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ABSTRACT 

With the rapid development of modern control systems, a significant number of 

industrial systems may suffer from component failures. An accurate yet faster fault 

prognosis and resilience can improve system availability and reduce unscheduled 

downtime. Therefore, in this dissertation, model-based prognosis and resilience control 

schemes have been developed for online prediction and accommodation of faults for 

distributed parameter systems (DPS). First, a novel fault detection, estimation and 

prediction framework is introduced utilizing a novel observer for a class of linear DPS 

with bounded disturbance by modeling the DPS as a set of partial differential equations.  

To relax the state measurability in DPS, filters are introduced to redesign the 

detection observer.  Upon detecting a fault, an adaptive term is activated to estimate the 

multiplicative fault and a tuning law is derived to tune the fault parameter magnitude. 

Then based on this estimated fault parameter together with its failure limit, time-to-

failure (TTF) is derived for prognosis. A novel fault accommodation scheme is developed 

to handle actuator and sensor faults with boundary measurements. Next, a fault isolation 

scheme is presented to differentiate actuator, sensor and state faults with a limited 

number of measurements for a class of linear and nonlinear DPS.  

Subsequently, actuator and sensor fault detection and prediction for a class of 

nonlinear DPS are considered with bounded disturbance by using a Luenberger observer. 

Finally, a novel resilient control scheme is proposed for nonlinear DPS once an actuator 

fault is detected by using an additional boundary measurement.  In all the above methods, 

Lyapunov analysis is utilized to show the boundedness of the closed-loop signals during 

fault detection, prediction and resilience under mild assumptions. 
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SECTION 

1. INTRODUCTION 

In the past few decades, industry control systems have become more and more 

complicated, thereby increasing the possibility of faults and failures to occur. An ultimate 

objective of resilient control systems is state awareness which is an extensive sense of 

safety for critical infrastructures [1]. It is critical to design a fault detection and prediction 

scheme in order to improve system reliability. Therefore, fault diagnosis and prognosis, 

which is utilized to detect and predict unexpected faults and system failures, has drawn 

increasing attention [2]. 

In order to detect faults in physical systems, data-driven and model-based 

detection schemes are developed [3]. Data-driven approaches [4] are preferred when the 

mathematical model of the system is not available or cannot be derived. Usually data-

driven methods require significant quantities of data based on both healthy and faulty 

systems. As a result, it is crucial to design a generic data-driven fault diagnosis and 

prognosis framework which is applicable to a variety of industrial systems. In addition, 

collecting faulty data is costly and is impossible under certain conditions. 

Compared to data-driven based fault detection, model-based detection utilizes a 

mathematical representation of the overall scheme for detecting faults based on which a 

detection observer is designed to estimate system physical states and output. Figure 1.1 

shows an overview of the model-based fault detection scheme. Detection residual is 

generated by comparing the measured output with estimated output given by the observer. 

Under healthy operating conditions, because the estimated system output provided by 

observer is close enough to the measured one and thus the residual maintains operation 
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below a predefined threshold. In the presence of a fault, the system dynamics will change 

due to the fault even though the observer dynamics remain unchanged.  
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Figure 1.1. Model based fault detection and accommodaiton scheme. 

Therefore, the measured output will deviate from the estimated output due to the 

presence of the fault, which causes the detection residual to increase. A fault is declared 

active once the residual exceeds the predefined threshold. The selection of the detection 

threshold depends upon the initial condition and upper bound of uncertainties and 

disturbances. After detection of a fault, if the fault type is unknown fault isolation 

techniques will be applied to determine the fault type and location. Once both of the fault 

type and location is identified, an online estimator with an appropriate tuning algorithm 

will be applied to estimate the fault dynamics based on which failure prediction can be 

obtained by estimating the remaining useful life of the system. The estimated fault 
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dynamics can also be utilized to accommodate faults by reconfiguring the actuator input; 

thus, fault resilience is accomplished. In addition, a resilient pit can be generated based 

on the change of the output tracking error to evaluate the performance of the proposed 

resilient control scheme and the time to resilience (TTR) is able to be estimated to predict 

the time a system needs to go back to a normal level.   

In recent years, significant efforts have been made as noted in the literature on 

model-based diagnosis and accommodation for lumped parameter systems (LPS) 

modeled by ordinary differential equations (ODEs) [5, 6]. However, many industrial 

systems including fluid flow, chemical reaction, and thermal convection systems are 

classified as distributed parameter systems (DPS) or infinite dimensional systems since 

the system states are a function of both time and space. The mathematical models of such 

systems cannot be represented by ODEs any more instead partial differential equations 

(PDEs) are utilized to describe the system dynamics. 

Compared to LPS, fault diagnosis for DPS are more involved because of their 

complex distributed nature. A fault occurring at one point can cause the change of the 

system state over the entire space while the possible locations of faults are many. 

However, it is impossible to measure the system state at each point of the system. 

Therefore, fault diagnosis and prognosis have to be achieved by using a limited number 

of measurements. 

Fault diagnosis plays a significant role in improving the reliability of modern 

industrial systems and reliable resilient control systems demand timely fault detection, 

real time fault analysis and advanced notice of system failures. Next, an overview of 

current fault diagnosis and prognosis methodologies for LPS and DPS will be discussed.  
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Subsequently, the organization of this dissertation as well as its contributions will be 

presented.   

1.1. OVERVIEW OF FAULT DIAGNOSIS METHODOLOGIES 

Recently, different methods of fault detection and prediction have been proposed 

in the literature for LPS. Authors in [7] develop a prognostic scheme to identify faults on 

a mechanical component, subsystem or system by using the mathematical representation 

of the practical system. A fault detection and isolation framework is introduced in [8] 

based on the system representation while a model-based fault detection and diagnosis 

scheme is introduced by generating symptoms in [9]. A fault distribution function is 

addressed in [10] by using an adaptive observer, which is complementary to the one 

developed for fault detection and isolation in dynamics systems [11].  

In order to estimate fault detection residual, an adaptive threshold is given in [12]. 

A stochastic process model is presented in [13] to estimate the fault and the remaining 

useful life (RUL) of the system while a dynamic wavelet neural network (NN) is used to 

estimate the RUL in [14]. 

Another imperative issue in the aspect of fault diagnosis and prognosis is 

associated with the DPS. Industrial systems such as thermal convection, fluid flow, 

chemical reaction systems, etc. have complicated temporal as well as spatial dynamics. 

Fault detection and prediction for DPS are more involved when compared to LPS due to 

the distributed nature of the system state. The ODE representation does not apply when 

estimating the behavior of DPS.  

Over the past few decades, researchers have dedicated to studying control and 

observer designs for both linear and nonlinear DPSs. In order to deal with the distributed 
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system states, the PDEs representing DPS can be considered as a set of infinite bank of 

ODEs. Subsequently, the system model can be approximated with finite dimensional of 

dominating ODE by applying Galerkin’ method [15]. On one hand, nonlinear finite 

dimensional output feedback controllers are presented in [16] for quasi-linear parabolic 

PDE by combing Galerkin’s method with a design of approximated inertial manifolds to 

derive the applicable ODEs. A general scheme was proposed to control the parabolic 

PDE with input constraints [17], and an adaptive optimal controller was designed by 

using neuron-dynamic programming for highly dissipative nonlinear PDEs [18].   

On the other hand, fault detection frameworks are introduced for mechanical and 

aerospace engineering systems by using PDE models [19]. In order to address the 

incipient actuator faults, an adaptive fault detection and accommodation scheme was 

developed in [20], and a geometric approach was introduced to detect and isolate 

dissipative parabolic PDE [21]. In spite of attractive results, all of these methods [15–21] 

address the problem by converting the original PDE representation to an approximated 

finite dimensional ODE resulting in inaccurate fault detection due to model reduction. 

In addition, in the presence of a fault, the dynamics of the DPS will be changed 

and the reduced ODE may not be applicable. In order to avoid this problem, a few 

researchers [22, 23] pursued the controller design directly based on the original PDE. A 

state feedback boundary controller was designed for a class of linear parabolic PDE 

without discretizing the spatial variable [22] and adaptive controllers were presented in 

[23] to stabilize the parabolic PDE with unknown destabilizing parameters. For the sake 

of obtaining output feedback boundary control, exponentially convergent observers 

without disturbance and uncertainty were proposed by [24] for parabolic PDE with 
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boundary measurements. The work in [25] extends the boundary control of the system 

with scalar states to a system with coupled parabolic linear PDE. An extended 

Luenberger observer is proposed for semilinear DPS in the absence of disturbance and 

uncertainty with observer gains determined by linearizing observer error dynamics [26]. 

In summary, fault diagnosis and prognosis frameworks for DPS have been 

investigated by converting the PDE representation into finite dimensional ODE; thus, 

fault detection can be obtained based on those ODE models. Although controller and 

observer designs have been studied recently, fault diagnosis for DPS using the original 

PDE has not been investigated. Therefore, in this dissertation, model based fault 

diagnosis and prognosis schemes are outlined for linear and nonlinear DPS by designing 

the detection observer directly on the basis of their PDE representation. The performance 

of the observer is evaluated with bounded disturbance or uncertainty. In addition, the 

Lyapunov stability analysis for the proposed frameworks is guaranteed in this dissertation. 

1.2. ORGANIZATION OF THE DISSERTATION 

This dissertation presents model-based fault diagnosis and prognosis schemes for 

a class of linear and nonlinear distributed parameter systems represented by parabolic 

PDE in the form of five papers as shown in Figure 1.2. All five papers deal with fault 

prognosis and resilience control of DPS. The first two papers address fault detection and 

accommodation of linear DPS. The third paper investigates fault isolation and location 

determination while the fourth and fifth papers address nonlinear DPS. 

Paper I develops novel fault detection and estimation framework by designing a 

detection observer based on original system PDE representation. At first, a Luenberger-

type observer is introduced by using the system model to estimate the system state as 
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well as output. Detection residual is generated by comparing the measured output with 

estimated output; furthermore, its asymptotical stability can be guaranteed without 

disturbance and uncertainty under healthy conditions. A fault can be detected when the 

residual exceeds a predefined threshold, which is decided by the initial conditions.  Once 

detecting a fault, an adaptive term is incorporated by the observer to estimate fault 

dynamics with a novel update law. However, the fault estimation demands systems states 

over the entire space which is a major disadvantage. Therefore, the detection observer is 

redesigned considering bounded uncertainty and disturbance by using an input filter 

along with two output filters based on the linear property of the PDE, and the adaptive 

term can be tuned by an update law with measured output alone. In addition, given the 

estimated fault parameter and its failure limit, an explicit formula is given to estimate the 

time to failure (TTF) or RUL of the system on the real time. 

Subsequently, a fault accommodation scheme is proposed for multi-input and 

multi-output (MIMO) coupled linear DPS with actuator and sensor faults in Paper II. A 

filter-based observer is utilized to generate a residual for fault detection and the 

corresponding fault dynamics is approximated by using an adaptive term for an actuator 

or sensor fault. Next, based on the estimated fault dynamics, fault accommodation can be 

achieved for actuator and sensor faults. Moreover, given the limit values of the tracking 

errors and by using the dynamics of the tracking error, the time to accommodation (TTA) 

can be predicted, which can provide useful information for the maintenance schedule.  

Paper III solves a critical problem of fault prognosis, which involves the isolation 

and location determination of faults in DPS. The proposed fault isolation scheme for 

linear DPS can differentiate actuator, sensor, and state faults using actuator and sensor 
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fault isolation estimators. The location determination scheme presented in this paper is 

able to provide useful information of the state fault location which is critical for further 

fault estimation and prediction. In addition, a fault isolation framework for nonlinear DPS 

is introduced to isolate different types of faults with boundary measurements alone. 
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Paper I: Jia Cai, Hasan Ferdowsi and S. Jagannathan, “Model-based 
Fault Detection, Estimation, and Prediction for a class of Linear 
Distributed Parameter Systems,” Automatica, vol. 66, pp. 122-131, 
2016.

Paper IV: Jia Cai and S. Jagannathan,“Fault Detection and Prediction 
for a Class of Nonlinear Distributed Parameter Systems with 
Actuator or Sensor Faults,” to be submitted to International Journal 
of Control.

Paper III: Jia Cai and S. Jagannathan, “Fault Diagnosis in Distributed 
Parameter Systems Modeled by Linear and Nonlinear Parabolic 
Partial Differential Equations,” to be submitted to International 
Journal of Adaptive Control and Signal Processing.

Paper II: Jia Cai, Hasan Ferdowsi and S. Jagannathan, “Model-based 
Fault Accommodation for a Class of Distributed Parameter Systems 
Represented by Linear Coupled PDE,” under review with Journal of 
The Franklin Institute. 

Paper V: Jia Cai and S. Jagannathan, “Model-based Actuator Fault 
Resilient control for a Class of Nonlinear Distributed Parameter 
Systems,” to be submitted to IEEE Transactions on Neural 
Networks.  

Figure 1.2. Dissertation overview. 

By comparison, Paper IV introduces a novel fault detection and prediction scheme 

for MIMO nonlinear DPSs with bounded disturbance. Because the presence of the 

nonlinear term, the filter based observer presented in the previous work is not applicable 
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to this type of system. Therefore, an extended Luenberger-type observer is utilized 

instead for both of output control design and fault detection. The stability of the observer 

error can be guaranteed with observer gains selecting by linearizing the observer error 

dynamics under healthy conditions.  Detectability conditions for both of the actuator and 

sensor faults are discussed in this paper. The actuator/sensor fault dynamics can be 

estimated with a novel update law and the TTF is estimated by comparing the measured 

outputs with their failure limits. Paper V proposes a fault resilience scheme to mitigate 

the unexpected fault and obtain fault resilience through tracking error by reconfiguring 

the actuator input. Moreover, the estimated TTR can be used to predict the time when a 

system can recover from a faulty state. 

In summary, a significant number of industrial systems are classified as DPS 

whereas limited work has been done in this area. The purpose of this dissertation is to 

investigate fault diagnosis and prognosis for linear and nonlinear DPS with fault types. 

The proposed schemes are generic to accommodate different practical systems and fault 

types; moreover, different examples are used to demonstrate the effectiveness of the 

proposed schemes. 

1.3. CONTRIBUTIONS OF THE DISSERTATION 

This dissertation covers model-based fault diagnosis, prognosis and 

accommodation framework for linear and nonlinear DPS with both multiplicative and 

additive faults. Unlike the literature [19–21] where the original DPS is converted to 

infinite dimensional ODEs and the system model can be approximated with finite 

dimensional dominating ODEs, the fault prognostic and accommodation is obtained 
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directly based on the system PDEs representation. All the schemes proposed in this 

dissertation consider bounded disturbances. 

The contributions of Paper I include the design of the fault detection and 

estimation scheme by utilizing a Luenberger-type observer based on the system PDE 

representation with detectability conditions for both actuator and sensor faults. Then in 

order to relax the requirements of all states available, a filter-based observer was 

redesigned with measured output alone in the presence of bounded disturbance and 

uncertainty for fault detection, estimation and prediction. Subsequently, an estimated 

TTF formula was developed to predict the remaining useful life of the system. 

The contributions of Paper II include the development of an innovative model-

based fault accommodation scheme for a class of MIMO DPS with actuator and sensor 

faults represented by coupled parabolic PDEs. The fault resilience is accomplished by 

reconfiguring the control input. In addition, time to accommodation is estimated based by 

using the dynamics of the tracking error.  

As for Paper III, a fault isolation scheme is introduced to differentiate actuator, 

sensor and state faults and determine the location of a state fault for a class of linear 

DPSs and a detectability condition is proposed for state faults. In addition, a fault isolable 

condition for actuator, sensor and state faults are discussed herein. These schemes have 

not investigated in the literature [19-21]. Moreover, a fault isolation framework for a 

class of nonlinear DPSs is also included in this paper. 

The contributions of Paper IV involve the design of an online detection observer 

with detectability conditions for a nonlinear MIMO DPS with bounded uncertainty and 

disturbance. An innovative update law is derived to tune an adaptive term in order to 
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estimate fault dynamics. In the end, based on the failure limit of the output, an estimated 

TTF is given to predict the RUL of the system.  

Finally, the fault accommodation and resilient control discussed in Paper V 

further explains its role in nonlinear DPS by providing an estimated time to resilience 

(TTR) to predict the recovery time of the system in the presence of an actuator fault. 



 12 

PAPER 

I. MODEL-BASED FAULT DETECTION, ESTIMATION, AND PREDICTION 

FOR A CLASS OF LINEAR DISTRIBUTED PARAMETER SYSTEMS 

Jia Cai, Hasan Ferdowsi and S. Jagannathan 

This paper addresses a new model-based fault detection, estimation, and 

prediction scheme for linear distributed parameter systems (DPSs) described by a class of 

partial differential equations (PDEs). An observer is proposed by using the PDE 

representation and the detection residual is generated by taking the difference between 

the observer and the physical system outputs.  A fault is detected by comparing the 

residual to a predefined threshold. Subsequently, the fault function is estimated, and its 

parameters are tuned via a novel update law. Though state measurements are utilized 

initially in the parameter update law for the fault function estimation, the output and input 

filters in the modified observer subsequently relax this requirement. The actuator and 

sensor fault functions are estimated and the time to failure (TTF) is calculated with output 

measurements alone. Finally, the performance of detection, estimation and a prediction 

scheme is evaluated on a heat transfer reactor with sensor and actuator faults. 
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1. INTRODUCTION 

The design of fault detection and prediction scheme is a critical part of improving 

system reliability [1]. Therefore several model-based detection and prognostics schemes 

have been introduced in the literature for industrial systems, which are traditionally 

described by ordinary differential equations (ODEs). By utilizing a mathematical model 

of the physical systems [2], a robust prognostic scheme was developed by authors in [3]. 

Authors of [4] proposed a detection and isolation scheme by using system representation. 

The work [5] introduced a model-based fault detection and diagnosis scheme by 

generating symptoms. Authors of [6] utilized an adaptive observer to handle a fault 

distribution function. Authors in [7] developed complementary approaches in fault 

detection and isolation in dynamic systems. 

An adaptive threshold was generated in the research of [8] to evaluate the fault 

detection residual. Works of [9] and [10] developed a stochastic process model to 

approximate the fault and estimate the remaining useful life (RUL) or time to failure 

(TTF) of the system whereas the RUL was estimated in [11] by applying the dynamic 

wavelet neural network (NN).  

A variety of industrial systems including fluid flows, thermal convection and 

chemical reaction processes are classified as distributed parameter systems (DPS) since 

the system state changes with both time and space. Therefore, the ODE models given by 

lumped parameter representation for DPS are unsuitable to mimic their behavior [12]. 

Instead, the state of a DPS is described by a partial differential equation (PDE). 

Several fault detection and diagnosis schemes have been introduced in the 

literature for DPS. The author of [13] approximated DPS with finite dimensional ODEs; 
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then, the reduced order ODE model was utilized in the development of fault detection 

and diagnosis schemes. A detection observer based on the approximate finite dimensional 

slow subsystem was introduced to detect and isolate faults in [14]. Authors of [15] 

introduced a finite-dimensional geometric method for fault detection and isolation (FDI) 

of parabolic PDEs by constructing a set of residuals such that each one is only affected by 

a fault. Despite these interesting results, these detection and diagnosis schemes proposed 

in [14] and [15] used a finite dimensional ODE representation of DPS; consequently, they 

may suffer from false and missed alarms due to model reduction. In addition, the fault 

can change the dynamics of the overall system, thereby causing the reduced order model 

and resulting fault detection and diagnostics scheme to be inaccurate. 

By contrast, this paper introduces a novel fault detection and estimation scheme 

by using a novel observer, which is designed directly based on PDE representation of 

DPS.  Initially, a Luenberger-type observer was designed using healthy DPS dynamics to 

estimate system state and output. The estimated and measured system outputs are 

compared to generate the detection residual, which is shown to converge under healthy 

operating conditions in the absence of disturbance and uncertainty. An actuator/sensor 

fault on the DPS can act as an external input to the detection residual dynamics causing 

the residual to increase. The fault is detected when this residual exceeds a predefined 

threshold.  

Upon detecting a fault, an adaptive term is added to the observer to learn the fault 

function. Although the fault detection observer only requires the system output, the 

parameter update law requires the system state to be available at all positions, which is a 

major drawback.  
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Therefore, by using the linear property of the PDE representation, an input filter 

along with two output filters are utilized to develop a new observer, which allows the 

determination of a parameter update law that tunes unknown fault parameter estimation 

with measured system output alone. Upon detecting a fault by using the filter-based 

observer, the detection and estimation scheme is revisited.  

With state and output availability, the detection residual and parameter estimation 

errors are shown to be bounded in the presence of any bounded uncertainties or 

disturbances while asymptotic convergence is demonstrated in the absence of these terms.  

In addition, with output alone the detection residual and parameter estimation errors are 

shown to be bounded under faults with bounded uncertainties or disturbances.  Moreover, 

by comparing the estimated fault parameters with their failure limits, an explicit formula 

for online estimation of TTF or RUL is proposed. 

The contributions of this paper include: a) the development of a novel model-

based detection and estimation scheme by using the PDE-based detection observer with 

detectability conditions, b) the design of the detection, estimation and prediction scheme 

by using a filter-based observer, which not only requires the system output alone but also 

allows the estimation of actuator and sensor faults, and c) TTF prediction with outputs 

alone. 

This paper is organized as follows. A class of linear DPS described by a parabolic 

PDE is introduced in Section 2. Then the detection and estimation scheme is developed in 

Section 3, when the state is measurable and in Section 4 with output alone. Finally, 

Section 5 applies the proposed scheme to a heat transfer reactor in simulations.   
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2. BACKGROUND AND SYSTEM DESCRIPTION 

The notations used in this paper are standard. A scalar function 2( ) (0,1)v x L  is a 

square integrable on Hilbert space 2 (0,1)L  with the norm defined as
1

2

2 0
( )v v x dx  .  

Throughout the paper the norm of a function ( , )v x t  is denoted by ( )v t  and the norm of 

( , ) /v x t x   is expressed as ( )xv t .  

Consider a class of linear DPS expressed by the following parabolic PDE with 

Dirichlet actuation given by  

( , ) ( , ) ( , ) ( ( , ), , )t xxv x t v x t v x t d v x t x t          (1) 

where x  is the space variable and  0t   is the time variable  with boundary 

conditions defined by 

  (0, ),   (1, ) ( )0 , ( ) (0, ),xv qv t v t U t y tt t v        (2) 

where :[0,1]v R R   represents the distributed state of the system; 

( ( , ), , )d v x t x t stands for the system uncertainty or disturbance; ( )U t  denotes control 

input, 0   is a positive constant;   and q  are constant scalars; tv v t   , xv v x    

and 2 2

xxv v x    are partial derivatives of  and ( )y t  is the system output.  

Assumption 1: The system uncertainty or disturbance is bounded above such 

that ( , , )d v x t d  for all ( , )v x  and 0t  , where 0d   is a known constant. A more 

specific representation can be found in [15] and [16]. 

In this paper, an actuator and sensor fault type at the boundary condition are 

considered and will be described next.  
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2.1. ACTUATOR FAULT 

Under a multiplicative actuator fault at the boundary condition of the DPS, the 

system in (1) and (2) can be described by  

( , ) ( , ) ( , ) ( ( , ), , )t xxv x t v x t v x t d v x t x t    ,   (3) 

subject to the boundary conditions given by 

  (0,0, (1, ) ( ), ( )), (0, )x t tv qv t U t y t v tv    ,    (4) 

where   is the multiplicative fault parameter bounded by max  . Alternatively, the 

boundary condition with the actuator fault can be expressed as (1, ) ( ) ( ( ), )t U t h U t tv   , 

where ( ( ), ) ( ) ( 1) ( )h U t t U t U t   and 1   .    

Moreover, the fault function can be written as 

 ( ( ), ) ( ) ( )ih U t t t t U t    ,     (5) 

where it is the time of fault occurrence and ( )it t   is the time profile of the fault defined 

by
0 , 0

( )
1 , 0

if

e if







  

 
 , where κ represents the fault growth rate, which should be a 

constant.  This time profile allows both incipient and abrupt faults with different growth 

rates κ to be represented. However, for fault prediction, incipient faults are considered.  

2.2. SENSOR FAULT 

In the presence of a multiplicative sensor fault, the system measured output is 

modified as 

 ( ) 0sy t   ,     (6) 

where s is a positive scalar representing a multiplicative sensor fault bounded 

by
min maxss s    . Under healthy conditions, the value of s  is taken as unity whereas 
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it changes in the presence of a sensor fault. The following standard assumptions are 

required in order to proceed. 

Assumption 2: There exists a stabilizing controller that guarantees the 

boundedness of the system state under healthy operating conditions. 

Remark 1: This assumption separates a fault with instability of the system. For 

fault detection, the closed-loop DPS should be stable. Authors in [17] proposed a state 

and output feedback controller by using the backstepping approach to stabilize the 

parabolic PDE by using a control input which is a function of output ( )y t .  

Assumption 3: The fault type is known. Moreover, a single fault occurs on the 

system at any given time. 

Remark 2:  This assumption is used for fault estimation.  

Before presenting the case where only the output is available, initially the system 

state and output are considered available over the entire range of space so that an actuator 

fault can be estimated.  Next when the system output alone is available, the fault 

detection observer is redesigned using input and output filters. Fault estimation and 

prognosis are performed for both actuator and sensor faults. The next section investigates 

the former scenario and the latter is discussed in Section 4. 
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3. DETECTION AND ESTIMATION WITH STATE MEASUREMENTS 

In this section, the system is considered initially without any disturbance and 

uncertainty, i.e., ( , , ) 0d v x t  . An observer acting as a model is used to estimate the 

system state and output by utilizing DPS dynamics in healthy conditions. Figure 3.1 

shows that under healthy conditions with no disturbances and uncertainties, and through 

the selection of observer gains, the estimated output will converge to measured value and 

thus the detection residual, which is defined as the difference between the estimated and 

the measured outputs, will converge to zero. During an actuator fault, the control input 

applied to the original system will be different than that of the observer. Thus, the 

measured output will deviate from the estimated output and lead to an increase in the 

residual [18].  
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Figure 3.1. Architecture of fault detection scheme. 
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A sensor fault, on the other hand, will cause a change in the measured output, 

which will change the estimated output through feedback control input. Thus, a sensor 

fault can be detected as it leads to changes in the measured and estimated outputs 

differently causing the detection residual to increase over a threshold. 

Remark 3: In this paper, the measurements are considered noise free. In addition, 

in the presence of bounded uncertainties and disturbances, the detection residual is shown 

to be bounded instead of converging to zero. 

3.1. FAULT DETECTION OBSERVER 

An observer generates the state of the DPS and is tuned by the output. By using 

the approach proposed by [19], define the fault detection observer as 

1
ˆ( , ) ( , ) ( , ) ( )ˆ ˆ ˆ ( )t xxx t x t x t p x y yv v v     ,    (7) 

   10
ˆ ˆ(0, ) (ˆ ),

ˆ ˆ ˆ( ) (0, ), (

0, ( ), 1,

) ( ) ( ),

xv qv t v U t

y t v t e t y

t p y y t

t y t

   

  


    (8) 

where ˆ( , )v x t is the estimated system state, ŷ represents estimated output, 1( )p x  and 10p  

denote observer gains, and ( )e t is the detection residual.  

 Note that the fault detection observer is constructed using measured output. 

However, it will be observed later that when an adaptive term is incorporated into this 

observer to estimate fault function upon detection, the parameter tuning law will require 

the system state to be available.  

To move on, define a state residual or state estimation error as ˆv v v   so as to 

analyze the performance of the observer. The state residual can also be used for fault 

detection in this section due to the availability of the system state; however, this is not 

necessary since the linear PDE in (3) transfers the effect of actuator fault to the output; 
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thus, fault can be detected by using the output residual e . In the absence of disturbances 

and uncertainties, ( , , ) 0d v x t  , the state residual dynamics without a fault is represented 

as 

      1, , ( ) (, 0, )t xxv v v p x v tx t x t x t    ,   (9) 

   10 (0,0, ) 0, 1,xv v tt tvp    .    (10) 

Next the following Lemma is needed in order to proceed. 

Lemma 1 [20]: Consider the Volterra integral transformation utilized by the 

authors of [20] 

       
0

, ,, ,
x

v L xx t x t dt      ,    (11) 

where 

2 1
0

( )
[ (2 )( )]

( )(1 )
( , )

2 !( 1)!

n

n
n

b
x x

b x
L x

n n


 

 








  

 
 


 ,  (12) 

is the solution to the hyperbolic PDE given by 

     , , ( ) ,xxL x L x b L x        ,   (13) 

   1, 0,  , ( )( 1) / (2 )L L x x b x      .  (14) 

Select observer gains 1( )p x and 10p as 

  11 0( ) ,0 , (0,0)p x L x Lp   .   (15) 

For the sake of eliminating the unstable term ( , )v x t in (9), the transformation (11) 

with observer gains (15) converts the state residual dynamics in (9) and (10) to  

      ,, , ,t xxx t x bt x t   
    (16) 

   0,0, , ,1 0x t t  
     (17) 
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where 0b   is an arbitrary constant that defines the convergence rate. Next, the 

following lemma will show that the transformation (11) is invertible. 

Lemma 2: The inverse transformation of (11) is given by 

0
( , ) ( , ) ( , ) ( , )

x

x t v x t M x v t d      ,  (18) 

where  

2 1
0

( )
( 1) [ (2 )( )]

( )(1 )
( , )

2 !( 1)!

n n

n
n

b
x x

b x
M x

n n


 

 








   

 
 


 ,   (19) 

is the solution obtained through successive approximation [20] to the following 

hyperbolic PDE given by 

( , ) ( , ) ( ) ( , ) /xxM x M x b M x       ,   (20) 

( , ) ( )( 1) / 2 , (1, ) 0M x x b x M      .   (21)  

Proof: Follow steps in [20]. 

It will be shown that with the new observer presented herein, the detection 

residual converges to zero asymptotically under healthy conditions without any bounded 

disturbances or uncertainties and will remain ultimately bounded (UB) with them. A fault 

is detected by comparing the detection residual ( )e t with a predefined threshold  . The 

threshold is selected by using both the initial conditions and the bound on any system 

uncertainty or disturbances. The following theorem demonstrates the stability of 

detection residual under healthy conditions and provides fault detectability conditions. 

Theorem 1 (Fault detection observer performance): Let the observer given in (7) 

and (8) be used to monitor the DPS defined by (3), (4) and (6).  Then the state estimation 

error v  and the output detection residual ( )e t  will converge to zero asymptotically under 
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healthy operating conditions.  In addition, a fault is declared active when the output 

detection residual ( )e t crosses the detection threshold  . A fault initiated at time it is 

detectable if there exists a time iT t  and a positive constant H  , such that  

I.   ,Th U T H  and   ,h U t t H  for t T  in the case of an actuator fault, or 

II.  1 (T)s U H   and  1 ( )s U t H   for t T  in the case of a sensor fault. 

Proof: It is already known that the transformation (11) can map the state residual 

dynamics into the target system of (16) and (17) if 1( )p x  and 10p  are defined by (15).  

The stability of the residual dynamics can be concluded from the stability of the target 

system given by (16) and (17) due to the transformation made possible by (11) [21]. To 

discuss the stability of the PDE described in (16) with boundary conditions given by (17), 

one must select a positive definite Lyapunov function candidate, which is half of the 

squared Sobolev norm of the spatial profile defined in a Hilbert space 1(0,1)H as utilized 

in  [20] 

1 1
2

0

2

0

2 2 ( ,( ) ( , )
( )

2 2

) ( )

2 2

x xx t dx x t dx
V

t
t

t  
 

 
 .   (22) 

The derivative of (22) is given by 

2
1 1

0 0

( , ) ( , ) ( , )
( ) ( , )

x t x t x t
V t x t dx dx

t x t x

  


  
 

      .   (23) 

By using (16) and (17) in the equation above and applying both integration by 

parts and Poincare inequality [22]), ( )V t becomes 

2 2
1 1

2 2

0 0

( )
( ) ( , ) ( , ) ,

4 2
x

V t
V t x t dx x t dx
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which is exponentially converging. It further yields that 

2

2 2 2 2
2( ) ( ) ( (0) (0) )

t

x xt t e


   


    .    

Therefore, the system defined by (16) and (17) is exponentially stable in 1(0,1)H . 

By using Agmon’s inequality [19] we get 

2

2

[0,1]

2 2 2 2
2

max ( , ) 2 ( ) ( )

( ) ( ) ( (0) (0) )

x
x

t

x x

x t t t

t t e


  

   







   

 , 

which implies that ( , )x t converges to zero asymptotically for all [0,1]x . By using the 

relationship between the detection residual ( , )v x t and ( , )x t from (11), we can conclude 

that as ( , ) 0x t   asymptotically, state residual ( , ) 0v x t  during healthy operating 

conditions. 

To determine detectability conditions, an actuator fault is considered first. When 

an actuator fault occurs at it  then the state estimation error dynamics described by (9) is 

subject to following boundary conditions given by 

   10 ,   0, 0, (1, ) ( ( ), )xv v vt p t t h U t t   .   (24) 

Applying the transformation (11) on (9) and (24) leads to (16) with boundary conditions 

given by 

    0,0, 1, ( ( ), )x t t h U t t   ,    (25) 

for it t . Because        
1

0
1,1, 1, ,tv L dt t      and (1, ) 0L   for all 0 1  , we 

can get    1, 1,v t t . Notice that 0b   before fault detection and 0b   after fault 

detection. Now a bounded state variable ( , )x t is introduced which is defined by (16) 
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with 0b   ( , ) ( , )t xxx t x t   subject to (0, ) 0x t   and (1, )t H   and ( , ) ( , )x T x T  . 

If   ,h U t t H  for t T  then ( , ) ( , )x t x t   for 0 1x   and t T . 

Because    , ,x t x t H    satisfies the following exponentially stable PDE given 

by ( , ) ( , ), (0, ) 0,t xx xx t x t t     (1, ) 0t  , the new state variable (x, t)  converges 

to H . Hence, for any 0  , there exists a time dt T , such that  0, dt H    . 

Therefore, for any 0   , there exists a time dt T such 

that  ( ) (0, ) 0,d d de t t t H       . Because H   and if is selected as H   , 

then ( )de t   for some dt T , so that the detection of an actuator fault is guaranteed 

when the detectability condition in Theorem 1 is satisfied. 

In the case of a sensor fault, the detection residual can be written 

as   ˆ( ) ( ) ( ) 0 0,ˆ , ( )se t y t y t tv v t    . If we define a new distributed 

variable     ˆ, , ( , )sx t x t tv v x   , then the detection residual can be expressed 

as   (0, )e t t  . By using the definition of   and the observer dynamics in (7) and (8), it 

can be shown that  satisfies the PDE given by 

       1, , , ( ) 0,t xxx t x t xx pt t         , 

     10 ,   0, 0, (1, ) 1 ( )x st p t t U t       , 

for 0 1x   and it t . If ν  in transformation (11) is replaced by Δ  , applying this 

transformation to the above PDE will lead to 

     , , ,t xxx t x t b x t    , 

     0, 1, ( )0, 1sx t t U t    , 
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which is exactly the same as (16) and (25) except that the term   ,h U t t  is replaced 

by  1 ( )s U t   . Thus, by using the same steps taken in the case of an actuator fault, it 

can be shown that if  1 ( )s U t H    for  t T  , then for any 0  , there exists a 

time dt T  such that ( ) (0, )d de t t H      . Selecting H    , results in ( )de t   

which declares the presence of a fault. 

