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ABSTRACT 

Sparse system identification has attracted much attention in the field of adaptive 

algorithms, and the adaptive filters for sparse system identification are studied.  

Firstly, a new family of proportionate normalized least mean square (PNLMS) 

adaptive algorithms that improve the performance of identifying block-sparse systems is 

proposed. The main proposed algorithm, called block-sparse PNLMS (BS-PNLMS), is 

based on the optimization of a mixed l2,1 norm of the adaptive filter’s coefficients. A block-

sparse improved PNLMS (BS-IPNLMS) is also derived for both sparse and dispersive 

impulse responses. Meanwhile, the proposed block-sparse proportionate idea has been 

extended to both the proportionate affine projection algorithm (PAPA) and the 

proportionate affine projection sign algorithm (PAPSA).  

Secondly, a generalized scheme for a family of proportionate algorithms is also 

presented based on convex optimization. Then a novel low-complexity reweighted PAPA 

is derived from this generalized scheme which could achieve both better performance and 

lower complexity than previous ones. The sparseness of the channel is taken into account 

to improve the performance for dispersive system identification. Meanwhile, the memory 

of the filter's coefficients is combined with row action projections (RAP) to significantly 

reduce the computational complexity. 

Finally, two variable step-size zero-point attracting projection (VSS-ZAP) 

algorithms for sparse system identification are proposed. The proposed VSS-ZAPs are 

based on the approximations of the difference between the sparseness measure of current 

filter coefficients and the real channel, which could gain lower steady-state misalignment 

and also track the change in the sparse system.  
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1. INTRODUCTION 

 

1.1. BACKGROUND  

Sparse system identification has attracted much attention in the field of adaptive 

algorithms. A sparse impulse response is that in which a large percentage of the energy is 

distributed to only a few coefficients of its impulse response [1]. In the last decade, sparse 

system identification has been widely applied in many signal processing applications: echo 

cancellation, radar imaging, wireless communication, etc.  

To improve on the convergence performance of normalized least mean squares 

(NLMS) and affine projection algorithm (APA), the proportionate NLMS (PNLMS) and 

proportionate APA (PAPA) algorithms exploit the sparseness of a given system [2]-[3]. 

The idea behind proportionate algorithms is to update each coefficient of the filter 

independently by adjusting the adaptation step size in proportion to the estimated filter’s 

coefficients. In comparison to NLMS and APA, the PNLMS and PAPA have very fast 

initial convergence and tracking when the echo path is sparse. Recently, it was shown that 

both PNLMS and PAPA can be deduced from a basis pursuit perspective [4]-[5].  

A special family of sparse system, called the block-sparse system, is very common 

in the real applications, such as network echo cancellation (NEC) and satellite-linked 

communications etc. However, the traditional PNLMS and PAPA do not take this point 

into account. Considering the, it is necessary to further improve the proportionate algorithm 

by exploiting this special block-sparse characteristic of the sparse impulse response.  

Besides to the family of proportionate algorithms, the family of zero-point 

attracting projection (ZAP) algorithms has been recently proposed to solve the sparse 

system identification problem [6]-[7]. When the solution is sparse, the gradient descent 

recursion will accelerate the convergence of near-zero coefficients of the sparse system. 

The ZAP algorithm applied the sparseness constraint to the standard LMS cost 

function and when the solution is sparse, the gradient descent recursion will accelerate the 

convergence of near-zero coefficients of the sparse system. Analysis showed that the step-

size of the ZAP term denotes the importance or the intensity of attraction. A large step-size 

for ZAP results in a faster convergence, but the steady-state misalignment also increases 
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with the step-size [8]. So, the step-size of ZAP is also a trade-off between convergence rate 

and steady-state misalignment.  

 

 

1.2. PROBLEM STATEMENT  

The input signal  nx  is filtered through the unknown coefficients  nh  to get 

the observed output signal  d n  

       ( ),Td n n n v n x h     (1.1) 

where  v n  is the measurement noise, and L  is the length of the impulse response. We 

define the estimated error as  

        ˆ 1 ,Te n d n n n  x h    (1.2) 

where  ˆ nh  is the adaptive filter’s coefficients. The NLMS algorithm updates the filter 

coefficients as below [1]: 

    
   

   
ˆ ˆ 1 ,

T

n e n
n n

n n




  



x
h h

x x
   (1.3) 

in which   is the step-size of adaption and   is the regularization parameter. The family 

of PNLMS algorithm can be described as below [4]: 

    
     

     

1ˆ ˆ 1 ,
1T

n n e n
n n

n n n






  

 

G x
h h

x G x
   (1.4) 

where 

        1 21 1 , 1 , , 1 ,Ln diag g n g n g n      G   (1.5) 

  
 

 
1

1
1 ,

1
1

l

l
L

ii

n
g n

n
L







 


  (1.6) 

   1
ˆ ˆ ˆmax max , , , , ,l L lq h h h     (1.7) 
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q  prevents the filter coefficients from stalling when   1
ˆ 0 Lh 0  at initialization, and   

prevents the coefficients from stalling when they are much smaller than the largest 

coefficient.  

 Meanwhile, grouping the M most recent input vectors together gives the input 

signal matrix: 

        [ , 1 , , 1 ].n n n n M   X x x x     

 Therefore, the estimated error vector is  

        ˆ 1 ,Tn n n n  e d X h    (1.8) 

in which 

        [ 1 , , 1 ],n d n ,d n d n M   d    (1.9) 

        [ 1 , 1 ],n e n ,e n e n M   e    (1.10) 

and M is the projection order. The PAPA algorithm updates the filter coefficients as follows 

[5]: 

 
   

            
1

ˆ ˆ 1

       1 1 ,M

n n

n n n n n n 


  

  

h h

G X X G X I e
   (1.11) 

in which MI  is M M  identity matrix. 

The ZA-LMS algorithm with l1 norm constraint updates its coefficients as [6]  

         ˆ ˆ ˆ1 sgn 1 ,n n e n n     h h x h    (1.12) 

in which   is the step-size of zero attractor, and  sgn   is a component-wise sign function 

defined as 

  
, 0;

sgn

0, .

x
x

xx

elsewhere




 



   (1.13) 
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1.3. SUMMARY OF CONTRIBUTIONS  

Finally, we will briefly summarize the contributions we have made in this 

dissertation as below. 

A new family of proportionate adaptive algorithms that improve the performance 

of identifying block-sparse systems is proposed. The main proposed algorithm, called 

block-sparse PNLMS (BS-PNLMS), is based on the optimization of a mixed l2,1 norm of 

the adaptive filter’s coefficients. It is demonstrated that both NLMS and traditional 

PNLMS are special cases of BS-PNLMS. Meanwhile, this block-sparse idea has been 

applied to improved PNLMS (IPNLMS), PAPA and proportionate affine sign algorithm 

(PAPSA) too. 

A general framework is proposed to derive proportionate adaptive algorithms for 

sparse system identification. The proposed algorithmic framework employs the convex 

optimization and covers many traditional proportionate algorithms. Meanwhile, based on 

this framework, a novel reweighted proportionate algorithm is derived to achieve both 

better performance and lower computational complexity.  

Finally, an improved variable step-size (VSS) scheme for zero-point attracting 

projection (ZAP) algorithm is presented. The proposed VSS ZAP is proportional to the 

sparseness difference between filter coefficients and the true impulse response. Meanwhile, 

it works for both sparse and non-sparse system identification. 
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PAPER 

I. PROPORTIONATE ADAPTIVE FILTERING FOR BLOCK-SPARSE 

SYSTEM IDENTIFICATION  

Jianming Liu and Steven L. Grant 

 

Abstract 

In this paper, a new family of proportionate normalized least mean square 

(PNLMS) adaptive algorithms that improve the performance of identifying block-sparse 

systems is proposed. The main proposed algorithm, called block-sparse PNLMS (BS-

PNLMS), is based on the optimization of a mixed l2,1 norm of the adaptive filter’s 

coefficients. It is demonstrated that both the NLMS and the traditional PNLMS are special 

cases of BS-PNLMS. Meanwhile, a block-sparse improved PNLMS (BS-IPNLMS) is also 

derived for both sparse and dispersive impulse responses. Simulation results demonstrate 

that the proposed BS-PNLMS and BS-IPNLMS algorithms outperformed the NLMS, 

PNLMS and IPNLMS algorithms with only a modest increase in computational 

complexity. 
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1. INTRODUCTION 

Sparse system identification has attracted much attention in the field of adaptive 

algorithms. The family of proportionate algorithms exploits this sparseness of a given 

system to improve the convergence performance of normalized least mean square (NLMS) 

[1]-[13] and is widely used in network echo cancellation (NEC), etc. 

The idea behind PNLMS is to update each coefficient of the filter independently by 

adjusting the adaptation step size in proportionate to the estimated filter’s coefficient [2]. 

The proportionate NLMS (PNLMS), as compared to the NLMS, has very fast initial 

convergence and tracking when the echo path is sparse. However, large coefficients 

converge quickly (fast initial convergence) at the cost of dramatically slowing the 

convergence of the small coefficients (after the initial period) [3]-[4]. As the large taps 

adapt, the remaining small coefficients adapt at a rate slower than NLMS. 

The mu-law PNLMS (MPNLMS) algorithm proposed in [3]-[4] addresses the issue 

of assigning too large of an update gain to the large coefficients. The total number of 

iterations for overall convergence is minimized when all of the coefficients reach the  -

vicinity of their true values simultaneously (where   is some small positive number).  The   

PNLMS (EPNLMS) algorithm is the second implementation of the same philosophy used 

to generate the MPNLMS algorithm [5]. The EPNLMS algorithm gives the minimum gain 

possible to all of the coefficients with a magnitude less than  . This is based on the 

assumption that the impulse response is sparse and contains many small magnitude 

coefficients. However, the MPNLMS algorithm’s performance is more robust than the 

EPNLMS algorithm regarding the choice of algorithm parameters, as well as input signal 

and unknown system characteristics [1]. Furthermore, the l0 norm family algorithms have 

recently become popular for sparse system identification. A new PNLMS algorithm based 

on the l0 norm was proposed to represent a better measure of sparseness than the l1 norm 

in a PNLMS-type algorithm [6]. Benesty demonstrated that PNLMS could be deduced 

from a basis pursuit perspective [7]. A more general framework was further proposed to 

derive proportionate adaptive algorithms for sparse system identification, which employed 

convex optimization [8].  
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In many simulations, however, it seems that we fully benefit from PNLMS only 

when the impulse response is close to a delta function [9]. Indeed, PNLMS converges much 

slower than NLMS when the impulse response is dispersive. The PNLMS++ algorithm, 

which achieves improved convergence by alternating between NLMS and PNLMS each 

sample period, was proposed in an attempt to address this problem [9]. The improved 

PNLMS (IPNLMS) was proposed to exploit the “proportionate” idea by introducing a 

controlled mixture of proportionate (PNLMS) and non-proportionate (NLMS) adaptations 

[10]. The IPNLMS algorithm performs better than both the NLMS and the PNLMS 

algorithms regardless of the impulse response’s nature. The improved IPNLMS 

(IIPNLMS) algorithm was proposed to identify active and inactive regions of the echo path 

impulse response [11]. Active regions receive updates that are more in-line with NLMS, 

while inactive regions received gains based upon PNLMS. Meanwhile, a partitioned block 

improved proportionate NLMS (PB-IPNLMS) algorithm exploits the properties of an 

acoustic enclosure where the early path (i.e., direct path and early reflections) of the 

acoustic echo path is sparse and the late reverberant part of the acoustic path is dispersive 

[12]. The PB-IPNLMS consists of two time-domain partitioned blocks, such that different 

adaptive algorithms can be used for each part. 

The standard PNLMS algorithm performance depends on some predefined 

parameters controlling proportionality through a minimum gain that is common for all of 

the coefficients. The individual activation factor PNLMS (IAF-PNLMS) algorithm was 

proposed to use a separate time varying minimum gain for each coefficient, which is 

computed in terms of both the past and the current values of the corresponding coefficient 

magnitude, and does not rely on either the proportionality or the initialization parameters 

[13].   

The family of zero-point attracting projection (ZAP) algorithms was recently 

proposed to solve the sparse system identification problem [14]-[17]. When the solution is 

sparse, the gradient descent recursion will accelerate the convergence of the sparse 

system’s near-zero coefficients. A block-sparsity-induced adaptive filter, called block-

sparse LMS (BS-LMS), was recently proposed to improve the identification of block-

sparse systems [18]. The basis of BS-LMS is to insert a penalty of block-sparsity (a mixed 
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l2,0 norm of adaptive tap-weights with equal group partition sizes) into the cost function of 

the traditional LMS algorithm. 

A family of proportionate algorithms is proposed here for block-sparse system 

identification, which can achieve faster convergence in the block-sparse application. Both 

the classical NLMS and the PNLMS algorithms are special cases of this proposed scheme. 

The computational complexities of the proposed BS-PNLMS and BS-IPNLMS algorithms 

are also compared to NLMS, PNLMS, and IPNLMS algorithms. 
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2. REVIEW OF PNLMS 

The input signal  nx  is filtered through the unknown coefficients,  nh , so that 

the observed output signal  d n  can be obtained as 

       ( ),Td n n n v n x h    (1) 

where 

       [ , 1 , , 1 ]Tn x n x n x n L   x ,        1 2[ , , , ] ,T

Ln h n h n h nh   

 v n  is the measurement noise, and L  is the length of the impulse response. The estimated 

error is defined as 

        ˆ 1 ,Te n d n n n  x h    (2) 

where  ˆ nh  is the adaptive filter's coefficients.  

