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ABSTRACT

This dissertation investigates image reconstruction algorithms for near-field, two-

dimensional (2D) synthetic aperture radar (SAR) using compressed sensing (CS) based

methods. In conventional SAR imaging systems, acquiring higher-quality images requires

longer measuring time and/or more elements in an antenna array. Millimeter wave imaging

systems using evenly-spaced antenna arrays also have spatial resolution constraints due

to the large size of the antennas. This dissertation applies the CS principle to a bistatic

antenna array that consists of separate transmitter and receiver subarrays very sparsely and

non-uniformly distributed on a 2D plane. One pair of transmitter and receiver elements is

turned on at a time, and different pairs are turned on in series to achieve synthetic aper-

ture and controlled random measurements. This dissertation contributes to CS-hardware

co-design by proposing several signal-processing methods, including monostatic approxi-

mation, re-gridding, adaptive interpolation, CS-based reconstruction, and image denoising.

The proposed algorithms enable the successful implementation of CS-SAR hardware cam-

eras, improve the resolution and image quality, and reduce hardware cost and experiment

time. This dissertation also describes and analyzes the results for each independent method.

The algorithms proposed in this dissertation break the limitations of hardware configura-

tion. By using 16 × 16 transmit and receive elements with an average space of 16 mm,

the sparse-array camera achieves the image resolution of 2 mm. This is equivalent to six

percent of the λ/4 evenly-spaced array. The reconstructed images achieve similar quality

as the fully-sampled array with the structure similarity (SSIM) larger than 0.8 and peak

signal-to-noise ratio (PSNR) greater than 25.
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SECTION

1. INTRODUCTION

1.1. BACKGROUND

Imaging at millimeter wavelengths has typically been accomplished by scanning a

single sensitive beam systematically across the scene to be imaged. Though this process is

traditionally very slow, the quality of the recovered images is high. The latest millimeter-

wave imaging systems include two fundamentally different techniques [1, 2]. The first

technique applies a focal-plane two-dimensional (2D) array of millimeter-wave detectors

placed behind a large lens and can achieve real-time operation, which is its most obvious

feature. Additionally, the operation for imagers of this technique is analogous to the

operation of an optical camera. However, its disadvantages include (1) relatively low

resolution, (2) small aperture, (3) limited field of view, and (4) high cost for the 2D array.

The second technique, known as synthetic aperture radar (SAR), uses a holographic linear

array of sequentially switched transmitter receivers scanned quickly over a large aperture

to actively illuminate the target. Then, the imagers of this technique record the phase

and amplitude of the returned signal. The data can be mathematically reconstructed into

a focused image of the target without the need for a lens. Advantages of this technique

include (1) near real-time operation, (2) high resolution, and (3) three-dimensional (3D)

reconstruction. The primary disadvantage of this technique is that the depth of focus is very

short.

The SAR imaging method has been widely used in biomedical, security, geophysics,

and remote sensing applications. Several high-resolution SAR imaging systems have been

developed [3, 4, 5]. Accurate and highly-sensitive imaging probe platforms have been
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demonstrated to detect and quantify small flaws within samples under tests (SUTs) [6].

However, based on the traditional sampling theory, high spatial resolution requires a small

sampling size, so the spatial sampling rate is greater than the Nyquist sampling rate to avoid

aliasing and preserve the quality of image reconstruction [5]. The traditional sampling

rate is higher than the Nyquist sampling rate, resulting in many measurements that lead

to long acquisition time for reasonably-sized SUTs. As a result, there is a great interest

in reducing the number of measured spatial points. This dissertation focuses on the wide-

band holographic SAR imaging system for nondestructive evaluation (NDE), which has

widespread utility. The image reconstruction method is based on the SAR and compressed

sensing (CS) algorithms.

This dissertation develops an innovative millimeter-wave imaging system capable of

producing rapid images using a sparse sampling approach. The imaging system consists of

2D transmitter (Tx) and receiver (Rx) antenna arrays with non-uniformly-spaced elements.

The RF front-end circuits randomly and electronically activate some pairs of the (2D) Tx-

Rx elements sequentially, thereby enabling use of non-uniform and sparse sampling SAR

imaging and of the CS technique for image reconstruction.

The CS technique is a signal-processing technique for efficiently reconstructing an

image from far fewer samples than required by the Shannon-Nyquist sampling theorem. The

proposedmillimeter-wave imaging system uses significantly fewer antennas compared to the

conventional imaging system for the same area SUTs. This dissertation proposes several CS-

based image reconstruction methods and post-processing techniques to maintain the quality

of the recovered images while significantly reducing the scanning time for both imaging

systems [7]. The CS-based method can effectively improve the quality of reconstruction

with under-sampled data. It has been proven that it is possible to perfectly reconstruct

images with proper constraints [8]. The constraints can be summarized as randomness

(incoherence) and sparsity. In the SAR imaging system, the reconstruction is sparse when
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the background area is much larger than the target area. The raw data from the imaging

systems are measured randomly in monostatic configurations or measured randomly in

bistatic configurations. The details for the CS-based algorithm are shown in Appendix A.

In this dissertation, the main purpose for the CS-based reconstruction technology is

to improve the reconstruction. However, few papers directly use image quality as a constraint

on CS. Most papers only use total variation, which maximizes the absolute gradient for the

images instead of the image quality. In this dissertation, a new constraint based on a non-

reference image quality metric has been added to the CS optimization problem to replace

the common total variation constraint [9]. This constraint is used to maximize the ïňĄnal

reconstruction quality, and the total variation is contained in this quality constraint. The

details for the gradient of the non-reference quality metric are derived in Appendix B.

1.2. PROBLEM STATEMENT

This dissertation proposes a bistatic configuration, random antenna, and millime-

ter and microwave SAR imaging system to sufficiently exert its effect on CS technology.

Our research group has configured and tested a prototype for the proposed imaging sys-

tem. Figure 1.1 depicts the hardware of the bistatic SAR imaging system. The prototype

is configured with eight receiver subarrays, eight transmitter subarrays, and other auxil-

iary equipment. Figure 1.1a shows the photos of transmitter and receiver subarray, and

Figure 1.1b shows the photo of the whole imaging system.

The proposed imaging system can be separated into hardware and software. The

hardware collects the SAR signal of the SUTs, while the software reconstructs images from

collected signals. Both the hardware and software can be divided into three sub-parts.

The hardware includes (1) a multi-frequency microwave signal generator, (2) microwave

electrical switches, and (3) transmitters and receivers. The software includes (1) signal

preprocessing software, (2) a CS-based reconstruction operator, and (3) image denoising

and other post-processing software. The signal generator produces wideband signals on the
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(a) The photos for the transmitter and receiver
subarray.

(b) The photo for the prototype imaging sys-
tem.

Figure 1.1. Photos for the random array imaging system.

Ka-band frequency (26.5 GHz to 40 GHz). High-frequency signals have strong penetration

and larger minimal resolution size, while wideband signals improve the reconstruction

quality by carrying more information. The electrical switches replace the time-consuming

mechanical arm or other complex equipment in the antenna time-division multiple access

(TDMA) working method. Each switch connects to one antenna to ensure that each time

only one Tx-Rx pair transfers the signals. The transmitter and receivers are separated in

the proposed imaging system and take advantage of the fact that the net radar resolution

depends on the product of the two gain patterns. The system will thus ensure that the final

reconstructions will have a high-resolution size, with low-resolution Tx and Rx subarrays.

The signal preprocessing software sorts the raw bistatic data to the under-sampled, uniform,

and equally-spaced data. It is also possible to directly apply the raw data via the CS

procedures. However, the computational cost in that case is too high to be acceptable. The
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Wideband millimeter wave
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TDMA millimeter wave 
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reconstruction

Signal pre‐processing

Hardware Part Software Part

Figure 1.2. The block diagram of image reconstruction for the proposed real-timemillimeter
wave compressive sensing imaging system.

CS-based reconstruction operator could highly improve the quality of the reconstructions.

In the proposed imaging system, there are only 241 samples in each frequency slice, while

the resolution size for the final reconstruction could be as high as 200× 200. The sampling

rate is much lower than the requirement for the Nyquist sampling rate, and the reconstruction

should be filledwith aliasingwith the normal reconstructionmethod. The final step of image

denoising and other post-processing is designed based on the features of the SAR image

to further improve the reconstruction quality. The block diagram for the whole proposed

imaging system is illustrated in Figure 1.2.

1.3. SUMMARY OF CONTRIBUTIONS

This dissertation proposed several different methods for improving the quality of

SAR reconstructions. Several journal publications and conference papers are listed in the

publication list that give detailed introductions to these methods. The first journal paper
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introduces and analyzes the performance of the system combining all the methods, and other

papers introduce and analyze each method separately. My contributions, both published or

under review, are as follows:

1. This dissertation proposes a low-complexity image reconstruction method for the

sparse array SAR imaging system to reconstruct high-resolution images via adaptive

re-gridding and compressed sensing. Experiments using millimeter-wave frequen-

cies in the Ka-band (26.5 - 40 GHz) have been conducted on several samples, and

the proposed image reconstruction method has been applied to the sparse measure-

ments. Objective measures (e.g., structure similarity (SSIM) and peak signal to noise

(PSNR)) and subjective measures (e.g., details of the object boundary, smoothness

of shape, and artifact elimination) indicate the excellent qualities of the reconstructed

2D SAR images.

2. This dissertation proposed a compressed sensing-based image reconstructionmethod.

With this method, only 35% of measurements currently needed by the traditional

method are necessary for reconstruction. This dissertation also proposed a feature

detection method for the reconstruction. With the reconstruction and detection meth-

ods, only 10% of measurements needed by the traditional method are necessary for

detection. When compared to the traditional SAR image reconstruction method,

experimental and simulation results illustrate this method’s accuracy, and the com-

putational cost for this method is acceptable.

3. This dissertation also proposed an image denoising method for the SAR images based

on the level set method (LSM) to improve reconstruction in the future. Simulation

and experimental results illustrated that only a 20% measurement is necessary for the

SAR experiment to identify the objects of interest using the proposed method.
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ABSTRACT

A near-field millimeter wave synthetic aperture radar (SAR) imaging system has

been built with very sparse arrays in a bistatic configuration consisting of 128 transmit

antennas and 128 receive antennas. This paper proposes a low-complexity image recon-

struction method for the sparse array SAR imaging system to reconstruct high resolution

images via adaptive re-gridding and compressed sensing. Experiments using millimeter

wave frequencies in the Ka-band (26.5 - 40 GHz) have been conducted on several samples

and the proposed image reconstruction method is applied to the sparse measurements. The

reconstructed 2D SAR images demonstrate excellent qualities in terms of objective mea-

sures such as SSIM and subjective measures such as details of object boundary, smoothness

of shape, and elimination of artifacts.

Keywords: Synthetic Aperture Radar, random array, bistatic imaging configuration, low-

sampling reconstruction, compressed sensing.
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1. INTRODUCTION

Microwave and millimeter wave imaging methods based on synthetic aperture radar

(SAR) algorithms are efficient in producing two-dimensional (2D) and three-dimensional

(3D) holographic images of dielectric structure. These imaging methods have shown

tremendous potential for nondestructive evaluation (NDE)withwidespread utility. The SAR

imaging method has been widely used in biomedical, security, geophysical, and remote-

sensing applications [1, 2]. More specifically, our group has applied valuable SAR image

methods to inspecting the ever-increasing composite structures replacing metals in plenty

of industries [3, 4, 5, 6, 7]. Previous works are based on the monostatic (i.e., transmitting

and receiving antennas are collocated) SAR imaging model [3], which is efficient and

fast at producing high-quality measurements and reconstructions. However, measuring

instruments for monostatic imaging configurations may suffer from limited dynamic range

due to difficulties isolating the receiver hardware from the transmitter signals [8], especially

when the imaging system model is nearfield with the very large frequency bandwidth

required for 3D imaging. The limited isolation leads to signals coupling directly from the

transmitter to the receiver due to the limited directivity of aperture reflections in the antenna.

These signals saturate the receiver, subsequently reducing the overall dynamic range and

thereby limiting the measurement system [8].

Interest in using bistatic configurations to replace the normal monostatic configura-

tions in SAR systems has increased [9, 10, 11]. In a bistatic configuration, the antenna is

separated to the transmitter sub-antenna and the receiver sub-antenna. This configuration

provides a relatively large dynamic range due to the high isolation between the receiver and

the transmitter circuitry, in which one pair of the nearby transmitter and receiver is used

as a measuring pair for all specimens under test (SUTs). Switches control each measuring

pair transmits and receives signals after the last pair finished. The bistatic configuration

can improve isolation as the transmitter and receiver sub-antennas are located separately.

Moreover, two sub-antennas make it possible to distinguish targets from clutter [12].
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In the new bistatic configuration SAR imaging system, the conventional SAR imag-

ing reconstruction algorithms designed for the monostatic configuration model are appli-

cable. The most serious problem with existing SAR reconstruction algorithms is that they

cannot properly estimate the image for a bistatic configuration, which leads to image dis-

tortion caused by the algorithms’ dependency on the transmitter-receiver geometry [13].

This problem does not exist in monostatic configurations. We approximated the bistatic

configuration as a monostatic configuration to reduce image distortion by using an esti-

mated equivalent transceiver to replace the nearest transmitter and receiver pair. In [8], we

have shown the hardware processing and proven the possibility of the approximation. The

fast and efficient fast-Fourier transform (FFT) based monostatic imaging algorithms are

effective in generating 2D or 3Dimages from bistatic measurements [14]. We applied the

ω âĹŠ K algorithm on the near-field SAR system where the approximation creates image

distortion since the bistatic range will be much larger than the monostatic range [15]. The

errors in the approximation will be acceptable.

We proposed a re-gridding method for the monostatic approximation measurements

to grid it from a non-uniform grid to a uniform grid to profoundly reduce the computational

cost. The proposed re-gridding method is based on the principle of minimizing the trunca-

tion error in interpolation with adaptive and adjustable resolution size. The positions of the

equivalent transceiver are in a non-uniform grid. The computational cost is too high when

directly reconstructing the data from the non-uniform grid. Thus, interpolation is necessary

to transfer the data from the non-uniform grid to the uniform grid. The equivalent transceiver

can only sample a few points on the interpolated grid, which has high-resolution size. Since

no sampling information exists for other points on the high-resolution size grid, we created

a uniform grid with the proper offset and resolution size to minimize the truncation error

based on the proposed algorithm. We used ‘valid points’ to present the nearest points on the

uniform grid for the equivalent transceiver position. We interpolated the data to the uniform

grid after monostatic approximation and kept the data on the valid points to create a virtual
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under-sampled data for the compressed sensing (CS) reconstruction method. In this case,

the virtual under-sampled data is the uniform data with minimal error compared to the raw

data from the SAR imaging system. A 2D Gaussian low-pass filter is applied to convolute

interpolated data when the virtual under sampling rate is too low in CS reconstruction.