Remark 4: In the presence of bounded uncertainties or disturbances, the dynamics 

of the observer error becomes       1( ) (0, ), , , ( , , )t xxx t x t x t d v xv v v p x v tt      with 

boundary condition (10). By applying inverse transformation (18) to these dynamics, you 

get  ,t x t       
0

, , ( , , ) ( , , ) ( , )xx

x

x t x t d v x t d v xb t M d       and (17). Now select 

(22), and it can be shown that with 0b  ,
2

2

2 4
( ) Mt d







  

and
2

2

2 4
( )x Mt d







 with (1 )Md m d     and

0 , 1
max ( , )

x
m M x




 
   . 

Remark 5: By using Agmon’s inequality and the results of Remark 4, the 

detection residual can be expressed as
2

2

2 2(4 )
( ) (0, ) (1 )Me t t d m d







   . To 

detect the fault, a predefined threshold must be modified as
0 mk d    where 0  is the 

threshold without uncertainties and disturbances, and
2

2 2( 2 )
(1 )

( )
m

b
k m

b b



   


 


. Note 

the newly defined threshold is greater than the one without uncertainties and 

disturbances. 
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3.2. FAULT ESTIMATION 

Upon detection, the fault parameter has to be estimated. Although, both actuator 

and sensor faults are detectable by the proposed detection observer, the current method 

does not allow estimation of sensor fault function, since the dynamics of observer and 

residual change due to a sensor fault, makes the transformation (11) inadmissible. 

Therefore, in this section, the fault estimation is performed for actuator faults only. 

An adaptive estimator, which is only activated upon detection, is added to the boundary 

condition of the observer (7) and (8) as (7) with boundary conditions 

   10
ˆ (0, )0,xv qv t et p t    ,   (26) 

ˆ ˆ ˆ ˆ(1, ) ( ) ( ( ); ( )), ( ) (0,ˆ )t U t h U t t y tv t v     ,   (27) 

where ĥ  is the estimated fault dynamics given by the adaptive estimator  

ˆ ˆ ˆ( ( ), ( )) ( ) ( )h U t t t U t  ,     (28) 

with ˆ ( )t  as the estimated fault parameter where ˆ (0) 0  . 

By taking the difference between the observer dynamics in (7), (26), and (27) and 

the actual system dynamics in (3) and (4) and applying Assumption 2, the state residual 

dynamics upon detecting an actuator fault can be expressed as (9) subject to 

   10 ( ),0, 1, ( ) ( )x t p tv e t v t U t   ,    (29) 

where ˆ( ) ( )t t   is the fault parameter estimation error. Next the performance of the 

observer is discussed in the presence of an actuator fault. 

Theorem 2 (Performance of an actuator fault estimation):  Let the boundary 

condition of the observer in (8) be modified using (26) and (27) in order to estimate the 
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state and output of the system defined in (3) and (4).  In the presence of an actuator fault, 

consider the parameter tuning law 

1

2

0

0

ˆ ( ) ( )( (1, ) (1, ) ( ) )

ˆ ( ) ( , ) ( , ) ( , )

x x

x

t U t v t M v d

t v x t M x v t d

   

  

  






,   (30)  

for fault estimation where 0   is the adaptation rate, 2

max0 2 /b     is the 

stabilizing term, and ( , )M x  is given by (19), then the state residual converges to zero 

and the parameter estimation error is bounded. 

Proof: First apply transformation (11) on the residual dynamics (9) and (29) to get 

PDE (16) with boundary conditions given by 

   00, 1, ( ), ( )x t t t U t    .     (31) 

Now select the Lyapunov function candidate 

1
2 2

0
( ) ( , ) / 2 ( ) / (2 )V t x t dx t    ,   (32) 

whose first derivative is given by
1

0
( ) ( , ) ( , ) ( ) ( ) /tV t x t x t dx t t     . By substituting 

(16) in the first derivative, we will arrive at 

   
1 1

2

0 0
( ) ( , ) , ( ) ( ), /xxV t x t dx b dx t tx t x t          

Applying integration by parts and using boundary conditions given by (31) will lead to  

 
1 1

2 2

0 0
( ) (1, ) ( ) ( , ) ( ) (( ) , /)x xV t t t U x t dxt xb dx tt t           .  (33) 

To represent this update law in terms of a transformed system state, instead of the actual 

system state, the inverse transformation (18) and its first derivative with respect to x  

given by
1

0
(1, ) (1, ) (1, ) ( , )x x xt v t M v t d      will be utilized in (30) to get 
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2

( ) ( ) (1, ) ( ( )ˆ )ˆ
xt U t t t t     .   (34) 

Equation (34) eliminates the positive term ( ).(1, ) ( )x tt t U   By applying the proposed 

parameter update law in the derivative of the Lyapunov function candidate, we get 

1 2 22

0

2 2 2 2

max

2 22 2

max

( ) ( ) ( )

( ) ( )

ˆ( ) ( , ) ( ) /

[ ] / 2

(2 ) / (2 ) / (2 )

( )

( ) ( ) ( )

xV t x t dx t t t

t

b

t

t t

b t

t

t

b

   

 

 

 

   

   

    

 







 



. 

Thus, when 2

max2 /b    , 0V  and ( )t  and   are bounded. Now, 

define  ( ) ( ) ( ( ) ( )) 0, ,t t V t tS      , when 0V  . Since the largest invariant set 

contained in S, is same as S, the asymptotic convergence of ( )t  to zero and 

boundedness of   can be shown by using LaSalle’s theorem [23].  

Remark 6: In the presence of ( , , )d v x t , it can be shown that with 

(30)
2

max/ [ ( )](1 )( ) b dt b m      . Therefore, ( , )x t  is bounded for [0,1]x . 

From (31), notice that  1, ( ) ( )t t U t  , so that ( )t  is also bounded. 
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4. ESTIMATION AND PREDICTION WITH OUTPUTS 

In this case, only the system output is considered measurable without the system 

state being available.  The detection observer had to be redesigned and its tuning law had 

to be carefully selected.  

4.1. FILTER-BASED OBSERVER 

In the case of the redesign of the filter-base observer, the boundary value (0, )v t  is 

available. The following steps have to be taken: (a) Convert the system dynamics to an 

observable form. (b) Design a filter-based observer based on known information, namely 

the control input and the measured output. (c) Prove the stability of the observer under 

healthy conditions. (d) Incorporate adaptive terms in the observer to estimate unknown 

fault parameters, upon detection of a fault. 

In the first step, the system plant (3, (4) and (6) is converted to an observable form 

by utilizing the transformation [17] 

       
0

, , ,,
x

z v l xx t tv dx t      ,   (35) 

where ( , )z x t is the new state variable of the system in the observable form and  ,l x    is 

the solution of the hyperbolic PDE ( , ) /xxl l l x     , (1, ) 0l    

and ( , ) (1 ) / 2l x x x    .  Therefore, this transformation can convert the system (3), (4) 

and (6) in the presence of an actuator and a sensor, both of which fault respectively into  

 
0

( , ) ( , ) [ ( ,0) ( ,0)] (0, )

( ( ), , ) ( ( ), , ) ,

t

x

xxz x t z x t l x ql x z t

d v x x t dt v l xd











 

  

  
 ,   (36) 

(0, ) ( / 2 ) (0, ), (1, ) ( )xz t q z t z t U t       ,   (37) 



 31 

and 

( ) (0, )sy t z t  .    (38) 

Note that (0, ) (0, )v t z t  . Under healthy conditions where 1s   , consider linear DPS 

in (36) and (37) with  U t    ( ,0 ,0 ) (0, )l x ql x v t  and ( / 2 ) (0, )q t     as 

external inputs [20].  

By using the superposition principle, its solution can be expressed by summing 

the response of the PDE due to each external input. Therefore, ( , )z x t  can be expressed as 

a combination of the solutions defined by [20] 

( , ) ( , )t xxx t x t    , (0, ) 0, (1, ) ( )x t t U t    , 

where ( , )x t is referred to as an input filter since it is derived from the input of the actual 

system ( )U t [20].  Next consider 

( , ) ( , )t xxA x t A x t  ,    (0, ) ( ), (1, ) 0xA t y t A t  , 

where ( , )A x t  is an output filter since it is derived from output of the actual system ( )y t .  

In addition, consider 

( , , ) ( , , ) ( ) ( )

(0, , ) 0, (1, , ) 0

t xx

x

B x t B x t x y t

B t B t

    

 

  

 
 , 

where ( , , )B x t is another output filter. 

Define the observer in terms of the new state variable as 

1

0

ˆ( , ) ( , ) [ / (2 ) ] ( , )

ˆ ˆ[ ( ,0) ( ,0)] ( , , ) , ( ) (0, )

z x t x t q x t

l s ql s x s t ds y t z t

 



     

    
 ,   (39) 

where ˆ( , )z x t   is an estimate of  ( , )z x t  and ˆ( )y t  is an estimate of ( )y t  under healthy 

operating conditions. 
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It is shown in the next theorem that the observer state estimation error 

ˆ( , ) ( , ) ( , )z x t z x t z x t  is ultimately bounded under healthy conditions with 1s   . To 

perform fault detection, based on the observer error, one must define the detection 

residual     ( )ˆe t y t y t    since the only available measurement is  y t  . A fault is 

detected when the detection residual ( )e t  exceeds the predefined detection threshold   . 

Next, the fault detectability condition is introduced in the following theorem. 

Theorem 3 (Output-based fault detection observer performance): Let the observer 

in (39) be used to monitor the DPS defined by (36)–(38) with bounded disturbances. 

Then the state estimation error z  and detection residual ( )e t  are bounded under healthy 

operating conditions. Further, a fault initiated at time it  is detectable if there exists a 

time iT t   and a positive constant H , such that 

I.  1 ( )U t H    for t T  with
lH k d     in the case of an actuator fault, or 

II.  1 ( )s U t H    for t T  with 
maxl sk dH     in the case of a sensor fault. 

where 2 22 2( 4)(1 ) / ( )lk l     and 
0 , 1
max ( , ).

x
l l x




 
  

Proof: During healthy conditions with 1s   , the state residual satisfies the 

stable PDE given by 

 
0

( , ) ( , ) ( , , ) ( , , ,)t xx

x

z x t z x t d v x t d v t l x d      ,   (40) 

 (0, ) 0, (1, ) 0xz t z t  .    (41)  

Select a positive definite Lyapunov function candidate as 
2 2

( ) / 2( ) ( ) / 2xV t z t z t  , 

whose first derivative of ( )V t  becomes 
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1 1

0 0
( ) ( , ) ( , ) ( , ) ( , )t x txV t x t x t dxz z z zx t x t dx   . 

By using (40) and (41) in the above equation and applying both integration by parts and 

Poincare inequality, we get 

1 1
2

0 0

1 1
2

0 0

1 1

0 0

1 1
2 2

0 0

1

0

0

0

( , , )

( , , ) ( , )

( , , ) ( , , ) (

( ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

( ,

,

)

)

x

xx

xx xx

x

x

xx

l

x

z d v x t z

z d v t l x d z

d v x t z z d v t

V t x t dx x t dx

x t dx x t

l x d

dx

x t dx x t dx

x t dx x t dx

d x t dx d

z z

z







 

 

  

  

 

 

  

 





 

 

 

 


1

0
( , )l xxz x t dx

, 

where (1 )ld l d  . By using Cauchy-Schwarz and Poincare inequalities we get  

2 2 2
1 1

2 2 2

20 0

( 4)
( , ) ( , )

8
( )

8 2
x lx t dx x t dxV t z z d

  





     . 

Thus, ( )V t  will be less than zero if 

2 2( ) 2 4 /lz t d     or
2 2( ) 2 4 /x lz t d    . 

By Agmon’s inequality 
2

[0,1]
max ( , ) 2 ( ) ( )x
x

z x t z t z t


 , we can get 

2 2

[0,1]
max ( , ) 2(1 ) 2( 4) /
x

z x t l d  


   and 
2 2( ) (0, ) 2(1 ) 2( 4) /e t z t l d      . 

Therefore, the detection threshold must be selected as
0 lk d     where 0  depends on 

the initial conditions and 2 22(1 ) 2( 4) /lk l      . 

If an actuator fault happens ( 1, 1s   ) at it , then the state estimation error 

dynamics are given by 

 
0

( , ) ( , ) ( , , ) ( , , ,)t xx

x

z x t z x t d v x t d v t l x d      , 
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(0, ) 0, (1, ) ( 1) ( )xz t z t U t     , 

for
it t . Now, we can define a new PDE as  

 
0

,( , ) ( , ) ( , , ) ( , , )t xx

x

x t x t d v x l xt d v dt         , 

(0, ) 0, (1, ) ,x t t H    

for t T  and let ( , ) ( , )x T z x T  . If  1 ( )U t H       for 

it tT  then ( , ) ( , )z x t x t  for 0 1x   and t T . Note that the dynamics of 

 ,x t H     is the same as (40-41), thus  0, lt H k d   ultimately. Thus, for 

any 0,    there exists a time dt T , such that  0, .d lt H k d      That means, for 

any 0   , there exists a time dt T such that  ( ) (0, ) 0,d d d le t z t t H k d        . 

Because
lH k d    and if    is selected as ( )lH k d    , then ( )de t    for 

some dt T  , and the detection of actuator fault is guaranteed.  

Since the sensor fault will affect the system through the feedback control, the 

detectability condition for the sensor fault is going to be very similar to that of the 

actuator fault. In the presence of a sensor fault ( 1, 1s   ), the detection residual is 

given by    ˆ( ) ( ) 0, (0, )ˆ
se t y t y t z t z t     . 

If we define a new distributed variable Δ  such that ( , ) ( , ) ( , )ˆ
sx t z x t z x t    

for 0 1x   , then by using (36)–(39), Δ  can be described by 

 
0

( , ) ( , ) [ ( , , ) ]( ,, , )t xx

x

sx t x t d v x t d v l x dt         
, 

(0, ) 0, (1, ) ( 1) ( )x st t U t     . 



 35 

and the detection residual can be defined as   (0, )e t t  . Similar to the case of actuator 

fault, a new bounded state variable defined by the following PDE is introduced  

 
0

( , ) ( , ) [ ( , , ) ]( ,, , )t xx

x

sx t x t d v x t d v l x dt          , 

(0, ) 0, (1, )x t t H    , 

for t T and let ( , ) ( , )x T x T   . If  1 ( )s U t H   for t T then 

( , ) ( , )x t x t  for 0 1x   and t T . Similarly, it can be obtained 

that   max0, l skH dt     ultimately, which means that for any 0   , there exists a 

time dt T  such that     max0, 0, ld sdt t H k d       . Therefore, by 

selecting
max )( l sH k d     , it is easy to see that there exists a time dt T  

where  ( ) 0,d de t t     , which guarantees the detection of a fault. 

Remark 7: When ( , , ) 0d v x t   , observer error dynamics ( , )z x t  

satisfies ( , ) ( , ), (0, ) 0, (1, ) 0t xx xz x t z x t z t z t    under healthy conditions. Therefore, the 

observer error will converge to zero asymptotically, and the detection threshold 0   

only depends upon initial conditions. 

4.2. FAULT ESTIMATION 

Upon detecting a fault and knowing the fault type, an adaptive term will be 

incorporated into the observer defined in (39). If an actuator fault is detected, the 

observer in this case is described by 

1

0

ˆˆ( , ) ( ) ( , ) [ / (2 ) ] ( , )

ˆ ˆ[ ( ,0) ( ,0)] ( , , ) , ( ) (0, )

z x t t x t q x t

l s ql s x s t ds y t z t

  



     

    
 ,   (42) 
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where ˆ( )t   is the estimated parameter of an actuator fault and ˆ( )y t represents the 

estimated output.  

For a sensor fault, the observer will be described by 

1

0

ˆˆ( , ) ( , ) [ / (2 ) ] ( , ) / ( )

ˆ{ [ ( ,0) ( ,0)] ( , , ) } / ( )

ˆˆ ˆ( ) ( ) (0, )

s

s

s

z x t x t q x t t

l s ql s x s t ds t

y t t z t



  

 



     

   



  ,   (43) 

where ˆ ( )s t   is the estimated parameter of a sensor fault. To assure ˆ ( ) 0s t   since ˆ ( )s t is 

in the denominator in (43), two cases are considered. 

Upon detecting a sensor fault, the residual 

becomes     ˆˆ( ) ( ) 0, (0, )ˆ
s se t y t y t z t z t       where ˆ

s  is initialized as ˆ (0) 1s   and 

will not be updated before the detection of a sensor fault. The next theorem demonstrates 

the boundedness of closed-loop system with faults. 

Theorem 4 (Output based fault estimation):  Let the observer in (42) be used to 

estimate the state and output of DPS (36)–(37) with  ˆ 0 1   . The tuning law  

ˆ ˆ(0, ) ( )t e t     ,    (44)  

is activated upon detection of an actuator fault. Similarly, allow the observer from (43) to 

estimate the system state and output when  ˆ 0 1s   with the tuning law 

min
ˆ ˆ0 (0, ) ( ) ( ) 0 & ( )

ˆ ( )
ˆ(0, ) ( ) ( )

s s s

s

s

if t e t t t
t

t e t t otherwise

   


 

    
 

 

,   (45) 

upon detection of a sensor fault, where 0smin     is a known lower bound on the sensor 

fault parameter. Then the residual e , parameter estimation errors ˆ      
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and ˆ
s s s       in the presence of an actuator and sensor faults respectively will be 

ultimately bounded (UB). 

Proof: For an actuator fault, an error signal is defined as 

1

0

( , ) ( , ) ( , ) ( / 2 ) ( , )

[ ( ,0) ( ,0)] ( , , )

x t z x t x t q x t

l s ql s x s t ds

   



      

   
’ 

and in the case of a sensor fault, it is defined as 

1

0

( , ) ( , ) ( , ) ( / 2 ) ( , ) /

{ [ ( ,0) ( ,0)] ( , , ) } /

s

y s

x t z x t x t q x t

l s ql s x s t ds

   

 

     

   
 . 

This error signal in both cases clearly satisfies 

 
0

,( , ) ( , ) ( , , ) ( , , )t xx

x

x t x t d v x l xt d v dt        , 

(0, ) 0, (1, ) 0x t t   . 

(a) Actuator fault 

Now, a Lyapunov function candidate is selected as 

2 2/ (2 ) / (2 )V      . 

By taking the derivative of the Lyapunov function with respect to time and applying 

integration by parts, we obtain 

1
2

1

00

0

1

0

( , ) /

( ,

( , ) ( ( , ), , )

( ( , ), , ) ( , ) ( ) ( ) / .) /

x

x

V x t dx d v x t x t

d v t t l x d t t

x t dx

x t dx

 

       













 

 

 

Substituting (44) in the above equation yields 

1

0

2

1

0 0

( ( , ), , ) ( ) ( ) (0, )( , ) /

( , ) /ˆ( ) ( ) / ( ( , ), , ( ) .) ,

x

x

V d v x t x t t e t t

t t d v t t l

x t d

x

x

x dt dx
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Since          0, 0, t 0, tz t t     and by using Cauchy-Schwarz inequality, V can be 

rewritten as 

2

0

1

0

1

0

2

2 2 2

2

max
0

2
1

( ( , ), , )

( ( , ), , ) ( , )

ˆ( ) ( ) (0, ) ( ) ( ) /

( ) / 2 (0, ) / 2

[

( , ) /

( , ) /

( ,( ) ] ) // (2 )

x

x

x

l

V d v x t x t

d v t t l x d

e t e t

x t dx

x t

t

dx

x

t

t dx

t

e t t

t d

 

    

   











    





 

  

   

  









. 

By using the Poincare
2 2 24 /x   and Agmon’s 

inequalities
2 22(0, ) 2 x xt        , we get  

2 1

0

2 2 2

max

22 2 2 22

max

( 4) / 8 [ ( ) ] / (2 )

( 8) [ (

( , ) /

/ ) ] / (2 )8 / 2

l

l

V d x t dx t

t d

      

     





     

    


. Therefore, 0V when 

2 2 2 2 2 2

max max

2
 

8)

4( / ) /

(

l ld d
or

     







 
 


. 

Hence,  and   are UB with the bounds defined above. 

Since        0, 0,e t t t t      and  is bounded, e  is also bounded.  

Remark 8: In the ideal case, when ( , , ) 0d v x t   , one can show 

that
2

max)4 / [( ]4      and
max   . 

(b) Sensor fault 

Similarly, in this case, consider the Lyapunov function 

2 2 2

max/ (2 ) / (2 )s sV         (46) 
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where
smax is the upper bound on the sensor fault magnitude 

s  . Taking the derivative of 

(46) with respect to time and applying integration by parts leads to 

1
2

0

20
m

0
x

1

1

a

0
( , ) ( ( , (), , )

(

, ) /

1
( ,

) ( )
( ( , ), , ) ( , ) .)

x

x
s s

s

x t dx

x t

V x t dx

dx

d v x t x t

t t
d v t t l x d

 

 
    



 
















 

The sensor fault parameter ˆ
s is tuned using ˆ ˆ( ) (0, ) ( ) ( )s st t e t t      . 

However, ˆ
s  appears in the denominator of (43), and the update law is modified as (45) to 

ensure it is nonzero. With this update law, if min
ˆ ˆ(0, ) ( ) ( ) 0 &s s st e t t       ,V is 

given by
2 1

0
( , ) /x l x tV dxd      ; otherwise, it should satisfy 

2

2 2

max max

1

0

ˆ(0, ) ( ) (
)

( ) )
( ,s s s l

x

s s

t e t
x

t
t

t
V dx

d  
 

  


      . 

In the first case, by applying Poincare inequality

2

2

2

4 x


 , we can 

show
22

2

2

( 2)

4 2

ld
V







     which means V will be less than zero 

if
2 22 / [ ( 2)] ld     . Therefore,   and

s  are bounded. Now for the second case, 

as ( ) ((0 ) (0 ), ) ,s ste t t t     ,V  can be written as 

1

0

2 2 2

max max

2 2 2
1

2

max
0

ˆ[ ( ) ] ( ) / (( ) ( ) / ( )

   (0, ) / 2 ( ) / (2 )

0, ) ( , ) /

( , ) / / (2 )

x s s s s s l

x l s s

V e t e t t tt x td

d t

dx

x t dx t

      

   

 

   

     

     




, 

Applying Poincare
2 2 24 /x   and Agmon’s 

inequalities
2 22(0, ) 2 x xt        will lead to 
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22 2 2

max

1

0

222 2 2 2

max

( , ) /

/ 8 / 2 /

( 4) / 8 ( ) / (2

2 /

) / (2 )

( 8) ( ) 2 .

l s s

s s l

V d t

t

x t

d

dx    



 

     

     

    


 

Thus, 0V  when  

2 2 2 2

ma2 x

4( /
 

8

)

( )

/l l
s so

d
r

d     
  

  

 
   , 

are satisfied, we can see how   and s  are UB. Because ( ) ((0 ) (0 ), ) ,s ste t t t      

and s  , , s  and  are bounded, e  is also bounded. Therefore, the closed-loop system is 

bounded for both cases. 

Remark 9: Without disturbance one can show that
24 ])/ [( 4    

and
max .s    

4.3. FAILURE PREDICTION 

A system may remain functional after an incipient fault; however, it cannot 

function after a failure. The TTF scheme can predict the RUL of the system upon 

detection by using the estimated parameter trajectories. The TTF can be defined as the 

difference between current time t  and the time of failure
ft ( ) fTTF t t t   . The TTF can 

be predicted by using the parameter update laws (44) and (45) given the parameter failure 

limits as proposed next. 

Remark 10 (TTF prediction for an actuator fault): Given the detection residual of 

an actuator fault, the input filter state and the upper bound of the actuator fault parameter, 

upon detecting an actuator fault by using the observer defined by (39), TTF can then be 

estimated as  
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ˆ1 ( ) (0, ) ( )
( )

(0, ) ( )f

TTF
t

t
t e t

Ln
t e t

 

 

 
  

 


 
,   (47) 

where
f   is the failure limit for  . Considering (0, ) ( )t e t as an input to (44), the fault 

parameter estimation can be solved as 

( ) ( )ˆ ˆ( ) ( ) (0, ) ( )f f
ft t t

f

t

f
t

fort e tt e e d t
  

    
   

    where t is the current time 

instant and
ft refers to future time. Now assume that the term (0, ) ( )t e t is held in the 

interval[ , ]ft t  and let
ft be the first time when the value of̂  reaches its failure limit

f  as  

( ) ( )ˆ ˆ( ) ( ) (0, ) ( ) ][1 / .f ft t t t

f ft e t t e t e
 

    
   

       

By substituting
fTTF t t 

  in the above equation and solving it, we will get (47). 

Remark 11 (TTF prediction for a sensor fault): Given the detection residual of a 

sensor fault, input filter state and the upper bound of the sensor fault parameter, upon 

detecting a sensor fault by the observer (39), the TTF can be estimated as  

ˆ ( ) (0, ) ( )1

(0, ) ( )
( )

f

s

s

TTF
t t e t

Ln
t e

t
t

 

 

 
 
 


 







,   (48) 

where
sf  is the failure limit for s . Similarly, for the sensor fault, assume that in the 

interval [ , ]ft t ,  the term (0, ) ( )t e t is held and suppose 
ft is the first time when the 

value of ˆ
s  reaches its failure limit

fs ; hence, the estimated TTF is given by (48). 
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5. SIMULATION RESULTS 

Consider a thin rod whose heat conduction can be represented by parabolic PDEs. 

The heat equation with an actuator fault can be expressed as 

( , ) ( , ) ( , ) ( ( , ), , )t xxv x t v x t v x t d v x t x t    ,    (49) 

(0, ) (0, ), (1, ) ( )xv t qv t v t U t   ,   (50) 

where
20.5( 0.2)( , ) 0.05 sin( )xd x t e t    is the disturbance. The system state ( , )v x t  represents 

the temperature in this heated rod with 0.5(0, ) 5(1 )t

dv t e   being the desired output 

temperature profile. In addition, 
1

0
( ) (1, ) ( )[ ( , ) ( , )]d dU t v t k x v x t v x t dx    is the control 

input designed to regulate the temperature profile of the heated rod with 

250

0

[ (1 )]
( )

2 4 !( 1)!

n

n
n

x
k x

n n

 




 


   being the controller gain, 

and
0.5( , ) 5[cos( ) cos( 0.5 )]t

dv x t x e x      being the desired full state trajectory. 

Notice that in the output measurement case, ˆ( , )v x t  will be utilized instead of ( , )v x t  

resulting in
1

0
ˆ( ) (1, ) ( )[ ( , ) ( , )]d dU t v t k x v x t v x t dx   .  

The system parameters chosen for the simulation are given by 1   , and 0q  . 

Now 1 .5 ( 5)t      is the actuator fault 10   parameter seeded at 5t s  

where
 0.3 5

0 , 5
( 5)

1 , 5
t

if t
t

e if t
 


   

 
.  

For the numerical simulation, the closed-loop system and observer are discretized 

by using the finite difference method with 20 grid points with respect to the space. The 

total time for simulation is taken as 25 seconds. The number of discretization points 
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should be selected carefully since it may result in inaccurate results for the PDE system. 

Simulation results for full state measurement case can be found in research reported by 

the work of [24]. Here, results are obtained with the output temperature at 0x   as 

measured. 

5.1. ACTUATOR FAULT 

The initial condition of actual system (49)–(50) is selected as ( ,0) 0.2cos( )v x x , 

and the initial values for the filters are set at zero. The estimated fault parameters are 

initialized as ˆ(0) 1   , (0) 1s  , and the threshold is selected as 0.5   . First, by 

applying the transformation (35), the DPSs (49) and (50) are converted to the observable 

form in (36) and (37) where
50

0

( 1) [10 (2 )]
( ,0) 25(1 )

4 !( 2)!

n n

n
n

x x
l x x

n n




 
 


  and 0q   . Then two 

output filters along with one input filter are employed to estimate the state and output of 

the transformed system.  Prior to the fault occurrence, the detection residual is expected 

to decrease, whereas it will increase once a fault occurs. This is clearly observed in 

Figure 5.1. Fault is detected at approximately 6.3t s  when the detection residual 

exceeds the threshold. 
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Figure 5.1. Detection residual of actuator fault. 
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Upon detection of the actuator fault, the adaptive estimator will be utilized to 

learn the fault dynamics. In this case, we just have one available measurement, so the 

update law (44) is utilized to estimate the actuator fault parameter where update 

parameters are chosen as 0.2   and 0.01  . The fault estimation results can be seen 

from Figure 5.2(a).  According to the estimated fault parameter and the failure limit of 

fault parameter defined as 0.7f   , the estimated TTF is obtained by using the formula 

(47).  Estimated TTF is plotted in Figure 5.2(b). 
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Figure 5.2. (a) Actual and estimated actuator fault; (b) estimated TTF. 

5.2. SENSOR FAULT  

As discussed in Section 4, this method is able to deal with a sensor fault as well. 

Thus, a sensor fault is expressed as (0, )sy v t  with the fault function being described by 

( ) 1 ( 5)s t t     where
 0.3 5

0 , 5
( )

1 , 5
t

if t
t

e if t
 


  

 
 and the disturbance is selected 
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as
20.5( 0.3)( , ) 0.03 sin(2 )xd x t e t   . The detection observer in (39) is again used to detect 

the fault. Figure 5.3 depicts the detection residual as exceeding the threshold around one 

and half seconds after the initiation of the fault. Upon detecting the sensor fault, the 

adaptive terms are activated in the observer as described in (43). By using the parameter 

tuning law given by Theorem 4 with the parameters selected as 0.35    and 0.01  , 

the fault parameter estimation can be performed, the TTF can be estimated by (48), and 

the failure limit utilized in the formula is 1.5sf   . Fault estimation and TTF prediction 

results are shown in Figure 5.4.  
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Figure 5.3. Detection residual of a sensor fault. 
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Figure 5.4. (a) Actual and estimated sensor fault dynamics and (b) TTF. 
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6. CONCLUSIONS 

A novel observer based on the PDE representation of a DPS provides a more 

accurate estimation of the state which is beneficial to both fault detection and estimation. 

The adaptive term incorporated in the observer appears to estimate the fault function. The 

TTF can be predicted based on both estimated fault parameters and a failure threshold 

provided the fault type is known.  

The filter-based approach is quite important when dealing with implementation of 

the scheme on real practical systems, and it also allows the estimation of actuator and 

sensor faults provided the fault type is given.  Simulation results confirm the theoretical 

claims.  Future research will involve fault isolation and extension to other PDEs. 
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APPENDIX 

The dynamics of state residual in the absence of uncertainty and disturbances, i.e. 

( , , ) 0d v x t   is expressed as 

       1, , ( ) (, 0, )t xxv v v p x v tx t x t x t    ,    (A.1) 

    10 (0,0, ) 0, 1,xv v tt tvp    ,   (A.2) 

Lemma 1[20]: Consider the Volterra integral transformation utilized in the work 

of [20] 

        
0

, ,, ,
x

v L xx t x t dt      ,   (A.3) 

where  
2 1

0

( )
[ (2 )( )]

( )(1 )
( , )

2 !( 1)!

n

n
n

b
x x

b x
L x

n n


 

 








  

 
 




is obtained as the solution 

to the hyperbolic PDE 

      , , ( ) ,xxL x L x b L x         ,   (A.4) 

  1, 0L   ,     (A.5) 

  
( )

, ( 1)
2

b
L x x x






  ,    (A.6) 

with
2 2

xxL L x   and
2 2L L    . Select observer gains 1( )p x and 10p as 

   11 0( ) ,0 , (0,0)p x L x Lp  ,    (A.7) 

for the sake of eliminating the unstable term ( , )v x t  in (A.1), the transformation (A.3) 

with observer gains (A.7) converts the state residual dynamics (A.1)-(A.2) to  

      , , ,t xxx t x t b x t     ,   (A.8) 

    0,0, , 01x t t   ,    (A.9) 



 48 

where t t    , x x     , 
22

xx x    with 0b   is a constant parameter that is 

adjusted to tune the convergence speed of the observer.  

Proof: Part (a) It has to be shown that 

2 1
0

( )
[ (2 )( )]

( )(1 )
( , )

2 !( 1)!

n

n
n

b
x x

b x
L x

n n


 

 








  

 
 




 is the solution to (A.4)-(A.6). 

In order to find a solution of the PDE (A.4)-(A.6), first it is converted to an 

integral equation. Introduce the change of variables as 

x   , x   , ( , ) ( , )L x G   . 

Then we can know that  

xL G G    , 2xxL G G G      , 

L G G     , 2L G G G       , 

where /xL L x   , /L L    , /G L    , /G G w     ,
2 2/G L     and 

2 2/G G w     . Substituting equations above to (A.4)-(A.6) we get 

 ( , ) ( , )
4

b
G G


   




   ,    (A.10) 

 ( ,2 ) 0G     ,    (A.11) 

 ( ,0)
4 2

b b
G

 
 

 

 
   .    (A.12) 

Integrating (A.10) with respect to   from 0 to 2   gives 

2 2

0 0
( ,2 ) ( ,0) ( , ) ( , )

4 4 4

b b b
G G G s ds G s ds

 

 

  
    

  

   
       . (A.13) 

Next, we integrate both sides of the equation given by (A.13) with respect to   

from   to   get  
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2

0

2

0

( , 2 ) ( , 2 ) ( )
4

( , )
4

( ) ( , )
4 4

b
G G

b
G z s dsdz

b b
G z s dsdz

 



 




     







 
 

 






    




 
  

 

 

 . 

Replace 2   with    

 
2 0

( , ) (2 ) ( , )
4 4

b b
G G z s dsdz

 



 
   

  

 
        .  (A.14) 

Starting with an initial guess 

 0( , ) 0G    ,     (A.15)  

and setting up the recursive formula for (A.14) as follows 

 
1

2 0
( , ) (2 ) ( , )

4 4

n nb b
G G z s dsdz

 



 
   

 





 
       .  (A.16) 

If this converges, we can write the solution ( , )G    as 

 ( , ) lim ( , )n

n
G G   


  .    (A.17) 

The difference between two consecutive terms are expressed as 

 1( , ) ( , ) ( , )n n nG G G        .    (A.18)  

Then  

 
2

1

0
( , ) ( , )

4

n nb
G G z s dsdz

 




 




 

     ,   (A.19) 

with (A.17) rewritten as  

 
0

( , ) ( , )n

n

G G   




   .    (A.20) 

In order to get the solution to the equation given by (A.20), Computing 

( , )nG    from (A.19) starting with 
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0 1

1 2

( , ) ( , ) (2 )
4

(2 )(2 )
( , ) ( )

4 2

b
G G

b
G


     



    
 




     

   
  

.   (A.21) 

We can see the pattern which results in the following formula  

 
1 (2 )(2 )

( , ) ( )
4 !( 1)!

n n
n nb

G
n n

    
 



   
  


 .   (A.22) 

The formula (A.22) can be verified by induction. Then the solution to (A.20) is 

given by 

 
1
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(2 )(2 )
( , ) ( )

4 !( 1)!

n n
n

n

b
G

n n

    
 








   
 


  .   (A.23) 

Returning to the original x ,   variables 

 

1

0

2 1
0

(1 )(2 ) ( )
( , ) 2 ( )

4 !( 1)!
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[ (2 )( )]

( )(1 )

2 !( 1)!
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b x x x
L x

n n
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 .  (A.24) 

which completes the proof of part (a). 

