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ABSTRACT

In this dissertation, several novel cyber fault diagnosis and prognosis and defense

methodologies for cyber-physical systems have been proposed. First, a novel routing scheme

for wireless mesh network is proposed. An effective capacity estimation for P2P and E2E

path is designed to guarantee the vital transmission safety. This scheme can ensure a high

quality of service (QoS) under imperfect network condition, even cyber attacks. Then, the

imperfection, uncertainties, and dynamics in the cyberspace are considered both in system

model and controller design. A PDF identifier is proposed to capture the time-varying

delays and its distribution. With the modification of traditional stochastic optimal control

using PDF of delays, the assumption of full knowledge of network imperfection in priori

is relaxed. This proposed controller is considered a novel resilience control strategy for

cyber fault diagnosis and prognosis. After that, we turn to the development of a general

framework for cyber fault diagnosis and prognosis schemes for CPSswherein the cyberspace

performance affect the physical system and vice versa. A novel cyber fault diagnosis scheme

is proposed. It is capable of detecting cyber fault by monitoring the probability of delays.

Also, the isolation of cyber and physical system fault is achieved with cooperating with

the traditional observer based physical system fault detection. Next, a novel cyber fault

prognosis scheme, which can detect and estimate cyber fault and its negative effects on

system performance ahead of time, is proposed. Moreover, soft and hard cyber faults are

isolated depending on whether potential threats on system stability is predicted. Finally,

one-class SVM is employed to classify healthy and erroneous delays. Then, another cyber

fault prognosis based on OCSVM is proposed.



v

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Maciej

Zawodniok for the continuous support of my Ph.D. study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time

of research and writing of this thesis. I could not have imagined having a better advisor and

mentor for my study.

I would also like to thank Prof. Jagannathan Sarangapani, Prof. Egemen K.

Cetinkaya, Prof. Jie Huang, and Prof. Zhaozheng Yin, for serving on my doctoral commit-

tee. In addition, I would like to thank the National Science Foundation (NSF) and Intelligent

System Center (ISC) for providing financial support through my Ph.D. study.

Further, I am greatly thankful to my parents, Jianquan Bi, Chunmei Li, my husband

TianchenWang, and my son BarronWang for enlightening memy life. I would like to thank

Dr. Hao Xu, who gave me many helpful discussions and suggestions concerning my work.

I would like to thank my colleagues and labmates in Missouri S&T Embeded System and

RFID Lab: Lei Wang, Arul Mathi Maran Chandran, Nathan Price, and Xiang Gao, for the

stimulating discussions, for the sleepless nights we were working together before deadlines,

and for all the fun we have had in the past.

Finally, I would like thank the staff of ECEdepartment for their continuous assistance

and also would like to thank the staff of Curtis Laws Wilson Library for providing me with

the necessary literature.



vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

SECTION

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. OVERVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. ORGANIZATION OF THE DISSERTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. CONTRIBUTIONS OF THE DISSERTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

PAPER

I. EFFECTIVE CAPACITY ESTIMATION FORROUTING PATH SELECTION
IN WIRELESS MESH NETWORKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. RELATED WORKS ON CAPACITY ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. CAPACITY ESTIMATION BASED ROUTING SCHEME . . . . . . . . . . . . . . . . . . . 18

4.1. Modeling of Routing Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



vii

4.2. RBF Based Capacity Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3. Route Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5. SIMULATIONS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1. Routing for Peer-to-Peer Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2. Routing for End-to-End Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II. PDF-BASED TUNING OF STOCHASTIC OPTIMAL CONTROLLER DE-
SIGN FOR CYBER-PHYSICAL SYSTEMS WITH UNCERTAIN DE LAY
DYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2. MOTIVATION AND RELATED WORKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1. Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2. Explicit Modeling of Delay and Packet Losses . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3. Capturing Network Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3. PROPOSEDPDF-BASEDTUNINGOFSTOCHASTICOPTIMALCON-
TROL (PTSOC) DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2. PDF Identifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3. Optimal Controller Design with Consideration of Dynamics of
Delay Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4. STABILITY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5. SIMULATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



viii

III. ANOVELCYBERNETWORKFAULTDIAGNOSIS SCHEMEFORCYBER-
PHYSICAL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2. MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3. RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4. CYBER FAULT DIAGNOSIS SCHEME. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2. Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1. Cyber Fault Detection (CFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2. Physical System Fault Detection (PFD) . . . . . . . . . . . . . . . . . . . . . 83

4.3. Fault Isolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4. Fault Tolerant Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1. The Resilience Control for Cyber Faults . . . . . . . . . . . . . . . . . . . . 87

4.4.2. The Tolerant Control for Physical System Faults . . . . . . . . . . . 88

5. SIMULATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

IV. ANOVELCYBERFAULTPROGNOSISANDRESILIENCECONTROLFOR
CYBER-PHYSICAL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

1.1. Motivation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2. RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3. THE PROPOSED PROGNOSIS SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.2. PDF Identifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



ix

4. CYBER NETWORK FAULT DETECTION AND ISOLATION . . . . . . . . . . . . . 102

4.1. Cyber Network Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2. Soft and Hard Cyber Network Fault Isolation. . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.1. Step 1: New Distribution Estimation . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.2. Step 2: Resampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.3. Step 3: System Output Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3. Resilience Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5. SIMULATION AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1. System State Prediction Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2. Soft Cyber Network Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3. Hard Cyber Network Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

V. ONE-CLASS SVM-BASED CYBER NETWORK FAULT PROGNOSTICS IN
CYBER-PHYSICAL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2. MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3. RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.1. SVM-based Approaches for Fault Diagnosis and Prognosis . . . . . . . . . . 126

3.2. Fault Diagnosis and Prognosis of CPSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4. OCSVM-BASED CYBER NETWORK FAULT PROGNOSIS SCHEME . . . 130

4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2. OCSVM-based Cyber Network Fault Detection . . . . . . . . . . . . . . . . . . . . . . . 133

4.2.4. Step 4: Soft and Hard Fault Isolation and Resilience
 Control Triggering Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



x

4.3. Soft and Hard Cyber Network Fault Isolation. . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.1. Step 1: Future Delay Distribution Estimation and Re-
sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.2. Step 2: System Output Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3.3. Step 3: Soft and Hard Fault Isolation and Resilience
Control Triggering Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4. Resilience Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5. SIMULATION AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.1. Soft Fault Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2. Hard Fault Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

SECTION

2. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

APPENDICES

A. APPENDIX OF PAPER III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B. APPENDIX OF PAPER IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



xi

LIST OF ILLUSTRATIONS

Figure Page

SECTION

1.1. Cyber-physical system structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

PAPER I

1. Bottleneck link with interfered by other links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. Diagram of the simulated network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Comparison of maximum capacity for both scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4. Interference along a multi-hop path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5. Schematic diagram of RBF neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6. Control schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7. Network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8. Sub-network topology schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9. RBF network prediction for Link 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10. RBF network prediction for Link 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11. RBF network prediction for Link 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12. Pre-training RBF network prediction for Link 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

13. RBF neural network prediction for Link 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

14. RBF neural network prediction for Path 1 − 2 − 6 − 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

15. RBF neural network prediction for mobile network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

PAPER II

1. Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2. System performance with a PID controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3. Overall architecture of stochastic CPS with PDF identifier . . . . . . . . . . . . . . . . . . . . . . . . 52



xii

4. Case A: Performance evaluation of SOC (tracking errors) . . . . . . . . . . . . . . . . . . . . . . . . . 64

5. Case A: Performance evaluation of PTSOC (tracking errors) . . . . . . . . . . . . . . . . . . . . . 65

6. Case B: Performance of SOC (tracking errors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7. Case B: Performance of PTSOC (tracking errors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8. Case C: Performance of SOC (tracking errors) for delay change at 47 sec . . . . . . . . 69

9. Case C: Performance of PTSOC (tracking errors) for delay change at 47 sec . . . . 70

PAPER III

1. Delays of the simulated network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2. System performance with a PID controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3. Frame of the proposed diagnosis scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4. Fault isolation logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5. The simulated delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6. Expectation variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7. Modeled system output residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8. Fault mitigation performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

PAPER IV

1. a) Delays b) Tracking errors of optimal controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2. Flow chart of cyber network fault prognosis scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3. Case A: Actual and predicted system behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4. Case B: a) Selected probability variation b) Predicted and actual system output . 115

5. Case C: a) The simulated delays b) Selected probability variation . . . . . . . . . . . . . . . . 118

6. Case C: a) Predicted and actual system output b) Fault mitigation performance. . 118

PAPER V

1. Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

2. Tracking errors of optimal controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3. Flowchart of OCSVM-based prognosis scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



xiii

4. Data classification performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5. System states prediction performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6. Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7. Data classification performance at t=47.3s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8. State prediction performance at t=47.3s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9. Fault tolerant performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



xiv

LIST OF TABLES

Table Page

PAPER I

1. Maximum capacity comparison of predicted and simulated values . . . . . . . . . . . . . . . 34

2. Turned parameters for Case A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3. Maximum capacity for all alternative paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4. Maximum capacity for all alternative paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5. Maximum capacity for all alternative paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

PAPER II

1. Online PDF identification algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2. Performance comparison (statistical average values for 50 times tests) . . . . . . . . . . . 67

3. Performance comparison (statistical average values for 50 times tests) . . . . . . . . . . . 68

4. Performance comparison (statistical average values for 50 times tests) . . . . . . . . . . . 71

PAPER III

1. Online PDF identification algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2. The comparison of overshoot and TTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

PAPER IV

1. The crossing points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2. The comparison of overshoot and TTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

PAPER V

1. Fault capturing accuracy over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

2. The crossing points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3. The comparison of overshoot and TTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



SECTION

1. INTRODUCTION

1.1. OVERVIEW

In the past a few decades, the term cyber-physical systems (CPSs) refers to a new

generation of systems with integrated computational and physical capabilities that can in-

teract with humans through many new modalities (Fig.1.1). Successful applications of

CPSs are found in areas as diverse as vehicle industry (CAN-based data communication

Johansson et al. (2005)), teleoperation Arcara and Melchiorri (2002), power system Wang

et al. (2012) Sridhar et al. (2012), transportation systems Liu et al. (2011), manufacturing

Lee et al. (2015) and high-confidence health-care system Haque et al. (2014). Smart indus-

try, smart city, even smart world are made possible by the broad dissemination of mobile

devices with substantial computation resources(e.g., processing and storage capacity), a

variety of sensors (e.g., cameras, GPS, speakers, microphone and light and proximity sen-

sors), and multiple communication mechanisms (e.g. cellular, Wi-Fi Bluetooth) allowing

interconnection to the Internet as well as to other devices Rawat et al. (2015).

Embedded computers and networks monitor and control the physical processes,

usually with feedback loops where physical processes affect computations and vice versa.

Such a complex interconnection of a physical system, communication network, and com-

putational component brings challenges on modeling, control, computation and security.

Especially, the embedded cyberspace imposes restrictions on the exchange of information,

such a limited channel capacity, traffic congestions, and malicious cyber attacks. Such

network imperfections can degrade not only the communication performance, but also the

performance of control systems and they can even destabilize the system. For example,
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Figure 1.1. Cyber-physical system structure

self-driving cars have a large number of radars, cameras, and other various electrical com-

ponents (known as electronic control units, or ECUs) connected via an internal network. If

hackers manage to gain access to a vulnerable, peripheral ECU (the Bluetooth or infotain-

ment system) from there they may be able to take control of safety critical ECUs like its

brakes or engine and wreak havoc. Therefore, reliability of CPSs -particularly resilience,

safety, and security - is a more complex issue than ever before.

Over the years, computer science researches have pioneered the development of new

real-time computing techniques, visualization methods, embedded systems architectures,

and innovative approaches to ensure computer system reliability, cyber security and fault

tolerance. At the same time, systems and control researchers havemademajor breakthroughs

in powerful engineering methods and tools to improve the resilience and reliability for

industrial processes, such as system identification, filtering, prediction, optimization, robust

control, stochastic control, and fault diagnosis and prognosis schemes. With respect to the
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above works, cyber-physical systems research should integrate knowledge and engineering

principles across the computational and engineering disciplines (network, control, software,

human interaction, learning theory) to develop new CPS science and supporting technology.

A high resilience CPS requires the following capabilities:

a) Detection abnormalities in the cyberspace and protection of information and

network performance.

b) Detection of physical system abnormalities and protection of CPS stability.

c) Protection of system performance under cyber abnormalities.

The overall goals of the first capability (a)) include integrity (the trustworthiness of

data or resources), availability (accessibility upon demand), and confidentiality (keeping

information secret from unauthorized users). Many researchers addressed these issues

with different technologies, such as authentication schemes, access control, and other

defense scheme Pasqualetti et al. (2013)-Cardenas et al. (2008). An assumption that the

adversary/attack model is fully known is often required; however, it is challenging to get.

Gamage et al. (2010) proposed a general theory of event compensation as an information

flow security enforcement mechanism for CPSs. Message scheduling methods were given

to improve the security quality of wireless networks for mission-critical CPSs in Jiang et al.

(2010). In Amin et al. (2009), deception and denial of service attacks had been addressed

by a countermeasure based on semi-definite programming. False data injection attacks

against static state estimator are studied in Liu et al. (2011). In a similar fashion, stealthy

deception attacks against the Supervisory Control (SC) and Data Acquisition system (DAS),

replay attacks, and covert attacks against control systems were investigated in Teixeira et al.

(2010), Mo and Sinopoli (2009), and Smith (2011) respectively. With respect to the above

works, Pasqualetti et al. (2013) proposed a mathematical framework for CPSs, attacks,

and monitors, and given the fundamental limitations of monitors from system-theoretic

and graph-theoretic perspectives. Finally, centralized and distributed attack detection and

identification monitors were designed. Overall, the cyber attacks can be addressed on the
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cyber side. However, the defense of cyber attack is still open for the further research, such

as optimizing the limited channel resource for transmissions, maximizing path capacity

to improve the quality of service (QoS), and so on. In addition, the effects of cyber

attacks/faults on the physical system behavior are oversimplified in above existing works.

Moreover, the injection time and model of the attacks/faults are difficult to learn ahead of

time in practical CPSs.

Then, the second requirement (b)) has been studied by many control researchers.

They focused on the conventional fault detection techniques that have successfully applied

to industrial networked control systems (NCSs). They indeed took the network delay and

packet loss into consideration in various ways. In Liu and Yao (2005), network delays were

modeled as a constant delay (time buffer), an independent random delay, and a delay with

known probability distribution governed by the Markov chain model. In Liu et al. (2007a),

a networked predictive controller in the presence of random delay in both forward and

feedback channels was proposed to minimized the effects of network failures. A robust H∞

control for a nonlinear T-S fuzzy model system was proposed to address the network delays

and packet drop in Zhang et al. (2007). Wang et al. (2008) and Zhang-qing and Xian-zhong

(2007) employed a state observer-based fault detection method on the uncertain long time

delay. Although, the network delays and packet drop caused by network faults/failures

were considered in above works, the assumptions, such as known bounds and time invariant

distribution of delays and packet loss, are always made. In addition, most of the above

works aimed to detect the faults of physical components (sensors, actuators, and system

plant), not the faults in the cyberspace.

However, how to meet the third requirement (c)) is still open for the further research.

First of all, a full knowledge of the relation between cyber condition and system performance

is crucial. That need a general model which fully present both physical system dynamics and

cyberspace uncertainties. Then, the fault detection should be redesigned both on cyber and

physical system side. Moreover, the isolation of cyber and physical system abnormalities is
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essential. Therefore, only one observer for monitoring system states is not sufficient. Other

observers for monitoring cyber condition should be proposed. At last, resilience control

design should fully consider the cyber dynamics to tolerant both cyber and physical system

faults/attacks.

To conclude, CPSs with an interaction of various subsystems and networks do

not allow decoupling design either for system control strategy or for network security

protection. Fault diagnosis and tolerant control for CPSs should be also redesigned with

fully considering both cyber and physical system faults. Such a comprehensive fault

detection and defense framework, which is lacking in the existing literature to the best of

our knowledge, is the main objective of this dissertation.

1.2. ORGANIZATION OF THE DISSERTATION

In this dissertation, several cyber fault diagnosis and prognosis schemes and the

corresponding defense schemes have been proposed. This dissertation is presented in five

papers, and their relationship to the one another is illustrated in Fig. 1.2. The schemes in

these five papers can be widely used to detect and defense cyber faults/attacks in CPSs.

In the first paper, the objective is to transmit packages using the path with the

highest capacity. A capacity estimation based routing scheme is proposed for wireless

mesh network. When a cyber attack/fault occurs, the proposed scheme can re-route the

transmission based on the effective capacity estimation for each path to avoid packet losses

and QoS degradation. The model of entire network is derived with considering interactions

among links and paths, stochastic channel fading and noise. This scheme can be also applied

in mobile network since the effective capacity is estimated in an online manner.

Next, the uncertainties in cyberspace are addressed in the second paper. We proposed

a novel controller, named PDF-based tuning of stochastic optimal controller, which can

manage the unknown dynamics in the embedded cyberspace, such as long time delays and

packet losses. When cyber attacks occur, the proposed can be used as a resilience controller.
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Figure 1.2. Dissertation outline

In the third paper, we proposed a novel cyber fault diagnosis scheme. Cyber

fault/attack can be captured by monitoring PDF profile of network delays. Combining with

the physical states observer proposed in existing works, cyber and physical system faults can

be isolated. Such that the appropriate resilience control for cyber or physical fault mitigation

can be accurately triggered. The controller proposed in the second paper is consider the

resilience controller for cyber fault tolerance.

Subsequently, in the fourth paper, the proposed cyber diagnosis scheme in the

third paper is improved to optimizing the computational cost and cyber detection accuracy.

We proposed a novel cyber fault prognosis scheme to predict potential threats on CPS

performance and stability. A cyber fault isolation scheme is designed to classify soft and

hard cyber faults using system state prediction. For hard faults which potentially degrade

CPS performance, the proposed prognosis scheme can predict them and take appropriate

control action ahead of time before the system failure happening. Such that the resilience

control can be effectively triggered when necessary. Moreover, the computational cost is

significantly reduced.
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Finally, in the last paper, we proposed another cyber fault prognosis scheme

which applied one class kernel based support vector machine (OCSVM) to detect cyber

faults/attacks. OCSVM can accurately separate healthy and erroneous delays. The classi-

fication results can be used to isolate soft and hard cyber faults. Moreover, the proposed

scheme significantly reduce the unnecessary resilience control triggering.

1.3. CONTRIBUTIONS OF THE DISSERTATION

This dissertation provides contributions to the area of cyber fault detection and

defense methodologies for CPSs. As a consequence, proposed designs can not only render

reliable cyber abnormalities detection in terms of isolation but also maintain the CPS

stability in the mean in the presence of unknown cyber dynamics, imperfections, and

attacks. Traditionally, the fault diagnosis and prognosis in the existing works oversimplify

network dynamics and its effects on system behavior. The proposed schemes, on the other

hand, fully consider above dynamics and modify the defense techniques to adapt to above

uncertainties. Overall, the proposed effort overcomes the mentioned deficiencies.

Themain contributions of Paper I include: a) thematrixmodelwith fully considering

stochastic channel fading, interaction among links or paths are derived; b) an effective

capacity estimation based on RBF neural network is proposed; c) routing schemes for

peer-to-peer and end-to-end communication are proposed respectively. Overall, with full

knowledge of achievable capacity for each path, the vital messages can be forwarded safely

and effectively.

The main contribution of the second paper is a novel stochastic optimal controller

is designed with fully considering uncertainties and dynamics. The PDF of delays is used

to tune controller parameters. Such that the controller can adapt to the delays and its

distribution variation. For the case of linear CPS, uniformly ultimately bounded (UUB)

stability is demonstrated by using Lyapunov analysis. In addition, the proposed controller

can be used as the resilience control in the reset papers.
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The contributions of Paper III include the cyber fault diagnosis using PDF moni-

toring of delays and cyber and physical system fault isolation. Kernel density estimation is

used in an online manner to update the probability of delays.

The contributions of the fourth paper include: a) a novel cyber prognosis scheme

is proposed; b) a time series analysis based distribution estimation is derived to predict

the future delay distribution; c) system state prediction is proposed based on the above

distribution estimation. Such that soft and hard cyber fault can be accurately separated.

Moreover, the convergence of this prediction is presented.

Finally, for the last paper, the main contribution is that OCSVM is designed and

applied to detect cyber faults/attacks. Then a multi-class classification machine is proposed

based on OCSVM. Such delay classification finally provide the health, soft fault, and hard

fault range for future cyber fault isolation. The computational cost for fault prognosis is

significantly reduced.
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ABSTRACT

Cyber physical system (CPS) is playing an important role in the smart industry,

which connects diverse systems leading to an inter-networked system of systems spanning

wide geographic areas. Wireless ad-hoc network (WANET) and mobile ad-hoc network

(MANET) are reliable and suitable candidates which can take an enormous amount of com-

munications in CPSs without requiring extra infrastructures. Moreover, each node/device

such as cellphone, and laptop, inWANET/MANET can participate in routing by forwarding

data for other nodes/device. The existing communication routing schemes are designed to

improve the performance of network without considering the interference, data collision and

cyber attacks issues. This negligence likely leads to the unexpected degradation of network

performance and more power consumption. Therefore, a full knowledge on interaction

among communicating links is necessary for improving the quality of communications

in CPSs. In this paper, a novel signal-to-interference-and-noise ratio (SINR) model is
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proposed, which includes explicit interaction among adjacent links within the entire net-

work. A novel RBF neural network prediction based capacity estimator is proposed to do

routing selection. The simulation results show that the path with the maximum available

capacity/SINR is selected accurately and the reliability of transmission is improved.

Keywords: cyber physical system, capacity estimation, routing scheme, RBF neural net-

work

1. INTRODUCTION

In the past several decades, cyber physical systems (CPSs) has attracted a great

deal of attention because they are likely to emerge through such network environments to

connect both humans and machines Lien et al. (2012)-Qu et al. (2010). However, it is

difficult to establish adequate network infrastructures anywhere and anytime Kawamoto

et al. (2013). Therefore, how to select an effective network to take an enormous amount

of communications with a high quality is a big challenge for composing CPSs. Wireless

ad-hoc network (WANET) and mobile ad-hoc network (MANET) based CPSs are flexible

and reliable because all nodes in CPS participate in routing by forwarding data for other

nodes. Such a WANET/MANET based CPS utilizes existing infrastructures and mobile

devices to do transmissions, such as laptops, cellphones, vehicles, and other networked

devices, instead of requiring extra infrastructures.

A challenge of WANET/MANET based CPSs is how to defense the interference and

channel fading induced by a large number of communications so that the critical messages

can be delivered with a high quality. This issue can be addressed by applying an optimized

transmission routing scheme. Typical routing schemes inWANET/MANETs, e.g. gradient-

based routing (GBR), and energy-aware routing (EAR) Al-Karaki and Kamal (2004), select

paths for an ideal case without any uncertainties. However, once a new routing path carries

traffic, it interacts and interferes with links in the entire network. This often results in
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a degraded performance during the routing path setup. Therefore, it is crucial that both

individual the link’s and the entire path’s performance must be determined and estimated

before selecting the path.

A transmission between the source and destination nodes has several alternative

paths. Each path consists of multiple links. Before transmitting the message, the source

node broadcasts a "Hello" message to find who can be the next relay of it so that the message

can be delivered safely and efficiently. Therefore, the performance of each possible path or

link should be evaluated accurately before the principal message sending out. Capacity is a

principal metrics for evaluating the performance of path or link. Therefore, the achievable

capacities of each alternative path or link should be known for the most optimal route

searching. The existing approaches Chen and Gerla (1998), Royer and Toh (1999), Shah

and Rabaey (2002) dealt with this challenge by posing assumptions: (a) knowing the

information (e.g., the achievable channel capacity and fading model parameter a priori),

(b) knowing the static (non-dynamic) network features, or (c) ignoring certain interactions,

including the explicit interlink interference in the routing schemes. However, in practical

network, the channel fading is stochastic and time-varying as well as the locations of

nodes or relays. The effectively achievable capacity is unknown, and it varies over time.

Consequently, the selected route is suboptimal due to these uncertainties. The primary

challenge in estimating the effective capacity is that the interactions among adjacent links

are complex and nonlinear. In addition, a full channel state between each pair of transmitter

and receiver is unknown and challenging to measure. Therefore, the capacity estimation is

not trivial for even a single link. The complexity of the estimation increases further when

we consider the establishment of a new, multi-hop path.

In this paper, a novel routing scheme is proposed for WANET/MANET based

CPSs, which guarantees the highest quality of communications with the lowest power

consumption. With considering interactions and interference among different path or link,

we also consider a stochastic channel fading. Meanwhile, the real time estimates of capacity
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and power are updated as the dynamic changes of topology /node location. For the prediction

of capacity and power, a RBF neural network predictor is designed, which is trained by a

few training data taken from "Hello" message. The training data is provided by the signal-

to-interference-and-noise ratio (SINR) model, which includes explicit interaction among

adjacent links within the entire network, so that the training process takes uncertainties

of channel into account. With a full knowledge of available maximum capacity, the vital

message can be forwarded safely and effectively.