The measurement from the SAR imaging system with the re-gridding method can only be

reconstructed in high quality with a CS-based model, as the measurement is in a very low

under-sampling rate.

We used a CS-based method to reconstruct the interpolated uniform data. The

CS-based method can effectively improve the quality of reconstruction with under-sampled

data [16]. It has been proven that it is possible to perfectly reconstruct images with proper

constraints [6, 7, 16, 17, 18, 19, 20]. The constraints can be summarized as randomness

(incoherence) and sparsity. In the SAR imaging system, the reconstruction is sparse when

the background area is much larger than the target area. With the bistatic configuration,

monostatic approximation, and re-gridding method to transfer the raw data to a uniform

grid, the virtual under-sampled data can be measured randomly and fits the request for the

CS-based reconstruction method.

2. SYNTHETIC APERTURE RADAR IMAGING SYSTEM WITH VERY SPARSE
ARRAY

In this section, we will give the detailed introduction for the near-field millimeter

wave SAR imaging system. This imaging system is designed for the ‘random’ principle

in CS theory to break the limitation of antenna hardware size to measure more details and

reconstruct higher resolution image.

2.1. Random Array. Randomness is a significant and essential condition for CS.

In the original CS papers [17, 21], the sampling mask was chosen completely at random

in mathematical proofs to guarantee a very high degree of incoherence. However, random

point sampling for all dimensions is a mostly impractical condition, especially in radar
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imaging, as the antenna array in most cases is fixed and hard to change in position. We used

a movable antenna array with programmable trajectory from our previous paper [5]. The

system can manually choose the sampling grid to satisfy randomness. We have shown that

this imaging system could highly reduce the size of the raw measurement while keeping

the reconstruction quality with a much smaller antenna array and a CS-based approach.

Considering the velocity and flexibility of the hardware, this scanning method is hard to

achieve in most cases. Instead, we aim to design a practical incoherent sampling scheme.

Building a large entirely random array imaging system is difficult. Therefore, we used an

alternative method that configures several sub random arrays, and the hardware limits the

randomness of the antenna array. In an ideal random array, each element position should

be independent of the others. We first built a 1-D random antenna sub imaging system,

and each sub imaging system contains a transmitter PCB board and a receiver PCB board

on which is eight antennas respectively. The sub imaging system is fixed on a moving

mechanical arm to do the raster scan, which we called it as the 1D random experiment.

The entire proposed SAR imaging system configures several sub imaging systems together

with different offsets, as shown in Figure 1a. An electrical switch replaced the conventional

mechanical arm to save measuring time. The antenna’s array for the imaging system model

is shown in Figure 1b. The experiments with the proposed imaging system is called 2D

random experiment. We will introduce more details for the antenna array.

The random array is separated as the receiver subarray and transmitter subarray in

the bistatic configuration SAR imaging model. The random array design has two essential

conditions: 1. Distance between the adjacent elements should be larger than the real size of

a transmitter or receiver to ensure the combination in hardware board. 2. Distance between

two transmitter’s (or receiver’s) antennas should try to guarantee existing at least one receiver

(or transmitter) antenna. These conditions can avoid signals from few transmitters not being

received by any receivers and wasting resources.
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(a)Model for the proposed SAR imaging sys-
tem

A simulated random array

(b) A simulated random array using on the
imaging system

Figure 1. Model for the proposed SAR imaging system and its antenna array.

2.2. Features of the Imaging System. The imaging system is a bistatic configura-

tion; as shown in the model, the transmitter and receiver are separated. We also used the

electric switches connected to the antenna array to replace the traditional mechanical arm to

highly reduce scanning time. However, because the antenna array is fixed, the configuration

for the antenna array will highly influence performance for the final reconstructions. The

traditional, uniform, equally-spaced antenna array proved to be a hardcover for the whole

interested area, and its reconstructions will be in very low-resolution size. Moreover, a com-

pressed sensing method will have few improvements with the uniform equally-spaced data.

In the imaging system, the antennas on one antenna board are configured non-uniformly,

and several boards configure the final imaging system with non-equal offset as shown in

Figure 1. The distance between the interested target and the imaging system is between

0 to 120 millimeters, which can be considered near-field. The imaging system uses the
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Ka-band frequency signals in measuring. The top-left board is used as the first board to

determine the position for the antennas. The direction from the antenna plane to the target

is the z-axis, and with the x- and y-axis and the original point defined in Figure 1a, we

can define a coordinate system to describe the position for all antennas and targets. When

the adaptive grid is calculated, the position and offset of the grid are also based on this

coordinate system.

3. THE PROPOSED IMAGE RECONSTRUCTION METHOD

In this section, we will give the detailed introduction for all the methods used in

the SAR imaging system from measuring to reconstructing. Figure 2 illustrates the flow of

image reconstruction for the imaging system. The procedures can be simply divided in to

monostatic approximation, interpolation, and reconstructions.

3.1. Measuring: Monostatic Approximation in Near Field Bistatic SAR Imag-

ing. There are numerous algorithms for SAR image reconstruction, such as time-domain

back projection (TBP) [13], polar formation algorithm [22], range migration algorithm [9].

All of these algorithms are fundamentally implemented for monostatic configuration, and

are also available on bistatic configuration. Balancing the computational cost and accuracy,

we choose the ω − K SAR algorithm which is a fast and efficient algorithm in this study.

Eq. (1) illustrates the measurement collection from the random array antenna.

S̃ =
∑

f

∑
vt

∑
ut

∑
vr

∑
ur

Ge jKzRt e jKzRr (1)

where S̃ is the reconstructed image, f represents frequencies of the millimeter wave signal,

vt and ut represent the locations of the transmitter and vr and ur represent the locations

of the receiver locations, j is the imaginary units, G is the raw measurement, Kz =
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Figure 2. The block diagram for proposed SAR imaging system image reconstruction and
the symbols used in this dissertation.

√
4K2 − K2

x − K2
y is the frequency component on the z direction, while Kx and Ky is

the frequency component on the x and y direction respectively, and Rr /Rt is the distance

between the transmitter/receiver element and the target point.

However, it is apparent that the computational cost of this method is huge. In [8],

we proposed an approximation method for bistatic configuration to monostatic configura-

tion (i.e., a quasi-monostatic configuration). In this configuration, we used an equivalent
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transceiver to replace the transmitter and receiver, as shown in Figure 3. To simplify, we

only show the 1-D model in Figure 3. And the transformation between the measurement

and image is shown in Eq. 2, which is derived in [7].

Receiver

Equivalent 
Transceiver

Transmitter

Target

Aperture 
plane

Δ/2 /2
A bistatic configuration pair

Figure 3. Schematic of a 1-D bistatic scan for imaging a target and the defined baseline
range.

S =
∑

f

∑
vx

∑
vy

Ge j2KzR

= FNU{F2D{Ge j2KzR}}

(2)

where (vx, vy) is the position of each equivalent transceiver. R =
√
(x − vx)

2 + (y − vx)
2 + h2

is the distance between the target and equivalent transceiver, andF2D,FNU are the 2-D Fast

Fourier Transform (FFT) and non-uniform FFT operator.

3.2. Interpolating: Re-gridding and Valid Mask.

3.2.1. Re-gridding method. Interpolation is a common choice for the non-equally-

spaced measurement. Compared with other methods such as NUFFT, NFFT, interpolation

is faster and easier to achieve. The main disadvantage of interpolation is its accuracy.

Iterations in interpolation accumulated truncation errors which will influence the final

reconstruction, especially in the iterations in CS-based methods, as we have shown in our

previous paper [7]. There are several error minimization methods designed for reducing
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the truncation error [23, 24]. For the random array antenna distribution, we propose an

adaptive re-gridding method which is based on the minimum error condition. The method

is of a low computational cost and can reach very low truncation error.

The re-gridding method can be illustrated as the following optimization problem:

minimize Ed = | |Υ(px, py) − (vx, vy)| |
2
2

subject to px, pyare equally spaced
(3)

Here, Ed defines the distance error between the raw and interpolated grids. Υ is the valid

mask which is the set for the valid point, (px, py) are the positions of the points on an

uniform grid, (vx, vy) are the positions of the equivalent transceiver array.

A uniform grid is fixed if and only if the three following variables are fixed: 1) The

x-axis and y-axis direction, 2) the original point position on the space, and 3) the step sizes

on x-axis and y-axis. In the proposed imaging system, the interpolated grid is on the same

plane for the interested target and the x-axis direction is same as the antenna array direction.

We are focusing how to optimized the original point ( fx , fy) and the step size (dx , dy) on the

adaptive interpolated grid, and (px, py) = ( fx +qx · dx, fy+qy · dy), qx = 0, 1, ...Mx −1, qy =

0, 1, ..My − 1, Mx, My is the number of elements on x and y-axis.

With the principles for the interpolation grid, Eq. 3 can be rewritten in the form with

original point, validation points, and the step sizes, as shown in (4):

minimize
Ntr∑
q=1

(
( fx + kq

x dx − vx)
2+

( fy + kq
ydy − vy)

2) (4)

where (kq
x, kq

y ) is the index of the non-zero element in the valid mask related to the qth

elements in the equivalent transceiver array.



17

We propose an iteration called adaptive re-gridding method illustrated in Alg. 1 to

solve Eq.(4). Figure 4a shows the block diagram for the proposed re-gridding method, and

Figure 4b illustrates the steps of the optimization for the proposed re-gridding method.
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Figure 4. (a) The block diagram for the proposed adaptive re-gridding method. (b) Steps
for the uniform grid optimization based on the proposed re-gridding method.

In Figure 4b, the red points are the positions for the raw data, the gray points are

positions of the intermediated valid mask, and the black points are the position of the final

valid mask point. The black line presents the optimized grid at one step in the iteration,

and the gray line presents the grid at the previous step in the iteration. Figure 4b illustrates

that the valid points may change during optimizing the ( fx, fy) and (dx, dy). In the proposed

algorithm, Each change in (kx, ky) will recalculate other parameters.



18

Algorithm 1 adaptive re-gridding method
1: Input:
2: (vx, vy) - raw data position.
3: MaxN - Max iteration number.
4: Dr - Distance Ratio.
5: Output:
6: ( fx, fy) - original point
7: (dx, dy) - step size on x-axis and y-axis
8: (kx, ky) - index vector for the non-zero element in the valid mask
9: Φ - valid mask
10: Initialization: k = 0; Change = True, ( fx, fy) = (0, 0); (dx, dy) = (

√
Dr ∗E{vx},

√
Dr ∗

E{vy}; (nx, ny) = (b(max(vx) − min(vx)/dxc, b(max(vy) − min(vy)/dyc), Ψ = 0 ∈
RMx×My , p is the grid defined by ( fx, fy) and (dx, dy).

11: while Ed >threshold or k < MaxN) do
12: while Change == True do
13: (kx, ky,Φ) = fem( fx, fy, dx, dy, nx, ny, vx, vy).
14: f ′x = E{vx − kxdx}; f ′y = E{vy − kydy}

15: if f ′x == fx , and f ′y == fy then
16: Change = False.
17: else
18: fx = f ′x , fy = f ′y
19: end if
20: end while
21: d′x = kT

x ( f
′
x − vx)/(kT

x kx); d′y = kT
y ( f
′
y − vy)/(kT

yky)

22: k = k+1
23: end while
24: return ( fx, fy), (dx, dy), (kx, ky), Φ.

The gridding method requires the enumeration method of fem illustrates in Alg. 2.

Figure 5 illustrated the block diagram for the enumeration method.

There are three steps for the proposed re-gridding method, respectively for calculat-

ing (kx, ky), ( fx, fy), and (dx, dy). It is easy to prove that the results for ( fx, fy) and (dx, dy)

will be global optimization. However, since (kx, ky) are using an enumeration method and

it is a discrete integer array, the error may be increased with the new (kx, ky). In practice,

we stored all the errors and variable state in each iteration and output the variables with the

minimal error.
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Figure 5. The block diagram for the enumeration method for calculating the valid mask
(kx, ky).

We simulated several random arrays with different points and different distance

ratio Dr . The simulated arrays are limited in an 100 × 100 square area. The maximum

iteration number is 100 during our simulation. For each set of parameters, we repeat the

simulation 100 times to reduce influence for randomness. Figure 6 illustrate the normalized

average truncation error curve and the normalized minimal truncation error curve during

each iteration:
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Algorithm 2 Enumeration method for valid mask
1: Input:
2: (vx, vy) - raw data position
3: Output:
4: (kx, ky) - index vector for the non-zero element in the valid mask
5: Φ - valid mask
6: Initialization: Mask = 0 ∈ Rnx×ny , kx = 0; ky = 0. q = 0, d = 0 ∈ Rsize(ζ )

7: while q 6 length(vx) do
8: d = Distance matrix for the distance between the point (vx(i), vy(i)) and all point in

the ζ .
9: d = d +Φ ·max(d)
10: kq

x, kq
y = the position for the min(d) ∈ d.

11: Φ(kq
x, kq

y ) = 1
12: q = q+1
13: end while
14: return (kx, ky), Φ.
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Figure 6. (a) The normalized average truncation errors which are the average of the results
for the adaptive interpolation method in the 100 simulation array. (b) The normalized
minimal errors which are the best results for the adaptive interpolation method in the 100
simulation array.

FromFigure 6, we can conclude that the adaptive interpolationmethod can averagely

improve 10% performance for truncation error. Less random points and smaller distance

ratio will in future improve the performance. In several individual cases, the adaptive

interpolation method can reduce as much as 50% truncation errors.
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Figure 7 shows the computational time for adaptive interpolated method during

iteration with 100 iterations. We can observe that the computational cost for this method is

very low and all computation could be finished in three seconds by a home PC with Intel(R)

Core(TM) i7-4790 CPU @ 3.60GHz, 16.0 GB RAM.
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Figure 7. Computational cost for the adaptive interpolated method with the simulated
random array.

3.2.2. Interpolation method. The Alg. 1 outputs a 0-and-1 matrix, which is the

valid mask. We convolve a Gaussian bandpass filter on it to increase the usage of the

raw data. The result of the convolution is considered as the sampling mask applied in the

CS-based reconstruction.

There are plenty of interpolation methods for a 2-D grid [25]. We choose the

‘cubic’ interpolation method [26] in the proposed adaptive interpolation grid. Compared

with the most popular ‘linear’ method [25], and the more accurate ‘spline’ method [27], the

‘cubic’ method preserves monotonicity of the data set being interpolated. The interpolated

measurement with adaptive interpolated grid is represented as G̃ ∈ RMi j×Ni j . The sampling

mask ζm represents the position of G̃ with the set of highest accuracy used in this project.

