameter value.
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Table 5.1. Analysis with event-triggering design parameter σ.

σ
Avg. IET in s Cumulative cost Number of events

ET LQR P.M ET LQR P.M ET LQR P.M

0.55 0.0585 0.0857 9.96E+03 1.38E+04 127 87

0.7 0.0602 0.0906 1.12E+04 7.38E+03 123 82

0.75 0.0615 0.0934 1.06E+04 6.70E+03 121 79

0.85 0.0619 0.1 1.33E+04 6.09E+03 119 74

0.95 0.0589 0.1015 1.72E+04 5.99E+03 127 73

Example 2: (Load frequency control of three area power system) The states of

a three-area power system model at each subsystem under consideration are - frequency

change, incremental change in output power of the generator, change in governor valve

position, incremental change in integral control, tie-line power deviation. For the detailed

dynamics considered refer to Alrifai et al. 2011.

The controller design parameters are chosen as Ri= 0.1,Qi = 0.4, σi = 0.65 and the

parameter tuning rule with β = 45. All the system states are regulated using the proposed

controller. The convergence of the state trajectories can be seen in Fig. 5.7.

Fig. 5.6. Comparison of inter-event times.
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Fig. 5.7. Comparison of state trajectories.

Distributed controllers are designed at each subsystem and decentralized event-

triggering mechanism is developed for every subsystem based on the proposed adaptive

optimal design. For comparison, the traditional continuous feedback based LQR design is

utilized. The parameter σ is varied to demonstrate the advantages of the proposed design

with the traditional event-triggering approach and the results are summarized in Table 5.3.

It can be observed that the event-triggered implementation of the control policy and

the continuous feedback LQR results in an asymptotically stable system. The piecewise

continuous control input obtained with the proposed design and the continuous feedback

control policy recorded in Fig. 5.8. The control effort for both the controllers is quite

similar for all the three subsystems.

Table 5.2. Continuous time LQR controller.

Linear quadratic regulator - Continuous time

Cumulative cost Number of events

101.5169 5000
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Fig. 5.8. Comparison of control inputs.

The parameter σ is varied and the resulting performance of the system in terms

of cumulative cost, number of events, and the inter-event time are recorded in the Table

5.3, which clearly depicts the advantage of the proposed design. Also, comparing the

cumulative cost with continuous control implementation in Table 5.2, it can be observed

that for a comparative cost, the number events generated by the proposed method is 110

which is fractional and the control effort from Fig.5.8 demonstrates the advantage of the

proposed method. The additional term in the cost function, which maximizes the event-

triggering threshold provides an explicit relationship between event-triggering and system

performance and hence, optimizes both of them.

Table 5.3. Analysis of decentralized optimal distributed control scheme.

σ
Avg. IET in s Cumulative cost Number of events

ET LQR P.M ET LQR P.M ET LQR P.M

0.35 0.0576 0.0981 217.5966 151.4405 130 76

0.4 0.0512 0.0729 230.5441 144.3559 146 96

0.46 0.0567 0.0776 275.7723 126.436 128 95

0.52 0.0516 0.0591 234.7836 115.1525 143 121

0.6 0.0604 0.0699 394.1401 109.8525 124 104

0.65 0.0669 0.0647 861.1497 106.1883 110 115
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7. CONCLUSIONS

This paper proposes a novel approach for simultaneously optimizing both the event-

triggering sampling instants and state feedback controller using zero-sum game formulation.

The proposed design scheme provides a tractable trade-off between the frequency of events

and the system performance cost by utilizing the min-max optimization of the cost function.

The inter-event time interval increases with the proposed event-triggering condition which

considerably reduces the communication cost when compared to the traditional event-

triggering schemes. Themodel-free Q-learning scheme generates the optimal control policy

and the event-triggering condition even when the system dynamics are uncertain. Finally,

the decentralized event-triggering condition enables distributed control of interconnected

systems confirming the generic nature of the proposed design.
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APPENDIX

Proof of Lemma 2

Choose the positive definite Lyapunov function L(x) = 1
2V∗(x). The time derivative

along the system dynamics can be obtained as

ÛL(x) = ÛLx(t) = V∗
T

x Ûx = [V∗
T

x Ax + V∗
T

x Bu + V∗
T

x Dη] (40)

Add and subtract V∗
T

x Bu∗ + V∗
T

x Dη∗ to get

ÛLx(t) = [V∗
T

x Ax + V∗
T

x Bu∗ + V∗
T

x Dη∗]

+V∗
T

x B(u − u∗) + V∗
T

x D(η − η∗)
(41)

From (9), with (u∗, η∗,V∗), we have H(x, u∗, η∗) = 0 and

−xTQx − u∗T Ru∗ + σ2η∗Tη∗ = V∗Tx [Ax + Bu∗ + Dη∗]. (42)

Using (42) in (41) results in

ÛLx(t) = −xTQx − u∗T Ru∗ + σ2η∗Tη∗

+V∗
T

x B(u − u∗) + V∗
T

x D(η − η∗)
. (43)

Using the definition, η∗ = 1
2σ2 DT P∗x, and substituting (12) in (43), we get ÛLx(t) = −Q(x) −

u∗T Ru∗ − σ2η∗Tη∗ + 2σ2η∗Tη. By using the definition of optimal policy (10), and (11), we

have

ÛLx(t) = −xTδx x + xT P∗Dη (44)
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where δx = [Q + 1
4 P∗BR−1BT P∗ + 1

4σ2 P∗DDT P∗]. Applying norm operator to (44) reveals

ÛLx(t) ≤ −δx,m‖x‖2 + ‖P∗DK ‖ ‖x‖ ‖e‖ (45)

Proof of Theorem 1:

With the Lyapunov function candidate chosen similar to that in Lemma 2, from (44),

we have

ÛLx(t) = −xTδx x + xT P∗Dη. (46)

Applying norm operator and using the event-triggering condition (13)

ÛLx(t) ≤ −δx,m‖x‖2 + ‖P∗D‖ ‖x‖ ‖η∗‖ . (47)

Using the definition of η∗ from (11), we get

ÛLx(t) ≤ −(δx,m −
1

2σ2 ‖P
∗D‖2)‖x‖2. (48)

Now to derive the positive inter-event time, use (3) and taking the time-derivate reveals

Ûe(t) = Û̆x(t) − Ûx(t), t ∈ [tk, tk+1). (49)

Taking the norm operator and substituting the system dynamics reveals

‖ Ûe(t)‖ = ‖ Ûx(t)‖ = ‖Ax + Bu∗ + Dη‖ . (50)

From (48), since the states are asymptotically converging to zero, there exists a positive

constant Xm > 0 such that ‖A + BK∗‖ ‖x‖ ≤ Xm. Using this relation in (50) yields

‖ Ûe(t)‖ ≤ ‖DK∗‖ ‖e‖ + Xm. (51)

Integrating using the comparison lemma [21], reveals

‖e(t)‖ ≤ Xm

‖DK∗‖ (e
‖DK∗‖(t−tk ) − 1), t ≥ tk . (52)

Substitute t = tk+1 to obtain the minimum positive inter-event time

(tk+1 − tk)min ≥
1

‖DK∗‖ log( ‖DK∗‖
Xm

‖e∗‖ + 1). (53)

Proof of Theorem 2:

Consider the Lyapunov candidate

L(x, θ) = Lx(t) + Lθ(t) (54)
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where Lx(t) = 1
2 xT P∗x. The derivative of the Lyapunov candidate is given by

ÛL(x, θ̃) = ÛLx(t) + ÛLθ(t). (55)

Consider the first term and using the system dynamics to get

ÛLx(t) = V∗
T

x Ûx = [V∗
T

x Ax + V∗
T

x Bu + V∗
T

x Dη]. (56)

Add and subtract V∗
T

x Bu∗ + V∗
T

x Dη∗ to get

ÛLx(t) = [V∗
T

x Ax + V∗
T

x Bu∗ + V∗
T

x Dη∗]

+V∗
T

x B(u − u∗) + V∗
T

x D(η − η∗)
. (57)

Using the Hamiltonian (GARE), H(x, u∗, η∗), we have

−Q(x) − u∗T Ru∗ + σ2η∗Tη∗ = V∗Tx [Ax + Bu∗ + Dη∗]. (58)

Substituting (58) in (57)

ÛLx = −Q(x) − u∗T Ru∗ + σ2η∗Tη∗ + V∗
T

x Bu(^x)

−V∗
T

x Bu∗ − V∗
T

x Dη∗
. (59)

Adding and subtracting V∗
T

x Bu∗(^x) in (59), we get

ÛLx(t) = −Q(x) − u∗T Ru∗ + σ2η∗Tη∗ − V∗
T

x Dη∗

+V∗
T

x B[u(^x) − u∗(^x)] + V∗
T

x B[u∗(^x) − u∗(x)]
. (60)

Now, define ũ = u∗(^x)−u(^x), and using the definition (32) and (10), we have ũ = 1
2 R−1G̃µν^x.