The following part is organized into five sections. Section 2 summarized the related

works on capacity estimation. An example is presented to indicate our motivation in

Section 3. The proposed routing scheme is illustrated in Section 4. The evaluation of

the proposed scheme by simulations is presented in Section 5. Section 6 gives some

conclusions.

2. RELATEDWORKS ON CAPACITY ESTIMATION

Many researchers have studied both the network capacity and the techniques used to

maximize the capacity of path Asgeirsson and Mitra (2011); Chen et al. (2009); Gao et al.

(2006); Gastpar and Vetterli (2002); Gupta and Kumar (2000); Li et al. (2011); Li (2009);

Liang and Guo (2006); Wang and Wu (2009); Xue et al. (2005). Most of these works

on capacity analysis were focused on average performance in single-hop (P2P) networks.

Multi-hop routing (end-to-end) cases however, were not completely understood. Gupta

and Kumar (2000) collected landmark results for a P2P case that revealed the throughput

attainable by each of the n randomly located nodes is under a noninterference protocol. This

protocol is capable of transmittingW bits per second to a randomly chosen destination. This

destination is of the order of (W/
√

nlogn) bits per second. Gao et al. (2006) discussed the

channel capacity of networks with different sizes. Few studies, however, have been focused

on end-to-end capacity throughput.
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A number of studies have comprehensively addressed how to maximize capacity.

Gupta and Kumar (2000) discussed the interaction of 802.11 MAC with ad-hoc forward-

ing and its affects on the network’s channel capacity. They concluded that the average

distance between the source and the destination nodes must remain small as the network

grows to ensure an adequate and available total capacity in a larger network. Xue et al.

(2005) studied the effects of different types of fading on capacity throughput. They made

several assumptions. For example, the assumed that the channel fading type is known.

They also assumed that the fading is time invariant. Measuring such information in real

communication networks, however, is challenging. Other researchers Gastpar and Vetterli

(2002); Li et al. (2011); Li (2009) examined the throughput capacity in random networks,

the transport capacity in arbitrary networks. They sought to scale the network with antennas

under the known boundary conditions of capacity. They did not, however, predict the actual,

achievable capacity once the new traffic was introduced.

Several researchers have attempted to use either optimization techniques Liang and

Guo (2006), power allocation schemes Wang and Wu (2009), or game theory Asgeirsson

andMitra (2011) to maximize link and network capacities. Liang and Guo (2006) proposed

an energy-efficient online algorithm to maximize the network capacity for online disjoint

path connections and online multi-casting. They indicated that the network’s capacity is

proportional to its lifetime. Therefore, the proposed algorithm seeks to prolong the lifetime

and reduce the transmission energy consumption, so that the network’s capacity can be

maximized. Asgeirsson and Mitra (2011) applied a low-regret algorithm to reformulate the

capacity maximization problem into a power assignment domain. Overall, these schemes

maximizes capacity without understanding either the maximum achievable capacity or the

corresponding power requirements.
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In general, most of the work previously conducted was completed in an attempt

to maximize performance and capacity without understanding what the maximum is for

the particular network topology and traffic patterns. The routing decisions will often be

suboptimal when the maximum capacity along the route is unknown. Hence, the goal is to

predict capacity before the routing decision is made.

Jagannathan et al. (2006) based the power controls on a known, desired signal to

interference ratio (SIR). Determining such desired desired and achievable SIR values in an

ad-hocwireless networkwithout information on the network’s non-preexisting infrastructure

and dynamic topology, however, is difficult. The capacity-based performance cannot be

evaluated either without an optimal SIR. Hence, either the desired SIR or the capacity

should be reevaluated based on the existing information and data for the power control

issue.

3. MOTIVATION

The traditional routing schemes focus on optimizing the networks performance for

its current known state. This state includes channel capacities, topology, available energy,

service demand, and performance metrics. However, these schemes often ignore both the

interference and the interactions among the adjacent links. Interference is particularly

important for multi-path routing because it aggravates the issue of a bottleneck link, which

determines the entire path’s performance, illustrated in Fig. 1. Interference among the links

may also cause increased interference from strong links to the bottlenecks, thus further

weakening each link’s performance. Therefore, the maximum capacity of the entire path

should be obtained when all the links maintain the same capacity. No single bottleneck link

exists in such an ideal situation. The mutual interference is also reduced, thereby improving

both the average signal-to-interference-noise ratio (SINR) and the overall throughput.
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Figure 1. Bottleneck link with interfered by other links

This example illustrates how the interference affect the maximum capacity of path.

Nash equilibrium control designed by Gastpar and Vetterli (2002) is applied to guarantee

consistency of each link’s capacity.

The simulated network topology is shown in Fig. 2. Four nodes establish six links.

These links opportunistically set their target performance in terms of SINR. In the first

scenario, we studied the maximum capacity achievable on link 1 while the remaining links

maintained their desired performance. In second scenario, we studied the performance of

an entire routing path, from the source node 1 to the destination node 3. The results included

a comparison between the maximum path capacities.

The topology with four nodes and six links was considered the distance relation. It

was satisfied as d12 = d23 = d34 = d43 = d32 = d21 = d

We examined the relationship between the power and the capacity for the single link

case first. The knowledge of this relationship could make one link achieve the capacity as

high as possible. The maximum capacity of link 1 (between nodes 1 and 2) was evaluated.

The transmission power pi, was controlled by Nash equilibrium power control. It was

allowed to vary between 0dBm(1mW) and 5dBm(3.1623mW). The SINR of link 1 was

iteratively increased by β = 0.1 ratio. The power control scheme was allowed to converge

for 1 second, between SINR increases. The initial target SINR for all links was set to

γtar
i (0) = −7dB. The power was set to pi(0) = 0mW(0dBm).
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Figure 2. Diagram of the simulated network model

The maximum capacity value for an entire path, between source node 1 and destina-

tion node 3, was evaluated next. The SINRs of link 1 and link 2 were iteratively increased

by β = 0.1 in multiple link case. The remaining initial conditions were the same as those

in the single link case.

The capacity variation with the transmission power for the two cases (single and

multi-hop) is illustrated in Fig. 3. The maximum capacity points for the single link

and the multi-hop path cases were (3.135mW , 20.24Mbps) and (1.079mW , 15.34Mbps)

respectively. Note that, in this simulation, we have allowed to saturate transmission power

into 0dbm to 5dbm. This saturation led to the actual SINR not reaching the target value.

Hence, the capacitywas reduced if the power increased beyond themaximumpoint. Overall,

the capacity decreased by 6.57% and 21.58% for the single link and multi-hop path cases

respectively, because the power was saturated at the upper bound of the power limitation

(3.1623mW) and without feasibility to achieve the capacity targets. Consequently, the

increased interference led to not only congestion but also a reduction in the capacity.

The maximum capacity for a single link was 24.21% larger than it was for a multi-

hop scenario because increasing the entire path’s targets required that all links be included

to increase target SINR. This situation led to a power race among neighboring nodes. The

resulting increase in interference was higher here than it was in the single link case, thus

reaching the maximum transmission power for a lower SINR.
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Figure 3. Comparison of maximum capacity for both scenarios

According to this example, the topology (e.g., the density of nodes’ distribution,

operating states of each node, and the routing decision) determined themaximum achievable

link capacity. A routing decision should take into account not only the initial state (in which

both links appear to be the same) but also the actual available capacity on the link. Otherwise,

the selected path might underperform.

Overall, the maximum SINR (capacity) is a function of the topology, including

density of the nodes and the path selection, the path loss gain (G), and the target SINR of

other links representing the operating states of nodes.

SINRMax−Tar(i) = f
(
G, [SINRTar(1), ..., SINRTar(i − 1),

SINRTar(i + 1), .., SINRTar(M)]
) (1)

The dependency is not linear. Moreover, it is necessary to properly estimate available

capacities, particularly for multi-hop routing paths. The insight gained can be used as part

of a future routing scheme development to completely evaluate trade-offs among alternative

routing paths.
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4. CAPACITY ESTIMATION BASED ROUTING SCHEME

Dynamic routing is essential for communication in WANET/MANET based CPSs

due to the uncertainties and dynamics of locations of nodes, diverse devices participation

and interference from environment. Centralized routing and distributed routing schemes are

critical methods to realize dynamic routing in modern communication network. Distributed

routing typically allow nodes to make decisions locally. Each node gathers all needed

information, and bases routing decisions on this information. Centralized routing algorithms

provide a clean interface for policy specification. Global network state, including topology,

is obtained from network nodes and maintained at a centralized controller Al-Karaki and

Kamal (2004).

Inspiring by the above motivation, our goal is proposing a routing scheme which

can applied to both distributed and centralized dynamic routing in WANET/MANET CPSs.

In next part, the primary steps of the proposed scheme are illustrated. The first

subsection shows how to model the simulated network with consideration of interference

among links/paths, noises from environment, and stochastic channel fading. The following

assumptions on the simulated network are needed:

a) All transmissions in subnetwork are unidirectional. Although some bidirectional propa-

gations have been set, the target transmission is unidirectional.

b) Rayleigh channel fading is applied over time. Therefore, the gain matrix of path loss is

dynamical and time-varying.

c) The noise caused by environment factor is considered as a Gaussian white noise that is

multiplied by path loss gain matrix.

d) Only a subnetwork in a large scale network is considered. The remaining nodes, which

doesn’t participate the target transmission in the subnetwork, are conducting stable trans-

missions all the time. The interference caused by those transmissions are included into the

noise in c).
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Next, RBF neural network is designed to do capacity estimation which is a principal

guidance of route selection. At last, we separately illustrate how the proposed routing

scheme deals with the best path selection for both distributed and centralized routing

scenarios.

4.1. Modeling of Routing Path

We first introduce a traditional network-wide model of the radio links performance

in terms of signal-to-interference-and-noise ratio (SINR). The equation is rewritten with a

matrix form to calculate the required transmission power for each link when a desired SINR

is given for all links. This model will be used for generating the training data in routing

scheme design.

Certain assumptions are given here to simplify modeling and describe the network

situation that is the focus of this study.

a) The network model is a non-time varying model with stable link gains and

knowledge of the radio channel state.

b) We assume that the data transmissions are bidirectional when modeling an entire

network. If we set a network with either N nodes or hops, then M = 2(N − 1) links will be

available for communication.

The traditional approach to describing the dynamics of a wireless channel in terms

of per-link channel capacity and power usage considers a signal-to-interference-and-noise

ratio (SINR) on the particular ith link Chang et al. (2001); Chang and Yang (1997); Leung

et al. (2002); Pindoriya et al. (2008); Yun et al. (2008):

ri(t) =
gii(t)pi(t)∑

j=i[gi j(t)p j(t)] + ηi(t)
(2)



20

where gi j(t) is a attenuation from transmitter of j th link to receiver of the ith link, pi(t)

is transmission power on ith link, andi(t) is the channel noise on the ith link. In order to

represent the SINR equations for an entire network as matrix equation, we need to transform

2 into following form:

[
∑
j,i

[gi j(t)p j(t)] + ηi(t)]ri(t) = gii(t)pi(t) (3)

Now, we can represent the SINR for entire network as:

R[(G − GL)PT + H] = GLPT (4)

where R = det(ri(t)) is a diagonal matrix with SINR values for all links, G = [gi j]M∗M is

the channel gain matrix among all M links (from j th link transmitter to ith link receiver),

GL = [gii] is a matrix of gains on all the active links, PT = [pi]M∗1 is transmission power

vector for all M links, and H = [ηi(t)]M∗1 is vector of noise values for each link.

From network control perspective, it is more interesting to determine the necessary

transmission powers to achieved a desired, target SINR values one each link. In such a case,

we solve (3) for PT vector:

[GL(I − R) − GR]PT = RH (5)

APT = RH (6)

where Rd is diagonal matrix with the desired, target SINR values for all M links, and matrix

A = [GL(I − R) −GR] determines the existence and uniqueness of the solution. Assuming

that the inverse of A exists, the required transmission power is equal to:

PT = A−1RH (7)



21

To understand the relation between the SINR variation and power variation, the

following formulation is derived by taking first partial differential of (4). ∂R (∂P) can

be considered as ∆R (∆P). Then, series of partial differential equations are rewritten in a

matrix formulation as (8).

∆R = ((G − GL) ∗ diag(P))−1(GL∆P − ((G − GL)∆P. ∗ R) (8)

where ∆R is SINR variation with power variation ∆P . The goal of RBF network is to

estimate such function for a particular link.

Without loss of generality, Rayleigh channel fading is considered here. Rayleigh

model is commonly used in wireless communication system to describe the statistical

time varying nature of the received envelope of a flat fading signal, or the envelope of

an individual multi-path component. The Rayleigh distribution has a probability density

function (PDF) as:

p(x) =


x
σ2 exp(− x2

σ2 ) (0 ≤ x ≤ ∞)

0 (x < 0)
(9)

where x is a random variable, and σ2 is the fading envelope of the Rayleigh distribution.

The channel uncertainties distort the transmitted signals, therefore, the uncertain effect is

represented via a channel loss gain Jagannathan et al. (2006) as:

g = f (d, n, x) = d−nx2 (10)

where d−n is the effect of path loss. n is path loss exponent, usually, n = 2 8 in typical

propagation. For Rayleigh fading, it is typical to model the power attenuation as x2 , where

x is a random variable with Rayleigh distribution. Typically the channel gain g is a function

of time.
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Figure 4. Interference along a multi-hop path

To study the interference among different links, we derived a matrix model for single

path transmission first. Based on such a model, a multi path model is presented to describe

the interactions among different paths.

Modeling for a Single Path

A signal path with N nodes is shown in Fig. 4. In more general case, there are

(N − 1) bidirectional hops in a path. Hence, there are M = 2N links with M transmitters.

The corresponding transmit power vector PT for (4) is defined as:

PT = [p1∗, p2∗, ..., pM∗]
T = [P1, P2, ..., PN−1, PN, PN−1, ..., P2] (11)

where M is the total number of links in the path, N is the total number of nodes in the path.

In order to evaluate the performance along themulti-hop routing path, the multi-path

model (8) is simulated, which is employed to abstain numerical results and not essential for

the capacity analysis itself.

The distance between links i∗ and j∗ are corresponding to the distance from the

transmitter of link i∗ to the receiver of link j∗. Therefore, the distance matrix denoted by

link index as:
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D∗=



d1,1∗ d2,1∗ · · · d(M−1),1∗ dM,1∗

d1,2∗ d2,2∗ · · · d(M−1),2∗ dM,2∗

...
...

. . .
...

...

d1,(M−1)∗ d2,(M−1)∗ · · · d(M−1),(M−1)∗ dM,(M−1)∗

d1,M∗ d2,M∗ · · · d(M−1),M∗ dM,M∗

M∗M

(12)

where di, j denotes the distance between link i∗ and j∗ (from the position of transmitter in

i∗th link to that of the receiver in j∗th link). Combining with (10), the corresponding path

loss gain matrix is equal to:

G = f (D∗, n, x) (13)

where f (.) denotes per-element operation to apply path loss model that is the Friis trans-

mission equation.

Modeling of Multiple Paths

The presented model for a single path can be easily extended to support multiple

paths by expanding the gain matrix to include all paths.

The gain matrix for multiple paths is:

G=



Gpath1 Gpath2,path1 · · · Gpathn,path1 Gcross,path1

Gpath1,path2 Gpath2 · · · Gpathn,path2 Gcross,path2

...
...

. . .
...

...

Gpath1,pathn Gpath2,pathn · · · Gpathn Gcross,pathn

Gpath2,cross Gpath2,cross · · · Gpathn,cross Gcross


(14)

where n denotes the number of paths. Gpathi,pathj denotes the gain matrix between path i

and j. Gcross,pathj is the gain matrix between path the cross paths and path j.
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Figure 5. Schematic diagram of RBF neural network

Remark: This step of network modeling is not essential for proposing the routing

scheme. The network model is only used to provide the data of SINR and power to train the

RBF neural network and do maximum capacity prediction in next subsection. If the data

can be taken from a real network, this step can be skipped.

4.2. RBF Based Capacity Estimation

The capacity estimation is hindered bymany external and often unpredictable factors,

including environmental noise, interference, measurement errors, and channel fading. These

factors can be considered either an uncertainty or noise for a function estimator. Hence, the

RBF neural network, which is robust in presence of uncertainties and noise, is employed for

estimating the achievable capacity curve as a function of transmission power. The limited

measured data and available information also make the RBF network more suitable than a

traditional multi-layer neural network because it is easily and quickly trained.

RBF Network Design:

The RBF neural network typically consists of three layers: an input layer, a hidden

layer, and an output layer. A radial activated function is adopted by each hidden layer

node, and the output is computed by adding together the weighted hidden unit outputs. The

structure of multi-input-single-output (MISO) RBF neural networks is depicted in Fig. 5.
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Theoretically, RBF neural networks can approximate any nonlinear function and the

feasibility of neural network to eliminate the effects of the non-target parameters on the

target parameters. With this scheme, the parameters of hidden layer kernel functions and

the output connection weights are adjusted simultaneously to minimize the output errors.

The output is a linear combination of the activation functions computed by hidden layer

weights.

The output of the j th hidden neuron can be written as

h j(xi) = e
−
||xi−cj ||

2

2σj
2
,


i = 1, 2, ..., n

j = 1, 2, ..., n
(15)

where h j is the output of the j th neuron, xi ∈ Rn is the input vector, c j is the kernel centers

selection using random vector, and σj is the center spread parameter.

Gaussian transfer function is used for the hidden neurons. The neurons of the output

layer have a linear transfer function. It is the weighted summation of the outputs of all

hidden neurons connected to that output neuron. Then, the output F(xi) can be obtained by

F(xi) =

m∑
j=1

Wk j h j (16)

where Wk j is the synaptic weight connecting hidden neuron j to output neuron k and m is

the number of the hidden layer neurons.

When the maximum capacity according to (8) needs to be calculated, the path loss

gain matrix G should be known.

For capacity/SINR estimation, we assume the topology information of WANET are

known. The channel fading and other channel dynamics and uncertainties are considered,

and the main factors for estimation are the density of nodes and path selection, path loss

gain G, and target SINR of other links.
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We employ a RBF neural network to estimate function relating the used transmission

power with the resulting (achievable) capacity. The input is power of the target link since

any power changes in the network will interfere the capacity of the target link. The output

is the capacity. RBF network is trained offline first and then updated online. It has to

process a sufficient number of diverse datasets to converge to the estimated function in

offline training process. The online prediction is ready to analyze the relation of achievable

SINR (capacity) versus transmission power.

From (1) , it is clear that capacity of one link depends on all powers, not only the

power of itself. Hence, we first assume the capacity of the target link Ci is a nonlinear

function of power of each link as (17).

Ci = f (p1, p2, ..., pm, ) (17)

The function f will be estimated by RBF neural network. From (15), we define the

input is power vector x = [p1, p2, ..., pm]
T (m is number of links), and the output is SINRi

(i is the target link). From (16) , the estimated capacity is

Ĉi =

m∑
i=1

Ŵkiexp
(
−
‖pi − c j ‖

2σ2
i

)
(18)

Then, the weights wk j can be updated by

ŵki(k + 1) = ŵki(k) + α(Ci(k) − Ĉi(k))φ(k) (19)

When the weights converge, the future capacities versus power can be analyzed

to identify the desired operating points - the most energy efficient setting or the highest

achievable capacity - and the corresponding power values.
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Theorem: With trained by a sufficient number ofmeasured data, the RBF neural net-

work using the weight update law (19) to estimate the relationship between the transmission

power and the actual achievable capacity. The persistent excitation condition Gorinevsky

(1995) is satisfied Jagannathan et al. (2006).

Proof of weights convergence:

We denote w̃(k) = w − ŵ(k), then the estimation error can be defined as e(k) =

Ci(k) − Ĉi(k) = w̃(k)φ(k). φ(k) is the output vector from neurons.

According to PE condition, (20) can be obtained.

1 − α ||φ(k)||2 ≥ 0 (20)

We select the Lyapunov function candidate as

L = w̃T (k)w̃(k) (21)

Substitute the update law (19) into Lyapunov function candidate, we have (22).

∆L = w̃T (k + 1)w̃(k + 1) − w̃T (k)w̃(k)

= (wT − w̃T (k + 1))(w − w̃(k + 1)) − w̃T (k)w̃(k)

= (w̃T (k) − αφT (k)eT (k))(w̃(k) − αe(k)φ(k)) − w̃T (k)w̃(k)

= w̃T (k)w̃(k) − αφT (k)eT (k)w̃(k)

− αw̃T (k)e(k)φ(k) + α2φT (k)eT (k)e(k)φ(k) − w̃T (k)w̃(k)

≤ −2α ||φ(k)|| ||e(k)|| ||w̃(k)|| + α2 ||φ(k)||2 ||e(k)||2

≤ −2α ||φ(k)||2 ||w̃(k)||2 + α2 ||φ(k)||4 ||w̃(k)||2

≤ −α ||φ(k)||2 ||w̃(k)||2(2 − α ||φ(k)||2)

(22)

Combiningwith PE condition andα is positive definite,∆L is negative semi-definite.

The weights are bounded.
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4.3. Route Decision

The proposed routing scheme can be applied to both distributed and centralized

dynamic routing in WANET/MANET CPSs. The achievable capacity is estimated for

single link in distributed routing and entire path in centralized routing respectively. The

following part separately illustrate how the proposed routing scheme deals with the best

path selection for both distributed and centralized routing scenarios.

Distributed Dynamic Routing Scenario

In distributed dynamic routing scenario, the proposed scheme is applied to a peer-to-

peer communication case. Nodes located between source and destination can be considered

as multi-point relays (MPR) which can select the next MPR individually. The next relay

candidate has to be achievable and within the communication range of the current relay.

When the “Hello” message is send out by the current relay, the maximum capacity for each

alternative link is essentially estimated with the RBF neural network. Then, a table about

the achievable capacity for each alternative link is generated at the current relay. The routing

decision is made and the principal message is transmitted through the link with the highest

capacity.

Centralized Dynamic Routing Scenario

An end-to-end routing example is taken. The source node have to know all of

alternative paths, then make the routing decision properly. Capacity prediction for end-to-

end transmission is more complicated than peer-to-peer case since the “bottleneck” link is

able to put down the capacity of the entire path. Therefore, keeping all capacity of each

link at a same level is a big challenge for power control and capacity estimation.

To deal with this challenge, a capacity synchronization combining a Nash equilib-

rium power control is proposed (Fig. 6). The capacity of the first link named C1, which is

conducted by the source node and the next relay candidate, is estimated by a RBF neural

network. Then, it is the desired value of other links’ capacities (C2,C3, ...CN , N is the

number of link in this path). The power controller force the C2,C3, ...CN reach C1. Such a
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Figure 6. Control schematic

scheme can ensure the capacity consistency in a path and effectively avoid the “bottleneck”

situation. A table is only generated at the source node. The routing decision is made, and

the path with the best achievable capacity will take the message transmission.

5. SIMULATIONS AND DISCUSSION

In this section, the proposed routing scheme is evaluated by two scenarios with

considering a Rayleigh channel fading and noise from environment. The training data are

collected when the source node broadcast the "Hello" message. The simulated network is

shown in Fig. 7. Twenty nodes with different transmission ranges are randomly scattered

in the plate. The power limitation is 0.01mW 3.1623mW(0 5dBm). The initial powers are

1mW .

Node 1 is the source and Node 4 is the destination. For this particular communica-

tion, we can extract a subnetwork that only has six nodes conducting sixteen links shown

as Fig. 8. Node 2, 5 and Node 3, 6 are considered as second and third relays respectively.
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Figure 7. Network topology

Figure 8. Sub-network topology schematic



31

Figure 9. RBF network prediction for Link 1

Each node is free to choose the next relay in its transmission range. Therefore, it is possible

that some of links will conduct cross routing. In Fig. 8, there are four paths from Node 1

to Node 4 including Path 1 : 1, 2, 3, 4; Path 2 : 1, 2, 6, 4, Path 3 : 1, 5, 3, 4; Path 4 : 1, 5, 3, 4.

5.1. Routing for Peer-to-Peer Transmission

The channel fading and environmental factors lead to a fluctuation on the capacity

shown as Fig. 9. Moreover, in order to do accurate estimation, the averaged value for

each variable is taken. After excluding the wrong data point, the existing data provides the

capacity values corresponding to power value from 0.01mW to 1.4mW .

Fig. 9 show the predicted curve (the blue curve) comparing with the collected (the

green curve) and simulated curve (the red curve). The green curve has covered a part of

power series, then we also need to obtain the rest curve by increasing power manually so
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Figure 10. RBF network prediction for Link 7

that we can check if the predicted curve can catch the simulated curve. In Fig. 9, it can be

seen that the actual maximum capacity 3.507 ∗ 106bps occur at P1 = 2.377mW . Likewise,

the maximum capacity is 3.533 ∗ 106bps at 2.9mW estimated by RBF neural network.

As shown in the results, it concludes that the RBF neural network can predict the

capacity vs. the corresponding power curves. Therefore, the source learns how many

powers should be putted in so that the best communication performance can be achieved.

It also reduce the control input as well as improve the efficiency of the power usage.

Following the proposed prediction, all maximum capacity values of all links can be

known. In this scenario, we first estimate the capacity of both Link 1 (from Node 1 to Node

2) shown in Fig. 9 and Link 7 (from Node 1 to Node 5) shown in Fig. 10. Then which node

is the next relay can be decided by comparing the maximum achievable capacities. It can

be seen that the predicted value of Link 1 (3.533 ∗ 106bps) is 0.546 ∗ 106bps bigger than
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Figure 11. RBF network prediction for Link 2

Link 7’s. Therefore, Link 1 is the better route to handle the communications. If Node 2 is

the second relay, Node 3 will continuous to do the evaluation for the third relay selection

shown as Fig. 11 that is for Link 2.