 The coefficient update of the family of PNLMS algorithms is [2]: 

    
     

     

1ˆ ˆ 1 ,
1T

n n e n
n n

n n n






  

 

G x
h h

x G x
   (3) 

where   is the step-size,   is the regularization parameter, and  

        1 21 1 , 1 , , 1 .Ln diag g n g n g n      G    (4) 

 It should be noted that the step-size for the NLMS is the same for all filter 

coefficients:  1 L Ln  G I , where L LI  is an L L  identity matrix. Meanwhile, the 

matrix for the family of PNLMS is defined as 

  
 

 
1

1
1 ,

1
1

l

l
L

ii

n
g n

n
L







 


   (5) 

where 

        1
ˆ ˆ ˆmax max ,F , ,F ,F ,l L lq h h h     (6) 
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 ˆF lh  is specific to the algorithm, q  is a small positive value that prevents the filter 

coefficients  ˆ 1lh n  from stalling when   1
ˆ 0 Lh 0  at initialization, and  , another small 

positive value, prevents the coefficients from stalling when they are much smaller than the 

largest coefficient [1]. The classical PNLMS employs step-sizes that are proportional to 

the magnitude of the estimated impulse response [2], 

     ˆ ˆF 1 1 .l lh n h n      (7) 

 Instead of (5) and (6), the improved PNLMS (IPNLMS) algorithm proposed to use 

[10] 

    
1

ˆ
ˆ1 1 ,

L

ii

l l

h
h

L
  


   


   (8) 

and  

  
 

 

   

1 1

ˆ11 1
1 ,

ˆ21 2

ll

l L L

i ii i

hn
g n

Ln h

 


 

 
   

 
   (9) 

where 1 1   . IPNLMS behaves like NLMS when 1    and PNLMS for   close 

to 1. In general, IPNLMS is a sum of two terms. The first term is an average of the absolute 

value of the coefficients taken from the estimated filter and the second is the absolute value 

of the coefficient itself. For most AEC/NEC applications, a good choice is 0, 0.5   , with 

which IPNLMS behaves better than either the NLMS or the PNLMS, regardless of the 

impulse response nature [10]. 

 In next section, we will show that NLMS and PNLMS are all special cases of our 

proposed block-sparse PNLMS (BS-PNLMS). Meanwhile, we could further take 

advantage of the benefits of IPNLMS algorithms to improve the performance of the 

proposed BS-PNLMS algorithm. 
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3. PROPOSED BS-PNLMS 

The motivation behind the proposed family of the block-sparse proportionate 

algorithms is discussed at the beginning of this section, and then the proposed BS-PNLMS 

and BS-IPNLMS algorithms are presented next. 

 

 

3.1 MOTIVATION OF THE PROPOSED BS-PNLMS 

A sparse impulse response is that in which a large percentage of the energy is 

distributed to only a few coefficients [1]. Several different types of sparse systems exist as 

indicated in Figure 1. The nonzero coefficients in a general sparse system (see Figure 1(a)) 

may be arbitrarily located. Meanwhile, there exists a special family known as either 

clustering-sparse systems or block-sparse systems [18]. For example, the network echo 

path is typically characterized by a bulk delay that is dependent on network loading, 

encoding, and jitter buffer delays. This results in an “active” region in the range of 8-12 ms 

duration, and the impulse response is dominated by “inactive” regions where coefficient 

magnitudes are close to zero [1]. The network echo response is a typical single-clustering 

sparse system (see Figure 1(b)). Satellite communication is an important modern 

application of echo cancellation. The impulse response of the echo path in satellite-linked 

communications consists of several long flat delay regions and disperse active regions. 

Such responses are representative of multi-clustering sparse systems. The waveform in a 

communication link that uses single-side band suppressed carrier modulation, contains 

both a relatively large near-end echo, characterized by a short time delay and a far-end 

echo that is smaller in amplitude but with a longer delay [20].  Therefore, the echo path 

impulse response is primarily characterized by two active regions that correspond to the 

near-end signal and the far-end signal echo (see Figure 1(c)). Considering the block-sparse 

characteristic of the sparse impulse responses, as in Figure 1(b) and Figure 1(c), the 

proportionate algorithm can be further improved by exploiting this special characteristic. 

It can be observed that an echo path, such as Figure 1(b), consists of the direct path 

and a few early reflections, which are almost always sparse, and the late reverberant part, 

which is always dispersive. The PB-IPNLMS algorithm splits the impulse response into  
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Figure 1.  Three types of sparse systems, (a) a general sparse system, (b) a one-cluster 

block-sparse system, and (c) a two-cluster block-sparse system. 

 

 

two blocks and used two IPNLMS algorithms each with a different proportionate/non-

proportionate factor for the two corresponding time-domain partitioned blocks [12]. 

However, the PB-IPNLMS in [12] depends on the assumption of one-cluster sparse 

system, which does not hold for the multi-clustering case as in Figure 1(c). Additional 

IPNLMS algorithms could be employed to extend the PB-IPNLMS to multi-cluster sparse 

system. However, this must depend on the priori information of the bulk delays in the 

multi-cluster sparse system, which is not necessarily the case in practice. 

P. Loganathan et al. in [12] noted that distributing almost equal step-sizes for the 

dispersive block provides better steady-state performance, which agrees with the well-

known fact that for the dispersive system, NLMS is preferred over PNLMS. Meanwhile, 

PNLMS is only beneficial when the impulse response is close to a delta function [9]. 

Therefore, the block-sparse proportionate NLMS (BS-PNLMS) algorithm is proposed to 

accelerate the convergence by combining the above two facts together. In BS-PNLMS, 

considering the fact that the block-sparse system is dispersive within each block, it is 

preferred to use NLMS within each block. Meanwhile, the idea of PNLMS can be applied 

0 100 200 300 400 500 600 700 800 900 1000
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to have the NLMS step-size for each block proportionate to its relative magnitude. More 

details are given in the following subsection. 

 

 

3.2 THE PROPOSED BS-PNLMS ALGORITHM 

The proportionate NLMS algorithm can be deduced from a basis pursuit 

perspective [7] 

 
 

     
1

               

subject to       ,T

n

d n n n

h

x h

min
   (10) 

where  nh  is the correction component defined as [7] 

  
     

     

1
.

1T

n n d n
n

n n n






G x
h

x G x
   

Motivated by the observations in Section III.A, a family of proportionate adaptive 

algorithm for block-sparse system identification can be derived by replacing the l1 norm 

optimization target in (10) with the following l2,1 norm defined as 

 

 

 

 

 

1
2

2
2

2,1 2
1

2 1

= ,
N

i
i
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 
 
 
  
 
 
 
  



h

h
h h

h

   (11) 

where            1 1 1 2
2

, [ , , , ]T T

iPi i i i i P i P
h h h

   
 h h h h , P  is a predefined group partition 

size parameter and N L P  is the number of groups. The following convex target could 

be minimized with a constraint on the linear system of equations: 

 
 

     

2,1
               

subject to       .T

n

d n n n

h

x h

min
   (12) 
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The Lagrange multiplier can be used to derive the proposed block-sparse 

proportionate NLMS algorithm [6]-[7]. The derivative of the l2,1 norm in (11), with respect 

to the weight vector, is  

 
 

 

     
2 2 22,1 1 1 1

1 2

= , , , ,

N N N

i i i
i i i

L

n

n h h h

  

 
    
 

    
  

  h h hh

h
   (13) 

in which 

 

   

 

 

1 2 2

2

= ,

1 1 .

N

i ji k

k k j

h

h h

j P k jP


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
 

   

 h h

h    (14) 

The update equation for the proposed BS-PNLMS is 

    
     

     

1ˆ ˆ 1 ,
1T

n n e n
n n

n n n






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 

G x
h h

x G x
   (15) 

where 

 

 
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1

ˆ ˆ ˆ, , , ,P P PN

n

diag

 

 
 

G

h 1 h 1 h 1
   (16) 

and 1 1    is a P-length row vector of all ones. Equation (15) is the same as the 

traditional PNLMS, except that here the block-sparse definition of  1nG  is used in (16). 

In a manner similar to (4)-(6) in PNLMS to prevent stalling issues, the proposed BS-

PNLMS does so as 
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and 
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       1

2 2 2

ˆ ˆ ˆmax max , , , , .i N i
q  h h h    (19) 

The traditional PNLMS and NLMS algorithms can each be easily verified as special 

cases of the proposed BS-PNLMS. If P  is equal to 1, the mixed l2,1 norm in (11) is 

equivalent to the l1 norm in (10), which is the classical basis pursuit based PNLMS 

algorithm [7]. Meanwhile, if P  is chosen as L , the mixed l2,1 norm in (13) is the same as 

the l2 norm and BS-PNLMS then becomes the traditional NLMS [7]. Therefore, the BS-

PNLMS is a generalization of NLMS and PNLMS. 

 

 

3.3 EXTENSION TO THE BS-IPNLMS ALGORITHM 

Meanwhile, in order to further improve the robustness of the proposed BS-PNLMS 

algorithm to both sparse and dispersive impulse responses, an improved BS-PNLMS (BS-

IPNLMS) algorithm is proposed using the similar idea of IPNLMS algorithm 

  
 

   

1 2

2

ˆ
ˆ1 1 ,

N

ii

l l
N

  


   
 h

h    (20) 

  
 

 

     

 

2

1 1 2

ˆ11
.

ˆ2 2

ll

l N N

i ii i

n
g n

LP n P

 


 


  

 

h

h
   (21) 

This section is concluded with a brief discussion about the proposed BS-PNLMS 

and BS-IPNLMS algorithms. Unlike the PB-IPNLMS, the proposed BS-PNLMS and BS-

IPNLMS algorithms only require prior information about the length of the active regions 

to determine the group size, which are usually known for both the NEC and the satellite 

link channels, etc., and not their actual locations. The BS-PNLMS could be interpreted as 

transferring the block-sparse system into a multi-delta system in the coefficient space to 

fully benefit from PNLMS. However, if the impulse system is dispersive, or the group size 

is much smaller than the actual block size in the impulse response, the BS-IPNLMS could 

outperform both the PNLMS and the BS-PNLMS, as well. The details of the proposed BS-

PNLMS and BS-IPNLMS algorithms are summarized in Table 1. The superior 
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performance of BS-PNLMS, and BS-IPNLMS over NLMS, PNLMS, and IPNLMS will 

be demonstrated in the simulations of Section 5. 

 

 

Table 1.  The block-sparse algorithms 

Initializations: 
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4. COMPUTATIONAL COMPLEXITY 

The computational complexity of BS-PNLMS and BS-IPNLMS algorithms is 

compared with traditional NLMS, PNLMS and IPNLMS algorithms in Table 2 in terms of 

the total number of additions (A), multiplications (M), divisions (D), comparisons (C), 

square roots (Sqrt) and memory words (MW), needed per sample. The additional 

computational complexity for the BS-PNLMS family arises from the computation of the l2 

norm of the block responses using the square root operations. The complexity of the square 

root can be reduced through the use of a look up table or a Taylor series expansion [22]. 

Meanwhile, it should be noted that the “comparison operations” and the required memory 

words for the family of BS-PNLMS are decreased from that of PNLMS. Finally, the 

computational complexity of the proposed block-sparse family algorithms is also related 

to the number of groups, N , where N L P . 

 

 

 Table 2.  Computational complexity of the algorithms’ coefficient updates – 

Addition (A), Multiplication (M), Division (D), Comparison (C), Square Root (Sqrt) and 

Memory Word (MW). 

Algorithm  A M D C Sqrt MW 

NLMS 2L+3 2L+3 1 0 0 4L+7 

PNLMS 4L+2 5L+4 2 2L 0 8L+11 

BS-PNLMS 4L-1 6L+3 2 N+1 N 5L+3N+11 

IPNLMS 5L+2 6L+2 4 L-1 0 8L+11 

BS-IPNLMS 4L+N-1 6L+N+1 2 0 N 5L+3N+11 
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5. SIMULATION RESULTS 

Simulations were conducted to evaluate the performance of the proposed BS-

PNLMS and BS-IPNLMS algorithms. The algorithms were tested using zero mean white 

Gaussian noise (WGN), colored noise and speech signals at sampling rate 8 KHz. The 

WGN was filtered through a first order system with a pole at 0.8 to generate the colored 

input signals. An independent WGN was added to the system’s background at a signal-to-

noise ratio (SNR) of 30dB. The regularization parameter for NLMS was 0.01NLMS  , and 

the regularization parameters for PNLMS, BS-PNLMS, IPNLMS, and BS-IPNLMS were 

NLMS L  according to [19]. The values of N  used for both the IPNLMS and the BS-

IPNLMS algorithms were 0. For both the PNLMS and the BS-PNLMS algorithms, 

0.01  , and 0.01q  .  

The convergence state of adaptive filter was evaluated with the normalized 

misalignment defined as 

 
2 2

10 22

ˆ10log ( ).h h h     

In all the simulations except for the ones in section 5.3, the length of the unknown 

system throughout the simulation was 1024L  , and the adaptive filter had the same length. 

A 32 taps impulse response in Figure 1 (b) with a single cluster of nonzero coefficients at 

[257, 288] was used. In order to compare the tracking ability for different algorithms, an 

echo path change was incurred at 40000 sample by switching to the two-clusters response 

located at [257, 272] (16 taps) and [769, 800] (32 taps) as illustrated in in Figure 1 (c). All 

the algorithms were simulated for five times and averaged in order to evaluate their 

performance. 

