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ABSTRACT 

This study is aimed (a) to statistically characterize the corrosion-induced 

deterioration process of reinforced concrete structures (concrete cracking, steel mass loss, 

and rebar-concrete bond degradation), and (b) to develop and apply three types of 

enamel-coated steel bars for improved corrosion resistance of the structures. 

Commercially available pure enamel, mixed enamel with 50% calcium silicate, and 

double enamel with an inner layer of pure enamel and an outer layer of mixed enamel 

were considered as various steel coatings. Electrochemical tests were respectively 

conducted on steel plates, smooth bars embedded in concrete, and deformed bars 

with/without concrete cover in 3.5 wt.% NaCl or saturated Ca(OH)2 solution. The effects 

of enamel microstructure, coating thickness variation, potential damage, mortar 

protection, and corrosion environment on corrosion resistance of the steel members were 

investigated. Extensive test results indicated that corrosion-induced concrete cracking can 

be divided into four stages that gradually become less correlated with corrosion process 

over time. The coefficient of variation of crack width increases with the increasing level 

of corrosion. Corrosion changed the cross section area instead of mechanical properties 

of steel bars. The bond-slip behavior between the corroded bars and concrete depends on 

the corrosion level and distribution of corrosion pits. Although it can improve the 

chemical bond with concrete and steel, the mixed enamel coating is the least corrosion 

resistant. The double enamel coating provides the most consistent corrosion performance 

and is thus recommended to coat reinforcing steel bars for concrete structures applied in 

corrosive environments. Corrosion pits in enamel-coated bars are limited around damage 

locations. 
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1. INTRODUCTION 

 

 

 

1.1 BACKGROUND, PROBLEM AND JUSTIFICATION 

Corrosion has resulted in a significant financial burden to the U.S. Department of 

Transportation. According to the 2002 study by Federal Highway Administration [1], the 

total cost to combat corrosion had been approximately $276 billion annually or 3.1% of 

the nation’s Gross Domestic Product (GDP). Over the following 10 years, the direct 

corrosion cost for highway bridges was estimated to be $8.3 billion per year, including 

$3.8 billion for replacement of deficient bridges, $2 billion for maintenance and capital 

cost of concrete bridge decks, $2 billion for maintenance and capital cost of concrete 

substructures, and $0.5 billion for maintenance painting of steel bridges. The indirect cost 

such as traffic delay and lost productivity was estimated to be as high as 10 times the 

direct cost. According to the 2009 American Society of Civil Engineers Report Card for 

America’s Infrastructure, more than 26% of the nation’s bridges are either structurally 

deficient or functionally obsolete, and a $17 billion annual investment is needed to 

substantially improve the current bridge conditions [2]. By 2012, the total cost for 

corrosion-induced maintenance and replacement has exceeded $ 1 trillion in the U.S., and 

the annual cost to the U.S. Department of Defense (DOD) has been estimated to be $ 20.9 

billion [3]. 

Corrosion in transportation infrastructure is not only the main reason for 

substantial financial costs, but also a matter of public safety and commuter inconvenience 

when not assessed and mitigated in time. As an example, the I-35W Bridge over the 

Mississippi River in Minneapolis collapsed on August 1, 2007, killing 13 people. The 

National Transportation Safety Board discovered that cracks occurred along corroded 

gusset plates on the failed bridge. Although the root cause for the bridge collapse was due 

to the under designed gusset plate [4], corrosion was also observed on the approximately 

50-years old bridge. On October 22, 2010, the City of Minneapolis closed another bridge 

(Plymouth Avenue Bridge) over the Mississippi River because serious corrosion was 

observed in at least five of the post-tensioned tendons in the bridge’s center span. Closure 
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of bridges for corrosion-induced inspection and maintenance forces vehicles to detour, 

increasing commuting time and thus gas consumption and greenhouse gas emission.  

Porcelain enamel is typically a silicate-based material that is deposited from 

slurries and fused at high temperature. It has many advantages as follows. First, enamel 

has very stable chemical properties in harsh environments such as high temperature, acid 

and alkaline. Therefore, it can protect reinforced concrete (RC) structures located in any 

environment. Second, the properties of enamel are flexible and can be tailored for various 

applications by regulating the chemical composition of enamel and/or pre-treating the 

metal substrate to be coated. For example, replacing B2O3 with SiO2/TiO2 can increase 

the corrosion resistance of enamel in acidic environments; adding ZrO2 can improve the 

performance of enamel in alkaline environments. Third, an enamel coating can establish a 

physical barrier between steel rebar and its surrounding concrete, delaying the penetration 

of aggressive chloride ions and thus prolonging the service life of RC structures. Lastly, 

enamel with cement additives is fused on a steel substrate at high temperature to establish 

a chemical bond with the steel and concrete when applied to RC structures, which is 

important for the long-term performance of structures. The main disadvantage of enamel 

coating is its brittleness and can potentially damage during shipping and transportation, 

though its impact in applications can be minimized through precast constructions. 

Overall, enamel coating can be an alternative method to protect steel from corrosion. 

 
 
 

1.2 LITERATURE REVIEW ON STATE-OF-THE-ART DEVELOPMENT 

1.2.1 Electrochemical Corrosion Test Techniques.  A number of test methods 

and techniques to detect and measure reinforcement steel corrosion have been developed 

in the past [5]. They can be divided into two groups: electrochemical and non-destructive. 

For example, the electrochemical methods include the open-circuit potential 

measurement, linear polarization resistance (LPR) measurement, galvanostatic pulse 

transient response, and electrochemical impedance spectroscopy (EIS). The non-

destructive techniques include the concrete cover thickness measurement, ultrasonic 

pulse velocity measurement, and x-ray and Gamma radiography measurements. 