The size of ζm is as same as the raw measurement G. Other positions are believed to have

higher truncation errors and will be re-calculated with compressed sensing method.
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3.3. Reconstructing: Compressed Sensing Based Image Reconstruction. This

subsection introduces more details for the process of the nonlinear image reconstruction

appropriate with CS-based method. CS-based method can help in increasing the resolution

size and quality of the reconstruction when the measurements is under sampling [28]. In

radar applications, the imaging system could build with less antenna and in future saving

the hardware cost and measuring time. In CS-based method, suppose the interested image

is S̃ ∈ RM×N , the sparsifying transformation is denoted as Ψ, and let Φ denotes the SAR

operator, corresponding to bistatic SAR method discussed earlier in (2), and p denotes

the sampling mask calculated from Alg. 1. The reconstruction is obtained by solving the

following constrained optimization problem:

minimize | |ΨS̃| |1

subject to | |p ·Φ−1S̃ − G̃| |2 < εcs

(5)

where S̃ is the reconstructed image, G̃ is the interpolated measurements, and εcs controls

the fidelity of the reconstruction to the measured data. It should be noticed that all the

variables in (5) has been vectorizing.

There is another popular constraint that is usually added to the objective function

in (5). Total-variation (TV) is a finite-differences operator. When a TV operator is added

in (5), it can be considered a constraint that the reconstructed image is sparse both on the

specific transform and finite-differences at the same time [28]. With TV constraint, the

optimized formulation in (5) is rewritten to Eq. (6). In our case, we use the non-reference

image quality operator introduced in Appendix B to replace the TV operator to observe

better performance.

minimize | |ΨS̃| |1 + αTVTV(S̃)

subject to | |p ·Φ−1S̃ − G̃| |2 < εcs

(6)

where αTV trades Ψ sparsity with TV, and (·) represents the matrix scalar product.
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In our previous work [4, 6, 16, 29], we show several efficient CS approaches suitable

to SAR image reconstruction. In the random array application, we choose the non-linear

conjugate gradient (CG-CS) method for its robustness and efficiency. Details of CG-CS are

introduced in [7, 28].

3.4. Computational Complexity. Accurate or approximated estimation of elapsed

time during the SAR imaging system measuring and recovering is a significant research

topic. The operation time for the imaging system contains the measuring time, re-gridding

time, CS reconstructing time, and the post-processing time. In the measuring part, overall,

the bistatic configuration method is asynchronous and needs a longer time than the monos-

tatic configuration system. During the measuring, only one pair of transmitter and receiver

transform signals in each time, as we mentioned in section. 2. The measuring time for each

pair is near 10 milliseconds (ms). For the whole imaging system, the measuring time is over

30 seconds (s). The post processing contains the normalization and histogram equalization.

There are existing and efficient algorithms for both of them. The computational time for

these two methods could be ignored (less than 100 ms).

The recovering part contains the re-gridding and CS reconstruction. As when the

antenna is fixed, the adaptive interpolated grid will be fixed, and can be reloaded each time.

The ‘cubic‘ interpolation time of complexmeasurements also could be ignored as the size of

the measurement is small and only same number of interpolated measurement is necessary

in interpolated grid. In the proposed imaging system, interpolating a measurement which

contains 241 × 1 double data to a 250 × 250 uniform grid, where the density rate is near

0.25, is less than a half second for each frequency. The whole time of interpolation and

re-gridding will less than 30 seconds. In 1D experiment, the interpolation time is similar

with the 2D experiment and the re-gridding time is faster.

The vast majority of computing time is in CS reconstruction. The iterative re-

construction is more computationally intensive than linear reconstructed methods. The

nonlinear conjugated gradient method with backtracking line-search [28] needs longer time
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than other CS-based approaches. Figure 8 shows the computing time of CS-based with

adaptive interpolated grid method of the reconstructions in the Results part by a home

PC with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, and 16.0 GB RAM. A parallel

computing approach for each frequency can future reduce the computing time.
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Figure 8. The measuring, interpolating, and reconstructing time for the imaging system in
1D and 2D experiments.

The computing time is inversely proportional to the resolution size or the distance

ratio, while the computing time is independent of the size of the interested target. And

the CS-based method obtains reconstructions within three minutes with proper frequency

slices. Fewer frequency slices will reduce the reconstruction time.

4. EXPERIMENT AND SIMULATION RESULTS

In this section, we will show the reconstructions based on the proposed method and

imaging system. First we will give a short introduction for normalization and two objective

quality assessment metrics: Structure Similarity (SSIM) and Peak Signal to Noise (PSNR)

to assess the quality for the reconstruction.
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4.1. Several Pro-processes for the Reconstruction. The recovery S̃ ∈ RM×N from

the CS-based method is a complex 2-D matrix. There are a few more steps to obtain clear

and meaningful images.

1. Absolution. An observable image should be a real matrix instead of a complexmatrix.

The absolution of the CS recovery is computed firstly. S̃1 = |S̃|.

2. Normalization. The range of pixel intensity value of I1 should be into a range that is

more familiar or normal to the senses and to avoid metal distraction or fatigue. In this

project, images are normalized to uint8 ([0,255]). S̃N = (S̃1−Min(S̃1))
255

Max(S̃1)−Min(S̃1)
.

3. Saving. Output the images for further test and study.

4.2. Reconstruction Quality Assessment. Reconstructing a ‘good quality’ image

is always the target of an image reconstruction method. There are two major theories in

image assessment: objective methods and subjective methods. It is easier to do a subjective

analysis. For an objective quality assessment, A ground truth image is often useful. In

this study, the totally ground truth image is hard to observe. We would like to use the

reconstructions from (1) as the ground truth to judge other reconstructions. The SSIM and

PSRN index of all reconstructions were calculated. Structural similarity (SSIM) and peak

signal-to-noise ratio (PSNR) are commonly used for 2-D image quality evaluation. They

are considered consistent with human eye perception. The specific form of the SSIM index

between two images (g1 and g0) is defined as

SSIM(S̃1, S̃0) =
(2µ1µ0 + C1)(2σ1,0 + C2)

(µ2
1 + µ

2
0 + C1)(σ

2
1 + σ

2
0 + C2)

(7)

where C1 and C2 are the auxiliary variables and (µ1, µ0), (σ2
1 , σ

2
0 ), and σ1,0 are the mean,

variance, and cross-covariance of two images, respectively. The typical parameter settings

C1 = 10−4 and C2 = 9 × 10−4 are used in this study. The SSIM value is in the range of
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[0, 1], where the SSIM is 1 if the reconstructed image is exactly the same as the ground

truth image. Thus, a large SSIM index corresponds to better reconstruction quality, and

vice versa.

The specific form of the PSNR index between two images (S̃1 and S̃2) is defined as

PSNR = 10 log10
2552

MSE

MSE =
1

Nxy

Nxy∑
n=1

[
S̃1(n) − S̃2(n)

]2
(8)

where S̃i(n) is the n-th element of the image S̃i, (i = 1, 2). Note that a large PSNR index

corresponds to better reconstruction quality. We compare the quality between images

reconstructed by normal interpolated and our adaptive interpolated grid with zero-filling

(ZF) method and CS-based method with PSNR and SSIM as objective quality assessment

metrics.

(a) The ‘points’ sample (b) The ‘cross’ sample

Figure 9. Photos for the SUTs in the experiment.

4.3. 1D Reconstruction. The size of the receiver subarray is 22 × 25 and the

transmitter subarray is 21×24. We aremoving one smaller circuit combinedwith transmitter

and receiver subarray horizontally to simulate a hardware combination. The frequency

range in Ka-band which is from 30 − 40 GHz. It will be fixed on a mechanical arm moved
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uniformally. So the grid of the measurements will have evenly-spaced size in one direction

and non-uniform-step-size in the other direction. For results shown in this paper, all the

experiments are set to be randomly distributed in the horizontal direction, and we named

it as 1D experiment, the measurement as 1D measurements, and the reconstructions as 1D

reconstructions. The software environment is a Intel(R) Core(TM) i7-4790 CPU@ 3.6GHz

and 16.0 GB RAM in a Matlab2012b (The MathWorks, Matick, MA) implementation.

There are two targets measured on 1D experiment: the first target contains three circular

metal patches on a large wood board, and the second one contains a cross metal patch.

Figure 9 shows the photos of the SUTs in our experiments. We named the samples as

‘points’ and ‘cross’. The reflection ratio of the metal material is one while the background

area is near zero. The distance between the antenna and SUTs is Z0 = 38mm, where

the antenna plane is located in z0 = 0, and the direction is from SUTs to antenna. The

size of the background area is 145mm × 100mm, and the diameter of the metal patches

is over 10mm. The metal patches have been positioned vertically and horizontally. The

contrast ground is reconstructed with normal interpolation and CS-basedmethod. Figure 10

shows the reconstructions from our method with different parameters and the contrast

method with the three circular patches target. The ’cross’ sample reconstructions in 1D

experiment. From left to right: Reconstruction of zero-filling method with normal linear

interpolation, CS-based method with normal linear interpolation, zero-filling method with

adaptive interpolation method, CS-based method with adaptive interpolation method. From

top to bottom, the distance ratio is 0.25, 0.20, 0.15, and 0.1.

Both zero-filling reconstructions, as expected, show a decrease in quality. These

reconstructions are filled with obviously horizontal strip artifacts. In these reconstructions.

The boundaries for the three material patches are hard to distinguished. The CS-based

method with normal linear interpolation grid highly reduces artifacts. Boundaries of the

three patches are separated to each other and each individual boundary is continuous.

However, there are still apparent horizontal strip artifacts in the reconstruction. With the
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Figure 10. Experimental results. The ‘points’ sample reconstructions in 1D experiment.

resolution increasing, there is little improvement of the reconstructed quality. For the re-

gridding with CS-based method, in a 51 × 441 grid, we get very high quality recovery with

very clear and flat background where only one or two strips are visible. At other smaller

resolution, we still get clearer reconstructions compared with other methods. There are few

strip artifacts, while the contrast of the whole reconstruction is large enough to distinguish

the interested targets when the resolution is larger than 51 × 101.

Figure 11 presents the objective evaluations for the reconstructions in Figure 10. The

reconstruction from re-gridding with CS-based method in 51×441 resolution is used as the

ground truth image. Other reconstructions are linearly resized to the same resolution. And

all images have been normalized to uint8 format before assessment. The re-gridding with
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CS-based method reconstruction has higher quality compared with the other methods. It is

interesting to observed that the quality of the reconstructions from normal linear interpolated

method with CS-based method is higher in larger resolution size, which is caused by the

truncation error increased with higher resolution grid.
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Figure 11. Experimental results. Objective quality curves and computational time.

The quality of ZF methods has an obvious gap between the CS methods either in

PSNR or SSIM assessment. The quality of the re-gridding method is proportional with the

resolution size since the optimization algorithm.

There is also another SUT named as ’cross’ for the new system. In the SUTs, this

sample contains a marine cross stuff and a same material strip. Compared with the three

small patches target shown in Figure 10, the second SUT could be used to analyze the

performance of the boundary of the reconstruction with new imaging system and algorithm.

Figure 12 shows all reconstructions from different approaches. The objective quality

assessments of the reconstructions in Figure 12 are similar with the results in Figure 11.
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Figure 12. Experimental results.a) The ‘cross’ sample reconstructions in 1D experiment.
b) Drawing of partial enlargement.

‘Cross’ reconstructions have illustrated the improvement both in re-gridding andCS-

based method. Zero-filling reconstructions, same as in Figure 10, are filled with artifacts

and noise. Zoomed out boundary images clearly show the blurring noise on boundaries.

CS-based without re-gridding reconstructions have ‘disappearance’ shape. More interested

target’s pixels are reducingwith higher size of resolutionwith thismethod. It is caused by the

truncation error during interpolation procedure and the threshold in sparsifying procedure
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wrongly forced them to zero. Compared with the others, reconstructions from CS-based

method with re-gridding has no blurring, disappearing, nor artifacts in all reconstructions.

Even with 51 × 129, the reconstruction has very clear boundary, entire shape, and high

contrast. The difference is more obvious in the zoomed out sub-figure.

4.4. 2D Reconstruction. We also test the performance of an entire proposed imag-

ing system. There are totally 16 transmitter and receiver boards configured on it. As we

used electric switches to replace the mechanical arm, the measuring time have been highly

reduced. We also tested it with the ’cross’ sample. Figure 13 shows the reconstructions

from the prototype.

D
R
 =
 0
.2
5

D
R
 =
 0
.1
0

D
R
 =
 0
.5
0

D
R
 =
 0
.0
5

Figure 13. Experimental results. The ‘cross’ sample reconstructions in 2D experiment.

Though we have much less measurements (only 241 nearest-neighbor transmitter

and receiver pairs on the prototype), the reconstructions shown in Figure 13 with the

proposed method still have very clear boundary, smooth background, and high-contrast

interested area.



32

4.5. Reconstruction Artifacts. The reconstruction artifacts in our study aremainly

from three parts: 1. The phase errors in the imaging system. 2. The truncation errors in

interpolation; 3. The shrink errors in l1 reconstructions.

During the measuring and reconstructing, we assumed the transmitter subarray, the

receiver subarray, and the approximated transceiver array are all on the z = 0 plane, and

totally parallel to the SUTs plane (z = z0). In the practical application, the transmitter and

receiver subarrays must staggered up and down. And the parallelism is also hard to ensure.

As a result, there are slightly errors for the distance R shown in Figure 3, and in the (2), the

phase components will have an error near plus or minus 5◦ as estimated.

Coefficients from l1 reconstruction tend to slightly smaller than in the original

signal [28]. And to save the computing time, we used the identity matrix as the sparsifying

transformation. Several small features have been deleted during the CS iteration shown

in Figure 12. However, as the SAR measurements and images have high contrast (The

reflection ratios have a obvious difference between the background and the interest) and less

small features (the frequency is inKa-band, the real size of SAR images is inmillimeter level,

where the most interested features are large enough in reconstruction), CS is particularly

attractive in the SAR applications.

5. CONCLUSION

We have presented a novel random bistatic configuration SAR imaging system

model, proposed a new re-gridding method for interpolation algorithms, and applied the

CS-based method for reconstruction. We demonstrated experimental verification of several

implementations for 2D imaging. We showed that with many fewer antenna elements, the

novel SAR imaging system can reconstruct high quality images. We demonstrate a high

resolution SAR image that only needs less than twominutes inmeasuring and reconstructing

with the new model and the proposed method.
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ABSTRACT

This paper reports experimental studies for four image reconstruction methods from

sparse measurement using wide-band microwave synthetic aperture radar (SAR) systems.

