
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Spring 2018 

Deep learning and localized features fusion for medical image Deep learning and localized features fusion for medical image 

classification classification 

Haidar A. Almubarak 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Computer Engineering Commons 

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering 

Recommended Citation Recommended Citation 
Almubarak, Haidar A., "Deep learning and localized features fusion for medical image classification" 
(2018). Doctoral Dissertations. 2663. 
https://scholarsmine.mst.edu/doctoral_dissertations/2663 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2663?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


DEEP LEARNING AND LOCALIZED FEATURES FUSION FOR MEDICAL IMAGE

CLASSIFICATION

by

HAIDAR ALI ALMUBARAK

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

2018

Approved by

R. Joe Stanley, Advisor
Randy H. Moss

William V. Stoecker
Donald C. Wunsch II

Bijaya Shrestha
V.A. Samaranayake



Copyright 2018

HAIDAR ALI ALMUBARAK

All Rights Reserved



iii

PUBLICATION DISSERTATION OPTION

This dissertation consists of the following three articles which have been submitted

for publication, or will be submitted for publication as follows:

Paper I: Pages 5-33 have been published in Information Journal.

Paper II: Pages 34-56 have been submitted to IJHSI Journal.

Paper III: Pages 57-86 have been prepared for submission to IJHSI Journal.



iv

ABSTRACT

Local image features play an important role inmany classification tasks as translation

and rotation do not severely deteriorate the classification process. They have been commonly

used for medical image analysis. In medical applications, it is important to get accurate

diagnosis/aid results in the fastest time possible.

This dissertation tries to tackle these problems, first by developing a localized

feature-based classification system for medical images and using these features and to give

a classification for the entire image, and second, by improving the computational complexity

of feature analysis to make it viable as a diagnostic aid system in practical clinical situations.

For local feature development, a new approach based on combining the rising deep

learning paradigm with the use of handcrafted features is developed to classify cervical

tissue histology images into different cervical intra-epithelial neoplasia classes. Using deep

learning combined with handcrafted features improved the accuracy by 8.4% achieving

80.72% exact class classification accuracy compared to 72.29% when using the benchmark

feature-based classification method.
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SECTION

1. INTRODUCTION

Local image features play an important role in many classification tasks [1, 2].

Translation and rotation do not severely deteriorate the classification process. Local features

have been used in several medical image analysis tasks [3, 4, 5] such as improving medical

image retrieval significantly [6]. Medical images such as X-ray and CT-scans usually

contain local areas of interest used by medical professionals to diagnose and classify

different diseases. Within these regions of interest (ROIs), there are some local features

that are prominent in different classes of images such as color, size, and shapes in different

areas of the image

Analyzing local features from different parts of an image and fusing the analysis

result can improve the classification accuracy [7]. The data fusion can either be from

different modalities or the same modality but from different regions of the image. Fusing

data from different modalities can improve the signal-to-noise ratio of different sensor

measurements [8] and can improve detection and classification [9].

One of the main goals of medical image analysis is to develop clinical decision

support system, which was shown to improve practitioner performance [10]. One of the

important aspects of a clinical decision support system, that is often neglected, is the running

time. Medical experts are often overwhelmed by documentation needs and need a fast and

accurate overview of each case [11].

For a long time, the classification of medical images involved manually extracting

features from the images such as statistical pixel-level features, shape features, texture

features and relational features [12]. In recent years deep learning has gained momentum

in many image classification tasks because features can be learned from data automatically
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[13] and medical image analysis application is no exception. Deep learning techniques have

been used in several applications involving medical images, such as pancreas segmentation

[14], cytoplasm and nuclei segmentation [15], skin lesion classification [16, 17], mitosis

detection in breast cancer images [18], and many more. While deep learning proved to be

very helpful in these tasks, manually crafted features still have their place in image analysis

and classification. One part of this dissertation demonstrates this by combining handcrafted

features and deep learning to achieve higher image classification accuracy than using each

paradigm alone.

1.1. PROBLEM STATEMENT

This dissertation explores unique contributions in medical image analysis for local-

ized feature development for localized and image-based classification and for addressing the

computational complexity of feature analysis to facilitate computer-assisted diagnostic aids

in practical clinical situations. For this work, two medical image classification tasks have

been examined. The first was concerned with classifying dermoscopy images into benign or

malignant; the color characteristics differences between benign and malignant dermoscopy

images are very important in distinguishing them. One issue faced when using color infor-

mation is that some color ranges are present in both classes. To tackle this problem, the

fuzzy-based approach was used and applied to a local cluster of pixels in the dermoscopy

images to determine the image class. The second classification task was to classify histology

images from cervical tissue for a pre-malignant condition known as cervical intraepithelial

neoplasia (CIN) which are seen as atypical cells in the epithelium region of the tissue. A

Papanicolaou (Pap) test is used for this type of screening. Definitive evaluation requires

histology slides of biopsied cervical tissue, and the interpretation of these slides is done by

an expert pathologist [19]. A cervical biopsy is classified as normal (no CIN) or as CIN1

(mild dysplasia), CIN2 (moderate dysplasia), or CIN3 (severe dysplasia) by identifying the

atypical cells in the epithelium by the visual inspection of histology slides [20, 21, 22]. In
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previous studies [21, 22, 23, 24] it was shown that an epithelium with atypical cells could

express different CIN grades in different vertical segments of the epithelium [25]. One

way to improve the classification accuracy is to analyze vertical segments of the epithelium

independently, and then fuse information from each of these segments to obtain the CIN

grade of the whole epithelium region.

1.2. SUMMARY OF CONTRIBUTION

This dissertation consists of three journal papers, as presented in the publication

list. The unique contributions can be summarized as follows:

1.2.1. Fuzzy Color Clustering forMelanomaDiagnosis in Dermoscopy Images.

The research presented is for skin lesion classification using fuzzy logic to fuse/cluster the

localized benign and melanoma color information for skin lesion feature development.

Color is a very important feature for discriminating skin lesions [26]. In this work, color

features were used as the basis for dermoscopic image classification. Clustering is defined

as partitioning data objects into a number of clusters or groups based on how similar they

are [27]. Proximity measures are used to determine if two objects are similar or not, and the

proximity function uses objects’ features in the calculation. In this paper, a local cluster of

pixels was used in a fuzzy-based algorithm to classify the dermoscopy images into benign

or malignant. The two features used to put a pixel in a cluster are: the distance between

the the pixel and the cluster centroid, and the fuzzy membership value of the pixel. The

color features can appear strongly in one class and weakly in the other class, and hence the

fuzzy-based algorithm was used. Fuzzy-based algorithms were shown to improve accuracy

in other medical image-related tasks such as segmentation [28] and content-based image

retrieval [29]. It was also used for cancer tissue clustering [30].

1.2.2. Algorithm Enhancements for Improvement of Localized Classification

of Uterine Cervical Cancer Digital Histology Images. In this research an improvement

to the computational efficiency of feature extraction and image analysis techniques devel-
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oped in [31] was examined to promote epithelium CIN classification in an expert system

development with application in a clinical setting. A graphic user interface was developed

to be used by clinicians, because the original algorithm was very slow and not suitable for

a clinical setting, the algorithm was examined thoroughly , and the bottlenecks were identi-

fied. Several changes were made and tested, resulting in 18 experiments. The modification

improved the time significantly while maintaining the classification accuracy.

1.2.3. Classification of Uterine Cervical Cancer Digital Histology Images using

A Hybrid Deep Learning and Handcrafted Features Approach. Deep learning in the

form of a deep convolutional network proved to be great in many application areas related

to images, such as image classification [32], face recognition [33], breast cancer mitosis

detection [18] and many more. An important factor in rise of deep learning adoption is

that it does not need engineered features for classification. Despite this important element

of deep learning, handcrafted features are still useful and important. In this research, a

new data fusion paradigm was developed based on deep learning and handcrafted features

techniques for localized and entire image classification for cervical intra-epithelial neoplasia

in digitized histology images. Using a deep learning approach alone gave a classification

accuracy similar to the handcrafted features approach, but combining the two approaches

yielded better classification results.
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ABSTRACT

A fuzzy logic-based color histogram analysis technique is presented for discriminat-

ing benign skin lesions from malignant melanomas in dermoscopy images. The approach

extends previous research for utilizing a fuzzy set for skin lesion color for a specified class

of skin lesions, using alpha-cut and support set cardinality for quantifying a fuzzy ratio

skin lesion color feature. Skin lesion discrimination results are reported for the fuzzy clus-

tering ratio over different regions of the lesion over a data set of 517 dermoscopy images

consisting of 175 invasive melanomas and 342 benign lesions. Experimental results show

that the fuzzy clustering ratio applied over an eight-connected neighborhood on the outer

25% of the skin lesion with an alpha-cut of 0.08 can recognize 92.6% of melanomas with

approximately 13.5% false positive lesions. These results show the critical importance of

colors in the lesion periphery. Our fuzzy logic-based description of lesion colors offers

relevance to clinical descriptions of malignant melanoma.
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1. INTRODUCTION

Diagnosis of early-stage melanomas is challenging, especially for melanomas which

have an atypical presentation [1, 2, 3, 4]. Dermoscopy is an imaging modality that uses a

simple hand-held device that eliminates surface glare and magnifies structures invisible to

the naked eye. Although dermoscopy significantly improves diagnostic accuracy compared

to naked-eye examination alone [5, 6], average dermoscopic melanoma sensitivity for

dermatologists and others seeing dermatology patients in three recent reader studies was

only 71 - 85% and specificity 54 - 71% [7, 8, 9]. Non-specialist sensitivity and specificity

is even lower; when compared to dermatologists, non-specialists were found to have a

sensitivity for melanoma of 54% and a specificity of 73% [10].

The relatively low diagnostic accuracy for discrimination of malignant melanoma

demonstrates the uncertainty involved in skin lesion analysis. This low diagnostic accuracy

is an important medical problem for society, since the incidence of cutaneous melanoma,

161,790 cases estimated in the US in 2017, vs. 140,860 cases for 2016, has risen every

year since 1979 [11, 12]. In more recent advances, techniques such as deep learning have

shown potential using pixel blocks from lesion images with disease labels for significantly

improved skin lesion discrimination, achieving an area under the diagnostic ROC curve

of approximately 0.91, exceeding the performance of dermatologists [8]. Even with the

improvements in computer-assisted techniques for skin lesion classification, learning and

application of specific features for skin lesion discrimination is important for clinicians

and clinician training. Therefore, the investigation of computer-assisted techniques for the

determination and analysis of specific skin lesion features is useful in the dermatology

community. In this research, we focus on automatic detection of melanoma colors.
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One of the most important features for detecting malignant melanoma is the skin

lesion color. Some studies have examined the influence of shape and color for skin lesion

discrimination and determined that shape is an important contributor for successful lesion

assessment [13]. Contributors to this assessment may include melanomas that tend to

have more colors present, often with different shades of tan, brown, brown or black and

occasional patches of red, white or blue. Moreover, melanoma colors are present in chaotic

patterns, classically described as "variegated" [14]. Many analytic color descriptors have

been applied to melanoma detection, most often utilizing the red, green and blue (RGB)

color space. These descriptors are among the most significant of all analytic descriptors of

melanoma. Ferris et al., found that the top three statistical features for melanoma were all

color feature characterizing color histograms and color asymmetry [7]. Analysis of various

analytic and clinical features byRubegni et al., showed that the singlemost significant feature

was red asymmetry [15]. This research group used variables that capture the number and

types of color elements within a lesion, to represent the chaotic pattern of color present

within a lesion, related to the "color islands" previously described by this group [16]. Other

color descriptors used to detect melanoma include variation of hues [17], analytical color

techniques for detecting color variegation [18], RGB color channel statistical parameters

[19, 20, 21], spherical color coordinates and (L, a*, b*) color coordinate features [22],

percentage of the skin lesion containing absolute shades of reddish, bluish, grayish and

blackish areas and the number of those color shades present within the skin lesion [23].

Color quantization for the different color shades examined in [24] was performed using the

median cut color quantization algorithm [24]. Using a training set of lesions to populate

a cumulative relative color histogram based on clinical melanoma and benign images

[25, 26] and dermoscopy images [27] has been explored for determining melanoma and

benign colors based on probabilistic and histogram region growing techniques for finding the

percentage of pixels within the skin lesion that are melanoma colored [25] and the clustering

of melanoma colored pixels within the lesion [26, 27]. Melanoma discrimination also has
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been investigated using fuzzy logic techniques to quantify the degree of association of lesion

colors with benign lesions based on determining a membership function for benign color

derived from a training set of benign lesions [28]. Color features sometimes are combined

with other features such as texture, but when comparing texture and color alone the color

features outperform the texture features [29].

Using color to characterize melanoma is faced with two major difficulties. First,

variations in lighting and slide processing make it difficult to characterize melanoma. The

use of relative color [27, 30, 31], where the average background skin color is subtracted

from each lesion pixel, has been used to help compensate for color variability in the

imaging process. The use of the relative color technique tries to remove variability of

color due to different skin types as well as to lighting and image processing techniques

[30]. Second, different melanomas have different color characteristics across skin lesions

which makes it difficult to reliably use melanoma color features as distinct differentiators

of melanoma. These difficulties highlight the need for color analysis techniques that do not

explicitly identify colors representative of melanoma (or benign) lesions as the foundation

for color-based skin lesion diagnosis. Fuzzy logic techniques can represent color with these

inherent difficulties through quantization of degrees of association as melanoma or benign

colors for skin lesion discrimination. This study extends the data-driven approaches from

[25, 26] using a training set of images for determining relative color degree of association

or membership as a benign color for finding the ratio of pixels within a skin lesion with a

specified level of membership as a benign color to all pixels within the lesion that have a

non-zero membership as a benign color [28]. This study introduces fuzzy logic techniques

for relative color representation that incorporates spatial context for the clustering of pixels

within specified regions of the skin lesion for color feature analysis. The goal of this study

is to present advances in color features for melanoma and benign lesion discrimination that

can be useful for clinicians in the diagnostic process.
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The remaining sections of the paper include: (1) an overview of dermoscopy image

acquisition; (2) the fuzzy logic technique for color histogram analysis and color feature

determination; (3) an overview of the lesion region analysis; (4) the automated approach

for melanoma detection; (5) experiments performed; (6) results and discussion and (7)

conclusions.