Substitute ũ in (59) to get

ÛLx(t) = −Q(x) − u∗T Ru∗ + σ2η∗Tη∗ − V∗
T

x Dη∗

+2u∗T RG̃µν^x + V∗
T

x B[u∗(^x) − u∗(x)]
Using the definition of η∗, we get the Lyapunov time-derivate

ÛLx(t) = −Q(x) − u∗T Ru∗ + σ2η∗Tη∗ − 2u∗T RG̃µν^x (61)

Applying the norm operator (61) can be bounded as

ÛLx(t) ≤ −δ̄x ‖x‖2 + 2
u∗T R

 G̃µν^x
 (62)
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where δ̄x = [Q + 1
4 P∗BR−1BT P∗ − 1

4σ2 P∗DDT P∗]. Using the YoungâĂŹs inequality [16],

we get

ÛLx(t) ≤ −δ̄x ‖x‖2 + 2
u∗T

2
+

1
2
‖R‖2

G̃µν^x
2
.

Finally, application of the norm operator and using the fact that
G̃•ν^x

 ≤ θ̃∆φ(∆T)
,

reveals

ÛLx(t) ≤ −(δ̄x − 2K2
M)‖x‖

2 +
1
2
‖R‖2

θ̃∆φ(∆T)
2
. (63)

Now, using (34), the estimation error dynamics is revealed as Û̃θ(t) = −Û̂θ(t) and

Û̃θ = α [∆φ(∆T)]
1 + ([∆φ(∆T)]T [∆φ(∆T)])2

ET
k+1(t). (64)

Let Lθ(t) = 1
2 θ̃

T θ̃, using (64) and (31), the Lyapunov time derivative is obtained as

ÛLθ(t) = −α
θ̃T∆φ(∆T)[∆φ(∆T)]T θ̃
(1 + [∆φ(∆T)]T [∆φ(∆T)])2

. (65)

Using (63) and (65) in (55), we get

ÛL(t) ≤ −(δ̄x − K2
M)‖x‖

2 − (α
ρ
− 1

2
‖R‖2)

θ̃∆φ(∆T)
2 (66)

where ρ = (1 + [∆φ(∆T)]T [∆φ(∆T)])2.

Proof of Lemma 3:

The optimal control input for the overall system is stabilizing. Therefore, the

closed-loop system matrix (A − BK∗) is Hurwitz. The Lyapunov equation is given by

(A − BK∗)T P̄ + P̄(A − BK∗) = −Q̄, has a positive definite solution Q̄. The matrix Q̄ can

be chosen diagonal. Consider the Lyapunov function candidate L(t) = xT (t)P̄x(t), with P̄

being a positive definite matrix of appropriate dimension. The first derivative, along the

overall system dynamics (36) can be expressed as

ÛL(t) = ÛxT (t)P̄x(t) + xT (t)P̄ Ûx(t)

= xT (t)[(A − BK)T P̄ + P̄ (A − BK)]x(t) = −xT (t)Q̄x(t).
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Since, Q̄ is a diagonal matrix, the first difference in terms of the subsystem state vector can

be expressed as

ÛL(t) = −
∑N

i=1
xT

i (t)Q̄i xi(t) ≤ −
∑N

i=1
q̄min‖xi(t)‖2 < 0

where q̄min is the minimum singular value of Q̄i. This implies the subsystem (35) is

asymptotic stable.
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V. APPROXIMATE OPTIMAL EVENT-TRIGGERED CONTROL OF
NONLINEAR SYSTEMS

ABSTRACT

In this paper, a novel approach is proposed for a nonlinear dynamical system using zero-

sum game theory to optimize simultaneously both the event-triggering sampling instants and

state feedback control policy. In the proposed scheme, the nonlinear control policy and the

event-triggering sampling errors are considered as two non-cooperative players and a min-

max optimization is devised to determine the optimal control policy and an event-triggering

condition such that a balance between the frequency of feedback and system performance

is achieved. First, a solution to this optimization problem is developed by assuming the

system dynamics of the nonlinear system are known. Subsequently, an artificial neural

network (NN) is employed to learn an approximate solution to the Hamilton-Jacobi-Isaacs

(HJI) equation, in a forward-in-time and online manner, using a hybrid learning scheme.

Next, NN identifiers are introduced to relax the requirement of the complete nonlinear

dynamics and amodel free approximate optimal event-triggered control scheme is proposed.

Finally, the proposed approach is extended to the distributed approximate optimal control of

nonlinear interconnected systems. The local ultimate boundedness of the resulting closed-

loop nonlinear system is demonstrated. By using a numerical example, the performance of

the near optimal design is evaluated through simulation studies.
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1. INTRODUCTION

Traditional feedback controllers use instantaneous sensor measurements from the

system as feedback signals to update the control input. With the advent of networked control

systems (NCS), the feedback-loop in the modern control systems is closed via a commu-

nication network. The traditional feedback approach with a fixed sensor sampling rate is

found to be expensive for the NCS due to communication overhead. Event-based sampling

[1]-[3] and control, on the other hand, is increasingly gaining prominence among control

researchers because of its computational and communication resource saving capability. In

an event sampled framework, the sensor measurements are sampled based on certain state

dependent criteria referred to as event-triggering condition. The controller is executed only

at these aperiodic sampling instants. The event-triggering condition, in general, is designed

by taking into account the stability, and, hence, proven to be advantageous [3] over its

periodic counterpart.

For an event-triggered control, the system is required to be input-to-state stable

(ISS) with respect to the measurement error. The event sampling instants are designed to

reduce the frequency of feedback instants while guaranteeing the system stability. Here, the

inter-event time intervals need to be lower bounded by non-zero positive constant to avoid

accumulation point and zeno-behavior [3]. In line with these requirements, in the literature,

two approaches are proposed for event-triggered control.

In the first approach, the sensor measurements and the control input are held between

two consecutive events at the controller and actuator by using a zero order hold (ZOH),

respectively. In contrast, the second approach uses a model of the system at the controller

to provide the feedback information between event sampling instants [4]. A comprehensive

survey on different event-triggered control approaches and their benefits are presented in

[5]-[7]. It should be noted that the majority of the event-triggered techniques [1]-[4] are

designed for stabilization without any performance criterion under the assumption that the

system dynamics are known.
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Optimal control [8], on the other hand, not only stabilizes the system but also

optimizes the performance based on a performance function. Optimal control of nonlinear

dynamic systems in continuous-time is a challenging problem due to the difficulty involved

in obtaining a closed-form solution or value function to the Hamilton-Jacobi-Bellman

equation. Adaptive dynamic programming (ADP) techniques [9]-[16], are used to solve the

optimal control of such nonlinear systems online by finding an approximated value function.

Among the earlier works onADP-based optimal control [12]-[14], the reinforcement

learning technique using dynamic programming is combined with the adaptive control

theory and a neural network (NN) based framework, to generate an online yet approximate

solution to the optimal control without needing the knowledge of system dynamics. Later,

online policy iteration schemes [15] are introduced to obtain the solution of HJB equation

and attain optimality. In addition, an alternate single NN-based ADP approach is presented

in [11] for an affine nonlinear continuous-time system without using an iterative technique.

The NN weights are tuned online and periodically to achieve near optimality.

Recently, event-triggered optimal controllers are developed for a nonlinear system

using NN based online approximators in [9],[10] wherein the event-triggering instants are

designed to maintain system stability alone. In contrast, the authors in [17]-[18] proposed

an optimal event-triggering mechanism by formulating a cost function that penalizes the

number of events for a linear system with known dynamics.

In summary, the optimal event-triggering instants and controller design are, in gen-

eral, considered as mutually exclusive problems. To the best knowledge of the authors, a

simultaneous optimal co-design of the controller and the event-triggering sampling mech-

anism is not attempted in the literature for nonlinear systems with known and uncertain

system dynamics. The benefit of such a control scheme lies in the fact that the control

inputs to the system explicitly take into account the effects of aperiodic event sampled feed-

back and hence, the system performance is optimized. Moreover, the design parameters

can be chosen directly to meet a predefined performance measure.
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Motivated by the above facts, in this paper, a novel approximate optimal event-

triggered control design scheme for nonlinear continuous-time systems is presented. First,

the design of both control policy and the event-triggering mechanism is formulated as a

two-player zero-sum game with known system dynamics. Here, a novel cost function is

introduced as a function of state vector, control policy and themeasurement/event-triggering

error. The control policy and the measurement error due to event-triggered feedback will

be considered as two non-cooperative players. The saddle point solution to this min-max

problem results in theminimization of the control policywhilemaximizing themeasurement

error.

The resulting measurement error from this minmax optimization problem is utilized

as the dynamic threshold in an event-trigger condition to determine the sampling instants.

Since the control policy explicitly accounts for the worst-case event-triggering error, the

stability and the performance of the system is preserved. Moreover, since the inter-event

time is directly proportional to the event-triggering error and utilizing the maximum event

trigger error as a dynamic threshold results in optimizing the inter-event time. This net result

is an optimal event-triggered controller which explicitly takes into account both generation

of event-triggered sampling instants and control policy.