The four methods include two denoising methods using zero-filling (ZF) and non-uniform

fast Fourier transform (NUFFT), and two compressed sensing methods using the orthogonal

matching pursuit (OMP) and the conjugate gradient (CG) algorithms. The specimens under

test (SUTs) consist of a tray of small rocks with different densities with/without one piece

wrapped in aluminum foil. The raw measurements of the SUTs are randomly undersampled

in the spatial domain and the images are reconstructed from measurements of 10% – 60%

sparse-sampling rates. The results show that the CS method achieves good image quality

with as low as 30% sparse-sampling rate, while ZF and NUFFT require 50% to obtain

acceptable quality. An enhanced Otsu’s method is also proposed to detect the foiled rock

from sparse reconstructions, which improves detection performance for sparse-sampling

rate of 5% - 15%. The reduction of spatial measurement leads to reduced cost or reduced

measurement time.

Keywords: Synthetic Aperture Radar, Compressed Sensing, Microwave Imaging, Nonde-

structive Evaluation
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1. INTRODUCTION

Microwave and millimeter-wave imaging techniques have shown tremendous poten-

tial for nondestructive evaluation (NDE) because these techniques can effectively inspect a

wide range of complex composite structures, materials, and applications [1, 2]. An imag-

ing radar uses the relative motion between the antenna platform and the specimen under

test (SUT) to interrogate a scene with frequency swept wideband signals that reveal the

spatial distribution of the target. When the phase coherency is maintained at the receiver

from sweep to sweep, it is equivalent to a larger aperture replacing a diverse set of short

apertures, hence the term synthetic aperture radar (SAR). Wide-band SAR can evaluate

the inner structure of a SUT to render a comprehensive image for inspection. For NDE

applications, microwave and millimeter wave frequencies in the range of 3 - 100 GHz are

widely used which produce high cross-range resolution. Furthermore, due to the available

large bandwidth, high range resolution is also achieved.

Several high-resolution SAR imaging systems have been developed [1, 2, 3]. An

accurate and highly sensitive imaging probes platform has been demonstrated to detect and

quantify small flaws within SUTs [4]. However, based on the traditional sampling theory,

high spatial resolution requires a small sampling size so that the spatial sampling rate is

greater than the Nyquist sampling rate to avoid aliasing and to preserve the quality of image

reconstruction [2]. The traditional sampling higher than Nyquist sampling rate results in a

large number of measurements, which leads to long acquisition time for reasonably sized

SUTs. As a result, there is great interest in reducing the number of measured spatial points.

Image reconstruction methods with sparse measurement include two categories [5]:

(1) the denoising method which includes zero-filling (ZF) and non-uniform fast Fourier

transform (NUFFT) [6]; (2) compressed sensing (CS) techniques. The basic idea of CS

image reconstruction is to recover the sparse representation of the images from sparse

measurements. If the sparsity of the images is lower than the number of sparse measure-
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ments and the coherence between the sparse representation matrix and the measurement

matrix satisfies the restricted isometry property (RIP), then the images can be perfectly

reconstructed.

In recent years, CS techniques have been applied to radar signal processing and

radar imaging [7, 8]. Since the CS approach requires non-convex optimization of L1 norm,

iterative methods are often used to solve the CS reconstruction. CS reconstruction can

achieve small reconstruction errors and satisfactory image qualities with less than 50% of

the fully-sampled measurements. In the microwave SAR experiment, fewer measurements

points means saving time or reducing cost while maintaining resolution. In raster scanning

SAR imaging systems, if only 30% spatial points are visited, then scanning time is reduced

to a half [9]. In near-field array imagers, if the numbers of transmit and receive antenna

elements are reduced to 30%, then the cost of the imager is reduced to 20% of the full

cost. Additionally, millimeter wave antenna elements are usually large in size, which

constrains the minimum distance between each two elements, which in turn limits the

imaging resolution with the conventional Nyquist sampling approach. The CS approach

allows sparsely-spaced elements, and if designed properly, can obtain resolution as high as

those reconstructed from densely sampled data in equally-spaced arrays.

The commonly used CS iterative algorithms include the orthogonalmatching pursuit

(OMP) algorithm [10], the majorization-minimization algorithm [11], and the nonlinear

conjugate gradient (CG) algorithm [12]. Commonly used sparse representation matrices

in CS include the Identity matrix, discrete cosine transform (DCT), and many types of

wavelet transforms [13], such as Battle, Beylkin, Daubechies, Symmlet Vaidyanathan, and

Haar. CS has been proposed as an efficient signal reconstruction method for random

samples of spectrally sparse signal/image. The selection of CS iterative algorithms and the

design of proper sparse representation matrix can have significant impact on the quality

of reconstructed images. In [14], the authors used CS in an SAR algorithm to estimate

moving target velocities. Furthermore, online compression of processed SAR images with
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the help of curvelet sparsity-promoting offline decoding was performed. In [15], the author

used curvelet thresholding for CS to recover remote sensing images. In [16], the authors

proposed a fast and simple CS recovery algorithm to reduce the computational cost. In [17],

the authors used CS-based method to acquire high-resolution images with a low-resolution

camera. In [9] and [18], we implemented under-sampling in physical SAR measurements

and MRI measurements simulated measurement.

To guide the selection of image reconstruction algorithms and sparse measurement

parameters, this paper reports experimental studies on several SUTs consisting of different

densities of rocks placed on a tray with and without a center piece of rock wrapped by

aluminum foil. As foil is a significant scatter, it was included to create a high scattering

contrast in the different scene complexities provided by the varying rock densities. The

microwave SAR measurements were then taken with full grid scanning, and the data was

sampled to yield different sparse sampling rates of the raw measurements. Although

this study uses electronic selection to generate the sparse sampling data, the developed

microwave imaging system can sample directly with any sparse sampling rate, as reported

in [9, 19].

Reconstructions from four methods are then compared: ZF, NUFFT denoising, CS

with OMP, and CS with CG algorithms. The results show that the two CS methods always

perform better than the two denoising methods when the sparse sampling rate is lower

than 50%. The presence or absence of the foiled rock in the SUT can be detected in the

CS-reconstructed images with a sparse sampling rate as low as 5%, while the denoising

methods require a minimum sparse sampling rate of 15% to detect the presence/absence of

the foiled rock. To classify the density of the normal rocks, however, the CS-reconstructed

images require 30% sparse sampling rate and the denoising-based reconstructions require

50% sparse sampling rate. Structural similarity (SSIM) [20] and peak signal-to-noise

ratio (PSNR) [21] are commonly used metrics for 2-D image quality evaluation. They

are considered consistent with human eye perception. The SSIM and PSNR metrics of
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the reconstructed images over fully-sampled reconstructions are also used in this study,

and results demonstrate high gain in CS-based methods over denoising-based methods,

especially at low sparse sampling rates. In addition, the performance of the CG-CS method

depends heavily on the choice of the sparse representation matrix. When the matrix is

selected properly, the CG-CS shows large gain over the other three methods in low sparse

sampling rate less than 30% [18].

We also introduce an object detection method for the SAR sparse reconstructions.

It is reasonable to detect a large scattering object, which is the conductor in the SAR case.

Many different methods have been studied [22, 23]. Nevertheless, reconstructed images

using the CSmethods with sparsemeasurements may suffer heavily from noise and artifacts.

Therefore, we enhanced the Otsu’s method by adding a new denoising method to detection

masks [13]. This enhanced Otsu’s detection method is effective and robust for detecting

compressed sensing reconstructions. This algorithm has more than 90% accuracy in the

conductor detection with only 15% measurements for CS reconstructed images.

2. SPARSE SAR IMAGING RECONSTRUCTION METHODS

A wideband monostatic 2-D SAR imaging system is illustrated in Figure 1 in a 3-D

Cartesian space. A probe is located on the XY -plane and scans the SUT located on the 2-D

plane defined by z = z0. Assume the size of the measurement region is Rx × Ry and the

scanning step sizes in the X and Y dimensions are ax and ay, respectively. At each probing

point (u, v, 0), the probe transmits a set of pulse ωi ∈ [ωmin, ωmax] with a step size 4ω, so

that the total number of frequencies Nω = (ωmax − ωmin)/4ω + 1. A point (x, y, z0) on

the SUT reflects the incident microwave energy. The measurement is characterized by its

complex reflectivity function gi(x, y, z0) at the probing frequency ωi.

The imaging probe is located at (u, v, 0) and the SUT is located on the plane defined

by z = z0. The range between the probe and a point on the SUT (x, y, z0) is R. If the system

is near-field (i.e. the value z0 is small), then the wavefront curvature is no longer negligible.
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Figure 1. The SAR system model.

The received spherical signal r(u, v, ωi) satisfies [3]:

r(u, v, ωi) =

∬
gi(x, y, z0)e j2κi(z0−R)dxdy (1)

where R =
√
(u − x)2 + (v − y)2 + z2

0, j =
√
−1, and κi = ωi/v is the wavenumber, with v

being the velocity in the medium.

Using the plane wave decomposition for the spherical wave and Stolt transform[24],

the reconstructed image of the SUT at the probing frequency ωi is given by [8]:

ĝi(x, y, z0) = F
−1
2D

{
F2D

[
r(u, v, ωi)e− j z0κz

]}
, i = 1, 2, ...Nω. (2)

where κz is the wavenumber in the Z axis, related to angular frequency ωi by the dispersion

relation: κz =

√
(2ω/c)2 − κ2

x − κ
2
y . which provides phase correction for all frequencies

when back propagating the data to form an image at z0 [3, 18, 2]. The operator F2D[·]

denotes the 2-D discrete Fourier transform (DFT) operator andF−1
2D denotes the inverse 2-D
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DFT operator along the XY -plane defined by

F(u, v) = F2D [ f (x, y)]

=
1
√

MN

M−1∑
x=0

N−1∑
y=0

f (x, y)e− j2π(ux/M+vy/N)

f (x, y) = F−1
2D [F(u, v)]

=
1
√

MN

M−1∑
u=0

N−1∑
v=0

F(u, v)e j2π(ux/M+vy/N)

(3)

where f (x, y) is a digital image with size M × N , and M = Rx/ax and N = Ry/ay.

Withmeasurements from all frequencies, the final reconstructed image is the average

of Nω images of individual frequencies:

ĝ(x, y, z0) =
1

Nω

Nω∑
i=1

ĝi(x, y, z0) (4)

To utilize matrix notations, we concatenate the fully-sampled raw measurement

r(u, v, ωi) and the reconstructed image ĝi(x, y, z0) into Nxy×1 vectors ri and ĝi, respectively,

where Nxy = MN . Correspondingly, the 2-D DFT can be expressed as an Nxy ×Nxy matrix

W with its (p, q)-th element being wpq =
1√
MN

e j2π pq
MN . Therefore, the SAR operator in (1)

can be rewritten as

Υi =W−1PiW (5)

where Pi is the diagonal phase correction matrix for frequency ωi and its n-th diagonal

element is defined as pi(n) = e j z0
√

4κ2
i −κx(n)

2−κy(n)2 , with n = 1, 2, · · · , Nxy.

The reconstructed image from the fully-sampled measurements can be calculated as

ĝ =
1

Nω

Nω∑
i=1

ĝi =
1

Nω

Nω∑
i=1

Υiri (6)
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2.1. Sparse Measurement and Image Reconstruction with ZF and NUFFT.

In this study, we use a measurement matrix Φ designed to randomly take a small number

of samples from the full measurement vector ri. This matrix is satisfied by the trajectory

of the imaging probe or the spatial placement of array structure. If the number of sparse

measurements is Q, then the sparse sampling rate is ρ = Q/Nxy. The random measurement

matrix is thus aQ×Nxy matrix with all elements as zero except for those of Q. Only a single

element in each row is one and each column contains at most one 1 in Φ. The received

sparse measurement signal can be expressed as

s = Φr (7)

Note that the subscript i is dropped for notation convenience with the understanding

that the sparse measurement and image reconstruction is performed for all frequencies. The

final image is an average of all reconstructions as in (6).

For the data sampled as the Nyquist sampling rate (i.e., 100%)[18], the uniform

ω − k algorithm generates the ground truth SAR image for this investigation. The block

diagram for this algorithm is shown in Figure 2a.

For sparse measurements, a straightforward method for image reconstruction is

zero-filling (ZF) which simply fills the missing data points with zeros. Let Θ be the ZF

operator thus making Θ = ΦT , where the superscript T denotes matrix transpose. The

image is then reconstructed by taking SAR over the zero-filled signal as

ΥZFs = F−1
2D

[
F2D(Θs) · e− j z0κz

]
(8)

It is clear that ΥZF is a linear operator that can result in aliasing when the sparse

sampling rate is low. There is no additional computational cost in the reconstruction over

the conventional full sampling SAR. The block diagram of the ZF algorithm is shown in

Figure 2b.
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In this study, we also applied the non-uniform fast Fourier transform (NUFFT) as

a reconstruction method in the SAR imaging experiment [2]. The NUFFT method was

first applied to nearfield 3D SAR image reconstruction [6] in the Z-axis to combat the

non-uniform spacing. The NUFFT method was recently applied to a sparse-measurement

SAR image reconstruction in [2, 8, 9] to replace 2D DFT in the XY domains. The NUFFT

operator in the XY domains is defined as

FNUFFT[s(u, v, ω)] =
Nxy∑
n=1

ans(u, v, ω)e− j(ukx+vky) (9)

where an is the nth coefficient of the kernel function found from the polygons of a Voronoi

diagram [25] and s(u, v, ω) is the sparse measurement at location (u, v) with frequency ω.

With (9), the image reconstruction from the sparse measurements is then

ΥNUs = F−1
2D

[
FNUFFT(s) · e− j z0κz

]
(10)

A computationally efficient 2-D NUFFT algorithm is given in [6]. However, the

NUFFT method may result in a high level of image artifacts when the sparse sampling rate

is low, as shown in the experimental results section. The block diagram of the NUFFT

algorithm is shown in Figure 2c.

The raw sparse measurements s = {s(u, v, ω)} are converted into full images

ĝ(x, y, z0). Figure 2 illustrates (a) the ω − k method to reconstruct fully-sampled mea-

surements, (b) the zero-filling method to reconstruct sparse-sampled measurements, and (c)

the NUFFT method to reconstruct sparse-sampled measurements.