Following is a detail review of the four frequently-used electrochemical techniques.  
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1.2.1.1 Open-circuit potential.  The open-circuit potential (also referred to as 

half-cell potential) measurement has been widely used to assess reinforcement steel 

corrosion in concrete due to its simplicity and cost effectiveness. This method often 

provides the probability of corrosion activity through a measurement of potential 

differences among a standard portable reference electrode, a copper/copper sulphate 

electrode (CSE), and a reinforcing steel electrode. ASTM standard C876 [6] provides the 

general guidelines for the corrosion evaluation of RC structures based on the potential 

thresholds as summarized in Table 1.1.     

 

 

Table 1.1 Corrosion condition related with half-cell potential measurement [6] 

Corrosion potential vs. CSE Corrosion activity 

Less negative than -0.2 V 90% probability of no corrosion 

Between -0.2 and -0.35 V Corrosion activity is uncertain 

More negative than -0.35 V 90% probability of corrosion 

 

 

However, the above potential measurement method has some drawbacks. The 

potential mapping on existing structures require careful interpretation because many 

factors can affect the corrosion potential measurement [7], such as oxygen and chloride 

concentration, concrete resistivity [8], use of corrosion inhibitors, epoxy-coated or 

galvanized reinforcing steel, presence of stray currents [9], carbonated concrete [10], and 

presence of concrete cracks [11]. Therefore, evaluation on the reinforcement steel 

corrosion based on the half-cell potential measurement alone may mislead engineers and 

cause errors in their judgment if these factors are not taken into account. It must be 

stressed that this method just evaluates the probability of corrosion activity at a given 

location and time, long-term monitoring of the half-cell potential in combination with 

other techniques is more meaningful. 

1.2.1.2 Linear polarization resistance.  The most extensively used method to 

evaluate rebar corrosion rates in concrete is the LPR measurement. This technique is 

rapid and non-destructive; it only requires a connection to the reinforcing steel under 

investigation. The data provides a valuable insight into the instantaneous corrosion rate of 
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steel reinforcement, thus giving more detailed information than the hall-cell potential 

measurement. For each LPR measurement, the reinforcing steel is perturbed by a small 

electrical signal from its equilibrium potential. This can be accomplished 

potentiostatically by changing the potential applied to the reinforcing steel by a fixed 

amount ∆V and then monitoring the current decay, ∆I, after a given time or vice versa. In 

either case, the test conditions are selected such that the variation in potential, ∆V, falls 

within the linear Stern-Geary range of 10-30 mV. The polarization resistance 

representing the slope of a polarization curve, Rp, can be calculated by: 

 

/
p

R V I= ∆ ∆                                                                                                                   (1.1) 

 

where ∆V and ∆I represent the potential and current increments, respectively, in the 

linear portion of a polarization curve at I=0. LPR measurements were used to calculate 

the corrosion current density by the Stern-Geary equation [12]:  

 

/ [2.303( ) ] /
corr a c a c p p

i R B Rβ β β β= + =                                                                    (1.2) 

 

where icorr is the corrosion current density, βa is the anodic Tafel slope, βc is the cathodic 

Tafel slope, and B is a constant related to βa and βc.  

However, there are still some difficulties associated with this technique. It is often 

difficult to determine the Tafel slopes when the steel surface is in passive state. As a 

result, the B value estimated from Eq. (1.2) is likely inaccurate or very sensitive to the 

change in steel surface condition. Furthermore, some requirements must be met during 

each test. For example, the electrochemical current at the fixed potential should remain 

constant during the entire polarization period and uniform along the length of a steel bar. 

The effect of the high electrical resistance of concrete should be properly taken into 

account.  

In order to meet the above two requirements, an outer auxiliary guard ring 

electrode has been placed around the inner auxiliary electrode. The outer guard ring 

electrode maintains a confinement current during each LPR measurement. The 
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confinement current prevents the perturbation current in the inner auxiliary electrode 

from spreading beyond a known area. To select an approximate level of the confinement 

current, two sensor electrodes are placed between the inner and outer auxiliary electrodes. 

The potential difference between the two sensor electrodes is monitored and maintained 

throughout the LPR measurement by selecting a proper confinement current. The LPR 

measurement is affected by a few factors such as temperature and humidity. Therefore, 

special attention should be paid to the interpretation of measured data. Table 1.2 gives the 

general criteria for the extent of corrosion based on the corrosion rate measured with and 

without guard ring.  

 

 

Table 1.2 Corrosion rate vs. condition of reinforcement steel [13] 

Extent of corrosion 
Icorr applied to device with 

guard ring (µA/cm2) 
Icorr applied to device 

without guard ring(µA/cm2) 

Passive icorr<0.1 icorr<0.22 
Low to moderate 0.1<icorr<0.5 0.22<icorr<1.08 
Moderate to high 0.5<icorr<1 1.08<icorr<10.8 

high icorr>1 icorr>10.8 

 

 

1.2.1.3 Transient technique. Transient techniques such as galvanostatic pulse or 

coulostatic methods in time domain recently became more receptive in the study of steel 

and concrete composite structures [14-18]. These techniques recognize the fact that 

corrosion is a relatively slow electrochemical response/process at steel-concrete 

interfaces, which makes data collection more preferably done in time domain than in 

frequency domain. In time domain, they can directly provide the measurement of both 

polarization resistance and double layer capacitance per unit surface area, independent of 

the size or total steel area of a test specimen. Such a measurement makes the transient 

techniques advantageous for in situ monitoring over others that require the prior 

knowledge of the cross sectional area of the test system.  

For transient measurements, a counter electrode is placed on the surface of 

concrete, a small current perturbation (pulse effect) is applied to a reinforcing steel bar 

embedded in the concrete, and the transient potential in the reinforcing steel is recorded 
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with respect to the reference electrode. The analysis of the transient response allows the 

determination of corrosion rate in steel. Figure 1.1 shows a typical potential response for 

a corroding reinforcement bar. Under a galvanostatic pulse, the electrochemical system 

can be approximately simulated by a simple Randles circuit due to the current pulse I and 

its potential response can be expressed into:  

 

[1 exp( )]
t S p

dl p

t
V IR IR

C R
= + − −                                                                                    (1.3) 

 

where Vt is the total potential change in the steel working electrode, IRs is the ohmic drop 

in the concrete between the counter electrode and the working electrode, IRp is the 

effective polarization potential during a charging or discharging period, Rp is the 

polarization resistance of the rebar, Cdl is the double layer capacitance of the steel-

concrete interface, and CdlRp represents the time constant for the corrosion process.  
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Figure 1.1 Typical potential-time curve as response to a galvanostatic pulse. 