2. METHODOLOGY

2.1. Dermoscopy Image Data. Imaging of skin lesions is anticipated to have an

important role as a diagnostic aid for malignant melanoma. In this research, the red, green

and blue (RGB) color space of dermoscopy images was used to analyze skin lesions. In

the RGB space each dimension (R, G and B) typically uses 8 bits per pixel, providing 256

possible values for each dimension. Thus, there are a total of 2563 or 16,777,216 possible

colors in this color space.

This research uses dermoscopy skin lesion images with a typical size of 1024 x

768 pixels; all are digitized in RGB color space. The data set was selected at random

from 2000 dermoscopy images from Skin and Cancer Associates (Plantation, FL) and

the Dermatology Associates of Tallahassee, FL, in addition to images acquired from the

EDRA Interactive Atlas of Dermoscopy [32]. The images from the EDRA Interactive Atlas

of Dermoscopy were acquired from clinics in Europe using Heine Dermaphot equipment

with various cameras. Both sets of images were obtained using non-polarized contact

dermoscopy techniques. The study set includes 175 malignant melanoma images and 342

dysplastic nevus (benign) images. The melanomas are all invasive malignant melanomas,

with no melanomas in situ. Thus the set of images in this study samples a heterogeneous

population from a wide geographic area obtained with different techniques. Additionally,

dysplastic nevi in the image set show some degree of “atypia”, i.e., they have some degree

of the color chaos/variegation found in melanomas. Thus the images chosen comprise a

challenging diagnostic set of lesions. Figure 1 shows image examples from the image data
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set of a malignant melanoma (a) and a benign (dysplastic nevus) lesion (b). These images

demonstrate the degree of the degree of difficulty of diagnostic assessment in this group of

lesions.

(a) (b)

Figure 1. Example of Malignant Melanoma (a) and Benign Lesion (b)

2.2. Diagnostic Assessment. Table 1 below shows the diagnostic interpretations of

skin lesions for evaluating the automated skin lesion classification results that were applied

in this investigation. A true positive (TP) means diagnosing a melanoma as a melanoma.

A false negative (FN) means diagnosing a melanoma as a benign skin lesion. A true

negative (TN) means diagnosing a benign skin lesion as benign. A false positive (FP)

means diagnosing a benign skin lesion as a melanoma. The implication of a false negative

is delaying therapy for a melanoma, with worse consequences for the patient, while a false

positive results in an unnecessary biopsy.

2.3. Skin Lesion Border Determination. In this research, skin lesion borders are

found using the following procedure. A program called xborder developed by McLean [33]

is used to choose points along the border manually. After choosing the points, a closed curve

is formed using the points; the curveminimizes the spline curve function’s second derivative.

A dermatologist, working with a group of students, verified all borders drawn; modification

to the borders were done according to the dermatologist’s recommendation. The process
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Table 1. Skin Lesion Diagnosis Categorization Based on the Type of Skin Lesion

Computer-Assisted Skin Lesion Diagnosis
Actual Skin Lesion Diagnosis Benign Melanoma

Benign True negative (tn) False positive (fp)
Melanoma False negative (fn) True positive (tp)

therefore sought to find as accurate borders as possible without a known gold standard for

border accuracy. This approach has been used in several skin lesion feature analysis studies

[22, 25, 26, 27, 28, 33, 34, 35]. For an M row by N column RGB image, I, each pixel

in position (x,y) can be represented by a 3-tuple I(x, y) = (R(x, y),G(x, y), B(x, y)), where

1 6 x 6 N and 1 6 y 6 M .

2.4. Relative Color. Differences in lighting conditions, cameras, film types, and

skin colors should be taken into consideration when building a classification system of skin

lesions; the system needs to be relatively tolerant to these variations. This is particularly

true for our data set which came from three sources of lesions using digitized 35 mm photo-

graphic slides; we had no control over cameras used to capture original photographed skin

lesion data. In order to make relative tolerance to these variations possible, a relative color

method was used. The relative color of a skin lesion pixel is defined as the difference be-

tween that particular pixel value and the average value of pixels in the skin surrounding the

lesion [28]. Let ROI denote the skin lesion region in the image and be referenced as ROI =

{(x, y)|(x, y) ∈ I and (x, y) ∈ area inside the closed skin lesion boundary}.

Then, the relative color for all skin lesion pixels is given as

ROIrel(x, y) = (Rrel(x, y),Grel(x, y), Brel(x, y)) = (R(x, y) − Rskin,G(x, y) −Gskin, B(x, y) −

Bskin |(x, y) ∈ ROI), where −255 ≤ Rrel(x, y),Grel(x, y), Brel(x, y) ≤ 255. Rskin, Gskin and

Bskin are the average red, green and blue plane pixel values computed from the surrounding

skin. Section 2.5 presents the procedure for finding the surrounding skin. Relative color

provides many advantages when used for analyzing skin lesions. First, differences resulting
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from variation in ambient light and their respected digitization errors are reduced when

relative color is used. Second, errors in digitizing images from different film types or differ-

ent film processing techniques can be minimized by relative color. Third, the mammalian

visual system operates in a manner similar to the relative color technique. Finally, skin

color varies among persons and relative color tries to minimize this variation and produce

a skin-tone indifferent system

2.5. Surrounding Skin Color Determination. Several empirical relationships

were utilized to determine non-skin color, pixels in deep shadow, direct flash reflection

and exogenous marks are eliminated. An existing dermatology image database was used

under the supervision and guidance of a dermatologist to derive the skin pixel finder used

in this research. The skin pixel finder has been applied to skin lesion analysis in other

research [28, 34]. To approximate the surrounding skin color, the distance function is used

twice. First, a 10-pixel wide area surrounding the lesion is removed from consideration, to

allow for possible inaccuracy in border determination. Then the distance function is used

to determine an annular region just outside the 10-pixel-wide region; the area of this outer

annular region is 20% of the skin lesion size [28, 34], which is the area used for surrounding

skin calculation. If the lesion extends close to the image edge, the remaining non-lesion

pixels within this annular region are used rather than the standard 20% of lesion size. The

pixels determined by this technique are used to determine the average surrounding skin

color (Rskin, Gskin and Bskin) pixel values.

2.6. Color Histogram Bin Determination. The relative color histogram for the

set of benign lesions is used to develop the fuzzy logic techniques used in this research. The

pixel values for Rrel , Grel and Brel in the relative color space,defined by subtracting the R, G

and B values from the surrounding skin, can take values in the range [-255,255]. Pixels from

the entire benign lesion training set thus have 511 possible values on each of the three color

axes, resulting in a three-dimensional histogram for counting pixel values; this histogram

has 5113 possible values. To increase statistical significance for benign-malignant color
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separation and reduce computational complexity, these values are quantized by dividing

each original relative color value by 4, to create the final relative color histogram with

dimensions 128 x 128 x 128. Each final quantized histogram value represents a cube of

dimension 4 X 4 X 4 containing up to 64 original lesion color values. Thus each point in

the final relative color histogram is a “bin” that counts pixels with up to 64 possible original

color values.

Formally, let Cbin denote the set of relative color bins, and let Cbin(x, y) denote the

relative color bin in which the pixel (x, y) of the skin lesion falls. Since each of the original

axes has 511 possible values, quantization by dividing the axis by 4 will result in bins on

the edges of the cube that are 4 x 4 x 3 and one bin in the corner of the cube that is 3 x

3 x 3. Upon examining the training set relative color histograms, the bin that contains the

relative color -255 (before quantization) will not likely occur in dermoscopy images in the

three planes R, G, and B; hence that cube is assigned the smaller dimension (33).

2.7. Color Histogram Analysis Technique. The color histogram analysis consists

of three steps: Fuzzy set description, Color feature determination, and Threshold determi-

nation. The following sections describe each step in detail.

2.7.1. Fuzzy set description for trapezoidal membership function. The relative

skin lesion color was represented using a fuzzy logic-based approach, which was initially

developed and reported in [28]. Let B represent a fuzzy set [36] having a trapezoidal

membership function for relative skin lesion color, for the specified skin lesion class. This

study utilizes the same trapezoidal membership function from [25], which is derived using

a data-driven process that assigns membership values to skin lesion relative colors based

on frequency of occurrence in the training set of skin lesions. The colors within the color

histogram bins defined in the Section 2.6 were assigned membership values using the

following process: The training set of images for the specified class is used to populate the

three-dimensional relative color histogram bins in batch mode; each bin will contain the

sum of pixels with relative color mapping to that bin from all skin lesion regions in all the



14

training images. A secondary histogram is defined as a histogram of the three-dimensional

relative color histogram. The secondary histogram is a function of bins in the relative

color histogram; it will indicate the number of bins containing x pixels in the relative color

histogram. The benign skin lesion from the training data is used to determine the fuzzy set

B. The secondary histogram of the relative colors is used to assign the membership values.

The membership function µB(x) denoting the fuzzy set [36] is given as

µB(x) =


x
F for 0 ≤ x < F

1 for x ≥ F
(1)

where x is the bin frequency in the secondary histogram and F is the empirically determined

bin frequency count for full membership in the benign fuzzy set B. F is set as the frequency

count given that 5% of the secondary histogram of the benign skin lesions have frequency F

or greater. Increased bin frequency (up to F) will be reflected as increasedmembership value

in the specified class of skin lesion. Figure 2 shows a representative secondary histogram

with the frequency count F labeled in (a) and the trapezoidal membership function generated

in (b). The horizontal axis provides the frequency of occurrence (x) that a bin is populated

over all benign images of the training set. The vertical axis in Figure 2a gives the number

of bins with x “hits” per bin over the training set of benign images.

The trapezoidal shape compensates for the disparities in the 4 x 4 x 4 relative color

histogram bins populations from the training set of images where relative color histogram

bins with lower hits that are spatially near relative color histogram bins with a higher number

of hits are designated with degrees of association (i.e. membership) as benign colors. These

lower hit relative color histogram bins would be ignored in a crisp labeling, where a binary

decision is made to include or exclude a relative color bin as a benign color.

2.7.2. Color feature determination. The level of confidence of being in a skin

lesion class B is given by the fuzzy clustering ratio feature. The fuzzy clustering ratio

feature is computed as follows. Let M denote the set of relative color values that map into
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(a)

(b)

Figure 2. A Relative Secondary Histogram (a) and Its Corresponding Trapezoidal Mem-
bership Function for Fuzzy Set B (b). The Frequency Count F is Labeled on the Secondary
Histogram and Membership Function Plot.

relative color histogram bins labeled with

µB(CBin(x, y)) ≥ α (2)

for a specified α on B and (x, y) contained in the skin lesion. M is given by

M =
{
ROIrel(x,y) : µB(Cbin(x, y)) ≥ α for(x, y) ∈ ROI

}
(3)
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Let P denote the set of relative color values that map into relative color histogram bins

labeled with

µB(Cbin(x, y)) > 0 (4)

and (x, y) contained in the skin lesion such that

P =
{
ROIrel(x,y) : µB(Cbin(x, y)) > 0 for(x, y) ∈ ROI

}
(5)

Let L denote the set of pixel locations within the skin lesion region of interest with

relative colors ROIrel(x,y) that map intoM, formally

L =
{
(x, y)|ROIrel(x,y) ∈ M

}
(6)

Let N((x,y),r) denote the number of 8-connected neighborswithin the square neighbor-

hood of radius r for (x, y) ∈ ROI and N(M(x,y),r) denote the number of neighbors connected

within the square neighborhood of radius r that are contained in the lesion region of interest

for pixel (x, y) ∈ L, such that r = 0 refers to the pixel (x, y) itself, r = 1 refers to the

eight-connected neighborhood of (x, y) and so on. By Equation (6), the neighbors of radius

r for a point (x, y) ∈ L are excluded from calculating N(x,y) and N(M(x,y),r) if the neighbors

lie outside of the lesion ROI. Then,

S(α, r) =
∑
(x,y)∈L

N(M(x,y),r) (7)

represents the total number (running sum) of neighbors for all pixels within the skin lesion

with relative color values that map as colors of the specified class at the specified alpha-cut.

The cumulative total number of eight-connected neighbors for all (x, y) ∈ L is denoted as

V(r) =
∑
(x,y)∈P

N((x,y),r) (8)
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V includes all neighbors of pixels within the skin lesion that have a non-zero membership

value in B for the specified lesion class. The fuzzy clustering ratio for a skin lesion is given

as

R(α, r) = S(α, r)
V(R) (9)

Note that R(α, r) is computed based on the pixels within the skin lesion. The

surrounding skin pixels are only used for computing the average surrounding skin color for

determining the relative color of all pixels within the skin lesion. Thus, for α = 0, R = 1,

provided that at least one pixel within the skin lesion has a non-zero membership value in

B for a given radius r . If B represents the fuzzy set for benign skin lesion relative color

as determined from the benign training set of images, then R(α, r) represents the degree

to which the clustering of benign colors within square radius r of the skin lesion are the

colors perceived to be associated with benign skin lesions. After determining B, the next

step is to compute R(α, r) for all benign and melanoma skin lesions from the training data

for a specified value of α. A threshold T is automatically determined from the ratios R(α, r)

calculated from the training data. The procedure for finding T is presented in the following

Section 2.7.3. Skin lesions are categorized as either benign or melanomas for the data set

used in this research. A given skin lesion is classified as benign if R(α) > T . Otherwise,

the skin lesion is labeled as a melanoma. A similar process is used to determine B, R(α),

and T using melanoma skin lesion images as the training set. However, a given skin lesion

would be classified as benign if R(α, r) ≤ T .