Following the proposed procedure, the each relay node can gather the local infor-

mation shown in Table. 1. The simulated values are calculated based on the complete

information about system dynamics including path loss gain, Rayleigh channel fading,

and disturbance. However, the predicted values are estimated based on typically available

measurement data. For instance, the traffic from Node 1 to Node 4 could select several

alternative paths. The RBF neural network predictor allows us to identify the best path is

1 − 2 − 3 − 4 which is same as simulated result.

Table. 1 shows the capacities with the upper bound power. The maximum power

does not correspond to the actual maximum achievable capacity for every link. Therefore

the accurate approximation of the relationship between power and capacity can be employed

to maximize performance while minimize energy consumption.
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Figure 12. Pre-training RBF network prediction for Link 1

Remark: The initial values of the weights and kernel centers are random vectors in

the above simulations. Consequently, more samples should be used to turn the parameters of

RBF neural network. Therefore, if the neural network can use a pre-trained initial parameter

instead of random one, the training time will be reduced as well as number of samples.

Fig. 12 shows the pre-training performance. The data taken from network is changed

over time since the channel fading and random noise are time varying. We assume Case A

is the estimation of time k, and Case B is for time k + 1. The trained parameter of Case A is

considered as the initial condition for Case B. The network is re-trained with small number

of samples in Case B. Table.2 shows the parameters of neural network are slightly turned

and the prediction is accurate with a small prediction error 2.25%. In addition, pretraining

of RBF network with simulated data improved convergence of the function estimation by

70.31%. Therefore, pretraining is a good way to fast turning process and reduces sampling

times.
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Table 2. Turned parameters for Case A and B

Parameter Case A Case B

Weights
[-0.0648, 0.2517, [-0.0792, 0.2384,
0.0642, -0.0011, 0.0482,-0.0127,
0.0566, 0.1225] 0.0430, 0.1115]

Centers
[-2.4405,-12.6408, [-2.4405,-12.6408,
-0.4779, 4.1909, -0.4461, 4.1909,
-6.5563, 3.0526] -6.5563, 3.0526]

Table 3. Maximum capacity for all alternative paths

Distance between Predicted Max Simulated Max Prediction
Origin and Node 1 Capacity (×106bps) Capacity (×106bps) Error (%)

0.05 8.597 8.195 4.91
0.1 8.399 8.095 3.76
0.15 8.292 7.877 5.29
0.2 8.214 7.719 6.41
0.25 8.111 7.563 7.25
0.3 7.944 7.421 7.05
0.35 7.907 7.243 9.17
0.4 7.836 7.197 8.88
0.45 7.725 7.057 9.47
0.5 7.468 6.998 6.72

By using pre-training, we extended RBF neural network prediction to do routing

in mobile ad-hoc network (MANET) scenario. Fig. 12 shows the prediction performance

when Node 1 was departing from origin. The data collected at Node 1 locating at origin are

used to pre-train the RBF neural network. The convergedweights were recorded and applied

as the initial values at the next time turning. The tendency of actual and predicted curve

are identical. The prediction errors shown in Table. 3 do not exceed 9.47%. Moreover, the

number of the returning samples is decreased 45% at least.

5.2. Routing for End-to-End Transmission

In next simulations, we apply the proposed estimation for Path 1 − 2 − 6 − 4. Due

to the all capacity in the path should be same, a Nash equilibrium controller is used.
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Figure 13. RBF neural network prediction for Link 1

The first link of each path is the leader link whose capacity should be followed by

other links. With the proposed capacity synchronization scheme, the predicted Capacity 1

is the desired capacity of other capacities, then inputted into power controller to calculate

control inputs.

Three RBF neural networks are used for function prediction for each link. Compar-

ing three capacities at each power value, the maximum capacity is taken as the final capacity

of the path.

Although the prediction error of each link cannot be avoided, the path capacity

prediction is accurate with only 4.73% (0.126 ∗ 106bps) error.

Table. 4 shows the achievable capacities of all alternative paths fromNode 1 to Node

4. The RBF neural network predictor allows us to identify the best path is Path 1− 2− 3− 4

which is same as simulated result.

We also conducted the same experiments as peer-to-peer scenario to test the per-

formance of the proposed routing scheme in MANET based CPSs. Fig. 15 shows that

the accuracy of the prediction for MANET scenario have the prediction errors without

exceeding 3.07% shown in Table. 5.
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Figure 14. RBF neural network prediction for Path 1 − 2 − 6 − 4

Table 4. Maximum capacity for all alternative paths

Predicted Max Simulated Max PredictionPath Capacity (×106bps) Capacity (×106bps) Error (%)
1-2-3-4 5.28 5.239 0.78
1-2-6-4 2.79 2.644 4.73
1-5-6-4 3.92 4.07 3.67
1-5-3-4 3.34 3.325 0.42

Figure 15. RBF neural network prediction for mobile network
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Table 5. Maximum capacity for all alternative paths

Distance between Predicted Max Simulated Max Prediction
Origin and Node 1 Capacity (×106bps) Capacity (×106bps) Error (%)

0.05 2.434 2.488 2.22
0.1 2.479 2.477 1.29
0.15 2.462 2.474 0.49
0.2 2.419 2.412 0.29
0.25 2.385 2.366 0.80
0.3 2.376 2.336 1.68
0.35 2.347 2.286 2.60
0.4 2.343 2.271 3.07
0.45 2.300 2.252 2.09
0.5 2.269 2.256 0.57

6. CONCLUSION

In this paper, a novel capacity estimation based routing scheme is proposed for

optimizing communication performance in WANET/MANET based CPSs. The simulation

results show that the proposed capacity estimation routing scheme can select the most

optimal path/link with the highest capacity to ensure the vital message can be delivered

safely, effectively, and high-quality. In addition, the proposed scheme is flexible to apply

for distributed and centralized routing problems.

For peer-to-peer scenario, which is a typical distributed routing example, the RBF

NN based capacity prediction can accurately estimate the maximum achievable capacity

based on local measurements. The observed error in estimation is less than 4% of predicted

throughput. The power setting that maximizes capacity and energy-efficiency can be iden-

tified using the RBF estimated function of capacity with transmission power. Comparing

with simulated data, the selected route matches the expected one. Moreover, with the

pre-training technique, the convergence of the RBF neural network is improved by 70.31%.

Such an improvement can also adapt to topology changes caused by some moving nodes in

MANET based CPSs, and its prediction error does not exceed 10%.
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For end-to-end scenario, the proposed scheme combining with a novel capacity

synchronization technique (Fig. 6) is used to deal with a centralized routing problem. The

simulation results illustrate that the maximum capacity of multi-hop paths is accurately

predicted with avoidance of “bottleneck” situation. The route selections based on the

predicted and simulated data are identical and the prediction errors are lower than 4.73%.

Furthermore, the proposed scheme can be applied to routing selection in MANET based

CPSs. The prediction errors is lower than 3.07%.

In summary, the proposed routing scheme is a flexible and adaptive method to be

applied on diverse dynamic routing issues in WANET/MANET base CPSs. Meanwhile,

it is robust to against interference, interactions and environmental noises in a large scale

CPS. Taking the advantage of advanced routing schemes is a vital part for improving the

robustness, reliability, safety, and security of communication in WANET/MANET based

CPSs. For future work, the security issues during transmission will be addressed by

improving the proposed routing scheme.
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ABSTRACT

Cyber-physical systems (CPSs) refer to systems with integrated computational, net-

work, and physical components. With the increasing connectivity among computational

cyber connected elements and the physical entities, capturing the interrelationship between

the cyber and the physical systems becomes increasingly important. Especially, this in-

timate coupling between the cyber and physical systems will result in fault propagation

from the embedded cyberspace to the physical system. In this paper, a novel cyber network

fault diagnosis scheme is proposed to detect and isolate cyber and physical system faults.

Additionally, a fault resilience control is designed to mitigate the degradation of system

performance when cyber network faults occur and propagate over physical components.

Keywords: cyber physical system, fault diagnosis, network fault, resilience
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1. INTRODUCTION

Modern industrial systems, such as smart grid, healthcare, automotive control sys-

tems are implemented as distributed event-triggered control systems wherein the control

loops are connected by a real-time communication network with limited resources. Such

systems are referred to Cyber-physical Systems (CPSs) which offer many advantages: the

ease of maintenance and installation, flexibility, and low cost. However, limited resources

and constraints of the embedded communication network create challenges for a control

system stability. For example, changing topology or background traffic result in varied

delays, packet losses, and quantization over time. In addition, cyber attacks including

denial-of-service, spoofing, and eavesdropping, can degrade the system performance. For

example, delays exceeding the range assumed for the controller due to jamming cyber attack

lead to the control signal arriving too late for the actuator to take appropriate actions. Con-

sequently, system outputs deviate from the desired trajectory and the entire CPS becomes

unstable. Therefore, an optimal networked resilience controller design for CPSs is needed.

It has to mitigate the negative effects of the network uncertainties and dynamics on the CPS

performance.

Many existing works on cyber security Xie et al. (2014) - Mitchell and Chen (2016)

proposed network schemes to defend against the cyber attacks without modification to

the controller design. In contrast, other researchers focused on fault tolerant controller

design to improve resilience against physical component faults Gao and Chen (2008)-

Tiberi et al. (2013). In these works, the network dynamics and uncertainties are often

oversimplified under strong assumptions: a) the delays are bounded within a specific range;

b) the distribution of delays and package losses are known and time-invariant. However,

in realistic CPSs, the delay can easily exceed such restrictive bounds and lead to unstable

system. The unexpected variation in delay leads to the malfunction or overreaction on the

controller and actuator, and eventually instability of the entire CPSs. Therefore, relaxing

these assumptions should be addressed to improve the resilience of CPSs.
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In this paper, a PDF-based tuning of stochastic optimal controller (PTSOC) is

developed to address the degraded system performance induced by network uncertainties

including attacks, transmission faults, and channel dynamics. This relaxes the earlier

mentioned strong assumptions a) and b) made in existing works. A stochastic systemmodel,

which includes stochastic parameters that represents network dynamics, is employed. A

KDE-based online PDF identifier is proposed to capture the variation of network dynamics.

The probabilities of delays provided by the PDF identifier are used to tune the control law. In

addition, the system stability is mathematically analysed using Lyapunov approach. Overall,

the proposed approach improves the robustness, optimizes cost of regulation, prevents the

physical components from unrepairable damages, and keeps the CPS working within the

desired operating condition.

This paper is organized as follows. In Section 2, the related works and motivation

are briefly discussed. The proposed controller design in terms of PDF identifier and stability

analysis are presented in Section 3. Section 5 illustrates the effectiveness of the proposed

controller through simulations in MATLAB. Section 6 gives the conclusion.

2. MOTIVATION AND RELATEDWORKS

The embedded cyberspace imposes restrictions on the exchange of information in

CPSs, such a limited channel capacity and traffic congestions. Malicious cyber attacks

further restrict the information delivery. The delay and packet loss caused by the above

restrictions are stochastic with unknown bounds and difficult to predict. Importantly, they

have a potentially negative effect on the performance and stability of CPSs. For example,

inappropriate control actions caused by increasing delay lead to a big overshoot as well as

more actuation cost to manage such overshoot.

A following example shows that the network dynamics significantly affect the per-

formance of CPS and the existing control approaches may fail to guarantee its stability.
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Figure 1. Delays

This scenario emulates a route hijacking by an attacker to eavesdrop control in-

formation (data integrity). Such a route hijacking increases delay and delay variation on

the longer path. A network is simulated using Network Simulator 2 (NS2) with a random

topology of 11 nodes. Ad hoc On-Demand Distance Vector (AODV) routing scheme is

adopted. The route through the topology is altered during the simulation such that the

packet delays vary for the controller loop, as shown in Fig. 1. Note, that similar network

performance could be a result of topology or traffic pattern changes.

The results show the disturbance in CPS introduced by the network dynamics. With

these delays, a PID controller is simulated for a simple 2I4O (two input four output) system

Xu et al. (2012). Fig. 2 shows PID make the system states converge when delay bound is

low before 6s. Then, the sudden changes of delay at k = 6s, 16s, and 20s make the system

states vibrate. Consequently, the CPS becomes unstable due to such dynamics of delay.

The attack changes the delay distribution. This stochastic disturbance increases the

probability that the system becomes uncontrollable and unstable. Therefore, it is necessary

to include such dynamics both in system model and controller design.
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Figure 2. System performance with a PID controller

2.1. Literature Review

The following literature review discusses the existing approaches that address the

uncertain dynamics of network, especially long time delays and packet losses, either in

network or physical system.

Many researchers developed network protocols and tools Xie et al. (2014) - Mitchell

and Chen (2016) to keep delays and packet losses within traditional controller constraints.

The controller design of physical systems is not modified in these works. Such approaches

can maintain system stability if the network configuration is simple and fixed. Designing

more complicated networks and systems under cyber attacks becomes challenging if not

impossible due to restrictive constraints dictated by the physical controller. Xie et al. (2014)

proposed a channel estimation approach to calculate the packet success rate, the worst-case

packet delay and average energy consumption based on acknowledgement (ACK) informa-

tion. However, the worst-case delay has a upper bound known a priori while the system

model is linear time invariant and not stochastic. Lee et al. (2005) proposed a quality-of-

service based remote control scheme for CPSs via the Profibus token passing protocol. They
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used the time delay data provided by transmitting the real-time messages to approximate

the delays for high-priority and low-priority messages. They assumed a strong condition

that the network delay has time invariant lower and upper bounds. The control schemes in

above literature are valid if the delays are bounded within the acceptable range. However, if

the configuration of the embedded network becomes complicated, dynamic, and stochastic,

the bound constraints cannot be met. For instant, in intelligent transportation systems (ITS),

moving vehicles exchange their information with other vehicles, transportation management

system, and users. Such a complicated and dynamic network results in delays and packet

losses exceeding their bounds because of interference from the environment and network

topology changes. Thus the controller cannot guarantee the stability of CPSs. Overall, a

more robust approach should consider network dynamics in controller design to relax the

constraints.

Simultaneously, other researchers had designed several controllers to address stochas-

tic network dynamics under strong constrains. Gao and Chen (2008), Gao et al. (2008)

modelled a CPS as a sampled-data system and solved a set of linear matrix inequalities to

derive the feedback gain of a memory-less controller. The dynamics in the cyberspace are

simplified as known bounded delays. Similarly, Hao and Zhao (2010), Tian et al. (2010),

Liu et al. (2007) proposed networked controllers by using Lyapunov stability analysis with

a priori knowledge of the delay bounds. Moreover, Tiberi et al. (2013) proposed a self-

triggered sampling for achieving substantial reduction of communication traffic. The system

stability can be guaranteed under certain assumptions: a) the measurements are sent to the

central node within a bounded time delay; b) The system states have to converge initially.

All these works considered the network delay issues in various perspective. However, they

commonly assumed the network delay had a known bound and the distribution of delay

was fixed. Such schemes would fail in realistic CPSs where delay bound is unknown before
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hand. For instance, new communication nodes generating new traffics will increase the

upper bound which cannot be known ahead of time. Furthermore, dynamics of the delay

distribution make the entire system unstable.

2.2. Explicit Modeling of Delay and Packet Losses

Xu et al. (2012) made a significant progress when they included the random param-

eters representing network dynamics in system model. All of system matrices and control

input calculation concurrently change as network delays and packet losses randomly change.

This model is the prototype we used in the proposed PTSOC design.

The conventional discrete time model was described as following Blundell and

Duncan (1998):

xk+1 = As xk + Bk
0 ua

k + Bk
1 ua

k−1 + ... + Bk
dua

k−d

ua
k−i = γk−iuk−i

(1)

where xk = x(kT) denotes system states; As = eAT , Bk
0 =

∫ Ts
dk

0
eA(Ts−t)dt, and Bk

i =∫ dk
i−1−(i−1)Ts

dk
i −iTs

eA(Ts−t)dt ∀i = 1, 2, ..., d are the system matrices.

Xu et al. (2012) derived the stochastic model expressed as

zk+1 = Azk zk + Bzkuk, (2)
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where zk = [xT
k uT

k−1 · · · uT
k−d]

T is the state variables vector; and Azk, Bzk are the time-

varying system matrices, shown as

Azk =



Az γk
1 Bk

1 · · · γk
i Bk

i · · · γk
d Bk

d

0 0 · · · · · · · · · 0

0 Im · · · · · · 0 0
... 0 Im · · · · · · 0
...

...
...

. . .
...

...

0 0 · · · · · · Im 0



, Bzk =



γk
0 Bk

0

Im

0

0
...

0


uk is the control input; γk

i and γk−i are binary random variables representing the

package reception status. (if the package is received, γ = 1, otherwise, γ = 0)

Then, the stochastic optimal control (SOC) law can be obtained by optimized the

following cost function.

J = E[
∞∑

m=k

(zT
mQzzm + uT

mRzum)] k = 0, 1, 2, · · · (3)

where Qz = diag
{
Q, R/d, · · ·

}
, and Rz = R/d are symmetric positive semi-definite and

symmetric positive definite respectively. E(•) is the expected operator of
∑∞

m=k(z
T
mQzzm +

uT
mRzum).

Although the above model included the terms of network dynamics, the SOC only

indirectly considers such dynamics through the stochastic model. It also has a strong

assumption that the delay distribution is fixed. System performance becomes suboptimal

when the above assumptions are invalidated by changes in bounds or distribution as observed

in simulations for cases B and C in Section 5.
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2.3. Capturing Network Dynamics

To relax the bounds and distribution constraints, the system model and the control

law should be tuned based on current probabilities of delays. Therefore, a PDF estimation

is needed.

For estimation of delay probabilities, several PDF identification methods exist in

literature, such as histogram, KDE, and Maximum likelihood estimation Silverman (1986).

The advantage of KDE is more accurate estimation with fewer samples than other methods.

Offline KDE has been used in various applications, including computer graphics Hurter

et al. (2012), image processing Bors and Nasios (2009), Calabrese and Zenga (2010),

Blundell and Duncan (1998), and Elgammal et al. (2003), and industrial process He et al.

(2015), Chen et al. (2014). He et al. (2015) introduced a novel KDE based framework

for nonlinear metric learning, Kernel density metric learning (KDML). This method has

been successfully applied in face recognition. Elgammal et al. (2003) investigated the use

of Fast Gauss Transform for efficient computation of KDE techniques for computer vision

applications. Chen et al. (2014) proposed a KDE based method to estimate the spatial

intensity of false alarms for multi-target tracking system. Additionally, KDE Silverman

(1986) is suitable for PDF identification in CPS because it can handle different types of

distributions, such as mixture distribution and Poisson distribution. In contrast, the other

approaches only work for normal distributions. In Section 3.2, an online KDE estimator is

introduced. It can estimate unknown PDF with a good accuracy and adapt to the dynamic

changes of delay distribution. Then, the provided PDF information is used to tune the

PTSOC control law. Hence, the controller adapts to the given network dynamics.

The proposed PTSOC relaxes the bounds and distribution constraints through in-

cluding PDF information in controller design. Next, the details of the proposed PTSOC are

presented.
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3. PROPOSED PDF-BASED TUNING OF STOCHASTIC OPTIMAL CONTROL
(PTSOC) DESIGN

In this section, the overview of the proposed control scheme is given. The PDF-

based tuning of stochastic optimal control (PTSOC) scheme with an online PDF estimator

is introduced. The online KDE based PDF identifier is introduced in Section 3.2. Then,

PTSOC is derived from the proposed cost function 4 in Section 3.3.

3.1. Overview

PTSOC takes into account uncertain network dynamics by applying online KDE to

capture PDF variation of delays and tuning its control law based on the PDF information.

The overall architecture of the proposed control system is shown in Fig. 3.

Figure 3. Overall architecture of stochastic CPS with PDF identifier

The proposed PTSOC includes three main steps that are continuous repeated:

a) Data collection of delays. n delays ([dk−n+1, · · · , dk]) in the sliding window are

used to do the PDF estimation at time k (PDFk). When new delay is measured, the data in

the sliding window is updated.

b) PDF estimation. The PDF of these n delays is obtained. The probability for each

delay interval is calculated.
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c) PTSOC law calculation. For each delay interval, the cost function (5) and the

optimal control law (8) are derived from (3). The cost function of PTSOC defined by (4)

is a probability weighted sum of the cost functions for all delay intervals. Similarly, the

PTSOC law derived in Section. 3.3 is the summation of the weighted SOC laws of delay

intervals. These weights are probabilities from the delay PDF. The final cost function is:

Jk =

n∑
i=1

Pi Jk
i =

n∑
i=1

Pi(E[
∞∑

m=k

zkT
mi Qizk

mi + ukT
i Riuk

i ]) (4)

where dint represents the delay interval that we take 0.1s in the simulation section. If

dint < dk < dint(i + 1), dk is classified in ith delay case; n is the total number of delay cases;

k represents sampling interval; Pi is probability of delay within dinti to dint(i + 1) provided

by the KDE-based PDF identifier; x is states vector; ui is control inputs vector; Qi and Ri

are weighted constants of states and control inputs, respectively.

Remark 1: The cost function of PTSOC is more generalized than that of SOC. SOC

only considers the worst delay case that is dint < dk < dint(i + 1), Pi = 1, and Pj = 0, j , i.

In such a case, the PTSOC cost function (7) becomes SOC (3).

As the probabilities of each possible delay changes, PTSOC continuously tracks

the network dynamics with a PDF identifier and updates its parameters based on PDF

information of delay to adapt to the given system situation.

3.2. PDF Identifier

To capture the dynamics of network delays, an online KDE-based PDF identifier

is proposed to iteratively estimate the distribution. The data used to do identification is

updated every sampling interval for a window of n last packet delays. The main steps of

online PDF identification are shown in Table. 1. Here, a normal kernel smoother is selected

for PDF estimation.



54

Table 1. Online PDF identification algorithm

1. Determining the data in the sliding window for time k:
a) Choosing a kernel function K centered on τ with a bandwidth h;
b) Each observation τi receives a specific weight proportional to the
scaled distance from the observation τi to τ, which is
u = (τ − τi)/h;

c) At a given τ, the estimate is found by vertically summing up over
the k shapes.
This can be synthesized as:

f̂ (τ) = 1
nhτi ∈ [τ −

h
2, τ +

h
2 ]

The general formula for KDE will be given by
f̂k(τ) = 1

nh
∑n

i=1 K( τ−τih )

where the dependence of the estimate on the kernel function K(.)
is denoted as f̂k .

2. Updating the new data for time k + 1 in the sliding window and go
back to Step 1;

Remark 2: With a large window size, KDE provides an accurate estimation of

PDF with neglectable bias Gisbert (2003). In this paper, we estimate PDF of n samples

in the sliding window. Such that the estimation error is guaranteed to converge to a small

value denoted as dKDE . The effect of dKDE on the regulation error convergence is shown in

Theorem 3.

3.3. Optimal Controller Design with Consideration of Dynamics of Delay Distribution

In this subsection, PDF identification is employed to develop a novel stochastic

optimal controller for CPSs while considering stochastic dynamics of network. First, we

derived a time-varying system matrices that explicitly include probability information of

delays. Each element of the matrices is derived. Then, PTSOC is proposed based on

the time-driven sensing and event-driven actuating controller framework. The maximum

number of control input that effects system matrices is d. Only the latest control input is

allowed to act on the controlled plant when several control inputs are received at the same

time Xu et al. (2012).
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In the stochastic model (2), all of the candidate models (dynamic matrices Azki and

Bzki) and their corresponding probabilities depend on the γk
i values and their probabilities.

γk
0 corresponds to control input with the delay less than sampling period (Ts). γk

i (k = 1, 2, d)

is determined by γk−1
i−1 . Therefore, γ

k
i depends on γk−1

0 and γk−
i . The probability Pγki can

be determined by Pdk>Ts . (5) denotes the probability for each γi.

γk
0 =


0 i f dk > Ts, the corresponding probability Pγk0=0 = Pdk>Ts

1 i f dk < Ts, the corresponding probability Pγk0=1 = Pdk<Ts

γk
1 =



0 i f dk < Ts, dk < dk−1 − Ts, Pγk1 = Pdk>Ts Pdk−1<Ts Pdk<dk−1−Ts

1



i f dk > Ts, dk−1 > Ts



dk < dk−1 − Ts,

Pγk1=1 = Pdk>Ts Pdk−1<Ts Pdk<dk−1−Ts

dk > dk−1 − Ts,

Pγk1=1 = Pdk>Ts Pdk−1<Ts Pdk>dk−1−Ts

i f dk < Ts,



dk−1 > Ts, dk > dk−1 − Ts,

Pγk1=1 = Pdk<Ts Pdk−1>Ts Pdk>dk−1−Ts

dk−1 < Ts, Pγk1=1 = Pdk>Ts

...

γk
d =


0 Pγk

d
=0

1 Pγk
d
=1

(5)

where Pdint i<dk<dint (i+a) =
∫ dint (i+a)

dint i
f (x)dx, dint is delay bandwidth.