Part (b): It needs to be shown that with the observer gains 1( )p x and 10p from 

(A.5), the transformation (A.3) where ( , )L x   satisfies (A.4)-(A.6) converts the state 

residual dynamics (A.1)-(A.2) to (A.8)-(A.9).   

In order to move on we will show that  

      1, , ( ) (, 0, )t xxv v v p x v tx t x t x t    , 

by using (A.13), (A.18) with observer gains selected as (A.7). By differentiating the 

transformation (A.3) with respect to t  and substituting      , , ,t xxx t x t b x t    from 

(A.8) we can get 
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. (A.25) 

By differentiating the transformation (A.3) with respect to x we get 

            
0

, , , ,, ,
x

x x xx t x t xv L x x L x dt t         ,  (A.26) 
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L x x L x x L x d

x t x t x t

x t x t t

 

    

 

   

.  (A.27) 

According to (A.25), (A.27) and      , , ,t xxx t x t b x t    from (A.8) we can get 

   , ,t xxx t x tv v as  
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0

,
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,0 [ ,
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, , ,

0, , ] ,

t xx
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dL x x
b b L x d

dx

L x L x L
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t x t

x t t x t
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,  (A.28) 

Substitute transformation (A.3) in equation (A.1) to get  

     

     

1

1
0

( ) (0, ), , ,

, , ( ) (0, ),

t xx

x

x t x t x t

x t t

v v v p x v t

L x d p x t

 

    

  

  
.  (A.29)  
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In order to guarantee the equation (A.1) holds, the right hand side of (A.28) 

should be equal to right hand side of (A.29) which means 

       

         

 
       

1
0

0 0

, ( )

,

, , 0,

, ,

,

,

, 02 ,

,

,
,0

x

x x

xx

x t t t

t t

x t x t

L x d p x

L x L x d b L x d

dL x x
b t

dx
L x





     

       



 

    

 

    

  



   ,  (A.30) 

which results in the following conditions  

      , , ( ) ,xxL x L x b L x         ,   (A.31) 

 
 , ( )

2

dL x x b

dx






 .     (A.32) 

As for as the boundary conditions are concerned, differentiate (A.3) with respect 

to x , set 0x  and substitute (A.2) in the resulting equation, to get 

            100, 0, 00,0 [ 0, 0,,0 ]x xt t tv L L p t      .  (A.33) 

Then setting 1x  in (A.3) and substituting (A.2) and 1( )p x given by (A.7) in the 

resulting equation leads to 

    
1

0
(1) 1 ,, dtL     .    (A.34) 

Therefore, the boundary condition (A.9) can be obtained from (A.33) and (A.34) 

with  1, 0L   from (A.5) and observer gain selected as 10 (0,0)Lp  given by (A.7). 

Because (1,1) 0L   from (A.5) and 
 , ( )

2

dL x x b

dx






 from (A.32), we can get (A.6). This 

completes the proof. 

Lemma 2: The inverse transformation of        
0

, ,, ,
x

v L xx t x t dt      is 

given by 
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0

( , ) ( , ) ( , ) ( , )
x

x t v x t M x v t d      ,   (A.35) 

where  

2 1
0

( )
( 1) [ (2 )( )]

( )(1 )
( , )

2 !( 1)!

n n

n
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b
x x

b x
M x
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,  (A.36) 

is the solution obtained through successive approximation [20] to the following 

hyperbolic PDE given by 

 
( , ) ( , ) ( ) ( , ) /

( , ) ( )( 1) / 2 , (1, ) 0

xxM x M x b M x

M x x b x M

    

  

  

   
,   (A.37) 

with
2 2

xxM M x   and 
2 2M M    .  

Proof: Comparing the PDE given by (A.4)-(A.6) with the PDE given by (A.37), 

we can observe that 

 
( ) ( )

( , ; ) ( , , )
b b

M x L x
 

 
 

 
    .   (A.38) 

From (A.24), we can derive the solution to (A.37) as (A.36) which completes the proof. 

The system dynamics without any disturbance and uncertainty, i.e. ( , , ) 0d v x t   is 

expressed as 

 ( , ) ( , ) ( , )t xxv x t v x t v x t    ,    (A.39) 

    0, (1, ) ( ) ( ( ), ),(0, ), ( ) 0x st t U t h U t tv qv t v y t       . (A.40) 

And the dynamics of the detection observer is represented as  

 1
ˆ( , ) ( , ) ( , ) ( )ˆ ˆ ˆ ( )t xxx t x t x t p x y yv v v     ,   (A.41) 

   10
ˆ0, (ˆ ˆ(0, ) 1,) ( ), ,x t pv qv t v ty Uy t     

 ˆ ˆ ˆ( ) (0, ), ( ) ( ) ( ).y t v t e t y t y t     (A.42) 
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Theorem 1 (Fault detection observer performance): Let the observer given in 

(A.41) - (A.42) be used to monitor the DPS defined by (A.39) and (A.40).  Then the state 

estimation error v  and the output detection residual ( )e t  will converge to zero 

asymptotically under healthy operating conditions.  In addition, a fault is declared active 

when the output detection residual ( )e t crosses the detection threshold   . A fault initiated 

at time it is detectable if there exists a time iT t  and a positive constant H  , such that  

I.   ,Th U T H  and   ,h U t t H  for t T  in the case of an actuator 

fault, or 

II.  1 (T)s U H   and  1 ( )s U t H   for t T  in the case of a sensor fault. 

Proof: It is already known that the transformation (A.3) can map the state residual 

dynamics into the target system of (A.8)-(A.9) if 1( )p x  and 10p  are defined by (A.7).  

The stability of the residual dynamics can be concluded from the stability of the target 

system given by (A.8)-(A.9) due to the transformation (A.3) [21].  

To discuss the stability of the PDE described in (A.8) with boundary conditions 

given by (A.9), one must select a positive definite Lyapunov function candidate which is 

half of the squared Sobolev norm of the spatial profile defined in Hilbert space 1(0,1)H  

utilized in [20] 

1 1
2

0

2

0

2 2 ( ,( ) ( , )
( )

2 2

) ( )

2 2

x xx t dx x t dx
V

t
t

t  
 

   .  (A.43) 

The derivative of (A.43) is given by 

 

1 1

0 0

1 1 1
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0 0 0
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t x tx
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V t x t x t dx x t x t dx

x t x t dx b d t xx dt x x t
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 Note that from (A.9)    0,0, , 01x t t   . According to the Poincare 

inequality 

1 1
2 2

20 0

4
( ( , ) (1, )) ( , )xx t t dx x t dx  


    

and 

1 1
2 2

20 0

4
( ( , ) (0, )) ( , )x x xxx t t dx x t dx  


   , 

we can get 

2 2 2
1 1

2 2

0 0
( ) ( , ) ( , ) ( )

4 4 2
xV t x t dx x t dx V t

  
        

Then it gives us 

2

2 2 2 2
2( ) ( ) ( (0) (0) )

t

x xt t e


   


    

By Agmon’s inequality 

2

2 2 2 2 2
2

[0,1]
max ( , ) 2 ( ) ( ) ( ) ( ) ( (0) (0) )

t

x x x
x

x t t t t t e


      



     . 

Therefore ( , )x t converges to zero asymptotically for all [0,1]x . From the 

transformation        
0

, ,, ,
x

v L xx t x t dt      we can know 

that ( ) (0, ) (0, )e t v t t  . Since the transformed system state ( , )x t converges to zero 

asymptotically for any 0 1x  , we can get that ( ) (0, ) 0e t t   asymptotically under 
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healthy conditions. Then a constant threshold maybe selected as (1 ) (0)a e    where 

a  is a small positive. 

To determine detectability conditions, an actuator fault is considered first. When 

an actuator fault occurs at it  then the state estimation error dynamics are described by 

(A.1) subject to following boundary conditions given by 

    10 ,   0, 0, (1, ) ( ( ), )xv v vt p t t h U t t  .   (A.44) 

 Applying the transformation (A.3) on (A.1) and (A.44) leads to (A.8) with 

boundary conditions given by 

    0,0, 1, ( ( ), )x t t h U t t   ,   (A.45)  

for it t . Because        
1

0
1,1, 1, ,tv L dt t      and (1, ) 0L   for all 0 1   , we 

can get    1, 1,v t t  . Now a bounded state variable ( , )x t is introduced which is 

defined by (A.8) ( , ) ( , ) ( , )t xxx t x t b x t    subject to (0, ) 0x t   , (1, )t H   

and ( , ) ( , )x T x T   . If   ,h U t t H    for t T  then ( , ) ( , )x t x t   for 0 1x   

and t T  . Because    , ,x t x t H    satisfies the following exponentially stable PDE 

given by ( , ) ( , ) ( , )t xxx t x t b x t     , (0, ) 0, (1, ) 0x t t   , the new state 

variable (x, t) converges to H  . Hence, for any 0   , there exists a time dt T  , such 

that  0, dt H    . Therefore, for any 0   , there exists a time dt T such 

that  ( ) (0, ) 0,d d de t t t H       . Because H   and if  is selected 

as H     , then ( )de t   for some dt T , so that the detection of an actuator fault 

is guaranteed when the detectability condition in Theorem 1 is satisfied. 
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In the case of a sensor fault, the detection residual can be written 

as   ˆ( ) ( ) ( ) 0 0,ˆ , ( )se t y t y t tv v t     . If we define a new distributed 

variable     ˆ, , ( , )sx t x t tv v x   , then the detection residual can be expressed 

as   (0, )e t t   . By using the definition of   and the observer dynamics in (A.41) and 

(A.42), it can be shown that   satisfies the PDE given by 

       1, , , ( ) 0,t xxx t x t xx pt t        , 

     10 ,   0, 0, (1, ) 1 ( )x st p t t U t        , 

for 0 1x   and it t . If ν  in transformation (A.3) is replaced by Δ  , applying this 

transformation on the above PDE will lead to 

     , , ,t xxx t x t b x t     , 

     0, 1, ( )0, 1sx t t U t    , 

which is exactly same as (A.8) and (A.45) except that the term   ,h U t t  is replaced 

by  1 ( )s U t   . Thus, by using the same steps taken in the case of actuator fault, it can 

be shown that if  1 ( )s U t H    for  t T  , then for any 0   , there exists a 

time dt T  such that ( ) (0, )d de t t H      . Selecting H    , results in ( )de t   

which declares the presence of a fault. 

An adaptive estimator, which is only activated upon detection, is added to the 

boundary condition of the observer (A.41) and (A.42) as (A.41) with boundary conditions 

    10
ˆ (0, )0,xv qv t et p t   ,    (A.46) 

 ˆ ˆ ˆ ˆ(1, ) ( ) ( ( ); ( )), ( ) (0,ˆ )t U t h U t t y tv t v    .   (A.47)   
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Then the state error dynamics with an adaptive estimator can be expressed as (A.1) 

subjecting to 

    10 ( ),0, 1, ( ) ( )x t p tv e t v t U t   .   (A.48) 

Theorem 2 (Performance of an actuator fault estimation):  Let the boundary 

condition of the observer in (A.42) be modified to (A.46)-(A.47) in order to estimate the 

state and output of the system defined in (A.39) and (A.40) without a sensor fault, i.e. 

1s   .  In the presence of an actuator fault, consider the parameter tuning law 

1
2

0 0

ˆ ˆ( ) ( )( (1, ) (1, ) ( ) ) ( ) ( , ) ( , ) ( , )
x

x xt U t v t M v d t v x t M x v t d            , (A.49) 

for fault estimation where 0   is the adaptation rate,
2

max0 2 /b     is the 

stabilizing term and ( , )M x  is given by (A.36), then the state residual converges to zero 

and the parameter estimation error is bounded. 

Proof: First apply the transformation (A.3) on the residual dynamics (A.1) and 

(A.48) to get the PDE (A.8) with boundary conditions given by 

    00, 1, ( ), ( )x t t t U t    ,   (A.50) 

Now select the Lyapunov function candidate 

 
1

2 2

0
( ) ( , ) / 2 ( ) / (2 )V t x t dx t   ,   (A.51) 

whose first derivative is given by 
1

0
( ) ( , ) ( , ) ( ) ( ) /tV t x t x t dx t t      . By 

substituting (A.8) in the first derivative, we will arrive at 

    
1 1

2

0 0
( ) ( , ) , ( ) ( ), /xxV t x t dx b dx t tx t x t          .  (A.52) 

Applying integration by parts and using boundary conditions given by (A.50) will 

lead to 
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.   (A.53) 

To represent this update law in terms of transformed system state, instead of the actual 

system state, the inverse transformation (A.35) and its first derivative with respect to x  

given by
1

0
(1, ) (1, ) (1, ) ( , )x x xt v t M v t d      will be utilized in (A.49) to get 

 
2

( ) ( ) (1, ) ( ( )ˆ )ˆ
xt U t t t t     .   (A.54) 

Equation (A.54) eliminates the positive term (1 )) (, ) (x t Ut t   . 

By applying the proposed parameter update law in the derivative of Lyapunov 

function candidate we get 
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. 

Thus, when
2

max2 /b    , 0V  and ( )t  and   are bounded.  
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Now, define 

 ( ) ( ) ( ( ) ( )) 0, ,t t V t tS       , 

when 0V  . Since the largest invariant set contained in S, is same as S, the convergence 

of ( )t  to zero asymptotically and boundedness of   can be shown by using LaSalle’s 

theorem (LaSalle, J. and Lefschetz, S., 1961). 

By using the following transformation 

        
0

, , ,,
x

z v l xx t tv dx t      ,   (A.55) 

the original system with disturbance or uncertainty can be converted as 

 
0

( , ) ( , ) [ ( ,0) ( ,0)] (0, )

( ( ), , ) ( ( ), , ) ,

t

x

xxz x t z x t l x ql x z t

d v x x t dt v l xd











 

  

  
 ,   (A.56) 

 (0, ) ( / 2 ) (0, ), (1, ) ( )xz t q z t z t U t       ,   (A.57) 

and 

 ( ) (0, )sy t z t .    (A.58) 

The system state ( , )z x t  can be expressed as a combination of the solutions 

defined by [20] 

( , ) ( , ), (0, ) 0, (1, ) ( )t xx xx t x t t t U t       , 

where ( , )x t  is referred to an input filter since it is derived from the input of the actual 

system ( )U x   [20] Next consider 

( , ) ( , ), (0, ) ( ), (1, ) 0t xx xA x t A x t A t y t A t   , 

where ( , )A x t  is an output filter since it is derived from output of the actual system ( )y t .  

In addition, consider 
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( , , ) ( , , ) ( ) ( ), (0, , ) 0, (1, , ) 0t xx xB x t B x t x y t B t B t            , 

where ( , , )B x t is another output filter. Then the observer is defined as 

 1

0

ˆ( , ) ( , ) [ / (2 ) ] ( , )

ˆ ˆ[ ( ,0) ( ,0)] ( , , ) , ( ) (0, )

z x t x t q x t

l s ql s x s t ds y t z t

 



     

    
.   (A.59)  

Theorem 3 (Output-based fault detection observer performance): Let the observer 

in (A.59) be used to monitor the DPS defined by (A.56)-(A.58) with bounded 

disturbances. Then the state estimation error z  and detection residual ( )e t  are bounded 

under healthy operating conditions. Further, a fault initiated at time it  is detectable if there 

exists a time iT t   and a positive constant H , such that 

I.  1 ( )U t H    for t T  where lH k d     in the case of an actuator 

fault, or 

II.  1 ( )s U t H    for t T  where maxl sk dH     in the case of a sensor 

fault. 

where 
2

2

2 2( 4)
(1 )lk l






   and 

0 , 1
max ( , )

x
l l x




 
 . 

Proof: During healthy conditions with 1s   , the state residual satisfies the 

stable PDE given by 

  
0

( , ) ( , ) ( , , ) ( , , ,)t xx

x

z x t z x t d v x t d v t l x d       ,   (A.60) 

 (0, ) 0, (1, ) 0xz t z t  .    (A.61)  

Select a positive definite Lyapunov function candidate as 

2 2
( ) / 2( ) ( ) / 2xV t z t z t  , whose first derivative of ( )V t  becomes 
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1 1

0 0
( ) ( , ) ( , ) ( , ) ( , )t x txV t x t x t dxz z z zx t x t dx    . 

By using (A.60) and (A.61) in the above equation and applying both integration by parts 

and Poincare inequality, to get 
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1

0
( , ) ,l xx x tz dx

 

where (1 )ld l d   . By using Cauchy-Schwarz and Poincare inequalities to get  

2 2 2
1 1

2 2 2

20 0

( 4)
( , ) ( , )

8
( )

8 2
x lx t dx x t dxV t z z d

  





     . 

Thus, ( )V t  will be less than zero if 

2

2

2 4
( ) lz t d






  or

2

2

2 4
( )x lz t d






 . 

By Agmon’s inequality 
2

[0,1]
max ( , ) 2 ( ) ( )x
x

z x t z t z t


  we can get 

2

2[0,1]

2 2( 4)
max ( , ) (1 )
x

z x t l d





  and 

2

2

2 2( 4)
( ) (0, ) (1 )e t z t l d






   . Therefore, 

the detection threshold must be selected as 0 lk d     where 0  depends upon the 

initial conditions with
2

2

2 2( 4)
(1 )lk l






   . 

If an actuator fault happens ( 1, 1s   ) at it  , then we can get the state 

estimation error dynamics by taking the difference between the system and observer 

dynamics which are given by 
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0

( , ) ( , ) ( , , ) ( , , ,)t xx

x

z x t z x t d v x t d v t l x d       , 

(0, ) 0, (1, ) ( 1) ( )xz t z t U t   , 

for it t . Now define a new PDE as 

 
0

( , ) ( , ) ( , , ) ( , , ) (0, , , ) 0, (1, )
x

t xx xx t x t d v x t d v t t tl x d H           

for t T  and let ( , ) ( , )x T z x T  . If  1 ( )U t H       for it tT  then ( , ) ( , )z x t x t  

for 0 1x   and t T . Note that the dynamics of  ,x t H     is the same as (A.60-61), 

thus  0, lt H k d   ultimately. Thus, for any 0   , there exists a time dt T , such 

that  0, d lt H k d      . That means, for any 0   , there exists a time dt T such 

that  ( ) (0, ) 0,d d d le t z t t H k d        . Because lH k d    and if    is 

selected as ( )lH k d    , then ( )de t    for some dt T  , and the detection of 

actuator fault is guaranteed.  

Since the sensor fault will affect the system through the feedback control, the 

detectability condition for the sensor fault is going to be very similar to that of the 

actuator fault. In the presence of a sensor fault ( 1, 1s   ), the detection residual is 

given by    ˆ( ) ( ) 0, (0, )ˆ
se t y t y t z t z t     . 

 If we define a new distributed variable  such that ( , ) ( , ) ( , )ˆ
sx t z x t z x t    

for 0 1x   , then by using (A.56)-(A.59), Δ  can be described by  

 
0

( , ) ( , ) [ ( , , ) ]( ,, , )t xx

x

sx t x t d v x t d v l x dt           , 

(0, ) 0, (1, ) ( 1) ( )x st t U t      
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and the detection residual can be defined as   (0, )e t t   . Similar to the case of actuator 

fault, a new bounded state variable defined by the following PDE is introduced  

 
0

( , ) ( , ) [ ( , , ) ]( ,, , )t xx

x

sx t x t d v x t d v l x dt           , 

(0, ) 0, (1, )x t t H    , 

for t T  and let ( , ) ( , )x T x T   . If  1 ( )s U t H   for t T  then 

( , ) ( , )x t x t  for 0 1x   and t T . Similarly, it can be obtained 

that   max0, l skH dt     ultimately, which means that for any 0   , there exists a 

time dt T , such that     max0, 0, ld sdt t H k d       . Therefore, by 

selecting max )( l sH k d     , it is easy to see that there exists a time dt T  such 

that  ( ) 0,d de t t     , which guarantees the detection of a fault. 

If an actuator fault is detected, the observer in this case is described by 

1

0

ˆˆ( , ) ( ) ( , ) [ / (2 ) ] ( , )

ˆ ˆ[ ( ,0) ( ,0)] ( , , ) , ( ) (0, )

z x t t x t q x t

l s ql s x s t ds y t z t

  



     

    
.   (A.62) 

For a sensor fault, the observer will be described by 

1

0

ˆˆ( , ) ( , ) [ / (2 ) ] ( , ) / ( )

ˆ ˆˆ ˆ{ [ ( ,0) ( ,0)] ( , , ) } / ( ), ( ) ( ) (0, )

s

s s

z x t x t q x t t

l s ql s x s t ds t y t t z t

  

  

     

    
.  (A.63) 

Theorem 4 (Output based fault estimation):  Let the observer in (A.62) be used to 

estimate the state and output of DPS (A.56)-(A.57) with  ˆ 0 1   . The tuning law  

 ˆ ˆ(0, ) ( )t e t      ,   (A.64) 
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is activated upon detection of an actuator fault. Similarly consider the observer from 

(A.63) to estimate the system state and output when  ˆ 0 1s   with the tuning law 

 
min

ˆ ˆ0 (0, ) ( ) ( ) 0 & ( )
ˆ ( )

ˆ(0, ) ( ) ( )

s s s

s

s

if t e t t t
t

t e t t otherwise

   


 

    
 

 

 ,  (A.65) 

upon detection of a sensor fault, where 0smin     is a known lower bound on the sensor 

fault parameter. Then the residual e , parameter estimation errors ˆ      

and ˆ
s s s       in the presence of an actuator and sensor faults respectively will be 

ultimately bounded (UB). 

Proof: For an actuator fault, an error signal is defined as 

1

0
( , ) ( , ) ( , ) ( / 2 ) ( , ) [ ( ,0) ( ,0)] ( , , )x t z x t x t q x t l s ql s x s t ds                

and in the case of a sensor fault, it is defined as 

1

0

( , ) ( , ) ( , ) ( / 2 ) ( , ) /

{ [ ( ,0) ( ,0)] ( , , ) } /

s

y s

x t z x t x t q x t

l s ql s x s t ds

   

 

     

   
 . 

This error signal in both cases clearly satisfies 

 
0

( , ) ( , ) ( , , ) ( , , ) (0, ) 0, ( , ) 0, , 1
x

t xx xx t x t d v x t d v t t tl x d          .  (A.66) 

(a) Actuator fault 

Now, a Lyapunov function candidate is selected as 

1
22 2 2

0
( , )

2 2 2 2

x t dx
V

  

   
   

  . 

By taking the derivative of the Lyapunov function with respect to time and substituting 

(A.66) to the equation above to get 
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Then applying integration by parts and Substituting (A.64) in the above equation we 

obtain 
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. 

Since          0, 0, t 0, tz t t     and by using Cauchy-Schwarz inequality, 

V can be rewritten as 
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 . 

By using the Poincare
2 2 24 /x   and Agmon’s 

inequalities
2 22(0, ) 2 x xt        , we get  
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Therefore, 0V when 

2 2 2 2 2 2

max max

2
 

8)

4( / ) /

(

l ld d
or

     







 
 


. 

Hence,   and   are UB with the bounds defined above. 

Since        0, 0,e t t t t      and  is bounded, e  is also bounded.  

(b) Sensor fault 

Similarly, in this case, consider the Lyapunov function 

12 2 2 2 2 2

max max
0

( ) / (2 ) / (2 ) ( , ) / (2 ) / (2 )s s s sV t x t dx           , 

where smax is the upper bound on the sensor fault magnitude s  . By taking the derivative 

of the equation above with respect to time and applying integration by parts leads to 
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. 

The sensor fault parameter ˆ
s  is tuned using ˆ ˆ( ) (0, ) ( ) ( )s st t e t t      . 

However, ˆ
s  appears in the denominator of (A.63), and the update law is modified as 

(A.65) to ensure it is nonzero. With this update law, if 

min
ˆ ˆ(0, ) ( ) ( ) 0 &s s st e t t        ,V is given by 
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otherwise it should satisfy 
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In the first case, by applying Poincare inequality
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 . Therefore, ( )t  and s  are bounded. Now for the second case, 

as ( ) ((0 ) (0 ), ) ,s ste t t t     ,V  can be written as 
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Applying Poincare
2 2 2( ) 4 ( ) /xt t     and Agmon’s 

inequalities
2 22(0, ) 2 ( ) ( ) ( ) ( )x xt t t t t        will lead to 
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Thus, 0V  when  
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are satisfied implying that   and
s  are UB. Because ( ) ((0 ) (0 ), ) ,s ste t t t      

and s  , , s  and  are bounded, e  is also bounded. Therefore, the closed-loop system is 

bounded for both cases. 
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II. MODEL-BASED FAULT ACCOMMODATION FOR A CLASS OF 

DISTRIBUTED PARAMETER SYSTEMS REPRESENTED BY LINEAR 

COUPLED PDE 

Jia Cai, Hasan Ferdowsi and S. Jagannathan 

A novel model-based fault detection and accommodation scheme is introduced for 

a class of linear distributed parameter systems (DPS) represented by partial differential 

equations (PDEs) in the presence of both actuator and sensor faults. A filter-based 

observer on the basis of the linear PDE model of the DPS is designed with output 

measurements. The estimated output from the observer and the measured outputs are 

utilized to generate a residual for fault detection. Upon detection, the fault function is 

estimated by using an unknown parameter vector and a known basis function. Novel 

update laws are introduced to estimate the unknown fault parameter vector for actuator 

and sensor faults. Next, the controller from the healthy scenario is modified to 

accommodate the actuator and sensor faults respectively by using output measurements 

alone. Next, an explicit formula is presented to predict the time-to-accommodation (TTA). 

Finally, a typical linearized diffusion-process is shown to illustrate the effectiveness of 

the proposed scheme.  
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1. INTRODUCTION 

In modern control systems, reliability is as important as maintaining performance. 

System failures due to unexpected faults or degradation of the system components may 

cause a change in the system dynamics leading to unreliable operation. Therefore, fault 

diagnosis and accommodation (FDA) research, which is introduced to detect, isolate, and 

mitigate the effect of unexpected incipient faults, has attracted attention [1]. 

In the past two decades, significant level of effort is introduced in the literature [2, 

3] on model-based diagnosis and fault-tolerant control of lumped parameter systems 

(LPS) represented as ordinary differential equations (ODEs). However, industrial systems 

such as fluid flows, thermal convection and chemical reaction systems are categorized as 

distributed parameter systems (DPS) or infinite dimensional systems because the system 

state changes not only with time but also with space.  

The FDA for DPS represented by partial differential equations (PDEs) is more 

involved and challenging when compared to LPS due to the need to estimate the system 

state at all locations [4, 5, 6,7]. It is not possible to measure the system state of a DPS at 

all these locations. Though under certain assumptions, the DPS are represented as LPS, 

the ODE models from LPS representation [8] are no longer suitable to mimic the 

behavior of DPS accurately. 

Because of the distributed nature and complicated dynamics, limited effort is 

being reported for fault detection and diagnosis of DPS. Recently, fault detection of 

mechanical and aerospace engineering systems have been studied in [9] and fault tolerant 

controller was considered in [10, 11, 12, 13] with actuator faults. Besides, an adaptive 
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fault detection and accommodation scheme is presented in [14] in order to deal with 

incipient actuator faults.  

On the other hand, fault-tolerant control of DPS with control constraints and 

actuator faults is introduced in [15]. In spite of these exciting results, these detection and 

accommodation schemes in [10, 11, 12, 13, 14, 15] have been developed based on 

approximate finite dimensional representation of DPS which may lead to false and 

missed alarms because of the model reduction. Moreover, the system dynamics change in 

the presence of a fault and thus reduced order models may be inaccurate for fault 

detection and accommodation in DPS. 

Driven by these model reduction considerations, we developed a novel FDA 

scheme on the basis of the PDE representation for linear DPS with incipient faults. A 

filter-based observer is introduced for generating a residual which is utilized for fault 

detection. Next the approximation of fault dynamics is carried out by using an adaptive 

term under the assumption that the fault function is expressed as linear in the unknown 

parameters. This adaptive term is added to the filter-based observer upon detecting the 

fault. Both actuator and sensor faults are considered and suitable parameter tuning 

scheme using the output measurements alone is derived. Next, the fault accommodation 

is introduced on the basis of estimated fault function. The system stability is 

demonstrated through Lyapunov analysis. 

Moreover, upon detecting a fault and by using the tracking error dynamics, 

estimated time to accommodation (TTA), which is defined as the time needed by the 

accommodation scheme to recover back to the normal operating regime, can be assessed 

online. The TTA is particularly useful when compared to the remaining useful life, since 
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it can predict whether or not the accommodation scheme will work before the system 

reaches failure. 

The main contributions of this paper include the development of: a) an innovative 

model-based FDA scheme for both actuator and sensor faults by using filter-based 

observer and system output, and b) TTA scheme on the basis of tracking error dynamics. 

This paper is constructed as follows. First, a class of DPS represented by linear parabolic 

PDE with actuator and sensor faults is presented in Section 2. Second, the design of FDA 

scheme for both actuator and sensor faults with output alone is considered in Section 3. 

Finally, the application of the proposed scheme in simulation on the heat conduction of a 

thin rod with actuator and sensor faults is demonstrated in Section 4.   
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2. SYSTEM DESCRIPTION AND FAULT FUNCTION 

Before presenting the system description, the notation and the norm used 

throughout this paper is given [19]. A scalar function 1 2( ) (0,1)v x L  means it is square 

integrable on the Hilbert space 2 (0,1)L  with the corresponding norm 
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with the corresponding norm of a vector 

function 1 2 2( , ) [ ( , ), ( , ),..., ( , )] [ (0,1)]T n

nv x t v x t v x t v x t L   defined as 

 
12

2, 2 0
1

( ) ( ) ( ) ( )
n

T

in
i

v v x v x v x dx


    .  (3) 

2.1. SYSTEM DESCRIPTION 

A class of n-dimensional linear DPS, which can be expressed by the following 

parabolic partial differential equation (PDE), is described by 

 ( , ) ( , ) ( , ) ( , , )t xxv x t v x t v x t d v x t   ,  (4) 

with boundary conditions defined by 

        (0, ) 0, (1, ) ( ), ( ) (0, )xv t v t U t y t v t   ,  (5) 

for (0,1)x  and 0t  , where 1( , , ) [ ( , , ),... ( , , )] n

nd v x t d v x t d v x t  stands for disturbance 

or uncertainty, 1 2( , ) [ ( , ),..., ( , )] [ (0,1)]T n

nv x t v x t v x t L   represents the state of the DPS, 
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tv  and 
xv  denote partial derivatives of ( , )v x t or ( , ) /v x t t   and ( , ) /v x t x    

respectively, 1( ) [ ( , ),..., ( , )]T n

nU t u x t u x t  denotes the control input,  is a positive 

constant, and n n is a real valued square matrix. In addition, ( ) ny t   is the system 

output vector measured at the opposite end of both the actuator and controller.  For fault 

accommodation, a controller is required prior to the fault. 

Assumption 1: The system uncertainty or disturbance is bounded above such 

that ( , , )d v x t d  for all ( , )v x  and 0t  , where 0d   is a known constant. It is written 

as a general form in this paper, a more specific model can be found in [16, 17].  

2.2. STATE FEEDBACK CONTROLLER DESIGN UNDER HEALTHY 

CONDITIONS 

Given a reference output, a full-state desired trajectory satisfying the system 

dynamics given by (4) and (5) is required in order to design the control input ( )U t  which 

in turn allows the system state to follow the trajectory. Given a reference 

output (0, ) n

dv t  , a desired state trajectory for 0 1x   can be represented as [18] 

 
0

( , ) ( )
!

k

d k

k

x
v x t a t

k





  , (6) 

where 1 2( ) [ ( ), ( ),..., ( )] n

k k k kna t a t a t a t   represents time-varying coefficients of Taylor 

series expansion in x. These coefficients are determined by using the reference output and 

the system description (4)-(5).  

Next define the state tracking error 

as 1( , ) [ ( , ),..., ( , )] ( , ) ( , )T

n dr x t r x t r x t v x t v x t   . The state tracking error dynamics can be 

obtained as 
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 ( , ) ( , ) ( , ) ( , , )t xxr x t r x t r x t d v x t   , (7) 

   00,xr t  , (8) 

where /tr r t   , /xr r x    and 2 2/xxr r x   . The open-loop system (7) and (8) 

with (1, ) 0r t  is unstable when is positive definite with sufficiently large eigenvalues. 

Since ( , )r x t is the source of instability, our aim is to eliminate this term by using both 

the Volterra integral transformation [18, 19] and a suitable controller.  Apply the Volterra 

integral transformation given by 

 
0

( , ) ( , ) ( , ) ( , )
x

w x t r x t K x r t d     , (9) 

with feedback control input ( ) ( )hU t U t   

 
1

0
( ) ( ) (1, ) (1, ) ( , )h dU t U t v t K r t d      , (10) 

along with the boundary condition 

 
1

0
(1, )( ( ,1, )) K r t dr t     , (11)   (11) 

to convert the system (7)-(8) and (11) into a stable target system described by 

 
0

( , ) ( , ) ( , ) ( , , ) ( , ) ( , , )
x

t xxw x t w x t Cw x t d v x t K x d v t d         , (12) 

 (0, ) 0, (1, ) 0xw t w t  . (13) 

Here 
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   , (14) 

is an n n  controller kernel matrix obtained by using a backstepping approach through 

the well-posed hyperbolic PDE given by (Baccoli, Orlov & Pisano, 2014) 

        , , , ,xxK x K x K x CK x         , (15) 
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   0 ( , ) ) /, ( 20K K x C xx x     , (16) 

where n nC  is an arbitrary symmetric positive definite square matrix. Due to the 

invertability of (9) [18], the boundedness of ( , )w x t can guarantee the boundedness 

of ( , )r x t .   

     It is important to note that the controller given in (10) clearly requires the state 

vector ( , )v x t at all positions. Therefore, the output feedback controller will be introduced 

in Section 3. Next actuator and sensor fault function, ( ) n

ah t  and ( ) n

sh t  , 

respectively are considered at the boundary of the DPS. 