2.7.3. Threshold determination procedure. The ratios R(α) computed from the

training data were sorted to facilitate automated threshold (T) selection. The approach used

for automatically selecting T for a particular is based on computing the true positive and

true negative rates for the training data. The procedure for choosing the optimal T involves

iterating T through the sorted ascending ratios R(α, r) from [0,1] in increments of 0.001.

For each T, tp and tn are determined from the training images. T is chosen as the greatest
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threshold for which tn ≤ tp. The final melanoma and benign lesion classification results

are obtained for the training and the test data using the final threshold T. The procedure is

repeated for specified values.

2.8. Lesion Region Analysis. After determining B and µB from the training set

of images for the specified class, R(α, r) is computed over different skin lesion regions,

referenced as boundary area percentages, for skin lesion discrimination. The boundary area

percentage is defined as the uniform skin lesion region closest to the boundary that contains

a specified percentage of the lesion area. The boundary area region is found using the

method developed in [37] with summary in pseudocode:

1. start with the lesion border

2. compute the distance transform using 8-connected distance to get pixel distance from

the lesion boundary inside of the skin lesion

3. starting with a distance of 0 (lesion boundary), determine the lesion boundary region

with distance less than or equal to the current distance

4. compute the area of the resulting lesion boundary region

5. retain the lesion boundary region if its area is greater than the boundary area percent-

age

6. otherwise, increment the distance by 1 and repeat Steps (2) - (6)

Steps (5) and (6) show that the process continues until the area percentage criterion

has been satisfied. Figure 3 shows examples of boundary area percentages of 10%, 25%

and 75% of the lesion area; only the areas shown in white are used for feature calculations;

the remaining lesion interior is excluded from feature calculations.
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(a) (b) (c)

Figure 3. Boundary Area Percentage Examples Using 10% (a), 25% (b) and 75% (c) of the
Lesion Area for Analysis (White Region). This is the Same Lesion as in Figure 1

3. EXPERIMENTS PERFORMED

For this research, 175 melanoma and 342 benign dermoscopy images are analyzed.

The fuzzy logic-based analysis technique is evaluated on 25 randomly chosen training/test

sets with a 90/10 ratio. The relative color fuzzy set Bwith trapezoidal membership function

is determined from the benign training images using the entire skin lesion. Variables are

assigned as follows: α = 0.1, 0.2, 0.4, 0.6, 0.8 and 1, r = 0, and 1 and boundary area

percentage 10%, 25%, 75%, and 100%; classification of test lesions as melanoma or benign

is based upon the optimal threshold T, Section 2.7.3. The entire process is repeated, this

time using the melanoma training images to determine B.

4. RESULTS AND DISCUSSION

Figure 4 presents the average test results over 25 trials for r = 0 boundary area

percentages of 10%, 25%, 75%, 100% in (a) - (d), respectively. Figure 5 shows the average

test results over 25 trials for r = 1 and α = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 for boundary area

percentages of 10%, 25%, 75%, 100% in (a) -(d), respectively. In Figures 4 (a) - (d) and

5 (a) - (d), the horizontal axis provides the alpha-cut value, and the vertical axis gives the

correct percentage discrimination rate. For each alpha-cut, the following labeling scheme
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is used: (1) the average correct melanoma rate found based on computing R(α, r) using the

benign training images for determining the fuzzy set B is denoted as FCN-Melanoma; (2)

the average correct melanoma rate found based on computing R(α, r) using the melanoma

training images for determining the fuzzy set B is denoted as FCM-Melanoma; (3) the

average correct benign rate found based on computing R(α, r) using the benign training

images for determining the fuzzy set B is denoted as FCN-Benign; and (4) the average

correct benign rate found based on computing R(α, r) using the melanoma training images

for determining the fuzzy set B is denoted as FCM-Benign. Note that other boundary area

percentage areas, including 50%, were tested, but the results were not improved over the

tables presented in this study.

The experimental results shown in Figures 4 and 5 highlight several observations.

First, from Figure 4 the average correct melanoma and benign rates are higher when

computing R(α, r = 0) based on determining B using the benign training set of images than

the rates based on themelanoma training set of images for all boundary area percentage cases

examined. In particular, the disparity between the melanoma correct rates for the benign

and melanoma training approaches, respectively, for determining R(α, r = 0) increases

with the boundary area percentage examined, with the greatest disparity observed for the

100% boundary area percentage case (entire lesion). A similar trend is observed between

the benign correct rates for the benign and melanoma approaches, respectively. Using

the benign training images to determine B for computing R(α, r = 0) may yield better

discrimination capability because relative colors may be more consistent in benign lesions

than in melanoma lesions.

Second, from Figures 4 and 5 for r = 0 and r = 1, the test true positive rate (FCN-

Melanoma) exceeds the true negative rate (FCN-Benign) for all boundary percentage area

cases using the benign training images to determine the fuzzy set B.



21

(a)

(b)

(c)

(d)

Figure 4. Average and Standard Deviation Test Results Over 25 Randomly Generated
Training/Test Sets for Different Boundary Area Percentages for r = 0. FCN and FCM
Denote The Fuzzy Ratio Features Computed Using the Benign and Melanoma Training
Images to Determine Discrimination Accuracy. (a) Boundary Area Percentage = 10% (b)
Boundary Area Percentage = 25% (c) Boundary Area Percentage = 75% (d) Boundary Area
Percentage = 100%
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(a)

(b)

(c)

(d)

Figure 5. Average and Standard Deviation Test Results Over 25 Randomly Generated
Training/Test Sets for Different Boundary Area Percentages for r=1. FCN and FCMDenote
the Fuzzy Ratio features computed using the benign and melanoma training images to
determine discrimination accuracy. (a) Boundary area percentage = 10% (b) Boundary area
percentage = 25% (c) Boundary area percentage = 75% (d) Boundary area percentage =
100%
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For fuzzy ratio R(α, r) calculations, the numerator S(α, r) and the denominator V(r)

are dependent on the training set for the specified class of images used to determine B.

Every pixel within every training image of the specified class of images has a nonzero

membership in B. Accordingly, V(r) is equal to the lesion area for those training images,

and each pixel within every training skin lesion is included in S(α, r) for some range of

α > 0. This is not necessarily true for the non-specified class of training images and the

melanoma and benign test images. Because the training fuzzy ratios R(α, r) for the specified

class of training images are slightly skewed from the test benign fuzzy ratios R(α, r), the

threshold T determined from the training set of images may not be as reflective of the test

fuzzy ratios for the specified class of images as for the non-specified class of images. A

similar trend is observed from Figures 4 and 5 for r = 0 and r = 1 for the true positive

(FCM-Melanoma) and true negative (FCM-Benign) rates for all boundary percentage area

cases except for the 10% case using themelanoma training images to determineB, where the

true positive rate exceeds the true negative rate for α > 0.4. This trend could be attributed

to the approach used for deriving the fuzzy set B and the membership function µB. There

are fewer melanoma images than benign lesion images, and the 10% boundary area cases

results in fewer relative color histogram bins being populated, yielding most relative colors

as having low membership in B. Thus, melanoma and benign lesions have similar R(α, r)

for small values of α(α < 0.4), leading to low melanoma discrimination rates.

Third, for r = 0 the highest true positive and true negative rates are achieved for

the 100% boundary area case, with the highest melanoma discrimination rate of 80.8% at

α = 0.6 and the highest benign discrimination rate of 74.6% at α = 0.4. The r = 0 case

corresponds to computing the fuzzy ratio introduced in previous research for clinical images

[28]. These results for the dermoscopy images are slightly lower than the true positive and

true negative results achieved applying this feature to skin lesion discrimination in clinical

images, where the highest true positive results obtained were 91.74% with a corresponding

true negative rate of 77.49% at α = 0.05 [28]. The dermoscopy image results for r = 0 are
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likely lower compared to the clinical image results reported in [25] because there are wider

color variations in dermoscopy images than in clinical images. The resulting cumulative

histograms from the training set of lesions have fewer relative color bins with a high number

of hits, so there are a smaller number of relative histogram color bins with high number of

hits, so there are a smaller number of relative histogram color bins with high membership.

This particularly true for the melanoma lesion images, which tend to have greater color

variation than benign lesion images. The r = 0 case provides for all pixels within the lesion

that satisfy the alpha-cut constraint in the numerator of R(α, r) and provide for any degree

of membership in B in the denominator V(r) without taking into account spatial context for

feature determination. As a result, there is less variation in R(α, r = 0) for the benign and

melanoma images for different values of α. The experiments for computing R(α, r = 1)

incorporate only some spatial context for feature calculations which allows for clustering of

neighboring pixels with membership values that satisfy the constraint.

Fourth, for r = 1 the highest true positive (FCN-Melanoma) and true negative

(FCN-Benign) rates are achieved for the 25% boundary area case using the benign images

as the training set of images to determine B, with the highest true positive rate of 91.29% at

α = 0.4 and the highest true negative rate of 86.9% at α = 0.2 and 0.4. The true negative

rates using the benign images as the training set of images are consistently higher at the 25%

boundary area case for all alpha-cuts than for the other boundary area percentage cases.

The feature R(α, r) for r = 1 is computed as the sum of the number of eight-connected

neighbors that satisfy the alpha-cut criterion for each pixel within the lesion that satisfies

the alpha-cut criterion divided by the sum of eight-connected neighbors that have non-zero

membership in B for each pixel within the lesion that has non-zero membership in B.

This feature is similar to a crisp color clustering ratio investigated in previous research

[26, 27]. In order to determine if any improvement in lesion discrimination can be achieved

based on refining the alpha-cut criterion, an experiment was performed for the r = 1 case

using α = 0.02, 0.05, 0.08, and 0.15. Figure 6 shows the average and standard deviation
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true positive (FCN-Melanoma) and true negative (FCN-Benign) results for r = 1 and

α = 0.02, 0.05, 0.08, 0.1, 0.15, and 0.2 based on using the benign images as the training set

of images to determine B. Note that the true positive and true negative results for α = 0.1

and 0.2 are contained in Figure 5b. From Figure 6 the highest true positive rate of 92.6% is

obtained for α = 0.08 with a corresponding true negative rate of 86.5%. This combination

of r = 1 and α = 0.08 also yielded the highest overall weighted true positive and true

negative correct recognition rate of 88.51%, compared to the combination r = 0 and α = 1

giving the highest weighted correct recognition rate of 73.73%. These results highlight

the significant lesion discrimination capability of the fuzzy clustering ratio, incorporating

spatial information using neighbor clustering (r = 1) over individual pixel-based color

descriptor determination (fuzzy ratio) for enhancing skin lesion discrimination.

The color clustering ratio is based on using both melanoma and benign training sets

of images for populating a cumulative relative color histogram, probabilistic labeling of the

relative color histogram bins asmelanoma or benign colors withmelanoma and benign color

region growing within the histogram for final melanoma and benign color bin assignments.

The clustering ratio feature is computed over the boundary region of interest to determine

clustering of melanoma colors. For each melanoma pixel, i.e., for each pixel that maps

as a melanoma color, the sum of eight-connected pixels that map as melanoma colors is

calculated and added to the cumulative sum for all melanoma pixels in the boundary region.

This total is divided by the total of all eight-connected neighboring pixels for all melanoma

pixels in the region. Applying the color clustering ratio to skin lesion discrimination in

dermoscopy images yielded true positive, true negative, and overall classification rates as

high as 87.7%, 74.9%, and 81.3%, respectively, for the 75% boundary area percentage case

[27]. The fuzzy logic-based approach improves the skin lesion discrimination capability

over the crisp clustering ratio. The fuzzy logic-based approach achieves the true positive

highest results in the outer 25% of the lesion, which is consistent with the color clustering

ratio results obtained for clinical images [26]. The utility of the fuzzy logic-based approach
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is that the model used for feature calculations is data-driven based on the class of interest to

determine the fuzzy set B and its corresponding membership function µB and only requires

information about the remaining class to find the threshold T for discrimination. In the

feature calculation process, no decision is necessary to label colors as melanoma or benign.

Rather, the data-driven process provides for the degree of association of different colors as

melanoma or benign, depending on the class used to determine B, based on the frequency

of occurrence in the training set of images. Because relative color is used for mapping RGB

colors at each pixel location in the lesion to relative color bins, this framework can easily be

updated as additional image data is acquired, adapting to the variations in image acquisition

such as lighting and the types of lesions that may be observed in particular geographic

locations.

(a)

Figure 6. Average and Standard Deviation Test Results Over 25 Randomly Generated
Training/Test Sets for 25% Boundary Area Percentage for r = 1 and α = 0.02, 0.05, 0.08,
0.1, 0.15 and 0.2. FCN Denotes the Fuzzy Ratio Features Computed Using the Benign
Training Images to Determine the Fuzzy Set B

Overall, R(α, r) yields higher true positive results for r = 1 than for r = 0 for all

corresponding boundary area percentage cases and alpha-cuts, indicating that quantifying

the grouping of similar colors provides more significant discrimination information than

quantifying isolated color information. Experimental results also show that the outer 25%

of the lesion enhances discrimination capability. Previous research with color feature
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analysis in clinical images showed that the outer 10% of the skin lesion yielded the highest

melanoma discrimination capability [26]. Finally, the fuzzy logic-based approach provided

higher discrimination (true positive and true negative results) when computing R(α, r)

based on determining B using the benign training set of images over the melanoma training

set of images. This finding may be attributed to the presence of specified color clusters

in benign lesions more consistently than in melanoma lesions. The features computed

using the melanoma and benign training sets of images provide complementary information

because only the specified class of training lesion images is used to populate the relative color

histogram to determineB. Experimental results presented here provide further confirmation

of the effectiveness of relative color, since the image setswere acquired fromdifferent patient

populations via significantly different imaging systems.