All of the probabilities in (5) can be obtained from the PDF identifier. The data in

the sliding window maps the PDF and provide the probabilities of delays in different ranges

P(dk
i ), P(dk−1

i ), · · · , P(dk−d
i ). The probability of delays can be denoted as P(γk

0 = i) and
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P(γk
i = i). Then, it is easy to obtain the probabilities of each possible Bk

i based on the above

information. Finally, a set of candidate stochastic models Azki and Bzki are defined. The

corresponding control law (candidate control law) for each candidate model (6) is obtained

by optimizing its corresponding cost function (7). Each candidate cost function has its

optimal parameters Qzi and Rzi for the corresponding control law derivation. The final

proposed control law (8) is a weighted sum of these candidate control laws, with weights

that are equal to the corresponding probabilities from the PDF identifier.

dinti < dk < dint(i + 1)

=



i = 1 u1k = −K1k z1k, K1k = (BT
zk1z1k Bzk1 + Rzk)

−1(BT
zk1z1k Azk1 + Sz1k)

i = 2 u2k = −K2k z2k, K2k = (BT
zk2z2k Bzk2 + Rzk)

−1(BT
zk2z2k Azk2 + Sz2k)

...

i = nd undk = −Kndk zndk, Kndk = (BT
zknd

zndk Bzknd + Rzk)
−1(BT

zknd
zndk Azknd + Szndk)

(6)

J1 = E[
∞∑

m=k

zT
1m(Qz1 − KT

1mRzK1m)z1m]

J2 = E[
∞∑

m=k

zT
2m(Qz2 − KT

2mRzK2m)z2m]

...

Jnd = E[
∞∑

m=k

zT
ndm(Qznd − KT

ndmRzKndm)zndm]

(7)
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where Kik is the optimal gain when dinti < dk < dint(i + 1) at k, Ji is the corresponding cost

function.

uk = −Kk zk

Kk =

nd∑
i=1

Pki(BT
zkizmi Bzki + Rzk)

−1(BT
zkizmi Azki + Szki) =

nd∑
j=1

Pk jK j

(8)

where Kk is the optimal gain and uk is the control input. Szik ≥ 0 is the solution to the ARE.

nd = dupper/dint , dupper is the maximum delay in the sliding window; Pki is the probability

of dinti < dk < dint(i + 1).

PTSOC, which considers PDF of delays, is able to optimize the trade-off between

system state error and cost of regulation. Its control law is more accurate for the given

network situation than that of SOC because the weights of each candidate control law are

continuously updated to reflect the actual PDF of delays. In contrast, SOC considers only

one of delay cases in 7 in optimization.

4. STABILITY ANALYSIS

Three theorems and their corresponding proofs are presented to demonstrate stability

of the proposed PTSOC. Lyapunov based stability analysis is used. Theorems 1 and 2

demonstrate asymptotic convergence of regulation error and estimation error of the control

gain. Theorem 3 shows uniformly ultimately bounded (UUB) stability of the regulation

error when the irremovable bias of PDF estimation exists.

In Theorem 1, the control law tuned by probability information guarantees the

asymptotic convergence for regulation error with an assumption that delay PDFs are accu-

rately estimated without bias. Theorem 2 relaxes the assumption in Theorem 1. It shows

the control gain estimation asymptotically converges even if PDF estimation has an error

provided it asymptotically converges to zero. Theorem 3 considers the irremovable bias of

PDF estimation as a bounded disturbance. However, an UUB stability is guaranteed.
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Theorem 1: (Asymptotic stability of regulation error with a perfect PDF estima-

tion). Given the initial conditions as the system state z0 and system matrices Az0, and Bz0,

let u0(zk) be an initial admissible control policy for the CPS (1). Let the control update law

be given by (8) with properly selected Qzm and Rzm. Let the PDF estimation be a no error

estimation. Then, there exists a constant Kmax satisfying Kmax ≤ (1 − a)/b such that the

regulation error of system states converge to zero asymptotically in the mean.

Proof

Consider the following positive definite Lyapunov function candidate: Vzk = zT
k zk .

zk is the state vector of k.

The systemmatrices are time varying and stochastic, therefore, we consider ∆Vzkm =

Vzk+1m−Vzkm for each possible systemmatrices ( Azkm and Bzkm). m represents the number of

the candidate systems. If the maximum value of ∆Vzkm is negative definite, the convergence

of system states is proved.

∆Vzkm = Vzk+1m − Vzk

= (Azkmzk + Bzkmuk)
T (Azkmzk + Bzkmuk) − zT

k zk

=‖ Azkmzk + Bzkmuk ‖
2 − ‖ zk ‖

2

=‖ Azkmzk − Bzkm

nd∑
i=1

Pik Kik zk ‖
2 − ‖ zk ‖

2

=
(
‖ Azkmzk − Bzkm

nd∑
i=1

Pik Kik ‖
2 −1

)
‖ zk ‖

2
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With Cauchy-Schwarz inequality,

∆Vzkm ≤
{
(‖ Azkm ‖ + ‖ Bzkm ‖‖ Kk ‖)

2 − 1
}
‖ zk ‖

2

≤
{
(‖ Azkm ‖ + ‖ Bzkm ‖ Kmax)

2 − 1
}
‖ zk ‖

2

≤
{
(amax + bmaxKmax)

2 − 1
}
‖ zk ‖

2

∀k = 1, 2, · · ·

∀m = 1, 2, · · · , nd

Kmax = max
{
‖ K1 ‖, ‖ K2 ‖, · · · , ‖ Knd ‖

}
= max

{
‖ (BT

zkizmi Bzki + Rzk)
−1(BT

zkizmi Azki + Szk) ‖
}
,

∀i = 1, 2, · · · , nd,

where Az j and Bz j are the system matrices of j. K j is the control gain of j. Kmax is the

maximum control gain of k. nd is the number of system matrices case. amax = max
{
‖

Azk1 ‖, ‖ Azk2 ‖, · · · , ‖ Azkm ‖} is the upper bound of ‖ Azkm ‖, and bmax = max
{
‖ Bzk1 ‖

, ‖ Bzk2 ‖, · · · , ‖ Bzkm ‖
}
is the upper bound of ‖ Bzkm ‖.

We define a = maxa1, a2, · · · , and and b = maxb1, b2, · · · , bnd . Qzm and Rzm

are selected properly Carnevale et al. (2007). Since Vzkm is positive definite and ∆Vzkm

is negative definite provided Kmax is selected as above. Therefore, the regulation error

converges to zero asymptotically.

Next, the assumption that PDF estimation has no bias is relaxed with Theorem 2.

The control gain estimation error still has an asymptotic convergence.

Theorem 2 (Control gain estimation error convergence): As the delay data keeps

updating PDF identifier and
(
‖

∑n
j=1 P̃(k+1) j ‖ − ‖

∑n
j=1 P̃k j ‖

)
< 0 is satisfied, then the

estimation error for control gain ‖ K̃k ‖ asymptotically converges to zero.
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Proof

First, we define the estimation error of control gain K as K̃k = Kk − K̂k =∑n
j=1 Pk jK j −

∑n
j=1 P̂k jK j . Pi j is the actual probability at k. Then, Lyapunov function

candidate is VKk
= K̃T

k K̃k .

∆VKk
= VKk+1 − VKk

= K̃T
k+1K̃k+1 − K̃T

k K̃k

= (Kk+1 − K̂k+1)
T (Kk+1 − K̂k+1) − (Kk − K̂k)

T (Kk − K̂k)

= (

nd∑
j=1

P(k+1) jK j −

nd∑
j=1

P̂(k+1) jK j)
T (

nd∑
j=1

P(k+1) jK j −

nd∑
j=1

P̂(k+1) jK j)

− (

nd∑
j=1

Pk jK j −

nd∑
j=1

P̂k jK j)
T (

nd∑
j=1

Pk jK j −

nd∑
j=1

P̂k jK j)

=‖

nd∑
j=1
(P(k+1) j − P̂(k+1) j)K j ‖

2 − ‖

nd∑
j=1
(Pk j − P̂k j)K j ‖

2

=‖

nd∑
j=1

P̃(k+1) jK j ‖
2 − ‖

nd∑
j=1

P̃k jK j ‖
2

=
(
‖

nd∑
j=1

P̃(k+1) jK j ‖ + ‖

nd∑
j=1

P̃k jK j ‖
)

︸                                           ︷︷                                           ︸
(
‖

nd∑
j=1

P̃(k+1) jK j ‖ − ‖

nd∑
j=1

P̃k jK j ‖
)

∆1

= ∆1
(
‖

nd∑
j=1

P̃(k+1) jK j ‖ − ‖

nd∑
j=1

P̃k jK j ‖
)

= ∆1[(‖ P̃(k+1)1 ‖ − ‖ P̃k1 ‖) ‖ K1 ‖ + ‖ P̃(k+1)2 ‖ − ‖ P̃k2 ‖) ‖ K2 ‖ + · · ·

+ ‖ P̃(k+1)nd ‖ − ‖ P̃knd
‖) ‖ Knd ‖]

≤ ∆1
(
‖

n∑
j=1

P̃(k+1) j ‖ − ‖

n∑
j=1

P̃k j ‖
)
‖ Kmax ‖

∆1 > 0,Kmax = max
{
K1,K2, · · · ,Knd

}
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SinceVKk
is positive definite and ∆VKk

is negative definite provided K̃k = Kk − K̂k =∑n
j=1 Pk jK j −

∑n
j=1 P̂k jK j . Therefore, the estimation error of control gain asymptotically

converge to zero.

Remark 3: Monotonically decreased estimation error for each delay range (‖

P̃(k+1) j ‖ − ‖ P̃k j ‖< 0) is not a necessary condition. The convergence only requires the

estimation error of the entire PDF (
(
‖
∑n

j=1 P̃(k+1) j ‖ − ‖
∑n

j=1 P̃k j ‖
)
< 0) monotonically

decreasing over time. The maximum error occurs when the first sample of the new distri-

bution comes in the sliding window. Then the accuracy of PDF estimation improves as the

sliding window includes more and more new samples from the new distribution after the

PDF change occurs. Therefore,
(
‖
∑n

j=1 P̃(k+1) j ‖ − ‖
∑n

j=1 P̃k j ‖
)
< 0 holds.

Theorem 2 considers an ideal case where the PDF estimation error converge to

zero. In realistic case, there is an irremovable bias due to the finite sliding window size.

Theorem 3 shows the UUB convergence of the regulation error in such a case.

Theorem 3: (UUB Stability of the Regulation Error). Given the initial conditions

as the system state z0 and system matrices Az0, and Bz0, let u0(zk) be an initial admissible

control policy for the CPS (1). Let the control update law be given by (8) and if the

disturbance induced by the irremovable bias of PDF estimation has a bound ‖ dKDE ‖ and

Kmin < 1/bmin such that the regulation error of system states has an uniformly ultimate

bounded convergence in the mean.

Proof

Consider the following positive definite Lyapunov function candidate: Vzk = zT
K zk .

zk is the state vector of k. The corresponding estimated Lyapunov is V̂zk , therefore, ∆V̂zk =

V̂zk+1 − V̂zk . Similar to proof of Theorem 1, we consider ∆V̂zkm = V̂z(k+1)m − V̂zk for each

possible system matrices (Azkm and Bzkm). m represents one of the possible cases. If

the maximum value of ∆V̂zkm is negative definite, the system convergence is proved. The

irremovable bias of PDF estimation is considered the system state disturbance dk bounded

by dM .
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∆V̂zkm = V̂zk+1m − V̂zkm

=‖ Azkm − BzkmKk zk + dk ‖
2 − ‖ zk ‖

2

=
(
‖ Azkm − BzkmKk zk + dk ‖ + ‖ zk ‖

)︸                                              ︷︷                                              ︸ (
‖ Azkm − BzkmKk zk + dk ‖ − ‖ zk ‖

)
∆2

= ∆2
(
‖ Azkm − BzkmKk zk + dk ‖ − ‖ zk ‖

)
≤ ∆2

(
‖ amax − bminKminzk + dM ‖ − ‖ zk ‖

)
≤ ∆2

(
amax + bminKmin ‖ zk ‖ + ‖ dM ‖ − ‖ zk ‖

)
∀k = 1, 2, · · ·

∀m = 1, 2, · · · , nd

where ∆2 is positive definite, bmin = min
{
‖ Bzk1 ‖, ‖ Bzk2 ‖, · · · , ‖ Bzkm ‖

}
, Kmin =

min
{
‖ K1 ‖, ‖ K2 ‖, · · · , ‖ Knd ‖

}
.

Since V̂zk is positive definite and ∆V̂Kk
is negative definite provided the system state

‖ zk ‖≥
‖dM ‖+Amax

1−bminKmin
and Kmin < 1/bmin. Therefore, UUB stability of the regulation error is

proved.

5. SIMULATIONS

In this section, the proposed PTSOC is evaluated and shown to be better than SOC

Xu et al. (2012). Themetrics of regulation performance are overshoot and convergence time

when the delays of network randomly changes. Three scenarios A, B, C are simulated. In

CaseA, the delays satisfy the bound constrainsXu et al. (2012). It illustrates that PTSOCcan

obtain as good performance as that of SOC. Case B illustrates that the system performance

are significantly improved by employing PTSOC, even though the bound changes over time

due to network changes or cyber attacks. In realistic CPSs, topology variation and cyber

attacks bring more dynamics and uncertainties to the embedded network and entire CPS.
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Therefore, the bounds and constrains of delays made in ideal case are relaxed in Case C.

This illustrates that PTSOC has a better performance in terms of overshoot, convergence

time, and cost of regulation than that of the conventional SOC when the delay bound and

PDF are time-varying.

Simulated benchmark example:

The simulations employ the continuous-time model of a batch reactor system Xu

et al. (2012), Silverman (1986), Hurter et al. (2012) whose dynamic are given by:

Ûx =



1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104


x +



0 0

5.679 0

1.136 −3.146

1.136 0


u (9)

where x ∈ <4×1 and u ∈ <2×1

The parameters of this CPS are selected as a) the sampling time Ts = 100ms ; b)

d = 2, while the delays are not bounded. The continuous-time model is converted to a

discrete time model with stochastic parameters representing network dynamics.

Case A: Bounded Random Delays with a Fixed PDF

PTSOC is evaluated for an ideal case with delays that satisfy the a priori set

bound constrains of SOC Xu et al. (2012). The delays follow a normal distribution

d∼N(0.15, 0.052). The upper bound is 0.2 sec. Overshoot, convergence time, and cost

of regulation are the primary metrics to evaluate SOC and PTSOC. The tests are repeated

50 times for the statistical validation.

In Figs. 4, 5 and Table 2, the performance of SOC and PTSOC are compared. Both

of these controllers make the errors converge. PTSOC presents an opposite improvement

with high percentages but closed values. This illustrates that SOC is optimal when the

bounds and distribution of delays are satisfied the assumed constraints. Similarly, a longer
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convergence time of PTSOC is induced because the sliding window needs several iterations

to converge the PDF estimation. Importantly, a significantly reduced cost by 92.1% is

conspicuous. It demonstrates that PTSOC tuned by PDF of delays can optimize the trade-

off between regulation error and cost. Overall, SOC and PTSOC have good and comparable

performance when the delays are less than 0.2 sec.

Remark 4: Tuning theQ and R of PTSOCcost function can improve its performance

in terms of overshoot and convergence time at the expense of a higher actuation cost.

However, increasing the cost can lead to inefficient actuation and operating the actuators

beyond its preferred range which leads to excessive wear and damages to actuators and the

system.
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Figure 4. Case A: Performance evaluation of SOC (tracking errors)

Case B: Increased Random Delays with a Fixed PDF

In this case, the delays increase beyond the initially set bounds of SOC while

maintaining a fixed PDF distribution d∼(0.3, 0.12). Such a case aims to demonstrate

PTSOC still guarantee a good performance with delays with an unknown bound, while SOC

performance degrades in terms of overshoot, convergence time, and the cost of regulation.
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Figure 5. Case A: Performance evaluation of PTSOC (tracking errors)

The performance of SOC and PTSOC are presented in Figs. 6 and 7. PTSOC

has a significant improved performance when compared with SOC, as shown in Table 3.

Its overshoot is reduced at least by 36.4%. The convergence time is reduced by 7.1%.

Moreover, the cost of regulation is reduced by 94.9% thus the control inputs implemented

by the actuators are within their preferred ranges. Such that the physical components

are prevented from excessive wear and damages. Overall, SOC no longer guarantees the

stability if the delay is over its upper bound. In contrast, PTSOC uses PDF information to

tune the control law such that the performance and stability of the entire CPS is guaranteed.

Remark 5: In this case, the initial conditions are same as that in Case A. The initial

control law of SOC is pre-tuned for the smaller delay bound. Consequently, SOC control

law is selected inappropriately for the case with longer delays. Hence, for the first second,

the system states have large deviations and overshoots as shown in Fig. 6. Over time,

SOC updates the system model and allows it to converge. In contrast, PTSOC can tune its

control laws based on both dynamic model changes and the drift of PDF of delays. Such

that PTSOC quicker adapts to the uncertainties on system model and network delay.
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Case C: High Variation Delay with Time-varying PDF

Next, the distribution of delays is allowed to change over time. First, it follows a

normal distribution with 0.45sec mean value. Then, the mean value jumps to 0.2sec at

randomly selected timewithin [40s, 50s]. The simulations are repeated to obtain statistically

valid comparisons. The results firmly indicate that tracking of PDF changes is critical in

both system modeling and optimal controller design.

Fig. 8 shows one specific case when the distribution changed at time 47sec. The

parameters Qz = 0.15× I8×8 and Rz = I are set for the SOC. The simulations show that the

controller can make the regulation error converge. However, the errors increase right after

the change in PDF of delays. Additionally, the input command to actuator increases. Such

large inputs often exceed the preferred operating range for actuators thus increasing wear

and tear or saturating actuator response.

In Fig. 9, the performance of PTSOC is presented. PTSOC convergence is sped up

by using the updated PDF information. Hence, a shorter convergence time and a lower cost

of regulation (Table. 4) are observed.
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Figure 8. Case C: Performance of SOC (tracking errors) for delay change at 47 sec
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Figure 9. Case C: Performance of PTSOC (tracking errors) for delay change at 47 sec

Overall, SOC makes the error converge with a significant overshoot and a high

actuation cost. Instead, the overshoot and cost of PTSOC are significantly reduced by

several orders of magnitude. Table. 4 shows the average value for 50 simulations. As the

weights of each control input are updated continuously in terms of cost function, PTSOC

has a better performance on overshoot (reduced by 80%) and cost of regulation (reduced

by 96.1%). A cost function with the optimal parameters (Q and R) selection not only

guarantees that Algebraic Riccati equation (ARE) has a finite solution, but also reduces

the control input cost. The convergence time of PTSOC is improved by 17.3%. Overall,

PTSOC significantly improves the system performance in terms of overshoot, convergence

time, and cost for every simulated scenario. Therefore, PTSOC indeed strengthens the

resilience of the entire CPS.

Remark 6: In this case, the delay PDF is kept constant for at least 40 seconds

to allow both PTSOC and SOC to achieve initial convergence. With such “pre-training”

process, the physical systemmodel (1) is accurately tuned. When the change of PDF occurs,

only the network dynamic terms in the model (2) are updated. Thus, both SOC and PTSOC

perform better on overshoots than that for Case B (Table. 3).
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6. CONCLUSIONS

In this work, PTSOC is proposed to address uncertainties of the embedded cy-

berspace, particularly delays with an unknown bound and time-varying distribution. The

simulation results show that PTSOC has a reduced overshoot (by about 80%), convergence

time (by 17.3%), and cost of regulation (by 96%) over that of the SOC. Continuous update

of the probability weights speeds up convergence, optimizes control input selection, and

make control law adapt to delays with unknown bound and time-varying distribution. It

facilitates the trade-off between system states and cost of regulation. Additionally, the

constrains of known bound of delays and fixed distribution in existing works are relaxed.

Overall, reliability of CPSs in terms of resilience are improved.
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ABSTRACT

Cyber-physical systems (CPSs) consists of a network, computation, and physical

process. Embedded networks, which deliver control and sensing signal, can potentially

affect CPSs performance. However, the degradation of physical system performance caused

by the embedded networks is frequently oversimplified with strong assumptions. The

proposed scheme effectively relaxes those assumptions in the existing works, that network

delays are bounded in a specific range or its distribution is time invariant. Most of the existing

works on fault diagnosis and prognosis addressed the physical system fault detection and

isolation, and ignore cyber network faults. A novel cyber network fault prognosis scheme

is proposed to detect and isolate cyber and physical device faults, then forecast the effects

of cyber network faults on the performance of CPSs, and finally trigger resilience controller

at an appropriate time to minimize the computational overhead. Thus, it can guarantee the

stability of the entire CPS and substantially reduce computational overhead of the resilience

control by triggering it if necessary.

Keywords: cyber physical system, fault prognosis, network fault, resilience
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1. INTRODUCTION

Cyber-physical system (CPS) refers to a new generation of systems with integrated

computation and physical capability that can interact with humans through many new

modalities. As the increasing interdependence between cyber and physical subsystems,

capturing the interrelationship between cyberspace and physical system becomes important

Fisher et al. (2014). The dynamic changes in cyberspace, which are induced by stochastic

channel fading, random traffics, and malicious attacks, affect the physical system states.

Such connectivity is often oversimplified when designing high resilience CPS, resulting

in severe system failures. In this work, we address detecting cyber network faults and

mitigate its negative effects on the physical systems with the proposed resilience controller.

For example, self-driving cars have a large number of radars, cameras, and other various

electrical components (known as electronic control units, or ECUs) connected via an internal

network. If hackers manage to gain access to a vulnerable, peripheral ECU (the Bluetooth

or infotainment system) from there, they may be able to take control of safety critical

ECUs like its brakes or engine and wreak havoc. Falsifying the control commands − for

instance, an acceleration command is replaced by a stop one − definitely threaten users’

lives. Therefore, cyber failures that possibly propagate to physical world has to be detected,

isolated, and mitigated timely to avoid catastrophe failures.

In the past few years, many control and system researchers have pioneered the

development of approaches and tools to model and control CPSs. Liu and Yao (2005) -

Zhang-qing and Xian-zhong (2007) addressed the fault detection, isolation, and mitigation

in the physical subsystem alone (e.g. actuators, sensors, and controlled components). They

assumed the network performs well and satisfies their priori assumptions. Therefore, the

interactions between cyberspace and physical world are ignored or simplified.

At the same time, communication and signal process researchers have made major

breakthroughs in monitoring, identification, and defense of cyber attacks and other security

issues on the cyber side Gamage et al. (2010) - Pasqualetti et al. (2013). Such existing ap-
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proaches focus on either cyber or physical control aspects while ignoring or oversimplifying

the other aspect. However, such decoupling designs will fail in practical CPS. Therefore,

system control and fault prognosis must be redesigned to take full account of the interaction

between cyberspace and physical systems.

Inspired by this motivation, we proposed a novel diagnosis scheme in this work.

The main contributions are listed as following:

a) The proposed diagnosis scheme can timely detect the cyber network fault only based on

the measured delays.

b) A fault isolation scheme is proposed to distinguish cyber network and physical system

faults.

c) A resilience control triggering strategy is investigated to activate the resilience control

ahead of resulting in the degradation on system performance.

The rest paper is organized as following. In Section. 2, the motivation is discussed.

An example is given to illustrate the interdependence between cyberspace and physical

system behavior. Next, the related works on fault diagnosis and prognosis for cyber-

physical systems (CPSs) or networked control systems (NCSs) are presented in Section. 3.

In Section. 4, the proposed prognosis scheme is demonstrated. The simulation results are

shown in Section. 5 and the conclusions are given in Section. 6.

2. MOTIVATION

CPSs are characterized by integrating cyber and physical systems. The performance

of embedded cybers significantly affect CPSs performance and vice versa. However, such

an interaction between physical system behavior and network performance tends to be

oversimplified by researchers. The conventional diagnosis and prognosis methods Liu

and Yao (2005) - Zhang-qing and Xian-zhong (2007) are wildly used in physical system

faults detection and prediction. Similarly, the existing cyber attacks detection and defense
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approaches Gamage et al. (2010) - Pasqualetti et al. (2013) only addressed the security

issues on the cyber/network side without considering the severe consequence of the physical

system.

To address the cyber network fault issues, a full knowledge of the interactions

between cyber dynamics and system performance is crucial for the first step. Next, a

scheme should be proposed for detecting and isolating cyber network and physical system

fault. At last, a resilience controller should be applied before physical system failure.

Because resilience controller consumes a lot of computing capacity and resources, it should

not always be applied when a simple controller can achieve the required physical system

performance. Therefore, the novel diagnosis scheme should accuratelymake the decision for

triggering the resilience control at an appropriate time. Such that unnecessary computational

overhead is effectively reduced.

An example is given to illustrate the relation between cyber uncertainties and system

behavior.