 
 

As shown in Figure 1.1, each measurement with the galvanostatic pulse transient 

technique may take a long period of time since the response to the pulse must be 

stabilized before Vmax can be determined accurately. Curtailing the response measurement 

before Vmax has been reached may lead to an erroneous evaluation of Rp and Cdl.  

1.2.1.4 Electrochemical impedance spectroscopy.  Electrochemical impedance 

spectroscopy (EIS) has been widely used in fundamental and applied electrochemistry 

research for a long time. This technique has also been used extensively for the 
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investigation of corrosion mechanisms in laboratory and for the determination of the 

corrosion rate of reinforcing steel in concrete. For each measurement, a harmonic 

potential signal (10 to 20 mV in amplitude) around the open-circuit potential is usually 

applied to the system or specimen under test, and the current signal is recorded as a 

function of the excitation frequency. By analyzing the test data in various frequency 

ranges, EIS can be used to study the corrosion kinetics and insights into the corrosion 

mechanism of a test specimen in a short time, and investigate the evolution of corrosion 

over a relatively long time. 

The interpretation of EIS test data is usually done in combination with simulations 

of the electrochemical system under investigation by an equivalent electrical circuit. As 

shown in Figure 1.2(a-1), the simplified Randles circuit consists of a solution resistance 

in series with a parallel set of polarization resistance and capacitor. In order to extract the 

non-homogeneity and diffusion phenomenon, Sagues et al. [14, 15] and Feliu et al. [19-

20] modified the simplified circuit by replacing the capacitor with a constant phase 

element (CPE) and adding a diffusion impedance, as shown in Figure 1.2(a-2). In an EIS 

measurement, multiple semi-circles are often observed because various materials have 

different characteristic frequencies [21-23]. The semi-circles can be represented either by 

a series of parallel pairs of capacitor (or CPE) and resistor as shown in Figure 1.2(b-1) or 

a series of mixed pairs of resistor and capacitor (or CPE) as shown in Figure 1.2(c-1), 

each pair representing a certain material behavior. The diffusion behavior is generally 

combined into a particular pair that represents the steel-concrete interface, as shown in 

Figures 1.2(b-2, c-2). More advanced circuit representations of the steel-concrete systems 

were also introduced as shown in Figures 1.2(e, f) [18, 24]. The fact that diverse 

electrical circuits have been used to reasonably represent a steel-concrete system warrants 

further study on the equivalent circuit representation of steel-concrete systems. 
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Figure 1.2 Various electrical circuits for steel-concrete systems: (a-1) Randle’s 
circuit, (a-2) modified Randle’s circuit, (b-1) resistor-capacitor in series, (b-2) modified 
resistor-capacitor with diffusion in series, (c-1) resistor-capacitor in mixed mode, (c-2) 

modified resistor-capacitor with diffusion in mixed mode, (d) and (e) other models.  
 

 

The use of EIS as a monitoring technique provides substantial information on the 

corrosion characteristics of a steel-concrete system. However, it is a time-consuming task 

and sometimes a challenge to interpret the EIS test data. Nevertheless, EIS is a powerful 

tool that has recently gained increasing acceptance for the understanding of corrosion 

behavior in various steel-concrete systems. 

1.2.2 Corrosion Prevention Methods.  A number of measures can be taken to 

protect reinforcement steel from corrosion. They can be divided into four categories [25]: 

(1) alternative reinforcement, (2) barrier to chloride ingress, (3) corrosion inhibitors, and 

(4) cathodic protection.  

(a-1) (a-2) 

(b-1) (b-2) 

(c-1) (c-2) 

(d) (e) 
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1.2.2.1 Alternative reinforcement.  To improve the corrosion resistance of RC 

structures, reinforcing bars with various materials can be used as an alternative to the 

widely used low carbon steel bars in civil engineering, including stainless steel rebar, 

stainless steel clad rebar, nickel clad rebar, copper clad rebar, and fiber reinforced 

polymer (FRP) rebar. 

Stainless steel bars are produced by adding a minimum of 12% chromium into the 

low carbon steel so that an invisible film can be formed on the surface of the stainless 

steel bars and thus protect the steel from oxidation. It offers many advantages including 

high corrosion resistance, high strength, good ductility, and good weldability. Castro et 

al. [26] mechanically characterized two types of austenitic stainless steel bars, 304 LN 

and 316 LN grades, and found that the cold-rolled rib shaping significantly increased 

their strength and hardness but maintained their high toughness when compared with 

carbon steel bars. In a chloride-containing aqueous solution, the cold-rolled 304 LN bars 

were prone to pitting corrosion while the cold-rolled 316LN bars revealed excellent 

corrosion behavior. Garcia-Alonso et al. [27] studied the corrosion behavior of three low-

cost and low Ni-content stainless steels embedded in mortar contaminated with chloride 

ions, and they concluded that the new stainless steel remained in the passive state in 

mortar specimens with both 2% and 5% chloride contents. Moser et al. [28] evaluated the 

corrosion resistance of austenitic, duplex, and precipitation-hardened martensitic high 

strength stainless steels and a pearlitic high-C prestressing steel bar in simulated alkaline 

and carbonated concrete pore solutions and found that all types of the steel materials 

showed high corrosion resistance at chloride concentrations from zero to 0.25M.  