 

 

5.1 EFFECT OF P ON THE PERFORMANCE OF BS-PNLMS 

In order to demonstrate the effect of P, the performance of the proposed BS-

PNLMS was tested for different group sizes   (4, 16, 32, and 64) separately. Meanwhile, 

the performance of NLMS, which is the same as BS-PNLMS with 1024P  , and PNLMS 
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(the same as BS-PNLMS with 1P  ) algorithms were also included. In the first simulation 

in Figure 2 (a), the input was WGN, and the step-size   was set to 0.1. The simulation 

results for a colored input signal and speech input signal are illustrated in Figure 2 (b) and 

Figure 2 (c) separately, where the step-sizes were 0.2   for both the colored input and 

the speech input. Meanwhile, the remaining parameters for the three simulations were the 

same. 

Simulation results in Figure 2 indicate that the group size P  should be chosen 

properly in order to gain better performance than either the NLMS or the PNLMS. Due to 

the fact that there are a total 32 taps in the single-cluster impulse response, it is reasonable 

that the group size larger than 32 will likely degrade the performance before the echo path 

change. Meanwhile, there are two clusters with length 16 taps separately in the two-cluster 

impulse response, and the group size should be smaller than 16. Because the groups are 

evenly spaced, the actual block could have been split into multiple groups too. Therefore, 

the group size should be smaller than the length of cluster’s actual minimum size in the 

impulse response. The cluster’s size is typically known in real-world applications. For 

example, the NEC’s “active” region is in the range of 8-12 ms duration [1]. If the group 

size is significantly larger than the cluster size of block-sparse system, the convergence 

speed will become worse than the traditional PNLMS. This fact is intuitive, considering 

that NLMS, which uses 1024P  , converges slower than PNLMS with 1P   for a block-

sparse system. Thus, both NLMS and PNLMS represent extreme cases. The NLMS 

algorithm should be chosen when the unknown system is dispersive, i.e. the cluster size is 

the length of the full filter, and when the unknown system is generally sparse as illustrated 

in Figure 1(a), PNLMS should be used because the cluster size is 1. 

 

 

5.2 CONVERGENCE PERFORMANCE OF BS-PNLMS AND BS-IPNLMS FOR  

BLOCK-SPARSE SYSTEMS 

The performances of NLMS, PNLMS, IPNLMS, proposed BS-PNLMS with 

16P   and the proposed BS-IPNLMS with 4P   were compared for the two block-sparse 

systems in Figure 3. 
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(a) WGN input with 0.1   

 

 

 

 
(b) Colored noise input with 0.2   

 

Figure 2.  Comparison of the BS-PNLMS algorithms with different group sizes for block-

sparse systems in Figure 1 (b) and Figure 1 (c) at SNR=30dB: (a) white, (b) colored noise  

and (c) speech input signals.   
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(c) Speech input with 0.2   

 

Figure 2.  Comparison of the BS-PNLMS algorithms with different group sizes for block-

sparse systems in Figure 1 (b) and Figure 1 (c) at SNR=30dB: (a) white, (b) colored noise  

and (c) speech input signals (cont.).   

 

 

The WGN was used as the input signal in Figure 3 (a) with the step-sizes as 

0.1NLMS PNLMS   , and 0.1BS PNLMS BS IPNLMS    . The simulation results for the 

colored and speech input are illustrated in Figure 3 (b) and Figure 3 (c), where 

0.2NLMS PNLMS   , and 0.2BS PNLMS BS IPNLMS    . 

The proposed BS-PNLMS algorithm provides faster convergence rate and tracking 

ability than either the NLMS or the traditional PNLMS algorithms for the block-sparse 

impulse responses. Meanwhile, the convergence rate of BS-IPNLMS outperformed both 

the NLMS and the IPNLMS algorithms. 

It is interesting to observe that the BS-PNLMS algorithm outperformed the BS-

IPNLMS algorithm. This is due to fact that the two block-sparse systems in Figure 1 (b) 

and Figure 1 (c) are very sparse. Meanwhile, the BS-PNLMS transformed them into highly 

sparse systems with only 2 or 3 non-zero elements which fully benefits from PNLMS.  
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(a) 0.1NLMS PNLMS   , 0.1BS PNLMS BS IPNLMS     

 

 

 

(b) 0.2NLMS PNLMS   , 0.2BS PNLMS BS IPNLMS     

 

Figure 3.  Comparison of NLMS, PNLMS, IPNLMS, BS-PNLMS and BS-IPNLMS 

algorithms for block-sparse systems in Figure 1 (b) and Figure 1 (c) at SNR=30dB:  (a) 

WGN input, (b) colored noise and (c) speech input signals. 
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(c) 0.2NLMS PNLMS   , 0.2BS PNLMS BS IPNLMS     

 

Figure 3.  Comparison of NLMS, PNLMS, IPNLMS, BS-PNLMS and BS-IPNLMS 

algorithms for block-sparse systems in Figure 1 (b) and Figure 1 (c) at SNR=30dB:  (a) 

WGN input, (b) colored noise and (c) speech input signals (cont.). 

 

 

Meanwhile, the benefits of BS-IPNLMS for the dispersive impulse responses will be 

demonstrated in the next subsection. 

 

 

5.3 CONVERGENCE PERFORMANCE OF BS-PNLMS AND BS-IPNLMS FOR  

THE ACOUSTIC ECHO PATH AND A RANDOM DISPERSIVE SYSTEM 

In order to verify the performance of the proposed BS-IPNLMS algorithm for 

dispersive impulse response, simulations were conducted to compare the performances of 

NLMS, PNLMS, IPNLMS, the proposed BS-PNLMS with 16P  , and the proposed BS-

IPNLMS with 16P  .  An echo path change was incurred at 40000 samples by switching 

from a 512 taps measured acoustic echo path in Figure 4 (a) to a random impulse response 

in Figure 4 (b). The simulation results for WGN, colored noise and speech input signals 

are illustrated in Figure 5. 
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Figure 4.  Two impulse responses (a) a measured quasi-sparse acoustic echo path, (b) a 

random dispersive impulse response. 

 

 

 

(a) 0.2NLMS PNLMS   , 0.2BS PNLMS BS IPNLMS     

Figure 5.  Comparison of NLMS, PNLMS, IPNLMS, BS-PNLMS and BS-IPNLMS 

algorithms for acoustic echo path and dispersive system in Figure 4 and SNR=30dB:  (a) 

WGN input (b) colored noise and (c) speech input. 
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(b) 0.4NLMS PNLMS   , 0.4BS PNLMS BS IPNLMS     

 

 

 

(c) 0.4NLMS PNLMS   , 0.4BS PNLMS BS IPNLMS     

 

Figure 5.  Comparison of NLMS, PNLMS, IPNLMS, BS-PNLMS and BS-IPNLMS 

algorithms for acoustic echo path and dispersive system in Figure 4 and SNR=30dB:  (a) 

WGN input (b) colored noise and (c) speech input (cont.). 
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The step-size parameters were 0.2NLMS PNLMS   , 0.2BS PNLMS BS IPNLMS     

for the WGN input, and  0.4NLMS PNLMS   , 0.4BS PNLMS BS IPNLMS     for both the 

colored noise and the speech input signals.  

It can be observed that the BS-IPNLMS algorithm outperformed the BS-PNLMS 

algorithm for both the acoustic echo path and the random dispersive impulse response. 

Meanwhile, both BS-PNLMS and BS-IPNLMS work better than the traditional PNLMS 

algorithm for the random dispersive impulse responses. 

It should be noted that, neither the acoustic echo path nor the random dispersive 

impulse response are typical block-sparse impulse systems, therefore, the family of BS-

IPNLMS should be used to obtain better performance instead of the BS-PNLMS 

algorithms. 
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6. CONCLUSION AND FUTURE WORK 

A new family of proportionate algorithms for block-sparse system identification 

(known as BS-PNLMS and BS-IPNLMS) were proposed. These algorithms were based on 

the optimization of a mixed l2,1 norm of the adaptive filter’s coefficients. The 

computational complexities of the proposed algorithms were presented. Simulation results 

demonstrated that, the new BS-PNLMS algorithm outperforms the NLMS, PNLMS and 

IPNLMS algorithms for the block-sparse system, and the new BS-IPNLMS algorithm is 

more preferred for the dispersive system. 

This block-sparse proportionate idea proposed in this paper could be further 

extended to many other proportionate algorithms, including proportionate affine projection 

algorithm (PAPA) [23], proportionate affine projection sign algorithm (PAPSA) [24], and 

their corresponding low complexity implementations [25]-[26] etc. The proof of 

convergence for the proposed BS-PNLMS and BS-IPNLMS algorithms can also be part of 

the future work. Finally, it will be interesting to explore the variable and non-uniform group 

split to further improve the performance of the BS-PNLMS and the BS-IPNLMS 

algorithms. 
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II. PROPORTIONATE AFFINE PROJECTION ALGORITHMS FOR 

BLOCK-SPARSE SYSTEM IDENTIFICATION  

Jianming Liu and Steven L. Grant 

 

Abstract 

A new family of block-sparse proportionate affine projection algorithms (BS-

PAPA) is proposed to improve the performance for block-sparse systems. This is motivated 

by the recent block-sparse proportionate normalized least mean square (BS-PNLMS) 

algorithm. It is demonstrated that the affine projection algorithm (APA), proportionate 

APA (PAPA), BS-PNLMS and PNLMS are all special cases of the proposed BS-PAPA 

algorithm. Meanwhile, an efficient implementation of the proposed BS-PAPA and block-

sparse memory PAPA (BS-MPAPA) are also presented to reduce computational 

complexity. Simulation results demonstrate that the proposed BS-PAPA and BS-MPAPA 

algorithms outperform the APA, PAPA and MPAPA algorithms for block-sparse system 

identification in terms of both faster convergence speed and better tracking ability. 
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1. INTRODUCTION 

The impulse responses of many applications, such as network echo cancellation 

(NEC), are sparse, which means a small percentage of the impulse response components 

have a significant magnitude while the rest are zero or small. Therefore, instead of the 

normalized least mean square (NLMS) [1] and the affine projection algorithm (APA) [2], 

the family of proportionate algorithms exploits this sparseness to improve their 

performance, including proportionate NLMS (PNLMS) [3], and proportionate APA 

(PAPA) [4]. The memory improved PAPA (MIPAPA) algorithm was proposed to not only 

speed up the convergence rate but also reduce the computational complexity by taking into 

account the memory of the proportionate coefficients [5]. 

It has been shown that the PNLMS algorithm and PAPA can both be deduced from 

a basis pursuit perspective [6]-[7]. A more general framework was further proposed to 

derive the PNLMS adaptive algorithms for sparse system identification, which employed 

convex optimization [8]. Recently, the block-sparse PNLMS (BS-PNLMS) algorithm was 

proposed to improve the performance of PNLMS for identifying block-sparse systems [9]. 

Motivated by BS-PNLMS, we propose a family of block-sparse PAPA algorithms for 

block-sparse system identification in this paper. The PNLMS, BS-PNLMS, APA and 

PAPA algorithms are all special cases of this proposed BS-PAPA algorithm. Meanwhile, 

in order to reduce the computational complexity, taking advantage of the block-sparse 

property in the proposed BS-PAPA algorithm, an efficient implementation of BS-PAPA is 

studied, and the block-sparse memory PAPA (BS-MPAPA) algorithm is also introduced. 
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2. REVIEW OF PAPA  

In the typical echo cancellation problem, the input signal  nx  is filtered through 

the unknown coefficients  nh  to get the observed output signal  d n . 

         ,Td n n n v n x h    (1) 

where 

        [ , 1 , , 1 ] ,Tn x n x n x n L   x     

 v n  is the measurement noise, and L  is the length of the impulse response. We define the 

estimated error as 

        ˆ 1 ,Te n d n n n  x h    (2) 

where  ˆ nh  is the adaptive filter's coefficients. Grouping the M most recent input vectors 

together gives the input signal matrix: 

        [ 1 , , 1 ].n n n n M   X x x x,     

 Therefore, the estimated error vector is  

        ˆ 1 ,Tn n n n  e d X h    (3) 

in which 

        [ 1 , , 1 ],n d n ,d n d n M   d     

        [ 1 , , 1 ],n e n ,e n e n M   e     

and M is the projection order. The PAPA algorithm updates the filter coefficients as follows 

[4]: 

 
   

            
1

ˆ ˆ 1

       1 1 ,M

n n

n n n n n n 


  

  

h h

G X X G X I e
   (4) 

in which   is the step-size,   is the regularization, MI  is M M  identity matrix and  
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        1 21 1 , 1 , , 1 ,Ln diag g n g n g n      G   (5)  

  
 

 
1

1
1 ,

1
1

l

l
L

ii

n
g n

n
L







 


   (6) 

   1
ˆ ˆ ˆmax max , , , , ,l L lq h h h     (7) 

q  prevents the filter coefficients  ˆ 1lh n  from stalling when   1
ˆ 0 Lh 0  at initialization, and 

  prevents the coefficients from stalling when they are much smaller than the largest 

coefficient.  

 In many applications, including network echo cancellation (NEC) and satellite-

linked communication echo cancellation, the impulse response is block sparse, that is, it 

consists of several dispersive active regions. However, PAPA does not take into account 

the block-sparse characteristic, and motivated by the block-sparse PNLMS (BS-PNLMS) 

algorithm [9], we propose a family of new block-sparse PAPA algorithms to further 

improve their performance for identifying the block-sparse impulse system in next section. 
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3. PROPOSED BS-PAPA 

The block-sparse scheme for PAPA will be firstly derived based on the 

optimization of l2,1 norm, then in order to reduce the computational complexity, an efficient 

implementation of the proposed BS-PAPA is presented by taking advantage of the block 

structure. Finally, block-sparse memory PAPA (BS-MPAPA) is also proposed by 

considering the memory of the coefficients to further reduce computational complexity. 