This example simulates a route hijacking by an attacker to eavesdrop control infor-

mation. Such an attack increases delay and delay variation when the attacker secretly relays

and possibly alters the communication between the controller and actuators. A network is

simulated using Network Simulator 2 (NS2) with a random topology of 11 nodes. Ad hoc

On-Demand Distance Vector (AODV) routing scheme is adopted. The route through the

topology is altered because the attacker node relays the transmission such that the packet

delays vary for the controller loop, as shown in Fig. 1. Note, that similar network perfor-

mance could be a result of topology or traffic pattern changes. A feedback loop with the

simulated delays employs an optimal controller to regulate a two input four output (2I4O)

system.
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The results show the disturbance in CPS introduced by the network dynamics. With

these delays, a PID controller is simulated for a simple 2I4O (two input four output) system

Xu et al. (2012). Fig. 2 shows that the sudden change of delay at k = 6s makes the system

states vibrate. Consequently, the CPS becomes unstable when the original non-networked

PID controlled performed fine.
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Figure 1. Delays of the simulated network

Figure 2. System performance with a PID controller



79

It is concluded that stochastic cyber attacks indeed affect the system performance.

Cyberspace is particularly difficult to secure due to its vulnerabilities of linkages between

cyber and physical systems. Of growing concern is the cyber threat to critical hardware

devices. Cyber attacks could cause harm or disrupt services upon which our economy and

the daily lives depend on. In light of the risk and potential consequences of cyber events,

strengthening the risk awareness and resilience of CPSs has become an important mission.

3. RELATEDWORKS

In this section, we first discuss the existing works on cyber security issues. Next,

the works on fault diagnosis issues of the physical system are discussed.

The overall goals of cyber security include integrity (the trustworthiness of data

or resources), availability (accessibility upon demand), and confidentiality (keeping infor-

mation secret from unauthorized users). Many researchers addressed these issues with

different technologies, such as authentication schemes, access control, and other defense

scheme Gamage et al. (2010) - Pasqualetti et al. (2013). An assumption that the ad-

versary/attack model is fully known is often required; however, it is challenging to get.

Gamage et al. (2010) proposed a general theory of event compensation as an information

flow security enforcement mechanism for CPSs. Message scheduling methods were given

to improve the security quality of wireless networks for mission-critical CPSs in Jiang et al.

(2010). In Amin et al. (2009), deception and denial of service attacks had been addressed

by a countermeasure based on semi-definite programming. False data injection attacks

against static state estimator are studied in Liu et al. (2011). In a similar fashion, stealthy

deception attacks against the Supervisory Control (SC) and Data Acquisition system (DAS),

replay attacks, and covert attacks against control systems were investigated in Teixeira et al.

(2010), Mo and Sinopoli (2009), and Smith (2011) respectively. With respect to the above

works, Pasqualetti et al. (2013) proposed a mathematical framework for CPSs, attacks,

and monitors, and given the fundamental limitations of monitors from system-theoretic
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and graph-theoretic perspectives. Finally, centralized and distributed attack detection and

identification monitors were designed. Overall, many cyber attacks can be addressed on

the cyber side. However, the effects of cyber attacks/faults on the physical system behavior

are oversimplified in the above mentioned existing works. Moreover, the injection time and

model of the attacks/faults are difficult to learn ahead of time in practical CPSs.

The control researchers focused on the conventional fault detection techniques that

have successfully applied to industrial networked control systems (NCSs). They indeed

considered the network delay and packet loss in various ways. In Liu and Yao (2005),

network delays were modeled as a constant delay (time buffer), an independent random

delay, and a delay with known probability distribution governed by the Markov chain

model. In Liu et al. (2007), a networked predictive controller in the presence of random

delay in both forward and feedback channels was proposed to minimized the effects of

network failures. However, they assumed the boundary condition of delays was alway

satisfied. A robust H∞ control for a nonlinear T-S fuzzy model system was proposed to

address the network delays and packet drop in Zhang et al. (2007). Wang et al. (2008)

and Zhang-qing and Xian-zhong (2007) employed a state observer-based fault detection

method on the uncertain long time delay. Although, the network delays and packet drop

caused by network faults/failures were considered in above works, the assumptions, such as

known bounds and time-invariant distribution of delays and packet loss, are always made.

Such assumptions probably result in the entire system failure when the unexpected issues

invalidate the assumptions. In addition, most of the above works aimed to detect the faults of

physical components (sensors, actuators, and system plant), not the faults in the cyberspace.

This work is motivated to address cyber network faults detection and isolation.

Meanwhile, the tolerant control schemes for cyber faults mitigation is designed.
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4. CYBER FAULT DIAGNOSIS SCHEME

In this section, the overview of the proposed cyber fault diagnosis scheme is given

in Section.4.1. The PDF monitoring based observer for cyber fault detection is introduced

in Section.4.2. Then, the isolation of cyber and physical system fault is demonstrated in

Section. 4.3. At last the resilience controller is designed in Section. 4.4.

4.1. Overview

In this work, two observers for cyber and physical system fault detection are designed

respectively. The main idea of cyber fault detection (CFD) is designing a PDF identifier

to capture the distribution variation of network delays. Another observer which supervises

the physical system behavior in a real time manner can capture the physical system fault

by pre-setting the residual for each controlled system state, which is called physical fault

detection (PFD). The frame of the proposed diagnosis scheme is shown in Fig. 3.

The plant we applied in this work is a multi-input-multi-output (MIMO) stochastic

model (2), which includes uncertainties (delays and packet loss) in cyber network. Such a

model can be derived from the conventional discrete time model (1).

The conventional discrete time model was described as following Blundell and

Duncan (1998):

xk+1 = As xk + Bk
0 ua

k + Bk
1 ua

k−1 + ... + Bk
dua

k−d

ua
k−i = γk−iuk−i

(1)

where xk = x(kT) denotes system states; As = eAT , Bk
0 =

∫ Ts
dk

0
eA(Ts−t)dt, and Bk

i =∫ dk
i−1−(i−1)Ts

dk
i −iTs

eA(Ts−t)dt ∀i = 1, 2, ..., d are the system matrices. Ts is sampling interval. A is

the system matrix of the continuous-time model.



82

Xu Xu et al. (2012) derived the stochastic model expressed as

zk+1 = Azk zk + Bzkuk (2)

where

Azk =



As γk
1 Bk

1 · · · γk
i Bk

i · · · γk
d Bk

d

0 0 · · · · · · · · · 0

0 Im · · · · · · 0 0
... 0 Im · · · · · · 0
...

...
...

. . .
...

...

0 0 · · · · · · Im 0



, Bzk =
[
γk

0 Bk
0 Im 0 0 · · · 0

]T

zk = [xT
k uT

k−1 · · · uT
k−d]

T is the state variables vector; Azk and Bzk are is the time-varying

system matrices; As and Bk
i are the system matrices calculated by (1). uk is the control

input; γk
i and γk−i are binary random variables representing the package reception status (if

the package is received, γ = 1, otherwise, γ = 0). Im is an identity matrix.

Such stochastic model includes the dynamics both of cyber network and physical

systems. Thus, any uncertainties, changes, and faults can be observable by monitoring the

outputs of this model.

4.2. Fault Detection

In this subsection, cyber fault detection are proposed first. Then, a observer-based

physical system fault detection is introduced.

4.2.1. Cyber Fault Detection (CFD). For cyber fault detection, we proposed an

online PDF identifier to capture the variation of delay and its distribution. We assume that

the PDF profile of healthy delays is known as well as the expected value. A residual of the

expected value is user designed.
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Figure 3. Frame of the proposed diagnosis scheme

The proposed fault detection includes three main steps that are continuous repeated:

a) Data collection of delays. n delays ([dk−n+1, · · · , dk]) in the sliding window are

used to do the PDF estimation of time k (PDFk). The probability for each delay interval is

calculated. When the new delay comes in the window at time k + 1, the PDF is updated.

b) PDF estimation. The distribution of these n delays is obtained by using an online

KDE-based PDF identifier. The main steps are shown in Table. 1. Here, a normal kernel

smoother is selected for PDF estimation.

As updating the delays in the sliding window for each sampling interval, the PDF

information is updated for given network situation.

Delays are divided into nd groups based on their values. The probability for each

delay group and the expected value are calculated.

c) Decision making. If the variation of the expected value exceeds the presetted

residual, the cyber network fault is detected.

4.2.2. Physical System Fault Detection (PFD). An standard observer based phys-

ical system fault detection (PFD) Liang and Du (2007) is needed.
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Table 1. Online PDF identification algorithm

1. Determining the data in the sliding window for time k:
a) Choosing a kernel function K centered on x with a bandwidth h;
b) Each observation xi receives a specific weight proportional to the
scaled distance from the observation xi to x, which is
u = (x − xi)/h;

c) At a given x, the estimate is found by vertically summing up over
the k shapes.
This can be synthesized as:

f̂ (x) = 1
nh xi ∈ [x − h

2, x + h
2 ]

The general formula for KDE will be given by
f̂k(x) = 1

nh
∑n

i=1 K( x−xi
h )

where the dependence of the estimate on the kernel function K(.)
is denoted as f̂k .

2. Updating the new data for time k + 1 in the sliding window and go
back to Step 1;

Consider

Ûx = Ax + Bu, y = Cx + Du (3)

where A, B, C, D are system matrices of appropriate dimensions. The faults are often

modelled by extending (3)

Ûx = Ax + Bu + Eww, y = Cx + Du + Fww (4)

where w represents the fault vector and Ew, Fw are known matrices of appropriate dimen-

sions.

By means of a full-order observer described by

Û̂x = Ax̂ + Bu + Lr, r = y − ŷ, ŷ = Cx̂ + Du (5)
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the estimate of system output is provided, which is further used to construct the residual

vector y − ŷ. The observer (5) is also called fault detection filter (FDF) with L being the

gain matrix which makes the FDF stable and residual signal r(t) satisfies

∀u(t), x(0), lim
t→∞

r(t) = 0 (6)

a norm of r(t), typicallyL2− orL∞− norm, is adopted as residual evaluation function, which

is defined by

J = ‖r(t)‖or J = ‖r(t)‖∞ (7)

Let Jth = supx0,w=0J be the threshold, which is interpreted as themaximum influence

of x(0) = x0 on the fault-free (w(t) = 0) residual vector r(t). A simple form of detection

logic is 
J > Jth f aulty

J ≤ Jth f ault − f ree
(8)

4.3. Fault Isolation

When designing the proposed fault diagnosis scheme, CFD and PFD supervise

the states of cyberspace and physical systems in real-time. Thus, the root-cause of the

abnormality happening in cyber-physical system can be timely captured and accurately

isolated. The primary isolation logic is illustrated in Fig. 4.

For the fault isolation, three residuals have to be monitored in an online manner:

Expected Value Residual (EV R): It is the difference of the expected value of delays

at k and the last interval k−1 (EV R(k) = EV(k)−EV(k−1)). Such information is provided

by the proposed PDF identifier. The corresponding threshold TEV R is customizable by the

users for satisfying the requirement of fault awareness capability. If EV R(k) > TEV R, the

cyber fault is detected.
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If EV(k)>TEVR

Expected Value 

EV(k)

No

Yes

PDF Identifier

Measured 

Delays

Yes
If 

MSOR(k)>TMSOR

k=k+1

Actual System 

Output

Observed 

System Output

—

PTSOC Triggered
Cyber Fault 

Detected

Physical System 

Fault Detected

No

Fault Tolerant 

Controller 

Triggered

If SPR(k)>TSPR

Yes Shutting Down 

System

Figure 4. Fault isolation logic

Modeled system output residual (MSOR): It is provided by the PFD observer, which

is the difference of outputs of modeled and that of actual systems: MSOR = x(k) − x̂(k).

The corresponding thresholdTMSOR is selected to detect physical system faults. If MSOR >

TMSOR, the physical system fault is detected.

System performance residual (SPR): It is the difference between actual and desired

system outputs: SPR = xd(k) − x(k). The threshold for each system output variable TSPR

is determined by the saturation of physical components. This residual is used to evaluate

the system performance and determine when the system should shut down.

Also, the resilience scheme for two types of fault are different and proposed in next

subsection.
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4.4. Fault Tolerant Control

In this section, we proposed a resilience controller for cyber network fault mitigation.

The triggering strategy is also given. The Lyapunove-based stability analysis is used to prove

the convergence of the proposed controller. In addition, we briefly introduce the physical

system fault tolerant control.

4.4.1. TheResilienceControl forCyberFaults. APDF-based tuning of stochastic

optimal controller (PTSOC) is designed to mitigate the adverse effects induced by the

uncertainties of cyberspace and adapt to the random occurrence of cyber faults. Its control

law considers the PDF of delays by optimizing a weighted summation of cost functions of

different delay ranges (9). Each weight is the probability of its corresponding delay intervals

from the PDF identifier.

Jk = E

[
n∑

i=1
Pi Jk

i

]
= E

[
n∑

i=1
Pi(xkT

i Qzi xk
i + ukT

i Rziuk
i )

]
(9)

where i presents the delay interval (dinti < dk < dint(i + 1)); n is the total number of delay

cases; k represents sampling interval; Pi is probability of delay within dinti to dint(i + 1)

provided by the PDF identifier; xi is the states vector; ui is the control inputs vector;

Qzi = diag[Qi,
Ri

d , ...] and Rzi =
Ri

d are symmetric positive semi-definite and symmetric

positive definite respectively. E[•] is the expectation operator.

By optimizing (9), the control input is given by:

u(k) = −K(k)Z(k) (10)

K(k) =
nd∑
i=1

Pi(k)(Bzi(k)T Zi(k)Bzi(k) + Rz(k))−1

(Bzi(k)T Zi(k)Azi(k) + Szi(k))

(11)
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where K(k) is the optimal gain and u(k) is the control input; Szi(k) ≥ 0 is the solution of the

algebraic riccati equation (ARE) equation; nd = dupper/dint , dupper is the maximum delay

in the sliding window; Pi(k) is the probability of dinti < d(k) < dint(i + 1).

Remark 1: TheQi and Ri in the cost function for each delay range should be different

because each pair of Qi and Ri should be the optimal values for the delays bounded in a

specific range. They cannot guarantee a high level with the delays out of such boundaries.

The stability analysis is presented in Appendix A.0.1.

4.4.2. The Tolerant Control for Physical System Faults. Many existing works

have addressed fault tolerant control design. Here, we adopt a traditional fault tolerant

control (FTC) proposed in Yang et al. (2009).

5. SIMULATIONS

In this section, the proposed diagnosis scheme is evaluated by simulations in MAT-

LAB. The resilience controller in Section. 4.4.1 is applied. A conventional stochastic

optimal control Xu et al. (2012) is employed as a reference.

A continuous-time batch reactor system is taken as a case study. Its dynamics are

given by Xu et al. (2012).

Ûx =



1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104


x +



0 0

5.679 0

1.136 −3.146

1.136 0


u (12)

The parameters of this CPS are selected as:

a) The sampling time is 100ms;

b) The considered delays in the system model is less than 2 sampling interval, d = 2;

c) dint = 0.1s;
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Figure 5. The simulated delays

The delays before 47s follows a normal distribution (0.5, 0.052). The data number

M in the sliding window is 30. By using kernel density estimation (KDE) to analyze these

delays, a PDF profile for the “healthy” operating condition is obtained. Meanwhile, the

threshold for fault detection is 0.1s. Therefore, the expectation which exceeds the threshold

is considered as a cyber fault.

The fault launched at t = 47s leads to a series of abnormal delays shown in Fig.

5. The expectation gets across the threshold at 47.9s. The cyber network fault is detected.

Simultaneously, there is no unusual behavior detected by the observer (Fig. 7). Therefore,

the fault only happens on the cyberspace side, not physical components side. At 47.9s, the

resilience control is triggered to mitigate the fault.

If the cyber network fault is not detected in time and no action is taken for fault

mitigation, all of the system outputs overflow out of the physical limitation, even worse, the

physical component might get unrepairable damages. In Fig. 8, visibly, the cyber fault can

be captured in time and the degradations are reduced to at least 55%. The improvements

can be found in Table. 2.
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Figure 7. Modeled system output residual

Table 2. The comparison of overshoot and TTR

Variables Overshoot TTR
SOC PTSOC Improvement SOC PTSOC Improvement

Fluid level 423.2cm 64.88cm 84.7% 9.4s 7.3s 22.3%
Inside temperature 58.54K 29.55K 49.5% 7.7s 5.6s 27.3%

Product outlet flow rate 457g/s 72.67g/s 84.1% 7.6s 4.5s 40.8%
Coolant outlet temperature 82.9K 45.56K 45% 8.7s 6.3s 27.6%
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6. CONCLUSIONS

A novel diagnosis scheme is shown to quickly detect and isolate cyber network

faults using PDF monitoring and estimation. With the proposed resilience controller, the

adverse effects caused by cyber network faults are effectively mitigated. The stability for

the proposed controller is proved using Lyapunov-based analysis.

The simulation results show that the proposed scheme accurately detect the cyber

network faults. Moreover, the PTSOC is timely triggered to mitigate the negative effects on

the CPSs performance. The overshoot is significantly reduced by at least 45% and TTR is

shorten by 22% than that of the SOC because the continuously updating probability weights

optimize the parameters of control law.
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ABSTRACT

Cyber-physical systems (CPSs) consists of a network, computation, and physical

process. Embedded networks, which deliver control and sensing signal, can potentially

affect CPSs performance. However, the degradation of physical system performance caused

by the embedded networks is frequently oversimplified with strong assumptions. The

proposed scheme effectively relaxes those assumptions in the existing works, that network

delays are bounded in a specific range or its distribution is time invariant. Most of the existing

works on fault diagnosis and prognosis addressed the physical system fault detection and

isolation, and ignore cyber network faults. A novel cyber network fault prognosis scheme

is proposed to detect and isolate cyber and physical device faults, then forecast the effects

of cyber network faults on the performance of CPSs, and finally trigger resilience controller

at an appropriate time to minimize the computational overhead. Thus, it can guarantee the

stability of the entire CPS and substantially reduce computational overhead of the resilience

control by triggering it if necessary.

Keywords: cyber physical system, fault prognosis, network fault, resilience
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1. INTRODUCTION

Cyber-Physical systems (CPSs) refer to systems with integrated computational net-

work and physical components. With the increasing connectivity among the cyberspace

and physical systems, capturing the interactions between the cyber and the physical systems

becomes increasingly important Fisher et al. (2014). In particularly, network imperfections

and dynamics - such as limited channel capacity, traffic congestions, and malicious attacks

- can degrade the performance or even destabilize the control system. This makes con-

troller design more challenging and complex. In the existing literature, this issue is often

oversimplified when designing CPS controllers, and could result in severe system failure.

For example, hackers can remotely take control of a vehicle and cut its transmission on

the highway Yağdereli et al. (2015). The threat of automotive cyber attacks also threatens

people’s life. Therefore, detection, estimation, isolation, and mitigation scheme of cyber

attacks/faults has to be investigated to improve the resilience of the entire CPSs.

In the past few years, many control and system researchers have pioneered the

development of approaches and tools to model and control CPSs. Some of them Liu and

Yao (2005) - Zhang-qing and Xian-zhong (2007) addressed the fault detection, isolation,

and mitigation in the physical subsystem alone (e.g. actuators, sensors, and controlled

components). At the same time, communication and signal process researchers have made

major breakthroughs in monitoring, identification, and defense of cyber attacks and other

security issues on the cyber side Rawat et al. (2015) - Pasqualetti et al. (2013). Such

existing approaches focus on either cyber or physical control aspects while ignoring or

oversimplifying the other aspect. However, such decoupled designs will often fail in

practical CPS. Therefore, system control and fault prognosis must be redesigned to take full

account of the interaction between cyberspace and physical systems.

Inspired by this motivation, we proposed a novel prognosis scheme in this work.

The main contributions are:

a) Proposed a novel prognosis scheme for cyber network fault detection and prediction.
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b) Derived the estimation of network delay distribution based on time series analysis. The

convergence of the estimation error is presented in Lemma 1.

c) Proposed an isolation scheme to distinguish soft and hard faults based on the prediction

of potential failures on system states. Theorem 1 shows the convergence of such prediction.

d) Developed a decision making scheme for resilience control triggering. The simulation

results in Section. 5 illustrate that this scheme proactively trigger the resilience control and

effectively avoid physical system failure.

The rest paper is organized as following. In Section. 1.1, a motivation example is

given to illustrate the relationship of cyber condition and system behavior. Next, the related

works on fault diagnosis and prognosis are presented in Section. 2. In Section. 3, the

proposed prognosis scheme is demonstrated. The simulation results are shown in Section.

5 and the conclusions are given in Section. 6.

1.1. Motivation Example

In this section, the design challenge caused by interacting cyber network and physical

system is discussed in a simple scenario. It illustrates the need to consider the interaction

between physical components and network in resilient CPSs.

This example emulates a route hijacking by an attacker to eavesdrop control infor-

mation that could later be used to take over the controller. Such an attack increases delay

and delay variation when the attacker secretly relays and possibly alters the communication

between the controller and actuators. A network is simulated using Network Simulator 2

(NS2) with a random topology of 11 nodes. Ad hoc On-Demand Distance Vector (AODV)

routing scheme is adopted. The route through the topology is altered because the attacker

node relays the transmission such that the packet delays vary for the controller loop, as

shown in Fig. 1. (a). Note, that similar network performance could be a result of topology

or traffic pattern changes. A feedback loop with the simulated delays employs an optimal

controller to regulate a two input four output (2I4O) system Xu et al. (2012).
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Figure 1. a) Delays
b) Tracking errors of optimal controller

The results show the disturbance in CPS induced by the network dynamics. Fig.

1. (b) shows the optimal controller make the system states converge before 10.5s. Then,

a route hijacking attack is launched. The sudden changes of delay at t = 10.5s make the

system states oscillating. Consequently, the CPS becomes unstable due to such network

dynamics.

It is concluded that stochastic cyber attacks indeed affect the system performance.

Cyberspace is particularly difficult to secure due to its vulnerabilities of linkages between

cyber and physical systems. Of growing concern is the cyber threat to critical hardware

devices. Cyber network faults could cause harmor disrupt services uponwhich our economy

and the daily lives depend on. In light of the risk and potential consequences of cyber events,

strengthening the risk awareness and resilience of CPSs has become an important mission.

To address the cyber network fault issues on the physical system side, a full knowl-

edge of the relation between cyber condition and system performance is essential. Hence,

we propose a scheme for detecting and isolating cyber and physical system faults. Also,

a resilience control triggering strategy is added to proactively trigger the controller and

accommodate the potential failures ahead of time.



98

2. RELATEDWORKS

In this section, we first briefly discuss the existing works on cyber security. Next,

the works on fault awareness of the physical system are discussed.

The overall goals of cyber security include integrity (the trustworthiness of data

or resources), availability (accessibility upon demand), and confidentiality (keeping infor-

mation secret from unauthorized users). Many researchers addressed these issues with

different technologies, such as authentication schemes, access control, and other defense

scheme Pasqualetti et al. (2013) - Cardenas et al. (2008). An assumption that the adver-

sary/attack model is fully known is often required; however, it is challenging to obtain.

In Amin et al. (2009) deception and denial of service attacks against a networked control

system are addressed. They proposed a countermeasure based on semi-definite program-

ming. This work and the following literature are only valid for a specific attack model which

cannot be known in priori. A defense scheme without requiring the knowledge about the

attack model is needed.

In Liu et al. (2011), false data injection attacks against static state estimators are

introduced. Undetectable false data injection attacks can be designed even when the attacker

has limited resources. Also, stealthy deception attacks against the Supervisory Control and

Data Acquisition system are studied in Teixeira et al. (2010). Mo and Sinopoli (2009)

studied the effect of replay attacks on a control system. In Smith (2011), the effect of covert

attacks against control systems is investigated. A parameterized decoupling structure alter

the behavior of the physical plant while remaining undetected from the original controller.

Gamage et al. (2010) proposed a general theory of event compensation as an information

flow security enforcement mechanism for CPSs. Message scheduling methods were given

to improve the security quality of wireless networks for mission-critical CPSs in Jiang et al.

(2010).



99

With respect to the above works, Pasqualetti et al. (2013) proposed a mathematical

framework for CPSs, attacks, and monitors, and given the fundamental limitations of

monitors from system-theoretic and graph-theoretic perspectives. Finally, centralized and

distributed attack detection and identification monitors were designed. Overall, many cyber

attacks can be addressed on the cyber side. However, the effects of cyber attacks/faults

on the physical system behavior are oversimplified in the above mentioned existing works.

Moreover, the injection time and model of the attacks/faults are difficult to learn ahead of

time in practical CPSs.

The control researchers focused on the conventional fault detection techniques that

have successfully applied to industrial networked control systems (NCSs). They indeed

considered the network delay and packet loss in various ways. In Zhu and Martinez (2011),

a resilient control problem is studied, in which control packets transmitted over a network

are corrupted by a human adversary. They proposed a receding-horizon Stackelberg control

law to stabilize the control system despite the attack. However, the proposed approach

required a priori knowledge on attack model and type. In Liu and Yao (2005), network

delays were modeled as a constant delay (time buffer), an independent random delay, and

a delay with known probability distribution governed by the Markov chain model. In Liu

et al. (2007), a networked predictive controller in the presence of random delay in both

forward and feedback channels was proposed to minimized the effects of network failures.

A robust H∞ control for a nonlinear T-S fuzzy model system was proposed to address the

network delays and packet drop in Zhang et al. (2007). However, they assumed the upper

bound of delays is known. This is challenging to be satisfied in reality. Wang et al. (2008)

and Zhang-qing and Xian-zhong (2007) employed a state observer-based fault detection

method on the uncertain long time delay. Although, the network delays and packet drop

caused by network faults/failures were considered in above works, the assumptions, such as
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known bounds and time-invariant distribution of delays and packet loss, are always made.