However, the high cost of stainless steel bars may prevent them from wide 

applications in construction. Therefore, stainless steel clad bars were studied as a lower 

cost corrosion resistance reinforcement option. It was produced by spraying 304 stainless 

steel on the surface of a portion of a billet and then rolling the steel in a traditional 

fashion. Darwin et al. [29] compared the performances of stainless steel clad bars and 

uncoated black steel bars. They found that the stainless steel clad bars corroded at a rate 

about two orders of magnitude lower than that of the black steel bars.  

Nickel clad bars are produced by applying a heavy layer of nickel to a billet 

before it is hot rolled, resulting in a continuous coating of wrought nickel on the surface 
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of the steel bars. In 1980, copper clad bars were tested in concrete, leveraging with an 

FHWA study [30]. The copper clad reinforcing bars were compared with the black steel 

bars with and without calcium nitrite corrosion inhibitors and compared with epoxy–

coated bars. The copper clad bars were not discussed in the FHWA report, but their 

results were published in 1996 by McDonald et al. [31]. The test results indicated that the 

copper clad bars with a coating thickness of approximately 0.5 mm exhibited a much 

higher corrosion resistance than the other types of reinforcement including the black steel 

with calcium nitrite corrosion inhibitors. Tests up to that time have shown excellent 

corrosion behaviors of copper clad reinforcing bars in concrete. Copper clad bars could 

also prove to be cost effective.  

Fiber reinforced polymers (FRP) bars is another non-corroding reinforcement 

option for RC structures. It is made by three elements: fibers for strength, resinous 

synthetic polymers for binding with the fibers, and finishing or coupling agents for 

enhanced adhesion between the fibers and the polymers. Although carbon FRP strands 

exhibit superior fatigue behavior, high tensile elastic modulus and low relaxation, they 

typically have a low tensile strain at failure [32]. Another problem with glass composites 

is that they are made of silica, which can combine with calcium hydroxide in concrete 

and result in a loss of reinforcement over time.  

1.2.2.2 Barrier to chloride ingress.  Steel reinforcement can be protected from 

corrosion by establishing a barrier layer between it and its aggressive environment. It can 

be achieved by using high quality concrete (low permeability and thick cover), or 

protective coating on reinforcement steel. Two of the most widely used barriers for 

reinforcement steel are fusion-bonded epoxy (FBE) coating and hot-dipped galvanized 

(HDG) zinc coating.  

Epoxy-coated reinforcing bars were developed in the early 1970s. They are made 

by first cleansing black steel bars, heating them to around 230 °C, and passing them 

through an electrostatic spray that applies charged, dry epoxy powders to the steel 

surface. In this process, epoxy materials melt, flow and cure on steel bars, which are 

finally quenched with usually a water spray bath [33]. Epoxy coating functions in two 

ways, first by acting as a barrier and keeping oxygen and chloride ions from reaching the 
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surface of steel bars, and second by increasing the electrical resistance between adjacent 

steel bars in practical applications.  

Epoxy-coated steel bars were widely used for bridge construction in the 1960s 

and 1970s because they are sufficiently flexible to bend in application and can be 

produced at high speed [33]. However, in 1986, the substructure of the Long Key Bridge 

with epoxy-coated steel rebar began to show signs of corrosion only five to seven years 

after construction [34]. In the following several years, corrosion was observed in other 

bridges [35]. After several studies, corrosion in epoxy-coated rebar was mainly attributed 

to the damage induced during transportation and handling. Equally if not more important, 

corrosion at one location of the damaged epoxy coating was widely spread underneath 

the coating due to relatively weak physical bond between the epoxy and its steel 

substrate. In addition, use of epoxy-coated steel rebar reduced the bond strength between 

rebar and concrete [36]. 

Metallic coatings have been used successfully to prevent corrosion of steel in 

other applications, and were recently expected to protect reinforcement steel from 

corrosion in RC structures. One of the most popular metallic coatings for reinforcement 

steel is the application of hot-dip galvanic (HDG) zinc on steel bars. Zinc-coated or 

galvanized bars are produced by a hot-dip process in which the steel bars are first 

cleansed by pickling, and then immersed in molten zinc. Like steel, zinc can generate 

corrosion products that occupy more space than the zinc itself, and can consequently 

cause concrete to cracking. An advantage of galvanized reinforcement is that, as zinc 

corrodes sacrificially, a hydrated oxide is formed on the rebar surface that acts as an 

electrical insulator. The insulator is thought to form a barrier at active corrosion sites that 

will prevent further corrosion from occurring [37]. 

Galvanized steel rebar have at least two main concerns in engineering 

applications. First, the zinc coating corrodes vigorously due to the high alkaline 

environment in fresh concrete, likely leaving an insufficient galvanic protection for the 

underlying steel in long term. Second, the hydrogen produced in the corresponding 

cathodic half-cell reaction would increase the porosity of adjacent cement pastes and thus 

reduce the bond strength between the rebar and the concrete [38].  
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1.2.2.3 Corrosion inhibitors. Corrosion inhibitors may be a good alternative to 

other protection methods due to their lower cost and easy application. They can be added 

into fresh concrete as an admixture and repair mortar for existing RC structures, or 

directly applied on hardened concrete surfaces and rebar surfaces before concrete casting. 

There are three mechanisms of protection from inhibitors [39]: anodic, cathodic, and 

mixed. Anodic inhibitors act on the dissolution of steel and reduce the corrosion rate by 

increasing the corrosion potential of the steel. Cathodic inhibitors act on the oxygen 

reaction on the steel surface and reduce the corrosion rate by decreasing the corrosion 

potential. Mixed inhibitors act on both anodic and cathodic sites and reduce the corrosion 

rate without significantly changing the corrosion potential, generally by surface 

absorption of the steel in contact with the inhibitors and consequently forming a thin 

protective layer.  