The results found in the current study have relevance for clinicians. First, our results

confirm results from a previous study that found that white or hypopigmented areas in the

outer three deciles of the lesion were needed for the best discrimination of melanoma vs.

benign [38]. Second, we have confirmed the clinical impression that colors within the lesion

periphery, specifically the outer lesion deciles, are important in describing benign lesions,

since a circumferential “hazy border”, with coloration intermediate between that of skin

and lesion, implies a benign lesion [32] and a “pink rim” is a sign of a melanoma [39].

Third, the patches or clusters of color that matter most are larger than a single pixel but

still relatively small, in the single-digit range, as in the “peppering” of early malignancies

[40, 41]. Thus a fuzzy logic-based description of lesion colors offers relevance to clinical

descriptions of malignant melanoma.

5. CONCLUSIONS

In this research, a fuzzy logic-based color analysis approach was investigated for

differentiating benign skin lesions from melanomas in dermoscopy images. The proposed

approach extends previous research using a fuzzy clustering technique based on a trapezoidal
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membership function to represent relative skin lesion color for a specified class of lesions

and the degree to which relative skin lesion colors are from the specified class. Color

histogram analysis on a training set of images for a specified class provided the basis for

skin lesion color membership assignment. A fuzzy ratio for r = 0 and 1 was computed to

reflect the area of the skin lesion with a specified degree of association to specified class

color to the overall area of the lesion with any degree of color for that specified class.

An automated thresholding technique, using the intersection between true negative and

positive rates, was developed to differentiate benign skin lesions from melanomas based on

the computed ratios over a training set of images. The thresholding determined from the

training data is applied to the test data. Experimental results (as summarized in Figures 4

- 6) demonstrate that this technique can be used to successfully differentiate benign skin

lesions from melanomas with true positive rates as high as 92.6% for the outer 25% of the

lesion with r = 1 and α = 0.08 based on the benign set of training images to determine

B. These results provide a substantial improvement over the baseline fuzzy ratio feature for

r = 0.

Future work on fuzzy logic-based color analysis will extend this research to larger

data sets and explore combinations of percentile-based features, e.g., decile-based calcu-

lated features, as well as features based on various radii.
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ABSTRACT

In prior research, we introduced an automated, localized, fusion-based approach for

classifying squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical

intraepithelial neoplasia (CIN) from digitized histology image analysis. The image anal-

ysis approach partitioned the epithelium along the medial axis into ten vertical segments.

Texture, cellularity, nuclear characterization and distribution, and acellular features were

computed from each vertical segment. The individual vertical segmentswereCIN classified,

and the individual classifications were fused to generate an image-based CIN assessment.

In this research, image analysis techniques are investigated to improve the execution time

of the algorithms and the CIN classification accuracy of the baseline algorithms. For an
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experimental data set of 117 digitized histology images, execution time for exact grade CIN

classification accuracy was improved by 32.32 seconds without loss of exact grade CIN

classification accuracy (80.34% vs. 79.49% previously reported) for this same data set

Keywords: Cervical Cancer, Clinical Decision Support Systems, Data Fusion, Image

Classification

1. INTRODUCTION

There were 527,642 new invasive cervical cancer cases reported in 2012, with

an estimated 265,672 deaths [1]. Around 84% of the new cases were reported in less

developed countries. Screening for cervical cancer and its precursor lesions is carried

out using a Papanicolaou (Pap) test. Definitive evaluation requires histology slides of

biopsied cervical tissue; interpretation of these slides is done by an expert pathologist [2].

Pathologists seek to detect cervical intraepithelial neoplasia (CIN), which is a pre-malignant

condition for cervical cancer. A cervical biopsy is classified as normal (no CIN) or one

of three CIN grades: CIN1 (mild dysplasia), CIN2 (moderate dysplasia), or CIN3 (severe

dysplasia) by identifying the atypical cells in the epithelium by the visual inspection of

histology slides [3, 4, 5]. Figure 1 shows examples of the CIN grades. Delayed maturation

with an increase in immature atypical cells from bottom to top of the epithelium has been

observed as CIN increases in severity [6]. As shown in Figure 1, atypical immature cells

are often present in the bottom third of the epithelium for CIN1 (Figure 1b). The atypical

immature cells commonly appear in the bottom two thirds of the epithelium for CIN2

(Figure 1c), and atypical immature cells are typically present in the full thickness of the

epithelium for CIN3 (Figure 1d). In addition to analyzing the progressively increasing

quantity of atypical cells from bottom to top of the epithelium, identification of nuclei

atypia is also significant [6]. Nuclei atypia is characterized by variation in nuclei shapes

and sizes. Visual assessment of nuclei differences is challenging, contributing significantly

to diagnostic inter- and intra-pathologist variation. Nuclei deformation characterization
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and atypical cell quantization play a critical role in identifying CIN grade [3]. Computer-

assisted CIN diagnostic methods have been explored in other studies [5, 7, 8, 9, 10, 11].

These methods studied texture features [10], nuclei detection and Delaunay triangulation

analysis [8, 11], medial axis determination , and localized CIN grade assessment [5, 7, 8].

(a) (b)

(c) (d)

Figure 1. CIN Grades Example (a) Normal, (b) CN1, (c) CIN2, (d) CIN3

In previous research, we investigated a localized fusion-based approach to classify

epithelium into four different CIN grades [7, 8] . The approach described in [7] yielded

88.5% accuracy for an image set of 61 digitized histology images. For this experimental

dataset, the computation time was high, with an average feature extraction time of 36.18

seconds per image; some images took more than 200 seconds. Thus, it would be impractical
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to utilize those image analysis techniques in a semi-automated tool in a clinical setting to

assist expert pathologists in their clinical assessment of digitized histology images The goal

of this research is to improve the computation time for the image analysis approach used

in [7] without degrading the classification accuracy. In this research, we have examined

117 cervical epithelium images that were manually cropped out of the digitized histology

slides of Hematoxylin and Eosinophil (H&E) preparations of tissue sections. An expert

pathologist then created “ground truth” diagnostic data by classifying the images into one of

four grades (Normal, CIN1, CIN2, and CIN3). In this paper we investigate image analysis

algorithm modifications to decrease computation time for automatic CIN classification of

these images, as described in the methods section, and, for each modification, we calculate

the execution time and determine the CIN discrimination accuracy. Changing the region

of interest (ROI) has been used before [12] to optimize performance of CAD systems. It

was shown that increasing the ROI will increase processing time but not necessarily the

accuracy [12]. Here we are not changing the region of interest, but changing other aspects

of the feature extraction algorithms to reduce computation time. Section 2 of this article

presents the methods used. Section 3 describes the experiments performed, and Section 4

presents the results analyses.

2. METHOD

In this paper we are utilizing 117 digitized histology images in extending the study

from [7, 8]. The process includes the steps: 1) Locate the medial axis of the segmented

epithelium; 2) Divide the epithelium into vertical segments; 3) Extract features from the

individual vertical segments; 3) classify each vertical segment; and 4) Fuse CIN grades

of the vertical segments to obtain a CIN grade for the whole epithelium image. Detailed

descriptions of the algorithm implementations are given in [7].
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2.1. Overview of Medial Axis Detection and Vertical Segment Partitioning

Algorithms. A summary of the approach to detect the medial axis and to partition the

epithelium to obtain vertical segments follows. First, the medial axis for the interior 60% of

the whole epithelium sample is determined using the distance transform as described in [8].

The leftmost and rightmost 20% of the sample (L-R 20%) use the method described in [7].

Second, the image and its corresponding epithelium binary mask are read; then the mask is

applied to the image. The rotation angle is determined and used to rotate the image and the

mask. Third, the bounding box of the rotated binary mask corresponding to the epithelium

is used in the distance transform function. For the interior 60% the highest intensity pixels

of the distance transform along vertical slices (max of each column) are used as the medial

axis. For the L-R 20%, the center line of the bounding-box that divides the epithelium into

top and bottom halves is calculated. Then the intersection points between the center line and

the edge of the 60% interior medial axis are determined; these will be the starting points for

medial axis correction. Fourth, the edges of the epithelium mask are computed using the

Sobel filter; these edges are divided into 20%, 60%, and 20% parts. The median points of

the left and right edges of the entire segment are used as endpoints of the medial axis. The

medial axis in the L-R 20% of the segments is then rotated between the intersection points

and the end of the epithelium to align the ends with the median points found in the edges.

The details of this process can be found in [7] and [8]. Figure 2 presents an image example

of the epithelium automatically determined using the algorithm from [8] overviewed above.

Figure 2 also shows the partitioning of the epithelium into 10 vertical segments, where each

segment’s midpoint is perpendicular to the midpoint of the segment’s medial axis.

2.2. Feature Extraction from Individual Vertical Segment Images. From [7],

twenty-seven features were extracted from each individual vertical segment for CIN classi-

fication. The features are divided into six groups: a) Texture Features (F1-F10), b) Cellular
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Figure 2. Vertical Segments of the Epithelium

feature (F11-F13), c) Nuclei Features (F14,F15), d) Acellular features (F16-F22), e) Com-

bined features (F23,F24), f) Triangular features (F25-F27). The feature extraction process

is described below.

2.2.1. Texture features. A grayscale luminance copy of the segment was used

to derive first-order structural measures (contrast, energy, correlation, and uniformity).

The gray-level co-occurrence matrix (GLCM) [5] [7] was computed from the grayscale

image and four second-order measures (contrast, energy, correlation, and uniformity) were

calculated from the GLCM. These features are denoted as F1-F10: Contrast of segment

(F1), Energy of segment (F2), Correlation of segments (F3), Segment homogeneity (F4),

Contrast of GLMC in horizontal (F5) and vertical (F6) directions, Correlation of GLMC

in horizontal (F7) and vertical (F8) directions, Energy of GLMC in horizontal (F9) and

vertical (F10) directions.

2.2.2. Cellular features. The luminance image Figure 3 shows three ranges of

intensities corresponding to acellular, nuclei, and cytoplasm areas
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Figure 3. Cellular Features Example

The K-Means clustering algorithm with K =3 was used to cluster all pixels in the

luminance image [8] into 3 clusters: light cluster, medium cluster, and dark cluster. The

ratio of the pixels in each cluster to the total pixels in the epithelium (Features F11-F13) is

calculated as follow:

Accellular ratio =
number of pixels in light cluster
Total pixels in epithelium region

(1)

Cytoplasm ratio =
number of pixels in medium cluster
Total pixels in epithelium region

(2)

Nuclei ratio =
number of pixels in dark cluster
Total pixels in epithelium region

(3)

2.2.3. Nuclei features. The nuclei ratio or dark areas discussed above only compute

the percentage of epithelium considered to be nuclei but does not quantify the number of

nuclei. From Figure 1 it can be seen that the number and shape of nuclei is correlated with

the degree of CIN–the more nuclei we have, the higher the CIN grade. An algorithm was

developed to detect and quantify the nuclei [7] to facilitate better classification precision.
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The process is performed twice to generate two masks that are added to generate the final

mask. The second time the same process is carried out except after sharpening the image

in the preprocessing stage the background is inverted. Inverting the background helps in

detecting nuclei that are not detected in the first run. Figure 4 shows example of nuclei

being detected with inverted and non-inverted background images.

Nuclei detection consists of a preprocessing stage and a detection stage. The

preprocessing steps are as follows: The segment needs to be converted first into a grayscale

image I, then an averaging filter (A) is applied to I, given in Equation 4 as:

A =
1
16


1 2 1

2 4 2

1 2 1


∗ I (4)

After the grayscale image is filtered, it is then sharpened to emphasis the dark

shading areas (Equation 5) where k is empirically determined as 2.25:

ISharpen = kI − A (5)

Second, the Matlab function imclose is then used with a circular structuring element

of radius 4 to perform morphological closing on the nuclei mask image. The resultant

image will still contain some holes that will be filled using Matlab’s imfill function. After

filling the holes, Matlab’s imopen function is used to perform morphological opening with

a circular structuring element of radius 4. Small areas corresponding to noise objects (non-

nuclei objects) within the epithelium region of interest from the mask are then eliminated

with the area opening operation using the Matlab function bwareaopen. The execution time

bottleneck lies in the background inversion and clustering algorithms. To preserve the edges

of the epithelium, the inversion process uses a sliding window of size 2 pixels; if the window

is not on the edge, it will invert the pixels covered by the window, otherwise keep it intact.

For a segment of size M ∗ N it will take M∗N
2 operations. The clustering works by sliding
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a non-overlapping window of size 29 by 29 pixels and clustering the values covered by this

window. Localizing the process this way enhances the detection of nuclei especially for

smaller images. The number of times the clustering algorithm runs is given by
⌈ M
wh

⌉
∗
⌈ N
wl

⌉
where M and N are image dimensions and wh and wl are window dimensions. With small

window size and large image size, the processing time for larger images is relatively high

compared to a larger window size. Using the final nuclei mask nuclei features F14 and F15

(a) (b) (c)

Figure 4. Effect of Inverting Background on the Detection of Nuclei. (a) Shows the
Segments Grayscale Version, (b) Shows the Nuclei Being Detected Without Inverting and
(c) Shows the Nuclei Detected After Inverting

are calculated as follows:

Average nucleus area =
nuclei area total
number o f nuclei

(6)

Ratio o f background to nucleus area =
total non − nuclei area

total nuclei area
(7)

Where “nuclei area total” represents the number of pixels in the white area, “nuclei number”

is the total number of white regions, and “total non-nuclei area” is the sum of black pixels

within the epithelium region.
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2.2.4. Acellular features. Acellular area detection is similar to nuclei detection.