2.3. ACTUATOR AND SENSOR FAULT DESCRIPTION 

In the presence of actuator and sensor faults, the system description from (4) and 

(5) can be described by (4) subjected to the new boundary conditions 

   0,  0, (1, ) ( ) ( )x at t U t h tv v   ,  (17) 

 ( ) (0, ) ( )sy t v t h t  , (18) 

Moreover, the fault function can be written as 

 0( ) ( ) ( )a ah t t t h t  , 0( ) ( ) ( )s sh t t t h t  ,  (19) 

where 0( )i t t   is the time profile of the fault defined by
0 , 0

( )
1 , 0i

i

if

e if
 







  

 
for 

1,...,i n  with the constant i  represents the growth rate of the incipient fault and 

( )ah t and ( )sh t  denote actuator and sensor fault function dynamics respectively. Abrupt 

faults can also be modeled when a large i  is chosen. The following assumption is needed 

in order to proceed. 
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Assumption 2: The fault function can be expressed as linear in the unknown 

parameters (LIP)[20]. In other words, the actuator fault function ( ) ( ( ), )a a ah t U t t   

and the sensor fault function ( ) ( )s s sh t t  with n

a  and n

s  being the unknown 

fault parameter vector satisfies maxa a   , maxs s  , with 

( )( ( ), ) ( ( ( ), ))a n n

a iU t t diag U t t    for an actuator fault and 

( )( ( ), ) [ )]s n n

s iy t t diag t    for a sensor fault  being known where ( ) ( )a

i  and 

( ) ( ) ( 1,2,... )s

i i n     are smooth bounded function. 
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3. FAULT ACCOMMODATION SCHEME WITH OUTPUT MEASUREMENTS 

In this section, a detection observer, which provides the estimated state 

information, is designed using an input and a couple of output filters. In addition, an 

adaptive tuning law has to be carefully selected to detect and approximate both the sensor 

and actuator fault functions using estimated state measurements under the assumption 

that the type of fault is known. The isolation of fault type is outside the scope of this 

work. The controller structure from the previous section with state measurements can be 

utilized with modifications for fault accommodation. The controller for the healthy case 

is introduced first and it is modified for the purpose of fault accommodation later. 

3.1. OUTPUT FEEDBACK CONTROLLER DESIGN UNDER HEALTHY 

CONDITIONS 

Now assume that the only the boundary value (0, )v t is measured. In order to 

design the observer and output feedback controller, the DPS from (4) and (5) is first 

converted to an observable form, by utilizing the following transformation [22] given by 

        
0

, , ,,
x

z v l xx t tv dx t     , (20) 

where  
2 2 1

1
0

( 1) [( 1) ( 1) ]
, 2( 1)

(4 ) !( 1)!

n n n

n
n

x
l x x

n n











    
  


 being the solution of the 

hyperbolic PDE given by ( , ) /xxl l l x     , (1, ) 0l    and ( , ) (1 ) / (2 )l x x x    .  The 

transformation (20) can convert the original system (4)-(5) to the following PDE given by 

 
0

( , ) ( , ) ( ) (0, ) ( , , ) ( , ) ( , , )
x

t xxz x t z x t G x z t d v x t l x d v t d       , (21) 

 0(0, ) (0, ), (1, ) ( )xz t L z t z t U t  , (22) 

 ( ) (0, )y t z t , (23) 
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where
0 / (2 )L   and ( ) ( ,0)G x l x  . Note (0, )z t  is available since (0, ) (0, )z t v t . 

This transformation helps to avoid the unstable term ( , )v x t  from appearing in the 

design of filters which are introduced next. 

The DPS given by (21) and (22) have ( )U t , 
0 (0, )L t  and ( ) (0, )G x v t  as external 

inputs. According to superposition principle [22] of linear DPS, its solution can be 

expressed as the sum of the response of the PDEs for each external input acting alone. 

Therefore, ( , ) nz x t   can be expressed as a combination of the solution to three 

individual PDEs defined by  

 ( , ) ( , ), (0, ) 0, (1, ) ( )t xx xx t x t t t U t       , (24) 

where ( , )x t is referred to an input filter since it is derived from the input of the actual 

system [22]. Next consider 

 ( , ) ( , ), (0, ) ( ), (1, ) 0t xx xA x t A x t A t y t A t   , (25) 

where ( , )A x t is an output filter since it is derived from output of the actual system, ( )y t .  

Finally consider 

( , , ) ( , , ) ( ) ( ), (0, , ) 0, (1, , ) 0t xx xx t x t x y t t t                . (26) 

where ( , , )x t is a second output filter.  

    Define the observer with its state, ˆ( , ) nz x t  , given by 

 
1

0
0

ˆ( , ) ( , ) ( , ) ( ) ( , , )z x t x t L x t G s x s t ds      , (27) 

with ˆ ˆˆ( ) (0, ), and ( ) ( ) ( )y t z t e t y t y t   . 

The observer state estimation error is obtained as ˆ( , ) ( , ) ( , )nz x t z x t z x t   with 

its dynamics satisfying 
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0

( , ) ( , ) ( , , ) ( , ) ( , , ) , (0, ) 0, (0, ) 0
x

t xx xz x t z x t d v x t l x d v t d z t z t        . (28) 

Since (27) provides ẑ  instead of v̂  , for the controller design we need the inverse 

transformation of (20) given by 

        
0

, , ,,
x

v z M xx t tz dx t     , (29) 

to obtain the estimated 

state      
0

ˆ( , ) ,ˆ ˆ,,
x

z Mv t xx x tz dt    where
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   is a bounded solution to the 

following hyperbolic PDE 
( , ) (1 )

, (1, ) 0, ( , )
2

xx

M x x
M M M M x x




 

  
     . 

Then the state estimation error is defined in terms of    , and ,tM x z  as 

        
0

ˆ( , ) ( ,, ,,,)
x

v v x t v x t z M x z dx t x t t      . (30) 

Note that the boundedness of ( , )v x t  is guaranteed due to the boundedness of ( , )z x t . With 

the observer defined in (27), the stability of the observable system (21) and (22) as well 

as the original system (4) and (5) can be demonstrated with the controller designed as 

 

1

0

1 1

0 0

ˆ ˆ( ) ( ) (1, ) (1, )[ ( , ) ( , )]

(1, ) (1, ) ( , ) (1, ) ( , )

h d d

d

U t U t v t K v t v t d

v t K r t d K v t d

   

     

   

  



 
 . (31) 

where ˆ ( )hU t is the control input using estimated state vector during healthy conditions.  It 

is important to observe the difference between this controller using the estimated state 

vector ˆ( , )v x t  and the controller (10) designed by using the measured state vector ( , )v x t .  

They will be equivalent when ( , ) 0v x t  . 
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Next, apply the controller (31) to the system (4) and (5), the state tracking error 

dynamics can be obtained as (7) and (8) with the following boundary condition 

 
1 1

0 0
(1, ) (1, ) ( , ) (1, ) ( , )r t K r t d K v t d        . (32) 

Then by asserting the transformation (9) to the state tracking error dynamics (7)-(8) and 

(32), we get (12) subjecting to 

 
1

0
(0, ) 0, (1, ) (1, ) ( , )xw t w t K v t d     . (33) 

Therefore from (30) and (33) we know that 
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, (34) 

where
20 1

max ( , )
x

k K x 
 

 , 2 22 ( 1)hk k m  and
20 1

max ( , )
x

m M x 
 

  .  

The performance of the controller under healthy condition is shown in the 

Appendix. Now the assumption that the type of the fault is known is asserted and the 

actuator fault detection and accommodation is introduced using estimated states. 

3.2. ACTUATOR FAULT DETECTION AND ACCOMMODATION 

Recall the dynamics of transformed system with an actuator fault represented as 

(21) subjecting to  

 0(0, ) (0, ), (1, ) ( ) ( ), ( ) (0, )x az t L z t z t U t h t y t z t    . (35) 

In order to approximate the fault dynamics upon detection, the design of the fault 

filter will be performed based on the observable form (21) which is expressed as  

( , ) ( , )t xxD x t D x t , ( ) ( ) ( )

1 2(0, ) 0, (1, ) [ , ,... ]a a a T

x nD t D t     , 
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where ( , ) nD x t  . Then the observer (27) after incorporating the adaptive term 

becomes   

 

1

0
0

ˆˆ( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , , )

ˆ ˆˆ( ) (0, ), ( ) ( ) ( )

az x t x t x t t L x t G s x s t ds

y t z t e t y t y t

      

  

 , (36) 

where ˆ ( )a t is the estimated fault parameter vector with ˆ (0) 0a  since the fault parameter 

vector under healthy conditions is 0a   

and ( , ) ( ( , )) n nx t diag D x t    with (1, ) ( ( ), )at U t t   .  Next, an ideal signal 

( , ) nz x t  is introduced with an initial condition same as that of ˆ( , )z x t . This ideal signal 

is viewed as the ultimate target of ˆ( , )z x t as ˆ( , )z x t  gets tuned along with ˆ ( )a t .  It is 

designed as  

1

0
0

( , ) ( , ) ( , ) ( , ) ( ) ( , , )az x t x t x t L x t G s x s t ds       . 

Then it is easy to obtain the dynamics of ( , )z x t as 

 ( , ) ( , ) ( ) (0, )t xxz x t z x t G x z t  , (37) 

 0(0, ) (0, ), (1, ) ( ) ( ( ), )x a az t L z t z t U t U t t    . (38) 

Notice ( , )z x t has the same initial condition as that of ˆ( , )z x t while it has different 

initial condition from ( , )z x t . Because ( , )z x t  has the same dynamics as that of DPS given 

by the observable form (21), it will be utilized in the proof of fault approximation with 

filters. The next theorem discusses the performance of this observer as a fault detection 

observer and provides a suitable parameter tuning law. 

Theorem 1 (Detection and Fault Approximation): Let the observer in (36) be used 

to monitor the system defined by (21) and (35). Then the magnitude of output detection 
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residual ( )e t  will increase in the presence of an actuator fault and when it reaches the 

threshold, a fault is considered detected. Upon detecting a fault, select the parameter 

tuning law as 

 ˆ ˆ(0, ) ( )a at e t      , (39) 

where 0 2  is the leaning rate and 0  is a design parameter. Then the observer 

estimation error, z , and parameter estimation error, ˆ
a a a    , are ultimately bounded 

(UB). 

Proof: Refer to the Appendix. 

It is shown in the Appendix that with the parameter tuning law (39), the parameter 

estimation error a  stays in a bounded region and the bound of the observer residual z is 

guaranteed due to ( , )x t being bounded. 

The approximated fault function given by ˆ( ( ), ) ( )a aU t t t is utilized in the 

control input for accommodation.  The overall input is designed as 

 ˆˆ( ) ( ) ( ) ( ) ( )accom h a aU t U t U t t t    (40) 

yielding  

 ˆ(1, ) ( ) ( ) ( )h a az t U t t t   ,    (41) 

in order to mitigate the effect of the fault on the system where ˆ ( )hU t  is the control input 

under healthy conditions using filter based approach as given by (31). Then the dynamics 

of the transformed tracking error becomes (12) subject to 

 
1

0
(0, ) 0, (1, ) ( ( ), ) ( ) (1, ) ( , )x a aw t w t U t t t K v t d        . (42) 

Noting that 2

max( ( ), ) ( ( ), )T

a a aU t t U t t     and ( , ) ( , ) ( , ) az x t x t x t     , it follows that 
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where 2

maxmax{4 ,(4 2 )}c h h ak k k D    , ( ) 2

max

1

sup{ [ ( ( )] , )}
n

a

a i

i

U t t 


  and

2

0 1
max ( , )

x
D D x t

 
  .  

The next theorem shows the boundedness of tracking error with the proposed 

accommodation scheme. 

Theorem 2 (Fault Accommodation in the General Case): Let the control law in 

(40) be used upon detecting an actuator fault. Then the parameter estimation, observer 

estimation and tracking errors are UB. 

Proof: See Appendix. 

Corollary 1 (Fault Accommodation in the Ideal Case): In the absence of 

disturbance or uncertainty, i.e. ( , , ) 0d v x t  , let the control law in (40) be used upon 

detecting an actuator fault. Then the parameter estimation, observer estimation, and 

tracking errors are all UB with smaller bounds. 

The boundedness of parameter estimation, state estimation and the tracking errors 

are shown in the Appendix.  

Remark 1: Those bounds can be adjusted by using the designed 

parameter min ( )c C .  

3.3. SENSOR FAULT DETECTION AND ACCOMMODATION 

Upon detection of a sensor fault, the following two fault filters will be applied to 

estimate the fault dynamics 
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( ) ( ) ( )

1 1 1 1 2 1( , ) ( , ), (0) [ , ,... ] , (1, ) 0s s s T

t xx x nF x t F x t F F t      ,

( ) ( ) ( )

2 2 1 2 2 2( , , ) ( , , ) ( )[ , ,... ] , (0, , ) 0, (1, , ) 0s s s T

t xx n xF x t F x t x F t F t              . 

The two output filters become 

( , ) ( , ), (0, ) (0, ) ( ) , (1, ) 0t xx x s sx t x t t z t t t         , 

and 

( , , ) ( , , ) ( )[ (0, ) ( ) ], (0, , ) 0, (1, , ) 0t xx s s xx t x t x z t t t t                 . 

Then the corresponding observer will be redefined as 

 
1 1

0 0
0 0

ˆˆ( , ) ( , ) ( , ) ( ) ( , , ) [ ( , ) ( ) ( , , ) ] ( )sz x t x t L x t G s x s t ds L x t G s x s t ds t            .(44) 

where 1( , ) ( ( , ))x t diag F x t  , 2( , , ) ( ( , , ))x s t diag F x s t  and ˆ ( ) n

s t  is the estimated 

sensor fault parameter vector. In order to proceed, similar to the actuator fault case, we 

introduce a variable defined by 

1 1

0 0
0 0

( , ) ( , ) ( , ) ( ) ( , , ) [ ( , ) ( ) ( , , ) ] ( )sz x t x t L x t G s x s t ds L x t G s x s t ds t           . 

Thus we can get that  

1

0
0

ˆ( , ) ( , ) [ ( , ) ( ) ( , , ) ] ( )sz x t z x t L x t G s x s t ds t     , 

where ˆ( ) ( )s s st t    is the parameter estimation error. Defining an error signal 

as ( , ) ( , ) ( , )x t z x t z x t   , it is clear that 

  
0

( , ) ( , ) ( , , ) ( , , ),t xx

x

x t x t d v x t d v tl x d       . (45) 

 (0, ) 0, (1, ) 0x t t   . (46)  

Then the estimated state error ˆ( , ) ( , ) ( , )z x t z x t z x t  can be represented as  

 
1

0
0

( , ) ( , ) [ ( , ) ( ) ( , , ) ] ( )sz x t x t L x t G s x s t ds t      . (47) 
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The next theorem evaluates the detection observer and presents an appropriate 

tuning law to approximate the fault function upon detection of the sensor fault. 

Theorem 3 (Detection and Fault Approximation): Let the observer in (44) be used 

to monitor the system defined by (21)-(22) and (18). The magnitude of detection residual 

( )e t will increase in the presence of a sensor fault and when it reaches the detection 

threshold, a fault is considered detected. Upon detecting a sensor fault, select the 

parameter tuning law as 

 ˆ ˆ[ ( ) (0, )] ( )T

s s st F t e t      , (48) 

where
1

0
0

( , ) ( , ) ( ) ( , , )F x t L x t G s x s t ds    ,  0 2  is the leaning rate, 0   

is a design parameter, and ( )e t is the detection residual defined 

as ˆ ˆ( ) ( ) ( ) ( ) (0, ) (0, ) ( ) ( )s s s se t y t t t z t z t t t      . Then the observer residual, z , and 

parameter estimation error, s ,  are bounded. 

Proof: See Appendix. 

The details of the proof for the above theorem are given in the Appendix.   Next, 

it will be shown that with the controller given by 

 

1

0

1

0 0

( ) (1, ) (1, )[ ( , ) ( , )]

(1, ) (1, )[ ( , ) ( , ) ( , ) ( , ) ]

d

d

U t v t K r t v t d

v t K r t z t M z t d d


   

       

  

   



 

 , (49) 

where ( , )v x t is given by (30) with observer state defined by (44) , the state tracking error 

( , )r x t will remain bounded. With the controller defined by (49), the dynamics of state 

tracking error in the presence of a sensor fault at the measured output can be expressed as 

(7), (8) and (32). 
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Theorem 4 (Fault Accommodation in the General Case): Let the control law in 

(49) be used upon detecting the sensor fault. Then the parameter estimation, observer 

estimation, and tracking errors are UB. 

Proof: See Appendix.  

Corollary 2 (Fault Accommodation in the Ideal Case): In the absence of 

disturbance or uncertainty, i.e. ( , , ) 0d v x t  , let the control law in (49) be used upon 

detecting the sensor fault. Then the parameter estimation, observer estimation, and 

tracking errors are UB with smaller bounds. 

It can be proven in the Appendix that s , z  and (0, )r t are bounded.  

Remark 2: Those bounds change with designed parameter min ( )c C .  

3.4. TIME TO ACCOMMODATION (TTA) 

In the previous sections, it has been shown that the tracking error will increase 

and exceed a limit in the presence of faults at the boundary conditions. Then the fault 

accommodation scheme will be applied to reduce the effect of faults on the tracking error. 

Now the estimated time to accommodation is introduced next. The estimated TTA is 

defined as the time available before the tracking error decreases below a predefined limit 

with the fault accommodation scheme. TTA using full states can be found in [23]. The 

following remark gives an explicit formula to estimate the TTA with output alone.   

Remark 2: Given an initial value of the output tracking and estimated state 

tracking errors, and the tracking error limit, upon detecting and activating the fault 

accommodation scheme, the TTA can be estimated as 

 ( )
1
max )( () a i

i n
T t tTA t

 
 , (50) 
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where
2

2

( )

ˆ ˆ(2 , ) 2 ( , ) (0, )

1

ˆ ˆ(2 , ) 2 ( , ) (0, )
(0, )

i i i

i

i

i
i

a

i

r h t r h t r t
p

hLn
r h t r h t r t

p r p
h

t

t





 

 

 




 
 





 







. The formula (50) is 

derived based on the tracking error dynamics (7). The following transformation  

 ( , ) ( , )r x t Pr x t  (51) 

will be utilized when is not diagonal to convert the dynamics of the tracking error (7) to  

 ( , ) ( , ) ( , )t xxr x t r x t r x t   (52) 

where 1

1 2( , ,... )nP P diag       with ( 1,2,... )i i n  being the eigenvalue of   

and 1 2[ , ,..., ]T T T T n n

nP p p p   . 

      By using finite difference method, ( , )xxr x t  can be derived as 

2

0
( , ) ( , ) lim[ ( 2 , ) 2 ( , ) ( , )] /xx xx

h
r x t Pr x t P r x h t r x h t r x t h


      , thus (0, )tr t  can be 

obtained as 

 
2(0, ) [ (2 , ) 2 ( , ) (0, )] / (0, )tr t P r h t r h t r t h r t     , (53) 

where 0h   is a sampling interval. The solution 1(0, ) [ (0, ),..., (0, ))]T

nr t r t r t to (53) in 

the interval 
( ), a it t    is given by 

(

( )

( )
) 2

(

)

)

( )

( )

(

(0, ) [ (2 , ) 2 ( , )

, 1,2,

(0,

...,

)] /

(0, )

a i

a

a i

i

t
T

i a i i
t

t

Tt

i

t

a i

r t e p r h r h r h d

e p t tt i nr and


   

 

 

  

   


, 

where t  is the current time instant and ( )a it  is the future time when the value of 

(0, )ir t decrease to its corresponding limit 1 2[ , ,..., ]T

i i np     for the first time where 

( 1,2,..., )i i n  is the limiting value of output tracking error (0, )ir t . Assume that the term 

(2 , ) 2 ( , ) (0, )r h r h r      is held in the interval ( ), a it t   , we can show that 
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2

( ) 2

[ (2 , ) 2 ( , ) (0, )] /1

(0, ) [ (2 , ) 2 ( , ) (0, )] /

T

i i i
a i T T

i ii i

p r h t r h t r t h
t Ln

p r t p r h t r h t r t h

 

 

   
 



  

 . (54) 

And in the formula given by (54), since (2 , )r h t  and ( , )r h t are unknown, we need to use 

ˆ ˆ(2 , ) (2 , ) (2 , )dr h t v h t v h t   and ˆ ˆ( , ) ( , ) ( , )dr h t v h t v h t   instead for ( )a it  as given before.  

Because the output tracking error for all the states must be less than their limits, the TTA 

is obtained as the maximum among all the individual TTA given by (50). 
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4. SIMULATION RESULTS 

In order to demonstrate the proposed scheme for fault accommodation, it has been 

implemented on a heated rod whose temperature distribution can be represented by a 

parabolic PDE. The dynamics of the heat equation with an actuator fault at boundary 

condition can be expressed as 

 

2 2

1 1 1 2 1

2 2

2 2 1 2 2

( , ) / ( , ) / 8 ( , ) ( , ) ( , )

( , ) / ( , ) / 2 ( , ) 10 ( , ) ( , )

v x t t v x t x v x t v x t d x t

v x t t v x t x v x t v x t d x t

       

       
 , (55) 

subject to 

 
1 1 1 1 1

2 2 2 2 2

(0, ) / 0, (1, ) ( ) ( )

(0, ) / 0, (1, ) ( ) ( )

v t x v t u t t

v t x v t u t t

 

 

    

    
 , (56) 

where ( , )v x t  is the system state representing the temperature of a heated rod at the 

position [0,1]x with time 0t  , 

20.5( 0.2)

1( , ) 0.05 sin( )xd x t e t   ,
20.3( 0.4)

2( , ) 0.06 sin(2 )xd x t e t  are disturbances  

and
( ), ( )

( )
,

i i i

i

i

u t if u t u
t

u else


 
 


  with 100iu   being the maximum value of the actuator 

output and 1,2i  . Given reference outputs as 0.5

1(0, ) 5(1 )t

dv t e   and 

0.5

2(0, ) 4(1 )t

dv t e   the corresponding controller under healthy conditions can be 

obtained using (31). The actuator fault is seeded at 5t s  with the fault parameters being 

defined by 1 1( ) 1.1 ( 5)t t     and 2 2( ) 0.8 ( 5)t t    where ( 5)i t   for 1,2i   is 

defined as 
 5

0 , 5
( 5)

1 , 5i
i t

if t
t

e if t
 


   

 
 with 1 0.3  and 2 0.6  representing fault 

growth rates. 
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For the simulation results using MATLAB, the closed-loop system and observer 

are discretized over the entire space 0 1x   by using the finite difference method with 

20 point grid. Next the performance of the detection and accommodation scheme is 

evaluated on this example when only output is available. 

4.1. ACTUATOR FAULT SCENARIO 

The total time for simulation in MATLAB is 25 seconds and the time interval for 

solving system PDE and filters is 0.01 second. By combing the solution of input filter 

along with output filters, the estimated state under healthy conditions given by observer 

(27) can be obtained. 

We assume that only the output temperature (0, )v t  is measured at 0x  . First, the 

DPS (55) and (56) should be converted to the observable form by applying the 

transformation (20). Then two output filters (25) and (26) along with one input filter (24) 

are employed to estimate states over the space and the output of the transformed system.  

Prior to the fault occurrence, the detection residual is expected to be decreasing, whereas 

it will increase once a fault occurs. It is clearly observed in Figure 4.1(a) that the residual 

between the output solution to system dynamics of (55)-(56) and the estimated output of 

(27) can reach a steady state in a short time, but once a fault is activated at 5t s , the 

residual increase because of the behavior of the system state changes. Then the fault is 

detected about one second after initiation, when the detection residual exceeds the 

threshold.  

Upon detecting the actuator fault, a fault filter is activated to learn the fault 

dynamics. In this case, we just have available measurement at 0x  , so the update law 
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(39) is utilized to estimate the fault parameter vector. The fault detection and estimation 

results can be seen from Figure 4.1. 
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Figure 4.1. Output feedback of (a) residual; fault parameter of (b) 1  and (c) 2  . 

Since the actuator fault will affect the controller of the actual system, the tracking 

error without accommodation will not decrease. However, if the fault tolerance controller 

is applied to the boundary condition, tracking error will first increase and then decrease 

once the adaptation is activated to estimate the fault dynamics. The comparison with and 

without accommodation results can be seen from Figure 4.2 (a) and (b).   

By utilizing formula (50), and setting the limits as 1 2 0.2   , the TTA can be 

estimated which can predict the time when the output tracking errors of the system shown 

in Figure 4.2 decrease below their limit values.  The fault is considered being 
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accommodated completely when both tracking errors approach below their limits as 

shown in Figure 4.3. 

 

 

 

0 5 10 15 20 25
0

0.5

Time(sec)

(I)      

M
a

g
n

it
u

d
e

 

 

Tracking error with accommodation

0 5 10 15 20 25
0

0.5

1

Time(sec)

(II)     

M
a

g
n

it
u

d
e

 

 

Tracking error without accommodation

 
(a) 

0 5 10 15 20 25
0

0.2

0.4

Time(sec)

(I)      

M
a

g
n

it
u

d
e

 

 

Tracking error with accommodation

0 5 10 15 20 25
0

0.5

1

Time(sec)

(II)     

M
a

g
n

it
u

d
e

 

 

Tracking error without accommodation

 
(b) 

Figure 4.2. Comparison with and without accommodation (a) 1(0, )r t ; (b) 2 (0, )r t . 
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Figure 4.3. Estimated time-to-accommodation for an actuator fault. 

4.2. SENSOR FAULT SCENARIO 

As mentioned in Section 3.3, with output available a sensor fault can be dealt. The 

sensor fault is represented as  
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1 1 1 1( ) (0, ) ( )sy t v t t    , 2 2 2 2( ) (0, ) ( )sy t v t t    , 

where
1 1( ) (0, )dt v t   , 2 2( ) (0, )dt v t   and fault parameters are expressed as 

1 1( ) 0.8 ( 8)s t t    and 2 2( ) 1.2 ( 8)s t t     where ( 8)i t   for 1,2i   is defined as 

 5

0 , 8
( 8)

1 , 8i
i t

if t
t

e if t
 


   

 
 with 1 0.3  and

2 0.6  . 

Here, the detection observer (27) is used to detect the fault. Figure 4.4(a) shows 

that the sensor fault can be detected in a short time. Once detecting of the fault, fault 

filters will be incorporated in the observer (44) with the update law (48) to approximate 

the fault parameter. Fault parameter estimation results are shown in Figure 4.4(b) and (c).  

In the presence of a sensor fault, outputs of the system will not track the reference output. 

Besides, the control input based on output feedback will increase the error between actual 

output and reference output. It can be observed from Figure 4.5 that in the occurrence of 

a sensor fault, the tracking error will increase immediately while if the control input (49) 

is utilized once detecting of the fault, the tracking error will be reduced.  
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Figure 4.4. Output feedback of (a) residual; fault parameter of (b) 1  and (c) 2 .  
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Figure 4.5. Comparison with and without accommodation (a) 1(0, )r t ; (b) 
2 (0, )r t . 

Based on the dynamics of the tracking error and given the limit value of the 

tracking error as 1 2 0.2    , we can estimate the TTA which can predict the time 

when those tracking errors are reduced below their limit values. Figure 4.6 plots the TTA 

by utilizing the proposed formula (50), it shows that fault can be accommodated 

completed within 4.5 seconds. 
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Figure 4.6. Estimated time-to-accommodation for a sensor fault. 
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5. CONCLUSIONS 

In this paper, first we propose a filter-based detection observer using output 

measurement alone. Compared to ODE representation of DPS, our PDE-based observers 

provide a more accurate estimation of the state, which is beneficial to both fault detection 

and accommodation. Furthermore with the filter based observer, both actuator and sensor 

faults are accommodated provided they occur one at a time. Upon detection, the proposed 

adaptive estimator incorporated in the observer provides valuable information about the 

fault function in order to estimate the time-to-accommodation. The filter based approach 

is critical when dealing with the implementation on practical systems. The effectiveness 

of the fault accommodation is guaranteed by the Lyapunov analysis.  Finally, the 

simulation results are included to verify the theoretical claims. 
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APPENDIX 

Proof of the performance of the filter based controller (31) under healthy 

conditions: Select the Lyapunov candidate given by 

 
12

2, 0 0

1 1
( ,( ) ( , )

2
, )

2

x
T

n
h

V z w t w t dx dx
k

t   
 

     , (A.1) 

and its derivative of V with respect to t  can be obtained as 

1 1

0 0 0

1 1
( , ) ( ,( ) )( , ) ,

x
T T

t t

h

V z z wx t x t w t d d
k

dx xt   
 

    . 

By substituting (28), (12), (33) and (34) to the equation above and applying the 

integration by parts, to get  

1 1

0

2

2, 0

1 1

0

0

0 0

( , ) ( , , ) ( , , )

( , ) ( , ) / ( ,

1 1

)

( , ) ( , ) ( , )

( , , ) / ( )

x
T T

x n

x
T T

x h h

V z z l x d v t d z d v x t

w x t w x t dx k w t d v t d d

x t x t

x

dx x t dx

k

  

  






 

 

 

  

 

1

0 0 0

1 1

0 0

1

0

0 0

122

2, 0 0

0 0

( , ) ( , ) ( , , ) / ( )

[ ( , ) ( , ) ( , ) ( , ) / ] /

( 2) / 4 ( , ) ( , ) /
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( , )

( , ) ( , ) , ) ( , )

x
T

h

x x
T T

h

x
T

hn

x
T Tk

h
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w t K d v t d d d

x t

d

x k

w t w t d dx w t Cw t d dx k

z c w t w t d dx k

d
z x z wt x t dx t w t d

k



 

      

      

    

  
 



 

  





  

   



 


1

122 2 2 2

2, 0 0
( 4) / 4 / 2 / (( 4 ) ( , ) ( , ) 2 ), / ()

x
T

l k h hn

dx

z x t d d c k c w t w t d dx k           



 

, 

where (1 )ld l d   , (1 )kd k d   with
20 1

max ( , )
x

k K x 
 

  and 
20 1

max ( , )
x

l l x 
 

  .  

Then 0V   when  

2 2 2 2
1

2 2 2 22, 0 0

2
( , ) ( , )

(
( , )

4) ( 4) 2

x
Tl k h l k

n
h

d d k d d
z or w t w t d dx

c k c c
x t   

    
   

     . 
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Therefore z and ( , )w x t  will be bounded. The boundedness of v  and r  are also guaranteed 

because of (20) and the invertible of (9). 

Proof of Theorem 1: This is an extension of the scalar case from [21]. To show 

the boundedness of observer and parameter estimation errors in the presence of fault, an 

error is first defined as ( , ) ( , ) ( , )x t z x t z x t   . It is clear that  

 
0

( , ) ( , ) ( , , , ,) ( , , ) (0, ) 0, (1, ) 0t xx

x

xx t x t d v x t d t tl dtx v         . (A.2) 

Now select a Lyapunov function candidate in the form of 

 
2

2,
/ (2 ) ( ) ( ) / (2 )( , ) T

a an
tV tx t       , (A.3) 

which is positive definite. Then the derivative of the Lyapunov function with respect to 

time can be obtained as 

1

0
( , ) ( , ) / ( ) ( ) /T T

t a aV x t x t dx t t        . 

Substituting the update law (39) in the above equation and notice 

that  (0,( ) (0, ) (0,) ) tae t z t tt     , results in  

2

2,

2

max

22 2

max2,

1

0

2 2

( , ) (0, ) (0, )

( , ) ( , ) /

( ) ( ) / 2 / 2

[ ( ) ( ) ] / 2

( 4) ( , ) / 8 ( ) ( ) / / (4 )(2 ) / (2 )

T T

x n

T T

a a a

T

a a a ln

l

x t t t

d x t

V e t e t

t t x
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dt
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Therefore, V  will be less than zero when 

 

2 2 2

max

222,

4 2

( 4)

a l

n

d




  







 or

2
2

max 2
(

2
)a

l
a

d
t








   . (A.4) 

It is shown that with the parameter tuning law (39), the derivative of this function 

will be less than zero if  or a  stays in a bounded region. Note that 
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since  ( , ) ( , ) t( , ) az x t x t x t   , the bound of the observer residual z is guaranteed 

since ( , )x t is bounded.  

Proof of Theorem 2: Notice that with controller modified as (40) the boundary 

condition of ( , )z x t  stays the same as ( , )z x t  

satisfying 0
ˆ(0, ) (0, ), (1, ) ( ) ( ( ), )x a az t L z t z t U t U t t     , thus the dynamics of ( , )x t is 

maintained as (A.2). Now select a Lyapunov function candidate as 
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2 2 4
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     . (A.5) 

By taking the derivative of the Lyapunov function with respect to time and applying 

integration by parts with (12) we can obtain 
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. 

Substituting the parameter update law from (39) and applying Poincare inequality in the 

above equation to get 
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Because  (0, ) (0, ) (0, ) taz t t t    and (0, ) ( )z t e t , the derivative of Lyapunov 

function can be rewritten as 
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From (43)
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By applying Poincare inequality [24], we 

have
1 1

0 0 0 0
( , ) ( , ) 2 0, ) (0, ) 4 ( , ) ( , )

x x
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first derivative of the Lyapunov function becomes 

2 2 22
2 max

22,

1

0 0

( 2) 2 (2 )
( ) ( )

4 4 2 2 4

( 2 )

( ,

( , ) ( , ) / 8 ,

) T a l k
a an

c

x
T

c

Rd dR
V t t

c k

c w t w t d

x

d

t

x k

   
  

   

     

   
     

   

 

where 
2

2

2
R









 and min ( )c C . Therefore, the derivative of Lyapunov function will 

be less than zero when 
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Hence,   and a  are ultimately bounded with the bounds defined above. 

Since      , , ( , ) az x t x t x t t   , z is also bounded due to boundedness of ( , )x t . 

So far we have shown the boundedness of 
1

0 0
( , ) ( , )

x
Tw t w t d dx    and 

because ( , )w x t is continuous in [0,1]x , the transformed tracking error (0, )w t is also 

bounded. Now, given the transformation (9) we know that (0, ) (0, )w t r t , the 

boundedness of the tracking error (0, )r t  is ensured.  

Proof of Theorem 3: This is an extension of [21] where only scalar actuator fault 

is considered. We have shown that under healthy condition the observer estimation error 

z will converge. Note that ˆ
s is initialized as ˆ (0) 0s   and it will not be updated until the 

detection of a sensor fault. Now select a positive definite Lyapunov function candidate as 
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With the update law (48) and the using fact that  
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the derivative of the Lyapunov function candidate is given by 
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Then, 0V  when 
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Therefore,  and s are ultimately bounded with the bounds defined above. 

Since ( , ) ( , ) ( , ) ( )sz x t x t F x t t   , z is also bounded because of the boundedness 

of ( , )F x t and thus v  is bounded due to (30). 

Proof of Theorem 4: The dynamics of state tracking error ( , )r x t  can be obtained 

as (7)-(8) and (32). Apply transformation (9) to (7)-(8) and (32), it leads to (12) and (33).  

Now select a Lyapunov function candidate as 
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By taking the derivative of the above with respect to time we will arrive at 
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Substituting (45), (12) and the update law (48) in the equation above and applying 

integration by parts 
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From (34) and (47) we can see that
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Then, apply Poincare inequality [24] to arrive at 
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 . (A.9) 

Thus,   and s are ultimately bounded. Next z is also bounded since 

       , , F , sz x t x t x t t    and ( , )F x t  is bounded. It has been shown that 

1

0 0
( , ) ( , )

x
Tw t w t d dx    and ( , )w x t  is continuous in [0,1]x , so ( , )w x t  is bounded. 

Then we know that (0, )r t is also bounded because (0, ) (0, )r t w t  from equation (9). 
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III. FAULT DIAGNOSIS IN DISTRIBUTED PARAMETER SYSTEMS 

MODELED BY LINEAR AND NONLINEAR PARABOLIC PARTIAL 

DIFFERENTIAL EQUATIONS 

Jia Cai and S. Jagannathan 

This paper covers model-based fault detection and isolation for linear and 

nonlinear distributed parameter systems (DPS). The first part mainly deals with actuator, 

sensor and state fault detection and isolation for a class of DPS represented by a set of 

coupled linear partial differential equations (PDE). A filter based observer is designed 

based on the linear PDE representation using which a detection residual is generated. A 

fault is detected when the magnitude of the detection residual exceeds a detection 

threshold. Upon detection, several isolation estimators are designed whose output 

residuals are compared with predefined isolation thresholds. A fault is declared to be of 

certain type if the corresponding isolation estimator output residual is below its isolation 

threshold while the other fault isolation estimator output residual is above its threshold. 