2.2. Compressed Sensing Image Reconstruction. In contrast to the two conven-

tional methods of sparse reconstruction, the CS-based method takes advantage of the sparse

representation of the images and iteratively recovers the coefficients of the sparse domain

representation from the sparse measurements. Let Ψ be the sparse representation matrix of
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Figure 2. Block diagrams of conventional reconstructionmethodswith sparsemeasurement.

the image. The CS image reconstruction requires that the following be solved:

ĝ = argmin
g
| |Ψg| |1,

subject to | |ΦΥ−1g − s| |22 < ε2
0

(11)

where ĝ is the reconstructed image in matrix form, | | · | |i is the li norm with i = 1, 2,

parameter ε is the error tolerance, and Υ is the SAR operator defined in (5).

A number of CS algorithms have been successfully implemented for near-field SAR

image reconstruction from sparse measurements [8, 9]. This work adopts the Orthogonal

Matching Pursuit (OMP) [26] and nonlinear conjugate Gradient (CG) algorithms by incor-

porating the 2D near-field SAR operator into the CS iterative algorithms. A summary of
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the two CS algorithms is given in Figure 3, where the sparse representation matrix is pre-

selected. Note that in OMP-CS method, the sparse representation matrix is not necessary.

The details of the OMP and CG algorithms are shown in Algorithm 1 and 2 respectively.

2‐D SAR Sparse‐Sampling
Measurement

Gradient Compuataion

Gradient Smaller 
Enough?

CG Iteration

Average over frequency

2‐D Reconstructed SAR 
Image

No

Yes

Yes

No

Reset 
Gradient

2‐D SAR Sparse‐Sampling 
Measurement

OMP Iteration

Average over frequency

2‐D Reconstructed SAR 
Image

Yes

No
t<tmax || e<e0

(a) OMP-CS

2‐D SAR Sparse‐Sampling 
Measurement

Gradient Compuataion
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Enough?

CG Iteration

Average over frequency

2‐D Reconstructed SAR 
Image

No

Yes
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Gradient

2‐D SAR Sparse‐Sampling
Measurement

OMP Iteration

Average over frequency

2‐D Reconstructed SAR 
Image

Yes

No

t<tmax || e<e0

(b) CG-CS

Figure 3. Flow diagrams of CS reconstruction algorithms.

There are several apparent differences between the OMP and CG algorithms. First

of all, the OMP method does not need a priori knowledge of sparsity of the image, which is

necessary in the CG-CS method. In the microwave SAR experiments, we have used wavelet

transform with different bases as sparse transform in the CG-CS method.

Second, OMP is a greedy algorithm with low computational complexity, while the

CG algorithm is sophisticated with two layers of iterations. Compared with the OMP

method, the computational cost of the CG method is much higher. However, the quality of

reconstruction using the CG method is usually higher than that of the OMP because the CG
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Algorithm 3 Orthogonal Matching Pursuit
Require:
1: Sparse measurements s;
2: Sparse domain Ψ;
3: SAR operator Υ;
4: Stopping criteria tmax and TolGrad

Ensure:
5: Reconstructed image ĝ;
6: Initialization: β0 = s; λ0 = ∅; t = 1;
7: B = ΨΥ−1;
8: Γ0 = {B j}

Nxy

j=1;
9: while (t > tmax) and (| |gt | |2 <TolGrad ) do
10: Γt = Γt−1 \ λt−1;
11: λt = argmax

λj∈Γt

| < βt−1, λ j > |

12: ĝ = argmin
g
| |s − Bg| |2

13: βt = s − Bĝ;
14: t = t + 1.
15: end while

algorithm guarantees a global optimal solution, while the OMP algorithm may only achieve

a local optimal solution. Let the quadratic function f (g) be the cost function that computes

the “distance” between the recovery signal and the ideal signal.

Selecting a sparse representationmatrix in CS is essential for an accurate recovery of

themeasurement, especiallywhere neither the rawdata r or the reconstructed SAR image ĝ is

sparse. The efficiency of sparse representations in differentwavelet transforms, such asHaar,

Coiflet, and Daubechies, depends mostly on the regularity of the raw signal, the number of

vanishing moments, and the size of support. As SAR signals have different characteristics,

such as the rock density in this study, applying one fixed basis to all conditions is often

inflexible in capturing the regularity in some special cases.
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Algorithm 4 Conjugate Gradient
Require:
1: Sparse measurements s;
2: Sparse representation domain Ψ;
3: SAR operator Υ;
4: Stopping criteria tmax and TolGrad;
5: Gradient step size: η

Ensure:
6: The estimated recovery image ĝ;
7: Initialization: t = 0; g0 = 0; m0 = ∇ f (g0); 4g0 = −m0
8: while (t > tmax) and (| |gt | |2 <TolGrad ) do
9: δ = 1
10: while f (gt + η 4 gt) > f (gt) + αδReal[m∗t 4 gt] do
11: δ = ηδ
12: end while
13: gt+1 = gt + δ 4 gt
14: mt+1 = ∇ f (gt)

15: ∇gt+1 = −mt+1 +
| |mt+1 | |

2
2

| |mt | |
2
2
4 gt

16: t = t + 1;
17: end while
18: return ĝ = gt−1

3. OBJECTIVE DETECTION

The reconstructed images are post-processed for identification, classification, or

object detection. Image detection uses features such as color histograms, texture measures,

and shape measures. Detection methods for strong scattering objects have been surveyed

for rock detection and object detection in [13, 22, 23, 27, 28], mostly with colored images.

However, the reconstruction in the microwave SAR experiment is a grayscale image, which

highly reduces the complexity in detection. In this study, the foil-wrapped rock is the

strongest scattering object in the SUT since it is a conductor with irregular shape. However,

images reconstructed from the sparse-sampled measurements contain strong noise and
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artifacts, which reduced accuracy and robustness and increased the false alarm rate in

existing algorithms. In this study, we enhance the Otsu’s method for conductor detection of

sparsely-sampled reconstructions.

Otsu’s method, as an optimum global thresholding method, is an attractive method

used to automatically threshold a gray level image to a binary image [13]. It is particularly

suited for the SAR images because SAR images are grayscale image. We choose Ostu’s

method because it is self-adaptive and requires low computational resources. Otsu’s method

calculates the optimum threshold that maximizes the between-class variance. Furthermore,

Otsu’s method performs well for grayscale images in this investigation and more complex

methods may not provide better performance given their complexities. The enhanced

Otsu’s method has low-computational cost, requires no learning process, and needs only

one external parameter which thresholds the conductor reflective rate. The accuracy of the

proposed method will be shown in Sec. 4.

The enhanced Otsu’s method has six steps:

Step 1): Obtain Otsu’s threshold of the SAR reconstructed image ĝ:

k = arg min
k

[mgPi(k) − m(k)]2

Pi(k)[1 − Pi(k)]

s.t. Pi(k) =
k∑

i=0
ni/Ng, mg =

L−1∑
i=0

iPi(k), m(k) =
k∑

i=0
iPi(k),

(12)

where Ng is the number of pixels in g and ni is the number of pixels in g with

intensity equal to i.

Step 2): Compute Otsu’s thresholding image, B, using Otsu’s threshold k from step 1.

Step 3): Compute the denoising mask, B̃(i, j), using the following:

B̃(i, j) =


1,
∑1

ni=−1
∑1

nj=−1 B(i ± ni, j ± n j) = 9

0, otherwise.
(13)
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Step 4): Label the denoising mask with a set of small region masks C = {C1, ...Cn} using

Algorithm. 5.

Step 5): Obtain the masked images ĝ(Ci) using:

ĝ(Ci) = ĝ · Ci, i = 1, 2, ...n (14)

Step 6): Detect whether ĝ(Ci) is a conductor, using:

Hi =


1, E{ĝ(Ci)} > T

0, otherwise
(15)

where T is the detection threshold and H is the hypothesis that the i-th masked

image contains a conductor. Note that
∑

i Hi gives the number of conductors

contained in the rock tray in the enhanced Otsu’s detection method. The rock tray

contains the foiled rock.

Figure 4 shows the diagram of the enhanced Otsu’s method. The measurements are

of full-density rock sample that includes the conductive rock with 20%.

SAR reconstructed image Result of Otsu’s method Denoised mask

Detection 
Result

Otsu’s
Method 

Mask 
Denoising

Mask Denoising

Apply to the reconstructed image

Sm
all R

egio
n

 M
ask

M
asked

 Im
ages

Threshold detection

Figure 4. Intermediate images in detecting procedures of full-density without conductor by
10% measurements.
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Algorithm 5 Label the Denoising Mask
1: i = 1; j = 1
2: while ∃B̃ j = 1 that B̃ j < Cm, m = 1, 2, · · · , n do
3: If ∃ j < i : | |B̃i − B̃ j | |2 6 2
4: Add B̃i to Cm where B̃ j ∈ Cm
5: Else
6: Create a new set Cn+1 and add B̃i to Cn+1
7: n← n + 1
8: End If
9: i ← i + 1
10: end while
11: return C = {C1,C2, · · · ,Cn}

4. EXPERIMENTAL RESULTS

The SUTs consisted of a tray with four different arrangements or rocks, herein

referred to as different rock densities. For all four cases, an image was taken with and

without the presence of an additional rock covered in aluminum foil (in order to provide

a scene with a high and low electromagnetic scattering contrast). These rocks were large

compared to the wavelength of the microwave signal and had irregular shape. Therefore,

they represent a complex scene in both the spatial and spectral domains. The distance

between the radiating antenna and the surface of the SUTs was 21 mm. The scanning area

was 120 mm × 120 mm, with a step size of 1 mm in both the X and Y axis. The range of

frequencies was 50.0 − 75.0 GHz with 101 equally-spaced frequencies (the measured data

had dimensions of 120 × 120 × 101). The probe polarization was along the X-axis.

Four different rock densities, namely: full, medium, low and lowest were used

for this study. Furthermore, each rock density sample was scanned with and without the

presence of the foil wrapped rock for a total of eight different samples. Photos of the studied

samples are shown in Figure 5.
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In all four samples, a scan was performed with the conductor and without the

conductor among the rocks. A total of eight different samples were processed in this study.

Photos of the samples are shown in Figure 5. From left to right: the density of samples is

full, medium, low, and lowest.

Full Density Medium Density Low Density Lowest Density

Figure 5. Rock samples applied in the microwave SAR experiment.

The rest of the experiment involves four steps:

1. Generate measurement samples on the aperture for a particular sparse-sampling rate

ρ ∈ [5%, 95%],

2. Reconstruct SAR images with the methods discussed above.

3. Analyze the relationship between the wavelet bases and OMP-CG reconstructions.

4. Evaluate the SAR images according to the SSIM and PSNR metrics defined in (16)

and (17), respectively.

The rawmeasurementwas randomly under-sampled to generate the sparsely-sampled

data (at different sampling rates). Figure 6 shows the images reconstructed from 30%

sparsely-sampled measurements with the ZF, NUFFT, CS-OMP, and CS-CG method, re-

spectively. CS-OMP uses the identity transform, and CS-CG uses the wavelet transform

with “Battle” base. "Battle" wavelet function was used to generate the CS-CG images
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in this paper. Thirty-percent measurements are sufficient for CS methods to reconstruct

high quality images for all kind of measurements, while the ZF and NUFFT methods are

unable to reconstruct the same quality images. CS methods allow reconstruction with lower

measurements as the results will later show. The last set of measurement in Figure 6 show

the ground truth image with reconstructed images from 100% raw data.

Full Density     Medium Density    Low Density  Lowest Density

Full Density     Medium Density    Low Density  Lowest Density

Full Density     Medium Density    Low Density  Lowest Density

Full Density     Medium Density    Low Density  Lowest Density

Full Density     Medium Density    Low Density  Lowest Density

Figure 6. The reconstructions with the ZF, NUFFT, CS-OMP and CS-CG methods with a
30% sparser sampling rate.
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Figure 6 shows that reconstructions created with the ZF method are difficult to

identify in most cases. Based on the Nyquist theory, artifacts exist in sparsely-sampled

reconstructions. Reconstructions using the NUFFT method are clearer than the ZF method

in most cases, where the occurrence of artifacts is reduced and the images are much

smoother. However, the rocks are still hard to identify subjectively in the low density image

without the conductor present and in the lowest dense image with and without the conductor

present.

Additional gain can be expected for 2-D CS reconstructions based on the above

derivation that CS can reconstruct perfect images with a low sampling rate. It is observed

that the edges and contrast of rocks are unambiguous compared to the ZF/NUFFT method.

The reconstructions from the two CS methods are less noisy and easier to identify in most

cases. Artifacts shown in ZF/NUFFT reconstructions from the limited aperture of the

imaging operator are absent in CS images. Compared with samples reconstructed by the

ZF/NUFFT method, results from CS methods have a higher subjective quality assessment.

There are also differences between the results of CS-OMP and CS-CG. The eight samples

of medium density with conductor, low density with conductor, and lowest density without

conductor have higher performance with both the OMP algorithm and CG algorithm. In

five other cases, the OMP algorithm performs better in full density with conductor, full

density without conductor, and medium density without conductor, while the CG algorithm

performs better in SSIM and PSNRmetrics in the low density without conductor and lowest

density without conductor.

The results clearly indicate that a sparse-sampled measurement could be recon-

structed with proper methods instead of losing quality. CS works well with the high-

frequency SAR measurement. The noise and artifacts have been highly reduced with the

two CS methods. However, CS-OMP and CS-CG perform differently with different densi-

ties. As concluded from Figure 6, the OMP algorithm performs better with high density

while the CG algorithm performs better with low density.
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Different sparse-sapling rates were also used for recosntruction to illustrate their

performancewith variousmethods. The results of full densitywith conductormeasurements

and lowest density without conductor measurements using sparse-sampling rates from 5%

to 100% are represented by Figure 7 and Figure 8, respectively. The sparse-sampling rate

of each result is from 0.1 to 0.9 from left to right and top to bottom.

10% 20% 30%

40% 50% 60%

70% 80% 90%

(a) ZF method.

10% 20% 30%

40% 50% 60%

70% 80% 90%

(b) NUFFT method.

10% 20% 30%

40% 50% 60%

70% 80% 90%

(c) CS-OMP method.

10% 20% 30%

40% 50% 60%

70% 80% 90%

(d) CS-CG method.

Figure 7. The reconstructions of full density with conductor measurements using the ZF,
NUFFT, CS-OMP, and CS-CG methods.
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10% 20% 30%

40% 50% 60%

70% 80% 90%

(a) ZF method.

10% 20% 30%

40% 50% 60%

70% 80% 90%

(b) NUFFT method.

10% 20% 30%

40% 50% 60%

70% 80% 90%

(c) CS-OMP method.

10% 20% 30%

40% 50% 60%

70% 80% 90%

(d) CS-CG method.

Figure 8. The reconstructions of lowest density without conductor measurements using the
ZF, NUFFT, CS-OMP, and CS-CG methods.