The most commonly-used anodic inhibitors are calcium nitrite (Ca(NO2)2 and 

sodium nitrite; sodium benzoate and sodium chromate are the next [40, 41]. The most 

commonly-used cathodic inhibitors are sodium hydroxide and sodium carbonate, which 

are supposed to increase the pH near steel and reduce the oxygen transportation by 

covering the steel surface; phosphates, silicate and polyphosphates are the next [42]. 

Mixed type inhibitors include materials with hydrophobic groups such as N, S, and OH 

are effective. Organic polymer compounds such as amine and aminoalcohol (AMA) are 

also used [42]. 

1.2.2.4 Cathodic protection. Cathodic protection is an electrochemical technique 

for corrosion control by connecting the metal to be protected to a more easily corroded 

metal so that the protected metal and the “sacrificial” metal act as the cathode and anode 

of an electrochemical cell, respectively. It has been widely adopted to control the 

corrosion of reinforcing steel embedded in concrete [43-45]. The goal of cathodic 

protection is to shift the potential of the protected steel to the least probable range for 

corrosion. Cathodic protection has been determined by Federal Highway Administration 

to be the only rehabilitation technique that can prevent further corrosion in RC structures 

regardless of the salt content in concrete [46].   

Sacrificial anode methods have such an advantage as no auxiliary power supply 

requirement. They can be used in prestressed or post-tensioned concrete with no risk of 
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increasing potential shifts and thus no hydrogen embrittlement of the steel. In addition, 

since the anode is directly connected to the protected steel, electrical shorting is of no 

concern. Anode materials made of arc sprayed zinc, aluminum alloys containing Zn, and 

magnesium alloy have been studied extensively in laboratory and field conditions [47, 

48].  

1.2.3 Corrosion-induced Structural Deterioration. Corrosion of reinforcing 

steel bars in concrete may impair the capacity of RC structures in the form of concrete 

cracking, steel reduction, and loss of the bond between the steel reinforcement and 

concrete. Following is a presentation of a detailed review on the three effects.  

1.2.3.1 Concrete cover cracking.  Corrosion-induced cracking in concrete cover 

is an important criterion for the analysis and evaluation of the service life of a RC 

structure. Cracks in concrete cover provide paths for a rapid ingress of aggressive 

chemicals to the reinforcing steel bars, and accelerate structural deterioration. Therefore, 

the appearance of the first crack is a key indication for the end-of-service-life of 

structural concrete. Indeed, concrete cover cracking induced by corrosion has been 

identified as the serviceability limit state of RC structures [49, 50]. 

Both laboratory and field tests have been conducted extensively to investigate the 

corrosion-induced cracking in concrete cover. These studies can be classified into three 

main categories: empirical (experimental), analytical, and numerical modeling [51]. The 

empirical models are primarily based on a regression analysis of experimental data and 

observations. Andrade et al. [52] conducted accelerated corrosion tests and observed that 

regardless of corrosion rate, cracking occurred at a structurally negligible steel loss of 

approximately 20 um in diameter. Webster [53] conducted a regression analysis of 50 

sets of experimental data obtained by other researchers and proposed a very simple model 

for a rough estimation of critical attack penetration, which initiates concrete cover 

cracking. The analytical models are based primarily on the fundamental of solid 

mechanics under some assumptions. Bazant [54] used a comprehensive mathematical 

formulation for corrosion rate and proposed a predictive model for crack width using the 

principles of linear elastic solid mechanics. Finite element model (FEM) has also been 

applied to study concrete cracking. Yokozeki et al. [55] simulated the internal pressure by 
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imposing strains to the corrosion front. Using a regression analysis of the results from 

multiple FEMs, an empirical equation for the prediction of cracking time was proposed.   

Although the above models shed insight on steel corrosion and concrete cracking, 

their predictions are often deviated from respective observations. The possible sources of 

discrepancy between the theory and observations are [56]: (1) lack of an accurate model 

for corrosion rate, (2) neglecting the residual strength of cover concrete after its tensile 

capacity is exceeded, and (3) lack of full understanding of the composition and 

mechanical properties of corrosion products. Corrosion products can migrate away from 

the bar surface through open cracks and concrete pores toward the free surface.  

1.2.3.2 Mechanical degradation of corroded rebar.  Many researchers have 

investigated the effect of corrosion on the mechanical properties of steel, and stated 

notable reductions in yielding and ultimate tensile strengths and a significant reduction in 

the ultimate strain and elongation of corroded rebar. Almusallam [57] tested 6-mm and 

12-mm steel bars embedded in concrete and subjected them to accelerated corrosion. 

Using the actual cross-sectional area, the ultimate tensile strength of steel bars was 

marginally reduced as the degree of steel corrosion increased. Correspondingly, the total 

elongation of the steel bars decreased with the increasing degree of corrosion. 

Apotolopoulos and Papadakis [58] studied the tensile behavior of corroded steel bars of 

Class BSt 420, and found that the effective yield strength remained nearly constant while 

the apparent yield strength and both effective and apparent ultimate strengths decreased 

as the corrosion rate increased. Cairns et al. [59] investigated the effect of local pitting, 

which was simulated by removing a section of a bar using a multifluted, hemispherical 

end mill with a cylindrical shank, and found that the reduction of the maximum load was 

proportional to the damaged area while reduction in the force at the yield point was 

slightly less proportional to the cross-section. Du et al. [60] experimentally studied 108 

reinforcement steel bars, and they concluded that the residual yield strength and the 

ultimate strength of corroded steel bars in concrete decreased with an increasing 

corrosion level. Apostolopoulos et al. [61] used advanced image analysis to investigate 

the effects of corrosion on mechanical properties and pit depths on B500c steel bars 

embedded in concrete. Wang et al. [62] used a three-dimensional (3D) laser scanner to 

determine the residual cross-sectional areas of corroded bars recently.  
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1.2.3.3 Bond degradation due to corrosion. Corrosion products of reinforcing 

steel bars occupy more space than the steel itself, exert an expansive radial pressure at the 

steel-concrete interface, develop the hoop tensile stress in the surrounding concrete, and 

therefore results in concrete cracking as the maximum hoop tensile stress exceeds the 

tensile strength of the concrete. Corrosion also causes the reduction in rib height of the 

deformed bars and the subsequent reduction of the interlocking force between the ribs 

and their surrounding concrete, thereby weakening the bond and anchorage between the 

concrete and reinforcement.  