Next, the fault location is determined when a state fault is identified. The second part of 

this paper revisits fault detection and isolation of nonlinear DPS by using a Luenberger 

type observer. Here fault isolation framework is introduced to isolate actuator, sensor and 

state faults with isolability condition by using additional boundary measurements. Finally, 

the effectiveness of the proposed fault detection and isolation schemes for both linear and 

nonlinear DPS are demonstrated through simulation. Keywords—Fault detection, 

isolation, linear and nonlinear partial differential equation systems 
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1. INTRODUCTION 

Generally in order to increase system availability and reliability, fault diagnosis 

has drawn significant attention in the area of modern control systems.  Usually fault 

diagnosis consists of [1] (a) detection- to indicate the presence of a fault; (b) isolation- to 

determine the root cause and location of a fault; and (c) identification- to estimate the 

magnitude of a fault function. Fault isolation is a crucial step in fault diagnosis.  

A variety of fault diagnosis approaches have been studied in the past two decades 

and of them, model-based methods [2]  have found appealing since significant amount of 

healthy and faulty data is no longer required.  Model-based fault detection and isolation 

methods have been developed for lumped parameter systems (LPS) represented by 

ordinary differential equations (ODEs) by using adaptive observer [3] sliding mode [4] 

and fuzzy observers [5].  Despite the comprehensive effort, they [3-5] are only applicable 

for LPS.  

However, many fluid flow systems, thermal convection and spatially distributed 

chemical reaction-based systems are characterized as distributed parameter systems (DPS) 

or infinite dimensional systems. Because of their distributed nature, the ODE 

representation cannot describe the DPS behavior [6] and they are usually modeled by 

partial differential equations (PDEs).  Fault diagnosis of DPS is more complicated and 

challenging when compared to LPS since the system parameters are defined over a 

continuous range of both time and space [7].   

In the early effort, the DPS is approximated by finite dimensional ODE using 

Gelenkin’s method [8] by assuming that the DPS is dominated by finite dimensional 

system with slow eigenvalues [9].  Subsequently, several articles appeared in the 
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literature including an actuator failure detection method for DPS by identifying the 

actuator input [10].  An adaptive observer is developed in [11] to monitor the distributed 

parameter system and to provide information for the diagnosis of actuator faults. A 

geometric fault diagnosis approach, on the other hand, is introduced in [12] by 

approximating the PDE representation with a finite dimensional ODE. Despite these 

attractive results [8-12], the fault detection and isolation of DPS based on approximated 

finite dimensional ODE can lead to an inaccurate model description and thus can result in 

false or missed alarms due to incorrect isolation.  

Motivated by the model reduction concerns, authors derived a fault detection and 

isolation (FDI) scheme based on PDE representation of linear DPS in [13]. Unlike [8-12], 

authors [13] use an infinite dimensional adaptive observer to detect faults. In order to 

monitor system behavior, a detection residual signal, which is defined as the difference 

between the actual and estimated output of the observer, was generated. In the absence of 

a fault, this detection residual remains below a predefined detection threshold. A fault 

acts as an unwanted input to the detection residual dynamics and increasing it. A fault is 

declared active when this residual crosses the detection threshold. However, detectability 

condition for state faults and isolation is not covered [13]. 

Therefore, this paper extends the fault detection and prediction framework from 

[13] to fault isolation by utilizing the PDE representation of linear DPS. First, the 

detectability condition of state faults is introduced. Upon detection by using the detection 

observer from [13], actuator and sensor fault isolation estimators are developed to 

identify the fault type when the output residual of the corresponding fault isolation 

estimator is below a predefined isolation threshold while the output residual of the other 
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fault isolation estimator is above its threshold.  In the event that the fault type is not an 

actuator and sensor, several state fault estimators located over the space are introduced to 

help determine the location of the state fault by using a second output measurement-

spatial average over the sensed region. Several state fault isolation estimator residuals at 

different locations are derived and the one that is the minimum among them will 

determine the location of a potential state fault. Next, the magnitude of the fault 

parameter vectors are estimated upon fault identification for actuator, sensor and state 

faults.   

In the case of a nonlinear DPS, a Luenberger type observer from [14] is used for 

fault detection in the presence of bounded disturbances. For nonlinear DPS, due to lack of 

fault filters, isolation estimators cannot be derived and additional measurements are 

needed for fault isolation. By using additional measurements at the boundary conditions 

and estimated output of the detection observer, an actuator/sensor isolation residual is 

generated. 

When the actuator/sensor isolation residual exceeds its isolation threshold, the 

corresponding fault is isolated and if neither of them does, a state fault is considered to 

have occurred. Next, the isolability conditions are introduced to define the class of faults 

which can be isolated using the proposed scheme.  

In the analysis, it is shown that the proposed observer can estimate measured and 

unmeasured system parameters satisfactorily under healthy condition with limited output 

measurements. The main contribution of this paper includes the development of: (a) a 

novel model-based fault isolation and location determination scheme for linear DPS with 

actuator, sensor and state faults; (b) fault isolable condition for faults in linear DPS and (c) 
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a fault detection and isolation framework for nonlinear DPS with actuator, sensor and 

state faults with isolable conditions. 

The paper is arranged as follows. First of all, a class of DPS represented by linear 

parabolic PDE with actuator, sensor and state faults is presented in Section 2. A fault 

isolation scheme is introduced for linear DPS in Section 3. Then fault detection and 

isolation of nonlinear DPS is discussed in Section 4. Finally, the proposed schemes are 

demonstrated in simulation in Section 5. 
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2. NOTATION AND LINEAR SYSTEM DESCRIPTION 

Before introducing the system description, the notation is briefly introduced [15]. 

A scalar function
1 2( ) (0,1)v x L  implies it is square integrable on the Hilbert space 

2 (0,1)L  with its corresponding norm defined by 

 
1

2

1 12 0
( )v v x dx   . (1) 

Now consider 

 2 2 2 2[ (0,1)] (0,1) (0,1) ... (0,1)n

n times

L L L L   
 ,  (2) 

with 1 2 2( , ) [ ( , ), ( , ),..., ( , )] [ (0,1)]T n

nv x t v x t v x t v x t L    and the norm of a vector function is 

defined as 

 
12

2, 2 0
1

( ) ( )
n

T

in
i

v v v x v x dx


    .  (3) 

In addition,   denotes a Frobenius norm for a matrix or Euclidean norm for a vector. For 

sake of saving space, a vector, ( , )v x t  and its partial derivatives are represented as 

( , ) ( , ) /tv x t v x t t   , ( , ) ( , ) /xv x t v x t x   , and 2 2( , ) ( , ) /xxv x t v x t x    . 

2.1. LINEAR SYSTEM DESCRIPTION 

Consider a class of linear DPS expressed by the following parabolic PDE with 

Dirichlet actuation expressed as 

 ( , ) ( , ) ( , ) ( , )t xxv x t v x t v x t d x t    , (4) 

where [0,1]x  is the space variable and 0t   is the time variable with boundary 

conditions defined by 
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   0,  0  (1, ) ( ),xv v tt U t   , (5) 

for (0,1)x  and 0t  , where 
1 2( , ) [ ( , ),..., ( , )] [ (0,1)]T n

nv x t v x t v x t L   is the state vector 

of the DPS, ( , )d x t  is a bounded disturbance 

vector,
1( ) [ ( , ),..., ( , )]T n

nU t u x t u x t  denotes the control input vector,  is a positive 

constant,
n n is a real valued square matrix, and ( ) ny t  is the system output given 

by 

 ( ) (0, )y t v t  . (6) 

A second output will be utilized for location determination of a state fault and it is 

expressed as 

 
1

0
( ) ( ) ( )iy t C x v x dx   , (7) 

where ( ) n nC x   with
1 2 2

0
( )C x dx c  is a known function.   

Remark 1: The output defined in (6) is an ideal point sensor and the output given 

by (7) represents a spatial weighting function of sensors which is a spatial average over 

the sensed region [18]. The output equation (7) is required only for location 

determination when a state fault is identified. Next, the fault description is defined. 

2.2. FAULT DESCRIPTION FOR LINEAR DPS 

The DPS (4) with a state fault is described as 

      , , , ( , , ,, ) )(t xx c fx t x t x tv v v d x x tt h y x    , (8) 

and the boundary conditions with actuator and sensor faults can be written as 

    0,, , ( ) )0 (1x at tv v U t h t   , (9) 

and  
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 (0, )( ) ( )sy tt h tv  , (10) 

where 
fx  is the location of a state fault, ch  , ah  and sh  represent state, actuator and 

sensor fault functions respectively.  The fault functions are described by 

 
 

   

( ), ( )( ) ( ) , ( ) ( )

(, , , ( )) , ,

a f s fa a s s

c ff f c c

h t t t h t t tU t t t

h y x x t x t xt t y x

 



     





  
, (11)  

where 
ft  represents the time when a fault occurs, n

a  , n

s  and n

c   are the 

unknown actuator, sensor and state fault parameter magnitude vector, respectively, with 

( )( ( ), ) ( ( ( ), ))a n n

a iU t t diag U t t     is an actuator fault basis function, 

( )( ) [ ( )]s n n

s it diag t     denotes a sensor fault basis function, 

( )( ) [ ( )]c n n

f i fx x diag x x       determines the location of the state fault, and 

( )( ) [ ( , , )]c n n

c it diag y x t    is a state fault basis function.  

The term ( ) [ ( )], 1,2,...f i ft t diag t t i n      represents the time profile of the 

fault defined by 
0 , 0

( )
1 , 0i

i

if

e if
 







  

 
 with constant i denoting the growth rate of an 

incipient fault. Abrupt faults can be represented with large i . The following standard 

assumptions are required in order to proceed. 

Assumption 1: The disturbance vector is bounded above such that ( , )d x t d  for 

all x  and 0t  , where 0d   is a known constant. A general form is given in this paper 

and a more specific representation is found in [11]. 

Remark 2: The upper bound of the disturbance d  is required to determine the 

fault detection threshold.  
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Assumption 2: The magnitude of the fault parameter vector is considered 

unknown but assumed to belong to a known compact set N   

(i.e. , , ,n

N N N a s c      where a, s, and c denote actuator, sensor and state faults 

respectively), a represents an actuator fault, s represents a sensor fault and c  stands 

for a state fault, ( )N

i  is a known smooth function with ( )a

i representing an actuator fault, 

( )s

i  represents a sensor fault and ( )c

i  stands for a state fault. 

Remark 3: This assumption is needed to assist in selecting isolation thresholds.    

Assumption 3: Sensor, actuator or state fault types are considered and only a 

single fault occurs at a given time. 

Assumption 4:  For the sake of isolating the actuator, sensor, and state faults, it is 

assumed that the DPS functions longer than the isolation time it . 

Assumption 5: The fault functions are considered bounded. 

Next a filter-based detection observer is revisited from [13] to monitor the linear 

DPS and generate the detection residual. 
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3. FAULT DETECTION AND ISOLATION FOR LINEAR DPS 

A fault detection scheme for state fault and isolation framework will be 

introduced for linear DPS in this section. In order to detect unexpected faults, an observer 

acting as a model under healthy conditions is utilized to monitor system behavior. A fault 

causes the residual to increase beyond a detection threshold indicating the presence of a 

fault. Upon detection, a fault isolation scheme is subsequently applied to differentiate the 

actuator, sensor and state faults. The location will be determined if a fault is identified as 

a state fault.  

3.1. DETECTION OBSERVER DESIGN 

A filter-based observer was designed utilizing an input and a couple of output 

filters based on an observable form under healthy conditions. The filter-based observer 

relaxes the need for state vector measurements over the range of space. Next, the 

detection residual was generated by comparing the estimated outputs from the observer 

with measured outputs. Since only the output ( ) (0, )y t v t  is available, the DPS from (4) 

and (5) is first converted into the observable form by using the transformation [16] given 

by 

        
0

, , ,,
x

z v l xx t tv dx t     , (12) 

where  ,l x   is the solution to the hyperbolic PDE satisfying ( , ) /xxl l l x      , 

(1, ) 0l   and ( , ) (1 ) / (2 )l x x x    . The following observable form 

 ( , ) ( , ) ( ) (0, ) ( , )t xx lz x t z x t G x z t d x t    , (13) 

 0(0, ) (0, ), (1, ) ( )xz t L z t z t U t   , (14) 
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 ( ) (0, )y t z t  , (15)  

is obtained where 0 / (2 )L   , ( ) ( ,0)G x l x  and 

 
0

( , ) ( , ) ( ,, )
x

ld x t d x t d l x dt      is bounded since ( , )d x t and ( , )l x   are bounded. 

Notice (0, )z t  is available since (0, ) (0, ).v t z t This transformation prevents the unstable 

term, ( , )v x t , from appearing in the design of filters which are described next.  

The system model given by (13) and (14) is a linear PDE 

with ( ) (0, )G x z t , 0 (0, )L z t  and ( )U t viewed as external inputs. According to superposition 

principle, its solution can be expressed by summing the response of the PDE due to each 

external input [16] considered individually. Therefore, ( , ) nz x t  can be represented by 

a combination of the solution defined by 

 ( , ) ( , ), (0, ) 0, (1, ) ( )t xx xx t x t t t U t       , (16) 

where ( , )x t is denoted as an input filter, since it is derived from the input of the actual 

system ( )U t [16]  

Then consider  

 ( , ) ( , ), (0, ) ( ), (1, ) 0t xx xA x t A x t A t y t A t   , (17) 

where ( , )A x t is an output filter since it is derived from output of the actual system ( )y t . It 

is also important to consider  

 ( , , ) ( , , ) ( ) ( ), (0, , ) 0, (1, , ) 0t xx xx t x t x y t t t                , (18) 

where ( , , )x t is a second output filter. Therefore, the observer with its 

state, ˆ( , ) nz x t   , is defined as  

 
1

0
0

ˆ( , ) ( , ) ( , ) ( ) ( , , )z x t x t L x t G s x s t ds      . (19) 
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The estimated output and detection residual are given by 

 ˆ ˆˆ( ) (0, ), and ( ) ( ) ( )y t z t e t y t y t   . 

The dynamics of the observer error ˆ( , ) ( , ) ( , )nz x t z x t z x t    under healthy condition 

satisfies 

 ( , ) ( , ) ( , ), (0, ) 0, (1, ) 0t xx l xz x t z x t d x t z t z t     . (20)  

The detectability condition for the state fault is given next while the fault 

detection framework, and detectability condition for actuator and sensor faults are 

reported in [13]. In the presence of a state fault, the system dynamics are modified as (8) 

with boundary conditions given by (5). Take the partial derivative of the transformation 

(12) with respect to t as 

    
0

( , ) ( , ) , ,
x

t t tl xz x t v x v t dt      ,  

Substitute the dynamics given by (8) to the equation above and apply integration by parts 

to get 
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c f c f
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l x v v d

l

t l x h y x t d

v x t v x t tx v l x x v x t
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0

0 0
, ( , ) ( , , , ) ( , ) ( , , , ) .,

x

l c f c f

x

x

t d x t h y xl x x t l x h y x tv d d       



 (21)  

Differentiating the transformation given by (12) with respect to x  we can get the 

derivative of ( , )xz x t  as 

      
0

( , ) ( ,( , ) , ,) , ,
x

x x xv l x x v x tz x lx xt tvt d     (22)  
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0

( , )
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,,
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x

x xx
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dl x x
v v x t l x x v x t
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l x x v x t l x

z x t x

d

t
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  (23) 

Subtracting   (23) from (21) and applying the dynamics (8) yields 

 

       
0 0

( , ) ( , )

( , ) ( , , , )

( ,

( , )
2 ( ,0) (0, ) ( , )

, , , .) ( , , , ) ,

t xx

c f

x

c f

l
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d
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v x t h y x x t

l x h y x t d

l x x
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By using the fact that ( , ) /xxl l l x      , (1, ) 0l   and ( , ) (1 ) / (2 )l x x x    we get  

 

0

( , ) ( , ) ( ) (0, ) ( , )

( , , , ) ( , ) ( , , , )

t xx l

x

c f c f

z x t z x t G x z t d x t

h y x x t l x h y x t d



  

  

  
 , (24) 

with boundary conditions (14) and (15) where ( )G x  is defined after equation (15). Next, 

the following theorem will introduce a detectability condition for a state fault by using 

(24). 

Theorem 1 (State fault detectability condition): Consider the observer defined by 

(19) is utilized to monitor (24) and (14–15).  A state fault initiated at the time instant, ft , 

and location, fx  , is detectable if there exists a time fT t  such that for all t T , the 

following condition  

 



2

1

0 0
0

[( 0.5) ] ( )

2 [ ( , , , ) ( , ) ( , , , )

]cos[( 0.5) ] 2

f

t x

c f c f
t

n

n t

h y x x l x h y x

d n x dx e d  

   

   





  



  

  
 , (25) 

is satisfied where 0,1,2,...n   is an integer.  

Proof: See Appendix. 
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Remark 4: The proof shown in the Appendix demonstrates that a state fault 

satisfying the detectability condition given by (25) can be detectable by using the 

observer given in (19). 

The next step is to determine the type and location of the fault.  

3.2. FAULT ISOLATION SCHEME 

Upon detecting a fault, the fault type has to be identified followed by fault 

magnitude estimation. In the case of a state fault, the location has to be found.  

To determine the fault type, first an additive actuator and sensor fault isolation 

estimators, to be presented next, are activated as shown in Figure 3.1 to generate the 

corresponding time-varying estimator output residuals, ( )ae t  and ( )se t , for actuator and 

sensor respectively which are to be defined later. The actuator and sensor fault locations 

are trivial. The isolation scheme in Figure 3.1 shows that when one of the isolation 

residuals stays below its isolation threshold a or s for actuator or sensor respectively, the 

fault is considered to be of that type while the others are above their threshold.  A fault is 

categorized a state fault when both the sensor and actuator isolation residuals exceed their 

thresholds. Next, the actuator and sensor isolation estimators will be introduced.  

3.2.1. Actuator Fault Isolation Estimator. Upon detection of a fault, for an 

additive actuator fault, a fault filter given by 

 ( , ) ( , ), (0, ) 0t xx xF x t F x t F t  , (26)  

 ( ) ( )

1(1, ) [ ( ( ), ),..., ( ( ), )]a a T

nF t U t t U t t  , (27)  

is incorporated into the observer (19) to construct an actuator fault isolation estimator 

where ( , ) nF x t   is utilized to estimate the fault function with initial condition 
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( , ) 0dF x t   . In order to match the dimension of ( ( ), ) n n

a U t t   ,  

( , ) [ ( , )]aF x t diag F x t  is used to estimate the fault function. The next theorem will cover 

the performance of an actuator isolation estimator. 

Remark 5: By representing ( ( ), )a U t t  in (27) as a diagonal matrix to derive the 

actuator fault filter, the number of PDE equations can be reduced from n n  to n . In 

addition, if ( ) ( )

1[ ( ( ), ),..., ( ( ), )] ( )a a T

nU t t U t t U t   , the fault filter given by (26) and (27) 

will be same as the input filter described by (16). 

 

 

 

A fault is detected

Actuator and sensor faults estimators are activated

Generate actuator and sensor faults estimator residuals 

it t

                       

NO

NO

YES

NO

Sensor Fault

Actuator FaultYES

State Fault

YES

& ?a a s se e  

& ?s s a ae e  

 
Figure 3.1. Fault isolation scheme. 
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Theorem 2 (Actuator fault isolation estimator performance): Once detecting a 

fault at time dt , consider  

 ˆ ˆˆ ˆ ˆ( , ) ( , ) ( , ) ( ), ( ) (0, )a a a a az x t z x t F x t t y t z t    , (28) 

as the estimator at dt t for the state and output of the system in the presence of a 

bounded actuator fault, where ˆ( , )z x t  is given by (19), and ˆ ( ) n

a t  is the estimated 

actuator fault parameter vector. Consider the projection algorithm given by 

 ˆ ( ) { (0, ) ( )}
aa at F t e t  P , (29)  

to tune the parameter vector where 0  is the adaptation rate and 
a P is the projection 

operator. The actuator output isolation residual, ( ) ( ) ( )a ae t y t y t  , will remain bounded 

and stays within an fault isolation threshold a  .  

Proof: See Appendix. 

Remark 6: By defining the actuator fault isolation threshold a  as 

 ( ) ( ) (0, )a a at t F t D      , (30) 

it can be shown in the Appendix that ( ) ( )a ae t t by using estimator defined by (28) 

with parameter vector tuned by (29).  This ensures that an actuator fault can be isolated. 

Similarly, a sensor fault isolation estimator will be proposed next. 

3.2.2. Sensor Fault Isolation Estimator. The presence of a sensor fault changes 

the value of ( )y t and thus causes the dynamics of two output filters given by (17) and 

(18) to provide inaccurate state estimates. Two fault filters are needed in order to mitigate 

the changes. Upon detecting the fault, consider  

 ( ) ( )

1 1 1 1 1( , ) ( , ), (0) [ ,..., ] , (1, ) 0s s T

t xx x nF x t F x t F F t     , (31) 
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2 2 1( , , ) ( , , ) ( )[ ,..., ( )]T

t xx nF x t F x t x t         ,  (32) 

 2 2(0, , ) 0, (1, , ) 0xF t F t    , (33) 

where 1( , )F x t and
2( , ) nF x t  are states of fault filters. Then the following theorem will 

establish a sensor fault isolation estimator and define its performance based on these fault 

filters given by equations above. 

Theorem 3 (Sensor fault isolation estimator performance): Upon detecting a fault, 

consider the sensor fault isolation estimator for dt t  given by 

 
1

0
0

ˆˆ ˆ( , ) ( , ) [ ( , ) ( ) ( , , ) ] ( )s sz x t z x t L M x t G s x s t ds t    , (34) 

with 

 ˆˆ ˆ( ) (0, ) ( ) ( )s s s sy t z t t t   , (35)  

to estimate the state and output of DPS, where 1( , ) ( ( , ))x t diag F x t   , 

2( , , ) ( ( , , ))x s t diag F x s t  and ˆ ( ) n

s t   represent the estimated sensor fault parameter 

vector. Consider the parameter tuning law given by  

 ˆ ( ) { (0, ) ( )}
s

T

s st F t e t  P , (36)  

where
1

0
0

(0, ) ( ) [ (0, ) ( ) (0, , ) ]s sF t t L t G s s t ds     , 0L  is defined after the equation 

(15) and 0   is the adaptation rate.  

Then for dt t , the sensor fault estimator output isolation 

residual, ˆ( ) ( ) ( )s se t y t y t  , will be bounded and remains below a predefined sensor fault 

isolation threshold s .  

Proof: Refer to Appendix. 
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Remark 7: Define the sensor fault isolation threshold as 

 ( ) ( ) (0, )s s st t F t D      . (37) 

By utilizing the sensor fault estimator given by (34) and output defined by (35) along 

with the parameter tuned by (36), we can show ( ) ( )s se t t in the Appendix. 

Remark 8: It is shown that in the presence of an actuator or sensor fault, the 

corresponding isolation estimator output residual should be within its corresponding 

isolation threshold a  or s , respectively while the other residual exceeds its isolation 

threshold. To the contrary, when both sensor and actuator fault isolation estimator output 

residuals exceed their corresponding isolation thresholds, a state fault is considered to 

have occurred.  

Note the difference between the time-varying isolation thresholds a or s and the 

constant detection threshold  . The isolation thresholds (30) and (37) are generally 

higher than the detection threshold. For example, as shown in Figure 3.2 (a) the 

magnitude of the actuator estimator output residual ( )ae t  will cross the detection 

threshold  and yet always stay within the isolation threshold for the actuator fault 

estimator ( )a t  in the presence of an actuator fault.  

The identification of a state fault requires location determination, which is 

introduced next.  

3.2.3. Location Determination of a State Fault.  First, several state fault 

filters 1,2,3,...,i p , with p  represents the number of filters, which divides the system 

space (0,1)x  into 1p   identical segments, will be designed next to construct the state 

fault estimator. By comparing the estimated isolation outputs given by estimators with 
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the measured output, p  isolation estimator errors will be generated. The estimator 

generating the minimum error magnitude is believed to be closest to the actual state fault 

position.  Notice that placing more estimators, p , will result in the determination of 

accurate fault location but this will increase the computational cost. After introducing the 

state fault filters and the estimator, the performance of the estimator will be demonstrated 

and the isolability condition which defines the class of isolable faults will be given. Next, 

the state fault filters will be introduced. 

 

 

 

dt

dt t

t

( )a t

dt

dt t

t

dt t



dt t
(a) (b) (c)

( )a t ( )a t

( )s t

( )s t

( )s t

  



( )ae t

( )ae t ( )ae t

( )se t

( )se t

( )se t

 

Figure 3.2. Isolation with (a) an actuator fault, (b) sensor fault, and (c) state fault. 

The system dynamics with a state fault can be written as 

 ( , ) ( , ) ( ) (0, ) ( , , , ) ( , , ),t xx c f c lz x t z x t G x z t y x x t d v x t       (38) 

with boundary conditions given by (14) and (15) where 
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0

( , , , ) ( , , ) ( ) , ( , , ) ( ) .
x

c f c f c fy x x t y x t x x y t x dl x             (39) 

In order to construct the state fault isolation estimators, fault filters are incorporated into 

the observer (19). The state of the estimator, ( )ˆ ( , )iz x t  at location ix x with corresponding 

estimated output ( )ˆ ( )iy t  can be represented as 

 ( ) ( ) ( )ˆˆ ˆ( , ) ( , ) ( , ) ( )i i i

c cz x t z x t F x t t   , (40) 

 ( ) ( )ˆ ˆ( ) (0, )i iy t z t  . (41) 

where ( ) ( , )i

cF x t represents 
thi  fault filter at position ix x for (0,1)ix  with 1,...i p . The 

fault filter is designed using 

 ( ) 2 ( ) 2( , ) / ( , ) / ( , , , )i i

c c c iF x t t F x t x y x x t       , (42) 

 ( ) ( )(0, ) / 0, (1, ) 0i i

cF t x F t    , (43) 

with 

  
0

( , , , ) ( , , ) ( ) ( , , ) (, )
x

c i c i c iy x x t y x t t xl xx x y d              

where ( ) ( , )i n n

cF x t   is the 
thi  fault filter state, ( )ˆ ( )i t  is the adaptive parameter vector 

of 
thi  state fault estimator. The state estimation error is defined as 

 ( ) ( )ˆ( , ) ( , ) ( , )i iz x t z x t z x t   ,  (44) 

whereas the output residual is given by ( ) ( )ˆ( ) ( ) ( )i ie t y t y t   . In order to study the 

performance of the estimation error ( ) ( , )iz x t , define  

 ( ) ( )ˆ( , ) ( , ) ( , )i i

c cz x t z x t F x t    . (45) 

It can be observed that as ( )ˆ ( )i

c ct   , the estimator state defined by (40) is the same as 

(45).  
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Define ( ) ( )( , ) ( , ) ( , )i ix t z x t z x t   and its dynamics are given by 

 ( ) ( )( , ) ( , ) ( , ) [ ( , , , ) ( , , , )]i i

t xx l c f c i cx t x t d x t y x x t y x x t        , (46) 

 ( ) ( )(0, ) 0, (1, ) 0i i

x t t    . (47) 

From the definition of ( ) ( , )iz x t  and ( ) ( , )i x t  we can 

get ( ) ( ) ( ) ( )( , ) ( , ) ( , ) ( )i i i i

c cz x t x t F x t t   . If the estimator is located at the same position as 

the actual fault, i.e.
i fx x  , ( ) ( , )i x t  will have same dynamics as the one given by (20) 

which is bounded for all [0,1]x , dt t  and the bound only depends on the upper bound 

of the disturbance. An adaptive update law is proposed to tune the adaptive parameter 

and an identifiable condition, which defines the class of state faults whose location can be 

identified using the proposed estimators, is included in the next theorem. 

Theorem 4 (State fault estimator performance): Let the state fault estimator be 

defined by (40) and (41) with parameter update law be presented as  

 ( ) ( ) ( ) ( )ˆ ˆ( ) [ (0, )] ( ) ( )i i T i i

c c ct F t e t t     , (48) 

where  is a positive constant and 20 ) 2( 4 /    is the adaptation rate parameter to 

be used to estimate the system state described by (38) and (14) upon detecting a state 

fault. By comparing the actual isolation output defined in (7) with the estimated isolation 

output defined by 

 
1

( )

0
ˆ ˆ( ) ( ) ( )i

iy t C x v x dx  , (49)  

where
( )ˆ iv  is the estimated system state given by 

       ( ) ( ) ( )

0
ˆ ˆ ˆ, ,,,

x
i i ix t x t tv z K x z d    with 

[0,1]

( , )
x

k K x 


   and ( , )K x   being the 



 130 

kennel matrix of the inverse transformation 

        ( ) ( ) ( )

0
,, , ,

x
i i iv z Kx t x zt tx d      , (50)  

the location of a state fault occurred at position
fx x is identifiable when the state fault 

mismatch function ( ) ( , , , ) ( , , , )i c f c ix y x x t y x x t    and fault filters defined by (42) 

and (43) satisfy  

s r   and
1 1

( ) ( )

0 0
( , ) ( , )s r

s c r cF x t dx F x t dx    when
s f r fx x x x    

for s and 1,...r p  ,   (51) 

where 
2 2 2

max( ) / , , .i i l cd i r s         

Proof: See Appendix. 

Remark 9: It is shown in the Appendix that the isolation output residual defined 

by
( ) ( )

ˆ( ) ( ) ( )
i i

i iiy t y t y t    is bounded by  

 
( ) 122 2 2 ( )

max
0

( ) (2 4 )[ 2 2[ ] / ( , ) ],
i

i

i

c i l i cy t c k d F x t dx           (52) 

when (51) holds and it is clear that the less the distance between the actual fault and filter 

location given by 
i f iS x x  , the smaller the bound given by (52). Therefore, the true 

fault location is determined as the one that is closest to the state fault estimator generating 

a residual that is minimum over others.  

Remark 10: The identifiable condition defined by (51) has two parts because from 

the isolation output residual given by (52), we can obtained that the magnitude of the 

residual is determined by the value of both  i  and 
1

( )

0
( , )i

i cF x t   . In order to isolate 
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an actuator, sensor and state fault, an isolable condition is required which will be 

introduced next. 

3.2.4. Fault Isolability Condition.  In this part, a fault isolability condition is 

derived on the basis of the proposed fault isolation scheme to define the class of faults 

that can be isolated. Faults which can produce enough difference on the measurements 

are simpler to isolate. For the sake of expressing this difference, define a fault mismatch 

function  

 ˆ( ) (0, ) (0, ) ( ),rm

r r m mh t F t F t t   (53)   

where , ,r a s c  and (0, )r rF t   represents the change of the measured output caused by 

an actuator fault, sensor fault or state fault respectively, ,m a s  and (0, )mF t  denotes 

effect caused by an estimated actuator fault or sensor fault on the output and r m . The 

fault mismatch function can be viewed as the difference between the actual change of the 

output (0, )r rF t  due to the fault and estimated change of the output (0, )m mF t  given by 

any other fault estimator m whose framework does not match with the actual fault r .  

A fault r that has been detected is isolable if for each estimator { , }\{ }m a s r , 

there exists a time i dt t  such that the fault mismatch function defined by (53) satisfies 

the following inequality 

 ( ) 2 ( ) (0, )rm

m mh t t F t D    . (54)  

Proof: See Appendix. 

Next the fault detection and isolation of nonlinear DPS is introduced. 
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4. NONLINEAR SYSTEM DESCRIPTION 

A class of DPS represented by a bank of nonlinear PDEs will be introduced in this 

section. The system description under healthy conditions will be presented first and with 

actuator and sensor faults will be given in the second part. 

4.1. SYSTEM DESCRIPTION WITHOUT FAULTS 

The state representation of a class of nonlinear DPS is expressed as  

 
2

2

( , ) ( , )
( , ) ( , , )

v x t v x t
c f v x d v x t

t x

 
  


, (55) 

with boundary conditions given by 

   (0, ),   (1 ), (0 , ),xv Qt v t v t u t    (56) 

and  

 ( ) (0, ), ( ) (0, ), ( ) (1, )s x ay t v t y t v t y t v t   , (57)  

where [0,1]x   is the space variable, 0t   is the time variable, ( , ) nv x t   represents 

the state vector. 

Notice that ( )y t  is the measured output for observer design and fault detection, 

( )sy t  is an additional required measurement for sensor fault isolation while ( )ay t  is the 

required measurement for an actuator fault isolation, ( , ) nf v x   is the nonlinear vector 

function, ( , ) nd x t   denotes the disturbance, n nQ   is a nonzero square matrix, and 

0c   is a constant. 

Assumption 6: The nonlinear vector function ( , )f v x  satisfies the following 

conditions 
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a. ( , )f v x  is Lipschitz continuous in v , 0  in x , 1  in t  and v  for [0,1]x  , 0t   

and 2( ) (0,1)v x L . 

b. ( , )f v x  should satisfies 
( , )

( , ) ( , ) ( , )f

f v x
f v v x f v x v v x

v



     


,where v  

represents a small change in v and ( , )f v x  is the approximation error satisfying  

2,f fn
  .  

Remark 11: Assumption 6 (a) indicates that 
( , )f v x

v




 is bounded. 

Remark 12: In order to meet the requirement 
2,f fn

  in Assumption 6 (b),  

v needs to be small enough implying that the initial condition of the observer which will 

be introduced in Subsection 4.2 should be close to the initial condition of the system 

described by (55) and (56).  

In the presence of a state fault, the state representation given by (55) is modified 

as  

 
2

2

( , ) ( , )
( , ) ( , ) ( , )c

v x t v x t
c f v x d x t h u y

t x

 
   


 . (58) 

Similarly, the boundary conditions are changed as  

    0,, , ( ) )0 (1x at tv v u t h u    , (59) 

in the presence of an actuator fault and  

 ( ) (0, ) ( )sy t v t h t   , (60) 

in the presence of a sensor fault.  

Assumption 7: The fault type considered in the nonlinear system is state, actuator 

or sensor faults and only one fault occurs at any time. 
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Next, a detection observer will be first presented and then a fault isolation scheme 

for differentiating state, actuator and sensor faults will be proposed. 

4.2. OBSERVER DESIGN 

First the design of the observer will be introduced. Next for the sake of selecting 

suitable gains of the observer, the observer error dynamics will be considered. It will be 

shown that by appropriately selecting observer gains, the error dynamics will be bounded. 

In order to monitor the system behavior described by (55), (56) and (57), a detection 

observer is proposed as 

 
2

12

( , ) ( , )
ˆ( ) ( , )( )

ˆ ˆ
ˆ,

x t x t
c f x P x t y y

t x

v v
v

 
   

 
 , (61) 

  10

(0, )
ˆ(

ˆ
ˆ( ) )( ) (, 1, )

t
t y

v
Qy t P vy t u

t
t  





 , (62) 

 ˆ ˆ( ) (0, )y t v t  , (63) 

where ˆ( , ) nv x t   represents the observer state, 
1( ) n nP x   and

10

n nP   are observer 

gains and ˆ( ) ny t   is the estimated output.  