Figure 7 and Figure 8 show that the reconstructions of CS methods improve from

the reconstructions using the ZF/NUFFT method. The CS-OMP and CS-CG methods

reconstruct an image with fewer horizontal shadows of both the cross profiles and the circle

profiles than the ZF and NUFFT methods. The images have been histogram equalized to be
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clearly shown. More specifically, when the sampling rate is lower than 30%, reconstructions

from the CS methods have apparent improvement. In Figure 7c, the reconstruction with

only 30% measurements has fewer artifacts and the conductor is evident and identified. It

is difficult to obtain useful information from the reconstructions with the same sampling

rate from the ZF and NUFFT methods shown in Figure 7a and Figure 7b due to noisy and

blurred images. When the sparse-sampling rate is higher than 20%, the noise and artifacts

in the reconstructions are eliminated with all methods.

Conductor identification is also an exciting project in this study. From Figure 7d, a

conductor can be easily identified with only a 10% sampling rate in the CS-CG method. In

the CS-OMP method, a 30% sampling rate is enough for subjective identification. In the

ZF and NUFFT methods, the conductor is subjectively identified when the sparse-sampling

rate is higher than 50% and 70%, respectively.

To objectively assess the reconstruction quality, The SSIM and PSRN index of

all reconstructions were calculated. Structural similarity (SSIM) and peak signal-to-noise

ratio (PSNR) are commonly used for 2-D image quality evaluation. They are considered

consistent with human eye perception. The specific form of the SSIM index between two

images (g1 and g0) is defined as

SSIM(g1, g0) =
(2µ1µ0 + C1)(2σ1,0 + C2)

(µ2
1 + µ

2
0 + C1)(σ

2
1 + σ

2
0 + C2)

(16)

where C1 and C2 are the auxiliary variables and (µ1, µ0), (σ2
1 , σ

2
0 ), and σ1,0 are the mean,

variance, and cross-covariance of the two images, respectively. The typical parameter

settings C1 = 10−4 and C2 = 9× 10−4 are used in this study. The SSIM value is in the range

of [0, 1], where the SSIM is 1 if the reconstructed image is exactly the same as the ground

truth image. Thus, a large SSIM index corresponds to better reconstruction quality, and

vice versa.
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The specific form of the PSNR index between two images (g1 and g0) is defined as

PSNR = 10 log10
2552

MSE

MSE =
1

Nxy

Nxy∑
n=1
[g1(n) − g0(n)]2

(17)

where gi(n) is the n-th element of the image gi, (i = 0, 1). Note that a large PSNR index

corresponds to better reconstruction quality.

Figure 9 illustrates the averaged SSIM and PSNR between the ground truth images

and the reconstructed images with sparse-sampling rate varying from 10% to 60%. From

the image quality assessment, it is easier to evaluate the quality of the reconstruction

objectively. CS methods have much higher assessed values in SSIM index, especially when

the sampling rate is lower than 30%. In SSIM assessment, CS-CG performs much better

than the other methods. With increasing sampling rate, the performance of CS-OMP grows

more quickly than ZF and NUFFT. Since SSIM compares the structure of two images, the

results prove that CG-CS methods have better quality overall. The images with high SSIM

values are smoother with clearer edges, just as they are in subjective observation. In PSNR

assessment, CS methods also perform better than ZF and NUFFT methods. CS-OMP

results in a higher value, which represents less noise in reconstructions. Conclusions from

the objective evaluation confirms the subjective observation.

After proving that the CS approaches could work well with the microwave SAR,

the next step was to improve the reconstruction quality. One of the most valuable parts of

SAR imaging is that reconstructions suppress speckle noise and simultaneously present the

edges of the original image that often include features of interest. For the NDE application,

the SUTs typically exhibit the nature of sparsity, but may not be acceptable in all cases.

Selecting a proper sparse transform is an effective method to improve the CS accuracy

and quality. Seven kinds of different wavelet transform bases were applied using the CS-
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Figure 9. (a) SSIM of the reconstructed images with reference to the 100% reconstructions.
(b) PSNR of the reconstructed images with reference to the 100% reconstructions.

CG approach. Figure 10 shows the results of low density reconstructions with conductor

measurements. From left to right are 5% to 35% sparse-sampling rates. From top to bottom

are different reconstruction methods. (Daub = Daubechies, Vaidy= Vaidyanathan).

Figure 10 illustrates the comparison of the reconstructed images with a 5% to 35%

sparse-sampling rate using the CS-CG methods with different wavelet bases. Figure 11

shows objective quality curves. In the subjective evaluation, the qualities of the seven types

of reconstructions are similar to the lowest density case with conductor. When the sparse-

sampling rate is 5%, SAR images are not correctly reconstructed. As there is less information

that can be used for reconstruction, images are too blurry to extract useful information,

especially with the simplest “Haar” basis, where the conductor cannot be recognized at all.

Among the 5% reconstructions, nearly all the bases could correctly show the conductor,
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Figure 10. Reconstructions by CS-CG method of different wavelet bases of the lowest
density SUT with conductor.

which is reflected as a much brighter region in the reconstructions. In conclusion, only 5%

data is necessary to make simple identifications. Quality of the reconstructions is increased

appreciably with a sparse-sampling rate higher than 15%. Artifacts are still easy to identify

in 15% reconstructions. When the sampling rate increased to 25%, aliasing was reduced,

and surrounding rocks that did not contain the alumina became clearer. Until the sparse

sampling rate is higher than or equal to 35%, reconstructions of all bases have extremely

high similarity with the fully sampled reconstructions. The conductor and surrounding

rocks have a clear edge and good contrast in all reconstructions.
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By comparing reconstructions from the CS-CG method, it is clear that not all of

the wavelet bases are satisfied with the SAR measurement. Subjectively, reconstructions

from the CS-CG method applied with the proposed wavelet bases performed noticeably

better than the CS-OMP, especially when the sparse-sampling rate was lower. Objective

evaluations of each image are shown in Figure 11.
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Figure 11. (a) SSIM of the reconstructed images with reference to the 35% reconstructions.
(b) PSNR of the reconstructed images with reference to the 35% reconstructions.

After comparing the results of the eight CS sparse representation domains, it is

concluded that different types of sparse domains lead to different qualities of reconstruction.

With the proper sparse transform, it is possible to reconstruct high-frequency SAR images

with a sparse-sampling rate as low as 15%.

A detecting algorithm is then applied to the low-sampling rate reconstructions. In

this study, the intensity of reconstructions was normalized to [0, 1]. The normalization

images can verify the threshold’s detecting method. All detecting samples from CG-CS

method have been reconstructed by the CG method with the Identity base. In each density,

the SAR images were reconstructed from 1% to 20% sparse sampling rate with a 1% as

step size. In each percentage, 30 sample measurements were randomly simulated and

reconstructed with the CG-CS and ZF method, respectively.

Setting a global threshold for all the reconstructions is difficult, so applying an

adaptive thresholding method is an attractive alternative. Otsu’s thresholding method is

an efficient adaptive method when the image is smooth and clear. Unfortunately Otsu’s

method will fail in segmentation when the image is noisy because the region is so small.
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To solve this problem, Otsu’s thresholding image was processed with the denoising method

introduced above. There are four types of detecting results (These definitions are not totally

as same as in the normal medical image): 1. Detected a conductor in the measurements with

conductor, denoted as true positive (TP); 2. Did not detect a conductor in the measurements

with conductor, denoted as true negative (TN); 3. Detected a conductor in themeasurements

without conductor, denoted as false positive (TP); 4. Did not detect out a conductor in the

measurements without conductor, denoted as false negative (FN). We use (18) to compute

the accuracy of detection %d:

%d =

∑
(TP + FN)∑

(TP + T N + FP + FN)
; (18)

A high value of %d denotes that the method could successfully detect conductor from

the measurements with conductor and would not detect conductor from the measurements

without conductor. With the robust and accurate image detection method, it is possible to

measure very low-sampled data to check whether there is conductor or not.

To accelerate the CG-CS reconstruction in this detecting project, only the first half-

frequency slides were calculated in reconstruction. We used the “Identity’ matrix as the

sparse matrix instead of wavelet bases to reduce the complexity of reconstruction. The

computational cost has been highly reduced, but the image quality may also be lowered.

Figure 12 shows the rates of four kinds of results of the full-density measurements recon-

structed with the CS and ZF methods, respectively.

It can be observed from Figure 12a that true positive (TP) rate and false negative

(FN) rate increase rapidly with the sampling rate. The enhanced Otsu’s thresholdingmethod

is proven to be efficient in SAR image detection. Only 6% measurement is needed to detect

whether there is conductor or not and the TP rate and the FN rate are similar. Overall,

the method is independent of the measurements and the accuracy was not affected by

conductor. Shown in Figure 12b, the TP rate keeps near 1, which denotes that the enhanced

Otsu’s method could correctly detect conductor from measurements with conductor from
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Figure 12. The rate of true positive, true negative, false positive, and false negative of
detecting results with full-density measurements.

ZF reconstructions. However, the FN rate will reduce to 0 when the sampling rate is higher

than 1%, which denotes that this method fails for the measurements without conductor from

ZF reconstructions. It emphasizes the significance of the CS method in the SAR image

detecting method, while ZF method may misdetect conductor from measurements without

conductor.
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The accuracy rate of all four density measurements was then calculated. The

accuracy rate is defined in (18) and shown in Figure 13. The results of the CG-CS method

and the ZF method with the various densities and thresholds of the conductor reflective

rate were compared. Figure 13a shows the results of the CG-CS reconstructions when

the threshold of reflective rate is set to 0.8. The advanced detection method fits all four

density measurements. The accuracy increases very fast when the sampling rate is lower

than 6%. The accuracy rate stabilizes at levels higher than 90% when the sampling rate is

higher than 10%. In our study, the reconstruction has been highly simplified to accelerate

the computation. As a result, the unsimplified complete procedures can further improve

the detection accuracy of the reconstruction. As shown in Figure 13b, Figure 13c, and

Figure 13d, the compressed sensing method is much more stable than the ZF method.

The accuracy rate of CS reconstructions has less fluctuation with various densities and

parameters.

5. CONCLUSION

Microwave SAR images reconstructed with the ZF, NUFFT, OMP-CS, and CG-CS

methods have been compared in terms of their reconstructive qualities through experimental

studies of different SUTs and sparse-sampling rates. The experimental results have demon-

strated that the OMP-CS and CG-CS methods perform significantly better than the ZF and

NUFFT denoising methods for both SSIM and PSNR when the sparse-sampling rates are

lower than 50%. The performance of the CG-CS method depends heavily on the choice of

the sparse representation matrix. When the matrix is selected properly, the CG-CS method

showed larger gain over the other three methods in low sparse-sampling rates less than

30%. We also introduced a conductor detection method for sparse SAR measurements.

The current accuracy of our conductor detection method is higher than 90% with less than

10% measurements.
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Figure 13. The accuracy of detection with CG-CS and ZF methods.
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ABSTRACT

In this study, an image denoising method for the synthetic aperture radar (SAR)

images is proposed. When reconstructed from low-sampling-rate measurements using a

compressed sensing (CS) based method, the reconstructions still suffer from noise and

aliasing for the sampling rate is much lower than the Nyquist sampling rate (15%-25%).

To in future improve the reconstruction, we proposed an imaging denoising method for

CS-based reconstructed SAR image. In this proposed denoising method, the pending SAR

image is treated as a level set function. We design a step curvature flow function using

which the aliasing and noise are eliminated and the clarity of objects of interest in the

SAR images are enhanced. Simulation and experimental results illustrated that only a 20%

measurement is necessary in the SAR experiment to identify the objects of interest with the

proposed method.

Keywords: Synthetic Aperture Radar, Image Denoising, Low-Sampling Reconstruction
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1. INTRODUCTION

Synthetic Aperture Radar (SAR) is a well-established and widely-fielded technique

for reconstructing images with higher spatial resolution stationary aperture and target [1].

Microwave and millimeter-wave imaging techniques applied in SAR system have shown

tremendous potential in applications related to biomedical, security, and nondestructive

evaluation (NDE) [2, 3, 4, 5]. The traditional high-resolution SAR images require a large

sampling measurement. We have proposed a compressed sensing (CS) based method for

a SAR system that can reduce the 60%-70% measurement overhead needed by a SAR im-

ager [6]. Saving measurements sampling could help in saving time and expense, which is

important in SAR applications. In this study, we focus on very low-sampling measurement

overheads (15%-20%) for SAR image reconstruction. To improve the quality of these re-

constructions, we present an image denoising and enhancement method as a post-processing

option for reconstruction.

Themethod presented in this study is proposed for enhancing the SAR images which

are reconstructed with the CS-based method requiring a very low-sampling measurement.

According to the Nyquist sampling theory, reconstruction will be aliased when the sampling

rate is lower than the Nyquist sampling rate. Dr. Donoho has proved in his paper that when

the restricted isometry property (RIP) condition is satisfied, the reconstruction of the entire

signal based on a low-sampling rate is highly probable [7]. Limited by computational

error and a very low-sampling rate, the quality of the reconstructions are not as good

as the fully-sampled reconstruction in SAR experiment (which suffer from the noise and

aliasing as well). We propose an image denoising method to improve the quality of SAR

reconstruction.

The essential idea in image denoising is to filter noise present in the image, without

sacrificing the useful detail. Meanwhile, image enhancement focuses on preferentially

highlighting certain image features and works synchronously with image denoising [8].

These procedures are precursors to many low-level vision procedures such as edge finding,
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shape segmentation, and shape representation. In this study, we present a method developed

from the geometric heat equation to denoise and enhance the SAR images reconstructed

based on a low-sampling rate. The idea is based on the level set method, which evolutes

the shape curve based on the curvature [9]. This method offers several key benefits. First,

it contains only three outer parameters, which in most cases are fixed. Second, the iteration

scheme automatically picks the stopping criteria. Third, the method is one of the fastest

possible methods based on image denoising. To evaluate the performance of the method,

we applied a non-reference image quality evaluation method [10]. Because our method is

effective in denoising and enhancing the noised images and subjectively improving their

quality, the images have been enhanced; notably, several referenced-image-quality methods

cannot correctly detect the change. The estimated quality values from the referenced-image-

quality assessments are not accurate in this application.

2. ALGORITHM

2.1. Level Set Function for Image Denoising. Consider a closed moving curve

Γ(t) on a plane. Let Φ(t) be the region that Γ(t) encloses. The level set function associated

with Φ(t) is φ(x, t) is defined as [11]


φ(x, t) < 0, in Φ(t)

φ(x, t) = 0, on Γ(t)

φ(x, t) > 0, otherwise

(1)

where x = {x, y} ∈ R2 is the spatial coordinates on the plane, and t ∈ R+ is the time index.

Conversely, Γ(t) can be located by finding the zero level set of φ as: Γ(t) = {x : φ(x, t) = 0}.