Next, an approximate solution to the simultaneous optimization of event sampling

instants and control co-design problem is proposed when the system internal dynamics

are considered uncertain. Here an artificial neural network (NN) is employed to learn

the approximate optimal value function and to determine the optimal control policy while

maximizing the event-triggering intervals in a forward-in-time manner by using a hybrid

learning scheme [10]. Next, NN identifiers are introduced to relax the requirement of

accurate knowledge of the internal dynamics and the input gain function to obtain the

saddle point solution for the min-max optimization problem online. The Lyapunov stability
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analysis is used to guarantee local ultimate boundedness of the state vector and the NN

weight estimation errors. Finally, the proposed approximate optimal event-triggered control

scheme is extended for distributed control of interconnected system.

The contributions of the paper include: 1) a novel optimal event sampling instant

and controller co-design using zero-sum game formulation for affine nonlinear systems; 2)

development of an online NN learning scheme for generating optimal control and event-

triggering policies when the system dynamics are uncertain; 3) extension of the approximate

optimal event-triggered design to the distributed control of interconnected systems; 4)

derivation of inter-event time or event triggered sampling instants for the cases of known

and uncertain system dynamics; 5) Lyapunov stability analysis and verification of the

proposed design using numerical examples via simulation.

The paper is organized as follows. In Section II, the system nonlinear system

dynamics are introduced and the problem statement is presented. In Section III, the main

results are presented for the case when the system dynamics are known. In Section IV, a NN

based hybrid learning approach is proposed to solve the optimization problem forward-in-

time, online, when the system internal dynamics are uncertain and the NN identifier based

design is introduced to relax the requirement of both the internal dynamics and input gain

function. In Section V, the extension of this approach to the distributed approximate optimal

control of interconnected system is presented. Finally, simulation results are provided to

show the effectiveness of the controller designed in Section VI. Conclusions follow in

Section VII.

In this paper, < denotes the set of all real numbers; denotes the set of all natural

numbers. Euclidean norm is used for vectors and Frobenius norm [27]-[28] is used for

matrices.The next section presents a brief background on the system dynamics and the

problem statement.
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2. BACKGROUND AND PROBLEM STATEMENT

2.1 System Description

Consider the nonlinear dynamical system represented by

Ûx(t) = f (x) + g(x)u(t),x(0) = x0 (1)

where x ∈ Ω ⊂ <n is the state vector of the system,Ω is a compact set in the n-dimensional

Euclidean space; u(t) is the control input, f : Ω → <n, andg : Ω → <n×m are nonlinear

maps representing internal dynamics and input gain function. The function f satisfies

f (0) = 0 and the function ‖g(x)‖ = 0 if and only if x = 0. The control input for (1) is of

the form

u(t) = µ(x(t)) (2)

where µ : Ωu →<m is a nonlinear map satisfying µ(0) = 0 and Ωu is a compact subset of

Ω.

In the traditional periodic/continuous feedback framework, the control policy, µ, is

continuously implemented using the current feedback signal x(t). In contrast, in the event-

triggered control framework x(t) is available only at certain aperiodic event-based sampling

instants. These time instants can be represented using the sequence {tk}k∈{0,N} ⊆ t, such

that 0 = t0 < t1 < ... The control policy will be held at the actuator using a zero-order hold

circuit and satisfies u(t) = µ(^x(t)) wherein ^x(t) = x(tk), ∀t ∈ [tk, tk+1). Hence, the control

signals are piecewise continuous.

The discrete aperiodic sampling instants can be determined dynamically by using

an event-triggering mechanism. Note that due to the difference between x(t) and ^x(t), there

will be an event-triggering error (or measurement error), which is defined as

e(t) = ^x(t) − x(t), ∀t ∈ [tk, tk+1). (3)
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At the sampling instants, the error (3) is reset to zero or e(tk) = 0. Define the difference

between continuously updated control (2) and the event sampled control policy as

η(t) = u(^x(t)) − u(x(t)). (4)

In the rest of the paper η in (4) is referred as control sampling error policy.

Assumption 1: The computational delay is considered negligible and the sensors are

assumed to be noise free.

Remark 1: For a linear system, the control policy is represented as u(t) = Dx(t),

where D is a control gain matrix. Due to the linearity, (4) will be a represented as

η(t) = De(t) for a linear system. However, because of the nonlinear policy (2), a linear

relationship between η(t) and the event-triggering error does not exist. Therefore, for

simplicity, the difference in the event-sampled control and continuous control policy, η(t),

is defined as control sampling error policy.

Next, the problem of designing an event-triggering condition to determine {tk} and

the optimal control policy (2) co-design are defined.

2.2 Problem Statement

Consider the nonlinear dynamical system given by (1). Let the control policy (2)

be implemented with event-triggered feedback. Then, the system dynamics (1) can be

re-written as

Ûx(t) = f (x) + g(x)u(^x). (5)

Define the performance measure for the system (1) to be

‖ζ(t)‖2 = Q(x(t)) + uT (t)Ru(t) (6)

where Q is a positive definite function satisfying Q(0) = 0 and R is a positive definite

matrix. The functions Q, R penalize the states and the control policy, respectively.
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Fig. 6.1. Networked control system and event-triggered feedback.

A block diagram representation of the control architecture for event-triggered imple-

mentation of state feedback control is given in Fig. 6.1. The event-triggering mechanism

monitors the sensor measurements and dynamically determines the time-instants {tk} to

close the feedback loop. Here, the control policy in (2) are generated by solving a mini-

mization problem associated with the performance measure (5) and the event-execution rule

to determine the sequence {tk} is obtained by designing an upper bound for themeasurement

error (3) based on the stability of the controlled system.

In this paper, the objective is to develop an optimal control policy which mini-

mizes (6) while simultaneously maximizing inter event sampling interval and meeting the

performance given by (6).

Remark 2: To determine the event-triggering instants, the state vector is sampled

as a function of the event-triggering error by using the stability criterion [3]. For example,

consider the system (5); an ISS Lyapunov function, L(x) is chosen such that its time

derivative is represented as ÛL = −ᾱ(‖x‖)+γ̄(‖e‖), where ᾱ, γ̄ are positive definite functions.

Using the Lyapunov time-derivative, the event-triggering condition is chosen as ‖e‖ ≤

σγ̄−1(ᾱ(‖x‖)), for some positive constant σ. The bound on the event-triggering error

σγ̄−1(ᾱ(‖x‖)) ensures that the negative term in the Lyapunov time derivative, ÛL(t) is

dominant and hence, ensures stable operation of the system. However, this does not provide

any information about the system performance during the inter-event period.
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In the next section, a zero-sum game based event-triggered control scheme is pre-

sented which satisfies the objectives defined in this section. The resulting event-triggering

mechanism increases the time between successive events while the optimal control policy

ensures satisfactory system performance.

3. PROPOSED METHODOLOGY

In this section, the control and the event trigger sampling interval policies will be

considered as two non-cooperative players applied to the system. A cost function is defined

as a function of system state vector, control input vector and the sampling error policy. It

will be demonstrated that the objectives listed in Section 2 will be achieved by determining

a saddle point solution to the optimization problem associated with the cost function subject

to the dynamic constraint (5).

The maximizing solution to the optimization problem will act as the threshold to

generate events while the optimal minimizing control policy will be applied to the system

with the feedback generated at these event-triggered sampling instants. Existence of such

saddle point solution to the min-max optimization problem depends on certain properties

of the system which are discussed in Remark 3 [8],[26].

Utilizing the system dynamics (5) and the definition of the sampling error policy

(4), we can rewrite the system dynamics (5) by adding and subtracting u(x(t)) as

Ûx(t) = f (x) + g(x)u(x(t)) + h(x)η(t) (7)

where h(x) = g(x) and η(t) is defined as in (4). Now define the infinite horizon cost function

using the performance measure (6) as

J(x, η, u) =
∫ ∞

t
[‖ζ(t)‖2 − σ2ηTη]dτ. (8)

where σ > 0 represents the attenuation constant. The objective is to find an optimal

saddle-point solution (u∗, η∗) so that the optimal value function satisfies

V∗(x(t)) = min
u

max
η

J(u, η) = max
η

min
u

J(u, η). (9)
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Using the infinitesimal version of the cost function (8) and the system dynamics (7), the

Hamiltonian function can be defined as

H(x, u, η) = Q(x) + uT Ru − σ2ηTη + VT
x [ f + gu(t) + hη(t)] (10)

whereVx = ∂V/∂x withV(x) being the value-function defined using the integral expression

in (8). The optimal policies are obtained as [25]-[26]

u(x,V∗x ) = −
1
2

R−1gT (x)V∗x (11)

η(x,V∗x ) =
1

2σ2 hT (x)V∗x = η∗(x,V∗x ) (12)

whereV∗x is the gradient of the optimal value function along the state trajectory. Substituting

optimal policies in the Hamiltonian will result in the continuous-time Hamilton-Jacobi-

Isaacs (HJI) equation

H = Q(x) + V∗Tx f − 1
4

V∗Tx gR−1gTV∗x +
1

4σ2 V∗Tx hhTV∗x . (13)

Assumption 2: The control policies are Lipschitz continuous over compact sets and satisfyu(^x) − u(x)
 ≤ Lu ‖e‖ where Lu > 0 being the Lipschitz constant [27].