Define detection residual as ˆ( ) ( ) ( )ne t y t y t    , and the observer error is 

given by 

ˆnv v v    .  

Then, by applying Assumption 6, the dynamics of the observer error can be 

obtained as  

       1, , ( ) ( , ), ( ,( , ) ( ) )t xx fv cv A t v v x Px t x xt x d ttt t xe     , (64) 

subject to the boundary conditions given by 

    100, ( ) , 1, 0( )xv e tt P t tv    , (65) 



 135 

where
ˆ

( , , )
( )

T

v v

f v x t
A t

v 

 . It can be shown that when the observer gains are selected as 

[14] 

 
 

11 0

,0,
( , ) , (0,0 )( ,)

L x t
P x P tt c L t








 , (66) 

then by applying the transformation 

        
0

,, , ,,
x

x t x t L x tv t d      , (67)  

to the observer error dynamics described by (64) and (65), it will be converted into a 

stable system given by 

 
   

 
2

2
( )

, ,
, ( , ) ( , )fM M

x t x t
x t vc b t

t
x d x

x
t

  
    

 
 , (68) 

  1, 0
(0, )

0,
t

x
t


  


. (69)  

where ( , , )L x t  is the unique solution to the well-posed PDE [14] given by 

 
2 2

2 2

( , , ) ( , , ) ( , , )
( ) ( , , ) ( ) ( , , ) [ ],

L x t L x t L x t
A t L x t b t L x t c

t x

  
 



  
   

  
  (70) 

    
( 1)

1, , 0,  , , [ ( ) ( ) ]
2

n n

x
L t L x x t A t b t I

c
 


    , (71) 

( , ) nx t   , ( , , ) n nL x t   , and ( ) 0b t   is an arbitrary scalar, 

0
( , ) ( , ) ( , , ) ( , )

x

Md x t d x t M x t d t d     and 
0

( , ) ( , ) ( , , ) ( , )
x

fM f fv x v x M x t v d         

with ( , , ) n nM x t    is the kennel matrix of the inverse transformation given by 

        
0

, ,, , ,
x

v M x t v dx t x t t      . (72)  

The following theorem shows the performance of the detection observer defined by (61), 

(62) and (63). 
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Theorem 5 (Detection observer performance): Let the observer defined by (61), 

(62), and (63) to estimate the unmeasured states and measured output of the DPS given 

by (55), (56) and (57). In the absence of a fault, detection residual ( )e t  will be bounded 

and maintained below a detection threshold  .  A fault can cause ( )e t  to increase and 

exceed the threshold  . 

Proof: Refer to Appendix. 

Remark 13: It is shown in the Appendix that under healthy conditions the 

detection residual defined as ( ) (0, )e t v t is bounded by 

 

317
( ) 2

2[ 2 ( )][16
(

( ) 1]
)M fM

c
e t

c b t b t
d 

 
 , 

and the bound depends upon the disturbance bound. Based on this bound, a predefined 

threshold  is selected, and in the absence of any fault, the magnitude of the detection 

residual should be below the threshold  . In the presence of any type of fault (Figure 

4.1), the measured output will deviate from the estimated output and thereby cause the 

detection residual to increase and exceed the predefined threshold. In that case, a fault is 

declared to be active.  

The fault isolation scheme will be introduced next. 

4.3. FAULT ISOLATION SCHEME 

Once a fault is detected by using the proposed observer as shown in Subsection 

4.2, the fault type needs to be identified. In order to isolate the faults, it is assumed that 

the system operates longer than the isolation time it . The proposed isolation scheme can 

only identify the fault type and the location determination is out of the scope of this paper.  
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Figure 4.1. Fault detection scheme. 

The isolation scheme given by Figure 4.2 indicates that after detecting a fault, by 

using the measurements defined by (57) and the estimated output given by the observer, 

the actuator and sensor fault isolation residuals ( ae  and se ) which will be defined next are 

generated. Because the presence of an actuator/sensor fault can only cause the 

corresponding fault isolation residual to increase, if one of the fault isolation residual 

( ae / se ) exceeds its isolation threshold, the corresponding fault will be declared; and if 

neither of them does, the fault is considered a state fault. 

Theorem 6 (Fault isolability condition): Upon a fault is detected at dt t , let the 

additional measurements ay  and sy  defined by (57) be used to generate the actuator and 

sensor fault isolation residuals defined as ˆ( ) ( ) (1, )a ae t y t v t  and ( ) ( ) ( )s se t y t Qy t   

respectively. Then 

I. An actuator fault will be isolable if there exists a time a dt t such that the magnitude 

of the actuator fault satisfies ( ; )a a ah u t  ; 
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II. A sensor fault will be isolable if there exists a time s dt t  that the magnitude of the 

sensor fault satisfies ( )s s sQh t  ; 

III. A state fault will be identified if ( )a ae t    and ( )s se t   for all d it t t   . 

Proof: See Appendix. 

Remark 14: Based on the analysis in the Appendix, it is known that either the 

actuator fault or the sensor fault will cause the fault residual to exceed its corresponding 

isolation threshold. Therefore, if a fault is detected at dt  and ( )a ae t   , ( )s se t   for 

all d it t t  , a state fault will be considered to occur. The selection of a  and a  can be 

based on the upper bound of the sensor noise. 
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Figure 4.2. Fault isolation scheme. 
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5. SIMULATION RESULTS 

The proposed fault detection and isolation scheme for linear DPS will be 

demonstrated in the first part of this section in the simulations by using MATLAB, and 

the verification of the scheme for nonlinear DPS will be introduced in the second part 

with a normalized heat equation. 

5.1. FAULT ISOLATION OF A LINEAR SYSTEM 

The linear DPS described by linear parabolic PDEs are given by 

 
2

2

8 1( , ) ( , )
( , ) ( , )

2 10

v x t v x t
v x t d x t

t x

  
   

   
 , (73) 

 
(0, )

[0;0], (1, ) ( )
v t

v t u t
x


 


, (74) 

 
1 2( ) [ ( ), ( )] (0, )Ty t y t y t v t  , (75)  

for [0,1]x  and 0t    where 2 1( , )v x t    represents the system state, 

2

2

.5( 0.2)

.3( 0.4)
0.05 sin( )( , )

0.06 sin(2 )

x

x
e td x t
e t

 

 

 
   

 denotes the disturbance, ( )u t is the control input 

implemented at the position 1x  , and the output, ( )y t , is measured at the opposite end.  

In order to solve the system represented by PDE (73) - (74) and the detection 

observer using MATLAB, the space and time intervals are selected as 0.05x   and 

0.01t  . Upon detection of a fault, the actuator and sensor fault estimator with outputs 

given by (28), (34) and (35) are employed to isolate the sensor, actuator and sensor faults. 

Figure 5.1 shows that the sensor fault residual keeps within its isolation threshold all the 

time while an actuator fault residual exceeds its threshold. Combining the isolation 

results with the fault isolation scheme described in Figure 4.1 indicates a sensor fault. 
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Once a sensor fault is identified, the update law given by (36) will be utilized to estimate 

fault parameters. After an initial adaptation, as shown in Figure 5.2(b) and (c), the fault 

parameter vector can be estimated satisfactorily, which means the detection residual is 

reduced below the threshold again as shown in Figure 5.2(a). 
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Figure 5.1. Fault isolation of a sensor fault.  

Next, a state fault seeded at 0.2fx   is considered and the fault function is 

characterized as  

   2 2

1 2, , [ ( ), ( )] ( ) ( 0.2)c ch y x t diag y t y t t x    , (76)  
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where
1.2

( ) ( 6)
2.3

c t t
 

    
 

 represents the state fault parameter vector and 

( 6) ( ( 6))it diag t     for 1,2i   which is the time profile of the state fault where 

 ( 6)
0, 6( 6) 1 , 6i t

i

if tt e if t
 

      with 1 0.3   and 2 0.6   .  

 

 

 

0 5 10 15 20
0

0.5

1

Time(sec)

(a)      

M
a

g
n

it
u

d
e

 

 

0 5 10 15 20
-2

0

2

Time(sec)

(b)      

M
a

g
n

it
u

d
e

 

 

0 5 10 15 20
-2

0

2

Time(sec)

(c)      

M
a

g
n

it
u

d
e

 

 

Estimated fault parameter

Actual fault parameter

Estimated fault parameter

Actual fault parameter

Detection residual

Threshold

 

Figure 5.2. Fault detection and estimation results. 

As noted previously, once a fault is detected, the actuator and sensor fault 

estimators are utilized to generate the corresponding fault residuals. It is obvious from 

Figure 5.3 that both the actuator and sensor fault residuals cross their thresholds implying 

a state fault.  



 142 

0 5 10 15 20 25 30
0

20

40

60

80

Time(sec)

(a)

M
a

g
n

it
u

d
e

 

 

Actuator Fault Residual

Actuator Fault Threshold

0 5 10 15 20 25 30
0

20

40

60

80

Time(sec)

(b)

M
a

g
n

it
u

d
e

 

 

Sensor Fault Residual

Sensor Fault Threshold

 
Figure 5.3. Fault isolation of a state fault. 

After the identification of a state fault, the next step is to determine the fault 

location. In order to achieve this, four fault filters seeded at four different locations 

0.2,0.4,0.6,0.8ix   (see Figure 5.4) will be applied with isolation output selected as 

(notice that the isolation output is not limited to the one defined next) 

 ( ) [ (0.1, ) (0.3, ) (0.5, )] / 3iy t v t v t v t   . (77)  

Each fault filter can generate an estimated isolation output, and using which four isolation 

residuals are generated by taking the difference between the actual and estimated 

isolation outputs. The state fault location is determined as 0.2fx   since Figure 5.4 

shows that the magnitude of the isolation error generated by adding the fault filter at 

position 0.2ix   is the minimum.  



 143 

0 10 20 30
0

0.5

1

1.5

2

Time(sec)
M

a
g

n
it

u
d

e

 

 

Isolation error1

0 10 20 30
0

5

10

15

Time(sec)

M
a

g
n

it
u

d
e

 

 

Isolation error2

0 10 20 30
0

10

20

30

Time(sec)

M
a

g
n

it
u

d
e

 

 

Isolation error3

0 10 20 30
0

10

20

30

Time(sec)

M
a

g
n

it
u

d
e

 

 

Isolation error4

 

Figure 5.4. Location determination of a state fault. 

5.2. FAULT ISOLATION OF A NONLINEAR SYSTEM 

A heat equation with a nonlinear term is expressed as  

   
   

 
52

1 ( , )

2

, ,
4 20 ( ), ,v x t

x t x t
x t

v v
v e d x t

t x




 
   

 
 , (78) 

subjecting to the boundary conditions 

 
(0, )

0.5 (0, ), (1, ) ( )
v t

v t v t u t
x


 


 , (79)  

where ( , )v x t  is the system state,  ( )u t  represents the control input, and 

2100( 0.5)( , ) 0.01sin( ) xd x t t e  denotes the disturbance and the measured output for 

observer design defined as 

 (0, ) (0, )y t v t  . (80) 
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The observer is developed based on (61)–(63) to monitor system behavior. A fault 

is declared activated when the detection residual exceeds the detection threshold. Next, 

the actuator, sensor and state fault are incorporated into the system, respectively, and only 

one fault is considered at one specific time. The fault functions are expressed as 

 0.8( 0.6)0.5(1 ) ( )t

ah e u t     , 0.5( 8)( ) 1.5(1 ) ( ),t

s dh t e y t     

 
20.9( ) 2 15( 0.3)( ) 0.8(1 )(1 ( ))ft t x

ch t e y t e
       , 

where ( ) 0.3sin(1.5 ) 0.5dy t t  , which is the desired trajectory of the output. In order to 

differentiate these three types of faults, two measurements at different locations are 

utilized which are defined as ( ) (1, )ay t v t  and ( ) (0, )s xy t v t . 
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Figure 5.5. Fault detection of an actuator fault.  

In the presence of an actuator fault seeded at 6ft s  , it can be observed from 

Figure 5.5 that the fault can be detected within 2.5 s. Figure 5.6 shows that only the 

actuator fault residual exceeded its threshold; thus, an actuator fault is identified. In the 

case of a sensor fault, it can be seen from Figure 5.8 that just the sensor fault isolation 
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residual goes across the threshold indicating a sensor fault. However, the isolation results 

as shown in the Figure 5.10 indicates that neither of the actuator and sensor fault isolation 

residuals exceed their isolation thresholds so according to the fault isolation scheme of 

nonlinear DPS, a state fault is identified. Above all, the actuator, sensor, and state faults 

can be isolated by checking the status of the actuator and sensor fault isolation residuals. 
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Figure 5.6. Fault isolation results of an actuator fault. 
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Figure 5.7. Fault detection result of a sensor fault. 
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Figure 5.8. Fault isolation results of a sensor fault. 
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Figure 5.9. Fault detection result of a state fault. 
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Figure 5.10. Fault isolation results of a state fault. 
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6. CONCLUSIONS  

Fault isolation for DPS is more involved when compared to LPS because the 

system state in DPS is defined by spatial variations besides temporal variations. The 

developed actuator and sensor fault estimators for linear DPS with boundary 

measurement can be utilized to assist in differentiating actuator, sensor and state faults 

occurring on linear DPS. In addition, the proposed location determination scheme along 

with the isolation measurement is useful for identifying the location of a state fault. The 

fault detection framework using a Luenberger type observer can be applied to monitor the 

abnormal behavior of nonlinear DPS and the introduced fault isolation scheme is capable 

of isolating actuator, sensor and state faults with additional measurements at boundary 

conditions since fault filters are not available. The determined fault type and location 

developed in this research can provide useful information for fault estimation and 

accommodation.  
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APPENDIX 

Proof of Theorem 1: In the presence of a state fault, the dynamics of the observer 

error becomes 

 
0

( , ) ( , ) ( , ) ( , , , ) ( , ) ( , , , )
x

t xx l c f c fz x t z x t d x t h y x x t l x h y x t d         ,  

 (0, ) 0, (0, ) 0xz t z t  .   

Solving the PDE defined above yields [19] 

 

2

2

2
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( , ) ( ) cos[( 0.5) ]
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n

z x t e z t n x

d e d n x

e h d n x

 

  

  



  

  


  




  




  



 

 

 







 

where ( ) n

n fz t   depends upon the initial condition ( )fe t , 

1

0
( ) 2 ( , )cos[( 0.5) ]m ld t d x t n x dx   and 

1

0 0
( ) 2 [ ( , , , ) ( , ) ( , , , ) ]cos[( 0.5) ]

x

m c f c fh t h y x x t l x h y x t d n x dx        . The first term in 

the above equation is the response due to initial condition and the second one is the 

response due to the fault function and bounded disturbance. By noting detection residual 

being ( ) (0, )e t z t , the solution to the detection residual is obtained by 

substituting 0x  in the above equation as 

 
2 2 2[( 0.5) ] ( ) [( 0.5) ] ( ) [( 0.5) ] ( )

0 0

( ) ( ) ( ) ( ) .f

f f

t tn t t n t n t

n f m m
t t

n n

e t z t e d e d h e d
          

 
        

 

      

According to triangle inequality ( 1 2 2 1a a a a    ) and the equation above we can 

get  
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 when (25) holds and the detection threshold is selected as 

 2 2[( 0.5) ] ( ) [( 0.5) ] ( )

0

( ) ( )f
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n f m
t

n

z t e d e d
    

   


     




 


  , 

where 1   is a constant, thus assuring the detection of a state fault. 

Proof of Theorem 2: The actuator isolation estimator state 

residual, ˆ( , ) ( , ) ( , )a az x t z x t z x t  , can be written as ( , ) ( , ) ( , ) ( )a a az x t x t F x t t   .  Then, 

the actuator fault estimator output isolation residual can be expressed as 

 ( ) (0, ) (0, ) (0, ) ( )a a a ae t z t t F t t     ,  (A.1) 

where ( , ) ( , ) ( , )ax t z x t z x t    with ( , )az x t defined as 

 ˆ( , ) ( , ) ( , ) .a a az x t z x t F x t     

Equation above is viewed as the ultimate target of ˆ ( , )az x t  when ˆ
a  is being tuned by (29) 

and it has the same initial condition as ˆ ( , )az x t   i.e. ˆ ( ) ( )a d a dz t z t .  In the presence of an 

actuator fault, the system dynamics is described by (13) and (15) with modified boundary 

conditions given by  

 0(0, ) (0, ), (1, ) ( ) ( ( ), )x a az t L z t z t U t U t t    . (A.2)  

By using the system dynamics given by (13), (15) and (A.2) and the observer defined by 

(19), we can obtain the dynamics of ( , )x t as 
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 ( , ) ( , ) ( , , ) (0, ) 0 (1 ) 0, , ,t xx l xx t x t d v x t t t       ,  (A.3)  

where ( , , )ld v x t  is defined after (15). The error dynamics defined in (A.3) is same as the 

observer error dynamics given by (20) whose stability has been shown in [13]. Now to 

obtain the isolation residual, recall (A.1), when dt t , and take the norm on both sides to 

get 

 ( ) (0, ) ( ) (0, ) .a a ae t t t F t     (A.4) 

By solving the PDE given by (A.3) and substituting 0x   to the solution we can get 

for dt t , 
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Substituting (0, ) (0, )d dt e t    to the equation above to get  
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2[( 0.5) ] ( )
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d

t
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t
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D d e d   


  



  . Recalling the inequality given by (A.4) we can 

obtain 

 ( ) (0, ) ( ) (0, ) ( ) (0, ) ,a a a a ae t t t F t D t F t          

where ( ) ( )a at t   depends upon the geometric properties of the compact set a . Recall 

the actuator fault isolation threshold a  defined by (30) to get ( ) ( )a ae t t , which 

completes the proof.  

Proof of Theorem 3: The sensor fault estimator output error is expressed as 

 ˆ( ) ( ) ( ) (0, ) ( ) ( ) (0, ) (0, ) ( )s s s s s s se t y t y t z t t t t F t t         ,      (A.5) 
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where ˆ( , ) ( , ) ( , )s sz x t z x t z x t   is the sensor fault isolation estimator state residual, 

( , ) ( , ) ( , )sx t z x t z x t    with ( , )z x t  is defined as 

 
1

0
0

ˆ( , ) ( , ) [ ( , ) ( ) ( , , ) ]s sz x t z x t L x t G s x s t ds       ,  

which is viewed as the ultimate target of ˆ ( , )sz x t  when ˆ
s   is being tuned by (36) and has 

the same initial condition as ˆ ( , )sz x t  . In the presence of a sensor fault, the system 

dynamics becomes (13) and (14) with output expressed as 

 ( ) (0, ) ( )s sy t z t t    ,  

By taking partial derivative of ( , )x t  with respective to t  and x , we can get that the 

dynamics of ( , )x t   satisfying (A.3) indicating the stability of ( , )x t . Thus, for dt t  

taking the norm on both sides of (A.5) we can obtain  

 ( ) (0, ) (0, ) ( ) (0, )s s s s se t t F t t F t D         , 

where (0, )t D    for dt t  and ˆ( ) ( )s s st t     relies on the geometric 

properties of the compact set s  and D  is decided by disturbance or uncertainty bound. 

Substitute the sensor fault isolation threshold defined by (37) to the inequality above 

yielding ( ) ( )s se t t , which accomplishes the proof.  

Proof of Theorem 4: Define a Lyapunov function candidate as 

 
1

( ) ( ) ( ) ( )

0
[ ( , )] ( , ) / 2 ( ) / 2i T i i T i

c cV x t x t dx     ,  

the derivative of this Lyapunov function with respect to time is given by 

( )
1

( ) ( ) ( )

0
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[ ( , )] [ ]

i
i T i T c

c c

x t
V x t dx
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 . By substituting (48) to get 
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By integration by parts and using Poincare inequality [17] 
2 2
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  and using 

the adaptive update law (48), we obtain 
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c ce t z t t F t t     the above inequality can be 

rewritten as 
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where maxc c  .  Therefore, the derivative of Lyapunov function will be less than zero 

if  

 
( )

2 2
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i i l
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2 2
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max .
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c c

d
 




      (A.6) 

With the bounds given by (A.6), the bound of isolation output residual defined 
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by
( ) ( )

ˆ( ) ( ) ( )
i i

i iiy t y t y t    can be obtained as  

( ) ( ) ( )

( ) ( )
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1
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0 2,

1
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02,

12 22 2 2 2 2 ( )
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i i i
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c c
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c i l i l c c

y t y t y t C x v x v x dx

C x v x dx c k z x

c k x F x t dx

c k d d F x t dx

 

     

   

  

  

      









 , 

where ( ) ( )ˆ( ) ( ) ( )i iv x v x v x   is the state error. The bound on the magnitude of the 

isolation output error of the state fault estimator 
( )i

i
y  depends upon the value of i  and 

1
( )

0
( , )i

i cF x t dx   . Because the mismatch function i  and 
1

( )

0
( , )i

i cF x t dx   varies with 

the distance between the actual fault and filter location given by 
i f iS x x   yielding the 

magnitude of 
( )i

i
y  changes with the distance iS . When the condition (51) is satisfied, the 

location of the state fault will be identified by comparing the isolation output residual 

generated by state fault estimators at different locations. The true fault location is 

determined as the one that is closest to the state fault estimator generating a residual that 

is minimum over others.  

Proof of isolability condition for linear PDS: Upon detecting a fault, recalling 

equations given by (A.1) and (A.5) the actuator/sensor fault estimator error satisfies 

 ( ) (0, ) ( )rm

me t t h t   . 

According to triangle inequality 1 2 2 1a a a a    and the equation above we can get 

( ) ( ) (0, )rm

me t h t t   . If the condition (55) is satisfied and recall that 

(0, )t D    , it is clear that  
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 ( ) 2 ( ) (0, ) (0, ) ( ) (0, ) ( )m m m m m me t t F t D t t F t t                

where m  is the threshold used for fault isolation defined by (30) and (37). 

Proof of Theorem 5: A Lyapunov function candidate is selected as  
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Substitute the dynamics described by (68) and (69) to the equation above to get 
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where M Md d  and 
fM fM  . Therefore, ( ) 0V t   if one of the following conditions 

is satisfied 
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By Agmon’s inequality 
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we can get 
317

( ) 2
2[ 2 ( )][16

(
( ) 1]

)M fM

c
e t

c b t b t
d 

 
.  Therefore, the detection 

residual is bounded and based on the bound defined above, a detection threshold   can 

be selected to assure that in the absence of faults the magnitude of the detection residual 

is below the threshold   all the time while the presence of a fault can cause the 

magnitude of the detection residual to increase and exceed  .  

Proof of Theorem 6: In the presence of an actuator fault, the boundary conditions 

are modified as (59), and we can get ( ) ( ; )a ae t h u t for ft t . If ( ; )a a ah u t  , then it 

can be guaranteed that ( )a a ae t   and thus, an actuator fault is isolated. On the hand, 

the presence of a sensor fault or state fault will not cause ( )ae t   to go across the 

isolation threshold a  for all d it t t   .  

In the case of a sensor fault, the sensor fault residual will become as 

( ) (0, ) [ (0, ) ( )] ( )s s se t Qv t Q v t h t Qh t     for ft t   due to the sensor fault. It is obvious 

that if ( )s s sQh t  then  ( )s s se t   and thus a sensor fault is isolated. However, the 

occurrence of an actuator or state faults will not make the magnitude of the sensor fault 

residual to exceed its threshold for all d it t t  .  
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IV. FAULT DETECTION AND PREDICTION FOR A CLASS OF NONLINEAR 

DISTRIBUTED PARAMETER SYSTEMS WITH ACTUATOR OR SENSOR 

FAULTS 

Jia Cai and S. Jagannathan 

This paper presents a new model-based fault detection and prediction framework 

for a class of multi-input and multi-output (MIMO) nonlinear distributed parameter 

systems (DPS) described by partial differential equations (PDE) with actuator and sensor 

faults. The fault functions cover both abrupt and incipient faults. A Luenberger type 

observer is used to monitor the health of the DPS as a detection observer on the basis of 

the nonlinear PDE representation of the system with measured output vector. By taking 

the difference between measured and estimated outputs from this observer, a residual 

signal is generated for fault detection. If the detection residual exceeds a predefined 

threshold, a fault will be claimed to be active. Once an actuator or a sensor fault is 

detected and the fault type is identified, an appropriate fault parameter update law is 

developed to learn the fault dynamics online with the help of an additional output 

measurement. Later, an explicit formula is introduced to estimate the time-to-failure in 

the presence of an actuator/sensor fault by utilizing the limiting values of the output 

vector along with the estimated fault parameter vector. Eventually, the proposed 

detection and prediction framework is demonstrated on a nonlinear process. 
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1. INTRODUCTION 

In order to improve reliability and availability of complex dynamic systems, 

reliable fault detection and prediction framework is needed even in the presence of 

unknown system uncertainties. Because of the high risk of component failures, faults 

occur before system failures and when a forthcoming system failure can be predicted 

through early fault diagnosis, maintenance can be scheduled in advance thus preventing 

unscheduled downtime. 

Normally, fault diagnosis methods are categorized as either data-driven or model-

based [1]. Usually, data-driven fault diagnosis methods require significant quantities of 

both healthy and faulty data which is costly and time consuming. In addition, online 

estimation of fault dynamics for the purpose of prognosis is not straightforward. In 

contrast, model-based fault diagnosis methods can minimize the requirements of a priori 

data [2] and can estimate fault function online. 

Research has been in place to develop model-based fault detection and prediction 

schemes for lumped parameter systems (LPS) based on their system representation 

described by ordinary partial equations (ODE). An observer, which can provide an 

estimate of measured and unmeasured states, is utilized to detect faults in [3]. On the 

other hand, a robust fault diagnosis scheme was introduced in [4] whose detection 

residual was insensitive to uncertainties. A supplementary observer was utilized together 

with an observer in [5] to reconstruct the fault function and estimate the linear system 

state vector in the presence of unknown disturbances and system uncertainties. Authors 

of [6] presented a sliding-model observer by using an online fault-detection framework to 

estimate the fault signal. 
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In spite of attractive results, these research efforts [3-6] dealt with fault diagnosis 

for LPS represented by ODEs. However, many industrial processes like transport-

reaction processes are classified as distributed parameter systems (DPS) modeled by 

partial differential equations [7] . Fault detection and prediction for DPS is more 

complicated when compared to LPS because of their distributed nature. 

Controller design for DPS has drawn a lot of attention recently [8] and [9], but 

limited work has been done for fault detection and prediction of DPS. The existing fault 

diagnosis approaches [10-11] are based on the fact that the PDE model of DPS can be 

represented by an infinite set of ODEs. Subsequently, by applying Gelerkin’s method an 

approximated finite dimensional ODE representation is obtained for fault diagnosis [12]. 

Based on the reduced order ODE representation, fault detection and accommodation 

schemes were developed in [10] and [11].  

However, the fault detection and accommodation schemes [10] and [11] utilizing 

an approximated finite dimensional ODE to represent PDE model of a DPS may result in 

false and missed alarms due to model reduction. Instead, authors in [13] and [14] 

presented a model-based fault detection and prediction scheme for linear DPS with 

actuator faults directly using its PDE representation. 

The filter based observer utilized in [13] is not applicable to the nonlinear DPS 

considered herein because superposition principle cannot be applied to nonlinear systems 

thus needing a novel detection observer. Detectability condition derived in [13] to define 

the class of detectable faults for a class of linear DPS with actuator or sensor faults need 

to be developed for nonlinear DPS. In addition, fault filters proposed by [14] are not 

implementable for nonlinear DPS to estimate the actuator or sensor fault signal because 
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of the presence of system nonlinearity necessitating a new way to estimate the fault 

dynamics online. 

In order to mitigate the problems mentioned above, a fault detection and 

prediction scheme is presented in this paper for multi-input and multi-output (MIMO) 

nonlinear DPS by utilizing a Luenberger type observer proposed in [15] which is 

introduced for controller design on the basis of original nonlinear PDE representation.  

This Luenberger observer is extended to the MIMO case with actuator/sensor 

faults and unknown disturbances for the purpose of detection. Appropriate observer gains 

are selected to guarantee the stability of the linearized observer error dynamics around 

the estimated state, with which it can be shown that the observer error is bounded under 

healthy conditions [15]. In order to stabilize the dynamics of the observer error, time 

varying observer gains are needed because of the presence of the nonlinear term in the 

PDE model. Next, by taking the difference between the measured output vector and the 

estimated value from the observer, a detection residual is generated for nonlinear DPS.  

In the presence of an actuator/sensor fault, the dynamics of nonlinear DPS will 

change causing the system state/output to deviate from the estimated one given by 

observer leading to an increase in magnitude of the detection residual. A fault is believed 

to have occurred when the magnitude of the detection residual exceeds a predefined 

detection threshold.  

Once a fault is detected, an online estimator will be subsequently added to the 

observer to estimate the nonlinear fault dynamics by utilizing both the measured output 

and a secondary measured output which will be introduced later in the paper. Update law 

is developed to estimate the magnitude of the fault parameter vector.   
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The detection residual as well as the fault parameter estimation error is shown to 

be bounded in the presence of an actuator fault. The class of faults that can be detected by 

using this approach is derived as part of detectability conditions.  Since it is not clear that 

the unknown parameter vector has a failure limit, and therefore by comparing the 

measured output with its failure limit, an explicit formula for online estimation of time to 

failure (TTF) or remaining useful life (RUL) is proposed. 

Therefore, the contributions of this paper involve: a) the design of an online fault 

detection scheme including detectability conditions for nonlinear DPS with an actuator or 

sensor faults b) estimation of nonlinear fault dynamics with a novel parameter tuning law 

guaranteeing boundedness of estimation errors by using a second output, and c) TTF 

prediction provided a limited output measurements. 

This paper is established as follows. Section 2 introduces the nonlinear DPS under 

research while Section 3 develops a fault detection and estimation scheme with 

performance and stability analysis in detail and derives an explicit formula to predict TTF. 

Subsequently, an example is used to illustrate its effectiveness of the proposed scheme. 
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2. SYSTEM DESCRIPTION AND FAULT FUNCTION 

Before presenting the system description, the notation and the norm used 

throughout this paper is given [16]. A scalar function 1 2( ) (0, )v x L l  means it is square 

integrable on the Hilbert space 2 (0, )L l  with the corresponding norm 

 2

1 12 0
( )

l

v v x dx   . (1) 

Now consider 

 2 2 2 2[ (0, )] (0, ) (0, ) ... (0, )n

n times

L l L l L l L l   
,  (2) 

with the corresponding norm of a vector 

function 1 2 2( , ) [ ( , ), ( , ),..., ( , )] [ (0, )]T n

nv x t v x t v x t v x t L l   defined as 

 
2

2, 2 0
1

( ) ( ) ( )
n l

T

in
i

v v x v x v x dx


   .  (3) 

In addition,   denotes a Frobenius norm for a matrix or Euclidean norm for a vector. In 

order to save space, a vector, ( , )v x t  and its partial derivatives are represented as 

( , ) ( , ) /tv x t v x t t   , ( , ) ( , ) /xv x t v x t x   , and 2 2( , ) ( , ) /xxv x t v x t x    . 

Next, the system under consideration is discussed. 

2.1. SYSTEM DESCRIPTION 

A class of n-dimensional nonlinear DPS, which can be expressed by the following 

parabolic partial differential equation (PDE), is described by 

 
2

2

( , ) ( , )
( , ) ( , )

v x t v x t
c f v x d x t

t x

 
  


,  (4) 

with boundary conditions defined by 
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          (0, ),0,   ( , ) ( )xv Qv t v l tt u t   ,  (5) 

 ( ) (0, )y t v t , (6)  

for (0, )x l  and 0t   , where 
1 2( , ) [ ( , ),..., ( , )] [ (0, )]T n

nv x t v x t v x t L l   represents the state 

vector of the DPS, 1( , ) [ ( , ),... ( , )] n

nd x t d x t d x t  stands for disturbance 

vector, 1( ) [ ( , ),..., ( , )]T n

nu t u x t u x t  denotes the control input vector, 0c   is a 

positive constant, n nQ   is a full rank square matrix and ( , ) nf v x  is a Lipschitz 

continuous nonlinear vector function. In addition, ( ) ny t   is the system output vector 

measured at the opposite end of the actuator which is utilized for observer design and 

generating the detection residual. 

In addition, for the sake of estimating an actuator and sensor fault, additional 

measurements defined by  

 ( ) ( , )ay t v l t , ( ) (0, ) (0, )s xy t v t Qv t  ,  (7) 

are needed. The measurement ( )ay t  is required only when estimating the actuator fault 

parameter vector while ( )sy t  is needed for the sensor fault estimation. 

Remark 1: The measurement ( )ay t  defined by (7) is used for actuator fault since 

the presence of an actuator fault will cause a change in ( , )v l t . On the other hand, the 

measurement ( )sy t  defined by (7) is utilized to construct the correct value of the output 

using 1(0, ) ( ).sv t Q y t   

The output ( )sy t  is a derivative type measurement which means flux in the fluid 

flow systems. In addition, measurement defined by (7) is helpful for fault isolation. Next 

the following assumptions are required. 
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Assumption 1: The disturbance is bounded above such that ( , )d x t d  for all x  

and 0t   , where 0d   is the upper bound of the disturbance which is a known constant. 

It is written as a general form in this paper whereas a more specific model is given in [17] 

and [18]. 

Remark 2: The disturbance bound given above is used to determine detection 

residual. 

Assumption 2: The nonlinear vector function ( , )f v x  satisfies the following 

conditions: 

a. ( , )f v x  is Lipschitz continuous in v , 0  in x , 1  in t  and v  for [0, ]x l  , 0t   

and 2( ) (0, )v x L l . 

b. ( , )f v x  should satisfies 

 
( , )

( , ) ( , ) ( , )f

f v x
f v v x f v x v v x

v



     


, (8) 

where v  represents a small change in v and ( , )f v x  is the approximation error 

satisfying  
2,f fn

    

Remark 3: Assumption (a) assures that 
( , , )f v x t

v




 is bounded implying the 

linearization coefficient ( )A t  of observer error dynamics which will be presented in 

Subsection 3.1 is bounded. In order to meet the requirement 
2,f fn

  in Assumption 1 

(b), v is viewed small implying that the initial conditions of the observer which will be 

introduced in Section 3 should be close to the initial condition of the system described by 

(4), (5) and (6).  
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Assumption 3: The system is controllable and there exists a controller, ( )u t , that 

can guarantee the stability of the system before and after the presence of an 

actuator/sensor fault. 

Next the actuator and sensor fault function are considered. 