 

 

3.1 THE PROPOSED BS-PAPA 

The proportionate APA algorithm can be deduced from a basis pursuit perspective 

as below [7] 

 
 

     
1

               

subject to       ,T

n

n n n

h

d X h

min
   (8) 

where  nh  is the correction component defined as [6]-[7] 

              
1

1 1 .Tn n n n n n n


    h G X X G X d    (9) 

Motivated by BS-PNLMS, the proposed block-sparse scheme for PAPA is derived 

by replacing the l1 norm optimization target in the basis pursuit perspective with the 

following l2,1 norm defined as  

 

 

 

 

 

1
2

2
2

2,1 2
1

2 1

= ,
N

i
i

N



 
 
 
  
 
 
 
  



h

h
h h

h

   (10) 

where            1 1 1 2
2

, [ , , ]T T

iPi i i i i P i P
h ,h h

   
 h h h h , P  is a predefined group partition 

size parameter and N L P  is the number of groups. Therefore,  



37 

 

 

 
 

     

2,1
               

subject to       .T

n

n n n

h

d X h

min
   (11) 

Similarly, the proposed BS-PAPA could be derived using the method of Lagrange 

multipliers, see [6]-[7] for more details. The update equation for the proposed BS-PAPA 

is then, 

 
   

            
1

ˆ ˆ 1

1 1 ,T

M

n n

n n n n n n 


 

   

h h

G X X G X I e

   (12) 

and 

 

 

     1 2
2 2 2

1

ˆ ˆ ˆ, , , ,P P PN

n

diag

 

 
 

G

h 1 h 1 h 1
   (13) 

in which P1  is a P-length row vector of all ones. Equation (12) is the same as traditional 

PAPA in (4), except for the block-sparse definition of  1nG  in (13). Similar to (5)-(7) 

in PAPA to prevent the stalling issues, the proposed BS-PAPA replaces (5)-(7) with 

 
 

     1 2

1

1 , 1 , , 1 ,P P N P

n

diag g n g n g n

 

    

G

1 1 1
   (14) 

  

1

1 ,
1

i
i

N

ll

g n

N






 


   (15) 

 
       1

2 2 2

ˆ ˆ ˆmax max , , , , .i N i
q  h h h    (16) 

It should be noted that the proposed BS-PAPA includes PNLMS, BS-PNLMS, 

APA and PAPA. The BS-PNLMS algorithm is a special case of BS-PAPA with projection 

order 1M  . In the case of P  is equal to 1, the BS-PAPA algorithm degenerates to PAPA. 

Meanwhile, when P  is chosen as L , the proposed BS-PAPA turns into APA. 
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3.2 EFFICIENT IMPLEMENTATION OF PROPOSED BS-PAPA 

By taking advantage of the new block-sparse characteristic in the proposed BS-

PAPA algorithm, we can reduce the computational complexity of the proposed BS-PAPA, 

especially for higher projection order. Equation (12) can be rewritten as 

      1 ,n n n P G X    (17) 

 
   

        
1

ˆ ˆ 1

.T

M

n n

n n n n 


 

 

h h

P X P I e

   (18) 

Considering the blocks of  1nG  in (14), (17) can be rewritten as (19) below, 

 

           

           

              

1 1 1

2 2 2

1 , 1 1 , , 1 1

1 , 1 1 , , 1 1
,

1 1 , 1 1 1 , , 1 1 1

P P P

P P P

N P N P N P

g n n g n n g n n M

g n n P g n n P g n n M P
n

g n n N P g n n N P g n n M N P

      
 

         
  
 
             

x x x

x x x
P

x x x

 (19) 

where  

        [ 1 1 ] .T

P n x n x n x n P   x    (20) 

The direct implementation of (17) will need ML  multiplications, which is the case 

of classical PAPA. However, considering the block-sparse characteristic in (14), the 

computational complexity of (19) can be further reduced. The ith submatrix of  nP  is 

defined as  i nP  in (21).  

                1 1 , 1 1 1 , , 1 1 1 .i i P i P i Pn g n n i P g n n i P g n n M i P              P x x x    (21) 

Considering the shift property of  P nx  in (20), we only need to calculate the vector 

 i np  in (22)  

               1 1 , 1 1 1 , , 1 2 ,
T

i i i in g n x n i P g n x n i P g n x n M iP             p    (22) 

which requires 1P M   multiplications then use a sliding window to construct  i nP . 

Therefore, the number of multiplications of (19) in the proposed BS-PAPA will become 

 1P M N  .  
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It should be noted that, the proposed efficient implementation will not damage the 

performance of the BS-PAPA algorithm. Meanwhile, the advantage of proposed efficient 

implementation becomes more apparent when the projection order and block size increase. 

 

 

3.3 MEMORY BS-PAPA 

In order to further reduce the computational complexity of (19), we could consider 

the memory of proportionate coefficients as in [5], and approximate the matrix  nP  by 

 nP'  in (23)  
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 

         
  
 
             

x x x

x x x
P'

x x x

   (23) 

Due to time-shift property of (23), it could be implemented as 

        11 , 1 ,n n n n    P' g x P'    (24) 

where the operation  denotes the Hadamard product and the matrix  1 1n P'  contains 

the first 1M   columns of  1nP' . The calculation of  nP'  only needs L  multiplications, 

and the proposed BS-MPAPA updates the coefficients as below: 

 
   

        
1

ˆ ˆ 1

.T

M

n n

n n n n 


 

 

h h

P' X P' I e
   (25) 

It should be noted that the efficient implementation proposed in Section III.B could 

not be applied to the memory BS-PAPA, however, the computational complexity of 

memory BS-PAPA will be lower than BS-PAPA due to the time-shift property when 

considering the memory.  
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4. SIMULATION RESULTS 

The performance of the proposed BS-PAPA and BS-MPAPA are evaluated via 

simulations. Throughout our simulation, the length of the unknown system is 1024L  , 

and the adaptive filter is the same length. Two block-sparse impulse systems in Figure 1 

are used: the first impulse response in Figure 1(a) is with a single cluster of nonzero 

coefficients at [257, 288], which has 32 taps; the two clusters in the second impulse 

response in Figure 1(b) locate at [257, 288] (32 taps) and [769, 800] (32 taps) separately. 

In order to compare the tracking ability for different algorithms, an echo path change was 

incurred at 30000-sample by switching from the first impulse response in Figure 1(a) to 

the second impulse response in Figure 1(b). 

The algorithms were tested using colored noise which was generated by filtering 

white Gaussian noise (WGN) through a first order system with a pole at 0.8. Independent 

WGN is added to the system background with a signal-to-noise ratio, SNR = 30dB. The 

projection order was 8M  , and the step-sizes were 0.01  . The regularization 

parameters   were set to 0.01, and we used 0.01  , and 0.01q  . The convergence state 

of adaptive filter is evaluated with the normalized misalignment which is defined as 

2 2

10 22

ˆ10log ( )h h h . 
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Figure 1.  Block-sparse impulse systems (a) one-cluster block-sparse system, (b) two-

cluster block-sparse system. 

 

 

The performance of the proposed BS-PAPA was tested for different group sizes   

chosen as 1 (i.e. PAPA), 4, 16, 32, 64, 1024 (i.e. APA) separately in Figure 2. The impact 

of different group sizes on BS-MPAPA is similar. As discussed in BS-PNLMS [9], the 

group size should be chosen properly (around 32 here) in order to fully take advantage of 

the block-sparse characteristic. 

In the second simulation, we compare the performance of BS-PAPA and BS-

MPAPA algorithms together with APA, PAPA and MPAPA. For both the BS-PAPA and 

BS-MPAPA algorithms, the group size was 32P  . The convergence curves for colored 

input are shown in Figure 3. As can be seen, both proposed BS-PAPA and BS-MPAPA 

outperform PAPA and MPAPA in terms of convergence speed and tracking ability. 

Meanwhile, BS-MPAPA will be more favorable considering its lower computation 

complexity.  
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Figure 2.  Comparison of BS-PAPA with different group sizes for colored input with 

SNR=30dB. 

 

 

 
 

Figure 3.  Comparison of APA, PAPA, MPAPA, BS-PAPA and BS-MPAPA algorithms 

for colored noise with SNR=30dB. 
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5. CONCLUSION 

We have proposed two proportionate affine projection algorithms for block-sparse 

system identification, called block-sparse PAPA (BS-PAPA) and block-sparse memory 

PAPA (BS-MPAPA). Simulation results demonstrate that the new proportionate BS-PAPA 

and BS-MPAPA algorithms outperform traditional PAPA, MPAPA for block-sparse 

system identification. 
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III. BLOCK SPARSE MEMORY IMPROVED PROPORTIONATE AFFINE 

PROJECTION SIGN ALGORITHM  

Jianming Liu and Steven L. Grant 

 

Abstract 

A block sparse memory improved proportionate affine projection sign algorithm 

(BS-MIP-APSA) is proposed for block sparse system identification under impulsive noise. 

The new BS-MIP-APSA not only inherits the performance improvement for block-sparse 

system identification, but also achieves robustness to impulsive noise and the efficiency of 

the memory improved proportionate affine projection sign algorithm (MIP-APSA). 

Simulations indicate that it can provide both faster convergence rate and better tracking 

ability under impulsive interference for block sparse system identification as compared to 

APSA and MIP-APSA. 
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1. INTRODUCTION 

Adaptive filters have been widely used in various applications of system 

identification in which the normalized least mean square (NLMS) algorithm is well-known 

due to its simplicity, but suffers from slow convergence for colored input [1]. The affine 

projection algorithm (APA) provides better convergence for colored input compared with 

NLMS [2]. Meanwhile, the family of affine projection sign algorithm (APSA) has been 

proposed to improve the performance of APA under impulsive noise together with lower 

complexity [3]. In order to exploit the sparsity of some echo paths, the real-coefficient 

improved proportionate APSA (RIP-APSA) was proposed [4], and a memory improved 

proportionate APSA (MIP-APSA) was further proposed to achieve improved steady-state 

misalignment with similar computational complexity compared with RIP-APSA [5]. 

Recently, the block-sparse improved proportionate NLMS (BS-IPNLMS) algorithm was 

proposed to improve the performance of IPNLMS for identifying block-sparse systems [7]. 

In this Letter, motived by both BS-PNLMS and MIP-APSA, we will propose a block sparse 

memory improved proportionate APSA (BS-MIP-APSA) algorithm, which not only 

inherits the performance improvement for block-sparse system identification, but also 

achieves robustness to impulsive noise and the efficiency of MIP-APSA. 
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2. REVIEW OF MIP-APSA 

For echo cancellation, the far-end signal  nx  is filtered through the echo path 

 nh  to get the desired signal  y n , 

 ( ) ( ) ( ) ( ),Ty n n n v n x h    (1) 

        1 1 ,
T

n x n x n x n L     x    (2) 

        0 1 1 ,
T

Ln n n nh h h    h    (3) 

super-script T  denotes transposition, L  is the filter length, n  is the time index, and  nv  is 

the background noise plus near-end signals. Let  ˆ nh  be the 1L  adaptive filter coefficient 

vector which estimates the true echo path vector  nh  at iteration n , and group the M  

most recent input vectors together: 

        1 1 ,n n n n M     X x x x    (4) 

        ˆ 1 ,Tn n n n  e y X h    (5) 

        1 1 ,
T

n y n y n y n M     y    (6) 

where M  is called the projection order. In [5], MIP-APSA proposed the following weight 

update: 

        0 1 1, , , ,Ln n nn g g g    g    (7) 

  
     

 
1

0

ˆ11
,

ˆ2 2

l

l L

ii

n

n

h
g n

L h





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 
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   (8) 

        1, 1 ,n n n n   P g x P    (9) 

       sgn ,gs nn nx P e    (10) 
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gs

T
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n
n n

n n
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
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

x
h h

x x
   (11) 

where 1 1   , 0,1, , 1l L  ,   is a small positive constant that avoids division by 

zero, the operation  denotes the Hadamard product,  1 1n P  contains the first 1M   

columns of  1nP ,  y n  takes the sign of each element of a vector, and   is a small 

positive constant. Compared with RIP-PAPSA, MIP-PAPSA takes into account the 

‘proportionate history’ from the last M  moments of time. More details can be found in [5]-

[6]. 
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3. ALGORITHM DESIGN 

In network echo cancellation, the network echo path is typically characterized by a 

bulk delay dependent on network loading, encoding, and jitter buffer delays and an “active” 

dispersive region in the range of 8-12 ms duration [1]. Meanwhile, it is well-known that 

NLMS is preferred over PNLMS for dispersive system. Therefore, considering the block-

sparse characteristic of the network impulse response, the BS-PNLMS algorithm was 

proposed to improve the PNLMS algorithm by exploiting this special block-sparse 

characteristic, in which BS-PNLMS used the same step-size within each block and the step-

sizes for each block were proportionate to their relative magnitude [7].  