Therefore, moving the interface is equivalent to updating φ. Suppose x(t) is a particle

trajectory on the interface Γ(t) moving with velocity ũ = ∂x(t)/∂t, then we have:

∂φ(x, t)/∂t + ũ · ∇φ = 0. (2)
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It is obvious that the only vertical component of ũ can move Γ, and Eq. (2) can be

rewritten as:

∂φ(x, t)/∂t + uv · |∇φ| = 0 (3)

In Figure 1, the relationships in the level set method are shown.

𝜙 < 0𝜙 > 0

Γ

𝑢𝑣

𝑢𝑣

X

Y

Figure 1. Zero contour of φ representing the front Γ and the velocity vertical component
uv.

Taking derivative with respect to t on both sides of Eq. (3)

∂φ(t)
∂t
+ |∇u| = 0 (4)

where Eq. (4) is an Hamilton-Jacobi equation. To solve this kind of problem, Osher and

Sethian outline the importance of upwind methods for Hamilton-Jacobi equations in level

set applications [9].

Now, let us consider the case when the normal velocity is ũ = −κ where κ is the

mean curvature. The relationship between the mean curvature and the φ is: κ = ∇s · n,

where ∇s is the surface divergence and n is the outward drawn normal n = ∇φ
|∇φ| . Since

∇s = ∇ − n∂n = ∇; then, κ = ∇ · n, where ∇ is the usual divergence operator. Therefore the

mean curvature can be expressed as:

κ = ∇ ·

(
∇φ

|∇φ|

)
(5)
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where ∇() is the gradient of the image and the divergence ∇ · () is an operator that produces

a scalar measure of a vector field’s tendency to originate from or converge upon a given

point.

The level set equation for motion by mean curvature is:

∂φ

∂t
− κ |∇φ| = 0 (6)

It has been proven in [9] that if the φ(x, t) is the evolutionwith−κ, then limt→∞ Γ(t) =

∅. In the image domain, it can be expressed as a simple curve will eliminate if it is evolving

with −κ. This is the basic idea for the level set method in an image denoising application.

The noise will reduce with evolution. The basic iteration of a level set method in image

denoising application can be expressed as:

φ(x, t + 1) = φ(t) − k · κ |∇φ| (7)

where the step size k is related to the size of the image.

In the image denoising application, the initial level set function is equal to the image

intensity matrix: φ(x, 0) = I(x). In the image domain, the gradient of a scalar field g is

defined as:

∇g = x∂g/∂x + y∂g/∂y (8)

where x,y are the unit vectors of x and y direction, respectively.

The divergence of a vector field F ∈ R2 is defined as:

∇ · F = ∂Fx/∂x + ∂Fy/∂y (9)

The unit normal vector ∇φ
|∇φ| in Eq. (5) can be expressed in the image domain as:
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∇φ

|∇φ|
=

x · φx + y · φy√
φ2

x + φ
2
y

(10)

where φx = ∂φ/∂x, φy = ∂φ/∂y.

With Eq. (8), Eq. (9), Eq. (10), the curvature κ can be expressed as:

κ = ∇ ·
(
∇φ
|∇φ|

)
=

φxxφ
2
y + φyyφ

2
x − 2φxφyφxy

(φ2
x + φ

2
y)

3/2

(11)

where φx = ∂φ/∂x, φy = ∂φ/∂y, φxx = ∂
2φ/∂x2, φyy = ∂2φ/∂y2, and φxy = ∂

2φ/∂x∂y.

In an image denoising application, the mean curvature method based on Eq. (7) is

the simplest method. In this method, the “mean curvature" for each pixel is calculated;

then, evolute images with the “mean curvature" matrix, whose size is the same as that of the

pending images, are created. Based on the mean curvature, the shapes will be eliminated

to reach the target of denoising, as described previously. Because the noise areas are much

smaller than the object areas of interest, a denoised image can be obtained from this mean

curvature method. However, in most cases, the performance of the simplest method is not

satisfactory. Many different evolution methods have been proposed to address different

situations. [8, 11, 12, 13, 14, 15]. Notably, all the methods can be summarized in this

formula:

φ(x, t + 1) = φ(x, t) − k · F(κ, φ)|∇φ| (12)

where we named F(κ, φ) as the curvature flow function. This function expresses the

evolution of the image and replaces the mean curvature κ in the mean curvature method.

The method proposed in this study is a new curvature flow function with two steps

especially designed for denoising and enhancing the SAR images reconstructed from low-

sampling measurements.
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2.2. Our Method for SAR Image. In this study, we solve the problem of denoised

SAR images reconstructed based on low-sampling measurements by using the CS-method.

There are two key properties for these reconstructions. 1) The image is gray-scale while the

histogram of the image is discrete. The SAR image represents the reflection rate of different

objects within a specific area that satisfy this condition; 2) The image reconstructed from

low-sampling measurement is filled using aliasing, where the interested object may not have

a clear boundary and shape. In this project, we design the curvature flow function based on

these two properties [6].

This designmethod is developed from two previousmethods [8, 11]. In this study, we

take the advantage of both the methods and propose a more effective method for enhancing

the SAR images that have aliasing. A non-reference image quality evaluation method in

[10] has been applied to set the thresholds in our algorithm. In our algorithm, the threshold

and adaption to different SAR sample cases can be automatically set. The curvature flow

function designed for SAR is as follows:

F(κ, φ) =


G(κ), ∃t, δQ(t) 6 Qthreshold

c(φ) · κ, otherwise
(13)

where δQ = Q(t) − Q(t − 1) and Q(t) is the non-reference image quality in t time. G(κ) =

ακ + (1 − α)κmin/max is developed from the min/max curvature. The min/max curvature

flow function is defined as:

κmin/max =


min(κ, 0), (φ(x)) < 0

max(κ, 0), otherwise
(14)
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and the cutoff function c(φ) is defined as:

c(φ) =


1, |φ| 6 β

C(φ), β 6 |φ| < γ

0, |φ| > γ

(15)

where C(φ) = (|φ| − γ)2(2|φ| + γ − 3β)/(γ − β)2, γ and β are proportional with the mean

of the image intensity: 
β = cρE{φ′(t)}

γ = (1 − cρ)E{φ′(t)}
(16)

where the range parameter cρ is less than 0.5 and greater than 0. We applied the expectation

of normalized images E{φ′} to accumulated β and γ.

In our method, the images evolute based on the mean curvature with an auxiliary

cutoff function, till the quality of improvement reaches the threshold. The auxiliary cutoff

function c(φ) is applied to protect the objects of interest on an image while maintaining

its shape and size during evolution, which will help in merging the object of interest. As

the pending images are filled with aliasing, function c(φ) will merge the near small pixels

which have a high probability of belonging to an entire larger object; using this method will

not affect the farther pixels. Meanwhile, the larger object evolutes in a smaller area that will

be protected from blurring or eliminating. When the δQ was less than the threshold (which

means c has less improvement) and the pending images were entire, we applied the second

curvature flow function. This approach is used to eliminate the remaining noised pixels.

When the improvement by the first step was no longer significant, we applied the

second step curvature flow function which is based on the min/max method[8]. The

fundamental idea in min/max method is like the simplest problem, namely, the evolution

of a curve under its curvature. The image motion is based on either min(κ, 0) or max(κ, 0).

When F(κ) = min(κ, 0), it preserves some of the structure of the curve; however, when
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F(κ) = max(κ, 0), it completely diffuses away the noise pixels. The loop of this algorithm

is proportional to the size of the image. In our method, we add a part of mean curvature ακ

to ensure the evolution.

3. RESULTS

3.1. Simulation. We first examine the method with simulated images as shown in

Figure 2, where a phantom with 256 × 256 pixels was added with different levels of white

noise to simulate the aliasing in the low-sampled reconstructions. The signal-to-noise ratio

(SNR) varied from 5 dB to 20 dB.

In Figure 2, when the noise level is low, namely the SNR is larger than 15 dB, our

method can reduce most noise pixels and reconstruct clear and smooth images with apparent

edges and shapes. When the SNR rate is less than 10 dB, our method also reduces most

noise pixels. Though the reconstructions still have a few noise pixels, the shapes and edges

are clear and apparent.

SNR = 5dB SNR = 10dB SNR = 15dB SNR = 20dB

Denoised
images

Noise
images

Figure 2. Reconstruction of simulated noised images with different SNR using our method.

3.2. SAR Images. In Figure 3, the photos of the rock samples applied in our

applications and the reconstructions from the fully-sampledmeasurements are shown. There

are four different samples, classified based on their different rock density. We placed
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a conductor in the middle in each sample. The conductor is a rock with alumina that

has a higher reflection coefficient compared to the neighboring normal rocks. In the

reconstruction, the area of the conductor is much brighter than the other areas.

Fully Medium Low Least

Figure 3. Photos and fully-sampled reconstructions of rock systems under test (SUTs) with
different densities.

Consider now the SAR reconstructions from low-sampling rate using the CS-based

method, which is shown in Figure 4. In this application, we setQthreshold = 0.007, cρ = 0.2,

α = 0.2 in our denoised method. These three parameters can be applied to all different rock

cases. This shows that our method is robust and adaptive. Here we only use 15% to 30%

measurements when using the CS-based method to reconstruct and image, as we introduced

in [6]. We used the denoised method proposed in this paper to improve the quality of the

reconstruction.

Figure 4 illustrates reconstructions from different methods, where a) is the full

density SUT with 15% sampling rate before denoising; b) is the medium density SUT with

20% sampling rate before denoising; c) is the low density SUT with 25% sampling rate

before denoising; d) is the least density SUT with 30% sampling rate before denoising; e) is
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a b c d

e f g h

Before
denoising

After
denoising

Figure 4. The low-sampling reconstructions with and without the denoising method.

the full density SUT with 15% sampling rate after denoising; f) is the medium density SUT

with 20% sampling rate after denoising; g) is the low density SUT with 25% sampling rate

after denoising; and h) is the least density SUT with 30% sampling rate after denoising.

In Figure 4, the reconstructions with the sampling rate lower than 30% is shown.

When the sampling rate is lower or equal to 20%, shown in a) and b), the noise and aliasing

are obvious in this reconstruction. The rocks cannot be clearly identified subjectively. With

the denoising method, we can clearly identify each rock subjectively, while the edges are

not clear and the images are a little blurred, as shown in e) and f). When the sampling rate

is higher than or equal to 25%, the denoised method can perfectly eliminate the noise and

aliasing and the rocks are apparent with clear edges and shapes, which can be seen in c), d),

h), and g).

As a future test, we applied an image evaluation assessment for our pending SAR

images and denoised images with image quality assessment. In Figure 5, the fact that the

image quality has been improved by over 3.4 to 5 units, during the iteration, is shown. The

pending images compared in Figure 5 are reconstructed from full-density rock measure-

ments. We have also illustrated the denoised image quality versus sampling rate in Figure 6.

We have also given the statistics of the computational time when our method was applied
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on the rock SAR images by a home PC with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

with 16GB RAM. One can observe that our method executes in milliseconds. The pending

images are reconstructed from full density measurements
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Figure 5. Quality improvements during the iteration in our method.

5 10 15 20 25 30 35 40 45 50
20

21

22

23

24

25

26

Sampling Rate (%)

N
on

−
R

ef
 Q

ua
lit

y

Full/No LSM
Full/With LSM
Medium/No LSM
Medium/With LSM

5 10 15 20 25 30 35 40 45 50
21

22

23

24

25

26

27

28

Sampling Rate (%)

N
on

−
R

ef
 Q

ua
lit

y

Low/No LSM
Low/LSM
Least/No LSM
Least/With LSM

Figure 6. Quality improvements with our method.

From Figure 4, Figure 5, and Figure 6, we can verify the performance of our method.

The CS-based method can highly improve the quality of the SAR images reconstructed from

low-sampling rate. The computational time is very fast.

Figure 7. Computational time when our method was applied on the rock SAR images.
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4. CONCLUSION

In this study, we have proposed an adaptive level set method algorithm for the SAR

images. Simulated and experimental results show that this method could remove the noise in

the reconstructed images and significantly improve the quality. This algorithm is designed

based on the features of SAR images. We separate the final problem into two sub-problems.

The whole algorithm contains two steps with different LSM to solve each sub-problem.

With the Non-Ref evaluation criteria, the image quality after our algorithm will improve

from 3.5 to 5 units. Noise and aliasing have been effectively reduced. With the LSM and

CS-based method, rocks can be identified with only 20%-25% measurements, improved

from the 30%-35% measurements that were previously required.
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SECTION

2. SUMMARY AND CONCLUSIONS

This dissertation developed an innovative millimeter-wave imaging system capable

of producing rapid images using a sparse sampling approach and proposed several CS-based

SAR imaging reconstruction methods for the imaging system. The imaging system com-

prises signal measuring hardware and image reconstruction software. The developed SAR

imaging system uses fewer antenna elements, while the resolution size and the quality of the

reconstructions are higher than those achieved by conventional SAR imaging systems. The

developed imaging system uses electrical switches to replace the raster scanning to speed up

the measuring procedure. The software transfers raw, bistatic, non-uniform, under-sampled,

wideband SAR measurements to monostatic, uniform, equally-spaced, sparse wideband

SAR measurements by several signal preprocessing procedures that have been proven to be

accurate and efficient. The CS-based reconstruction method is applied to reconstruct high-

resolution-size and high-quality SAR images from the transferred measurements. Several

post-processing procedures, such as image denoising and feature detection, also have been

outlined in this dissertation. These methods have been proven in simulated and particular

experiments, respectively. The innovative millimeter-wave imaging system comprising all

the reconstruction methods has shown excellent performance in profoundly reducing the

number of measurements, accelerating the scanning time, and maintaining high-quality and

high-resolution reconstruction.
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This dissertation demonstrated experimental verification of several implementations

of 2D imaging in addition to showing that the novel SAR imaging system can reconstruct

high-quality images with fewer antenna elements. Furthermore, several high-resolution

SAR images that need less than two minutes for measuring and reconstructing with the

bistatic configuration model and the proposed method were also demonstrated.

This dissertation analyzed the performance of the image processing methods used

in the innovative SAR imaging system. Each of them can be used in the other SAR

imaging systems to improve the quality of their reconstruction. This dissertation showed

that with the CS-based reconstruction method, only 35% of measurements are necessary

for reconstruction. With the proposed detection methods, only 10% of measurements

are necessary for detection. When compared to the traditional SAR image reconstruction

method, experimental and simulation results illustrate the CS-based method’s accuracy, and

the computational cost for this method is acceptable. The image post-processing technique

for denoising based on an adaptive level set method algorithm for the SAR images also

showed its advantages in improving SAR image quality. This denoising method is based on

under-sampled SAR images and has low computational cost. Using the denoising method

and the first CS-based reconstruction method, the sampling ratio was reduced to only 20%-

25%, improving from the previously required 30%-35%. This dissertation also provided

the details for mathematic derivation, computational cost analysis, and error estimation for

the methods proposed in this dissertation. With the performance analysis for the diverse

image reconstructions, the innovative SAR imaging system proposed in this dissertation is

proven to be accurate, effective, and efficient for the near-field SAR applications.