Remark 3: Consider the infinite horizon cost function (8) and the nonlinear sys-

tem dynamics (7). Let the system be reachable and zero-state observable with Q(x) =

C(x)TC(x), with a nonlinear map C. Then, there exists a minimum positive definite solu-

tion for the Hamilton Jacobi Isaacs (HJI) equation ([26],[8]) when σ > σ∗, where σ∗ is the

H∞ gain of the system.

Remark 4: Note that if there is a positive definite solution to the HJI equation, then

the optimal cost function is finite and the control policy asymptotically stabilizes the system.

Further, the optimal policies (11) and (12) are functions of the optimal value function V∗.

To determine the optimal value function, solution to the HJI equation is required which is

non-trivial. Therefore, function approximators are utilized to generate an estimated optimal

value function which is utilized in the optimal policies.
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Remark 5: If the dynamics f , g are linear maps represented by A, B, respectively,

the HJI equation becomes the game algebraic Riccati equation (GARE) [8]. The optimal

value function, V∗(x), for the GARE exists if the system is controllable and the (A,
√

Q) is

observable. The optimal value function then is given by V∗(x) = xT (t)P∗x(t), where P∗ is

the positive definite solution to GARE.

Lemma 1: Consider the infinite horizon cost function (8) and the nonlinear input

affine system dynamics (7). Let be the positive definite solution for the HJI equation (13),

then the optimal policy

u(x) = −1
2

R−1gT (x)V∗x (t) (14)

generates a local ISS Lyapunov function for (7) with respect to the measurement error e(t).

Proof: See Appendix.

Remark 6: The smooth function L(x) = V∗(x) satisfies, ᾱ(V∗(x)) ≤ V∗(x) ≤

¯̄α(V∗(x)), where ¯̄α and ᾱ represent the positive definite functions. Further, from the proof

of Lemma 1, we have ‖x‖ ≥ γ ‖e‖ implies ÛLx < 0, where γ = ‖LvLuh‖ /
δx,m

, δx,m, Lv

are positive constants defined in the proof of Lemma 1 using Q and R. Thus, it can be

concluded that L(x) is a local ISS Lyapunov function [27].

Next, the main results of this section are presented.

Theorem 1 (Case of Known System Dynamics): Consider the infinite horizon cost

function (8) and the affine nonlinear system dynamics (7). Let be the positive definite

solution for the HJI equation (13), and the optimal policy given by (14) be applied to the

system with the following event-triggering condition given by

‖e(t)‖ ≤ ‖η
∗(t)‖
Lu

, t ∈ [tk, tk+1), ∀k ∈ {0,N}. (15)

Then, the closed-loop system is asymptotically stable when Q, R, σ are selected such that

δx,m > 0, where δx,m is a function of Q, R, σ. In addition, a positive minimum inter-event

time, τm, exists such that

τm ≥
1
‖hLu‖

log( ‖hLu‖
Xm

‖e∗‖ + 1) (16)
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where Xm is a positive constant defined in the proof.

Proof: See Appendix.

Remark 7: The proposed event-trigger condition (15) allows the measurement error

to increase until the system performance defined by (6) is not deteriorated. This increases

the inter-event time (Proof of Theorem 1).

Remark 8: The expression for the inter-event sampling interval obtained in the

proof of Theorem 1 can be utilized to generate events automatically without using the

event-triggering mechanism. Such a scheme is known as self-triggering scheme and it

obviates the computation required by the event-triggering mechanism to determine tk .

Remark 9: Note that the proposed event-triggering condition (15) is a function of

η∗(t). In contrast to the traditional event-triggering conditions [3], the event-triggering error

in the proposed scheme is bounded by the worst-case difference between the continuous

and event-sampled control policy η∗. Thus, the inter-event sampling time obtained using

the proposed condition (15) specifies the maximum time for which the control policy is not

required to be updated with the latest sensor feedback information. Also, note that all the

signals required to check the event-triggering condition (x(t), x(tk), η∗) are available at the

event-triggering mechanism.

In the next section, an optimal adaptive event-triggered control design using NN

based hybrid learning approach is presented.

4. NEURAL NETWORK CONTROLLER DESIGN

The control policy and the event-triggering condition require the optimal value

function which is incidentally the solution to the HJI equation. The HJI equation does not

have a closed-form solution [12],[15]. Therefore, numerical solutions are constructed by

using reinforcement learning techniques [24] and approximate optimal control solutions are

obtained. The saddle point solution for the proposed min-max problem formulated for the

event-triggered control design can be learned online, in a forward-in-time manner using a
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Fig. 6.2. Approximate optimal event sampled control system.

NN based value function approximator. First, a solution is proposed to relax the requirement

of accurate knowledge of the system internal dynamics f (x). Then an NN identifier based

design is introduced to relax the accurate knowledge of both f (x) and g(x).

4.1 Case Of Known Control Coefficient Matrix

A block diagram of the proposed learning scheme is given in Fig. 6.2. It can be

observed that in order to learn the optimal control policy and the event-triggering threshold,

two value-function approximators (VFA) are required one at the controller and the other at

the event-triggering mechanism. Both the value-function approximators learn the optimal

value function corresponding to the HJI equation (13) and the initial values for the both the

NN weights are same.

Using the infinitesimal version of the cost function (8), we have

ÛV = −Q(x) − uT Ru + σ2ηTη (17)

Integrating both sides of (17) in the interval [tk, tk+1), reveals

V∗(tk+1) − V∗(tk) =
∫ tk+1

tk
(−Q(x) − uT Ru + σ2ηTη)dτ. (18)
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Equation (18) is called the Bellman equation [15]. The Bellman equation is a fixed point

equation with the optimal value function being the fixed point solution. Therefore, if the

optimal value function and control policies in (18) are replaced by the estimated quantities,

there would be an error, referred to as the Bellman error/temporal difference (TD) error

[10], [24].

Define the estimate of the optimal value function as V̂ . Now replacing the optimal

value function in (18) with the estimated optimal value function reveals [11]

χk+1(t) =
∫ tk+1

tk
(xTQx + uT Ru − σ2ηTη)dτ + V̂(tk+1) − V̂(tk) (19)

where χk+1 is the Bellman residual error/ temporal difference error calculated at the occur-

rence of k + 1 event.

Assuming that the solution to the HJI equation is a smooth function, the approxi-

mation of the optimal value function can be represented in parametric form using artificial

neural networks as

V∗(x) = WTφ(ωT x) + ε(x) (20)

whereW is the target NNweights, φ(x) is the smooth activation function satisfying φ(0) = 0,

ε(x) is the reconstruction error and ω is the weights of the first layer which are randomly

chosen, held constant to form a stochastic basis and will not be explicitly written henceforth

[28].

Assumption 3: The target weight vector W ∈ ΩW ⊂ <No×1 satisfies the bound

‖W ‖ ≤ WM . Let the number of hidden layer neurons be denoted as No. The set of

activation functions [φ1 φ2 ... φNo]T form a basis on the compact set Ω with ‖φ(x)‖ ≤ No.

The reconstruction error satisfies ‖ε(x)‖ ≤ εM .

Next, define the estimated NN weights, Ŵ and the estimated approximate optimal

value function

V̂(x) = ŴTφ(x) (21)
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Substituting the estimate of the approximated optimal value function from (21) in (19)

yields

χk+1(t) =
∫ T

0
(Q(x) + uT Ru − σ2ηTη)dτ + ŴT

∆φ(τ) (22)

where ∆φ(τ) = φ(tk+1) − φ(tk) and χk+1(t) is the residual error calculated at the event-

sampling instant tk+1. Similarly, using (20) in (18) yields

WT
∆φ(τ) + ∆ε(τ) =

∫ tk+1

tk
(−Q(x) − uT Ru + σ2ηTη)dτ (23)

where ∆ε(τ) = ε(x(tk+1)) − ε(x(tk)). Define weight estimation error as W̃ = W − Ŵ . Then,

substituting for the right hand side of (23) in (22) to get

−χk+1(t) = WT (t)∆φ(τ) − ŴT (t)∆φ(τ) + ∆ε = W̃T (t)∆φ(τ) + ∆ε. (24)

Equation (24) provides the relationship between TD error and the weight estimation error.

With this relationship, the main results for this section are presented in the following

theorem.