Bond behavior of corroded reinforcement bars has been experimentally studied by 

many researchers. Fang et al. [63, 64] investigated the effect of steel corrosion on the 

bond between steel bars and their surrounding concrete under confinement, and analyzed 

the results with the finite element method. They concluded that the confinement provided 

an effective means to counteract the bond loss of corroded steel bars at a medium 

corrosion level. Li et al. [65] studied the effect of corrosion on the bond strength between 

steel strands and concrete, and found that corrosion of strands in a prestressed concrete 

structure reduced the tensile strength of the strands more significantly than their bond 

strength in concrete. Tang et al. [66] investigated the effects of the concrete cover depth, 

bar diameter, degree of corrosion and the surface crack width on the bond strength 

between concrete and the corroded rebar, and found a strong correlation between the 

average bond strength and the average surface crack width, and an unclear relationship 

between the average bond strength and the degree of corrosion. Yalciner et al. [67] 

proposed an empirical equation for the steel-concrete bond strength considering two 

concrete mix designs, three concrete cover depths, and the degree of corrosion.  

 

 

 

1.3 RESEARCH OBJECTIVES AND SCOPE OF THIS WORK 

This study takes a new barrier approach to control the corrosion of steel rebar in 

concrete. Specifically, enamel coating will be developed and applied to steel rebar in RC 

structures in order to meet the societal needs for cost-effective corrosion mitigation 

measures. In addition, the main components in a probabilistic, corrosion-induced 
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deterioration model of RC structures are investigated statistically, including concrete 

cover cracking, steel strength reduction, and rebar-concrete bond degradation.  

The main objectives of this study are (1) to investigate the corrosion-induced 

structural deterioration in terms of concrete cracking, mechanical property variations of 

corroded steel bars, and loss of the bond between steel bars and concrete, and (2) to 

characterize three types of enamel coatings for corrosion protection of reinforcing steel in 

RC structures. To achieve the main objectives, seven research tasks are designed and 

planned as follows: 

1. Investigate corrosion-induced concrete cover cracking and its relation with the 

cross section loss of steel rebar,  

2. Develop statistical models for various mechanical properties of corroded steel 

rebar,  

3. Study the rebar-concrete bond degradation and degradation mechanism as a result 

of rebar corrosion in concrete 

4. Develop new enamel coatings, evaluate the short-term corrosion resistance of 

enamel-coated steel plates,  

5. Evaluate the long-term corrosion resistance of enamel-coated smooth rebar in 

3.5wt.% NaCl solution and investigate the effect of mortar cover, 

6. Study the corrosion resistance and mechanism of enamel-coated deformed rebar 

in 3.5 wt.%  NaCl solution with and without coating damage, 

7. Study the deterioration mechanism and rate of enamel-coated deformed rebar in 

mortar, and the effects of water cement ratio and exposure condition, 

Tasks 1-3 are focused on the corrosion-induced deterioration of RC structures and 

address the first objective of this study. Tasks 4-7 deal with material characterization and 

corrosion performance of enamel-coated steel plates and bars and address the second 

objective.  

 
 
 

1.4 ORGANIZATION OF THIS DISSERTATION 

This dissertation consists of nine chapters. Each main chapter (2-8) will be 

organized as a stand-alone paper including a detailed introduction section. Chapter 1 
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introduces the overall objectives and scope of work in this study, literature reviews on 

related topics such as electrochemical corrosion test techniques, corrosion prevention 

methods, and corrosion-induced structural deterioration, and seven technical tasks that 

will be addressed in the following seven chapters. Chapter 2 is related to the corrosion-

induced concrete cracking and the relationship between the mass loss of corroded steel 

and the change in crack width, which will be submitted to Magazine of Concrete 

Research (journal). Chapter 3 deals with the reductions in mechanical properties and 

ductility of corroded steel rebar in terms of yield strength, ultimate strength, and 

elongation, which will be submitted to Construction and Building Materials (journal). 

Chapter 4 deals with the corrosion-induced bond loss between concrete and its 

reinforcing steel bar, which will be submitted to Cement and Concrete Research 

(journal). Chapter 5 deals with the development and application of three types of enamel 

coating in structural steel and their electrochemical characteristics in simulated concrete 

pore solution with different chloride concentrations, which has been published in 

Electrochimica Acta (journal). Chapter 6 deals with the corrosion resistance of three 

types of enamel coating applied on smooth steel rebar that was embedded in mortar 

cylinder and then immersed in 3.5 wt% NaCl solution for 173 days, which has been 

published in Cement and Concrete Composites (journal). Chapter 7 studies the corrosion 

rate and mechanism of three types of enamel coating applied on deformed steel rebar in 

3.5 wt% NaCl solution, which has been published in Corrosion Science (journal). 

Chapter 8 studies the deterioration mechanism and rate of three types of enamel coating 

applied on deformed steel bar embedded in mortar cylinder in 3.5 wt.% NaCl solution for 

244 days, which will be submitted to Corrosion Science (journal). The main research 

outcomes, findings, and future studies are summarized in Chapter 9.    
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2. CORROSION-INDUCED CONCRETE COVER CRACKING 

 

 

 

2.1 INTRODUCTION 

Reinforced concrete (RC) structures often suffer from damage due to 

reinforcement steel corrosion that is caused by either carbonization or chloride 

contamination in concrete [68-70]. The main visual indicator of corrosion presence is the 

cracking of concrete cover in combination with rust stains. Generally, excessive cracks 

appear before corrosion has any significant influence on the strength of structures [71, 

72]. As a result, the time for structural repair/replacement due to corrosion is usually 

controlled by the serviceability limit state associated with corrosion-induced cracking of 

the concrete cover.  