APPENDIX A

CS-BASED RECONSTRUCTION METHOD PERFORMANCE ANALYSIS
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This dissertation also improves the CS reconstruction method itself. Randomness

and sparsity are two essential constraints in CS technology. The randomness has been

discussed previously in the radar imaging system section, and this section will analyze the

sparsity. Expect the randomness and sparsity. Several usual constraints will also be added

to the CS optimization equation to improve the performance, such as total variation. In this

dissertation, a new constraint based on image quality has been added to the CS optimization

to improve its performance.

Sparsity. A sparsifying transform is an operator mapping a vector of recovered

images/signals to a sparse vector where most elements in the sparse vector are zeros. Dr.

Candes andDr. Tao proved that onlywhen themeasurements satisfied the restricted isometry

property (RIP) conditional is it possible to be perfectly reconstructed for under-sampled

measurements. The RIP conditional emphasized the significance of measurement sparsity

in CS. In recent years, researchers have proposed extensive sparse operators for sparse image

representation. This dissertation applied the sparsifying transformation library possessed

in and tested various transformations that have proven robust and effective in sparsifying the

real-life images: 1. discrete cosine transform (DCT), 2. wavelet transform with different

basis, and 3. identity matrix.

As the central protocol, DCT has been widely used in different applications, such as

standard Joint Photographic Experts Group (JPEG) image compression and MPEG video

compression. In particular, DCT is a Fourier-related transform similar to the discrete Fourier

transform (DFT) but uses only real numbers. There are several different types of DCT that

have different computational cost and accuracy. This dissertation tested DCT-II, the most

commonly used form, and its formulation is shown in Eq. (A.1).

Xk =

N−1∑
n=0

xn cos
[
π

N

(
n +

1
2

)
k
]

k = 0, . . . , N − 1. (A.1)
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The wavelet transform is a multi-scale representation of the image and is used in the

JPEG-2000 image compression standard. The wavelet transform is similar to the Fourier

transform with a completely different merit function or wavelet base. This dissertation

tested Beylkin base, Daubechies base, and Symlets base for wavelet transformation.

In DCT or wavelet sparsifying transformation, the principle components are se-

lected in the transformation domain and force other components to zero to create the data

on transformation domain sparsity. The computational time of the transformation and the

number of zero elements after transformation are two critical conditions to judge the perfor-

mance of the transformation. Rapid computation and more zeros would profoundly improve

the performance of compressed sensing. It should be emphasized that these sparsifying

transformations are designed for regular real-life images and the SAR images have its char-

acteristics, in which the performance of the interested sparsifying transformation may be

substantially different than when they are applied in the standard real-life image.

To illustrate the difference, this dissertation performed such an experiment on a

real-time, fully-sampled SAR rock image. In this testing, the most significant (largest)

5% - 15% coefficients remained and forced others to zeros. The results are depicted in

Figure A.1. A raw real-life SAR image has been transformed with identity matrix, DCT,

Wavelet-1 (Beylkin base), Wavelet-2(Daubechies base), and Wavelet-3 (Symlets base).

It is apparent that DCT sparsifying transform is not a good choice for the grayscale

SAR image, as the DCT reconstructions show deformation. The identity matrix and wavelet

transforms have similarly good performance, with slight advantages for the wavelet trans-

form at reconstructions involving 5%-15% of the coefficients. However, the computational

costs in three wavelet transforms are much higher than the identity matrix. In compressed

sensing iteration, the sparsifying transform and its inverse transformwill be computed many

times. The accumulated computational cost would increase the reconstruction time. The

quantity statics of the computational time and themean square errors for each reconstruction

are shown below.
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Figure A.1. The testing result for SAR image with different sparsifying transforms.

To balance the image quality and computational cost, this dissertation chose the

identity matrix as the sparsifying transformation for this project. However, considering

the background of SAR images which have a much smaller reflection rate compared with

the interested objects, this dissertation set a threshold Ts for the background measurement

zero-forcing the reconstructed images. The threshold is proportional to the mean of the

absolute measurement value, Ts = αT E{S}, where α is the ratio.

For several more massive and complex targets, using a general average will highly

reduce the contrast and details in reconstruction when the reflection ratio drastically changes

thewhole target and the gap betweenmaximumandminimum is vast. For this situation, local

averages replace the general average. The whole specimen under test (SUT) is separated

into several small groups, and each group respectively estimates its part average and forces

the components smaller than its part average to zero before merging them.
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Image quality constraint in CS. In this dissertation, the main purpose for the

CS-based reconstruction technology is to improve the reconstruction. However, few papers

directly use image quality as a constraint on CS. Most papers only use total variation,

which maximizes the absolute gradient for the images instead of the image quality. In this

dissertation, a new constraint based on a non-reference image quality metric [56] has been

added to the CS optimization problem to replace the common total variation constraint.

This constraint is used to maximize the final reconstruction quality, and the total variation is

contained in this quality constraint. The details for the gradient of the non-reference quality

metric are derived in Appendix. B.

We used the nonlinear conjugate-gradient (CG) descent algorithmwith backtracking

line search proposed in to solve the CS optimization problem Eq. (B.4). The details for the

CG-CS method is illustrated in Algorithm 6.

Algorithm 6 Nonlinear conjugate-gradient iterative algorithm for l1 optimization
1: Definition: Sparse measurements s, the Sparse representation domain Ψ, the SAR

operatorΥ, the Stopping criteria tmax; Gradient step size: η, And the estimated recovery
image ĝ;

2: Initialization: t = 0; g0 = 0; m0 = ∇ f (g0); 4g0 = −m0
3: while (t > tmax) and (| |gt | |2 <TolGrad ) do
4: δ = 1.
5: while f (gt + η 4 gt) > f (gt) + αδReal[m∗t 4 gt] do
6: δ = ηδ.
7: end while
8: gt+1 = gt + δ 4 gt
9: mt+1 = ∇ f (gt)

10: ∇gt+1 = −mt+1 +
| |mt+1 | |

2
2

| |mt | |
2
2
4 gt

11: t = t + 1.
12: end while
13: return ĝ = gt−1.
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The image quality is a significant feature for the reconstruction. In this project we

added one more constraint for the image quality. A non-reference image quality assessment

have been proposed in Wang’s paper in 2002, ‘No-reference perceptual quality assessment

of JPEG compressed images’. The quality assessment can be illustrated in (B.1).

Q(I) = αq + βqB(I)γ1 A(I)γ2 Z(I)γ3, where I ∈ RMi×Mj (B.1)

where B = (Bi + B j)/2, A = (Ai + A j)/2, and Z = (Zi + Z j)/2 are three parameters. All

of them are the average of horizontal direction and vertical direction shown with i and j

subscript, respectively. Their definitions on x-direction are illustrated in (B.2)


Bi =

1
Mi(bMj/8c−1)

∑Mi

x=1
∑bMj/8c−1

y=1 |di(x, 8y)|

Ai =
1
7
[ 8

Mi(Mj−1)
∑Mi

x=1
∑Mj−1

y=1 |di(x, y | − Bi
]

Zi =
1

Mi(Mj−2)
∑Mi

x=1
∑Mj−2

y=1 zi(x, y)

(B.2)

where dx(x, y) = I(x, y + 1) − I(x, y), y ∈ [1, My − 1] is the difference on y-direction, and

zi(x, y) is zero-crossing (ZC) rate which is defined as

zi =


1 , horizontal ZC at di(m, n)

0 , otherwise
(B.3)

This dissertation proposes to add the quality metric to the l1 constrained convex

optimization problem (B.4) and replace the TV operator. We proposed the derivation of the

gradient of non-reference image quality operator in Algorithm. 7 and shows its relationship

between the gradient of the TV operator.

minimize | |ΨS̃| |1

subject to | |p ·Φ−1S̃ − G̃| |2 < εcs

(B.4)



91

where S̃ is the reconstructed image, G̃ is the interpolated measurements, and εcs controls

the fidelity of the reconstruction to the measured data. It should be noticed that all the

variables in (B.4) has been vectorizing.

Algorithm 7 gradient of non-reference image quality operator Q′(I)
1: The non-reference image quality operator in (B.1): Q(I) = αq + βqB(I)γ1 A(I)γ2 Z (I)γ3,

where, I ∈ RMi×Mj , B(I) = 1
2 (Bi + B j), A(I) = 1

2 (Ai + A j), and Z(I) = 1
2 (Zi + Z j).

2: Since the γ3 is much smaller than γ1 and γ2, in this study, we just ignore the Z(I)γ3

component. Here are the presentations of Ah, Av, Bh, Bv:

Bi =
1

Mi(bMj/8c−1)
∑Mi

x=1
∑bMj/8c−1

y=1 |di(x, 8y)|

B j =
1

Mj (bMi/8c−1)
∑Mj

x=1
∑bMi/8c−1

y=1 |d j(8x, y)|

Ai =
1
7
[ 8

Mi(Mj−1)
∑Mi

x=1
∑Mj−1

y=1 |di(x, y | − Bi
]

A j =
1
7
[ 8

Mj (Mi−1)
∑Mj

x=1
∑Mi−1

y=1 |di(x, y | − B j
]

3: let I1 =



0 0 · · · 0

1 0 · · · 0

0 1 · · · 0
...

...
. . . 0

0 0 · · · 1


, I2 =



1 0 · · · 0

0 1 · · · 0
...

...
. . . 0

0 0 · · · 1

0 0 · · · 0


, a = [

Mj/Mi︷                 ︸︸                 ︷
0 · · · 1︸ ︷︷ ︸

8

0 · · · 1 · · ·], b = [1 1 · · · 1︸     ︷︷     ︸
Mj

].

4: With the definitions in step 3, Bi, B j, Ai, A j can be rewritten as:(To avoid confusing, we

use x to present the raw image in the following steps):

Bi = bT (x · (I1 − I2))
2 · a · 1

Mi[bMj/8c−1]

B j = bT ((I1 − I2) · x)2 · a · 1
Mj [bMi/8c−1]

Ai = bT (x · (I1 − I2))
2 · b · 8

7Mi(Mj−1)

−bT (x · (I1 − I2))
2 · a · 1

Mi[bMj/8c−1]

A j = bT ((I1 − I2) · x)2 · b · 8
7Mj (Mi−1)

−bT ((I1 − I2) · x)2 · a · 1
Mj [bMi/8c−1]



92

5: It is obvious that Bi, B j, Ai, A j has similar formulation. When we define C = I1 − I2,

this formulation could be expressed as:

f (x) = ãT · [(cx). × (cx)]b̃

g(x) = ãT · [(xc). × (xc)]b̃

.

6: The gradient of f (x), and g(x) are similar. Following steps will only shown the

derivation of ∂ f = ãT [c∂x. × c∂x + c∂x. × cx]b̃.

7: Let z̃ = cx, and ∂z̃ = c∂x, and the vectorization: vec{∂z̃} = vec{c∂x} = (I ⊗

c)vec{∂x}, whereI is the identity matrix here.

8: Therefore, f (x) = ã · [z̃. × z̃] · b.

9: Let Ỹ = z̃. × z̃.

10: Therefore,
f (x) = ã · Ỹ · b̃

∂ f = ã · ∂Ỹ · b̃

= trace{b̃ · ãT∂Ỹ}

11: Therefore, ∂ f
∂Ỹ = ã · b̃T .

12: Therefore, ∂ f = vec{ãb̃T }T · vec{∂Ỹ}.

13: Because, ∂Ỹ = ∂z̃. × z̃ + ∂z̃. × z̃.

14: Therefore, vec{∂Ỹ} = 2diag{vec{∂z̃}} · vec{∂z̃}.

15: Therefore, ∂ f = vec{∂ãb̃T }T · 2diag{vec{c̃x}} · (I ⊗ c̃)vec{∂x}.

16: Therefore,
∂ f = 2(I ⊗ c)T · diag{vec{c̃x}} · vec{ãb̃T }

= 2c̃T · (c̃x. × (ãb̃)).

The result of Alg.7 actually is equal to the gradient of the total variation operator.

Since the gradient of the non-reference operator is a polynomial combination of part of ∂ f

(also ∂g) and constant values which related to the size of the image, it can be concluded
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that the gradient of total variation operator is a part of the gradient of non-reference image

quality operator, and optimized the non-reference image quality could be considered as

the optimized the total variation simultaneously. In real applications, this constraint could

replace the total variant constraint with a proper set of parameters.
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95

In the monostatic approximation procedure, an equivalent transceiver is used to

replace the transmitter and receiver, as shown in Figure 3 in Paper I. In the simplest cases,

the equivalent transceiver only replace the nearest transmitter and receiver pair, which has

the minimum error, and minimum quantity. It is also possible to use extra equivalent

transceivers to identify the second of higher nearest transmitter and receiver pairs. This

appendix derives the error estimation equation for the monostatic approximation in (C.1).

err =
Rr + Rt − 2R

Rr + Rt

= 1 − 2
√
∆x2 + h2√

h2 + (∆x + d
2 )

2 +
√

h2 + (∆x − d
2 )

2

= 1 − 2

√
(∆x

h )
2 + 1√

1 + ((∆x
h ) +

(d/h)
2 )

2 +

√
1 + ((∆x

h ) −
(d/h)

2 )
2

= 1 − 2
√

r2
x + 1√

1 + (rx +
rd
2 )

2 +
√

1 + (rx −
rd
2 )

2

(C.1)

where rx =
∆x
h is the proportion between ∆x and h, which is from 0− 1.5, and rd =

d
h is the

proportion between d and h, from 0.08 − 0.12 in the proposed imaging system.

The relationship between the error and rx , rd is shown in Figure C.1. The error is

inverse proportion with rx and rd , and is less than −25dB, which is acceptable.

0 0.5 1 1.5
−45

−40

−35

−30

−25

r
x

E
rr

or
 (

dB
)

 

 

r
d
 = 0.08

r
d
 = 0.09

r
d
 = 0.10

r
d
 = 0.11

r
d
 = 0.12

Figure C.1. The relationship between the bistatic error and the rx , rd .
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In the monostatic approximation, the reconstructions can only consider the equiva-

lent transceiver instead of separately calculating the transmitter and receiver. The accuracy

for the monostatic acceptable, while the number of antennas that need to be calculated is

reduced by half.
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