We propose to take in account the block-sparse characteristic and partition the MIP-

APSA adaptive filter coefficients into N  groups with group-length P , and L N P  ,  

        0 1 1
ˆ ˆ ˆ ˆ[ , , , ],Nn n n nh h h h    (12) 

then the control matrix  ng  in (7)-(8) is be replaced by 

        0 1 1, , , ,P P N Pn n nn g g g    g 1 1 1    (13) 
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   (14) 

in which P1  is a P-length column vector of all ones, and    2

12

ˆˆ P

k kN jj
n h n

 h , 

0,1, , 1k N  . The weight update equation for BS-MIP-APSA is 

        1, 1 ,n n n n
   P g x P    (15) 

       sgn ,gs nn nx P e    (16) 

    
 

   
ˆ ˆ 1 ,

gs

T

gs gs

n
n n

n n




  



x
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where  1 1n P  also contains the first 1M   columns of  1nP .  
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It should be noted that the proposed BS-MIP-APSA includes both APSA and MIP-

APSA. The MIP-APSA algorithm is a special case of proposed BS-MIP-APSA with group 

length 1P  . Meanwhile, when P  is chosen as L , the BS-MIP-APSA algorithm 

degenerates to APSA. 
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4. COMPLEXITY 

Compared with traditional RIP-APSA and MIP-APSA, the extra computational 

complexity of the BS-MIP-APSA arises from the computation of the 2l  norm in (14), which 

requires L  multiplications and N  square roots. The complexity of the square root could be 

reduced through a look up table or Taylor series [7]. Meanwhile, the increase in complexity 

can be offset by the performance improvement as shown in the simulation results. 
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5. SIMULATION RESULTS 

In our simulation, the echo path is a 512L   finite impulse response (FIR) filter, 

and the adaptive filter is the same length. We generated colored input signals by filtering 

white Gaussian noise through a first order system with a pole at 0.8. Independent white 

Gaussian noise is added to the system background with a signal-to-noise ratio (SNR) of 40 

dB. The impulsive noise with signal-to-interference ratio (SIR) of 0 dB is generated as a 

Bernoulli-Gaussian (BG) distribution. BG is a product of a Bernoulli process and a 

Gaussian process, and the probability for Bernoulli process is 0.1. The performance was 

evaluated through the normalized misalignment: 
2 2

10 22

ˆ10log ( )h h h . In order to 

evaluate the tracking ability, we switch the echo path from the one-cluster block-sparse 

system of Figure 1(a) to the two-cluster block-sparse system of Figure 1(b). 

The APSA and MIP-APSA algorithms are compared with BS-MIP-APSA. The 

parameters are 0.001  , 0.01  , 0.01  , 0  , 2M  , and 4P  . In the first case, 

we show the normalized misalignment for colored input in Figure 2. We could see that the 

proposed BS-MIP-APSA achieves both faster convergence rate and better tracking ability. 

In Figure 3, the performance of BS-MIP-APSA is compared with APSA and MIP-APSA 

for speech input signal, and we found that our proposed algorithm demonstrates better 

performance too. 
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Figure 1.  Two block-sparse systems used in the simulations: (a) one-cluster block-sparse 

system, (b) two-cluster block-sparse system. 

 

 

 
 

Figure 2.  Normalized misalignment of APSA, MIP-APSA, and BS-MIP-APSA for 

colored input signal. 

 

0 50 100 150 200 250 300 350 400 450 500
-1

-0.5

0

0.5

1

(a)

0 50 100 150 200 250 300 350 400 450 500
-0.4

-0.2

0

0.2

0.4

(b)

0 1 2 3 4 5 6 7 8

x 10
4

-50

-40

-30

-20

-10

0

10

Iterations

N
o

rm
a

li
z
e

d
 M

is
a

li
g

n
m

e
n

t

 

 

APSA

MIP-APSA

BS-MIP-APSA



54 

 

 

 
 

Figure 3.  Normalized misalignment of APSA, MIP-APSA, and BS-MIP-APSA for 

speech input signal. 
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6. CONCLUSION 

We have proposed a block-sparse memory improved affine projection sign 

algorithm to improve the performance of block-sparse system identification. Simulations 

demonstrate the proposed algorithm has both faster convergence speed and tracking ability 

for block-sparse system identification compared with APSA and MIP-APSA algorithms. 
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IV. A LOW COMPLEXITY REWEIGHTED PROPORTIONATE AFFINE 

PROJECTION ALGORITHM WITH MEMORY AND ROW ACTION 

PROJECTION  

Jianming Liu and Steven L. Grant 

 

Abstract 

A new reweighted proportionate affine projection algorithm (RPAPA) with 

memory and row action projection (MRAP) is proposed in this paper. The reweighted 

PAPA is derived from a family of sparseness measures, which demonstrate performance 

similar to mu-law and the l0 norm PAPA but with lower computational complexity. The 

sparseness of the channel is taken into account to improve the performance for dispersive 

system identification. Meanwhile, the memory of the filter's coefficients is combined with 

row action projections (RAP) to significantly reduce computational complexity. 

Simulation results demonstrate that the proposed RPAPA MRAP algorithm outperforms 

both the affine projection algorithm (APA) and PAPA, and has performance similar to l0 

PAPA and mu-law PAPA, in terms of convergence speed and tracking ability. Meanwhile, 

the proposed RPAPA MRAP has much lower computational complexity than PAPA, mu-

law PAPA, and l0 PAPA, etc., which makes it very appealing for real time implementation. 
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1. INTRODUCTION 

Adaptive filtering has been studied for decades and has found wide areas of 

application.  The most common adaptive filter is the normalized least mean square (NLMS) 

algorithm due to its simplicity and robustness [1]. In the 1990's, the affine projection 

algorithm (APA), a generalization of NLMS was found to have better convergence than 

NLMS for colored input [2]-[3]. The optimal step size control of the adaptive algorithm 

has been widely studied in order to improve their performance [4]-[5]. The impulse 

responses in many applications, such as network echo cancellation (NEC), are sparse, that 

is, a small percentage of the impulse response components have a significant magnitude 

while the rest are zero or small. To exploit this property, the family of proportionate 

algorithms was proposed to improve performance in such applications [2]. These 

algorithms include proportionate NLMS (PNLMS) [6]-[7], and proportionate APA 

(PAPA) [8], etc. 

The idea behind proportionate algorithms is to update each coefficient of the filter 

independently of the others by adjusting the adaptation step size in proportion to the 

magnitude of the estimated filter coefficient [6]. In comparison to NLMS and APA, 

PNLMS and PAPA have very fast initial convergence and tracking when the echo path is 

sparse. However, the big coefficients converge very quickly (in the initial period) at the 

cost of slowing down dramatically the convergence of the small coefficients (after the 

initial period). In order to combat this issue,  mu-law PNLMS (MPNLMS) and mu-law 

PAPA algorithms were proposed [9]-[11]. Furthermore, the l0 norm family of algorithms 

have recently drawn lots of attention for sparse system identification [12]. Therefore, a new 

PNLMS algorithm based on the l0 norm was proposed to represent a better measure of 

sparseness than the l1 norm in PNLMS [13]. 

On the other hand, the PNLMS and PAPA algorithms converge much slower than 

corresponding NLMS and APA algorithms when the impulse response is dispersive. In 

response, the improved PNLMS (IPNLMS) and improved PAPA (IPAPA) were proposed 

by introducing a controlled mixture of proportionate and non-proportionate adaptation 

[14]-[15]. The IPNLMS and IPAPA algorithms perform very well for both sparse and non-
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sparse systems. Also, recently, the block-sparse PNLMS (BS-PNLMS) algorithm was 

proposed to improve the performance of PNLMS for identifying block-sparse systems [16].  

In order to reduce the computational complexity of PAPA, the memory improved 

PAPA (MIPAPA) algorithm was proposed to not only speed up the convergence rate but 

also reduce computational complexity by taking into account the memory of the 

proportionate coefficients [17]. Dichotomous coordinate descent (DCD) iterations have 

previous been applied to the PAPA family of algorithms to implement the MIPAPA 

adaptive filter [18]-[19]. Meanwhile, an iterative method based on the PAPA with row 

action projection (RAP) has been shown to have good convergence properties with 

relatively low complexity [20]. 

In [21] the proportionate adaptive filter was derived from a unified view of variable-

metric projection algorithms. In addition, the PNLMS algorithm and PAPA can both be 

deduced from a basis pursuit perspective [22]-[23]. A more general framework was further 

proposed to derive PNLMS adaptive algorithms for sparse system identification, which 

employed convex optimization [24]. Here, a family of PAPA algorithms are firstly derived 

based on convex optimization, in which PAPA, mu-law PAPA, and l0 PAPA are all special 

cases. Then, a reweighted PAPA is suggested in order to reduce the computational 

complexity. Finally, an efficient implementation of PAPA is proposed based on RAP and 

memory PAPA.   

The organization of this article is as follows. The review of various PAPAs is 

presented in Section 2. Section 3 derives the proposed reweighted PAPA and presents an 

efficient memory implementation with RAP. The computational complexity is compared 

with PAPA, mu-law PAPA and l0 PAPA in Section 4. In Section 5, simulation results of 

the proposed algorithm are presented. The last section concludes the paper with remarks.  
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2. REVIEW OF VARIOUS PAPAS 

The input signal  nx  is filtered through the unknown coefficients to be identified 

 nh  to get the observed output signal  d n . 

       ( ),Td n n n v n x h    (1) 

where 

        [ , 1 , , 1 ] ,Tn x n x n x n L   x     

and  v n  is the measurement noise, and L  is the length of impulse response. We define the 

estimated error as 

        ˆ 1 ,Te n d n n n  x h    (2) 

where  ˆ nh  is the adaptive filter's coefficients. Grouping the M  most recent input vectors 

 nx  together gives the input signal matrix 

        [ 1 , , 1 ].n n n n M   X x x x,     

 Therefore, the estimated error vector is 

        ˆ 1 ,Tn n n n  e d X h    (3) 

in which 

        [ 1 , , 1 ],n d n ,d n d n M   d     

        [ 1 1 ],n e n e n e n M   e     

where M is the projection order. PAPA updates the filter coefficients as follows [8]: 

      1n n n P G X    (4) 

 
   

        
1

ˆ ˆ 1

.T

M

n n

n n n n 


 

 

h h

P X P I e
   (5) 
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in which   is the step-size,   is the regularization parameter, MI  is the M M  identity 

matrix, and the proportionate step-size control matrix  1nG  is defined as 

     1 1 ,n diag n  G g    (6) 

        1 21 1 , 1 , , 1 ,Ln diag g n g n g n      g    (7) 

  
 

 
1

1
1 ,

1
1

l

l
L

ii

n
g n

n
L







 


   (8) 

   1
ˆ ˆ ˆmax max , , , , ,l L lq h h h     (9) 

where MI  is specific to the algorithm, q  prevents the filter coefficients  ˆ 1lh n  from stalling 

when   1
ˆ 0 Lh 0  at initialization and   prevents the coefficients from stalling when they 

are much smaller than the largest coefficient. The classical PAPA employs step-sizes that 

are proportional to the magnitude of the estimated impulse response as below [8] 

  ˆ ˆF ,l lh h    (10) 

The mu-law PNLMS and the mu-law PAPA algorithm proposed in [9]-[11] use the 

logarithm of the coefficient magnitudes rather than magnitudes directly as below: 

    ˆ ˆF ln 1 ,l lh h     (11) 

in which   is a positive parameter. Based on the motivation that the l0 norm can represent 

an even better measure of sparseness than the l1 norm, the improved PNLMS and PAPA 

algorithms based on an approximation of the l0 norm (l0-PNLMS) were proposed as below 

[13]: 

   0
ˆ

ˆF 1 ,
l lh

lh e


     (12) 

where 0l  is a positive parameter. The main disadvantage of the mu-law or l0 norm PAPA 

algorithms are their heavy computation cost because of the L  logarithmic or exponential 
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operations. Therefore, a line segment was given to approximate the mu-law function [9], 

where 

  
ˆ ˆ200 , 0.005ˆF

1, .

l l

l

h h
h

otherwise

 
 


   (13) 

It should be noted that, without loss of performance, the line segment was 

normalized to be of unit gain for 
ˆ 0.005lh  , compared to the original one proposed in 

[9]. Meanwhile, the exponential form in (12) can be approximated by the first order Taylor 

series expansions of exponential functions [12] 

 0
ˆ 0

0

1ˆ ˆ1 ,

0, .

l lh l l l

l

h h
e

otherwise

 





 

 



   (14) 

Then (12) becomes 

   0

0

1ˆ ˆ,
ˆF

1, .

l l l

ll

h h
h

otherwise







 



   (15) 

It is interesting to see that the first order Taylor series approximation of l0 PAPA in 

(12) is actually the same as the line segment implementation of mu-law PAPA in (11) for 

0 200l  . 
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3. THE PROPOSED SC-RPAPA WITH MRAP 

Based on the minimization of the convex target, the reweighted PAPA (RPAPA) 

will be firstly derived from a new sparseness measure with low computational complexity. 

Meanwhile, the sparseness controlled RPAPA (SC-RPAPA) is presented to improve the 

performance for both sparse and dispersive system identification. Finally, the SC-RPAPA 

with memory and RAP (MRAP) is proposed by combing the memory of the coefficients 

with iterative RAP to further reduce the computational complexity. 

 

 

3.1 THE PROPOSED RPAPA 

The proportionate APA algorithm can be deduced from a basis pursuit perspective 

[22] 

 
 

     
1

               

subject to       ,T

n

n n n

h

d X h

min
   (16) 

where  nh  is the correction component defined as 

              
1

1 1 .Tn n n n n n n


    h G X X G X d     

According to [24], the family of PAPA algorithms can be derived from the 

following target 

 
   

     

1               1

subject to       ,T

n n d

n n n

 



G h h

d X h

min
   (17) 

where  1 1n G  is the inverse matrix of proportionate matrix  1nG , which is also a 

diagonal matrix. If the optimization target in (17) is convex, the family of PAPA algorithms 

can be derived using Lagrange Multipliers. It should be noted that, using the 

approximation, 

          1 11
1 1 ,

2

Tn n d n n n   G h h h G h    (18) 
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the proposed formulation in (17) becomes the variable-metric in [21], which is an 

approximation of the proposed formulation. The function  G ,t t  should satisfy the 

following properties: 

  G 0 0 ,  G t  is even and not identically zero; 

  G t  is non-decreasing on [0, ) ; 

  G t t  is non-increasing on (0, ) . 