Cracks are very small immediately after their initiation, and generally do not 

represent any immediate effect on the serviceability of a RC structure. However, they can 

accelerate the structural deterioration due to the exposure of steel reinforcement to 

environmental factors such as moisture and oxygen. Once cracked, the concrete cover 

becomes softer than un-cracked. As such, the widening of crack will not be strongly 

correlated to the corrosion level [73, 74]. The overall relationship between concrete 

cracks and steel corrosion is strong in the initiation stage, and gradually becomes weak in 

the propagation stage. This trend of crack width development makes it difficult to 

evaluate structural performance based on the corrosion-induced crack width.  

Both laboratory and field tests have been performed to investigate corrosion-

induced concrete cracking behaviors using empirical and analytical models [75-78]. Most 

of the investigations are focused on the initiation of cracking from the penetration of 

aggressive chemical to the onset of cracks in concrete cover, instead of the propagation 

stage of cracks. A few researchers studied the relationship between corrosion level and 

crack width [79-81]. However, the established relationship was applicable at low 

corrosion level for a single crack without taking into account the interaction between 

multiple cracks along the length of steel rebar. The effects of corrosion on structural 

behaviors such as the time of cracking initiation and crack width are non-uniform in 
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space due to non-homogeneity of concrete itself and other causative parameters such as 

corrosion environments.   

This study aims to statistically investigate the propagation of corrosion-induced 

concrete cracks in RC blocks. The effect of rebar corrosion on the spatial distribution of 

concrete cracks over time was considered as a random field in spatial-temporal space. 

Concrete cover was the main parameter to consider in this study. Block specimens were 

tested in a corrosion bath filled with sands that were kept in moisture and salty 

environments. All steel bars in the block specimens were subjected to a constant 

electrical potential in accelerated corrosion tests. 

    
 
 

2.2 EXPERIMENTAL PROCEDURE 

2.2.1 Materials and Specimens. The steel bars (Grade 60) tested in this study 

have a diameter of 19.1 mm, and their chemical composition was determined and listed in 

Table 2.1. The yield and ultimate strengths of the steel bars are 420 MPa and 620 MPa, 

respectively.  

 

 

Table 2.1 Chemical composition of steel rebar 
Element C Si Mn P S Cr Mo Ni Co Cu V Sn Fe 

Wt.% 0.38 0.18 1.00 0.12 0.06 0.10 0.07 0.20 0.01 0.37 0.02 0.03 97.40 

 

 

To consider the randomness of corrosion effects along the length of steel bars, 

two types of specimens were prepared and tested: 279.4 mm × 228.6 mm × 508 mm 

concrete blocks and 127 mm × 228.6 mm × 508 mm concrete blocks. A total of 32 

concrete blocks were casted for corrosion tests: 16 large specimens and 16 small 

specimens. As shown in Figure 2.1, each large concrete block has 8 parallel pieces of 457 

mm long steel bars through the 279.4 mm concrete with a middle 203 mm of the steel 

bars exposed to a corrosive environment. As shown in Figure 2.2, each small concrete 

block has 8 parallel pieces of 305 mm short steel bars through the 127 mm concrete with 
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a middle 50.8 mm of the steel bars exposed to a corrosive environment. For each type of 

specimens, four concrete cover thicknesses were considered: 25.4 mm, 38.1 mm, 50.8 

mm, and 63.5 mm as shown in Figure 2.3. 
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Figure 2.1 Side views of large concrete blocks with four concrete cover thicknesses: (a) 
25.4 mm, (b) 38.1 mm, (c) 50.8 mm, and (d) 63.5mm (unit: mm).  
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Figure 2.2 Side views of small concrete blocks with four concrete cover thicknesses: (a) 
25.4 mm, (b) 38.1 mm, (c) 50.8 mm, and (d) 63.5mm (unit: mm).  
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Figure 2.3 Cross section views of concrete blocks with four concrete cover thicknesses: 
(a) 25.4 mm, (b) 38.1 mm, (c) 50.8 mm, and (d) 63.5mm (unit: mm).  
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To reduce the effect of crevice corrosion at the end of a steel bar in concrete, each 

end of the steel bar was encased in a PVC pipe filled with epoxy resins as shown in 

Figure 2.4 so that only the middle portion was subjected to corrosion. A copper wire was 

welded at one end of the rebar and connected to an external power supply. 
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 Figure 2.4 Details of short steel bars (a-1, a-2) and long steel bars (b-1, b-2) (unit: mm). 
 

 

The concrete used in this study was prepared with cement, coarse aggregates, fine 

aggregates and tape water. Type I Portland cement was used, and its chemical 

composition is listed in Table 2.2. Limestones with a maximum diameter of 19 mm were 

used as coarse aggregates, and river sands with a fineness modulus of 2.78 were used as 

fine aggregates. The water-cement ratio is 0.45 with no admixtures. The compressive 28-

day strength of concrete was determined with standard concrete cylinder tests to be 38.58 

MPa.  

 

 

Table 2.2 Chemical composition of Type-I Portland cement (wt. %). 

Loss on 
ignition 

SiO2 Al2O3 CaO MgO SO3 Na2O K2O Cl TiO2 Fe2O3 P2O5 Total 

3.98 19.48 6.80 55.35 3.32 4.35 2.39 1.00 0.02 0.20 2.18 0.19 99.27 

 

(b-1) (a-1) 

(b-2) (a-2) 
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For the casting of concrete, two molds were built with plywoods as shown in 

Figure 2.5. Each of the two long sides of plywoods has 8 holes with a diameter of 28.6 

mm to accommodate the 8 steel bars encased in PVC pipes at both ends. The void 

between the plywood holes and the PVC pipes was sealed with silicon resins. Before 

casting, a layer of oil was applied to avoid water penetration to the plywood during and 

after casting of concrete.   