In addition, most of the above works aimed to detect the faults of physical components

(sensors, actuators, and system plant), not the faults in the cyberspace.

This work is motivated to address cyber network faults detection, isolation, and

prediction. Meanwhile, the tolerant control scheme and it triggering strategy are proposed

to stabilize the CPS despite cyber network faults and optimize the computational overhead.

3. THE PROPOSED PROGNOSIS SCHEME

In this section, the overview of the proposed prognosis scheme is given in Section.

3.1. An online kernel density estimation (KDE) based probability density function (PDF)

identifier is introduced in Section. 3.2. Then, the details of the proposed prognosis scheme

are presented in Section. 4. At last, the resilience controller is designed in Section. 4.3.

3.1. Overview

In this work, the uncertainties in the cyberspace, including traffic congestions,

topology changes, and attacks, are causing abnormal delays and packet losses on the physical

system side. Monitoring such delays and packet losses online is required for detection of

cyber network faults. Moreover, an observer is needed to detect physical system faults and

isolate them from cyber network faults Zhang-qing and Xian-zhong (2007).

The proposed prognosis scheme is shown in Fig. 2. It includes four main steps that

are continuously repeated:

a) Data collection of network delays. n delays ([dk−n+1, · · · , dk]) in the sliding

window are used to do the PDF estimation at time k (PDFk). When the new delay is

measured, the data in the sliding window is updated.

b) Cyber Network Fault Detection. The PDF of these n delays is obtained by

using the online KDE-based PDF identifier. The probability for each delay interval Pk
i is

calculated. Compare Pk
i to Pk−1

i to compute the variation of probabilities ∆Pk
i . If ∆Pk

i
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Figure 2. Flow chart of cyber network fault prognosis scheme

exceeds the set threshold Rpi , the PDF variation is captured and a cyber network fault is

detected. Meanwhile, if there is no abnormal behavior presented in the observer, it can be

confirmed that only cyber network fault happens.

c) Potential degradation prediction. If a cyber network fault is detected, the PDF of

new delay distribution is predicted by using time series analysis. Then, the delays following

the new distribution are resampled. Finally, the prediction of the future physical system

outputs is obtained. If the system states deviate out of the acceptable range, the hard fault

is detected. Otherwise, it is a soft fault which is not severe enough to trigger the resilience

controller. More details about fault isolation are presented in Section. 4.

d) Resilience controller triggering. If a hard fault is detected, the resilience controller

is triggered and its parameters are tuned online by the probabilities of delays computed in

b).
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Such a scheme can detect stochastic cyber failures/attacks without requiring the

knowledge of attack model and its injection time a priori. Only monitoring the PDF of

delays in real-time is required to do PDF and system states prediction. Moreover, the

resilience control law tuned by the probabilities of delays is derived accurately for the given

cyber performance. Its details are introduced in Section. 4.

3.2. PDF Identifier

To obtain the probability information mentioned in Step (b), a PDF identifier is

employed Bi and Zawodniok (2017). It uses kernel density estimation (KDE) to estimate

the distribution of delays iteratively. The data used to make the identification is updated

every sampling interval for a window of n last packet delays. The main steps of online PDF

identification are shown in Appendix. (B.0.1). Here, a normal kernel smoother is selected

for PDF estimation.

Such a sliding window based PDF identifier provides the PDF profile of delays in

real-time such that the variation of PDF can be captured and observed easily.

4. CYBER NETWORK FAULT DETECTION AND ISOLATION

Cyber network fault is detected by monitoring probability residual (PR). The other

residuals - modeled system output residual and system performance residual - are used to

isolate cyber network and physical components fault. Then, the prediction of the future

new delay distribution and system state prediction are used to isolate soft and hard cyber

network fault. Finally, the decision of resilience control triggering is made.

4.1. Cyber Network Fault Detection

For cyber network fault detection, three residuals have to be monitored in an online

manner:
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a) Probability Residual (PR): It is the difference of the probability at k and the last

interval k − 1. Such information is provided by the proposed PDF identifier. The PR at

time k for each delay interval is denoted as ∆Pk
i = Pk

i − Pk−1
i . The corresponding threshold

Rpi is customizable by the users for satisfying the requirement of fault awareness capability.

If ∆Pk
i > Rpi , the cyber network fault is detected.

b) Modeled system output residual (MSOR): It is provided by the observer, which is

the difference of outputs of modeled and that of actual systems: MSOR = x(k) − x̂(k). The

corresponding threshold RMSOR is selected to detect physical system faults. If MSOR >

RMSOR, the physical system fault is detected.

c) System performance residual (SPR): It is the difference between actual and

desired system outputs: SPR = xd(k)− x(k). The threshold for each system output variable

RSPR is determined by the acceptable error magnitudes of system states. This residual is

used to evaluate the system performance and determine when the system should shut down.

If PR exceeds its threshold, a cyber network fault is detected. Meanwhile, MSOR

and SPR should be supervised to do the root-cause analysis of the degradation of system

performance. If a cyber network fault is detected, the type of this fault (soft or hard fault)

should be learned before triggering the resilience controller. That is because not all types of

cyber network fault need to bemitigated by the resilience controller. Unnecessary triggering

will result in additional computational resource wasting. When soft faults happen, the

adverse effects on system performance can be handled by the existing controller. Therefore,

there is no need to take other control actions. Typically, an alarm or warning is sufficient. On

the contrary, hard faults potentially threaten the system performance in terms of overshoot,

time-to-recover (TTR), and cost of regulation, even stability. Moreover, wear and tear or

severe damages of the system components might be induced by such faults. Hence, timely

detecting hard faults and triggering the resilience controller are vital for guaranteeing

system stability. Moreover, with isolating of soft and hard faults, inefficient triggering of

the resilience controller is avoided and the overall computational cost is reduced.
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4.2. Soft and Hard Cyber Network Fault Isolation

To recognize hard cyber network fault, we proposed an approach to trend the delay

distribution into the future. Next, a system state prediction scheme evaluates system

performance for the estimated future delay distribution. In most cases, there is no need

to perform the computation expensive prediction. Hence, it is triggered based on a user-

defined threshold. As shown in Fig. 2, Rpi is a user-defined threshold for each probability

variation Pi(t). If Pi(t) > Rpi is true and the new delay Delay(t) follows the distribution of

time t−1, there is no cyber network fault. The distribution and system states predictors will

not be activated. Otherwise, a delay distribution change will be observed in PDF identifier

and the predictors are activated.

The predictions include four main steps that are repeated until the resilience con-

troller is triggered:

Step 1: new distribution estimation;

Step 2: resampling;

Step 3: system output prediction;

Step 4: soft and hard fault isolation and resilience control triggering.

These steps are discussed in details next.

4.2.1. Step 1: New Distribution Estimation. The expectation and standard de-

viation of the new distribution are estimated based on the delays which induce a new

distribution.

Time series analysis is utilized to estimate the autoregressive (AR) model for the

expectation E and standard deviation D of the new distribution. The hypothesis of the

model is given by:


E(k + 1|k)

D(k + 1|k)

 =

βE0

βD0

 +

βE1 0

0 βD1



E(k)

D(k)

 (1)
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Ê(k + 1|k) is the forecast of E(k + 1|k) and D(k + 1|k) based on E(k) and D(k),

using the estimated coefficients β̂E0, β̂D0, β̂E1, and β̂D1.


Ê(k + 1|k)

D̂(k + 1|k)

 =

β̂E0

β̂D0

 +

β̂E1(k) 0

0 β̂D1(k)



E(k)

D(k)


= θ̂(k)ϕ(k) + C0(k)

(2)

where ϕ(k) =
[
E(k) D(k)

]T
, and θ̂(k) =


β̂E1(k) 0

0 β̂D1(k)

 .
The one-period ahead forecast error is:


eE (k + 1)

eD(k + 1)

 =

E(k + 1|k)

D(k + 1|k)

 −

Ê(k + 1|k)

D̂(k + 1|k)

 (3)

The forecast errors converge by minimizing the following objective index:

J =


αeE (k + 1)

βeD(k + 1)


T 
αeE (k + 1)

βeD(k + 1)

 (4)

where α and β, which can be customized by users, are the weights for the estimate errors

of E and D respectively. Such parameters balance the trade-off between the degree of

optimization of two errors. For our case, we take α = β = 1 meaning these two errors are

minimized to the same degree.

Such that the update law of θ̂(k), L(k), and O(k) can be obtained.

θ̂(k) = θ̂(k − 1) + L(k)e(k)

L(k) =
O(k − 1)ϕ(k)

ϕ(k)TO(k − 1)ϕ(k)

O(k) = (I − L(k)ϕ(k)T )O(k − 1)

(5)
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where L(k) and O(k) denote estimator gain and estimation of error variance, respectively.

Their initial values are randomly set.

Remark 1: The parameters θ̂(k), L(k), and O(k) are continuously updated by the

training data in the sliding window at time K . We assume that the distribution of time k + 1

does not change so that the one step prediction for time k + 1 is valid to predict the system

behavior.

Lemma 1: With the update law (5) and more new delays loaded in the sliding

window, the objective index (4) is continuously minimized. Then the following statements

are true:

a) the estimation errors of the expected value and standard deviation of new delays

converge.

b)
(
‖
∑n

j=1 P̃(k+1) j ‖ − ‖
∑n

j=1 P̃k j ‖
)
< 0 holds.

The proof can be found in Qin (1998) and Simon (2006).

Remark 2: Even if the network condition is perfect, unexpected delays, which

are out of the healthy range, occasionally occurs in a long period. That can lead to the

inefficient triggering of resilience control. Using the above time series analysis, not only

the distribution change can be tracked in real-time, but also the trend of distribution change

is identified and predicted. Such that the occasional event can be filtered without resilience

control triggering.

4.2.2. Step 2: Resampling. Based on the future delay distribution provided by

step 1, a series of random delays is generated, which follows the new distribution.

4.2.3. Step 3: System Output Prediction. The resampled delays are fed to the

system model which takes into account dynamic delays and packet losses. Such a time-

varying system is given by:

z(k + 1) = Az(k)z(k) + Bz(k)u(k) (6)
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where z =
[
x(k)T u(k − 1)T ... u(k − d)T

]T
is the state variables vector; uk is the

control input; Az(k) and Bz(k) are the system dynamic matrices and given by

Az(k) =



A γ(k − 1)B1(k) ... γ(k − i)Bi(k) ... γ(k − d)Bd(k)

0 0 ... ... ... 0

0 Im ... ... 0 0
... 0 Im ... ... 0
...

...
. . .

...

0 0 ... ... Im 0



,

Bz(k) =
[
γ(k)B0(k) Im 0 0

... 0
]T
,

γ(k) =


In×n if the control input is received at time k

0n×n if the control input is lost at time k

Finally, the possible system behavior induced by the new distribution of delays are

estimated and denoted as ẑk .

Prediction Convergence Analysis: The prediction error z̃k convergence is demon-

strated in Theorem 1. The dynamic matrices Az j and Bz j for each delay interval are

deterministic and their calculation can be found in Xu et al. (2012).

Theorem 1 (Error of system states prediction convergence): As the delay data keeps

updating PDF identifier and
(
‖

∑n
j=1 P̃(k+1) j ‖ − ‖

∑n
j=1 P̃k j ‖

)
< 0 is satisfied, then the

prediction error for system output ‖ z̃(k) ‖ asymptotically converges to zero.
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Proof: The prediction error is given by

z̃k = zk − ẑk

= (Az(k) − Bz(k)K(k))z(k) − (Âz(k) − B̂z(k)K(k))z(k)

= (Az(k) − Âz(k))z(k) − (Bz(k) − B̂z(k))K(k)z(k)

= (Ãz(k) − B̃z(k)K(k))z(k)

Therefore, the convergence of z̃i can be proven by proving the convergence of Ãz(k) and

B̃z(k)

We define the prediction error of Az(k) as Ãz(k) = Az(k) − Âz(k). Az(k) can

be expressed as
∑n

j=1 Pj(k)Az j Pj(k) is the actual probability at k. Similarly, we denote�Az(k) =
∑n

j=1 P̂j(k)Az j . P̂j(k) is the estimate probability provided by the PDF profile. The

estimation error of the probability is P̃j(k) = Pj(k) − P̂j(k). Then, Lyapunov function

candidate is VAz(k) = Ãz(k)T Ãz(k).
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∆VAz(k) = Ãz(k + 1)T Ãz(k + 1) − Ãz(k)T Ãz(k)

=
( n∑

j=1
Pj(k + 1)Az j −

n∑
j=1

P̂j(k + 1)Az j
)T ( n∑

j=1
Pj(k + 1)Az j −

n∑
j=1

P̂j(k + 1)Az j
)

−
( n∑

j=1
Pj(k)Az j −

n∑
j=1

P̂j(k)Az j
)T ( n∑

j=1
Pj(k)Az j −

n∑
j=1

P̂j(k)Az j
)

=
(
‖

n∑
j=1

P̃j(k + 1) ‖2 − ‖
n∑

j=1
P̃j(k) ‖2

)
‖ Az j ‖

2

=
(
‖

n∑
j=1

P̃j(k + 1) ‖ + ‖
n∑

j=1
P̃j(k) ‖

)
︸                                          ︷︷                                          ︸

∆1(
‖

n∑
j=1

P̃j(k + 1) ‖ − ‖
n∑

j=1
P̃j(k) ‖

)
‖ Az j ‖

2

= ∆1
(
‖

n∑
j=1

P̃j(k + 1) ‖ − ‖
n∑

j=1
P̃j(k) ‖

)
‖ Az j ‖

2

∆1 > 0

Since VAz(k) is positive definite and ∆VAz(k) is negative definite provided
(
‖∑n

j=1 P̃j(k + 1) ‖ − ‖
∑n

j=1 P̃j(k) ‖
)
< 0 (Lemma 1). Therefore, the prediction error

of Az(k) asymptotically converge to zero. Similarly, the prediction error of Bz(k) can be

proven with the same procedure. Such that z̃(k) asymptotically converge to zero.

Remark 3: Themaximum error occurs when the first sample of the new distribution

comes in the sliding window. Then, the accuracy of PDF estimation improves as the sliding

window includes more and more new samples from the new distribution after the PDF

change occurs. Therefore,
(
‖
∑n

j=1 P̃(k+1) j ‖ − ‖
∑n

j=1 P̃k j ‖
)
< 0 holds.
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4.2.4. Step 4: Soft and Hard Fault Isolation and Resilience Control Triggering

Strategy. The acceptable error magnitude of state i is defined as Rẑi . If ẑi > Rẑi , this fault

is marked as a hard cyber network fault. A warning is triggered as well as the resilience

controller. Otherwise, this is a soft fault that can be handled with the original controller

operating normally.

In summary, the proposed prognosis scheme can timely detect cyber network faults

and isolate soft and hard faults because the dynamics of the network is continuously

monitored. Accurately isolating soft and hard fault optimize the decision of resilience

controller triggering as well as the computational resources allocation. When hard faults

occur, the resilience controller can be timely triggered before adverse effects on system

performance happening.

4.3. Resilience Control Strategy

In this section, the employed resilience controller is presented for completeness.

PDF-based tuning of stochastic optimal controller (PTSOC) Bi and Zawodniok (2017)

mitigates the adverse effects induced by the uncertainties of cyberspace and adapt to the

random occurrence of cyber network faults.

Remark 4: PTSOC has a good adaptability to a time-varying distribution of delays,

but lead to more computation overhead than the traditional resilience controller. There-

fore, the above strategy Section. 4.2.4 aims to determine an appropriate time to trigger

the resilience controller without consuming the computational overhead. Meanwhile, the

proposed strategy based on fault isolation proactively trigger the controller, rather than

triggering it when a failure or damage has occurred. Such that, the system performance and

stability are guaranteed.
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The PTSOC control law considers the PDF of delays by optimizing a weighted

summation of cost functions of different delay ranges (7). Each weight is the probability of

its corresponding delay intervals from the PDF identifier.

Jk = E

[
n∑

i=1
Pi Jk

i

]
= E

[
n∑

i=1
Pi(xkT

i Qzi xk
i + ukT

i Rziuk
i )

]
(7)

where i presents the delay interval (dinti < dk < dint(i + 1)); n is the total number of delay

cases; k represents sampling interval; Pi is probability of delay within dinti to dint(i + 1)

provided by the PDF identifier; xi is the states vector; ui is the control inputs vector;

Qzi = diag[Qi,
Ri

d , ...] and Rzi =
Ri

d are symmetric positive semi-definite and symmetric

positive definite respectively. E[•] is the expectation operator.

By optimizing (7), the control input is given by:

u(k) = −K(k)Z(k) (8)

K(k) =
nd∑
i=1

Pi(k)(Bzi(k)T Zi(k)Bzi(k) + Rz(k))−1

(Bzi(k)T Zi(k)Azi(k) + Szi(k))

(9)

where K(k) is the optimal gain and u(k) is the control input; Szi(k) ≥ 0 is the solution of the

algebraic riccati equation (ARE) equation; nd = dupper/dint , dupper is the maximum delay

in the sliding window; Pi(k) is the probability of dinti < d(k) < dint(i + 1).

Remark 5: TheQi and Ri in the cost function for each delay range should be different

because each pair of Qi and Ri should be the optimal values for the delays bounded in a

specific range. They cannot guarantee a high level with the delays out of such boundaries.

Stability Analysis Bi and Zawodniok (2017):

Two theorems and their corresponding proofs are presented to demonstrate the

stability of the proposed PTSOC. Lyapunov-based stability analysis is used. Theorem

2 (Appendix (B.0.2)) shows the control gain estimation asymptotically converges even
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if PDF estimation has an error provided it asymptotically converges to zero. Theorem

3 (Appendix (B.0.3)) considers the irremovable bias of PDF estimation as a bounded

disturbance. However, a UUB stability is guaranteed. The proofs for these theorems can be

found in Bi and Zawodniok (2017).

5. SIMULATION AND DISCUSSION

In this section, the proposed prognosis scheme is evaluated by simulations in MAT-

LAB. Section. 5.1 demonstrates the convergence of the system state prediction. In this

case, the resilience controller triggering is disabled to observe the prediction performance

alone. Then, both soft and hard cyber network fault scenarios are presented separately to

demonstrate the cyber network fault detection and isolation performance in Sections. 5.2

and 5.3. The resilience controller in Section. 4.3 is applied. A conventional stochastic

optimal control Xu et al. (2012) is employed as a reference.

A continuous-time batch reactor system is taken as a case study. Its dynamics are

given by

Ûx =



1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104


x +



0 0

5.679 0

1.136 −3.146

1.136 0


u (10)

The parameters of this CPS are selected as:

a) The sampling time is 100ms;

b) The considered delays in the system model is less than 2 sampling interval, d = 2;

c) dint = 0.1s;

d) The threshold of the probability variation Rpi is 0.03s, unless otherwise states;

e) The sliding window size M is 30.
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Figure 3. Case A: Actual and predicted system behavior

5.1. System State Prediction Evaluation

This scenario demonstrates that the accuracy of the system state prediction improves

as more new delay measurements update the distribution estimation.

Here, the PTSOC triggering is disabled to allow continuous, uninterrupted predic-

tions of system states. The fault is injected at 47s. Fig. 3 shows that the prediction at 47.1s

significantly diverges from the actual system behavior. As more new delays are loaded in

the sliding window, the PDF estimation of the new distribution improves. Such that the

predicted system states become more accurate. The predictions at 47.5s is more accurate

than that at 47.1s. Other results are shown in Appendix (B.0.4).

5.2. Soft Cyber Network Fault

In this scenario, a network congestion fault is simulated, which occurs when a

network node is relaying more data than it can handle. It usually causes a gradual increase

of delays. Rpi and M are user-defined parameters. These simulations are repeated 50
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times for the statistical validation. With 50 repeated simulations for different soft faults,

the proposed scheme only needs 0.42s in average to detect the fault. With Rpi = 0.03s,

the faults are 100% detected. The results in Figs. 4 are only for one case to illustrate the

performance of the proposed prognosis scheme.

Before the first 50s, the delays follow a normal distribution N(0.3, 0.052). Then, a

network congestion attack (e.g. denial-of-service) is launched at 50s and the delays after

50s follow a new normal distribution N(0.5, 0.12). Fig. 4 presents the result for fluid level.

As shown in Fig. 4 (a), the probability variation exceeds the threshold at 50.2s. A cyber

network fault is detected. Simultaneously, the awareness of the cyber network fault triggers

the system state prediction shown in Fig. 4 (b) and Appendix (B.0.4). The oscillation are

observed, but are small enough for the basic controller to handle. Therefore, this fault is a

soft fault. The resilience controller does not have to be triggered.

The traditional diagnosis scheme Xu et al. (2012) usually preset an threshold, which

is a constant, for the network delay to capture the delay variation. When the delay exceeds

the bound, the resilience controller will be activated. Such that some unnecessary triggering

might occur resulting in increased computational overhead and false reactions of resilience

controller. According to Fig. 4 (a), the resilience controller should be activated 12 times

if the traditional fault diagnosis is applied. However, applying the resilience control is not

necessary and induce more resource waste and wear and tear of system hardware. On the

contrary, such negative consequence can be avoided with applying our proposed scheme.

Remark 6: There are several cyber network fault detection before 50s because Rpi

for this scenario is selected at low level. Hence, false detection occur. However, they would

only cause more computational overhead and have no input on system stability. Overall,

this trade-off should be considered when selecting Rpi.
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(a) (b)

Figure 4. Case B: a) Selected probability variation
b) Predicted and actual system output

Table 1. The crossing points

Variables Estimated point Actual point Estimation Error
Fluid level 48.4s 48.7s 0.6%

Inside temperature 48.4s 48.6s 0.4%
Product outlet flow rate 48.2s 48.2s 0%

Coolant outlet temperature 48.2s 48.3s 0.2%

Remark 7: After the first soft fault detection, the proposed scheme should con-

tinuously supervise the cyber condition. That is because a soft fault possibly becomes a

hard fault in the near future. Also, a warning should be issued to human supervisor to take

additional precautions (e.g. investigate attack or update firewall)

5.3. Hard Cyber Network Fault

In this scenario, a man-in-the-middle attack (MitM) is simulated. The attacker

secretly relays and possibly alters the communication between two parties who believe

they are directly communicating with each other. The transmitted information, such as

control commands and feedback measurements, can be eavesdropped and delayed. Here,

the delays before 47s follows a normal distribution (0.3, 0.052). Then, the attacker injects
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MitM attacks intermittently. As the results, the distribution of delays is varied over time

(Fig. 5.(a)). The acceptable error magnitudes are set for four system states: 400cm for the

fluid level; 50k for the inside temperature; 40g/s for the product outlet flow rate; and 50k

for the coolant outlet temperature.

As Fig. 5. (b) showing, the sudden change of delay at 47s is detected at 47.1s

because the probability of delays within [0.2, 0.3] suddenly decreases. In Fig. 6. (a) and

Appendix (B.0.4), all the predicted system outputs exceed their acceptable range. The

estimated and actual points that the system states pass through the acceptable error are

shown in Table. 1. This prediction can achieve at least 99.6% accuracy. It is concluded that

this fault is a hard cyber network fault and its adverse effects on the system performance is

predicted. The resilience control is triggered at 47.1s to mitigate such effects. Comparing

with the original SOC, the overshoots are reduced by at least 89.6%, the TTRs are shortened

by 31.2%. The summary of improvements can be found in Table. 2.

When applying the proposed scheme, the fault is quickly detected and the resilience

controller is timely triggered ahead of the serious degradation of system performance. Also,

the overshoot of each system output is significantly reduced in term of its corresponding

TTR. In contrast, without applying the proposed scheme, the fault still can be detected

when the system states exceed the acceptable error magnitude at 48.5s. The fault tolerant

controller, which is a tuned PID controller, is triggered. However, it is too late to recover

the system performance with such a late activation of the resilience controller. In such case,

the basic controller will try to apply excessive actuation (Table. 2) to stabilize. This might

lead to significantly damage of the components or cause an unscheduled downtime. Even

worse, the system could be compelled to stop. The above simulation is repeated for 50

times. All the faults are accurately detected.
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5.4. Discussion

We conducted 100 simulations with 50 soft and 50 hard fault cases and, to evaluate

the isolation accuracy of the proposed scheme. All of the faults are detected. However, 58

hard faults are identified, that is 8 soft faults are incorrectly recognized as hard faults. The

threshold for fault isolation is set ensure 100% correct isolation of hard faults. Those false

hard fault identification have no negative impact on system stability and performance, only

increase the computational overhead.

It is important to note that the traditional physical system fault detection, which

is a model-based observer, cannot detect any abnormalities in cyberspace. The network

dynamics concurrently change themathematical model of the physical system and themodel

used for observer design. Such that the outputs from the observer and physical system are

same. Therefore, the model-based observer can only be used for physical component fault

detection, not cyber network fault. In addition, designing an traditional observer for cyber

network fault detection is impossible because, in realistic CPS, cyber network fault model

cannot be obtained ahead of time.

6. CONCLUSIONS

The proposed novel prognosis scheme is shown to quickly detect and predict cyber

network faults using PDF monitoring and estimation. Moreover, soft and hard faults are

isolated to optimize the computational cost of resilience control. The convergence of the

future delay distribution estimation and the system state prediction are theoretically proven.

With the proposed resilience controller, the adverse effects caused by cyber network faults

are efficiently mitigated.