This consists of two steps: first detect the light area and create a binary mask of it; then

use the mask in the R, G, B, and Luminance planes to calculate the features. The light area

detection has the following steps: Step 1: Convert the original image from RGB color space

to L*a*b* color space, then select the luminance component L* Step 2: Perform adaptive

histogram equalization on the image from step 1 using Matlab’s adapthisteq. Step 3: Apply

a threshold of 0.6 to eliminate the dark nuclei regions and to retain the lighter nuclei and

epithelium along with the light areas. Step 4: Segment the light areas using the K-means

algorithmwith K equal to 4. The K-means algorithm input is the histogram-equalized image

from step 2 multiplied by the binary image from step 3. Step 5: Remove from the image

all objects having an area less than 100 pixels, determined empirically, using the Matlab

function regionprops. A morphological closing is performed with a disk structure element

of radius 2. After generating the final mask in step 5 above the acellular features F16-F22

are calculated as follows:

Intensity ratio =
Light Area Intensity

Background Intensity
(8)

Ratio R =
Light Area Red

Background Red
(9)

Ratio G =
Light Area Green

Background Green
(10)

Ratio B =
Light Area Blue

Background Blue
(11)

Luminance ratio =
Light Arealuminance

Backgroundluminance
(12)
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Ratio light to segment area =
Light Area

Segment Area
(13)

Ratio light to background area =
Light Area

Background Area
(14)

where Segment Area gives the epithelium area within the vertical segment; Light Area

is the area of all light area regions; Light Number corresponds to the number of light

areas; Background Area represents the total number of non-nuclei and non-light area

pixels inside the epithelium within the vertical segment (i.e., background area); Light

Area Intensity, Light Area Red, Light Area Green, Light Area Blue, and Light Area

Luminance are the average intensity of red, green, blue, and luminance, respectively, inside

epithelium of the vertical segment; Background Intensity, Background Red, Background

Green, BackgroundBlue, andBackgroundLuminance are the average intensity of red, green,

blue, and luminance, of the non-nuclei and non-light area pixels within the epithelium of

the vertical segment.

2.2.5. Combined features. After the nuclei and the acellular features were ex-

tracted, two new features were calculated to capture the relative increase in nuclei numbers

as CIN grade increases. These features are the ratio of the acellular number to the nuclei

number (F23), and the ratio of the acellular area to the total nuclei area (F24). These

features are calculated as follows:

Ratio acellular number to nuclei number =
Light Number

Nuclei Number
(15)

Ratio acellular area to nuclei area =
Light Area

Nuclei Area
(16)

Where Light Number and Nuclei Number represent the total number of light areas and

nuclei respectively.
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2.2.6. Triangular features. The centroids of the nuclei detected in Section 2.2.3

were used as vertices to generate Delaunay triangles. The vertical segment being processed

is sub-divided into three horizontal layers. The aim is to associate the presence of increasing

nuclei throughout the epithelium with increasing CIN grades. After locating the vertices

for Delaunay triangles (DT), the DT algorithm iteratively selects point triples to become

vertices of each new triangle created [5]. After the triangles in three different layers were

obtained, the following features are computed: number of triangles in top layer, middle

layer, and bottom layer, F25-F27, respectively [7].

2.3. Individual Vertical Segment and Image-based CIN Classification. After

extracting the 27 features from all individual segments of the image, SupportVectorMachine

(SVM) and Linear Discriminant Analysis (LDA) classifiers are trained and tested using a

leave-one-image out approach as described in [7]. The process goes as follow: One image

(10 segments) is taken as the test image and the remaining images are used for the training.

The features from the training set are then normalized using themean and standard deviation.

The normalized features are then used to train an SVM or LDA classifier using the expert

(RZ) CIN labels for the whole image applied to each of the vertical segments. The trained

model is then used to classify the individual segments of the test image, and the resulting

predicted CIN grades are fused to obtain the CIN grade of the entire test epithelium image

using a voting scheme by assigning the test image the most frequent class grade of the

individual segments; if there is a tie assign the highest class grade (e.g. if there is a tie

between CIN2 and CIN3 assign the image CIN3). The process is then repeated for all

images as the test image.

2.4. Proposed Changes to Feature Extraction Algorithms to Improve Timing

forClinicalApplication. Using the epithelium image analysis and classification algorithms

from [7], the baseline time to generateCINgrade outputwas determined for the experimental

data set. The experimental data set of 117 images took an average of 49.88 seconds per

image for preprocessing and extraction of 27 features with a maximum reaching 223.20
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seconds based on the image analysis and classification algorithms used in [7]. A graphical

user interface (GUI) application was developed in Matlab®, along with the image analysis

and classification algorithms. The profiling tool in Matlab® [13] was used to determine

which parts of the algorithm consume the greatest time in the feature extraction process.

The features extraction workflow starts by reading an image along with its mask, the mask

is then applied to the image; the image is then aligned correctly, by rotating major axis, for

vertical segmentation. The medial axis is then detected and used to find the bounding box

of each segment. Features are extracted from each segment by first cropping the segment

using its bounding box. The texture, cellular, triangles, nuclei, and acellular features can

be extracted independently, but combined features cannot be computed before extracting

nuclei and acellular features As discussed in Section 2.2.3, there are three factors that lead

to primary bottlenecks affecting the processing time for each image, including the image

size, the window size used in detecting the nuclei, and inverting the background during the

nuclei detecting preprocessing phase. The larger the image or the smaller the window size

the more time it takes to perform the nuclei preprocessing operations. In order to mitigate

this, we propose the following modifications to the process:

1. Resize the images to reduce resolution.

2. Change the window size inside the masking function.

3. Change the inversion process in the preprocessing step.

Referring to the workflow discussed above, resizing the image occurs after applying

the mask and orienting the image but before finding the medial axis; this will affect all

subsequent steps; hence, all features will be affected. Changing the window size for

nuclei detection or background inversion will only affect the nuclei features (F14-F15) and

combined features (F23-F24). Although most of the features are ratios, resizing the image

will still affect them slightly.
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We examined the proposed solutions with variations in window sizes and resizing

process. For the resizing, two approaches have been examined. The first approach is to

scale all images with a single scaling factor of 20%; the second approach is to scale the

images dynamically based on the original size of the image. For the dynamic resizing, a

baseline image that has a total of 785,841 pixels was used. The following criteria of resizing

were used:

• If the image is larger than the baseline by less than 20%, do not resize it.

• If the difference between the baseline and image size is 20% to 45%, reduce the image

by 20%

• If the difference between the baseline and image size is greater than 45%, reduce the

image by 50%

The window sizes used, given as the length of window sides, are the original 29, 71,

and 87 pixels. The baseline, resizing criteria, and window sizes were chosen empirically to

preserve information while improving processing time. Using a large image as the baseline

will keep most of the images at their original size, and this will not provide improvement in

processing time. The average diameter of a normal human cell nucleus is about 6 µm [14].

With the 10x magnification used, a normal nucleus will be bounded by an area of 12 pixels

by 12 pixels. As CIN grade progresses, the average size of the nuclei increases, the shape

deforms, and the nuclei get closer to each other. We need a window size that can adapt to

this deformation but at the same time isolate the nuclei if possible. Having a window size

for nuclei detection that is too large will cause many nuclei to fall within the window and it

will result in poor isolation of each nucleus. Figure 5 shows how the window size affects

the resultant nuclei that were detected. For the background inversion, instead of using a

sliding window, we inverted the whole background at once by changing all 0 pixels into 1s

(fast background inversion). Using a larger window size will improve the speed but will

result in errors in detected nuclei which will affect the classification result.



48

(a) (b) (c) (d)

Figure 5. Effect of Window Size in Nuclei Detection. (a) Shows the Original Segment, (b)
Shows the Nuclei Being Detected When 29*29 Window Size is Used, (c) Shows the Nuclei
Being Detected with 87*87 Window Size, and (d) Shows the Nuclei Being Detected When
Using 150*150 Window Size

2.5. Graphical User Interface Application. A Graphical User Interface (GUI)

application was developed using Matlab (Figure 6) for clinical utilization as a diagnostic

aide for CIN assessment of digitized histology images. The user starts by browsing for

an image, then clicking analyze. The analyze button will invoke the feature extraction

function; the feature extraction is based on the best performing algorithm, see Section 3.

After the features are extracted, the small segments will be displayed and the features will

be stored in memory for classification; the user can then click the classify button which

will use the trained model, based on the classification type radio button selected, to classify

the segments and the whole image. The whole image class and the segments classes’ are

displayed under each individual vertical segment. The application was provided to RZ for

evaluation as diagnostic aide.

3. EXPERIMENTS AND RESULTS ANALYSIS

The dataset used in this research consists of 117 digitized histology images which

were classified by an expert pathologist (RZ) as: 41 Normal, 23 CIN1, 22 CIN2, and

31 CIN3. Using all combinations of the proposed solutions in Section 2.4, there are
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Figure 6. GUI for CIN Classification

20 total experiments. Algorithm execution times for the experiments performed in this

study were based on a desktop computer with the following specifications: Windows 7

Enterprise SP1 64-bit operating system, Intel CORE i5-2400 3.1 GHz processor, 8 GB

RAM, and Matlab® R2012a code development environment. Experiments 1-20 follow the

same process described in [7] using a leave-one-image-out approach where one image (10

segments) was used for testing and the remaining 116 images used for training. Based on

the process above the following experiments are performed:

1. Use the original code used in [7] for feature extraction. This acts as the baseline for

the feature extraction time and classification accuracy.

2. Vectorize specific operations in the image analysis algorithms. The remaining exper-

iments are based on the vectorized code.

3. Reduce image size by 20% and maintain the window size for nuclei detection at

29x29.

4. Dynamically resize images.

5. Use the original image size with the window size for nuclei detection at 71x71.
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6. Use the 20% reduced size images with the window size for nuclei detection at 71x71.

7. Use the dynamically resized images with window size 71.

8. Use the original size image with the window size for nuclei detection at 87x87.

9. Use the window size for nuclei detection at 87x87

10. With image sizes reduced by 20%.

11. Use window size for nuclei detection at 87x87 with image sizes reduced dynamically.

12.-19. Repeat Experiments 2-10 with the modified algorithm for background inversion.

20. Compute 27 features extracted from the whole epithelium image without partitioning

the images into vertical segments.

Table 1 summarizes the results of these experiments. The first column lists the

different experiments performed The second column shows the background inversion used

in each experiment: either the original algorithm, taking into account epithelium edges, or

the modified algorithm, where edges were not taken into consideration when inverting the

background. The third column indicates wither the image was resized in the experiment

or the original size was used. Resizing can be either none when the original image sizes

were used, fixed denoting a 20% resize or dynamic which denotes different resize based on

criteria discussed in Section 2.4. The fourth column, Window size, represents the window

used in nuclei detection. The fifth and sixth columns show accuracy of LDA and SVM

algorithms classification for the exact class label; accuracy is compared with the expert

pathologist classification. The last four columns show total time statistics for the time

taken to extract the features from all 117 images, including the mean, standard deviation,

maximum, and minimum time for each experiment.

From Table 1, there are several observations. First, the baseline experiment (Exper-

iment 1) took an average time of 49.88 seconds to preprocess and extract the 27 features and

resulted in 79.49% classification accuracy. Second, in Experiment 2, vectorization code
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was used, which reduced the average time to process each image in the 117 experimental

data set to 30.86 seconds, with a maximum time of 134.21 seconds. This modification

reduces the time to process the images without changing extracted features; while this is a

substantial reduction in time (from 49.88 seconds to 30.86 seconds), this time might still

be far from being practical. We needed to examine the algorithm to find ways to improve

the execution time. The profiling tool showed that detecting nuclei consumes most of the

computation time, with an average of 9.96 seconds, which is approximately 30% of the pro-

cessing time. Third, in experiments 5 and 8, we obtained the highest accuracy (81.20%);

Experiment 8 (window size 87x87) had a slight time improvement (28.93 seconds) over

Experiment 5 (window size 71x71), which took 29.10 seconds. Fourth, we can see from

the table that just changing the window size does not improve the time by a big factor, but

resizing the image improves the time significantly. The average time decreased by only 1.76

seconds when the window size changed from 29 (Experiment 2) to 71 (Experiment 5) and

only 1.93 seconds was achieved when the window size changed to 87. Keeping all param-

eters fixed and changing the image size dynamically (Experiment 19) gives the best timing

across all experiments. The best average time achieved was 12.15 seconds when using fast

background inversion and dynamic resizing with window size 71 (Experiment 16). Using

a larger window size will improve the time only slightly, with the biggest improvement

coming from resizing the image. However, as we saw in Figure 5, the original window size

missed some nuclei; the bigger window improves the accuracy, but using an even larger

window size such as the 150x150 in Figure 5 will lead to other nuclei being undetected.

Fifth, the baseline accuracy (Experiment 1), using the original image sizes and

original background inversion method with window size 29, the accuracy was only 79.49%.

The best accuracy was 81.20% when the original image size was used with the original

background inversionmethod and either 71x71 or 87x87window size which took an average

time of 29.10 and 28.93 seconds respectively to extract the features from Experiments 5

and 8, respectively. Using images resized by 20% and the new fast background inversion
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with window size 71 gives the best balance between feature extraction time (17.56 seconds)

and classification accuracy (80.34%) using the LDA classifier (Experiment 15). The com-

putation time improved by 64% from 49.88 seconds to 17.56 seconds, and the accuracy

is also improved slightly from 79.49% to 80.34%. This experiment also outperforms the

results when using the whole image described in [7]. In Experiment 20 the accuracy was

only 68.38% and the average feature extraction time was 71.35 seconds. Higher accuracy

with less execution time enhances the user experience. We can also see that the LDA

outperforms SVM in terms of classification except when using dynamically resized images.

Sixth, we examined resizing the images, using different window sizes during nuclei detec-

tion, and using fast background inversion in the nuclei detection preprocessing step. Based

on the results reported in Table 1 we achieved 74.49% improvement in the average feature

extraction time (from 49.88 seconds to 12.72 seconds) at the expense of 5.13% decrease

in accuracy from the baseline (79.49% to 74.37%); just by using vectorization, the average

feature extraction time was reduced from 49.88 seconds to 30.86 seconds with the same

accuracy. We obtained accuracy better than the baseline, 80.34%, with a simultaneous

improvement in terms of execution time with average of 17.56 seconds.