Theorem 2 (Case of Known Control Coefficient Matrix): Consider the infinite

horizon cost function (8) and the nonlinear input affine system dynamics (7). Let W be a

bounded and constant target NN weights for the value function approximator and Ŵ(0) be

the initial estimated NN weights defined in a compact set ΩW . Let the control policy given

by

u(x) = −1
2

R−1gT (x)V̂x, (25)

be applied to the system with V̂x being the gradient of the value function (21) with respect

to the state vector. Choose an initial stabilizing control policy such that the resulting cost is

finite. Further, let the event-triggering condition satisfying

‖e(t)‖ ≤ ‖η̂(t)‖
Lu

, t ∈ [tk, tk+1), ∀k ∈ {0,N}, (26)
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be used where η̂ = 1
2σ2 hT (x)V̂x(t). Consider the value-function NN weight adaptation rule

given by

Û̂W =


−α [∆φ(τ)]
(1+[∆φ(τ)]T [∆φ(τ)])2

χT
k (t), t = tk

−α [∆φ(τ)]
(1+[∆φ(τ)]T [∆φ(τ)])2

χT (tk), t ∈ (tk, tk+1).
(27)

Then, the state vector and the NN weight estimation error converges locally and be-

comes ultimately bounded with the event-triggering instants k → ∞, provided the de-

sign parameters α,Q, R, σ are chosen provided: δ̄x > 2L2
u , α

ρ > 1
2 ‖R‖

2 where ρ =

(1 + [∆φ(∆T)]T [∆φ(∆T)])2, δ̄x = [Q(x) + u∗T Ru∗ − σ2η∗Tη], where α > 0, is the learning

step. The bounds are defined as 1
2g

2
M∇ε2

M + α
2ε2

M , where ‖g(x)‖ ≤ gM , ‖∇ε‖ ≤ ∇εM ,

‖ε‖ ≤ εM with ∇εM, gM, εM are positive constants.

Proof: See Appendix.

Remark 10: In contrast to the traditional policy-iteration scheme [24], the parameter

tuning proposed in (27) is a hybrid learning scheme [10] which can be implemented online.

The HJI residual error, χk , is calculated at every event-triggering instant, tk , and the

parameters are updated continuously using (27) both at the event sampling and inter-event

intervals. The update rule utilizes the new information obtained at the event-triggering

instant to calculate the Bellman error, χk(t), and the updates in the inter-event period,

[tk, tk+1) tries to reduce the HJI residual error calculated at the last event-triggering instant,

tk . It is demonstrated in [10] that such a hybrid learning scheme improves the learning

efficiency in the event-triggered feedback framework.

Remark 11: If the system dynamics are linear, the solution to the GARE is required

instead of the solution to the HJI equation. Therefore, the approximation to the solution for

the GARE can be represented as V∗(x) = WTφ(x), where φ(x) being a regression function

obtained by using the Kronecker product of xT (t) ⊗ x(t) and W is obtained by representing

the matrix P∗ in a vector form [8].
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Remark 12: Note that the bounds are obtained in Theorem 2 as a function of the NN

reconstruction error. It has been demonstrated that as the number of hidden layer neurons

are increased the reconstruction error converges to zero [28]. In this special case, by

appropriate design of the NN approximator, the state vector and the NN weight estimation

error converge to zero asymptotically.

4.2 Unknown Control Coefficient Matrix Using Identifier

Note that the control policy (25) and the event-triggering condition (26) still require

the knowledge of the nonlinear function g(x). To relax this requirement, consider the NN

identifier as

Ûx = f̂ (x̂) + ĝ(x̂)u(t) − Ax̃(t) (28)

where f̂ , ĝ are the approximated functions of the nonlinear dynamics f , g. The forcing

function, x̃ = x− x̂, is the state estimation error, and A > 0 is a linearmapwhich stabilizes the

NN identifier during the learning phase. Using NN approximation, the parametric equations

for the nonlinear functions in (28) are g(•) = Wgζg(•) + εg(•), f (•) = W f ζ f (•) + ε f (•)

where W• denotes the target NN weights, ζ• denotes the bounded NN activation functions

and ε• denotes the bounded reconstruction errors. Using the estimate of the NN weights,

Ŵ•, define f̂ (•) = Ŵ f ζ f (•) and ĝ(•) = Ŵgζg(•). Now to analyze the stability of (28), using

(28) and (1), the dynamic equation describing the evolution of the state estimation error,

x̃(t) is revealed as

Û̃x = W̃ f ζ f +W f ζ̃ f − W̃ f ζ̃ f + [W̃gζg +Wg ζ̃g−

W̃g ζ̃g]u + εgu + ε f + Ax̃
(29)

with ζ̃• = ζ•(x) − ζ•(x̂), W̃• = W• − Ŵ•. The local bounded regulation of x̃(t), W̃•(t)

is observed when (29) is injected with a non-zero bounded input e(t) and this result is

summarized next.
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Lemma 2: ([9][10]) Consider the identifier dynamics (28). Using the estimation

error, x̃(t), as a forcing function, define NN weight tuning using the Levenberg-Marquardt

scheme with sigma modification term to avoid parameter drift as

Û̂W f =
α f ζ f x̃T

c f +
x̃T

2 − κ f Ŵ f ,
Û̂Wg =

αgζgux̃T

cg +
x̃T

2uT
2 − κgŴg (30)

where α f , αg, κ f , κg, c f , cg are positive design constants. The error dynamics using (30) are

obtained as

Û̃W f =
−α f ζ f x̃T

c f +
x̃T

2 + κ f Ŵ f ,
Û̃Wg =

−αgζgux̃T

cg +
x̃T

2uT
2 + κgŴg . (31)

If u(t) is stabilizing, then there exists α•, κ•, Ai > 0 such that (29) and (31) are stable and

x̃(t), W̃•(t) are locally ultimately bounded. The bounds are functions of the reconstruction

error and the sigma modification gain κ•.

Proof: See Appendix.

Remark 13: Using the NN identifier, the approximate optimal event-based control

scheme can be developed by relaxing the requirement of the complete knowledge of the

nonlinear dynamics. The stabilization of control policy requirement is not needed in the

corollary.

Corollary 1: Consider the infinite horizon cost function (8) and the nonlinear input

affine system dynamics (7). Let W be the a constant target weight matrix for the value

function estimator and Ŵ(0) be the initial estimated weight matrix in ΩW . Use the NN

identifier (28) to obtain the approximation of the nonlinear system dynamics. Tune the NN

identifier using the weight update rule (30). Let the control policy given by

u(x) = −1
2

R−1ĝT (t)V̂x, (32)

be asserted on the systemwith an initial stabilizing policy. Let the event-triggering condition

be

‖e(t)‖ ≤ ‖η̂(t)‖
Lu

, t ∈ [tk, tk+1), ∀k ∈ {0,N} (33)
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where η̂ = 1
2σ2 ĥT (x)V̂x(t). Next, consider the value-function NN hybrid weight adaptation

rule given by

Û̂W =


−α [∆φ(τ)]
(1+[∆φ(τ)]T [∆φ(τ)])2

χT
k (t), t = tk

−α [∆φ(τ)]
(1+[∆φ(τ)]T [∆φ(τ)])2

χT (tk), t ∈ (tk, tk+1).
(34)

Then, the states of the system, NN identifier and the NN weight estimation errors converge

locally to a bound with the event-triggering instants k →∞.

Proof: See Appendix.

Remark 14: Using the NN identifier along with the value function approximator

provides an additional benefit when compared to the traditional actor-critic architecture

[14]-[15], which is an alternate approach to design approximate optimal controllers. The

advantage of this approach is that the NN identifier can be used for online exploration [10]

and the identifier state vector can be substituted for actual state vector to mimic a model-

based event-triggering schemewhich reduces the effects of network delays and packet losses

[4]. Remark 15: Once the states reach their bounds, a dead-zone operator can be used to

stop the event-triggering mechanism to generate redundant events [9],[22].

In the next section, the hybrid-learning based zeroâĂŞsum game theoretic formu-

lation is extended to the distributed control using decentralized event-triggering conditions

for interconnected systems.

5. EXTENSION TO DISTRIBUTED APPROXIMATE OPTIMAL CONTROL

Consider a nonlinear input-affine system composed of N interconnected subsystems,

each of the form

Ûxi = fi(xi) + gi(xi)ui +
∑N

j=1
j,i
∆i j(xi, x j), xi(0) = xi0 (35)

where xi(t) ∈ Ωi ⊆ <ni×1 represents the state vector of the ith subsystem; Ûxi(t) its time

derivative; Ωi is a compact set; ui(t) ∈ <mi is the control input; fi, gi, are uncertain

nonlinear maps and ∆i j is the uncertain nonlinear interconnection between ith and j th
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subsystem. Let xi0 be the given initial subsystem state. Using the subsystem dynamics, the

augmented system dynamics can be represented as

Ûx = f (x) + g(x)u,x(0) = x0 (36)

(36) where f = [( f1 +
∑N

j=2 ∆1 j)T, ., ( fN +
∑N−1

j=1 ∆N j)T ]T , x = [xT
1 , ., xT

N ]T ∈ Ω ⊆ <n,

n =
∑N

i=1 ni, u = [uT
1 , .., u

T
N ]T ∈ <m, m =

∑N
i=1 mi, g = diag([g1(x1).., gN (xN )]), Ω is

obtained as a finite union of Ωi.

Remark 16: ([10]) Using the performance measure for the augmented system (36),

the cost function for the individual subsystems can be represented using the relation V(x) =∑N
i=1 Vi(x) and the resulting control policy ui(x) is a distributed control policy as it is defined

as a function of the local states and the states of the neighboring interconnected subsystems.

Assumption 3: The dynamics (35) and (36) are stabilizable with origin as the

equilibrium point. Full state measurements are available for control. The communication

network which facilitates information sharing among subsystems is lossless.