2.2. ACTUATOR FAULT DESCRIPTION 

In the presence of an actuator fault, the system described by (4) and (5) becomes 

(4) subject to the new boundary conditions given by 

  0, ( , ) ( ) ( , )0,  , ( ) (0, )x at l t u tv h u t y t v tv    .  (9) 

The system output defined by (5) with a sensor fault will be given by 

 ( ) (0, ) ( )sy t v t h t  ,  (10) 

whereas the actuator fault function ( , ) n

ah u t  and sensor fault function, ( )sh t , can be 

written as 

 
     

     

( ) ( )

1

( ) ( )

1

, , ,..., , [ ( )] ( )

,..., [ ( )] ( )

T
a a

a n i a a

T
s s

s n i s s

h u t h u t h u t diag t t h t

h t h t h t diag t t h t

     

     

,  (11) 

with ( )i at t   and ( )i st t   represent the time profile of the actuator and actuator faults 

respectively defined by
0 , 0

( )
1 , 0i

i

if

e if
 







  

 
 for 1,...,i n , the constant i  represents 

the growth rate of the incipient fault, at and st  denote fault occurrence time, ( )ah t  and 

( )sh t  are fault magnitude.  

Abrupt faults can also be modeled when a large i  is chosen. However, for the 

purpose of detection, only incipient faults are considered. The following assumption is 

needed on the fault function. 
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Assumption 4: The fault functions, ( , )ah u t and ( )sh t , can be expressed as linear in 

the unknown parameters (LIP)[19] i.e. the fault function  , ( ( ), )T

a a ah u t W u t t  and 

  ( )T

s s sh t W t  where n n

aW   and n n

sW   are unknown actuator and sensor fault 

parameter matrix respectively satisfying a aW W and s sW W  , 

( ) ( )

1( ( ), ) [ ( ( ), ),... ( ( ), )]a a T n

a nu t t u t t u t t      and ( ) ( )

1( ) [ ( ),... ( )]s s T n

s nt t t     are 

known nonlinear regression function. 

In the next section, fault detection and estimation due to actuator and sensor faults are 

introduced. 
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3. ACTUATOR FAULT DETECTION AND ESTIMATION 

In this section, an adaptive observer is designed in order to generate the estimated 

state and output of the DPS. It can be shown that under healthy conditions, the detection 

residual is ultimately bounded (UB). In the presence of an actuator or a sensor fault, the 

residual will increase and exceeds a predefined threshold since the fault acts as an 

unwanted input to the residual dynamics. After a fault is detected, an adaptive term to 

estimate the fault function is included in the observer. An update law tuned with an 

additional measurement, ( )ay t , will be utilized to estimate the actuator fault vector 

function. If a sensor fault is detected, the detection observer will be modified to estimate 

the fault function with an adaptive term and by using a second measurement ( )sy t .  

3.1. DETECTION OBSERVER DESIGN 

Instead of converting the DPS (4) and (5) into an infinite set of ODEs, define the 

fault detection observer along with boundary conditions from [15] given by 

 
2

12

( , ) ( , )
ˆ( ) ( , )( )

ˆ ˆ
ˆ,

x t x t
c f x P x t y y

t x

v v
v

 
   

 
 , (12) 

    10
ˆ ˆ(0, ) ˆ0, ( )( ) , ( ),x t t y y lv Q tv t P v u t    , (13) 

 ˆ ˆ( ) (0, )y t v t , (14) 

where ˆ( , ) nv x t   is the observer state, 
ˆ( , )

ˆ ( , )t

v x t
v x t

t





 and 

ˆ( , )
ˆ ( , )x

v x t
v x t

x





 

represents the first order of partial derivatives of ˆ( , )v x t  with respect to the time t  and to 

the space x  , 1( ) n nP x   and 10

n nP   denote observer gain matrices which will be 

defined later.  
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Define ˆ( ) ( ) ( )ne t y t y t   being the output estimation error or detection 

residual, to correct the state estimation error given by ˆnv v v   , resulting from initial 

conditions. The observer gains of the Luenberger observer can be found in [15]and will 

be introduced briefly next. 

By taking the difference between the observer dynamics in (12) and (13) and the 

actual system dynamics from (4) and (5), and by applying Assumption 2, the state 

estimation error dynamics under healthy conditions are given by  

       1, , ( , ) (, , ) ( , ) ( ) ( , )t xx fx t x t xv cv A x t v v x P x tt d x te t    , (15) 

with boundary conditions 

    100, ( ) ( , 0),xv e t vt P t l t   ,  (16) 

where
ˆ

( , )
( , ) n n

v v

f v x
A x t

v






 


 since ˆ( , ) ( , )f v x f v x  

ˆ

( ,
( , .

)
, )

v v

f

f v x
v x vt

v
x









 

Note that the observer error dynamics described by (15) has a term ( ) ( , )A t v x t which can 

make the system be unstable when ( )A t become positively large.  

For the sake of eliminating this term, appropriate observer gains have to be 

selected through a transformation. Apply the Volterra integral transformation [15] 

        
0

,, , ,,
x

x t x t L x tv t d       ,  (17) 

and select the observer gains
1( , )P x t  and

10 ( )P t as [15] 

 
 

11 0

,0,
( , ) , (0,0 )( ,)

L x t
P x P tt c L t








, (18) 

to convert the observer error dynamics (15) and (16) into a stable system given by 

      , , , ( , ) ( , )t x fM Mxx t x t x tc b v x d x t       ,  (19) 
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  , 0
(0, )

0,
t

x
l t


  


 ,  (20) 

where ( , , )L x t  is the unique solution to the well-posed PDE [15]given by 

 
2 2

2 2

( , , ) ( , , ) ( , , )
( ) ( , , ) ( , , ) [ ]

L x t L x t L x t
A t L x t bL x t c

t x

  
 



  
   

  
 , (21) 

    
( )

, , 0,  , , [ ( ) ]
2

n n

x l
L l t L x x t A t bI

c
 


    , (22) 

( , ) nx t  , ( , , ) n nL x t  , 0b   is an arbitrary 

scalar,
0

( , ) ( , ) ( , , ) ( , )
x

Md x t d x t M x t d t d     , 

0
( , ) ( , ) ( , , ) ( , )

x

fM f fv x v x M x t v d         and ( , , ) n nM x t   is the kennel matrix of 

the inverse transformation        
0

, ,, , ,
x

v M x t v dx t x t t      .  

The observer performance in the healthy conditions without any disturbances is 

discussed in [15]whereas in this paper, the observer is extended to the MIMO case in the 

presence of a fault and disturbances for the purpose of detection. 

It will be shown that with the observer presented herein, the detection residual 

remains ultimately bounded (UB) during healthy conditions in the presence of bounded 

disturbances. A fault on the nonlinear DPS will drive the system state or output off the 

desired trajectory and thus cause the detection residual to increase. A fault is detected by 

comparing the detection residual ( )e t with a predefined threshold  . The threshold is 

selected by using both the initial conditions and the disturbances.  

In addition it will be shown in the following theorem that a fault can be detectable 

provided it satisfies certain conditions given in the theorem. The following theorem 
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demonstrates the stability of detection residual under healthy conditions and provides 

fault detectability conditions. 

Theorem 1 (Fault detection observer performance): Let the observer given in (12) 

and (13) be used to monitor the DPS defined by (4) and (5).  Then  

a. The state estimation error v  and the output detection residual ( )e t  will remain 

bounded under healthy operating conditions.   

b. A fault is declared active when the output detection residual ( )e t crosses the 

detection threshold  .   

c. An actuator and sensor faults can be detectable when the following are satisfied: 

i. An actuator fault ( , )ah u t  initiated at time at is detectable if there exists a time 

aT t  such that for all t T  

 


2

0
0

2 1
[ ( ) ]( )

2

2
( , ) [ ( , ) ( , )]

2 1
cos( ) 2

2

a

t l

a a a
t

n

n
b t

l

h u t h u bh u
l

n
x dx e d

l

  

 

  






  


 




 

 
 ; (23) 

ii. A sensor fault ( )sh t  initiated at time st  is detectable if there exists a time 

sT t  such that for all t T   

 
2

1 2 2
0

0

2 1
[( ) ]( )

2
2

2
[ ( , ) ( )( ) ( )( )]

2 1
cos( ) ( ) ( ) 2 ,
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s

t l

s s s
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n

n
b t

l
s s

h x bh x l h x l
l
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, (24) 

where 1 1 1
0

( , ) ( , ) ( ) ( , , ) ( , ) ( )
x

s s sh x t P x t h t M x t P t h t d        and 2 10( ) ( ) ( )s sh t P t h t  .  

Proof: See Appendix. 
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Remark 3: It is shown in the proof that under healthy conditions the detection 

residual is bounded by ( )( ) l fM Me t k d   where 22 2(1 4 /)l lk l c   , 
fM fM   

and M Md d  , and stays within the detection threshold   which is determined by the 

bound above. A fault acts as an unwanted input to the detection residual dynamics. The 

presence of a fault causes an increase in the detection residual beyond the threshold. The 

detectability condition given by the theorem 1 (c) defines the class of faults which can be 

detected by the proposed observer. 

Before estimating the fault dynamics, one needs to determine the fault type first. 

By utilizing the measurements defined by (6) and (7), actuator and sensor fault isolation 

residuals are generated as ˆ( ) ( , )a ae y t v l t   and ( ) ( ) ( )s se t y t Qy t  respectively. It is 

important to note that both these isolation residuals must be kept close to zero and should 

remain below their isolation thresholds a and s  under healthy conditions. An actuator 

fault makes the magnitude of the actuator fault isolation residual ( )ae t  to increase and 

cross its isolation threshold a  while it cannot change the magnitude of the sensor fault 

isolation residual ( )se t . On the contrary, the presence of a sensor fault causes the 

magnitude of the sensor fault isolation residual ( )se t to increase and exceed its isolation 

threshold ( )s t while it will not have an effect the magnitude of the actuator fault 

residual ( )ae t .  Based on the analysis above, the fault type is identified as the one 

exceeding its isolation threshold. More details on isolating faults will be studied in our 

future work. 

The next step is to estimate the actuator and sensor fault functions. 
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3.2. ACTUATOR FAULT ESTIMATION 

Upon detecting an actuator fault, an online estimator will be added to the observer 

defined by (12) and (13) to estimate the fault function. Then the boundary condition 

becomes 

 
 

10

ˆ
(0,

,
ˆ( ))

0v
Qv t yP

t
y

x


  


, (25) 

      ˆˆ ˆ( ) , , ( ) (0, , )T

a av u t W t u t y tt v tl    , (26)  

where ˆ ( )aW t  represents estimated parameter matrix and ˆ ( ) ( , )T

a aW t u t  is the fault 

estimation. Thus the observer error dynamics is expressed as (15) with following 

boundary conditions  

        10 ( )0, ) ,( ,, T

x a av e t v Wt P t l t t u t   , (27)  

where ˆ( ) ( )a a aW t W W t   is the parameter estimation error. Then with the transformation 

(17), the dynamics of the observer error can be converted to (19) subject to 

      ,(0, ) 0, ,T

x a al tt W t u t    . (28)   

The performance of the adaptive approximation will be discussed in the next 

theorem. 

Theorem 2 (Actuator fault function estimation):  Let the online estimator be 

incorporated into the boundary conditions of the observer given by (12) and (13) to 

estimate the state and output of the system given by (4) and (9). Upon detecting an 

actuator fault, consider the boundary condition of the observer given by (13) is modified 

as (25) and (26) in order to estimate the state and output of the system defined in (4) and 

(5).  In the presence of an actuator fault, let the parameter tuning law given by 
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 ˆ ˆˆ( ) ( , )[ ( ) ( , )] ( )T T

a a a aW t c u t y t v l t W t    ,  (29) 

is utilized to estimate the fault function with 0   being the tuning rate and 0   is the 

stabilizing term. Then the observer and the parameter estimation errors are ultimately 

bounded (UB). 

Proof: Refer to the Appendix. 

Remark 4: The first term of the update law given by (29) is used to eliminate the 

extra term of the observer error dynamics caused by the actuator fault; the second term is 

added to relax the PE condition and to assure the boundedness of fault parameter 

estimation error. Here, the initial condition of the estimated fault parameter ˆ ( )a dW t  can set 

to zero if an incipient fault is considered since ( ) 0a aW t  and at  is the actuator fault 

occurrence time. However, in the case of an abrupt fault the initial condition of the 

estimated fault parameter should be close to the actual fault parameter in order to meet 

the requirement given by (8) to be satisfied. The proof shows that once an actuator fault 

is detected, if the boundary condition of the observer is modified as (25) and (26) with 

estimated fault parameter vector tuned by (29) the observer error and parameter 

estimation error will be UB. 

It can be shown in the Appendix that  ,x t  and  aW t  are UB and thus it implies 

that the observer error  ,v x t  is also bounded. Next, the performance of the observer for 

detecting the sensor faults is described. 

3.3. SENSOR FAULT ESTIMATION 

When a sensor fault is detected, the observer defined by (10) is modified as  

 
1

1
ˆ( , ) ( , ) ( , ) ( , )[ ( ) (0,ˆ ˆ ), ]ˆ

t x sxx t c x t f x tv P x t Q tv y v tv     , (30) 
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subject to 

    10
ˆ0, ( )(ˆ ˆ)) ), ,( (x st t yv y t P v tl uy t    , (31) 

 ˆˆ ˆ( ) (0, ) ( ) ( )T

s sy t v t W t t  , (32)  

where ˆ ( ) ( )T

s sW t t  is the adaptive term to estimate the sensor fault. Thus, the observer 

error dynamics is expressed as (15) with boundary conditions 

    10 100, ( ) (0, ) ( ) ( ) ( ), , 0T

s sx t t v t tv lvW tP P t t   , (33)  

where ( ) ( )T

s sW t t is the sensor fault estimation error and ˆ( ) ( )s s sW t W W t   is the 

parameter estimation error.  

Apply the transformation (17) to the observer error dynamics given by (15) and 

(33) to get (19) subject to 

  10 ( )
(0

( ) ,
,

, 0
)

st h l
t

P
x

t t


   


. (34) 

Notice that the sensor fault effecting the measurements defined by (7) cannot 

cause the detection residual ( )e t  to increase but will make the error defined by 

( ) ( ) ( )s se t Qy t y t   to grow, so it can be easily isolated from the sensor fault defined by 

(10). The performance of the adaptive estimation will be shown in the next theorem. 

Theorem 3 (Sensor fault function estimation):  Let the online approximator be 

added to the estimated output of the observer as (30), (31) and (32) to estimate the state 

and output of the system given by (4), (5) and (6). Upon detecting a sensor fault, consider 

the parameter tuning law  

 10
ˆ ˆˆ( ) ( )[ ( ) (0, )] ( ) ( )T T T

s s s sW t c t y t Q v t P t W t    , (35)  
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to estimate the sensor fault function where 0   is the tuning rate and 0  is the robust 

term. Then the observer error described by (30), (31) and (32) and the sensor fault 

estimation error are UB. 

Proof: See Appendix. 

Remark 5: The first term of the updated law proposed by (35) is utilized to 

eliminate the extra term of the observer error dynamics induced by the sensor fault; the 

second term is used to overcome the PE condition and to guarantee the boundedness of 

the fault parameter estimation error at the same time. It will be shown in the Appendix 

that in the presence of a sensor fault, by incorporating the adaptive term    ˆ ,T

s sW t u t  

into the observer, with update law defined by (35), the observer as well as the parameter 

vector estimation errors will be UB. 

3.4. FAILURE PREDICTION 

It has been shown in the previous sections that in the presence of an actuator fault, 

the output will deviate from the desired trajectory. Unlike the TTF prediction scheme 

using the failure limit of the fault parameter presented in [10] the estimated TTF 

proposed next is based on the deviation of the output to predict the remaining useful life 

of the system since sometimes the limit of the fault parameter is not available while the 

output limit is more reasonable. The estimated TTF is defined as the time available 

before the output reaches its limit value. The following derivation gives an explicit 

formula to estimate the TTF.   

3.4.1. Actuator Fault. Given an initial value of the output, estimated states, and 

the limiting value for the output, upon detecting an actuator fault and activating the fault 

estimation scheme, the TTF can be obtained as 
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( )

( )
1
m( ) in ( )a

f i
i n

tT tTF t
 

 , (36) 

where 

 
 

     
 

( )

2

( )

(0, )

ˆ ˆ ˆ[ 2 , 2 , 0, ]
(0, t),0

i ia

i i

i

i

f

i

y t v t
t

c v t v t v t
f v

 





 


 . (37) 

The formula (36) is derived based on the system dynamics given by (4). By 

applying the finite difference method, ( , )xxv x t  can be obtained as 

 
2

0

( 2 , ) 2 ( , ) ( , )
( , ) limxx

v x t v x t v x t
v x t



 



   
 .  

Therefore we can get ( ) (0, )ty t v t  expressed as 

 2( ) [ (2 , ) 2 ( , ) (0, )] / ( (0, ),0) (0, )y t v t v t v t f v t d t        , (38) 

where 0   is a sampling interval. We assume that the term 

2[ (2 , ) 2 ( , ) (0, )] / ( (0, ),0)v t v t v t f v t      is held within a small time 

interval
( )[ , ]r it t for the purpose of prediction and let 

( )r it  be the first time when the value of 

( )iy t reaches its limit value iy . The solution
1( ) [ ( ),..., ( ))]T

ny t y t y t to (38) at 
( )r it   is 

approximated as  ( )2

(2 , ) 2 ( , ) (0, )
(0, ) ( (0, ),0) ,i i i

i i i r i

v t v t v t
y v t c f v t t t

 



  
    

 
 

for 1,2,...,i n . By substituting
( ) ( )f i r it t t    in the equation above, we can get  

 
 

 
( )

2

(0,

(0,

)

(2 , ) 2 ( , ) (0
),0

)
t

,
i

f i
i i

i
i

i v t
t

v t v t t

y t

v
c f v

 



 





 . (39) 

In (39), because (2 , )iv t  and ( , )iv t are not known in advance, we need to use 

ˆ (2 , )iv t  and ˆ ( , )iv t  instead for ( )f it  as given before.  Each element of the output vector 
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must be less than its limit, so the overall TTF is defined as the minimum among all the 

individual TTF given by (37). 

3.4.2. Sensor Fault. The TTF prediction in the presence of a sensor is estimated 

as  

 
( )

( )
1
m( ) in ( )s

f i
i n

tT tTF t
 

 , (40) 

where  

 
 

 

( )( )

( )

2

.

(

ˆ ( ) ( ) (0, )

ˆ ˆ ˆ(2 , ) 2 ( , ) (0, )
0, t),0

T

s i s is

f i
i

i

i
i i

w t t v t
t

v t v t v t

y t

vc f



 










 
  (41) 

Similar as the actuator fault, we can approximate (0, )tv t  as 

 2(0, ) [ (2 , ) 2 ( , ) (0, )] / ( (0, ),0) ( , ).tv t v t v t v t f v t d x t         

Solve the equation above and assume that 2[ (2 , ) 2 ( , ) (0, )] / ( (0, ),0)v t v t v t f v t     is 

held in the interval  ,t t to approximate (0, )v t  as 

  2

(2 , ) 2 ( , ) (0, )
(0, ) (0, ) ( (0, ),0) ,i

v t v t v t
v t v t c f v t t t

 



  
    

 
 (42) 

where t  represents the current time and t  denotes the future time. When ˆ ( ) ( )T

s sw i t is 

held in the interval  ,t t  we can approximate ( )y t  as 

 ( )
ˆ( ) (0, ) ( ) ( ).T

i i s i sy t v t w t t    

where (1) ( )
ˆ ˆ ˆ( ) [ ,..., ]s s s nW t w w and 1,2,...i n . Substituting 

( )

( )

s

r it t , 
( )

( )( )s

i r i iy t y , 

( ) ( )

( ) ( )

s s

f i r it t t  and the equation above to the equation given by (42) we can obtain  
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where 
( )

( )

s

f it  represents the first time thi  output reaching its limit value. Since (2 , )iv t  and 

( , )iv t are not known, we will use ˆ (2 , )iv t  and ˆ ( , )iv t instead in the formula which has 

been given before. The overall TTF in the presence of the sensor fault is defined as the 

minimum among all the individual TTF described by (41). 
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4. SIMULATION RESULTS 

In order to evaluate the effectiveness of the presented fault detection and 

prediction scheme, a nonlinear DPS whose system state can be represented by a parabolic 

PDE is considered next. The system dynamics in the presence of an actuator fault can be 

described as 

 
2

2
2 ( 0.5)1 1
1 1 22

( , ) ( , )
1.2 ( , ) 10 ( , ) 2 ( , ) 0.05 sin(2 ),xv x t v x t

v x t v x t v x t e t
t x

  
    

 
 

 
2

2
2 ( 0.3)2 2
2 1 22

( , ) ( , )
1.5 ( , ) 1.5 ( , ) 10 ( , ) 0.03 cos(3 ),xv x t v x t

v x t v x t v x t e t
t x

  
    

 
  

  
 

subject to 

 1
1 1 1 1 1

(0, )
2 (0, ), (1, ) ( ) ( ),

v t
v t v t u t t

x
 


  


  

 2
2 2 2 2 2

(0, )
2 (0, ), (1, ) ( ) ( ),

v t
v t v t u t t

x
 


  


   

where  1 2( , ) ( , ), ( , )
T

v x t v x t v x t  represents the system state at the position [0,1]x with 

time 0t  and
( ) , ( )

( , ) , 1,2
,

i i i

i i

i

u t if u t u
u t i

u else


 
 


  where iu  is the maximum value of 

the actuator output with 3.iu  The desired output trajectory is chosen 

as 0.6 0.5( ) [0.8(1 ),0.7(1 )]t t T

dy t e e    .  Fault parameters of the actuator fault initiating 

at 6t s  are given by 1 1( ) 1.5 ( 4)t t     and 2 2( ) 1.8 ( 4)t t     where ( 4)i t   is 

defined as 
 4

0 , 4
( 4)

1 , 4i
i t

if t
t

e if t
 


   

 
 with 1 0.3   and 2 0.6   . 
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Simulation results are obtained by using MATLAB, in order to solve the PDEs of 

closed-loop system and detection observer, finite difference method with 20 points grid 

are applied to discretize the entire space 0 1x  . Next this example is utilized to 

demonstrate the performance of the proposed detection and prediction scheme. 

The detection observer defined as (12) and (13) with observer gain selected as (18) 

is applied to generate the detection residual which is defined as the difference between 

the actual output and estimated output given by the detection observer. Figure 4.1 shows 

the detection residual with different initial conditions under healthy conditions, it can be 

observed that detection residual is bounded in all the cases. In this example, the initial 

conditions of the DPS are selected as 1 2( ,0) ( ,0) 0.2v x v x   and the one for observer is 

set as zero. It is shown in Figure 4.2 that observer errors are maintained bounded in the 

absence of any faults.  
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Figure 4.1. Detection Residual with different initial conditions. 
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Figure 4.2. Observer error under healthy conditions of (a) 1v  and (b) 2v . 
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Notice that the detection residual can be maintained below a predefined threshold 

(the solid line shown in Figure 4.3) under healthy condition when the time is before t = 4s. 

As observed from Figure 4.3, once an actuator fault occurs, and due to the fact that the 

output of the system diverges from the estimated output, the detection residual starts to 

increase and exceed the predefined threshold implying the occurrence of a fault. Upon 

detecting an actuator fault, an adaptive term will be incorporated into the detection 

observer to estimate the actuator fault parameters 1 and 2  . 

From Figure 4.3, we can see that the fault can be detected at about t = 5s, then the 

fault parameter is estimated and after some quick adaptation it can match with the actual 

fault parameter vector which is shown in Figure 4.4. 
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Figure 4.3. Actuator fault detection result. 



 184 

0 5 10 15 20 25
0

0.5

1

1.5

Time(sec)

(a)

M
a

g
n

it
u

d
e

 

 

0 5 10 15 20 25
0

0.5

1

1.5

2

Time(sec)

(b)

M
a

g
n

it
u

d
e

 

 

Estimated fault parameter

Actual fault parameter

Estimated fault parameter

Actual fault parameter

 

Figure 4.4. Actuator fault parameters estimation of (a) 1  and (b) 2 .  

Based on the dynamics of the output and given the limit values of the outputs as  

1 2y   and 2 1.8y  , we can estimate the overall TTF which can predict the time when the 

first output reaches its limit value. Figure 4.5 plots the TTF by utilizing the proposed 

formula (36). 

As discussed in Section 3.3, the proposed fault detection and estimation 

framework can deal with sensor fault as well. The outputs with a sensor fault are 

expressed as 

 
( )

1 1 1 1( ) (0, ) ( ) ( )s

dy t v t t y t  ,  
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( )

2 2 2 2( ) (0, ) ( ) ( )s

dy t v t t y t  . 

where ( )

1 11.5 ( 5)s t    , ( )

2 21.5 ( 5)s t     and the fault time profile is defined as 

 5 5

0 , 5
( 5) , 1,2

1 , 5
i t

if t
t i

e if t
 


   

 
  with 1 0.3   and

2 0.6  . Once a sensor fault is 

detected as shown in the Figure 4.6, the measurement   defined in (7) will be used to 

reconstruct the observer given by (30), (31) and (32) with an adaptive term. 
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Figure 4.5. Estimated time-to-failure for an actuator fault. 
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Figure 4.6. Sensor fault detection result. 
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Figure 4.7 shows that with the update law proposed in (35) the sensor fault 

parameters are tuned correctly within 2 seconds. Similar to the case of actuator fault, 

given the limiting value of the output, the time to failure can be estimated by using the 

formula given by (40) which can be observed in Figure 4.8.  
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Figure 4.7. Sensor fault parameters estimation of (a) ( )

1

s  and ( )

2
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Figure 4.8. Estimated time-to-failure for a sensor fault. 
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5. CONCLUSIONS 

This paper investigates the fault detection and prediction for a class of nonlinear 

DPS. The fault detection scheme which is developed based on a Luenberger type 

observer is capable of monitoring the behavior of nonlinear DPS with only boundary 

measurement. The proposed detection observer using nonlinear PDE representation 

provides accurate estimation of the measured and unmeasured state vector of the DPS 

provided measured output is available. Estimated fault dynamics given by the online 

estimator can assist in failure prediction and root cause analysis which is useful for 

maintenance schedule. Though this approach is generic, however, the proposed fault 

detection and prediction framework is limited to the class of nonlinear DPS represented 

by the parabolic PDE specified in this paper. 
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APPENDIX 

Proof of Theorem 1: It is known that the transformation (17) can map the state 

residual dynamics into the target system given by (19) and (20) if the observer gains 

1( )P x  and 10P  are defined by (18).  The stability of the residual dynamics can be 

concluded from the stability of the target system given by (19) and (20) due to the 

transformation made possible by (15) [20]. 

To discuss the stability of the PDE described in (19) with boundary conditions 

given by (20), one must select a positive definite Lyapunov function candidate, which is 

half of the squared Sobolev norm of the spatial profile defined in a Hilbert 

space 1(0, )H l as per [20] and it is given by 

 
2 2 2

2, 2, 0 0
( ) / 2 / 2 ( ,( ) ( ) ( , )) ( , ) / 2 / 2,

l l
T

x xn n
V t x t x t dt t tx dxx           

The derivative of ( )V t  with respect to t is obtained as  

 
0 0
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T T

t x txV t x t x t dx x t x t dx        .  

Substituting the equation (19) and (20) into the equation above and applying integration 

by parts, we will arrive at  
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Then we apply Poincare inequality [22] 2

2, 2,
4 xn n
l    and 2

2, 2,
4x xxn n
l   to the 

equation above to get 
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Therefore ( ) 0V t   if  
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By using Agmon’s inequality [21]we get 

2, 2,[0, ]
( ) max ( , )) (2 l fM Mn nx l

e t x t k d


        , 

where 22 2(1 4 /)l lk l c  , 
fM fM   and M Md d  , which means the detection 

error ( )e t will remain bounded under healthy conditions. The selection of the detection 

threshold  depends on the initial condition as well as the bound given above. 

In the presence of an actuator fault at
at

 , the boundary condition of the observer 

error dynamics from (15) will be modified as 

    100, ( ) , ( ,) )( , axv e tt P t l t h u tv    ,  

for at t . Apply the transformation (17) to (15) and the equation above to get (19) with 

following boundary conditions 

    (0, ) 0, , ,ax t l t h u t     . (A.1) 

Solving the PDE described by (19) and (A.1) we can obtain 
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 .  Take norm on the both sides of the equation above and apply 

triangle inequality to get 
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when (23) holds and the detection threshold is chosen as  
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where 1a  , which complete the proof. 

When a sensor fault occurs, the dynamics of the observer error are changed to 

 
     

1 1

( ) ( , , )
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( ,, ) ) , )(
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s

v cv A t v v xx t x t x t

d v x t
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P x t v t P x t h t

  

 
 ,  

subject to  

    1 000, ( ) (0, , 0) ( ) ( ) ( ),x s sv v t Qh t L t h t vt P t l t     ,  
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for st t  By applying the transformation (17) to the dynamics above we can get 
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Solving the PDE represented by the equations above yields 
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Then the detection residual is obtained as 
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where 1s  , it will lead to  
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Therefore, the detection of a sensor fault is guaranteed. 
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Proof of Theorem 2: A Lyapunov function candidate is chosen as  
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Substitute the update law (29) into the equation above to get 
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Notice that    , ,v l t l t   due to  1, , 0L t   from (20), then we get 
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where
fM fM  , M Md d  and a aW W  . Then   0V t   if one of the following 

conditions is satisfied 
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  . Therefore  ,x t  and  aW t   are UB. This implies that 

the observer error  ,v x t  is also bounded. 

Proof of Theorem 3: Select a Lyapunov function candidate as 
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By using the equations (19) and (34) and applying the integration by parts, we get the 

derivative of ( )V t  with respect to time as  
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Next, substitute the update law (35) to the equation above and apply Poincare 

inequality [22]
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It can be observed that ( ) 0V t   if one of the following conditions is satisfied 
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Therefore, ( , )x t  and ( )sW t  are bounded for all [0, ]x l  and st t . Moreover, 

the boundedness of observer error ( , )v x t  and the detection 

residual ( ) (0, ) ( ) ( )T

s se t t W t t    can be guaranteed.   
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V. MODEL-BASED ACTUATOR FAULT RESILIENT CONTROL FOR A 

CLASS OF NONLINEAR DISTRIBUTED PARAMETER SYSTEMS 

Jia Cai and S. Jagannathan 

This paper presents a new model-based fault resilient control scheme for a class 

of nonlinear distributed parameter systems (DPS) represented by parabolic partial 

differential equations (PDE) in the presence of actuator faults. A Luenberger-like 

observer on the basis of nonlinear PDE representation of DPS is developed with 

boundary measurements. A detection residual is generated by taking the difference 

between the measured output of the DPS and the estimated one given by the observer. 

Once a fault is detected, an unknown actuator fault parameter vector together with a 

known basis function is utilized to estimate the fault dynamics. A novel tuning algorithm 

is derived to estimate the unknown actuator fault parameter vector. Next, in order to 

achieve resilient, the controller from the healthy scenario is adjusted to mitigate the faults 

by using both estimated fault dynamics and a secondary measurement. Subsequently, an 

explicit formula is developed to estimate the time-to-resilience (TTR). Finally, a 

nonlinear example is utilized to illustrate the effectiveness of the proposed scheme. 
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1. INTRODUCTION 

Recently, modern control systems have become increasingly complex which can 

lead to a significant number of component faults and system failures. A resilient control 

system is defined as the one that can maintain state awareness, an extensive sense of 

security and safety [1], and normal operational behavior in the presence of unexpected 

faults or threats [2]. As mentioned in [3], resilience is not a generic characteristic of a 

system but is associated with a specific type of fault or threat. It means that a system is 

resilient to a class of faults [4]. 

Over the past two decades, resilient control systems have been investigated in 

various industrial arena spanning different applications [4-6]. In particular, a resilient 

control framework is designed [4] for cyber-physical systems. Authors in [5] present a 

model based resilient control strategy to resist disturbances or component faults. A 

resilient control scheme is proposed in [6] for wireless networked control systems to 

mitigate interference incidents. Despite attractive results, the past literature [4-6] covers 

the control systems whose mathematical models are represented by ordinary differential 

equations (ODEs). However, a significant number of industrial systems including fluid 

flows, thermal convection and chemical reaction systems are classified as distributed 

parameter systems (DPS) or infinite dimensional systems because the system variables 

are defined over a continuous range of both space and time [7].  

Compared to the systems discussed in [4-6], the fault detection and resilience 

(FDR) for DPS modeled by partial differential equations (PDEs) is more complicated and 

challenging due to their distributed nature. It is not practical to measure all the state 

vector over a continuous range in order to detect abnormal system behavior. 
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Limited work has been done for fault detection of distributed parameter systems 

due to its complex dynamics. More recently, a model-based actuator failure detection 

method is presented for DPS in [8]. Fault detection and accommodation is introduced [9] 

for nonlinear DPS with actuator faults by using an adaptive detection observer and fault-

tolerant control is developed [10] for nonlinear distributed parameter processes with 

actuator failures.  

Though interesting results have been obtained, the fault tolerant control schemes 

proposed in [8-10] are developed by approximating the PDE representation of the DPS 

with a set of ODEs which may result in missed or false alarms due to the reduced model. 

In addition, the presence of faults can cause the system dynamics to change and further 

lead to inaccurate fault detection. 

Motivated by the reduced model considerations, a novel fault detection and 

resilience scheme directly based on the PDE representation of nonlinear DPS with 

actuator faults is developed. A Luenberger like observer from [11] is utilized for both 

fault detection and output feedback control design. The fault dynamics are estimated by 

utilizing a tuning term assuming that the fault function can be written as linear in the 

unknown parameters. The tuning term is activated to estimate the unknown fault 

parameter vector once an actuator fault is detected with boundary measurements alone. 

Next, a fault resilient scheme is introduced to mitigate the actuator fault by using the 

estimated fault function. The closed-loop system stability is guaranteed through 

Lyapunov analysis. 

Upon detecting a fault and by using the output tracking error dynamics, estimated 

time to resilience (TTR), which is defined as the time needed by the resilience scheme to 
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recover back to the normal operating regime, can be assessed online by using a resilient 

pit. The TTR is particularly useful when compared to the remaining useful life, since it 

can predict whether or not the resilient scheme will work before the system reaches 

failure. 

The main contributions of this paper include the development of: a) an innovative 

model-based FDR scheme for actuator faults by using a Luenberger observer and system 

output, and b) TTR scheme by using a resilient pit on the basis of output tracking error 

dynamics, and 3) Lyapunov analysis of the closed-loop system by using the FDR scheme. 

This paper is constructed as follows. First, a class of nonlinear DPS represented by 

parabolic PDE with actuator faults is introduced in Section 2. Second, the development of 

FDR scheme for actuator faults with boundary measurements is considered in Section 3. 

Finally, the application of the proposed scheme in simulation on a nonlinear DPS with an 

actuator fault is demonstrated in Section 4.   
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2. SYSTEM DESCRIPTION AND FAULT FUNCTION 

Before introducing the system description, the notation and the norm used 

throughout this paper is given [12]. A scalar function 1 2( ) (0, )v x L l  indicates it is square 

integrable on the Hilbert space 2 (0, )L l  with the corresponding norm 

 2

1 12 0
( ) ( ) .

l

v v x dx     (1) 

Now take 

 
2 2 2 2[ (0, )] (0, ) (0, ) ... (0, ) ,n

n times

L l L l L l L l     (2) 

into account with the corresponding norm of a vector 

function 1 2( , ) [ ( , ),..., ( , )] [ (0, )]T n

nv x t v x t v x t L l   defined as 

 
2

2, 2 0
1

( ) ( ) .
n l

T

in
i

v v v x v x dx


    (3)  

In addition,   stands for a Frobenius norm for a matrix or Euclidean norm for a 

vector. In order to save space, any vector defined in 2 (0, )L l , ( , )v x t  and its partial 

derivatives are written as  

 ( , ) ( , ) /tv x t v x t t   , ( , ) ( , ) /xv x t v x t x   , and 2 2( , ) ( , ) /xxv x t v x t x   .  