The above properties follow the requirements of the sparseness measure proposed 

in [25]. From the perspective of proportionate algorithms, the first two requirements are 

intuitive, since the family of the proportionate algorithms should be proportionate to the 

magnitude of the filter's coefficients. The third property will guarantee the convexity of the 

optimization target. PAPA, mu-law PAPA and l0 PAPA are all special cases of the 

sparseness measures fulfilling all three properties. In this paper, considering the 

computational complexity, we propose using the following reweighted PAPA:  

  
ˆ

ˆF ,
ˆ

l

l

l r

h
h

h 



   (19) 

where 
r  is a small positive constant.  

The proposed reweighted metric is compared with PAPA, mu-law PAPA and l0 

PAPA in Figure 1. The   parameters for each algorithm were 1000  , 0 50l  , 0.01r  . 

These parameters were recommended and widely simulated in the literature for each 

algorithm [9] [13]. It should be noted that, the plots in [24] set the   parameters 

respectively so that they all contain the point  0.9,0.9 . However, in actual application, this 

parameter should be tuned to maximize the performance. In order to facilitate the 

comparison of the different sparseness measure, they are normalized to pass through the 

point,  1,1  here instead. Without loss of generality, it is assumed that the filter's 

coefficients are normalized and the maximum possible magnitude is 1. Therefore, it is 

convenient to compare the gain distribution of different metrics with different   

parameters.  
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Figure 1.  Comparison of the different metrics. 

 

 

3.2 THE PROPOSED SC-RPAPA 

It should be noted that the reweighting factor r  in the proposed RPAPA (19) is 

related to the sparseness of the impulse system. It is straightforward to verify that if 0r 

, reweighted PAPA simplifies to APA. If the impulse system is more sparse, r  should be 

relatively larger than ˆ
lh , which makes it more like the PAPA. This agrees with the fact 

that we fully benefit from PNLMS only when the impulse response is close to a delta 

function [26]. Therefore, it is natural to take the sparseness of impulse response into 

account. The sparsity of an impulse response could be estimated as 

  
 

 
1

2

ˆ

ˆ 1 ,
ˆ

nL
n

L L L n


 
  
 
 

h

h
   (20) 

where 1L   is the length of the channel,  
1

ˆ nh  and  
2

ˆ nh  are the l1 norm and l2 norm 

of  ˆ nh , respectively. The value of  ˆ n  is between 0 and 1. For a sparse channel, the 
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value of the sparseness is close to 1 and for a dispersive channel, this value is close to 0. 

Therefore, the SC-RPAPA is 

  
  max

ˆ
ˆF ,

ˆ ˆ

l

l

l

h
h

h n 



   (21) 

where max  is the maximum value for the sparse system identification. The plot of the 

reweighted metric for different  s is presented in Figure 2. In practical implementation, 

we would like to apply the APA algorithm to the dispersive system under certain sparseness 

threshold. For example, the sparsity of the dispersive channel is about 0.4, and a heuristic 

implementation that works pretty well in the simulations is 

  
  min max

ˆ
ˆF ,

ˆ ˆmax 0.4,

l

l

l

h
h

h n  


 
   (22) 

where 
4

min 1e   is a minimum sparsity in order to avoid dividing by zero for ˆ 0lh  . 

 

 

 
 

Figure 2.  Reweighted metric with different   parameters. 
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3.3 THE PROPOSED SC-RPAPA WITH MRAP 

However, the main computational complexity of the family of PAPA algorithm is 

the matrix inversion in (5). Reduction in complexity is achieved by using 5M  DCD 

iterations, thus requiring about 210M  additions [18]. Meanwhile, a sliding-window 

recursive least squares (SRLS) low-cost implementation of PAPA is given based on DCD, 

which does not depend on M . The SRLS implementation is only efficient when the 

projection order is very high (e.g., such as 512M  ) [19]. However, it is known that if the 

projection order increases, the convergence speed is faster, but the steady-state error also 

increases. 

Another way to avoid the matrix inversion altogether is to use the method of RAP 

[27]. RAP is also known in the literature as a data reuse algorithm (see [28]). It has been 

shown in [29] that RAP is effectively the same as APA, except that the system of equations 

problem that is solved with a direct matrix inversion (DMI) in APA is solved iteratively in 

RAP [30].The iterative PAPA algorithm proposed in [31] was made efficient by 

implementing it using RAP in [27]. RAP is an iterative approach to solving a system of M  

equations.  It cycles through the M  equations J  times performing an NLMS-like update 

on the coefficients for each equation. In this instance, the number of RAP iterations, J  is 

set to one. It should be noted that, by limiting J  to one, the solution of the system of 

equations through RAP is approximate. However, the simulation results will demonstrate 

that this approximation works pretty well, especially for relatively high projection order. 

In each sample period a new equation is added to the system of equations and the oldest 

equation is dropped. Thus, M  RAP updates are performed on a given equation every M  

sample periods. The PAPA algorithm with RAP updates the coefficients 
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where  m nP  is the mth column of  nP  defined as  

      1 ,m n n n m  P g x     

the operation  denotes the Hadamard product and 0,1, , 1m M  .  

The traditional PAPA requires M L  multiplications to calculate  nP , and in 

order to further reduce the computational complexity, we propose to apply the memory of 

the proportionate coefficients [17] into SC-RPAPA. Therefore, the matrix  nP  in (4) can 

be approximated as  ' nP   

        11 , 1 ,n n n n    P' g x P'    (23) 

where  1 1n P'  contains the first 1M   columns of  ' 1nP . Meanwhile, we define  

        0 1 1[ , , ],Mn p n , p n p np     

in which  

      ' ,T

m mp n n m n  Px     

and  '

m nP  is the mth column of  ' nP  defined as  

      ' 1 .m n n m n m   P g x     

Considering the time-shift property, the calculation of  np  could be  

        '

0 1, 1 ,Tn n n n
   p P px    (24) 

where  1 1n p  contains the first 1M   values of  1np . The proposed update for the 

PAPA with memory and RAP is 

  

   

    
       

         

   

0

1

ˆ ˆ 1

0,1, , 1

ˆ

ˆ ˆ '

1

ˆ ˆ

m

m mT

m m m

m

M

Initialize n

Loop m M

m p n

e d n m n m

m n e

m m

Update n

  




 

 

 

   

 

 



h h

x h

h h P

h h

    



69 

 

 

As mentioned in [17], the proposed RPAPA with MRAP takes into account the 

"history" of the proportionate factors from the last M  steps. The convergence and the 

tracking become faster when the projection order increases. Meanwhile, combined with the 

RAP, the computational complexity is also significantly lower as compared to the MPAPA 

through avoiding the direct matrix inversion and using the memory. The proposed SC-

RPAPA with MRAP algorithm is summarized in detail in Table 1.
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                        Table 1.  The SC-RPAPA algorithm with MRAP                       
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4. COMPUTATIONAL COMPLEXITY 

The computational complexity of the SC-RPAPA with MRAP algorithm is 

compared with traditional PAPA, MPAPA, RPAPA, and SC-RPAPA in Table 2, in terms 

of the total number of additions (A), multiplications (M), divisions (D), comparisons (C), 

square root (Sqrt), and direct matrix inversion (DMI) needed per algorithm iteration. All 

the algorithms require L    operations for calculating the magnitude of the filter's 

coefficients. 

Compared with traditional PAPA, the MPAPA reduced the complexity of GX , but 

the calculation of 'T
X P  still requires 2M L  multiplications. Meanwhile, due to the memory 

and the iterative RAP structure, only L  multiplications are needed to update  np  

instead. 

What's more important is that, both the PAPA and the MPAPA algorithms require 

a M M  direct matrix inversion, which is especially expensive for high projection orders. 

The combination of the memory and the iterative RAP structure, not only avoids the 

M M  direct matrix inversion, but also reduces the computational complexity required for 

the calculation of both GX  and T
X GX . 

The additional computational complexity for the SC-RPAPA with MRAP 

algorithm arises from the computation of the sparseness measure ̂ . As in [32], given that 

 L L L  can be computed offline, the remaining l-norms require an additional 2L  

additions and L  multiplications. Furthermore, this sparseness measure can be reused in 

many other sparseness controlled algorithms too, for example [32]. The calculation of the 

F  in (22) requires additional L  divisions, 1L  additions, one multiplication, and one 

comparison more than PAPA. The complexity of division is much lower than the L  

exponential or logarithmic operations required by either the mu-law or the l0 PAPA. 

Meanwhile, (22) also offers the robustness to dispersive system identification. 

 

 

 

 

 



72 

 

 

 

 

 Table 2.  Computational complexity of the algorithms’ coefficient updates. 

Algorithm  A M D C Sqrt DMI 

PAPA (M2+2M+1) L-M-1 (M2+3M+1) L+2M2+2 L 2L 0 Yes, M×M 

MPAPA (M2+2M+1) L-M-1 (M2+3M+1) L+2M2+2 L 2L 0 Yes, M×M 

RPAPA (M2+2M+1) L-M-1 (M2+3M+1) L+2M2+2 2L 2L 0 Yes, M×M 

SC-RPAPA (M2+2M+1) L-M-1 (M2+3M+1) L+2M2+2 2L+1 2L +1 1 Yes, M×M 

SC-RPAPA 

MRAP 

4L+N-1 (M2+3M+1) L+2M2+2 2L+M+1 2L+1 1 Yes, M×M 
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5. SIMULATION RESULTS 

The performance of the proposed SC-RPAPA with MRAP was evaluated via 

simulations. Throughout our simulation, the length of the unknown system was 512L  , 

and the adaptive filter was with the same length. The sampling rate was 8 kHz. The 

parameters for each algorithm were 0.01 L  , 0.01  , 0.01q  . The step-size for all 

the algorithms was set to 0.2  . 

The algorithms were tested using both the white Gaussian noise (WGN), and 

colored noise as inputs. The colored input signals were generated by filtering the WGN 

through a first order system with a pole at 0.8. Independent WGN was added to the system 

background with a signal-to-noise ratio (SNR) as 30dB. 

Two impulse responses were used to verify the performance of the proposed SC-

RPAPA MRAP algorithm, as shown in Figure 3. The first one in Figure 3.(a) is a sparse 

impulse response of typical network echo with sparseness 0.92. Figure 3.(b) is a dispersive 

channel with sparseness 0.44. In order to demonstrate the tracking ability, an echo path 

change was incurred through switching the impulse response from the sparse system in 

Figure 3.(a) to the dispersive one in Figure 3.(b). The convergence state of adaptive filter 

is evaluated with the normalized misalignment which is defined as 

 
10 22

ˆ20log ( )h h h   

 

 

5.1 THE PERFORMANCE OF THE PROPOSED RPAPA 

The proposed reweighted PAPA in (19) was firstly compared to PAPA, mu-law 

PAPA, and l0 PAPA. The parameters for the algorithm were 1000  , 0 200l  , and 

0.01r  . The affine projection order was selected as 2M  . 

In the first simulation shown in Figure 4, the input signal was the WGN. According 

to the results, the proposed RPAPA could outperform PAPA, and has similar performance 

with respect to mu-law and l0 PAPA. However, the reweighted PAPA has much lower 

computational complexity. In the second simulation, the input signal was colored, and a 

similar result could be obtained according to Figure 5. 
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Figure 3.  Two impulse responses used in the simulation (a) the sparse network echo 

path, and (b) the dispersive echo path. 

 

 

 
 

Figure 4.  Comparison of RPAPA with PAPA, l0 PAPA and mu-law PAPA for WGN 

input, SNR=30 dB, 2M  , 0.2  . 
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Figure 5.  Comparison of RPAPA with PAPA, l0 PAPA and mu-law PAPA for colored 

input, SNR=30 dB, 2M  , 0.2  . 
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To demonstrate the benefit of sparseness control, the proposed SC-RPAPA 

algorithm was simulated using an echo path change from the sparse to the dispersive 

impulse response in Figure 3. The SC-RPAPA algorithm was compared with APA, PAPA, 

and the above RPAPA algorithms. The parameters for the algorithm were 0.01r  , and 

max 0.02  . The affine projection order was selected as 2M  . In Figure 6, the input 

signal was the WGN input. Both the proposed RPAPA and SC-RPAPA algorithms had 

similar performance for sparse system identification, which outperformed APA and PAPA. 

Meanwhile, due to the sparseness control, SC-RPAPA outperformed RPAPA as expected 

for the dispersive system. The colored input was used in Figure 7, and similar results are 

observed. 
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Figure 6.  Comparison of SC-RPAPA with APA, PAPA, and RPAPA for WGN input, 

SNR=30 dB, 2M  , 0.2  . 

 

 

 
 

Figure 7.  Comparison of SC-RPAPA with APA, PAPA, and RPAPA for colored input, 

SNR=30 dB, 2M  , 0.2  . 
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5.3 THE PERFORMANCE OF THE PROPOSED SC-RPAPA WITH MRAP 

An efficient implementation of the SC-RPAPA algorithm was proposed through 

combining the memory of the filter's coefficients with RAP. The new SC-RAPA with 

MRAP algorithm significantly decreases computational complexity. In this subsection, the 

performance of the efficient implementation was compared with APA, PAPA and SC-

RPAPA through simulations. 

In the first simulation, the WGN input was used. As shown in Figure 8, SC-RPAPA 

with MRAP worked as well as SC-RPAPA for sparse system identification. However, for 

dispersive system, the performance of SC-RPAPA MRAP was worse than SC-RPAPA and 

the APA. This fact becomes more apparent for the colored input as shown in Figure 9. This 

was caused by the relatively low projection order ( 2M  ), and the implementation of the 

MRAP was slower than the direct matrix inversion. However, this drawback could be 

mitigated through increasing the projection order. Furthermore, the memory of the filter's 

coefficients will also improve the performance as the projection order increases.  We verify 

this point through simulations with 32M   for both the WGN (see Figure 10) and the 

colored input (see Figure 11). It could be observed that the SC-RPAPA with MRAP works 

better than APA, PAPA, and SC-RPAPA for sparse system identification. Meanwhile, the 

performance for dispersive system with colored input has been significantly improved too. 
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Figure 8.  Comparison of SC-RPAPA MRAP with APA, PAPA and RPAPA for WGN 

input, SNR=30 dB, 2M  , 0.2  . 