Corollary 2: Consider the infinite horizon cost function (8) and the nonlinear system

dynamics (36). Use the NN identifier at each subsystem defined by (28) and the identifier

NNweights be updated using (30). LetWi be the constant, bounded, target parameter vector

for the NN-function approximator at the ith subsystem. Let the control policy

ui(t) = −
1
2
[R−1

i ĝi(x)V̂ix(t)], (37)

be applied to the subsystem, where Ri is a positive definite matrix, V̂ix is the gradient of the

estimated optimal cost function of the ith subsystem with respect to the states, xi and let the

decentralized event-triggering condition satisfies

‖ei(t)‖ ≤
1

Lui
‖η̂i(t)‖ , t ∈ [tk, tk+1), ∀k ∈ {0,N} (38)

where R = diag(Ri), η̂ = [η̂T
1 η̂T

2 .. η̂T
N ]T, Lui > 0. Let the value-function NN weights at

each subsystem be updated using

Û̂
iW =


−αi

[∆φi(τ)]
(1+[∆φi(τ)]T [∆φi(τ)])

2 χ
T
i,k(t), t = tk

−αi
[∆φi(τ)]

(1+[∆φi(τ)]T [∆φi(τ)])
2 χ

T
i (tk), t ∈ (tk, tk+1).

(39)
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where Ŵi is the estimate of Wi, αi is the learning rate and ∆φi is defined similar to (34) at

the ith subsystem. Then, the state vector and the parameter estimation error converges to an

ultimate bound which is a function of the reconstruction error, κ• the sigma modification

term in the identifier weight tuning law, as the event-triggering instants k →∞.

Proof: The proof of this Corollary follows a similar line of argument as Theorem 2.

To avoid redundancy, the detailed derivations are omitted. In the next section, simulation

results are provided to verify the theoretical claims.

6. SIMULATION RESULTS

For the simulation results, first, consider the unstable nonlinear dynamics in continuous-

time [11] as Ûx = f (x) + g(x)u, with x = [x1x2]T and u = [u1u2]T . The nonlinear dynamics

are Ûx1 = −(29x1 + 87x1x2
2)/8 − (2x2 + 3x2x2

1)/4 + u1 and Ûx2 = −(x1 + 3x1x2
2)/4 + 3u2.

To verify the advantages of the proposed method, the results of our approach is compared

with that of an event-triggered optimal approximate controller with the event-triggering

condition of the form [22].

For the case of uncertain system dynamics ( f , g unknown), the proposed NN

approximate-learning based control approach is comparedwith the traditional event-triggered

NN approximate optimal control scheme (Sahoo et. al, [17]). The considered numerical

example is studied in H∞ control schemes and the analytical solution to the HJI equation

(optimal value function) is calculated as V∗(x) = x2
1 + 2x2

2 + 3x1x2 [11],[15].

The simulation analyses carried out with different design parameters and the values

of the penalizing matrices Q, R are taken as 10I, 0.2I. The value of σ is taken as 0.7. These

values are chosen as they resulted in comparable control effort and state trajectories. Both

the VFA NN weights are initialized with the same random values from the interval [-2,2].
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Fig. 6.3. Comparison of state trajectories x1 and x2.

Fig. 6.3 depicts the convergence of the closed-loop system state vector, and Fig. 6.4

depicts the comparison plots of the control inputs. The proposed method is contrasted with

the event-triggered implementation of approximate optimal controller. It can be observed

that the state trajectories are satisfactory with similar control effort.

Further, the lower bound on the inter-event times is observed to be 1 ms. It is

clear from Fig. 6.5 that the event-triggering threshold with the proposed approach is

considerably higher than the traditional approach. This elongated the inter-event time,

reducing the resource utilization which is one of the primary objectives of the design. Fig.

6.5 shows the inter-event times.
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Table 6.1. Analysis of approximate optimal control scheme.

σ
Avg. IET in s Cumulative cost Events

ET-NN P.M ET-NN P.M ET-NN P.M

0.90 0.0350 0. 0685 2.074e+5 1.442e+5 290 120

0.925 0.0357 0.0675 2.085e+5 1.530e+5 280 130

0.95 0.0362 0.0744 2.100e+5 1.602e+5 270 140

0.975 0.0369 0.0583 2.110e+5 1.654e+5 260 160

1 0.0604 0.0562 2.114e+5 1.704e+5 260 170

The comparison of inter-event time in Fig. 6.5 and the cumulative cost function in

Fig. 6.6 reveals the benefit of using the proposed scheme. It is observed that the average

inter-event time is increased considerably and the cumulative cost is reduced with the

proposed approach. Due to space consideration, all the simulation figures are not included

and the results are summarized in Table 6.1.

In Table 6.1, proposed method is abbreviated as PM, event-triggered NN based

approximate optimal control [17] is abbreviated as ET-NN.

7. CONCLUSIONS

This paper proposes a novel approach for simultaneously optimizing both the event-

triggering sampling instants and state feedback controller using zero-sum game formulation

for a class of nonlinear system. The proposed design scheme provides a tractable trade-off

between the frequency of events and the system performance cost by utilizing the min-
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Fig. 6.5. Comparison of the performance of event-triggering mechanism.
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max optimization of the cost function. The inter-event time interval increases with the

proposed event-triggering condition which considerably reduces the communication cost

when compared to the traditional event-triggering schemes. The approximation based NN-

learning scheme generates the optimal control policy and the event-triggering condition

forward-in-time by obviating the curse-of-dimensionality. The NN identifiers relaxed the

requirement of the accurate knowledge of the system dynamics to implement the proposed

scheme.
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APPENDIX

Proof of Lemma 1:

Choose the positive definite Lyapunov function Lx(x) = V∗(x). The time derivative

along the system dynamics can be obtained as

ÛLx(t) = V∗
T

x Ûx = [V∗
T

x f + V∗
T

x gu + V∗
T

x hη]. (40)

Add and subtract V∗
T

x gu∗ + V∗
T

x hη∗ to get

ÛLx(t) = [V∗
T

x f + V∗
T

x gu∗ + V∗
T

x hη∗]

+V∗
T

x g(u − u∗) + V∗
T

x h(η − η∗)
. (41)

From (10), with (u∗, η∗,V∗), we have H(x, u∗, η∗) = 0 and

−Q(x) − u∗T Ru∗ + σ2η∗Tη∗ = V∗Tx [ f + gu∗ + hη∗]. (42)

Using the right hand side of (42) in (41) results in

ÛLx(t) = −Q(x) − u∗T Ru∗ + σ2η∗Tη∗

+V∗
T

x g(u − u∗) + V∗
T

x h(η − η∗).
(43)

Using the definition, η∗ = 1
2σ2 hTV∗x , and substituting the control policy u∗ from (14) in (43),

we get ÛLx(t) = −Q(x) − u∗T Ru∗ − σ2η∗Tη∗ + 2σ2η∗Tη. By using the definition of optimal

policies (11), and (12), we have

ÛLx(t) ≤ −xTδx x + V∗Tx hη (44)

where δx > 0. Applying norm operator to (44) reveals

ÛLx(t) ≤ −δx,m‖x‖2 + LvLu ‖h‖ ‖x‖ ‖e‖ (45)

where Lu, Lv are Lipschitz constants. From (45) it can be concluded that the closed-loop

system is input-to-state stable as Q, R, σ are chosen as positive definite functions resulting

in δx,m > 0.
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Proof of Theorem 1:

With the Lyapunov function candidate chosen similar to that in Lemma 2, from (44),

we have

ÛLx(t) = −xTδx x + V∗Tx hη. (46)

Applying norm operator and using the event-triggering condition (15)

ÛLx(t) ≤ −δx,m‖x‖2 +
V∗Tx

 ‖x‖ ‖η∗‖ . (47)

Using the definition of η∗ and (12), we get

ÛLx(t) ≤ −(δx,m −
1

2σ2

V∗Tx

2)‖x‖2. (48)

From the definition of δx,m in (44), note that δx,m > 1
2σ2

V∗Tx

2. Now to derive the positive

inter-event time, use (3) and taking the time-derivative reveals

Ûe(t) = Û̂x(t) − Ûx(t), t ∈ [tk, tk+1). (49)

Noting that ^x is a constant in the inter-event period, we have Û̂x = 0. Taking the norm

operator and substituting the system dynamics reveals

‖ Ûe(t)‖ = ‖ Ûx(t)‖ = ‖ f + gu∗ + hη‖ . (50)

From (48), there exists a Xm > 0 such that ‖ f + gu∗‖ ≤ Xm. Using this relation in (50)

yields

‖ Ûe(t)‖ ≤ ‖hLu‖ ‖e‖ + Xm. (51)

Integrating using the comparison lemma [22], reveals

‖e(t)‖ ≤ Xm

‖hLu‖
(e‖hLu ‖(t−tk ) − 1), t ≥ tk . (52)

Substituting t = tk+1 reveals the minimum positive inter-event time

(tk+1 − tk)min ≥
1
‖hLu‖

log( ‖hLu‖
Xm

‖e∗‖ + 1). (53)

Proof of Theorem 2:

Consider the Lyapunov candidate

L(x, W̃) = Lx(t) + LW (t) (54)
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where Lx(t) = V∗(x) and LW (t) = 1
2W̃TW̃ . The derivative of the Lyapunov candidate is

given by

ÛL(x, W̃) = ÛLx(t) + ÛLW (t). (55)