2.1. SYSTEM DESCRIPTION 

A class of n-dimensional nonlinear DPS, which can be represented by the 

following parabolic PDE, is expressed as 

 
2

2

( , ) ( , )
( , ) ( , ),

v x t v x t
c f v x d x t

t x

 
  


  (4) 

subject to boundary conditions given by 
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           (0, ),   ( ),, (0 , )xv Qv t v lt t u t    (5) 

 ( ) (0, ),y t v t ( ) ( , )ay t v l t ,  (6)  

for (0, )x l  and 0t   , where 
1 2( , ) [ ( , ),..., ( , )] [ (0, )]T n

nv x t v x t v x t L l   is the state 

vector, 1( , ) [ ( , ),... ( , )] n

nd x t d x t d x t  represents disturbance 

vector,
1( ) [ ( ),..., ( )]T n

nu t u t u t  stands for the control input vector, 0c   is a positive 

constant, n nQ   is a full rank square matrix and ( , ) nf v x  is a Lipschitz continuous 

nonlinear vector function. In addition, the measured output vector 

1[ ( ),..., ( )]( ) T n

ny t y ty t    is located at the opposite end of the actuator. For fault 

resilience, a controller is required under healthy conditions prior to the fault. 

Remark 1: The measurement ( )y t  defined by (6) is used for observer design and 

to generate detection residual. The secondary measurement ( )ay t  given by (6) is required 

to estimate unknown fault parameter after fault occurrence.  

Assumption 1: The system uncertainty or disturbance is bounded above such 

that ( , )d x t d   for all [0, ]x l  and 0t  , where 0d   is a known constant. It is written 

as a general form in this paper, whereas a more specific model can be found in [13].  

Remark 2: The upper bound of the disturbance d is needed to determine the 

detection threshold.  

Assumption 2: The nonlinear vector function ( , )f v x  satisfies the following 

conditions: 

a. ( , )f v x  is Lipschitz continuous in v , 0  in x , 1  in t  and v  for [0, ]x l  , 0t   

and 2( , ) (0, )v x t L l . 
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b. ( , )f v x  should satisfies
( , )

( , ) ( , ) ( , ),f

f v x
f v v x f v x v v x

v



     


where v  

represents a small change in v and ( , )f v x  is the approximation error satisfying  

2,f fn
  .  

Remark 3: Assumption (a) can guarantee that 
( , )f v x

v




 is bounded. 

Remark 4: In order to meet the requirement 
2,f fn

  in Assumption 2 (b), v is 

small implying that the initial conditions of the observer which will be introduced in 

Section 3 should be close to the system described by (4), (5) and (6). In addition, it also 

indicates that the initial value of the system state is close to its desired value. 

2.2. STATE FEEDBACK CONTROL DESIGN UNDER HEALTHY 

CONDITIONS 

Given a reference output, a full-state desired trajectory satisfying the system 

dynamics described by (4) and (5) in the absence of disturbance can be obtained by using 

flatness-based methods [14] to design the control input ( )u t  which in turn allows the 

system state to follow the trajectory.  

Given a reference output ( ) (0, ) n

d dy t v t  , a full-state desired trajectory for 

0 x l    is obtained as [14] 

 
0

( , ) ( ) ,k

d k

k

v x t a t x




   (7) 

where 1 2( ) [ ( ), ( ),..., ( )] n

k k k kna t a t a t a t  denotes time-varying coefficients of formal 

power series. These coefficients are decided by utilizing the given reference output and 

the system dynamics given by (4) and (5).  
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Next a state tracking error is introduced 

as 1( , ) [ ( , ),..., ( , )] ( , ) ( , )T n

n dr x t r x t r x t v x t v x t    . By applying the Assumption 2, the 

state tracking error dynamics is obtained as 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )t xx rr x t r x t x t r x t r x d x t     , (8) 

   00,xr t   , (9) 

where
( , )

( , )

dv v

f v x
x t

v 


 


is considered bounded and ( , )r r x  represents the 

approximation error . The open-loop system (8) and (9) with ( , ) 0r l t  is unstable 

when ( , )x t is positive definite with sufficiently large eigenvalues. Because 

( , ) ( , )x t r x t is the cause of instability, our objective is to eliminate this term by using 

both the Volterra integral transformation [15] and an appropriate controller.   

   Apply the Volterra integral transformation given by 

 
0

( , ) ( , ) ( , , ) ( , )
x

w x t r x t K x t r t d     , (10) 

with state feedback control input ( ) ( )hU t U t  defined by 

 
0

( ) ( ) ( , ) (1, , ) ( , )
l

h du t u t v l t K t r t d       , (11) 

along with the boundary condition 

 
0

( , , ) () ,, )(
l

K l t tt r dr l      , (12) 

to convert the system (7)-(8) and (11) into a target system described by 

 
( , ) ( , ) ( , ) ( , ) ( , ),t xx rK Kw x t cw x t aw x t r x d x t   

 (13) 

 (0, ) 0, ( , ) 0xw t w l t  . (14) 
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where
0

( , ) ( , ) ( , , ) ( , )
x

rK r fr x r x K x t v d        ,
0

( , ) ( , ) ( , , ) ( , )
x

Kd x t d x t K x t d t d      

and ( , , )K x t  is an n n  controller kernel matrix satisfying the following hyperbolic 

PDE given by  

          , , , , , , , , ( , ) , , ,t xxK x t cK x t cK x t K x t x t aK x t           (15) 

    ,0, ,0, ,K x t K x t Q   (16) 

  ( , , ) ( , ) / 2 ,K x x t x t a x c Q       (17) 

where 0a  is an arbitrary positive scalar. By considering ( , )rK r x  and ( , )Kd x t  bounded, 

the target system described by (13) and (14) is stable. Due to the invertability of (10) [15], 

the stability of ( , )w x t can assure the stability of ( , )r x t .   

Note that the controller given by (11) requires the state vector ( , )v x t to be 

measurable at all positions which is impractical. Therefore, an output feedback controller 

will be introduced in Section 3. Next an actuator fault, ( ) n

ah t  , is considered at the 

boundary of the nonlinear DPS. 

2.3. ACTUATOR FAULT DESCRIPTION 

The system description from (4) and (5) with an actuator fault can be described by 

(4) subject to the new boundary conditions 

   (0,0, ( , ) ( ) ( )),  , .ax t lv Qv t v t u t h y t    (18) 

Moreover, the fault function can be written as 

 0( ) ( ) ( )a ah t t t h t  , (19) 
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where ( )i at t   is the time profile of the fault defined by
0 , 0

( )
1 , 0i

i

if

e if
 







  

 
  for 

1,...,i n , at  denotes the fault occurrence time, the constant i  represents the growth 

rate of an incipient fault and ( )ah t describes the actuator fault function dynamics. Abrupt 

faults can be represented as well when a large
i  is selected. Nevertheless, for the 

purpose of resilience, only incipient faults are considered.  The following assumption is 

required in order to proceed. 

Assumption 3: The fault function can be written as linear in the unknown 

parameters (LIP) [16]. In other words, the actuator fault function, ( ) ( , )a a ah t y t  , 

where n

a   is the unknown fault parameter vector satisfies a a  , 

 ( , ) ( , ) n

a i iy t diag y t    is known and ( )i  with 1,2,...,i n  is a smooth function. 
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3. FAULT RESILIENCE SCHEME WITH OUTPUT MEASUREMENTS 

In this section, a Luenberger observer, which can provide the estimated state 

information, is introduced based on the representation of nonlinear DPS for both fault 

detection and output feedback resilient controller design. Moreover, an adaptive 

algorithm is derived to tune the unknown fault parameter with the help of a secondary 

measurement at the boundary condition. Then, by using the estimated fault parameter, the 

controller structure under healthy conditions can be reconfigured to accommodate the 

fault. In addition, a resilient pit is introduced to asset the performance of the fault resilient 

scheme through the output tracking errors and an explicit formula of time to resilient 

(TTR) is proposed. Next, the output feedback controller in the absence of faults is 

introduced first and it is modified for the sake of fault resilience later. 

3.1. OUTPUT FEEDBACK CONTROLLER DESIGN UNDER HEALTHY 

CONDITIONS 

Now consider that only the boundary value ( ) (0, )y t v t is available. An observer 

with its state, ˆ( , ) nv x t  , based on the system representation given by (4) and (5) is 

introduced as 

 
2

12

( , ) ( , )
ˆ( ) ( , )( )

ˆ ˆ
ˆ,

x t x t
c f x P x t y y

t x

v v
v

 
   

 
 , (20) 

with the following boundary conditions  

    10
ˆ ˆ(0, ) ˆ0, ( )( ) , ( ),x t t y y lv Q tv t P v u t   , (21) 

 ˆ ˆˆ( ) (0, ), ( ) ( ) ( )y t z t e t y t y t   , (22) 

where ˆ( )y t  is the estimated output and ( )e t  denotes the detection residual. The observer 

estimation error is defined as ˆ( , ) ( , ) ( , )nv x t v x t v x t   whose dynamics are  
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       1( , ) ( , ) (, , , ( , ),, ) ( )t xx fv cv A x t vx t x t x t d x tv x P x t e t     (23) 

subject to  

    100, ( ) ( , 0),xv e t vt P t l t   ,  (24) 

where
ˆ

( , )
( , ) n n

v v

f v x
A x t

v






 


 is obtained by applying Assumption 2 to 

get ˆ( , ) ( , )f v x f v x  
ˆ

( )
(

,
, )

,
v v

f

f v x
x tv v x

v










.   

    Next, apply the Volterra integral transformation [11] 

        
0

,, , ,,
x

x t x t L x tv t d       ,  (25) 

with the observer gains 1( , )P x t  and 10 ( )P t selected as  

 
 

11 0

,0,
( , ) , (0,0 )( ,)

L x t
P x P tt c L t








, (26) 

to convert the observer error dynamics (23) and (24) into a stable system given by 

      , , , ( , ) ( , )t x fM Mxx t x t x tc b v x d x t       ,  (27) 

  , 0
(0, )

0,
t

x
l t


  


 ,  (28) 

where ( , , ) n nL x t   is the unique solution to the following well-posed PDE [11] given 

by 

 
2 2

2 2

( , , ) ( , , ) ( , , )
( , ) ( , , ) ( , , ) [ ]

L x t L x t L x t
A x t L x t bL x t c

t x

  
 



  
   

  
 , (29) 

    , , 0,  , , ( )[ ( ) ] / (2 )n nL l t L x x t x l A t bI c      , (30) 

( , ) nx t  , ( , ) n nL x    , 0b   is an arbitrary 

scalar,
0

( , ) ( , ) ( , , ) ( , )
x

Md x t d x t M x t d t d     and 
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0
( , ) ( , ) ( , , ) ( , )

x

fM f fv x v x M x t v d         with ( , , ) n nM x t   is the kennel matrix 

of the inverse transformation        
0

, ,, , ,
x

v M x t v dx t x t t      . 

It is important to notice that the stability of ( , )v x t  is guaranteed because of the 

stability of ( , )x t . By using the observer defined by (20) and (21), the stability of the 

state tracking error dynamics can be demonstrated with the controller designed as 

 

1

0

1 1

0 0

ˆ ˆ( ) ( ) ( , ) ( , )[ ( , ) ( , )]

( , ) ( , , ) ( , ) (1, , ) ( , )

h d d

d

u t u t v l t K l v t v t d

v l t K l t r t d K t v t d

   

     

   

  



 

 (31) 

where ˆ ( )hU t denotes the control input using estimated state vector given by the observer 

during healthy conditions.   

It is worthy to point out that when compared with the controller using real state 

vector ( , )v x t  given by the equation (11), the extra term 
1

0
(1, , ) ( , )K t v t d    presented 

in the controller defined by (31) utilizing the estimated state vector ˆ( , )v x t is the result of 

the observer error ( , ).v x t  Both of them will be equivalent when the observer error 

( , ) 0v x t  . 

Next, substitute the controller (31) into the DPS (4) and (5), the dynamics of the 

state tracking error are obtained as (8) and (9) with the boundary condition given by 

 
0 0

( , ) ( , , ) ( , ) ( , , ) ( , )
l l

r l t K l t r t d K l t v t d        . (32) 

Then by applying the transformation (10) to the state tracking error dynamics described 

by (8), (9) and (32), we can obtain (13) subject to 

 
0

(0, ) 0, ( , ) ( , , ) ( , )
l

xw t w l t K l t v t d     . (33) 
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Therefore, by using (25), (33) and applying Cauchy Schwarz inequality and Young’s 

inequality we get that 

      

      

       

   

0 0

0

0

0 0

0

0

0

0

( , ) ( , ) [ ( , , ) ( , ) ] [ ( , , ) ( , ) ]

( , , ) , ,

( , , ) , ,

2 , , 2 , ,

(1

, ,

2 ) ,

,

,

,

l l
T T

T
l

l

l l
T T

T

L s t d

w l t w l t K l t v t d K l t

s

L s t ds

d

v t d

K l t t s t d

K l t t s t d

k t t d kL s t s t d

L k s t s t

s









     

   

   

   



 
  

 
  

 



  

  

   

  





 





  



       

0

0 0
4 , , 2 0, 0, .

l

T T
l

s s

d

k s t s t d l t

d

ds t

s





   



 

 (34) 

where
2

0
( , , )

l

k K l t d   and
2

00
max ( , , )

l

x l
L L x t d 

 
   . The inequality given by (34) 

implies that the boundedness of ( , )w x t can be assured if ( , )x t is bounded.    

The following theorem discusses the performance of the output feedback 

controller given by (31) using estimated state vector provided by the observer. 

Theorem 1 (Controller Performance under Healthy Condition): Let the controller 

defined by (31) be applied to stabilize the DPS defined by (4) and (5). Then the tracking 

error described by (8), (9) and (32) will be ultimately bounded in the absence of faults.  

Proof: See Appendix. 

Remark 5: It can be shown in the Appendix that 

   
0 0

, ,
(1 2 )

l x
T t t d dx

bR L kc


    

    and    
0 0

, ,
l x

Tw t w t d dx
a


     , 

where 
2 ( )2( ) fM MrK K

R dd

a b





  , fM fM  , M Md d , rK rK  , K Kd d and 
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0R   is a positive constant to construct the Lyapunov function satisfying 

2 (1 2 )
max 4 ,4 ,

kc L
R l k

b

 
  

 
. Therefore  ,x t  and ( , )w x t  are UB under healthy 

condition which implies that the observer error  ,v x t  as well as the tracking error ( , )r x t  

are bounded. It should be noted that the bound given above can be reduced by 

appropriately selecting the values of a , b  and R .   

Next a resilient pit is introduced to show the control system performance in the 

presence of an actuator fault. 

3.2. RESILIENT PIT 

In order to evaluate the control system performance in the presence of faults, a 

resilient pit is introduced by using the output tracking error.  Define the system 

performance as  

 

0

0

(0, )

(0, )
(0, )

s

P if r t r

P r
P if r t r

r t

 


 




 , (35) 

where 0P  represents normal behavior value, r  denotes the limiting value of output 

tracking error. 

The change of output tracking error in the presence of a fault is plotted in Figure 

3.1 (a). When a fault occurs, the magnitude of the tracking error increases and exceeds its 

limit since the output is not able to follow the desired trajectory. After a fault is detected, 

if a resilient control is subsequently applied to mitigate the fault, then the output tracking 

error will be reduced below the limited value again, otherwise the output tracking error 

will not decrease. Based on the change of the output tracking error and by using the 
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formula defined by (35), we can obtain a resilient pit which is shown in Figure 3.1 (b) 

where dt  is the detection time and 
rt  represents the time when the system performance 

goes back to normal, i.e. the time when the magnitude of the output tracking error is 

reduced below its limited value. If the time interval 
r dt t t    is small, it is believed that 

the system performance can recover from a fault using the fault resilient control scheme.  

 

 

 

  

(a) 

Time

P
i

P
0

P
e

rf
o

rm
a

n
c

e

ta ts td tr

Normal 

performance

Lowest point of

 performance

Fault occurrence 

time

System 

performance 

starts to degrade
Performance recovers 

completely

Fault is detected

 by the system 

and

 procedure starts

  

(b) 

Figure 3.1. (a) Output tracking error; (b) resilient pit. 

Next the actuator fault detection and resilient control is introduced using 

estimated states. 

3.3. ACTUATOR FAULT DETECTION AND RESILIENCE 

It has been shown in the Subsection 3.1 that the proposed observer is able to assist 

in the output feedback controller design. Next the observer performance of fault detection 
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and resilience is illustrated. In the presence of an actuator fault, the boundary condition of 

the observer error dynamics defined by (23) will be changed to  

    100, ( ) , ( ,) )( , axv e tt P t l t h y tv   , (36) 

By applying the transformation given by (25) to the modified observer error dynamics 

given by (23) and (36) we can get (27) subject to 

    (0, ) 0, , ,ax t l t h y t    , (37)  

The presence of the actuator fault will change the boundary condition of the state tracking 

error dynamics given by (8) and (9) as  

 
0 0

( , ) ( , , ) ( , ) ( , , ) ( , ) ( , )
l l

ar l t K l t r t d K l t v t d h y t          , (38) 

Apply the transformation (10) to (8), (9) and the equation above to get (13) subject to 

 (0, ) 0,xw t    (39) 

 
0

( , ) (1, , ) ( , ) ( , ).
l

aw l t K t v t d h y t       (40) 

The following theorem demonstrates the performance of the detection observer defined 

by (20), (21) and (22). 

Theorem 2 (Detection observer performance): Let the observer given by (20), (21) 

and (22) to estimate the unmeasured states and measured output of the DPS described by 

(4), (5) and (6). During healthy conditions, detection residual ( )e t  will be bounded and 

remained below a detection threshold  .  An actuator fault can cause ( )e t  to increase and 

exceed the threshold  indicating the presence of a fault. In addition, the occurrence of 

the fault will change the tracking error dynamics and cause the magnitude of the tracking 

error to increase. 

Proof: Refer to Appendix. 
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Remark 6: It is shown in the Appendix that in the absence of faults, the detection 

residual is ultimately bounded by  

 
317

( ) 2
2( 2 )(16

( )
1)

M fM

c
e t

c b b
d 

 
 . 

By using the bounded above, a predefined threshold  can be determined so that during 

healthy conditions the magnitude of the detection residual is below  for all the time.  

Remark 7: In contrast, in the presence of an actuator fault and by using the same 

Lyapunov function candidate as in Theorem 1, it will be shown in the Appendix that   

   
0 0

, ,
2(1 2 )

l x
T at t d dx

bR L kc


    

    and    
0 0

, ,
l x

T aw t w t d dx
a


     , 

where 
2

( 2) ( , )a aR c h y t    . It is clear that the bound given here is greater than the 

one presented in the Remark 5 due to the presence of the fault.  

Once a fault is detected, an estimated fault function given by ˆ( , ) ( )a ay t t is 

utilized to reconfigure the control input for resilience with ˆ ( )a t is tuned by the following 

update law 

 ˆ ˆˆ( ) ( , )[ ( ) ( , )] ( )a a a at c y t y t v l t t      . (41) 

where 0   is the tuning rate, 0   is the stabilizing term. The overall input is given by 

 ˆˆ( ) ( ) ( ) ( , ) ( )accom h a aU t U t U t y t t   , (42) 

yielding  

 ˆ(1, ) ( ) ( , ) ( )h a av t U t y t t   ,    (43) 

for the purpose of eliminating the effect on the DPS due to the presence of an actuator 

fault where ˆ ( )hU t  is the control input designed during healthy conditions given by (31). 
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Then the dynamics of the transformed tracking error becomes (13) subject to the 

following boundary conditions 

 (0, ) 0,xw t   (44) 

and 

 
1

0
( , ) ( , ) ( ) (1, , ) ( , ) .a aw l t y t t K t v t d         (45) 

The next theorem shows the boundedness of the tracking error with the proposed 

resilient scheme. 

Theorem 3 (Actuator Fault Resilience): Let the resilient control law in (42) be 

applied after detecting an actuator fault. Then the parameter estimation, observer 

estimation and state tracking errors are UB. 

Proof: See Appendix. 

Remark 8: By using the modified controller given by (42), new bounds can be 

obtained as  

   
0 0

, ,
2(1 2 )

l x
T mt t d dx

bR L kc


    

    ,    
0 0

, , /
l x

T

mw t w t d dx a      

and  
2

( 2)

m
a t

R








, where

2( 2)

2

a
m

R 
 




  . (46)   

By comparing the bounds given above with those given by Remark 7 without 

fault resilient control scheme, bounds defined by (46) can be significantly reduced by 

appropriately choosing and  . 

3.4. TIME TO RESILIENCE (TTR) 

It has been mentioned in the Subsection 3.2 that the magnitude of the output 

tracking error will increase in the presence of an actuator fault since the output cannot 
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follow the desired trajectory with a faulty control input. Once a fault is detected, a fault 

resilience scheme introduced in Subsection 3.3 will be activated to force the output to 

follow its desired trajectory again and thus the magnitude of the output tracking can be 

reduced. Next the estimated time to resilience (TTR) is introduced which is defined as the 

time available before the magnitude of the tracking error is reduced below a given limit 

by using the proposed fault resilience scheme. The following remark presents an explicit 

formula to predict the TTR with output alone.   

Remark 9: Given an initial value of the output tracking and estimated state 

tracking errors, and the limit values of each output tracking error, once a fault is detected 

and the fault resilient scheme is activated, the TTR can be estimated as 

 ( )
1
max )( () a i

i n
T t tTR t

 
  , (47) 

where 

 




) 2(

(0, )

ˆ ˆ[ (2 , ) 2 ( , ) (0, )] /

( (0, ),0) ( (0, ),0)

a i
i i

i i i

i i d

r r t

c r h t r h t r t h

f v t f

t

v t




  



. (48) 

The formula given by (47) is developed by using the tracking error dynamics (8). 

Let 1(0, ) [ (0, ),..., (0, )]T

nr t r t r t , 1( (0, ),0) [ ( (0, ),0),..., ( (0, ),0)]T

nf v t f v t f v t , then by 

substituting 0x   to (8) for each 1,...,i n  we can get 

 
2

2

(0, ) (0, )
( (0, ),0) ( (0, ),0) ( , ).i i

i i d i

r t r t
c f v t f v t d x t

t x

 
   

 
  (49) 

By applying finite difference method, we can obtain  

 
2

2 2
0

(0, ) [ (2 , ) 2 ( , ) (0, )]
limi i i i

h

r t r h t r h t r t

x h

  



, (50) 

thus the output tracking error dynamics given by (49) can be rewritten as 
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2

(0, ) [ (2 , ) 2 ( , ) (0, )]
( (0, ),0) ( (0, ),0) ( , ).i i i i

i i d i

r t r h t r h t r t
c f v t f v t d x t

t h

  
   


 , (51) 

where 0h   is a sampling interval. Assume that (2 , ) 2 ( , ) (0, )i i ir h t r h t r t   and 

( (0, ),0) ( (0, ),0)i i df v t f v t  are held in the interval
( ),c r it t    to approximate ( )(0, )i r ir t  as 

 




2

( )

( )

(0, ) [ (2 , ) 2 ( , ) (0, )] /

( (0, ),0) ( (0, ),0) (0, )

i r i i i i

i i d r i i

r t c r h t r h t r t h

f v t f v t t t r t

  

     

, (52) 

where ct  is the current time instant and ( )r it   represents the future time when the value of 

(0, )ir t is reduced below its corresponding limit ir  for all ( )r it t   where 

0( 1,2,..., )ir i n  denotes the limited value of each output tracking error (0, )ir t . 

Substitute ( ) ( )a i r it t t   and ( )(0, )i r i ir t r  to (50) to get 

 
 

( ) 2

(0, )

[ (2 , ) 2 ( , ) (0, )] / ( (0, ),0) ( (0, ),0)

i i
a i

i i i i i d

r r t
t

c r h t r h t r t h f v t f v t




   
. (53) 

In the formula (53), because (2 , )r h t  and ( , )r h t are not available, we need to use 

ˆ ˆ(2 , ) (2 , ) (2 , )dr h t v h t v h t   and ˆ ˆ( , ) ( , ) ( , )dr h t v h t v h t   instead for ( )a it  as given by (48).  

Because the output tracking error for all the states must be less than their limits, the TTR 

is obtained as the maximum among all the individual TTR given by (47). 
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4. SIMULATION RESULTS 

In order to demonstrate the proposed fault resilient scheme, a nonlinear DPS is 

considered whose dynamics with an actuator fault at boundary condition can be 

expressed as 

 
2 2

2 2

( , ) ( , ) 2 ( , )
2 ( , ) ( , )

1 4( 0.5)

v x t v x t v x t
v x t d x t

t x x

 
   

   
 , (54) 

subject to 

 
(0, )

0.5 (0, ), (1, ) ( ) ( , )
v t

v t v t u t y t
x




  


 , (55) 

where ( , )v x t  represents the system for state [0,1]x and time 0t   , 

20.5( 0.3)( , ) 0.02 sin(2 )xd x t e t    is the disturbance  and 2( , ) ( )y t y t  . Given reference 

output as 1.2(0, ) 1.1(1 )t

dv t e  , the corresponding controller under healthy conditions 

can be obtained using (31). The actuator fault is seeded at 6t s  with the fault parameters 

being defined by ( ) 0.25 ( 6)t t     where ( 6)t   is defined 

as
 0.8 6

0 , 6
( 6)

1 , 6
t

if t
t

e if t
 


   

 
. 

For the simulation results using MATLAB, the closed-loop system and observer 

are discretized over the entire space 0 1x    by using the finite difference method with 

20 point grid. Next the performance of the detection and resilient scheme is evaluated on 

this example when only output is available. 

The total time for simulation in MATLAB is taken as 15 seconds and the time 

interval for solving system PDE and observer is considered as 0.01 seconds. The 

estimated state and output under healthy conditions given by observer (20), (21) and (22) 
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are obtained. Prior to the fault occurrence, the detection residual is expected to be 

decreasing, whereas it will increase once a fault occurs.  

It is clearly observed in Figure 4.1 that the residual between the output from the 

system dynamics of (54)-(55) and the estimated output given by the observer can reach a 

steady state in a short time, but once a fault is activated at 6t s  , the residual increases 

because of the behavior of the system state changes. Then the fault is detected about 1.5 

seconds after its inception, when the detection residual exceeds the threshold.  
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Figure 4.1. Fault detection. 

Upon detecting the actuator fault, an online estimator is activated to learn the fault 

dynamics. The update law (41) is utilized to estimate the fault parameter. The fault 

detection estimation result can be seen from Figure 4.2. 

Since the actuator fault will affect the controller of the actual system, the tracking 

error without mitigation will not decrease. However, if the fault resilient controller is 

applied to the boundary condition, tracking error will first increase and then decrease 
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once the adaptation is activated to estimate the fault dynamics. The comparison with and 

without mitigation results can be seen from Figure 4.3 (a) and (b).   
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Figure 4.2. Fault parameter estimation. 
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Figure 4.3. (a) with fault mitigation; (b) without fault mitigation. 

By utilizing formula (47), and setting the limits as 0.16r  , the TTR can be 

estimated which can predict the time when the tracking errors of the system shown in 
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Figure 4.4 decrease to their limit values.  The fault is considered being accommodated 

completely when the output tracking error approach below its limit as shown in Figure 

4.3 (a). By using the output tracking error and the system performance defined by (35) 

with 0 1P  , a resilient pit is generated as shown in Figure 4.5.  It can be observed from 

Figure 4.5 that the difference between the fault detection and recovery time is within 0.5 

seconds implying that the system performance can recovery from the actuator fault very 

quickly by applying the proposed fault resilient scheme provided the actuator fault is 

bounded.  
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Figure 4.4. Estimated time-to-resilience for an actuator fault. 
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Figure 4.5. Resilient pit in the presence of an actuator fault. 
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5. CONCLUSIONS 

In this paper, first a Luenberger observer is utilized for both fault detection and 

output feedback control design. Compared to ODE representation of DPS, the PDE-based 

observer provides a more accurate estimation of the state, which is beneficial to both fault 

detection and resilient control. Furthermore with a novel adaptive scheme to tune the 

fault parameter, the magnitude of the output tracking error can be reduced by 

reconfiguring the control input. The proposed adaptive estimator provides valuable 

information about the fault function for predicting the time-to-resilience. The proposed 

scheme with boundary measurements alone is critical when dealing with the 

implementation on practical systems. The effectiveness of the fault resilience is 

guaranteed by the Lyapunov analysis. 
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APPENDIX  

Proof of Theorem 1: Select the Lyapunov candidate given by 
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Substitute the inequality given by (34) to the equation above to get 
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r  are also guaranteed because of (25) and the invertible of (10). 

Proof of Theorem 2: In order to discuss the performance of the detection observer 

under healthy conditions, a Lyaponov candidate is selected as  
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Then we apply Poincare inequality [17] 2
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By using Agmon’s inequality [18] we get 
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where 22 2(1 4 /)l lk l c  , which means the detection error ( )e t will remain bounded 

under healthy conditions. 

In the presence of an actuator fault, if the same Lyapunov function candidate 

given by (A.1) is used here, the derivative of  V t  with respect to t is obtained as  
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Then   0V t   if one of the following conditions is satisfied 
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Proof of Theorem 3: Select a Lyapunov function candidate as 
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Therefore, the derivative of Lyapunov function will be less than zero when 
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So far we have shown the boundedness of 
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x
T t t d dx     , because ( , )w x t and ( , )x t  are 

continuous on [0,1]x , the transformed tracking error (0, )w t is also bounded. Now, given 

the transformation (25) and the invertability of the transformation (10), the boundedness 

of the observer estimation error ( , )v x t  state tracking error ( , )r x t  are ensured.  
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SECTION 

2. CONCLUSIONS AND FUTURE WORK 

In this dissertation, an online adaptive approach was utilized to design model-

based fault diagnosis and prognosis schemes for a class of linear and nonlinear DPS 

described by parabolic PDEs. A Luenberger observer is used to detect and estimate 

actuator faults using state availability for linear parabolic PDEs. Subsequently, the 

requirement of measured full state availability is relaxed by redesigning the detection 

observer based on input and output filters. Then the prediction scheme is introduced to 

estimate TTF by using estimated fault parameters.  

Based on the estimated fault dynamics, fault accommodation can be generated to 

mitigate faults by reconfiguring the controller. In addition, a fault isolation scheme is 

developed to identify actuator, sensor and state faults by using actuator and sensor fault 

isolation estimators and a location determination scheme is developed to provide 

information of the state fault location for linear DPS. A fault isolation framework 

differentiating different types of faults is introduced for nonlinear DPS as well. The 

proposed fault diagnosis and prognosis scheme is applicable to both incipient and abrupt 

faults. Stability is guaranteed with bounded uncertainty and disturbance. Moreover, an 

extended Luenberger-type observer is utilized to detect faults and predict system failures 

for nonlinear MIMO distributed parameter systems. Fault parameters are estimated using 

a novel tuning algorithm which is applied to reconfigure control input in order to achieve 

resilient control. 
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2.1. CONCLUSIONS 

In Paper I, an innovative observer acting on the basis of the system PDE 

representation gives a better estimation of the system and thus provides more reliable 

fault detection and estimation. The adaptive term tuned by a novel update law online is 

incorporated into the observer to approximate the fault function. The predicted TTF is 

obtained by using the estimated fault parameter and its failure limit. The filter-based 

observer introduced in the paper only requires boundary measurement for fault detection 

and estimation. It is critical when implementing the proposed scheme on a practical 

system that both actuator and sensor faults are detected if the fault type is known. The 

proposed fault diagnosis framework is applicable to systems with software modification 

and can minimize the cost of sensor placement. 

Paper II presents the model-based fault detection and accommodation scheme for 

linear MIMO distributed parameter systems with bounded uncertainty and disturbance. 

Instead of accommodating the faults based on a reduced ODE-based model, the detection 

observer is developed directly based on the original PDE representation which can 

estimate system states more accurately for the sake of reducing false or missed alarms. 

Several fault filters are applied to approximate additive actuator and sensor faults with 

boundary measurements; furthermore, the control input will be modified to mitigate 

actuator and sensor faults once detecting a fault if the type is known. In addition, time to 

accommodation is introduced which can be compared to the TTF presented in Paper I to 

determine if the system needs to be shut down for maintenance.  

The first two papers address fault prognosis and accommodation under the 

assumption that the fault type is known a priori. The unsolved problem is how to isolate 
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different faults. The main challenge is to determine the infinite possible locations of 

faults with a limited number of measurements.  

Therefore, the third paper presents a fault isolation scheme for DPSs to identify 

different actuators, sensors and state faults by incorporating estimated actuator and sensor 

fault dynamics to the detection observer and thereby generate actuator and sensor fault 

residuals. Then by comparing those residuals to their isolation thresholds, the fault type is 

determined. If a state fault is identified, several filter-based estimators at different 

locations are then applied to identify the fault location by comparing the errors among 

estimators.  

The fourth paper presents a model-based fault detection and prediction scheme for 

a class of MIMO nonlinear distributed parameter systems. The detection observer is 

developed based on nonlinear PDE representation, and the observer gains are selected by 

linearizing the observer error dynamics. A detectability conditions for actuator and sensor 

faults are provided and an online estimator is utilized to estimate the actuator/sensor fault 

dynamics with boundary measurements. In the end, a TTF prediction scheme is presented 

to estimate the remaining useful life of the system by using the failure limit of the output.  

In the last paper, the fault resilient control of nonlinear distributed parameter 

systems is investigated. A Luenberger observer is utilized for output feedback controller 

design and fault detection. Once an actuator fault is detected, an online estimator with a 

tuning term is incorporated to learn the fault dynamics using which the control input is 

reconfigured to obtain fault resilient control. Based on the change of the output tracking 

error in the presence of the fault, a resilient pit is introduced to asset the system 

performance with the proposed resilient control. 
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2.2. FUTURE WORK 

The proposed fault location determination scheme can be extended to nonlinear 

DSP to identify the location of a state fault. Because of the system nonlinearity and 

limited number of sensors, it may become extremely complicated to determine the 

location of a state fault. In addition, deriving state fault detectability condition for 

nonlinear DPS is necessary, and the state fault estimators need to be developed in order to 

identify the fault location. 

A fault accommodation scheme will be proposed for nonlinear MIMO DPS to 

mitigate state faults. A new update law needs to be derived to estimate the fault parameter 

for reconfiguring the control input. The stability of the fault accommodation has to be 

guaranteed by using an adaptive term for nonlinear DPS. Finally, the fault resilience 

performance has to be evaluated through the tracking error in the presence of state faults. 

Another part of the future work involves the implementation of the proposed fault 

diagnosis and prognosis to a practical system. Although the proposed schemes have been 

demonstrated by using simulation examples, it is necessary to implement the proposed 

scheme on a real system. As a next step, hardware implementation has to be pursued to 

resolve any issues that cannot be found in simulation studies. 
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