The best exact label CIN classification results were obtained from Experiment 8

using the original background inversion algorithm with window size 87 for nuclei de-

tection; this gives 81.20% classification accuracy with 28.93 seconds average execution

time, which is better than the baseline 79.49% accuracy and 49.88 seconds execution time.

Computer Aided Diagnosis (CAD) systems strive to give the best diagnosis accuracy but

sometimes at the expense of more execution time which hinders the users’ experience. In

this study, we improved the accuracy of the baseline algorithm and reduced the execution

time simultaneously.



53

Table 1. Summary of Experimental Results

Exp# Background
Inversion

Resizing Window
Size

Classification
Accuracy Run Time

LDA SVM AVG STD Max Min

1 Original
Alg. None 29 79.49 73.50 49.88 44.09 223.19 9.13

2 Original
Alg. None 29 79.49 73.50 30.86 26.83 134.21 6.32

3 Original
Alg. Fixed 29 76.92 77.78 22.11 18.51 95.20 5.42

4 Original
Alg. Dynamic 29 68.38 72.65 14.90 12.50 90.37 6.16

5 Original
Alg. None 71 81.20 72.65 29.10 25.22 125.31 5.97

6 Original
Alg. Fixed 71 79.49 75.21 20.66 17.18 87.12 5.21

7 Original
Alg. Dynamic 71 70.09 73.50 14.27 11.51 79.07 6.02

8 Original
Alg. None 87 81.20 70.94 28.93 24.96 125.13 6.10

9 Original
Alg. Fixed 87 80.34 78.63 20.63 17.40 87.46 3.53

10 Original
Alg. Dynamic 87 68.38 73.50 14.18 11.53 80.44 5.96

11 Modified
Alg. None 29 76.92 73.50 26.91 23.02 115.00 5.93

12 Modified
Alg. Fixed 29 76.92 76.92 18.93 15.58 80.17 5.22

13 Modified
Alg. Dynamic 29 70.09 73.50 13.24 10.12 71.90 5.96

14 Modified
Alg. None 71 80.34 72.65 24.64 20.98 108.60 5.61

15 Modified
Alg. Fixed 71 80.34 76.07 17.56 14.09 73.81 5.04

16 Modified
Alg. Dynamic 71 69.23 70.09 12.15 9.20 64.02 5.52

17 Modified
Alg. None 87 79.49 71.79 24.66 20.67 105.61 5.37

18 Modified
Alg. Fixed 87 80.34 78.63 18.06 14.62 75.88 4.86

19 Modified
Alg. Dynamic 87 67.52 74.36 12.72 9.47 62.25 5.53

20
(Whole
Im-
age)

Original
Alg. None 29 68.38 64.96 71.35 93.60 499.54 4.20
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4. CONCLUSIONS

The goal of this research is to develop a computer-assisted tool that provides dig-

itized histology image CIN discrimination capability in a “reasonable” time for potential

application as a diagnostic aide in a clinical setting. In previous research [7], image analysis

techniqueswere developed for CIN discrimination of digitized histology images. Examining

the computation times for the steps in the analysis process for the experimental data set, the

nuclei detection image processing algorithms were determined to be the most computation-

ally intensive steps. In this study, we investigated approaches to improve the computational

efficiency for different facets of the nuclei detection process to reduce the execution time

for extracting features from the digitized histology images, including image resizing to

reduce image resolution, adjusting the window size used in the clustering algorithm for

mask generation in detecting nuclei, and modifying the background inversion approach for

the nuclei detection preprocessing operations. In addition, image analysis operations from

the implementation in [7] were vectorized to facilitate execution time improvement that did

not change the feature calculations and CIN classifications. We investigated the impact

of the three algorithm modifications on the timing and CIN classification accuracy of 117

digitized histology images. Experimental results from Table 1 showed that all proposed

methods reduced feature extraction time. Notably, in Experiment 15, we obtained accuracy

better than the baseline, 80.34%, with a simultaneous improvement in execution time with

average of 17.56 seconds. Future research may include the use of other classifiers for fusion

of the individual vertical segment classification results to form the final diagnosis.
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ABSTRACT

Cervical cancer is the second most common cancer affecting women worldwide.

Cervical cancer is curable if diagnosed early. Routinely, expert pathologists visually exam-

ine histology slides for assessing cervix tissue abnormalities. This research introduced an

automated localized, fusion-based algorithm to classify squamous epithelium into normal,

CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN). The approach

was developed based on ten vertical partitions (segments) of the entire epithelium region ob-

tained using machine vision algorithms and rectangular patches from the vertical segments
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generated using a sliding window in deep learning preprocessing. The rectangular patch

features were created based on both RGB and LAB color spaces to classify the segment and

the result was fused to classify the whole epithelium. This research extends the previous

research by dividing each of the ten segments into top, middle, and bottom sections and uses

a convolutional neural network to classify these three sections. The result was then fused

to classify the segments and the whole epithelium. The experimental data consisted of 83

images. With the proposed hybrid method, the CIN exact class classification accuracy was

increased by 8.4%, and achieved test accuracy results 80.72% compared to 72.29% using

the benchmark feature-based method for the same dataset.

Keywords: Cervical Cancer, Convolutional Neural Networks, Data Fusion, Image Classi-

fication, Clinical Decision Support Systems, Deep Learning, Feature Extraction

1. INTRODUCTION

Cervical cancer is the second leading cause of cancer death in women aged 20 to

39 years and was responsible for 8.8 million deaths in 2015 [1]. Screening or diagnosis

for cervical cancer and its precursor lesions is carried out using a Papanicolaou (Pap) test.

Biopsied cervical tissue histology slides are interpreted visually by the expert pathologist

to give a definitive evaluation [2]. In the early diagnosis of cervical cancer, pathologists

seek to detect cervical intraepithelial neoplasia (CIN), which is a pre-malignant condition

for cervical cancer. A cervical biopsy is classified as normal (no CIN) or as CIN1 (mild

dysplasia), CIN2 (moderate dysplasia), or CIN3 (severe dysplasia) by identifying the atyp-

ical cells in the epithelium by the visual inspection of histology slides [3]. Figure 1 shows

an example of different CIN grades. Delayed maturation with an increase in immature

atypical cells from bottom to top of the epithelium has been observed as CIN increases

in severity [4]. Computer-assisted CIN diagnoses have been studied and developed pre-
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viously in [5, 6, 7, 8, 9, 10]. In these studies handcrafted features were extracted using

time-consuming image processing andmachine learning algorithms, whichmay not provide

the best accuracy.

(a) (b)

(c) (d)

Figure 1. Example of CIN Grades: (a) Normal, (b) CIN1, (c) CIN2, (d) CIN3.

Convolutional neural networks (ConvNets) comprise a powerful technique used in

many image analysis and classification problem domains with very large-scale datasets like

ImageNet[11], face recognition [12], and breast cancer mitosis detection [13]. ConvNet is a

feature-free technique that utilizes filters and convolves them with the images to extract the

features. The filters are updated and tuned during the training process. In previous research,

our research group used a localized fusion-based approach for CIN grade classification
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[6]. This localized approach partitioned an epithelium image into ten vertical segments

(partitions), where 27 features were extracted from each vertical segment [6, 7]. The

features were used to classify each segment into one of the CIN grades. This research

extends the localized fusion-based approach by further subdividing each segment into

three sections: top, middle, and bottom. This division exploits the progression in cellular

abnormality from the bottom (basal membrane) to the top of the epithelium by analyzing

the three sections separately, then fusing the results to improve classifier performance. In

this research, as many as 12 ConvNet output parameters were used as a feature set, while

working together with the previously developed 27 image-based features from [6, 7]. All

the features were processed by classifiers such as SVM, LDA, and Random Forest, and

trained based on the ten vertical segments. After classifying the segments, the decision for

the whole image class was determined by voting among the ten segments..

2. METHODOLOGY

In this paper, 83 full-color digitized histology images were used with Hematoxylin

and Eosinophil (H&E) stain preparations of tissue sections of normal cervical tissue, and

the three grades of cervical carcinoma in situ, which extends the data set in the previous

research from [6]. The epithelium region of each image was extracted using a manually

drawn border, which was confirmed by pathologists. Each epithelium region in a given

image was vertically partitioned into ten sections (vertical segments) and processed to

generate hand-crafted features using image processing and machine vision techniques as

well as deep learning features. Based on the expert pathologist (RZ) ground truth labels,

machine-learning algorithms were trained using the features extracted from the vertical

segments as input. The steps for processing an epithelium image for CIN classification are

follows:

1. The whole image was divided into ten segments.
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2. The hand-crafted features were extracted from each segment (the 27 features).

3. Each vertical segment was divided into three sections: top, middle, bottom.

4. 64x64 RGB and LAB color space patches were extracted from each section using a

sliding window with 50% overlap.

5. For each color space, three ConvNets were trained using the 64x64 patches, one for

each section (top, middle, bottom).

6. The training and testing patches were classified with the trained model to get classi-

fication probability.

7. The three sections’ class probabilities were obtained based on the patches extracted

from each section. This formed a 12-features vector for each color space.

8. A new set of feature vectors were formed by concatenating the color space features

and the 27 handcrafted features from each segment.

9. A classifier was trained to classify each segment for each feature vector and the

segment class with probability was obtained.

10. A voting scheme was used to classify each image based on the maximum class

occurrence among the segments.

11. A new 40-feature vector was constructed from the class probabilities of the ten

segments.

12. A new classifier was trained on the 40 features and used to classify the test images.

The remainder of this section presents each step in detail.
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2.1. TheHandcrafted 27 Features. The segmentation of the 83 epithelium images

used the work-flow employed in [6, 7], with the following five-step approach:

Step 1: Locate the medial axis of the segmented epithelium region.

Step 2: Divide the segmented image into ten vertical segments, orthogonal to the

medial axis.

Step 3: Extract features from each of the vertical segments.

Step 4: Classify each of these segments into one of the CIN grades.

Step 5: Fuse the CIN grades from each vertical segment to obtain the CIN grade of

the whole epithelium for image-based classification.

The following sections present each step in detail.

2.2. Medial Axis Detection and Segments Creation. The method for computing

the medial axis, which is based on the distance transform, is presented in detail in [6, 7].The

resulting medial axis was partitioned into ten vertical segments of approximately equal

length. Perpendicular line slopes were estimated at the mid-points of each segment, and

vertical lines were projected at the end points of each segment to generate ten vertical

segments for analysis. The epithelium image was partitioned into ten vertical segments to

facilitate localized diagnostic classification on sub-regions within the epithelium.

Figure 2. Epithelium Image Example with Vertical Segment Images (I1 ,I2, ,..., I10 )
Determined From Bounding Boxes After Dividing the Medial Axis Into Ten Line Segment
Approximations After Medial Axis Computation.
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2.3. Feature Extraction. Features were obtained for each of the ten vertical seg-

ments of the whole image I1 ,I2 ,I3, . . . , I10. All the segments of one whole image

were feature extracted in a sequence, in the order from left to right (see Figure. 2). The

five different types of features that were extracted include: 1) texture features (F1-F10);

2) cellularity features (F11-F13); 3) nuclei features (F14, F15); 4) acellular (light area)

features (F16-F22); 4) combination features (F23, F24); and 5) advanced layer-by-layer

triangle features (F25- F27) [6, 7]. Table 1 is presented to provide a brief introduction,

showing the feature label and brief description for each feature obtained.

2.3.1. Texture and cellular features. The texture and color features were used in

previous work and was described in [6, 7]. The use of color in histopathological image

analysis was also described in [8] and [9]. For texture features, both first-order structural

measures and second-order statistical methods based on the gray-level cooccurrence matrix

(GLCM) [5, 14] were used. The texture features include contrast (F1), energy (F2), cor-

relation (F3), and uniformity (F4) of the segmented epithelial region, combined with the

same statistics (contrast, energy, and correlation) obtained from the GLCM of the segment

(F5-F10, see Table 1).

Figure 3. Sample Shading Representatives Within Epithelium Image Used for Determining
Cellular Features.
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Table 1. Feature Description

Feature
group

Label Description

Texture

F1 Contrast of segment: Intensity contrast between a pixel and
its neighbor over the segment image.

F2 Energy of segment: Squared sum of pixel values in the
segment image.

F3 Correlation of segment: How correlated a pixel is to neigh-
bors over the segment image.

F4 Segment homogeneity: Closeness of the distribution of pix-
els in the segment image to the diagonal elements.

F5, F6 Contrast of GLCM: Local variation in GLCM in horizontal
and vertical directions.

F7, F8 Correlation of GLCM: Joint probability occurrence (peri-
odicity) of elements in the segment image in the horizontal
and vertical directions.

F9, F10 Energy of GLCM: Sum of squared elements in the GLCM
in horizontal and vertical directions.

Cellular
F11 Acellular ratio: Proportion of object regions within segment

image with light pixels (acellular).
F12 Cytoplasm ratio: Proportion of object regions within seg-

ment image with medium pixels (cytoplasm).
F13 Nuclei ratio: Proportion of object regions within segment

image with dark pixels (nuclei).

Nuclei F14 Average nucleus area: Ratio of total nuclei area over total
number of nuclei.

F15 Background to nuclei area ratio: Ratio of total background
area to total nuclei area.

Acellular

F16 Intensity ratio: Ratio of average light area image intensity
to background intensity.

F17 Ratio R: Ratio of average light area red to background red.
F18 Ratio G: Ratio of average light area green to background

green.
F19 Ratio B: Ratio of average light area blue to background blue.
F20 Luminance ratio: Ratio of average light area luminance to

background luminance.
F21 Ratio light area: Ratio of light area to total area.
F22 Light area to background area ratio: Ratio of total light area

to background area.

Combination F23 Ratio acellular number to nuclei number: Ratio of number
of light areas to number of nuclei.

F24 Ratio acellular area to nuclei area: Ratio of total light area
to total nuclei area.