Consider the first term and using the system dynamics to get

ÛLx(t) = V∗
T

x Ûx = [V∗
T

x f + V∗
T

x gu + V∗
T

x hη]. (56)

Add and subtract V∗
T

x gu∗ + V∗
T

x hη∗ to get

ÛLx(t) = [V∗
T

x f + V∗
T

x gu∗ + V∗
T

x hη∗]

+V∗
T

x g(u − u∗) + V∗
T

x h(η − η∗)
. (57)

Using the Hamiltonian (GARE), H(x, u∗, η∗), we have

−Q(x) − u∗T Ru∗ + σ2η∗Tη∗ = V∗Tx [ f + gu∗ + hη∗]. (58)

Substituting (58) in (57)

ÛLx = −Q(x) − u∗T Ru∗ + σ2η∗Tη∗ + V∗
T

x gu(^x)

−V∗
T

x gu∗ − V∗
T

x hη∗
. (59)

Adding and subtracting V∗
T

x gu∗(^x) in (59), we get

ÛLx(t) = −Q(x) − u∗T Ru∗ + σ2η∗Tη∗ − V∗
T

x hη∗

+V∗
T

x g[u(^x) − u∗(^x)] + V∗
T

x g[u∗(^x) − u∗(x)]
. (60)

Now, define ũ = u∗(^x)−u(^x), using the definition (25) and (11), we have ũ = −1
2 R−1g(^x)∇ε(^x)−

1
2 R−1g(^x)∇φT (^x)W̃ . Substitute ũ in (60) to get

ÛLx(t) = −Q(x) − u∗T Ru∗ + σ2η∗Tη∗ − V∗
T

x hη∗

−2u∗T Rũ + V∗
T

x g[u∗(^x) − u∗(x)]
Using the definition of η∗, we get the Lyapunov time-derivate

ÛLx(t) = −Q(x) − u∗T Ru∗ + σ2η∗Tη∗ − 2u∗T Rũ (61)

Applying the norm operator in (61) to get

ÛLx(t) ≤ −δ̄x ‖x‖2 +
u∗T

 g(^x)∇ε(^x) + u∗T
 g(^x)∇φT (^x)W̃

 (62)
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where δ̄x = [Q + 1
4 P∗BR−1BT P∗ − 1

4σ2 P∗DDT P∗]. Using the Youngs inequality, we get

ÛLx(t) ≤ −δ̄x ‖x‖2 +
u∗T

2
+

1
2
g2

M

∇φT (^x)W̃
2
+

1
2
g2

M∇ε2
M .

Therefore, using the definition of u∗ , (64) is simplified as

ÛLx(t) ≤ −(δ̄x − L2
u)‖x‖2 +

1
2
g2

M

∇φT (^x)W̃
2
+

1
2
g2

M∇ε2
M . (63)

Now consider the second term in the Lyapunov function. The estimation error dynamics is

revealed as Û̃θ(t) = − Û̂θ(t) and

Û̃W = α [∆φ(∆τ)]
1 + ([∆φ(∆τ)]T [∆φ(∆τ)])2

χT
k+1(t). (64)

Let LW (t) = 1
2W̃TW̃ , using (64) and (31), the Lyapunov time derivative is obtained as

ÛLW (t) = −α
W̃T∆φ(∆τ)[∆φ(τ)TW̃ + ∆ε]
(1 + [∆φ(∆τ)]T [∆φ(∆τ)])2

. (65)

Using (63) and (65) in (55), we get

ÛL(t) ≤ −(δ̄x − L2
u)‖x‖2 − (αρ −

g2
M

2 −
1
2 )

W̃∆φ(τ)
2

+1
2g

2
M∇ε2

M + α
2ε2

M

(66)

where ρ = (1 + [∆φ(∆τ)]T [∆φ(∆τ)])2. From (66), it can be seen that the state vector

and the NN weight estimation errors converge to their bounds in the inter-event period.

Thus, the closed loop system is input to state stable [27] in the presence of measurement

error and from the event-sampling condition, the measurement error remain bounded in the

inter-event period. Therefore, it can be concluded that the closed-loop system is ultimately

bounded similar to [22].

Alternatively, consider the event-triggering sampling instants. Choose the Lyapunov

candidate function (54). First, note that the Lyapunov function is continuous because of the

fact that the state vector and the weight estimation errors are continuous [29]. For the NN

based learning scheme, define the closed-loop state vector ξ = [xT W̃T ]T . From (66), ξ(t)

is converging to its ultimate bound in the inter-event period. Hence, there exists a positive

minimum inter event time (53) as long as the state vector and the weight estimation errors

are outside their ultimate bounds (In this case, the variable XM in equation (51) should

be modified as XM + B, where B is the bound for the state vector derived in (66)). This
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implies that the sequence of discrete sampling instants do not have an accumulation point

[9],[22]-[23]. Therefore, it can be concluded that the set of points corresponding to the

event-triggering sampling instants {tk} is countable with Lebesgue measure of zero [2]-

[3],[29]. Thus, at the inter-event time interval and at the event-triggering sampling instants,

the time derivative of the Lyapunov function is less than zero and the closed-loop state ξ(t)

locally converges to the ultimate bound defined in (66).

Proof of Lemma 2:

Consider the Lyapunov function candidate LI(x̃, W̃ f , W̃g) = Lx̃ + L f̃ + Lg̃, with

Lx̃ =
µi1
2 x̃TΠ x̃, L f̃ =

µ2
2 W̃T

f W̃ f +
µ4
4 (W̃T

f W̃ f )2, and Lg̃ =
µ3
2 W̃T

g W̃g +
µ5
4 (W̃T

g W̃g)2, where

µ•,Π, are positive constants of appropriate dimensions. Consider the first term in the

Lyapunov function. Taking the derivative and substituting the estimation error dynamics

(29) yields
ÛLx̃ = µ1 x̃TΠ(W̃ f ζ f +W f ζ̃ f − W̃ f ζ̃ f + [W̃gζg +Wg ζ̃g

−W̃g ζ̃g]u + εgu + ε f + Ax̃)

ÛLx̃ = µ1 x̃TΠAx̃ + µ1 x̃TΠW̃ f ζ f + µ1 x̃TΠW f ζ̃ f − µ1 x̃TΠW̃ f ζ̃ f

+µ1 x̃TΠ[W̃gζg +Wg ζ̃g − W̃g ζ̃g]u + µ1 x̃TΠ[εgu + ε f ].

Apply the norm operator and by choosing the matrix A such that the minimum singular

value of A is given as −λmin(q̄) reveals

ÛLx̃ ≤ −(λmin(µ1Πq̄) − 7
2 )‖ x̃‖

2 + 1
2 ‖µ1‖2

ΠW̃ f ζ f
2

+1
2 ‖µ1‖2

Π[ε f + εgu]
2
+ 1

2 ‖Π‖
2‖µ1‖2W2

f M

ζ̃ f
2

+1
2 ‖Π‖

2‖µ1‖2
W̃ f

2ζ̃ f
2
+ 1

2 ‖µ1‖2
ΠW̃gζgu

2

+1
2 ‖Π‖

2‖µ1‖2
W̃g

2ζ̃g2‖u‖2 + 1
2 ‖Π‖

2‖µ1‖2W2
gM

ζ̃g2‖u‖2.

Using the YoungâĂŹs inequality [29] and grouping similar terms yield

ÛLx̃ ≤ −(λmin(µ1Πq̄) − 7
2
)
x̃T

2
+

1
2
W̃g

4
+

1
2
W̃ f

4
+ ηox̃B

where
ηox̃B =

1
2 ‖µ1‖2‖Π‖2((ε2

f M + ε
2
gM B2

u) + ‖µ1‖2‖Π‖2N2
o f

+N2
ogB4

u ‖µ1‖2‖Π‖2 +W2
gM NogB2

u +W2
f M No f ).
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Now consider the second term in the Lyapunov candidate function. Taking the derivative

and using the weight estimation error dynamics (31) reveals

ÛL f̃ = −
µ2W̃T

f
αf ζf x̃T

cf +x̃T x̃ + µ2W̃T
f κ f Ŵ f

−
µ4(W̃T

f
W̃ f )W̃T

f
αf ζf x̃T

cf +x̃T x̃ + µ4(W̃T
f W̃ f )W̃T

f κ f Ŵ f

Apply the norm operator and using the fact that the activation functions are bounded such

that ‖ζ•‖ ≤ No•, reveals

ÛL f̃ ≤ −(λmin(µ2κ f ) − 1)
W̃ f

2 − (λmin(µ4κ f ) − 2)
W̃ f

4

+1
2 ‖µ2‖2N2

o f

α f
2
+ 1

8 ‖µ4‖4N4
o f

α f
4
+ 1

2 ‖µ2‖2
κ f W f

2

+1
8 ‖µ4‖4

κ f W f
4

≤ −(λmin(µ2κ f ) − 1)
W̃ f

2 − (λmin(µ4κ f ) − 2)
W̃ f

4
+ ηo f B

where the bound ηo f B is defined as

ηo f B =
1
2 ‖µ2‖2

α f
2N2

o f +
1
8 ‖µ4‖4

α f
4N4

o f +
1
2 ‖µ2‖2

κ f
2W2

f M +
1
8 ‖µ4‖4

κ f
4W4

f M,

and ‖W•‖ ≤ W•M . Finally, consider the last term in the Lyapunov candidate function.