 

 

 
 

Figure 9.  Comparison of SC-RPAPA MRAP with APA, PAPA and RPAPA for colored 

input, SNR=30 dB, 2M  , 0.2  . 
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Figure 10.  Comparison of SC-RPAPA MRAP with APA, PAPA and RPAPA for WGN 

input, SNR=30 dB, 32M  , 0.2  . 

 

 

 
 

Figure 11.  Comparison of SC-RPAPA MRAP with APA, PAPA and RPAPA for colored 

input, SNR=30 dB, 32M  , 0.2  . 
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6. CONCLUSION 

A low complexity reweighted proportionate affine projection algorithm was 

proposed in this paper. The sparseness of the channel was taken into account to improve 

the performance for dispersive systems. In order to reduce computational complexity, the 

direct matrix inversion of PAPA was iteratively implemented with RAP. Meanwhile, the 

memory of the filter's coefficients were exploited to improve the performance and further 

reduce the complexity for high projection orders. Simulation results demonstrate that the 

proposed sparseness controlled reweighted proportionate affine projection algorithm with 

memory and RAP outperforms traditional PAPA, with much lower computational 

complexity compared to mu-law and l0 PAPA.   
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V. A NEW VARIABLE STEP-SIZE ZERO-POINT ATTRACTING 

PROJECTION ALGORITHM  

Jianming Liu and Steven L. Grant 

 

Abstract 

This paper proposes a new variable step-size (VSS) scheme for the recently 

introduced zero-point attracting projection (ZAP) algorithm. The proposed variable step-

size ZAPs are based on the gradient of the estimated filter coefficients’ sparseness that is 

approximated by the difference between the sparseness measure of current filter 

coefficients and an averaged sparseness measure. Simulation results demonstrate that the 

proposed approach provides both faster convergence rate and better tracking ability than 

previous ones. 
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1. INTRODUCTION 

In many practical applications, such as the network echo cancellation, the impulse 

response is usually sparse, which means only a small percentage of coefficients are active 

and most of the others are zero or close to zero [1]. Classical normalized least-mean-square 

(NLMS) suffers from slow convergence rate and many adaptive algorithms have been 

proposed to exploit the sparse nature of the system to improve performance. These include 

the proportionate family, in which the most popular proportionate adaptive algorithms are 

proportionate NLMS (PNLMS) [2], improved proportionate NLMS (IPNLMS) [3] and 

mu-law proportionate NLMS (MPNLMS) [4], etc.  

Recently, a new LMS algorithm with l0 norm constraint was proposed to accelerate 

sparse system identification [5]. It applied the constraint to the standard LMS cost function 

and when the solution is sparse, the gradient descent recursion will accelerate the 

convergence of near-zero coefficients of the sparse system. Another similar approach was 

proposed in [6], but it is based on l1 norm penalty. The above scheme was referred as zero-

point attraction projection (ZAP) in [7] and their performance analysis have been report in 

[8]-[10]. Analysis showed that the step-size of the ZAP term denotes the importance or the 

intensity of attraction. A large step-size for ZAP results in a faster convergence, but the 

steady-state misalignment also increases with a large step-size.  

So, the step-size of ZAP is also a trade-off between convergence rate and steady-

state misalignment, which is similar to the step-size trade-off of LMS. However, the 

variable step-size (VSS) ZAP algorithms have not been exploited too much and most of 

the previous algorithms are based on theoretical results which could not be calculated in 

practice [9]-[10]. As far as we know, the only variable step-size scheme for ZAP was 

proposed by You, etc. in [11], in which it was initialized to be a large value and reduced 

by a factor when the algorithm is convergent. However, this heuristic strategy cannot track 

the change in the system response due to the very small steady-state step-size.  

This paper is organized as follows. Section 2 reviews the recently proposed ZAP 

and VSS algorithm for ZAP, and in Section 3 we present the proposed VSS ZAP algorithm. 

The simulation results and comparison to the previous algorithms are presented in Section 

4. Finally conclusions are drawn in Section 5. 
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2. REVIEW OF VSS ZAP 

In the scenario of echo cancellation, the far-end signal  nx  is filtered through the 

room impulse response  nh  to get the echo signal  y n . 

 ( ) ( )* ( ) ,T

n ny n n n x h x h    (1) 

where 

      [ , 1 , , 1 ]T

n x n x n x n L   x , 0 1 1[ , , , ]T

n Lh h h h ,    

and L  is the length of echo path. This echo signal is added to the near-end signal  v n  

(including both speech and back ground noise, etc.) to get the microphone signal  d n , 

 
       *

( ).T

n n

d n n n v n

v n

 

 

x h

x h
   (2) 

 We define the estimation error of the adaptive filter output with respect to the 

desired signal as  

     .T

n ne n d n x w    (3) 

 This error,  e n  is used to adapt the adaptive filter  nw . The LMS algorithm 

updates the filter coefficients as below [1]: 

      1 ,nn n e n  w w x    (4) 

in which   is the step-size of adaption. The LMS algorithm with l0 norm constraint added 

a zero attractor and update is as below [5]: 

 
     

    1

1

sgn 1 ,

n

n

n n e n

n e





 

  

  
w

w w x

w
   (5) 

where   is the step-size of zero attractor,   is a constant, and   means component-wise 

multiplication.  sgn   is a component-wise sign function defined as 
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  
, 0;

sgn

0, .

x
x

xx

elsewhere




 



   (6) 

 The LMS algorithm with l1 norm constraint was proposed in [6], and its update 

equation is  

         1 sgn 1 .nn n e n n     w w x w    (7) 

 The variable step-size used in [11] is rather direct:   is initialized to be a large 

value, and reduced by a factor   when the algorithm is convergent. This reduction is 

conducted until is sufficiently small, i.e. min  , which means that the error reaches a 

low level. However, as mentioned in the introduction, this heuristic strategy will not react 

to a change in the system response since it will get stuck due to the very small steady-state 

step-size. Therefore, in order to solve this issue, we will propose a variable step-size ZAP 

algorithm in next section which could both converge fast and track the change efficiently. 
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3. PROPOSED VSS ZAP 

Our proposed new variable step-size ZAP algorithm is based on the measurement 

of the sparseness gradient approximated by the difference between the sparseness measure 

of current filter coefficients and an averaged sparseness measurement. Therefore, the 

proposed VSS ZAP can track the change of system quickly and demonstrate a good balance 

between fast convergence rate and lower stable state misalignment. 

For the measurement of sparsity, we could use a class of sparsity-inducing 

penalties. The penalty is defined as  

      
1

,
L

i

i

J n G w n


w    (8) 

where  G   belongs to a class of sparseness measures [12]. Some commonly used 

sparseness measures are introduced in Table 1, where P  denotes the indicator function: 

 
1

0
P

Pistrue

Pis false



 


   (9) 

They are mainly from [12], but they are still included in this paper for completeness. 

Besides to the sparseness measures listed in Table. 1, another popular measurement of 

channel sparsity was proposed in [13] as below. For a channel  nh , its sparsity  can be 

defined as 

   
 

 
1

2

1 ,
nL

n
L L L n


 
  
 
 

h
h

h
   (10) 

where 1L   is the length of the channel  nh , and  
1

nh  and  
2

nh  are the l1 norm 

and l2 norm of  nh . 

The value of   n h  is between 0 and 1. For a sparse channel the value of sparsity 

is close to 1 and for a dispersive channel, this value is close to 0. Therefore, this property 

could be used to remove the ZAP term when the channel is dispersive, which is preferable. 

Instead of calculating the sparseness of the real channel, the sparsity of the current adaptive 
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 Table 1.  Sparseness measures in [12] 

No.  
Param. 

Require. 

1. t  ------ 

2. 
 

1 p

t

t 



 

0 1p   

3. 1
t

e


  
0   

4.  ln 1 t  0   

5.  atan t  0   

6.  2 2

1 12
t t

t t
 

   
 

   0   

 

 

filter  nw  is estimated as [13], 

   
 

 
1

2

1 .
nL

n
L L L n


 
  
 
 

w
w

w
   (11) 

The gradient of sparseness measure could be approximated by the difference 

between the sparseness measure of current filter coefficients and an averaged sparseness 

measurement. The averaged sparseness measure could be estimated adaptively with a 

forgetting factor as below: 

         1 1 , 0 1.n n J n         w    (12) 

The difference between the sparseness measure of current filter coefficients and the 

averaged sparseness measurement is calculated by: 

       1 .n J n n   w    (13) 

Similar to [14], in order to obtain a good and stable estimate of the gradient, a long-

term average using infinite impulse response filters is used to calculate the proposed 

variable step-size as below:  

        1 1 , 0 1n n n              (14) 

in which   is a smoothing factor and   is a correction factor. 

 G t
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4. SIMULATION RESULTS 

In this section, we do the results of computer simulations in the scenario of echo 

cancellation. In order to evaluate the performance of our proposed VSS ZAP in both sparse 

and dispersive impulse response, we use a sparse impulse response as in Figure 1 and a 

dispersive random impulse response as in Figure 2. They are both with the same length, 

512L  , and the LMS adaptive filter is the same length. The convergence state of adaptive 

filter is evaluated using the normalized misalignment which is defined as  

 10 2 2
20log ( ).h w h   

In this simulation, we compare the proposed VSS algorithm to LMS, LMS with 

fixed step-size ZAP and You’s VSS ZAP in [11]. For the l1 norm constraint ZAP, we will 

use the No. 1 sparseness measure in Table 1 for simple, and in order to save computation 

efforts, for the l0 norm constraint ZAP, we will use the same No. 3 sparseness measure as 

in Table 1. Meanwhile, to evaluate the performance under dispersive system, we also use 

the measurement of sparsity as in (11), and compare it to the above algorithms. 

The input is white Gaussian noise signal and independent white Gaussian noise is 

added to the system background with a signal-to-noise ratio, SNR = 30 dB. The parameters 

of VSS ZAPs are chosen to allow all the VSS ZAPs to have similar final steady-state 

misalignment (about -25 dB) as standard LMS. 

In order to compare the tracking, we simulate the echo path change at sample 5000 

by switching to another sparse impulse response. We plot the normalized misalignment 

and variable step-size for l1 norm constraint ZAP as in Figure 3 and Figure 4.  

Similarly, the normalized misalignment and variable step-size for l0 norm 

constraint ZAP are plotted in Figure 5, and Figure 6. It should be noted that we call the 

sparseness measure from Table. 1 as proposed VSS 1, and the measurement of sparsity in 

(11) as proposed VSS 2. We could clearly observe that the proposed VSS ZAPs are superior 

to standard LMS, fixed step-size ZAP LMS and previous You’s VSS ZAP in the terms of 

convergence rate, and the tracking ability. 
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Figure 1.  Sparse impulse response. 

 

 

 
 

Figure 2.  Dispersive random impulse response. 
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Figure 3.  Comparison of normalized misalignment for l1 norm constraint ZAP under 

sparse system. 

 

 

 
 

Figure 4.  Comparison of variable step-size for l1 norm constraint ZAP under sparse 

system. 
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Figure 5.  Comparison of normalized misalignment for l0 norm constraint ZAP under 

sparse system. 

 

 
 

Figure 6.  Comparison of variable step-size for l0 norm constraint ZAP under sparse 

system. 
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Finally, in order to demonstrate the performance for dispersive channel, we switch 

the sparse echo path in Figure 1 to a dispersive random echo path as in Figure 2. The 

performance and VSS for l1 norm constraint ZAP are plotted in Figure 7 and Figure 8, and 

l0 norm constraint ZAP in Figure 9 and Figure 10. It is clear that the sparsity measurement 

in (11) could remove the impact of ZAP term under non-sparse system and performs better 

than the sparseness measure in Table 1. This is because the steady-state step-size of 

proposed VSS 1 ZAP is bigger which will cause performance degradation under non-sparse 

system. 

 

 

 
 

Figure 7.  Comparison of normalized misalignment for l1 norm constraint ZAP under 

dispersive system. 
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Figure 8.  Comparison of variable step-size for l1 norm constraint ZAP under dispersive 

system. 

 

 
 

Figure 9.  Comparison of normalized misalignment for l0 norm constraint ZAP under 

dispersive system. 
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Figure 10.  Comparison of variable step-size for l0 norm constraint ZAP under dispersive 

system. 
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5. CONCLUSION 

A new variable step-size scheme for the zero-point attraction projection algorithm 

was proposed in this paper, which is based on the estimation of sparseness gradient. 

Simulation results demonstrate that, for sparse system identification, the proposed VSS 

ZAP could provide both faster convergence rate and better tracking ability than previous 

VSS algorithms. Meanwhile, it could remove the impact of ZAP term for dispersive 

impulse response, which is preferable. 
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VI. AN IMPROVED VARIABLE STEP-SIZE ZERO-POINT ATTRACTING 

PROJECTION ALGORITHM  

Jianming Liu and Steven L. Grant 

 

Abstract 

This paper proposes an improved variable step-size (VSS) scheme for zero-point 

attracting projection (ZAP) algorithm. The proposed VSS is proportional to the sparseness 

difference between filter coefficients and the true impulse response. Meanwhile, it works 

for both sparse and non-sparse system identification, and simulation results demonstrate 

that the proposed algorithm could provide both faster convergence rate and better tracking 

ability than previous ones. 
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1. INTRODUCTION 

In the sparse system identification problem, such as the network echo cancellation, 

only a small percentage of coefficients are active and most of the others are zero or close 

to zero. Considering that the classical least-mean-square (LMS) algorithm is slow for 

sparse system identification [1], the family of proportionate algorithms has been proposed 

to exploit the sparse nature of the system to improve performance [2]-[4]. Besides to that, 

a new kind of method, zero-point attracting projection (ZAP), has been recently proposed 

to solve sparse system identification problem. The zero-attracting LMS (ZA-LMS) 

algorithm uses an l1 norm penalty in the standard LMS cost function [5] and l0 norm LMS 

was proposed in [6] too. When the solution is sparse, the gradient descent recursion will 

accelerate the convergence of near-zero coefficients of the sparse system.   