Triangular
F25 Triangles in top layer: Number of triangles in top layer.
F26 Triangles in mid layer: Number of triangles in middle layer.
F27 Triangles in bottom layer: Number of triangles in bottom

layer.
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As shown in Figure 3 of normal cervical histology, the luminance images with three

different regions of intensity (light, medium and dark) are marked within each region of

interest. The light areas correspond to acellular areas, the medium areas to cytoplasm, and

the dark areas to nuclei.

The cluster centers were located from the luminance image using K-means clus-

tering [6, 7] for three different regions (K = 3) denoted as clustLight, clustMedium, and

clustDark for the light, medium, and dark cluster centers, respectively. Then, the ratios

were calculated based on equations (1)-(3) [7].

Acellular ratio =
number of pixels in light cluster
Total pixels in epithelium region

(1)

Cytoplasm ratio =
number of pixels in medium cluster
Total pixels in epithelium region

(2)

Nuclei ratio =
number of pixels in dark cluster
Total pixels in epithelium region

(3)

where Acellular ratio (F11), Cytoplasm ratio (F12), and Nuclei ratio (F13) represent the

cellular features in Table 1, and numLight, numMedium, and numDark represent the

number of pixels that were assigned to the clusters of light, medium, and dark, respectively.

2.3.2. Nuclei features. The dark area features represent nuclei in epithelial cells,

varying in shape and size. When the CIN level increases from normal, both the number

and size of nuclei tend to increase correspondingly. This relationship between the nuclei

characteristics and CIN levels motivates the development of nuclei detection and nuclei

feature extraction. Specifically, the following procedures were carried out [6, 7]:

Step 1. Cluster the histogram-equalized image into clusters of background, nuclei,

and lighter epithelium regions using the K-means algorithm with K = 4. Generate a mask

image containing the pixels closest to the nuclei cluster.

Step 2. Perform morphological image closing [6, 7] on the nuclei mask image.
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Step 3. Fill the holes within the closed objects in the image from Step 2 with

Matlab’s im f ill function for this process

Step 4. Apply morphological image opening with a circular structuring element of

radius 4 on the image from Step 3

Step 5. Eliminate small area noise objects (nonnuclei objects) within the epithelium

region obtained in Step 4.

2.3.3. Acellular features. Extracting features in the light area regions was chal-

lenging due to the color and intensity variations in the epithelium images. The research team

evaluated each of the L*, a*, and b* channels of CIELAB color space for characterizing

the light areas and determined empirically that L* provides the best visual results. The

following outlines the methods that were used for light area segmentation.

• Step 1: Convert the original image from RGB color space to L*a*b* color space.

• Step 2: Perform adaptive histogram equalization on the image obtained from step 1

usingMATLAB’s adapthisteq, which operates on small regions (tiles) so that the his-

togram of the output region matches a specified histogram and combines neighboring

tiles using bilinear interpolation to eliminate artificially induced boundaries.

• Step 3: After the image has been contrast adjusted, the image is binarized by

thresholding with the grayscale threshold 0.6 on the range 0 to 1. This step is

intended to eliminate the dark nuclei regions and to retain the lighter nuclei and

epithelium along with the light areas.

• Step 4: Segment the light areas using the K-means algorithm based on [7], with K

equal to 4. A light area clustering example is given in [6].

• Step 5: Remove all objects having an area less than 100 pixels from the image with

implementation of the MATLAB function regionprops. A morphological closing is

performed with a disk structure element of radius 2.
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2.3.4. Combination features. After both the nuclei features and the acellular fea-

tures were extracted, the combined features were calculated to capture the relative change

in nuclei numbers as CIN grade either increases or decreases. These features were the ratio

of the acellular number to the nuclei number (F23), and the ratio of the acellular area to the

total nuclei area (F24). The equations for calculating the combination features are presented

as follows:

Ratio acellular number to nuclei number =
Light Number
Nuclei Number

(4)

Ratio acellular area to nuclei area =
Light Area
Nuclei Area

(5)

where LightNumber and NucleiNumber refer to the total number of light area and nuclei,

respectively. (see Fig. 3).

2.3.5. Triangle features. In previous research, triangle features have been inves-

tigated based on the Delaunay triangle transformation (DT) [6, 7] to detect nuclei for use

as vertices. After locating the vertices for DT, the DT algorithm iteratively selects point

triples which become vertices of each new triangle created. Delaunay triangulation exhibits

the property that no point (nuclei centroid) lies within the circles that are formed by joining

the vertices of the triangles [5]. All the triangles in the three layers were unique and there

was no interaction or overlap within the triangles. The features were obtained based on

the triangles formed in three different layers from top to bottom, including the number of

triangles in the top layer (F25), the number of triangles in the middle layer (F26), and the

number of triangles in the bottom layer (F27).

2.4. Extracting the Patches for theDeepLearning Features. This work extended

the work in [15]. In the previous work, a 32x32 patch size with RGB color space was used.

For the experiments in this paper, the patch size was increased to 64x64 pixels, and LAB

color space was used as well as RGB. In [15], a non-overlapping window was used and only
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patches falling entirely inside the epithelium were considered. In this study, an overlapping

window of 50% was used, and patches with up to 10% of background (non-epithelium)

were included.

Each of the ten segments was divided into three sections: top, middle, and bottom.

The partitioning of the epithelium image into ten vertical segments helped in improve the

CIN assessment through fusion of local sub-region classifications of the epithelium [6, 7].

The hypothesis for dividing each segment into three horizontal sections was to take

advantage of the local differences in the sections among the CIN classes to improve the

overall epithelium classification accuracy as the atypical cells change from bottom to top

with the progression of CIN grade [4].

The epithelium region inside a histology image has an irregular shape and a nonuni-

form size, which cannot be used directly as input to the convolutional neural network. To fix

this, there are two general approaches: the first is to resize all sections to a fixed size, and the

second is to extract patches of a fixed size from each section. Resizing the entire section has

the potential of losing some of the small, important details of the image. For this research,

the second approach was used by extracting 64x64 pixel patches from each section. The

patches were extracted using an overlapping sliding windowwith 50% overlap over the three

sections of each segment. This served two purposes: the details of the histology slide were

kept intact, and more samples were generated to train the deep learning network. Figure

4 shows an example of a segment being divided into three sections and the 64x64 patches

being extracted from the bottom section. The low contrast squares in the 64x64 image

indicate that they were not selected because they contain background area more than the

allowed 10%. For illustration purposes the example shows the non-overlapping patches. In

the experiments a 50% overlap extracted a new patch from each two adjoining patches that

were selected with the non-overlapping window, and it might extract a new patch between

a selected patch and a non-selected patch. Each patch was converted to LAB color space;

both RGB and LAB patches were retained.
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Figure 4. Example of Vertical Segment Being Divided into 3 Sections and Examples of
64x64 Patches Extracted

2.5. Training Convolutional Neural Network. The 64x64 patches from each sec-

tion/color space were used to train a different ConvNet. There were the topNet, midNet, and

botNet for each color space, which made a total of six ConvNets to train. Each network was

trained using the patches that correspond to its section and color space of the segment. All

networks have the same configuration as listed in Table 2. The input to the networks were

the raw RGB and LAB values of the 64x64 patch that is followed by a series of convolution

and max pooling layers with dropout layers in between. The convolution and max pooling

layers were used to extract features from each patch by changing the convolution layers’

filter weights. The last three layers were dense (fully connected) layers used to classify the

image (patch) into one of four classes using features extracted from previous layers. The

trained networks were then used to classify the patches from the test set. This architecture

was chosen after experimenting with several architectures and different hyper-parameters;

the selected architecture performed the best in the dataset.
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Table 2. Convolution Neural Network Configuration

Layer type Layer properties
Input Size (3,64,64)
Conv2D 32 filters, size (3,3)
Conv2D 32 filters, size (3,3)
Max-poll Size (2,2)
Dropout P(0.25)
Conv2D 64 filters, size (3,3)
Max-poll Size (2,2)
Dropout P(0.25)
Conv2D 128 filters, size (3,3)
Max-poll Size (2,2)
Dropout P(0.25)
Flatten convert last Conv output to a vector
Dense 500 Nodes
Dropout P(0.25)
Dense 500 Nodes
Dense (Output) 4 Nodes

2.6. Segment Classification. The ConvNet classified each 64x64 patch into Nor-

mal, CIN1, CIN2, or CIN3. The segment sizes are not uniform, hence the number of patches

differ between segments. To get a meaningful comparison/classification of the segments,

the output of all segments needs to be put into a uniform feature vector. The feature vector

was computed using the following formula:

class X_p(y) =
# of patches classified as x

total number of patches in section Y
(6)

That is, the probability of section Y (top, middle, and bottom) being from class

x (Normal, CIN1, CIN2, CIN3) calculated as the ratio of patches belonging to class x to

the total number of patches in section Y. Using this formula, a feature vector of size 12 is

created for each segment using the RGB color space and another 12-feature vector for LAB

color space. Table 3 shows an example of this vector.
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Table 3. Segment Classification Probability Distribution (12-feature vector)

Top Third Middle Third Bottom Third
1 2 3 4 5 6 7 8 9 10 11 12
Normal_p CIN1_p CIN2_p CIN3_p Normal_p CIN1_p CIN2_p CIN3_p Normal_p CIN1_p CIN2_p CIN3_p

In other words, the feature vector is the percentage of patches falling in each class

(normal, CIN 1-3). Each section (top, middle, and bottom) of the segment will be classified

independently using the ConvNet model trained for that section. Each segment will have

three feature vectors, the first is a 12-feature vector similar to the one in Table 3 from the

RGB color space, the second is another 12-feature vector from the LAB color space, and

the last is the 27 features extracted based on the method described in Section 2.1. The three

vectors are used to form a combination of features for each segment as follows

1. Deep learning features based on RGB color space only (12 features total)

2. Deep learning features based on LAB color space only (12 features total)

3. RGB + LAB (24 features)

4. Hand-crafted features from Section 2.1 (27 features total)

5. RGB + the 27 features (39 features total)

6. LAB + the 27 features (39 features total)

7. RGB + LAB + the 27 features (51 features total)

These vectors were used as a training input to other classification algorithms namely

support vector machine (SVM), linear discriminant analysis (LDA), multilayer perceptron

(MLP), logistic regression, and random forest (RF). These algorithms produce a classifica-

tion probability value and a class for each segment.
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2.7. Whole Epithelium Image Classification. The whole epithelium class is as-

signed using two approaches, the first approach uses voting among the ten segments classes,

and the most frequent class is assigned to the whole epithelium. For a given feature set

there are five classification scores, one from each classifier, and the final class from each

classifier is used to give a vote for the whole epithelium image and compared to the individ-

ual classifiers. The second approach uses the four classification probabilities from Section

2.6 to construct a new feature vector from each classifier for each of the seven feature sets.

The vector length is 40 (4 classes from 10 segments). This feature vector is used to train

new classifiers (SVM, LDA, MLP, logistic, and RF) that are used to classify the whole

epithelium images. The final result of all classifiers in a given feature set is also used in a

voting scheme to classify the epithelium and is compared to the individual classifier output.

3. EXPERIMENTS PERFORMED AND RESULTS

The dataset used in these experiments consisted of 83 epithelium images. The data

set contained 37 images classified as normal, 17 images classified as CIN1, 15 images

classified as CIN2, and 14 images classified as CIN3. The images have been annotated by

an expert pathologist. The ConvNets for RGB and LAB color spaces were trained using

five-fold cross-validation. The data set was divided into 80% training and 20% testing sets,

where the test sets were disjointed. The patches were extracted according to the method

described in Section 2.4. The patch level exact class classification accuracy on the test

images for RGB color space can be found in Table 4. Table 5 shows the average result when

using the LAB color space. The LAB color space accuracy was on average less than RGB,

which will result in lower segment accuracy.
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Table 4. ConvNet 64x64 RGB Patches Test Set Average Classification Result

Fold Top Middle Bottom

1 78.78% 60.88% 58.27%

2 55.94% 50.24% 40.37%

3 67.97% 65.50% 64.53%

4 82.82% 72.73% 64.94%

5 46.69% 42.15% 36.30%

Average 66.44% 58.30% 52.88%

Table 5. ConvNet 64x64 LAB Patches Test Set Average Classification Result

Fold Top Middle Bottom

1 69.84% 63.54% 59.06%

2 49.13% 40.76% 29.61%

3 65.68% 60.34% 60.25%

4 82.47% 70.42% 62.39%

5 47.75% 39.76% 41.30%

Average 62.97% 54.96% 50.52%

The bottom section of the segment has a lower accuracy in general. Only folds

1 and 3 have accuracy comparable to the other sections of the segment. That is due to

the similarity of the basal membrane nuclei distribution on the bottom section among the

different classes; it is hard for the neural network to extract features that distinguish them.

Extracting the patches using the method described in Section 2.4 produced more

than 90000 patches for network training and testing based on the five-fold cross-validation

approach. The patch classification from the test set of images were fused using the method
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described in Section 2.4 (Equation 6 in particular) to generate top, middle and bottom

sections CIN classification probabilities for each vertical segment and to produce the 12-

feature vector (Table 3) for each color space from each segment.

For direct comparison with the previous feature-based vertical segment fusion for

the whole image CIN classification [6, 7], a leave-one-image-out approach was examined.

This approach was used to accommodate for the limited number of epithelium images in the

data set, particularly the limited number of epithelium images in the different CIN classes.

The seven feature sets (Deep Learning RGB 12 features, Deep Learning LAB 12

features, RGB+LAB combined 24 features, 27 handcrafted features, RGB + 27 combined,

LAB + 27 combined, RGB + LAB + 27 combined) described in Section 2.6 were created

for each segment and were used to train each of the classifiers (SVM, LDA, ... etc.). Table

6 shows the accuracy of segment classification for the different feature sets when using

different classification algorithms.