Taking the derivative and substituting the weight estimation error dynamics (31) yields

ÛLg̃ = µ3W̃T
g (−

αgζgux̃T

cg+x̃T x̃uTu + κgŴg) + µ5(W̃T
g W̃g)(W̃T

g (−
αgζgux̃T

cg+x̃T x̃uTu + κgŴg))

On simplification we get

ÛLg̃ ≤ −(λmin(µ3κg) − 1)
W̃g

2 − (λmin(µ5κg) − 2)
W̃g

4
+ ηoBg

with the bound
ηoBg =

1
2 ‖µ3‖2

αg2Nog +
1
8 ‖µ5‖4

αg4N2
og

+1
2 ‖µ3‖2

κg2W2
gM +

1
8 ‖µ5‖4

κg4W4
gM .

Combining all the terms Lya-

punov time derivative terms to obtain the first derivative of the Lyapunov function as

ÛLI ≤ −(λmin(µ1Π̄) − 7
2 )

x̃T
2 − (λmin(µ2κ f ) − 1)

W̃ f
2

−(λmin(µ4κ f ) − 7
4 )

W̃ f
4 − (λmin(µ3κg) − 1)

W̃g

2

−(λmin(µ5κg) − 7
4 )

W̃g

4
+ ηoB

with ηoB = ηoBg + ηo f B + ηox̃B. This reveals that the identification and the NN weight

estimation errors of the identifiers at each subsystem is locally ultimately bounded.
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Proof of Corollary 1:

Similar to the proof of Theorem 2, we can consider two cases. First, consider the

inter-event triggering interval. Let the Lyapunov candidate function Lc = LI + L where the

individual terms are defined as

LI(x̃, W̃ f , W̃g) = Lx̃ + L f̃ + Lg̃, L(x, W̃) = Lx(t) + LW (t).

Consider the second term. Taking the Lyapunov time-derivative and using the result from

Theorem 2, we have

ÛLx(t) = −Q(x) − u∗T Ru∗ + σ2η∗Tη∗ − 2u∗T Rũ

where
ũ = −1

2 R−1g(^x)∇ε(^x) − 1
2 R−1g(^x)∇φT (^x)W̃

−1
2 R−1g̃(^x)∇φT (^x)W + 1

2 R−1g̃(^x)∇φT (^x)W̃
and g̃ = g − ĝ. Similar to the simplifi-

cation procedure of the proof of Theorem 2, using the YoungâĂŹs inequality, we get

ÛL(t) ≤ −(δ̄x − L2
u)‖x‖2 − (αρ −

g2
M

2 −
1
2 )

W̃∆φ(τ)
2

+1
2g

2
M∇ε2

M + α
2ε2

M +
1
2
W̃g̃

4
+ 1

2 B(g2
M∇ε2

M)
where B is a bounded term which is a function of the reconstruction error due to the

NN approximation of the optimal value function and the nonlinear function g(x). Now

consider the first term Lyapunov function term corresponding to the NN identifier, using the

Lyapunov derivative and using the simplification procedure similar to the proof of Lemma

2, we get the time-derivative ÛLI . Combining the derivatives of the Lyapunov function

corresponding to the system, identifiers, we get

ÛLI ≤ −(δ̄x − L2
u)‖x‖2 − (αρ −

g2
M

2 −
1
2 )

W̃∆φ(τ)
2

−(λmin(µ1Π̄) − 7
2 )

x̃T
2 − (λmin(µ2κ f ) − 1)

W̃ f
2

−(λmin(µ4κ f ) − 7
4 )

W̃ f
4 − (λmin(µ3κg) − 1)

W̃g

2

−(λmin(µ5κg) − 9
4 )

W̃g

4
+ ηoB +

1
2 B(g2

M∇ε2
M) + α2ε2

M .

Finally, similar arguments at the end of Theorem 2 can be used to demonstrate that the

number of event-triggered sampling instants is countable and hence the closed-loop system

which includes the NN identifier and the NN value function approximator are locally

ultimately bounded for all time.
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SECTION

2. CONCLUSIONS AND FUTUREWORK

In this dissertation, event-sampled stochastic Q-learning and adaptive dynamic pro-

gramming techniques are developed for adaptive near optimal distributed control of linear

and a class of nonlinear interconnected systems. The event sampled approximation is used

to estimate the system dynamics, value function and optimal control input for uncertain

interconnected systems. The event sampled approximation property of the neural network

(NN) is revisited and the restrictive coupling between frequency of events and convergence

of learning scheme is relaxed by introducing a hybrid learning scheme. The aperiodic trans-

mission and controller execution instants are determined by designing novel event sampling

conditions which optimize the frequency of feedback instants and system performance. The

event sampling conditions orchestrated the sampling and transmission instants to achieve

the accuracy in estimation/approximation and control performance with effective resource

utilization.

2.1. CONCLUSIONS

In the first paper, an event driven hybrid Q-learning technique was developed to

design the optimal control policies. The designed event sampled optimal adaptive control

policies were able to regulate the system states with a reduced number of controller execu-

tions. Instead of generating more events to facilitate learning, the hybrid learning scheme

was able to accelerate the learning and improved the estimate of the optimal value function

during the learning phase which in turn improved the system performance.
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On the other hand, for the case of nonlinear interconnected systems, in Paper II, the

event sampled NN based approximation and hybrid weight update scheme approximated the

unknown optimal value functions with a small bounded error. These results are validated

with the numerical examples. The introduction of distributed observers to relax the need

for internal state measurements increases the computation when compared to state feedback

schemes whereas it is found to be more practical. However, the hybrid learning scheme

performed consistently better that the traditional TD learning. Further, it was observed that

the change in the NN weight initialization and learning gains for the weight update schemes

affect the number of controller update.

An event sampled near optimal adaptive regulator was proposed in Paper III for

uncertain nonlinear interconnected systems. The reinforcement learning frame work, to

solve the infinite horizon distributed optimal control problem in a forward in time manner,

is redesigned with event-sampled feedback information; leading to an event-driven hybrid

adaptive dynamic programming. Near optimality was achieved with complete unknown

system dynamics. The novel distributed NN identifier structure proposed to approximate

the system dynamics with intermittent update at the event sampled instants performed

satisfactorily. The aperiodic update scheme at the event sampled instants determined by

the adaptive event sampling condition drove the NN weight estimation errors within a

small bound. A novel event-sampled learning scheme was also developed to overcome the

drawbacks in the hybrid learning. To take advantage of the available inter-event time, an

exploration strategy using NN identifiers was proposed and it minimized the cost further,

off-setting the effects of initial NN weights at the expense of additional computations.

The fourth paper proposed a novel approach for simultaneously optimizing both the

event-triggering sampling instants and control policy using zero-sum game formulation.

The proposed design scheme provides a tractable trade-off between the frequency of events

and the system performance cost by utilizing the min-max optimization of the cost function.

The inter-event time interval increases with the proposed event-triggering condition which
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considerably reduces the communication cost when compared to the traditional event-

triggering schemes. This inter-event time expression can be used not only to find the

successive event-triggering instants but also to develop an optimal self-triggering control

scheme. The model-free hybrid Q-learning scheme extends these results when the linear

systemdynamics are uncertain. Finally, the decentralized event-triggering condition enables

distributed control of interconnected systems confirming the generic nature of the proposed

design.

The fifth paper proposed a novel approach for simultaneously optimizing both

the event-triggering sampling instants and state feedback controller using zero-sum game

formulation for a class of nonlinear system. The inter-event time interval increases with the

proposed event-triggering condition which considerably reduces the communication cost

when compared to the traditional event-triggering schemes. The approximation based NN-

learning scheme generates the approximate optimal control policy and the event-triggering

condition forward-in-time by obviating the curse-of-dimensionality. The NN identifiers

relaxed the requirement of the accurate knowledge of the system dynamics to implement

the proposed scheme.

2.2. FUTUREWORK

As part of the future work, the controllers proposed for the interconnected systems

can be made immune to the cyber-attacks. This needs a redefinition of the performance

index by taking into account the effects of attack inputs which is not considered yet. This

will increase the reliability and resilience of the networked control systems. Extending

the ideas of distributed model-free control to develop controllers for large-scale networks

could be an area of future research. Since many practical systems can be modelled as

complex-networks composed of component subsystems, developing controllers for such

complex systems is a challenging problem.
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Exploration in the online reinforcement learning framework offers several chal-

lenges, especially in designing exploration policy for Markov decision processes with

higher dimensional state, action space. Further, the deep NN architecture for learning and

control of complex large-scale systems is a potential future direction of research. Due to the

approximation accuracy that can be achieved by the deep NNs, they offer a huge scope for

improvement in decision making processes involving complex tasks and in optimal control

of large-scale systems.
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