The simulation results show that the proposed scheme accurately detect the cyber

network faults before the performance degrades beyond the acceptable range. Moreover,

the PTSOC is timely triggered to mitigate the negative effects on the CPSs performance.
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The overshoot is significantly reduced by 90% and TTR is shorten by 30%. Although

the accuracy of the soft and hard fault isolation can only achieve 84%, the hard faults are

100% detected. Those soft faults which are misclassified to hard faults only consume the

resources for triggering resilience controller. However, the stability of the entire CPS is

always guaranteed.
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ABSTRACT

Cyber-physical systems (CPSs) according to NSF require seamless integration of

computational algorithms and physical component. The performance of the embedded

network which delivers signals between computational world and physical components

likely influence on the physical system performance in terms of functionality and stability.

Our objective is to enable efficient development of high-resilience CPSs that is a system

capable of changing its behavior and structure to adapt to dynamic uncertainties in cyber

space, such as cyber attacks, delay variation, and packet losses. Motivated by this, we

propose an one-class support vector machine (OCSVM) based prognostic scheme to detect

cyber network faults and predicted its effects on physical world, leading to predictable and

reliable behavior of the entireCPS. Then, a fault tolerant control is triggered at an appropriate

time to prevent unscheduled down-time and minimize the computational overhead. Finally,

we analyze and validate the proposed scheme in simulations.

Keywords: Cyber-physical system, fault prognostic, one-class SVM, networked control

system, resilience
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1. INTRODUCTION

Cyber-physical systems (CPS) plays an increasingly important role in industry and

everyday life. Self-driving cars, smart building controls, and smart grids are examples

of CPSs. All these applications include smart networked subsystems with embedded

sensors, processors, and actuators that sense and interact with the physical world. Whether

enhancing the forward collision prevention capability of a car, or improving the energy

efficiency of a building, CPSs are a source of competitive advantage in today’s innovation

economy. At the same time, networking the system components or subsystems increases the

complexity and vulnerability of the entire system, such as cyber security risks and attacks.

The consequences of cyber network faults could have severe impact on human lives and the

environment. Proactive efforts are needed to strengthen resilience and reliability for CPSs.

The overarching goal of this work is to ensure CPS network vulnerabilities are online

identified and addressed during physical system designs. For soft faults that affects network

performance but has no influence on physical system performance and stability, a warning

should be provided to human operators. Otherwise, hard faults resulting in hardware or

components get unrepairable damages and instability should be detected and addressed

ahead of time.

Inspired by this motivation, we proposed a novel prognosis scheme. The main

contributions are:

a) A novel one-class SVM based prognosis scheme for cyber network fault detection and

prediction.

b) Derived the estimation of network delay distribution based on time series analysis. The

convergence of the estimation error is presented in Lemma 1.

c) Proposed an isolation scheme to distinguish soft and hard faults based on the prediction

of potential failures on system states. Theorem 1 shows the convergence of such prediction.

d) Developed a decision making scheme for proactively triggering resilience control that

effectively avoids physical system failures.
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The rest paper is organized as following. In Section. 2, a motivation example is

given to illustrate the relationship of cyber condition and system behavior. Next, the related

works on SVM based fault diagnosis and prognosis are presented in Section. 3. In Section.

4, the proposed OCSVM based prognosis scheme is demonstrated. The simulation results

are shown in Section. 5 and the conclusions are given in Section. 6.

2. MOTIVATION

In this section, an example is given to illustrate the relation between cyber uncer-

tainties/faults and system behavior. A feedback loop with the simulated delays employs an

optimal controller to regulate a two input four output (2I4O) system Xu et al. (2012).

As a fault scenario, we assume that a route hijacking occurs to eavesdrop control

information is emulated. Such an attack increases delay and delay variation when the

attacker secretly relays and possibly alters the communication between the controller and

actuators. The simulated network has a random topology of 11 nodes. The route through

the topology is altered because the attacker node relays the transmission such that the packet

delays vary for the controller loop, as shown in Fig. 1.

Fig. 2 shows the optimal controller making the system states converge before 10.5s.

Then, a route hijacking attack occurs. The sudden changes of delay at t = 10.5s makes the

system states vibrate. Consequently, the CPS becomes unstable due to such delay dynamics.

According to the above results, we can conclude that stochastic network dynamics

indeed affect the system performance. It is important to note that delay dynamics may occur

due to other network failures, such as traffic congestion, hardware damages in network,

and other types of cyber attacks. Cyberspace is particularly difficult to secure due to its

vulnerabilities of linkages between cyber and physical systems. Of growing concern is

the cyber threat to critical hardware devices. Cyber attacks could cause harm or disrupt
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services upon which our economy and the daily lives depend on. In light of the risk and

potential consequences of cyber events, strengthening the risk awareness and resilience of

CPSs has become an important mission.

3. RELATEDWORKS

In this section, the related works about SVM and and fault diagnosis and prognosis

are presented separately. Section. 3.1 introduces the successful application of SVMs in fault

diagnosis and prognosis. Then, the literature review about addressing network uncertainties

and dynamics in CPSs is presented in Section. 3.2.

3.1. SVM-based Approaches for Fault Diagnosis and Prognosis

Support vector machine (SVM) is a computational learning method based on the

statistical learning theory. Such technology becomes popular fault diagnostic and prognostic

field due to the excellence of data classification than the traditional method such as neural

network. In SVM community, one-class SVM (OCSVM) that can separate the data with

different distributions is suitable for the issues to be addressed in our work. According to

the motivation example, the system instability is not induced by the occasionally long time

delay, but by the stochastic dynamics of delay and its distribution defined as cyber network

faults. Therefore, we propose an OCSVM based fault prognostic scheme to capture cyber

network faults and optimize the resilience control triggering.

Next, a survey of fault diagnosis and prognosis using SVM is presented.

The earliest application of SVM for fault diagnosis is Yan and Shao (2002). They

didn’t proposed any novel method for fault diagnosis. However, they first time employed an

non-linear SVM to classify healthy and faulty data samples.

Then, many researchers applied SVMs for fault diagnosis to bearing, induction

motor, machine tools, and other industrial system components, such as pump, compressors,

valve and turbine. In addition, the revised or improved SVMs are widely used in fault
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diagnosis of HVAC system, engine, rotating machine Yuan and Chu (2006), Yuan and

Chu (2007), and other machines. Samanta (2004) and Samanta (2004) employed genetic

algorithm (GA) to optimize the parameters of SVMs and extract features from original

and preprocessed signals. The trained SVM classifier was validated using the experimental

vibration data of a rotating machine and presented a better performance than artificial neural

network (ANN) based fault detection.

Zhang et al. (2006) proposed a learning method of probabilistic active SVM

(ProASVM) to detect fault of bearing with less number of samples on the condition of

keeping the classification accuracy. Sugumaran et al. (2007) employed decision tree (DT)

and proximal SVM (PSVM) to do fault diagnosis of roller bearing. Hu et al. (2007) proposed

a scheme combining wavelet package transform and SVM ensemble for fault diagnosis of

rolling element bearing.

In addition, Widodo et al. (2007) - Widodo and Yang (2008) applied SVM com-

bined by feature extraction via component analysis (PCA, ICA, KPCA, and KICA) to fault

diagnosis. Later, an advanced wavelet SVM (W-SVM) is proposed to improve the transient

current signal classification. Yuan and Chu (2006), Yuan and Chu (2007) applied PCA to

extract the optimal features and reduce the dimension of features. Then, artificial immu-

nization algorithm was used to optimize the parameters of SVM. The above SVM-based

fault diagnosis performed well with a plenty of data and a relatively enough training time.

However, these methods might not be suitable for complicated system fault diagnosis, such

as CPSs, because the collected data are massive, thus the training time could be too long

to feedback the fault information timely. Therefore, an improved SVM which potentially

provides a good performance on fault diagnosis in terms of accuracy, training time, and

dateset requirement is expected and needed.
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Inspired by this motivation, Yin et al. (2014) proposed a hybrid voting mechanism

based SVM (HVM-SVM) for satellite fault diagnosis with considering the characteristics

of small training data, multiple faults, and enormous parameters. The accuracy of fault

classification was validated.

Salahshoor et al. (2010) proposed a novel fault detection and diagnosis scheme for

condition machinery of an industrial steam turbine using the fusion of a SVM and adaptive

neuro-fuzzy inference system (ANFIS). Such methodology can deal with a diverse set of

faults. Wang et al. (2014) proposed a ν-SVM which used the nearest neighbor (NN) to

realize the fast selection of ν based on training samples and applied locality preserving

projection (LPP) method to reduce the dimension of feature vectors by extracting the lower

dimensional manifold characteristics. Such that the training time was reduced as well as

computational overhead. Each residual work is designed to be sensitive to a subset of faults,

while remain insensitive to other faults. Unfortunately, few of the above works can be

applied to network fault prognosis in CPSs because network fault is diverse, stochastic, and

unpredictable about its type and time of occurrence.

Hence, a general and efficient fault prognosis scheme that can detect different types

of fault and predict their effects on the entire CPS is needed. The work presented in

this paper mainly focuses on cyber network fault prognosis of CPSs by a novel fusion of

one-class SVM, PDF identification, and system state prediction.

3.2. Fault Diagnosis and Prognosis of CPSs

The overall goals of cyber security include integrity (the trustworthiness of data or

resources), availability (accessibility upon demand), and confidentiality (keeping informa-

tion secret from unauthorized users). Many researchers addressed these issues with different

technologies, such as authentication schemes, access control, and other defense schemes

Amin et al. (2009) - Pasqualetti et al. (2013). An assumption that the adversary/attack

model is fully known is often required; however, it is challenging to obtain. In Amin
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et al. (2009) deception and denial of service attacks against a networked control system are

addressed. They proposed a countermeasure based on semi-definite programming. This

work and the following literature are only valid for a specific attack model which cannot be

known in priori. A defense scheme without requiring the knowledge about the attack model

is needed.

In Liu et al. (2011), false data injection attacks against static state estimators are

introduced. Undetectable false data injection attacks can be designed even when the attacker

has limited resources. Also, stealthy deception attacks against the Supervisory Control and

DataAcquisition system are studied in Teixeira et al. (2010). Mo andSinopoli (2009) studied

the effect of replay attacks on a control system. In Amin et al. (2009), the effect of covert

attacks against control systems is investigated. A parameterized decoupling structure alter

the behavior of the physical plant while remaining undetected from the original controller.

Gamage et al. (2010) proposed a general theory of event compensation as an information

flow security enforcement mechanism for CPSs. Message scheduling methods were given

to improve the security quality of wireless networks for mission-critical CPSs in Jiang et al.

(2010). With respect to the above works, Pasqualetti et al. (2013) proposed a mathematical

framework for CPSs, attacks, and monitors, and given the fundamental limitations of

monitors from system-theoretic and graph-theoretic perspectives. Finally, centralized and

distributed attack detection and identification monitors were designed. Overall, many cyber

attacks can be addressed on the cyber side. However, the effects of cyber attacks/faults

on the physical system behavior are oversimplified in the above mentioned existing works.

Moreover, the injection time and model of the attacks/faults are difficult to learn ahead of

time in practical CPSs.

The control researchers focused on the conventional fault detection techniques that

have successfully applied to industrial networked control systems (NCSs). They indeed

considered the network delay and packet loss in various ways. In Zhu and Martinez (2011),

a resilient control problem is studied, in which control packets transmitted over a network
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are corrupted by a human adversary. They proposed a receding-horizon Stackelberg control

law to stabilize the control system despite the attack. However, the proposed approach

required a priori knowledge on attack model and type. In Liu and Yao (2005), network

delays were modeled as a constant delay (time buffer), an independent random delay, and

a delay with known probability distribution governed by the Markov chain model. In Liu

et al. (2007), a networked predictive controller in the presence of random delay in both

forward and feedback channels was proposed to minimized the effects of network failures.

A robust H∞ control for a nonlinear T-S fuzzy model system was proposed to address the

network delays and packet drop in Zhang et al. (2007). However, they assumed the upper

bound of delays is known. This is challenging to be satisfied in reality. Wang et al. (2008)

and Zhang-qing and Xian-zhong (2007) employed a state observer-based fault detection

method on the uncertain long time delay. Although, the network delays and packet drop

caused by network faults/failures were considered in above works, the assumptions, such as

known bounds and time-invariant distribution of delays and packet loss, are always made.

In addition, most of the above works aimed to detect the faults of physical components

(sensors, actuators, and system plant), not the faults in the cyberspace.

This work is motivated to address cyber network faults detection, isolation, and

prediction. Meanwhile, the the tolerant control scheme and it triggering strategy are

proposed to stabilize the CPS despite cyber network faults and optimize the computational

overhead.

4. OCSVM-BASED CYBER NETWORK FAULT PROGNOSIS SCHEME

In this section, the overview of the OCSVM-based cyber fault prognosis scheme is

given in Section. 4.1. The main idea of the fault detection is introduced in Section.4.2.

Then, the isolation of cyber hard and soft fault is demonstrated in Section. 4.3. At last the

resilience control scheme is introduced in Section. 4.4.
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4.1. Overview

In this work, the uncertainties in the cyberspace, including traffic congestions,

topology changes, and attacks, are considered erroneous delays and packet losses on the

physical system side. Monitoring such delays and packet losses online is required for

detection of cyber faults. Moreover, an observer is needed to detect physical system faults

and isolate them from cyber network faults.

Assuming a set K(t)

End

Probability Pi(t)

PDF Identifier

OCSVM

Start

Future output 

predicted

Assuming a set K(t+1)
2( 1) ( 1) ~ ( ( 1), )Delay t K t N t    

( , 1, 2,...) ( )Delay t t t K t  

( 1, 2,...) ( 1)Delay t t K t   

If 

(Residual 

of Output)

No

t=t+1

Yes Resilience control 

triggered

End

ˆ
ii XX R

Figure 3. Flowchart of OCSVM-based prognosis scheme

The proposed prognosis scheme is shown in Fig. 3. It includes four main steps that

are continuous repeated:
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a) Data collection of network delays. n delays ([dk−n+1, · · · , dk]) in the sliding

window will be the inputs of OCSVM to labeled as normal or erroneous data. The data in

the sliding window is updated over time.

b) Cyber fault detection. The input delays are classified into normal and abnormal

group. When the new abnormal delay is labeled, we consider an abnormality occurs in

the cyberspace. However, only one abnormal delay detection can not be consider a cyber

network fault because unexpected delay might presents even the cyber condition is perfect.

Therefore, the probability for erroneous delays Pk
f is calculate and a threshold Rp f is defined.

If Pk
f exceeds Rp f , the cyber network fault is detected and the following computation for

fault isolation is active as the same time.

c) Potential degradation prediction. If a cyber network fault is detected, the PDF

of erroneous delay distribution is predicted by using time series analysis. Then, the delays

following the new distribution are resampled. Finally, the prediction of the physical system

states is obtained. If the system states deviate out of the acceptable range, the hard fault

is detected. Such type of faults might lead to wear and tear of devices, instability of the

entire CPSs, even hardware damages. Otherwise, the soft fault is not severe enough to

trigger the resilience controller. It is hard to detect by traditional fault diagnosis schemes

because such faults will not immediately affect the CPS stability. Hence, an early warning

could be missed. However, such type of faults should not be ignored because they might

become severe problems in the near future. Therefore, detecting them and giving a warning

to the human operators are necessary and essential. More details about fault isolation are

presented in Section. 4.3.

d) Resilience controller triggering. If a hard fault is detected, the resilience controller

is triggered and its parameters are tuned online by the probabilities of delays computed in

c).



133

Such a scheme can detect stochastic cyber failures/attacks without requiring the

knowledge of attack model and its injection time a priori. Only real-time OCSVM classi-

fication of delays is required to do distribution and system states prediction. Moreover, the

resilience control law tuned by the probabilities of predicted delays is derived accurately

for the given cyber performance. Its details are introduced in Section. 4.4.

4.2. OCSVM-based Cyber Network Fault Detection

One-class SVMmodel estimates the support of a distribution by identifying regions

in input space where most of the cases lie. It projects the data into a feature space, in where

separating the data from the origin by as large a margin as possible.

In this paper, we are interested in the ability of the one-class SVM algorithm to

model the distribution of network delays, i.e., the normal delays without cyber fault. All

abnormal delays will be recognized as outliers. These outliers are the inputs of system state

predictor to predict the potential threats for the system stability.

To facilitate the identification of outliers as abnormal delays, we assume the distri-

bution of normal delays are known. The one-class SVM can model a decision boundary of

there normal delays. When the outliers are detected, we consider an abnormality happens.

Then, the abnormal delays can be classified to one of “healthy” and “faulty” group.

To give a precise problem statement for the one-class SVMalgorithm, somenotations

are needed:

a) Let Φ : <n → F be the nonlinear mapping from data space<n to feature space

F that is implicit and usually unknown in all kernel method;

b) ξi is slack variable for each point in the dataset;

c) ρ is the distance to the origin in feature space;

d) ω is the parametrization of the hyper-plane separating the origin from the data in

F;

e) ν is the expected fraction of data points outside the estimated support.



134

The one-class SVM algorithm computes the support vectors in D by considering

the constrained quadratic optimization problem (primal form):

min
ω∈F,ξi∈<n,ρ∈<

1
2
‖ ω ‖2 +

1
mν
Σ

m
i=1ξi − ρ (1)

subject to

ωΦ(xi) ≥ ρ − ξi,

ξi ≥ 0 ∀i = 1, . . . ,m

which is transformed into its dual form:

min
α∈<n

m∑
i, j=1

αiα j k(xi, x j) (2)

subject to

0 ≤ αi ≤
1

mν
∀i = 1, . . . ,m

m∑
i=1

αi = 1

to introduce the kernel function k(xi, x j) = Φ(xi).Φ(xi) into the calculation.

αi can be obtained by solving the dual problem and the decision function (3) can be

obtained.

f (x) =
m∑

i=1
αi k(xi, x) − ρ (3)

If x is an outlier, f (x) will be a negative value. The data points xi for which

0 < αi <
1

mν holds are the support vectors; They directly lie on the separating hyperplane

in F.

Here, we used the Gaussian (4) with width parameter σ as kernel function.

k(xi, x) = exp(−
‖ xi − x ‖2

2σ2 ) (4)
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By using this method, erroneous delays and it distribution can be easily obtained for

the next fault isolation.

4.3. Soft and Hard Cyber Network Fault Isolation

In this subsection, an algorithm for distinguishing soft and hard cyber network faults

is proposed. First, the delay distribution in the future is predicted. Next, its potential effects

on system performance is evaluated.

The isolation scheme includes three main steps that are repeated until the resilience

controller is triggered:

Step 1: future delay distribution estimation and resampling;

Step 2: system performance prediction;

Step 3: soft and hard fault isolation and resilience control triggering

These steps are discussed in details next.

4.3.1. Step 1: Future Delay Distribution Estimation and Resampling. One-

class SVM provides the faulty delays. Then, the KDE-based PDF identifier Bi and Zawod-

niok (2017) can estimate the distribution of those delays assuming they follow a normal

distribution. The expectation and standard deviation can be obtained.

Time series analysis is used to estimate the autoregressive (AR) model for the

expectation E and standard deviation D of the future distribution. The main point of this

algorithm is that use the difference between the estimate of the future expectation and actual

one to update the coefficients of AR model. When the coefficients converge, the AR model

can provide an accurate approximation of the future distribution features. The following

part presents the details about our application.

The hypothesis of the model is given by:


E(k + 1|k)

D(k + 1|k)

 =

βE0

βD0

 +

βE1 0

0 βD1



E(k)

D(k)

 (5)
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where Ê(k + 1|k) is the forecast of E(k + 1|k) and D(k + 1|k) based on E(k) and D(k),

using the estimated coefficients β̂E0, β̂D0, β̂E1, and β̂D1 that are to be tuned by the update

law (9).


Ê(k + 1|k)

D̂(k + 1|k)

 =

β̂E0

β̂D0

 +

β̂E1(k) 0

0 β̂D1(k)



E(k)

D(k)


= θ̂(k)ϕ(k) + C0(k)

(6)

where ϕ(k) =
[
E(k) D(k)

]T
, and θ̂(k) =


β̂E1(k) 0

0 β̂D1(k)

 .
The one-period ahead forecast error is:


eE (k + 1)

eD(k + 1)

 =

E(k + 1|k)

D(k + 1|k)

 −

Ê(k + 1|k)

D̂(k + 1|k)

 (7)

The forecast errors converge by minimizing the following objective index:

J =


eE (k + 1)

eD(k + 1)


T 

eE (k + 1)

eD(k + 1)

 (8)

Such that the update law of θ̂(k), L(k), and O(k) can be obtained.

θ̂(k) = θ̂(k − 1) + L(k)e(k)

L(k) =
O(k − 1)ϕ(k)

ϕ(k)TO(k − 1)ϕ(k)

O(k) = (I − L(k)ϕ(k)T )O(k − 1)

(9)

where L(k) and O(k) denote estimator gain and estimation of error variance, respectively.

Their initial values are randomly set.
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Lemma 1: With the update law (9) and more new delays loaded in the sliding

window, the objective index (8) is continuously minimized. Then the following statements

are true:

a) the estimation errors of the expected value and standard deviation of faulty delays

converge.

b)
(
‖
∑n

j=1 P̃(k+1) j ‖ − ‖
∑n

j=1 P̃k j ‖
)
< 0 holds.

The proof can be found in Qin (1998) and Simon (2006).

Remark 1: Even if the network condition is perfect, unexpected delays, which

are out of the healthy range, occasionally occurs in a long period. That can lead to the

inefficient triggering of resilience control. Using the above time series analysis, not only

the distribution change can be tracked in real-time, but also the trend of distribution change

is identified and predicted. Such that the occasional event can be filtered without resilience

control triggering.

Then, based on the future delay distribution provided by (1), a series of random

delays is generated, which follows the new distribution.

4.3.2. Step 2: System Output Prediction. The resampled delays are fed to the

system model which takes into account dynamic delays and packet losses. Such a time-

varying system is given by:

z(k + 1) = Az(k)z(k) + Bz(k)u(k) (10)

where z =
[
x(k)T u(k − 1)T ... u(k − d)T

]T
is the state variables vector; uk is the

control input; Az(k) and Bz(k) are the system dynamic matrices and given by
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Az(k) =



A γ(k − 1)B1(k) ... γ(k − i)Bi(k) ... γ(k − d)Bd(k)

0 0 ... ... ... 0

0 Im ... ... 0 0
... 0 Im ... ... 0
...

...
. . .

...

0 0 ... ... Im 0



,

Bz(k) =
[
γ(k)B0(k) Im 0 0

... 0
]T
,

γ(k) =


In×n if the control input is received at time k

0n×n if the control input is lost at time k

Finally, the possible system behavior induced by the new distribution of delays are

estimated and denoted as ẑk .

Prediction Convergence Analysis: The prediction error z̃k convergence is demon-

strated in Theorem 1. The dynamic matrices Az j and Bz j for each delay interval are

deterministic and their calculation can be found in Xu et al. (2012).

Theorem 1 (Error of system states prediction convergence): As the delay data keeps

updating PDF identifier and
(
‖

∑n
j=1 P̃(k+1) j ‖ − ‖

∑n
j=1 P̃k j ‖

)
< 0 is satisfied, then the

prediction error for system output ‖ z̃(k) ‖ asymptotically converges to zero.

Proof: The prediction error is given by

z̃k = zk − ẑk

= (Az(k) − Bz(k)K(k))z(k) − (Âz(k) − B̂z(k)K(k))z(k)

= (Az(k) − Âz(k))z(k) − (Bz(k) − B̂z(k))K(k)z(k)

= (Ãz(k) − B̃z(k)K(k))z(k)
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Therefore, the convergence of z̃i can be proven by proving the convergence of Ãz(k) and

B̃z(k)

We define the prediction error of Az(k) as Ãz(k) = Az(k) − Âz(k). Az(k) can

be expressed as
∑n

j=1 Pj(k)Az j Pj(k) is the actual probability at k. Similarly, we denote�Az(k) =
∑n

j=1 P̂j(k)Az j . P̂j(k) is the estimate probability provided by the PDF profile. The

estimation error of the probability is P̃j(k) = Pj(k) − P̂j(k). Then, Lyapunov function

candidate is VAz(k) = Ãz(k)T Ãz(k).

∆VAz(k) = Ãz(k + 1)T Ãz(k + 1) − Ãz(k)T Ãz(k)

=
( n∑

j=1
Pj(k + 1)Az j −

n∑
j=1

P̂j(k + 1)Az j
)T ( n∑

j=1
Pj(k + 1)Az j −

n∑
j=1

P̂j(k + 1)Az j
)

−
( n∑

j=1
Pj(k)Az j −

n∑
j=1

P̂j(k)Az j
)T ( n∑

j=1
Pj(k)Az j −

n∑
j=1

P̂j(k)Az j
)

=
(
‖

n∑
j=1

P̃j(k + 1) ‖2 − ‖
n∑

j=1
P̃j(k) ‖2

)
‖ Az j ‖

2

=
(
‖

n∑
j=1

P̃j(k + 1) ‖ + ‖
n∑

j=1
P̃j(k) ‖

)
︸                                          ︷︷                                          ︸

∆1(
‖

n∑
j=1

P̃j(k + 1) ‖ − ‖
n∑

j=1
P̃j(k) ‖

)
‖ Az j ‖

2

= ∆1
(
‖

n∑
j=1

P̃j(k + 1) ‖ − ‖
n∑

j=1
P̃j(k) ‖

)
‖ Az j ‖

2

∆1 > 0
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Since VAz(k) is positive definite and ∆VAz(k) is negative definite provided
(
‖∑n

j=1 P̃j(k + 1) ‖ − ‖
∑n

j=1 P̃j(k) ‖
)
< 0 (Lemma 1). Therefore, the prediction error

of Az(k) asymptotically converge to zero. Similarly, the prediction error of Bz(k) can be

proven with the same procedure. Such that z̃(k) asymptotically converge to zero.