Table 6. Vertical Segments Classification Accuracy Based on Leave-one-image-out

Features Set SVM LDA MLP Logistic RF

RGB (deep learning features) only 63.93% 62.97% 60.92% 61.28% 61.76%

LAB (deep learning features) only 58.62% 56.33% 56.33% 54.16% 59.47%

27 (handcrafted) features only 66.95% 67.79% 62.97% 64.17% 62.85%

RGB+LAB combined 61.40% 62.00% 58.63% 61.88% 60.68%

RGB + 27 combined features 71.29% 69.36% 65.02% 68.88% 65.14%

LAB + 27 combined features 71.29% 69.24% 65.26% 66.71% 65.14%

RGB + LAB + 27 combined features 69.48% 69.72% 69.24% 69.00% 65.14%

The best accuracy was achieved using the SVM classifier with RGB + 27 features

and LAB + 27 features (71.29%). Using the LDA classifier with the same features gave a

close accuracy of 69.36% and 69.24%, respectively. Combining the RGB, LAB, and the 27

features gave accuracies in the same range when using SVM, LDA, and MLP classifiers.
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The segment classifications froman imagewere used to vote for thewhole epithelium

class (first approach), and the results are shown in Table 7. In the voting scheme, the number

of segments in a given class were counted and the whole image class is determined by the

class that occurred the most. If there was a tie the higher class was assigned. For example,

if there are five segments classified as CIN1 and five classified as CIN2, then the whole

epithelium is assigned CIN2 class.

The underlined values correspond to the method used in [7]. This approach gave a

classification accuracy of 69.87% and 72.29% using SVM and LDA classifiers, respectively.

Tables 9 and 10 show the confusion matrices for these classifiers. The best classification

accuracy was 80.72%when using the SVM classifier with the deep learning LAB combined

with the 27 handcrafted features. Table 11 shows the confusion matrix for this classifier.

Although the RGB + 27 features with the SVM classifier on the segment level scored the

same as as the LAB + 27 features, the voting among the the segments showed that the LAB

+ 27 features had a 5% increase on the whole epithelium classification accuracy. This is

because the voting scheme needs the majority (e.g. 6 out of 10) of segments to be classified

correctly to give a correct class for the image. If some images have all of their 10 segments

correctly classified and the other images have less than 6 out 10 correctly classified, then

the segment level accuracy might be high but is not necessary reflected on the whole image

classification accuracy. Combining the deep learning RGB, LAB and the 27 features and

using SVM classifier gave the same accuracy as using RGB and the 27 features only. Table

12 shows the confusion matrix for this classifier/feature combination. Using the LDA

classifier with all deep learning and handcrafted features gave a higher accuracy of 77.11%.

Table 13 shows the confusion matrix when using LDA classifier with the deep learning

RGB + LAB and the 27 features as inputs.
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Table 7. Whole Epithelium Classification Using the Segment Class Voting Scheme

Features Set SVM LDA MLP Logistic RF

RGB (deep learning features) only 69.88% 63.86% 60.24% 63.86% 69.88%

LAB (deep learning features) only 62.65% 59.04% 59.04% 57.83% 60.24%

27 (handcrafted) features only 69.87% 72.29% 66.27% 63.86% 63.86%

RGB+LAB combined 62.65% 62.65% 60.24% 69.88% 60.24%

RGB + 27 combined features 75.90% 77.11% 67.47% 72.29% 67.47%

LAB + 27 combined features 80.72% 77.11% 69.88% 69.88% 62.65%

RGB + LAB + 27 combined features 75.90% 77.11% 73.49% 73.49% 67.47%

Voting among classifier 73.49% 75.90% 66.27% 71.08% 66.27%

Table 8. Whole Epithelium Classification Using the Segment Class Voting Scheme with
Top and Middle Sections Only

Features Set SVM LDA MLP Logistic RF

RGB (deep learning features) only 63.86% 61.45% 57.83% 62.65% 68.67%

LAB (deep learning features) only 55.42% 59.04% 61.45% 51.81% 59.04%

27 (handcrafted) features only 69.88% 72.29% 59.04% 63.86% 63.86%

RGB+LAB combined 61.45% 67.47% 59.04% 61.45% 62.65%

RGB + 27 combined features 74.70% 74.70% 55.42% 68.67% 66.27%

LAB + 27 combined features 73.49% 72.29% 55.42% 67.47% 69.88%

RGB + LAB + 27 combined features 68.67% 72.29% 61.45% 67.47% 65.06%

Voting among classifier 72.29% 69.88% 57.83% 65.06% 63.86%

Despite the low accuracy of the bottom section of the segments, the bottom section

of the vertical segments is important in the overall image classification. Table 8 shows the

accuracy of the whole epithelium classification using only the top and middle sections’ deep

learning features of the segments to train the classifier.
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Table 9. Whole Epithelium Confusion Matrix for the 27 Features Using SVM Classifier
and Voting Scheme

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 33 4 0 0

CIN1 8 7 2 0

CIN2 0 3 8 4

CIN3 1 0 3 10

Table 10. Whole Epithelium Confusion Matrix for the 27 Features Using LDA Classifier
and Voting Scheme

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 33 3 0 1

CIN1 7 6 4 0

CIN2 0 3 11 1

CIN3 0 0 4 10

Table 11. Whole Epithelium Confusion Matrix for LAB and the 27 Features Using SVM
Classifier and Voting Scheme

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 34 3 0 0

CIN1 5 10 2 0

CIN2 0 1 11 3

CIN3 0 0 2 12
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Table 12. Whole Epithelium Confusion Matrix for RGB,LAB, and the 27 Features Using
SVM Classifier and Voting Scheme

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 33 4 0 0

CIN1 9 6 2 0

CIN2 0 1 12 2

CIN3 1 0 1 12

Table 13. Whole epithelium Confusion matrix for RGB, LAB, and the 27 features using
LDA classifier and voting scheme

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 32 5 0 0

CIN1 7 9 1 0

CIN2 0 3 11 1

CIN3 0 0 2 12

In the second approach, the segment class probabilities (the 40 features) from each

classifier/feature set were used as inputs to another classifier. Each classifier(SVM, LDA,

MLP, ...) output is used to train new SVM, LDA, MLP, Logistic, and Random Forest

classifiers. For example the features generated using the SVM classifier on the segments

level are used to train the new SVM, LDA, MLP, Logistic, and Random forest classifiers for

the whole epithelium classification. Also, the features generated using the LDA classifier on

the segments level were used to train the new SVM, LDA,MLP, Logistic, and Random forest

classifiers for the whole epithelium classification, this was repeated for all segments’ level

classifiers. Table 14 shows the result of using different classifiers for the 40-feature vector

extracted by using SVM classifier for segment level classification. The highest accuracy
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was 78.31%. This result was obtained when the RGB+27 features were used on an SVM

classifier to classify the segments, and the probability distribution result from that was used

to train another SVM classifier.

Table 15 shows the confusion matrix for the SVM classifier. This classifier was

able to classify CIN2 epithelium images better than all classifier/feature combinations by

correctly classifying 13 out of 15 images.

Table 14. Different Whole Epithelium Classification Accuracies Using the 40 Features
When Using SVM for Segment Classification

Features Set SVM LDA MLP Logistic RF

RGB (deep learning features) only 68.68% 60.24% 63.86% 62.65% 61.45%

RGB (deep learning features) only 66.27% 59.04% 57.83% 57.83 57.83%

27 (handcrafted) features only 67.47 61.45% 66.27% 71.08% 75.90%

RGB+LAB combined 63.86% 65.06% 56.63% 61.45% 59.04%

RGB + 27 combined features 78.31% 71.08% 71.08% 74.70% 75.90%

LAB + 27 combined features 72.29% 69.88% 68.68% 72.23% 69.88%

RGB + LAB + combined features 72.23% 65.06% 69.88% 72.29% 69.88%

Voting among classifier 74.70% 72.29% 72.29% 71.08% 72.29%

Table 15. Whole Epithelium Confusion Matrix Using SVM to Classify Segments Based
on RGB and the 27 Features and Using Another SVM on the Result to Classify the Whole
Image

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 31 6 0 0

CIN1 7 10 0 0

CIN2 1 0 13 1

CIN3 1 0 2 11
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The rest of the classifier/feature combinations did not produce any improved result,

but there are some interesting observations. Some of the classifier/feature combinations

were able to correctly classify all the normal epitheliums but at the expense ofmisclassifying

all the CIN1 epitheliums. Table 16 shows an example of this when using LDA classifier

to classify the segments with RGB+LAB as input features then using SVM to classify the

whole image.

Table 16. Whole Epithelium Confusion Matrix Using LDA to Classify Segments Based on
RGB+LAB Features and Using SVM on the Result to Classify the Whole Image

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 37 0 0 0

CIN1 15 0 2 0

CIN2 4 0 8 3

CIN3 0 0 4 10

When using an LDA segment classifier with RGB+LAB+27 features as inputs

and then using and LDA classifier to classify the whole epithelium image, all the CIN3

epithelium images were identified correctly. Table 17 shows the confusion matrix for this

classifier/feature combination.

Table 17. Whole Epithelium Confusion Matrix Using LDA to Classify Segments Based on
RGB + LAB + 27 features and Using LDA on the Result to Classify the Whole Image

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 31 6 0 0

CIN1 7 8 2 0

CIN2 1 1 10 3

CIN3 0 0 0 14
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It also found that combining the deep learning features with the handcrafted features

improved the detection of CIN1 epithelium in most of the classifier combinations. As an

example, by using logistic regression to classify the segments and using the multilayer

perceptron (MLP) to classify the whole epithelium with RGB features, only one CIN1

epithelium was correctly classified (Table 18). When using LAB features none of the CIN1

was correctly classified (Table 19), and with the 27 handcrafted features only four were

classified correctly (Table 20). When the 27 features were combined with RGB (Table

21), the accuracy of detecting CIN1 increased and nine images were correctly classified.

When combining the 27 features with LAB (Table 22), nine CIN1 images were correctly

classified.The overall accuracy increased in both cases. The highest CIN1 classification

accuracy was obtained when using Random Forest classifier on the LAB+27 features for

both segment classification and image classification. Table 23 shows the confusion matrix

for this classifier. The overall accuracy for this classifier was 77.10% which is close to

the best accuracy discussed earlier. This classifier was the best in separating the normal

form CIN with an accuracy of 92.77%. If we consider both exact class classification and

separation of CIN from normal epithelium as a criteria for choosing the classifier, then using

the random forest for both segment and image classification with the LAB + 27 feature set

will be the optimal choice.

Table 18. Whole Epithelium Confusion Matrix Using Logistic Regression to Classify
Segments Based on RGB Features and Using MLP on the Result to Classify the Whole
Image

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 35 2 0 0

CIN1 14 1 1 1

CIN2 4 0 7 4

CIN3 0 0 4 10
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Table 19. Whole Epithelium Confusion Matrix Using Logistic Regression to Classify
Segments Based on LAB Features and Using MLP on the Result to Classify the Whole
Image

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 35 2 0 0

CIN1 15 0 1 1

CIN2 4 0 2 9

CIN3 0 0 5 9

Table 20. Whole Epithelium Confusion Matrix Using Logistic Regression to Classify
Segments Based on The 27 Features and Using MLP on the Result to Classify the Whole
Image

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 31 6 0 0

CIN1 9 4 4 0

CIN2 0 3 8 4

CIN3 1 0 6 7

Table 21. Whole Epithelium Confusion Matrix Using Logistic Regression to Classify
Segments Based on RGB+ 27 Features and Using MLP on the Result to Classify the Whole
Image

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 32 5 0 0

CIN1 6 9 2 0

CIN2 0 3 10 2

CIN3 0 0 5 9
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Table 22. Whole Epithelium Confusion Matrix Using Logistic Regression to Classify
Segments Based on LAB + 27 Features and Using MLP on the Result to Classify theWhole
Image

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 34 2 1 0

CIN1 7 9 1 0

CIN2 0 2 9 4

CIN3 0 0 7 7

Table 23. Whole Epithelium Confusion Matrix Using Random Forest to Classify the
Segments and the Whole Epithelium Based on LAB + 27 Features

Classified as ⇒

True class ⇓ Normal CIN1 CIN2 CIN3

Normal 35 2 0 0

CIN1 4 12 1 0

CIN2 0 1 8 6

CIN3 0 0 5 9

In all classifier/feature combinations, CIN1 epithelium images have low detection

accuracy. A possible explanation is that CIN1 looks visually similar to the normal epithe-

lium, which makes it hard to detect. Figure 5 shows an example of a misclassified CIN1

and a normal epithelium.

It is observed that misclassification of CIN1 as normal is a low-cost error, since the

clinical path for CIN1 comprises further clinical observation; in contrast the clinical path

for higher CIN grades entails treatment. Future work could include different weights for

the different CIN grade errors based on the different clinical outcomes.
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(a)

(b)

Figure 5. Example of a Normal Epithelium (a) and a CIN1 Misclassified as Normal (b)

4. CONCLUSION

In this paper, a deep learning and handcrafted feature fusion approach using addi-

tional fusion for localized features to classify cervical tissue histology imageswas developed.

From the experimental results, it was shown that combining the two feature approaches in-

creases the overall classification accuracy. Using the deep learning approach alone achieved

the same classification accuracy as the handcrafted features; combining them resulted in

better classification. Although the deep leaning paradigm shows a promise in many image

classification tasks, the handcrafted feature paradigm still has its place in image analysis

and classification
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SECTION

2. SUMMARY AND CONCLUSIONS

In this dissertation localized features from medical images have been explored. The

computational complexity of feature extraction and analysis was analyzed and bottlenecks

were identified and mitigated while maintaining classification accuracy. A new approach

combining deep learning and handcrafted features was developed formedical image analysis

and classification. Localized features have been applied to dermoscopy images to classify

them into benign and malignant. It was also applied to histology images of cervical tissue

to detect a pre-malignant phase known as cervical intra-epithelial neoplasia.

It was demonstrated through experimental results that extracting localized features

and fusing them to classify the whole image improved the accuracy. Experimental results

also show that combining deep learning features gave better results when compared a to

single paradigm.
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