The above scheme was referred as zero-point attraction projection (ZAP) in [7]. 

The performance analysis of ZA-LMS has been report in [8]-[10], and analysis showed 

that the step-size of the ZAP term denotes the importance or the intensity of attraction. A 

large step-size for ZAP results in a faster convergence, but the steady-state misalignment 

also increases. So, the step-size of ZAP is also a trade-off between convergence rate and 

steady-state misalignment, which is similar to the step-size trade-off of LMS.   

There are some theoretical results about variable step-size ZAP but they could not 

be calculated in practice [9]-[11]. One practical variable step-size ZAP was proposed by 

You, et al. in [12], and You’s VSS ZAP was simply initialized to be a large value and 

reduced by a factor when the algorithm is convergent. However, this heuristic strategy 

cannot track the change in the system response due to the very small steady-state step-size.  

Another better VSS-ZAP was proposed in [13], in which a variable step-size based 

on the gradient of estimated filter coefficients’ sparseness was proposed and the gradient 

is approximated by the difference between the sparseness measure of current filter 

coefficients and an averaged sparseness measure. This variable step-size ZAP works in the 

way of being an indicator whether the current filter’s sparseness has reached the steady-

state instead of measuring the real sparseness difference between the filter and true system 

response. Meanwhile, in this paper, a new variable step-size ZAP is proposed by defining 
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the sparseness distance, then the proposed VSS is determined systematically based on 

sparseness difference between filter coefficients and true impulse response.   

This paper is organized as follows. Section 2 reviews the recently VSS algorithms 

for ZAP, and in Section 3 we present the proposed VSS ZA-LMS algorithm. The 

simulation results and comparison to the previous VSS algorithms are presented in Section 

4. Finally conclusions are drawn in Section 5. 
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2. REVIEW OF VSS ZAP 

In this section, we will review the ZAP algorithm and the variable step-size ZAP 

algorithms in previous literature. 

 

 

2.1 INTRODUCTION TO ZAP 

Consider a linear system with its input   and output   related by  

       ( ),Td n n n v n x h    (1) 

where        [ , 1 , , 1 ]Tn x n x n x n L   x  is the input vector, 0 1 1[ , , , ]T

Lh h h h  is 

unknown system with length L , and  v n  is the additive noise which is independent with 

 nx . The estimation error of the adaptive filter output with respect to the desired signal 

is defined as 

        1 .Te n d n n n  x w    (2) 

 This error,  e n  is used to adapt the adaptive filter  nw . The ZA-LMS algorithm 

with l1 norm constraint was proposed in [6], and its update equation is   

           1 sgn 1 ,n n n e n n     w w x w    (3) 

in which   is the step-size of adaption,   is the step-size of zero attractor, and  sgn   is a 

component-wise sign function defined as 

  
, 0;

sgn

0, .

x
x

xx

elsewhere




 



   (4) 

 

 

2.2 REVIEW OF VARIABLE STEP-SIZE ZAP ALGORITHMS 

 The variable step-size for ZAP used in [12] is rather direct:   is initialized to be a 

large value, and reduced by a factor   when the algorithm is convergent. This reduction is 
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conducted until is sufficiently small, i.e. min  , which means that the error reaches a 

low level. However, as mentioned in the introduction, this heuristic strategy will not react 

to a change in the system response since it will get stuck due to the very small steady-state 

step-size. 

 Therefore, in order to solve this issue, a new variable step-size ZAP algorithm was 

proposed in [13] by us, which is based on the measurement of the sparseness gradient 

approximated by the difference between the sparseness measure of current filter 

coefficients and an averaged sparseness measurement as below. 

 The averaged sparseness measure could be estimated adaptively with a forgetting 

factor  :  

         1 1 , 0 1,n n J n         w    (5) 

where   J nw  is a sparseness measure of the filter coefficients, and we will use the 

following l1 norm sparseness measure through this paper 

       
1

1

.
L

i

i

J n n w n


 w w    (6) 

 The difference between the sparseness measure of current filter coefficients and the 

averaged sparseness measurement is calculated by: 

       1n J n n   w    (7) 

 In order to obtain a good and stable estimate of the gradient, a long-term average 

using infinite impulse response filters is used to calculate the proposed variable step-size  

        1 1 , 0 1.n n n              

 As mentioned in the introduction, this variable step-size ZAP indicates whether the 

current filter’s sparseness has reached the steady-state instead measuring the sparseness 

distance between the filter and real system. Therefore, we will propose a variable step-size 

algorithm for ZA-LMS which is derived based on the difference between current filter 

coefficients’ sparseness and the real sparseness in next section. 
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3. PROPOSED VSS ZA-LMS 

 In this section, we will propose the variable step-size ZAP, and further improve its 

performance for non-sparse system identification. 

 

 

3.1 THE PROPOSED SCHEME OF VARIABLE STEP-SIZE ZAP 

Our proposed new variable step-size ZAP algorithm is based on the idea that the 

step-size should be proportional to the sparseness distance which is defined as the 

difference between the sparseness measure of current filter coefficients and real sparseness 

of the system. Based on l1 norm, we define the following averaged sparseness distance  

          
1 1

1 1

1 1
.

L L

i i

i i

n n n w n h n
L L


 

    w h    (8) 

Then we rewrite (8) as 

            
1

sgn sgn .T Tn n n n n
L

  h h w w    (9) 

However, considering the real system is unknown, we argue that   sgn nh  could 

be approximated by   sgn nw . This assumption is acceptable because it holds for the 

coefficients with large magnitude, and for the small and unstable coefficients close to zero, 

considering that its magnitude is relatively small, it will not cause large error in the 

approximation. We will verify the performance of this assumption in the simulation section 

later, and using this assumption in (9), we have 

 

         

    

1
sgn

1
sgn .

T

T

n n n n
L

n n
L

  

 

h w w

h w

   (10) 

The system mismatch is defined as      n n n  h h w . Using the similar 

approximation in [14], we have 
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It should be noted that we use the following assumptions in [14] 

          2 2, and .T T

xx x xn n n n n L  R x x I x x=       (12) 

Furthermore, the residual error is defined as 

      .Tn n n  h x    (13) 

Substituting (11) and (13) into (10), we could rewrite (10) as 

  
      

   

sgn
.

T

T

n n n
n

n n


 

x w

x x
   (14) 

However, the residual error in (14) is still unknown, but similar to [13], to avoid 

over-shoot, a long-term time average should be used to calculate the proposed variable 

step-size as below  

        1 1 , 0 1.n n n             (15) 

in which   is a smoothing factor and   is a correction factor. Meanwhile, considering the 

additive noise is independent with input, the cross-correlation between the input and 

residual error is the same as the cross-correlation between input and error. Therefore, we 

could replace the residual error in (14) with the error signal, which gives us 

  
      

   

sgn
.

T

T

e n n n
n

n n
 

x w

x x
   (16) 

 

 

3.2 IMPROVED VARIABLE STEP-SIZE ZAP FOR BOTH SPARSE AND NON- 

SPARSE SYSTEM 

Besides to the l1 norm sparseness measures defined in (6), another popular 

measurement of channel sparsity was used in [13], and for a channel  nh , its sparsity 

  n h  can be defined as 
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where 1L   is the length of the channel  nh , and  
1

nh  and  
2

nh  are the l1 norm 

and l2 norm of  nh . The value of   n h  is between 0 and 1. For a sparse channel the 

value of sparsity is close to 1 and for a dispersive channel, this value is close to 0. In [13], 

this property was used to remove the ZAP term when the channel is dispersive, which is 

preferable. 

We could also take advantage of this property and propose the following averaged 

sparseness distance as variable step-size for ZA-LMS 
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   (18) 

We assume the gain of the real channel and filter coefficients are the same, i.e. 

    
2 2

.n nh w    (19) 

However, this assumption might not be accurate, especially at the initial phase of 

the adaption. Therefore, a reasonable minimum threshold of  
2

nw  should be used to 

avoid this issue. Then we could further simplify (19) as 

  
   
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1 1

2

1 1
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1
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nL L
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   (20) 

Considering (16), we obtain the proposed variable step-size for ZA-LMS which 

could work for both dispersive and sparse channel as below 

  
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   (21) 

 

 



109 

 

 

4. SIMULATION RESULTS 

In this section, we do the results of computer simulations in the scenario of echo 

cancellation. We use both sparse impulse response and a dispersive random impulse 

response. They are both with the same length, 512L  , and the LMS adaptive filter is with 

the same length.  

The convergence state of adaptive filter is evaluated using the normalized 

misalignment which is defined as 

 10 2 2
20log ( ).h w h    (22) 

The input is white Gaussian noise signal and independent white Gaussian noise is 

added to the system background with a signal-to-noise ratio, SNR = 30 dB. 

In the first simulation, we would like to verify the performance of the 

approximation      sgn sgnn nh w  in (10) as in Figure 1. In order to demonstrate the 

tracking ability, there is an echo path change at sample 5000 by switching from one sparse 

impulse response to another sparse impulse response. It is observed that, even though the 

approximation is not very accurate in the initial phase, it could be very good for tracking 

the change of the echo path. This is predictable since the filter coefficients are initialized 

as zeros, then there will be larger difference between   sgn nh  and   sgn nw . However, 

this assumption is still good enough for the application scenario of proposed variable step-

size ZAP, which will be verified by the following simulations. 

In the second simulation, we compare the proposed VSS algorithm to LMS, fixed 

step-size ZA-LMS, You’s VSS in [12] and Liu’s VSS in [13] for sparse system 

identification. It should be noted that sparseness measure (17) is used in Liu’s VSS, and 

(21) is used as the proposed variable step-size. Meanwhile, to evaluate the performance of 

the tracking ability, there is also an echo path change at sample 5000, and according to the 

simulation result in Figure 2, the parameters of the variable step-size are intentionally set 

to have similar steady-state misalignment for the first adaption before echo path change. It 

is observed that, because You’s VSS cannot react to echo path change, it could only obtain 

similar tracking performance with original ZAP. Meanwhile, Liu’s VSS and proposed VSS 
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could track the echo path change quickly, and the proposed VSS outperforms the previous 

ones.   

Next, in order to demonstrate the performance for dispersive channel, we switch 

one dispersive impulse response to another dispersive response at sample 5000, and use 

the same VSS algorithms and parameters as the second simulation. As shown in Figure 3, 

it is clear that the proposed VSS ZAP could also obtain much better tracking performance 

under non-sparse system than previous ones and avoid the possible performance 

degradation. 

 

 

 
 

Figure 1.  Performance demonstration of approximation      sgn sgnn nh w  in (10). 

 

 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Iterations

S
p

a
rs

e
n

e
s
s
 D

is
ta

n
c
e

 

 

||h|-|w||

|(h-w)sgn(w)|



111 

 

 

 
 

Figure 2.  Comparison of normalized misalignment for sparse system identification. 

 

 

 
 

Figure 3.  Comparison of normalized misalignment for dispersive system identification. 
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5. CONCLUSION 

An improved variable step-size zero-point attraction projection algorithm was 

proposed based on the estimation of l1 sparseness distance, which could work for both 

sparse and non-sparse system identification. Simulation results verify that the proposed 

VSS ZAP could provide better tracking ability than previous VSS ZAP algorithms for both 

sparse and non-sparse system identification. 
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SECTION 

2. CONCLUSIONS   

This dissertation studied the adaptive filters for sparse system identification, and 

proposed a new family of proportionate adaptive filters for bock-sparse system 

identification, a low-complexity reweighted proportionate affine projection algorithm and 

two variable step-size zero-point attracting projection algorithms.  

For block-sparse system identification, the block-sparse proportionate normalized 

least mean square (BS-PNLMS) and block-sparse improved PNLMS (BS-IPNLMS) 

algorithms have been firstly proposed for block-sparse system identification. With a 

modest increase in computational complexity, the block-sparse algorithms could achieve 

faster convergence speed and better tracking ability in block-sparse system identification. 

Meanwhile, the block-sparse proportionate idea has been applied to both the proportionate 

affine projection algorithm (PAPA) and proportionate affine projection sign algorithm 

(PAPSA), yielding block-sparse PAPA (BS-PAPA) and block-sparse memory improved 

PAPSA (BS-MIPAPSA). The BS-PAPA is an extension of BS-PNLMS and works better 

at the cost of higher computational complexity especially for colored input. Meanwhile, 

the BS-MIPAPSA is robust to impulsive noise. 

In order to further improve the performance of PAPA algorithm and reduce the 

computational complexity, a novel sparseness controlled reweighted PAPA (RPAPA) 

algorithm with memory and row action projection (SC-RPAPA with MRAP) has been 

proposed in this dissertation. Compared to the previous mu-law PAPA, etc., the 

computational complexity of the proposed algorithm is significantly reduced due to the 

combination of coefficients’ memory and RAP. Meanwhile, SC-RPAPA works for both 

sparse and dispersive system due to sparseness control.  

The zero-point attracting projection (ZAP) was recently proposed for sparse system 

identification, and the step size of the attractor is also a trade-off between the convergence 

rate and steady misalignment level. Therefore, two variable step size ZAP algorithms were 

proposed to improve the performance of ZAP algorithms.  
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