Remark 2: Themaximum error occurs when the first sample of the new distribution

comes in the sliding window. Then, the accuracy of PDF estimation improves as the sliding

window includes more and more new samples from the new distribution after the PDF

change occurs. Therefore,
(
‖
∑n

j=1 P̃(k+1) j ‖ − ‖
∑n

j=1 P̃k j ‖
)
< 0 holds.

4.3.3. Step 3: Soft and Hard Fault Isolation and Resilience Control Triggering

Strategy. The acceptable error magnitude of state i is defined as Rẑi . If the deviation of

the state ẑi exceeds its residual Rẑi , this fault is marked as a hard cyber network fault. A

warning is triggered as well as the resilience controller. Otherwise, this is a soft fault that

can be handled with the original controller operating normally.

In summary, the proposed prognosis scheme can timely detect cyber network faults

and isolate soft and hard faults because the dynamics of the network is continuously

monitored. Accurately isolating soft and hard fault optimize the decision of resilience

controller triggering as well as the computational resources allocation. When hard faults

occur, the resilience controller can be timely triggered before adverse effects on system

performance happening.

4.4. Resilience Control Strategy

The employed resilience controller is presented for completeness. PDF-based tuning

of stochastic optimal controller (PTSOC) Bi and Zawodniok (2017) mitigates the adverse

effects induced by the uncertainties of cyberspace and adapt to the random occurrence of

cyber network faults. The stability analysis can be found in Bi and Zawodniok (2017).
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The PTSOC control law considers the PDF of future delays by optimizing aweighted

summation of cost functions of different delay ranges (11). Each weight is the probability

of its corresponding delay intervals from the PDF identifier.

Jk = E

[
n∑

i=1
Pi Jk

i

]
= E

[
n∑

i=1
Pi(xkT

i Qzi xk
i + ukT

i Rziuk
i )

]
(11)

where i presents the delay interval (dinti < dk < dint(i + 1)); n is the total number of delay

cases; k represents sampling interval; Pi is probability of delay within dinti to dint(i + 1)

provided by the PDF identifier; xi is the states vector; ui is the control inputs vector;

Qzi = diag[Qi,
Ri

d , ...] and Rzi =
Ri

d are symmetric positive semi-definite and symmetric

positive definite respectively. E[•] is the expectation operator.

By optimizing (11), the control input is given by:

u(k) = −K(k)Z(k) (12)

K(k) =
nd∑
i=1

Pi(k)(Bzi(k)T Zi(k)Bzi(k) + Rz(k))−1

(Bzi(k)T Zi(k)Azi(k) + Szi(k))

(13)

where K(k) is the optimal gain and u(k) is the control input; Szi(k) ≥ 0 is the solution of the

algebraic riccati equation (ARE) equation; nd = dupper/dint , dupper is the maximum delay

in the sliding window; Pi(k) is the probability of dinti < d(k) < dint(i + 1).

5. SIMULATION AND DISCUSSION

In this section, the proposed prognosis scheme is evaluated by simulations in MAT-

LAB. Both soft and hard cyber network fault scenarios are presented separately in Sections.

5.1 and 5.2. The resilience controller in Section. 4.4 is applied. A conventional fault

detection scheme is employed as a reference.
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A continuous-time batch reactor system is taken as a case study. Its dynamics are

given by Xu et al. (2012).

Ûx =



1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104


x +



0 0

5.679 0

1.136 −3.146

1.136 0


u = Ax + Bu (14)

where A and B are system dynamic matrices that correspond to the A and B in (10).

The parameters of this CPS are selected as:

a) The sampling time is 100ms;

b) The considered delays in the system model is less than 2 sampling interval, d = 2;

c) The delay interval dint (11) is 0.1s;

d) The threshold of the probability variation Rpi is 0.03s, unless otherwise states;

e) The sliding window size M is 30.

5.1. Soft Fault Scenario

A network congestion is taken as an soft fault example. Such congestion leads to

a gradually fluctuation of network delays. A big challenge of such fault detection is the

distribution of the faulty data usually overlaps with the one of healthy data. Thus, the

accuracy of data classification cannot be always guaranteed.

The following example will demonstrate the soft fault detection performance of

the proposed scheme and also provide its limitations. The results are only for a specific

scenario. Before the first 50s, the delays follow a normal distribution N(0.52, 0.022). Then,

a network congestion attack (e.g. denial-of-service) occurs at 50s and the delays after 50s

follow a new normal distribution N(0.55, 0.12). The window size is 100.
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Table 1. Fault capturing accuracy over time

Time Precision Recall Accuracy
t=50.3s 0 0 0
t=50.5s 36.4% 80% 80%
t=50.7s 71.4% 71.4% 71.4%
t=50.9s 75% 72.7% 72.7%
t=51.1s 66.7% 76.9% 76.9%
t=51.3s 66.7% 76.9% 76.9%

Fig. 4 and Table. 1 shows that the proposed scheme can detect the faulty data

from 50.3s. However, the accuracy is low because of the severe overlap of the healthy and

fault data. As the number of faulty data increasing, the precision, recall, and accuracy are

significantly improved.

When the fault is detected, the state prediction is activated to estimate the possibly

negative effects on the system performance in the future. Fig. 5 shows the three time

predictions at 50.3s, 50.5s, and 51.3s. The oscillation are observed, but small enough for

the basic controller to handle. Therefore, this fault is a soft fault. The resilience controller

does not have to be triggered.

Moreover, it is clear that the state prediction becomes closer and closer to the actual

system behavior over time. That is because more faulty data coming in the sliding window

provides more information about the fault data distribution, thus its estimate become more

and more accurate.

5.2. Hard Fault Scenario

As a hard fault scenario, a man-in-the-middle attack -attacker secretly relays and

possibly alters the communication between two parties who believe they are directly com-

municating with each other- is simulated. The transmitted information, such as control

commands and feedback measurements, can be eavesdropped and delayed.
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Figure 4. Data classification performance
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Figure 5. System states prediction performance

Table 2. The crossing points

Variables Estimated point Actual point Estimation Error
Fluid level 48s 48s 0

Inside temperature 48.4s 48.6s 0.4%
Product outlet flow rate 48.2s 48.2s 0%

Coolant outlet temperature 48.2s 48.3s 0.2%

Here, the delays before 47s follows a normal distribution (0.25, 0.12). Then, the

attacker injects MitM attacks intermittently. As the results, the distribution of delays is

varied over time. The acceptable error magnitudes are set for four system states: 100cm for

the fluid level; 50k for the inside temperature; 50g/s for the product outlet flow rate; and

50k for the coolant outlet temperature.

As Fig. 6 showing, the sudden change of delay at 47s is detected at t = 47.3s, a

fault is detected because the probability of faulty data exceeds the threshold (3%) as shown

in Fig. 7. The actual faulty delays are 100% recognized.



146

30 35 40 45 50 55 60 65 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (sec)

D
e

la
y
s
 (

s
e

c
)

 

 

Delay induced by attacks

Delay before attacks

Figure 6. Delays

Figure 7. Data classification performance at t=47.3s

In Fig. 8 all the predicted system outputs exceed their acceptable range. The

estimated and actual points that the system states pass through the acceptable error are

shown in Table. 2. This prediction can achieve at least 99% accuracy. Therefore, we can

conclude that this fault is a hard cyber network fault and the resilience control (PTSOC)
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Figure 8. State prediction performance at t=47.3s

is triggered at 47.3s to mitigate such effects. The overshoots are reduced by at least 70%

comparing with the original controller SOC, the TTRs are shortened by 10%. The summary

of improvements can be found in Table. 3.

The proposed scheme quickly detects the fault because OCSVM can accurately

separate the faulty and healthy data and isolate the hard fault quickly based on the state pre-

diction. Then, the resilience controller is timely triggered ahead of the serious degradation

of system performance.

The above simulation is repeated for 50 times. All the faults are accurately detected.

Meanwhile, the overshoot of each system output is significantly reduced in term of its

corresponding TTR. In contrast, without applying the proposed scheme, the fault still can
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Figure 9. Fault tolerant performance

be detected when the system states exceed the acceptable error magnitude at 48s. However,

it is too late to recover the system performance with such a late activation of the resilience

controller. In such case, the basic controller PID will try to apply excessive actuation to

stabilize. Thismight lead to significantly damage of the components or cause an unscheduled

downtime. Even worse, the system could be compelled to stop.

6. CONCLUSION AND FUTUREWORK

The proposed novel prognosis scheme is shown to quickly detect and predict cyber

network faults using one-class SVM and PDF estimation. Combining with the state predic-

tion and future delay distribution estimation, soft and hard faults can accurately isolated to
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optimize the computational cost of resilience control. Their convergence are theoretically

proven. With the proposed resilience controller, the adverse effects caused by cyber network

faults are efficiently mitigated.

The simulation results show that the proposed scheme accurately detect the cyber

network faults before the performance degrades beyond the acceptable range. Moreover,

the PTSOC is timely triggered to mitigate the negative effects on the CPSs performance.

Comparing with the traditional SOC, the overshoot is significantly reduced by 70% and TTR

is shorten by 10%. Comparing with PID controller, the improvements of the overshoot and

TTR achieve 92% and 10%.

In this work, we applied the proposed scheme to a model-based CPS. For the future

work, more applications to other CPSs without the knowledge of system model will be

investigated and studied.
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SECTION

2. SUMMARY AND CONCLUSIONS

In the first paper, a novel routing scheme is proposed to improve the QoS and

performance of network in CPSs. This work is done by using RBF neural network to

model the relation between power and maximum communication capacity which is the

critical reference for routing optimization. Such scheme is applied to P2P and E2E path

optimization to guarantee the vital transmission safety. Also, this scheme can ensure a high

quality of service (QoS) under imperfect network condition, even cyber attacks.

Next, in the second paper, the imperfection, uncertainties, and dynamics in the cy-

berspace are considered both in systemmodel and controller design. A online PDF identifier

is proposed to capture the time-varying delays and its distribution. With the modification of

traditional stochastic optimal control using PDF of delays, the assumption of full knowledge

of network imperfection in priori is relaxed. Comparing with traditional stochastic control,

the proposed controller achieves a better performance in terms of overshoot, time-to-recover,

and operation cost. Also, this controller is considered a novel resilience control strategy for

latter papers about cyber fault diagnosis and prognosis.

After that, in the third paper, we turn to the development of a general framework

for cyber fault diagnosis scheme for CPSs wherein the cyberspace performance affect the

physical system and vice versa. The proposed diagnosis scheme is capable of detecting

cyber fault by monitoring the probability of delays. Also, the isolation of cyber and physical

system fault is achievedwith cooperatingwith the traditional observer based physical system

fault detection. The adverse effects caused by cyber network faults are effectively mitigated

with appropriately triggering the PTSOC resilience controller.
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Based on the study presented in the third paper, we turns out a novel cyber fault

prognosis scheme in the fourth paper, which can detect and estimate cyber fault and its

negative effects on system performance ahead of time. Not only cyber and physical system

faults are distinguished, but also soft and hard cyber faults are isolated depending onwhether

potential threats on system stability is predicted. Moreover, the convergence of the future

delay distribution estimation and the system state prediction are theoretically proven. With

the proposed resilience controller, the adverse effects caused by cyber network faults are

efficiently mitigated.

Finally, the fifth paper presents an improve prognosis scheme with applying one-

class SVM (OCSVM) to enhance the accuracy of fault detection and isolation.The results

demonstrate that the detection of the attacks is faster than the traditional approach where

one has to wait for the physical states to be deteriorated. However, the proposed scheme is

applicable only to those network attacks causing delays and packets losses while revealing

limitation to sophisticated attacks.
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1. Stability Analysis for the PTSOC

Two theorems and their corresponding proofs are presented to demonstrate the

stability of the proposed PTSOC. Lyapunov-based stability analysis is used. Theorem 1

shows the control gain estimation asymptotically converges even if PDF estimation has an

error provided it asymptotically converges to zero. Theorem 2 considers the irremovable

bias of PDF estimation as a bounded disturbance. However, a UUB stability is guaranteed.

Theorem 1 (Control gain estimation error convergence): As the delay data keeps

updating PDF identifier and
(
‖

∑n
j=1 P̃(k+1) j ‖ − ‖

∑n
j=1 P̃k j ‖

)
< 0 is satisfied, then the

estimation error for control gain ‖ K̃k ‖ asymptotically converges to zero.

Proof:

First, we define the estimation error of control gain K as K̃k = Kk − K̂k =∑n
j=1 Pk jK j −

∑n
j=1 P̂k jK j . Pi j is the actual probability at k. Then, Lyapunov function

candidate is VKk
= K̃T

k K̃k .
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∆VKk
= VKk+1 − VKk

= K̃T
k+1K̃k+1 − K̃T

k K̃k

= (Kk+1 − K̂k+1)
T (Kk+1 − K̂k+1) − (Kk − K̂k)

T (Kk − K̂k)

= (

nd∑
j=1

P(k+1) jK j −

nd∑
j=1

P̂(k+1) jK j)
T (

nd∑
j=1

P(k+1) jK j −

nd∑
j=1

P̂(k+1) jK j)

− (

nd∑
j=1

Pk jK j −

nd∑
j=1

P̂k jK j)
T (

nd∑
j=1

Pk jK j −

nd∑
j=1

P̂k jK j)

=‖

nd∑
j=1
(P(k+1) j − P̂(k+1) j)K j ‖

2 − ‖

nd∑
j=1
(Pk j − P̂k j)K j ‖

2

=‖

nd∑
j=1

P̃(k+1) jK j ‖
2 − ‖

nd∑
j=1

P̃k jK j ‖
2

=
(
‖

nd∑
j=1

P̃(k+1) jK j ‖ + ‖

nd∑
j=1

P̃k jK j ‖
)

︸                                           ︷︷                                           ︸
∆2(

‖

nd∑
j=1

P̃(k+1) jK j ‖ − ‖

nd∑
j=1

P̃k jK j ‖
)

= ∆2
(
‖

nd∑
j=1

P̃(k+1) jK j ‖ − ‖

nd∑
j=1

P̃k jK j ‖
)

= ∆2[(‖ P̃(k+1)1 ‖ − ‖ P̃k1 ‖) ‖ K1 ‖ + ‖ P̃(k+1)2 ‖ − ‖ P̃k2 ‖) ‖ K2 ‖ + · · ·

+ ‖ P̃(k+1)nd ‖ − ‖ P̃knd
‖) ‖ Knd ‖]

≤ ∆2
(
‖

n∑
j=1

P̃(k+1) j ‖ − ‖

n∑
j=1

P̃k j ‖
)
‖ Kmax ‖

∆2 > 0,Kmax = max
{
K1,K2, · · · ,Knd

}



158

SinceVKk
is positive definite and ∆VKk

is negative definite provided K̃k = Kk − K̂k =∑n
j=1 Pk jK j −

∑n
j=1 P̂k jK j . Therefore, the estimation error of control gain asymptotically

converge to zero.

Theorem 2: (UUB Stability of the Regulation Error). Given the initial conditions

as the system state z0 and system matrices Az0, and Bz0, let u0(zk) be an initially admissible

control policy for the CPS (2). Let the control update law be given by (10) and (11) and if

the disturbance induced by the irremovable bias of PDF estimation has a bound ‖ dKDE ‖

and Kmin < 1/bmin such that the regulation error of system states has a uniformly ultimate

bounded convergence in the mean.

Proof:

Consider the following positive definite Lyapunov function candidate: Vzk = zT
K zk .

zk is the state vector of k. The corresponding estimated Lyapunov is V̂zk , therefore, ∆V̂zk =

V̂zk+1 − V̂zk . We consider ∆V̂zkm = V̂z(k+1)m − V̂zk for each possible system matrices (Azkm and

Bzkm). m represents one of the possible cases. If the maximum value of ∆V̂zkm is negative

definite, the system convergence is proved. The irremovable bias of PDF estimation is

considered the system state disturbance dk bounded by dM .

∆V̂zkm = V̂zk+1m − V̂zkm

=‖ Azkm − BzkmKk zk + dk ‖
2 − ‖ zk ‖

2

=
(
‖ Azkm − BzkmKk zk + dk ‖ + ‖ zk ‖

)︸                                              ︷︷                                              ︸
∆3(

‖ Azkm − BzkmKk zk + dk ‖ − ‖ zk ‖
)

= ∆3
(
‖ Azkm − BzkmKk zk + dk ‖ − ‖ zk ‖

)
≤ ∆3

(
‖ amax − bminKminzk + dM ‖ − ‖ zk ‖

)
≤ ∆3

(
amax + bminKmin ‖ zk ‖ + ‖ dM ‖ − ‖ zk ‖

)
∀k = 1, 2, · · · , ∀m = 1, 2, · · · , nd
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where ∆3 is positive definite, bmin = min
{
‖ Bzk1 ‖, ‖ Bzk2 ‖, · · · , ‖ Bzkm ‖

}
, Kmin =

min
{
‖ K1 ‖, ‖ K2 ‖, · · · , ‖ Knd ‖

}
.

Since V̂zk is positive definite and ∆V̂Kk
is negative definite provided the system state

‖ zk ‖≥
‖dM ‖+Amax

1−bminKmin
and Kmin < 1/bmin. Therefore, UUB stability of the regulation error is

proved.

For each delay interval, the cost function is (A.1) and the optimal control law is

derived using A.1. The cost function of PTSOC defined by (A.2) is a probability weighted

sum of the cost functions for all delay intervals. Similarly, the PTSOC law derived in

Section. 4.4.1 is the summation of the weighted SOC laws of delay intervals. These

weights are probabilities from the delay PDF.

J = E[
∞∑

m=k

(zT
mQzzm + uT

mRzum)] k = 0, 1, 2, · · · (A.1)

where Qz = diag
{
Q, R/d, · · ·

}
, and Rz = R/d are symmetric positive semi-definite and

symmetric positive definite respectively. zm is the state variables vector, and um is the

control inputs vector. E(•) is the expected operator of
∑∞

m=k(z
T
mQzzm + uT

mRzum).

Jk =

n∑
i=1

Pi Jk
i =

n∑
i=1

Pi(xkTQi xk + ukT
i Riuk

i ) (A.2)

where dint represents the delay interval that we take 0.1s in the simulation section. If

dint < dk < dint(i + 1), dk is classified in ith delay case; n is the total number of delay cases;

k represents sampling interval; Pi is probability of delay within dinti to dint(i + 1) provided

by the KDE-based PDF identifier; x is states vector; ui is control inputs vector; Qi and Ri

are weighted constants of states and control inputs, respectively.

As the probabilities of each possible delay changes, PTSOC continuously tracks

the network dynamics with a PDF identifier and updates its parameters based on PDF

information of delay to adapt to the given system situation.
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1. PDF Identification Algorithm

The algorithm is shown in the following table:

Online PDF Identification Algorithm

1. Determining the data in the sliding window for time k:

a) Choosing a kernel function K centered on x with a bandwidth h;

b) Each observation xi receives a specific weight proportional to the

scaled distance from the observation xi to x, which is

u = (x − xi)/h;

c) At a given x, the estimate is found by vertically summing up over

the k shapes.

This can be synthesized as:

f̂ (x) = 1
nh xi ∈ [x − h

2, x + h
2 ]

The general formula for KDE will be given by

f̂k(x) = 1
nh

∑n
i=1 K( x−xi

h )

where the dependence of the estimate on the kernel function K(.)

is denoted as f̂k .

2. Updating the new data for time k + 1 in the sliding window and go

back to Step 1;

2. Theorem 2 and Proof (To be included in paper as the approach)

Theorem 2 (Control gain estimation error convergence): As the delay data keeps

updating PDF identifier and
(
‖

∑n
j=1 P̃(k+1) j ‖ − ‖

∑n
j=1 P̃k j ‖

)
< 0 is satisfied, then the

estimation error for control gain ‖ K̃k ‖ asymptotically converges to zero.
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Proof:

First, we define the estimation error of control gain K as K̃k = Kk − K̂k =∑n
j=1 Pk jK j −

∑n
j=1 P̂k jK j . Pi j is the actual probability at k. Then, Lyapunov function

candidate is VKk
= K̃T

k K̃k .

∆VKk
= VKk+1 − VKk

= K̃T
k+1K̃k+1 − K̃T

k K̃k

= (Kk+1 − K̂k+1)
T (Kk+1 − K̂k+1) − (Kk − K̂k)

T (Kk − K̂k)

= (

nd∑
j=1

P(k+1) jK j −

nd∑
j=1

P̂(k+1) jK j)
T (

nd∑
j=1

P(k+1) jK j

−

nd∑
j=1

P̂(k+1) jK j) − (

nd∑
j=1

Pk jK j −

nd∑
j=1

P̂k jK j)
T (

nd∑
j=1

Pk jK j −

nd∑
j=1

P̂k jK j)

=‖

nd∑
j=1
(P(k+1) j − P̂(k+1) j)K j ‖

2 − ‖

nd∑
j=1
(Pk j − P̂k j)K j ‖

2

=‖

nd∑
j=1

P̃(k+1) jK j ‖
2 − ‖

nd∑
j=1

P̃k jK j ‖
2

=
(
‖

nd∑
j=1

P̃(k+1) jK j ‖ + ‖

nd∑
j=1

P̃k jK j ‖
)

︸                                           ︷︷                                           ︸
∆2(

‖

nd∑
j=1

P̃(k+1) jK j ‖ − ‖

nd∑
j=1

P̃k jK j ‖
)

= ∆2
(
‖

nd∑
j=1

P̃(k+1) jK j ‖ − ‖

nd∑
j=1

P̃k jK j ‖
)

= ∆2[(‖ P̃(k+1)1 ‖ − ‖ P̃k1 ‖) ‖ K1 ‖ + ‖ P̃(k+1)2 ‖ − ‖ P̃k2 ‖) ‖ K2 ‖ + · · ·

+ ‖ P̃(k+1)nd ‖ − ‖ P̃knd
‖) ‖ Knd ‖]

≤ ∆2
(
‖

n∑
j=1

P̃(k+1) j ‖ − ‖

n∑
j=1

P̃k j ‖
)
‖ Kmax ‖

∆2 > 0,Kmax = max
{
K1,K2, · · · ,Knd

}
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SinceVKk
is positive definite and ∆VKk

is negative definite provided K̃k = Kk − K̂k =∑n
j=1 Pk jK j −

∑n
j=1 P̂k jK j . Therefore, the estimation error of control gain asymptotically

converge to zero.

3. Theorem 3 and Proof (To be included in paper as the approach)

Theorem 3: (UUB Stability of the Regulation Error). Given the initial conditions

as the system state z0 and system matrices Az0, and Bz0, let u0(zk) be an initially admissible

control policy for the CPS (6). Let the control update law be given by (8) and (9) and if

the disturbance induced by the irremovable bias of PDF estimation has a bound ‖ dKDE ‖

and Kmin < 1/bmin such that the regulation error of system states has a uniformly ultimate

bounded convergence in the mean.

Proof:

Consider the following positive definite Lyapunov function candidate: Vzk = zT
K zk .

zk is the state vector of k. The corresponding estimated Lyapunov is V̂zk , therefore, ∆V̂zk =

V̂zk+1 − V̂zk . We consider ∆V̂zkm = V̂z(k+1)m − V̂zk for each possible system matrices (Azkm and

Bzkm). m represents one of the possible cases. If the maximum value of ∆V̂zkm is negative

definite, the system convergence is proven. The irremovable bias of PDF estimation is

considered the system state disturbance dk bounded by dM .
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∆V̂zkm = V̂zk+1m − V̂zkm

=‖ Azkm − BzkmKk zk + dk ‖
2 − ‖ zk ‖

2

=
(
‖ Azkm − BzkmKk zk + dk ‖ + ‖ zk ‖

)︸                                              ︷︷                                              ︸
∆3(

‖ Azkm − BzkmKk zk + dk ‖ − ‖ zk ‖
)

= ∆3
(
‖ Azkm − BzkmKk zk + dk ‖ − ‖ zk ‖

)
≤ ∆3

(
‖ amax − bminKminzk + dM ‖ − ‖ zk ‖

)
≤ ∆3

(
amax + bminKmin ‖ zk ‖ + ‖ dM ‖ − ‖ zk ‖

)
∀k = 1, 2, · · ·

∀m = 1, 2, · · · , nd

where ∆3 is positive definite, bmin = min
{
‖ Bzk1 ‖, ‖ Bzk2 ‖, · · · , ‖ Bzkm ‖

}
, Kmin =

min
{
‖ K1 ‖, ‖ K2 ‖, · · · , ‖ Knd ‖

}
.

Since V̂zk is positive definite and ∆V̂Kk
is negative definite provided the system state

‖ zk ‖≥
‖dM ‖+Amax

1−bminKmin
and Kmin < 1/bmin. Therefore, UUB stability of the regulation error is

proven.
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4. Other results for Case A, B, and C
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