 

 
     

                           

Figure 2.5 Plywood molds for: (a) small concrete block, and (b) large concrete block. 
 

 

2.2.2 Accelerated Corrosion Test. All the concrete blocks were placed in a 

corrosion bath established with wet sands, as shown in Fig. 2.6(a). 3.5 wt% NaCl water 

was sprayed weekly on the sands to provide moisture and chloride ions in corrosion tests. 

The two sides of each specimen were in contact with wet sands to test the effect of 

various concrete cover thicknesses. To accelerate the corrosion of steel bars, direct 

current with a constant electrical potential was applied on the steel bars embedded in 

concrete using an external power supply. As schematically illustrated in Figure 2.6(b), 

each steel bar and a graphite rod with a diameter of 6.35 mm were respectively connected 

to the positive and negative ends of the power supply. To monitor the electrical current 

through the steel bar and ultimately the loss of steel cross section, one 10 ohm resistor 

was added to the electrical circuit in between the graphite rod and the power supply. The 

voltage of the resistor was recorded with a DataLogger 880 system to monitor and used 

to determine the electrical current applied.  

 

(a) (b) 
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Figure 2.6 Accelerated corrosion test: (a) corrosion bath, and (b) test setup. 
 

 

After the power supply was turned on, the current flowing through each steel bar 

was recorded at a 1 min. interval. The amount of corrosion in terms of mass loss is 

related to the electrical energy consumed, which is a function of voltage, amperage, and 

time interval. The amount of corrosion can be estimated from the following equation:  

 

MIt
m

zF
∆ =                                                                                                                      (2.1) 

 

where ∆m is the mass of steel consumed (g), M is the atomic weight of the metal (56 g for 

iron), t is the time in seconds, z is the ionic charge (2 for iron), and F is a constant 

(96,500 coulombs/equivalent).  

2.2.3 Crack Width Measurement. At specified corrosion levels, photos were 

taken on the top of each test specimen with a crack width meter as the scale as shown in 

Figure 2.7. The images were processed in AutoCAD 2010 to determine the widths of 

concrete cracks along the length of steel bars every 1.0 mm.  

 

(b) (a) 
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Figure 2.7 Typical corrosion-induced cracks on the concrete surface with a crack meter. 
 
 
 

2.3 RESULTS AND DISCUSSION 

2.3.1 Concrete Cracking. At the end of accelerated corrosion tests, two types of 

cracks were observed on all the test specimens. For the side steel bars through the middle 

portion of concrete blocks, one crack appeared through the concrete cover as 

schematically indicated in Figure 2.8(a). For the corner steel bars in some concrete 

blocks, two cracks were present through the concrete covers on two faces as shown in 

Figure 2.8(b).  

 

 

Case IICase I
 

Figure 2.8 Representative concrete cracks: (a) near the side steel bar, and (b) near the 
corner steel bar. 

 

 

Figure 2.9 exemplifies the surface cracks on the side of small and large concrete 

blocks at the end of corrosion tests. Cracks occurred on the side concrete cover of each 

corroded steel bar and penetrated through the concrete along the length of the bar. Some 

(a) 
(b) 



 

 

corrosion products were diffused out and distributed around the cracks. However, the 

width of each crack seemed not uniform along its length. The crack location also varied 

slightly in relation to the bar location.

    

Figure 2.9 Cracks on the side of: 

Figure 2.10 shows the cross sectional photos of crack

bar to the outer surface of concrete cover. 

decreases from approximately 1 mm near the steel bar 

surface. As indicated in Figure 2.10(b),

degrees, the nearby crack did not 

crack was observed on the 

on a concrete surface does not 

nearby. 

(a) 

corrosion products were diffused out and distributed around the cracks. However, the 

width of each crack seemed not uniform along its length. The crack location also varied 

slightly in relation to the bar location. 

 

 

            

the side of: (a) small concrete blocks, and (b) large
after corrosion tests. 

 

 

Figure 2.10 shows the cross sectional photos of cracks penetrating 

bar to the outer surface of concrete cover. As shown in Figure 2.10(a), t

from approximately 1 mm near the steel bar to a hair size

As indicated in Figure 2.10(b), although the steel bar already corroded to some 

crack did not penetrate through the concrete cover so that no visible 

crack was observed on the outer surface. Therefore, just because no cracks were observed 

does not necessarily mean no corrosion in the embedded steel 

 

(b) 
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corrosion products were diffused out and distributed around the cracks. However, the 

width of each crack seemed not uniform along its length. The crack location also varied 

 

large concrete blocks 

penetrating from the steel 

Figure 2.10(a), the crack width 

size at the concrete 

although the steel bar already corroded to some 

concrete cover so that no visible 

no cracks were observed 

embedded steel bar 
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Figure 2.10 Cracks underneath concrete covers: (a) hairline crack on concrete surface, 
and (b) no crack on concrete surface.  

 

 

2.3.2 Histograms of Crack Width. Figure 2.11 shows the typical histograms of 

crack width and its fitting probability density functions (PDF) of a Gaussian random 

variable for large and small block specimens. It can be seen from Figure 2.11 that the 

crack width follows a Gaussian distribution pretty well. Overall, it was observed that the 

Gaussian distribution is applicable to all test cases. 
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Figure 2.11 Typical histograms of crack width and fitting pdf curves for: (a, b) for small 
specimens, and (c, d) for large specimens. 
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Figure 2.11 Typical histograms of crack width and fitting pdf curves for: (a, b) for small 
specimens, and (c, d) for large specimens. (cont.) 

 

 

2.3.3 Evolution of Crack Width. Figures 2.12 and 2.13 show the PDF of crack 

width on the surface of large and small concrete blocks with different concrete cover 

thicknesses. The PDF curves were developed based on the test data obtained from 

multiple cracks on the specimens with the same concrete cover thickness at different 

corrosion levels over time. It can be clearly seen from Figures 2.12 and 2.13 that the 

standard deviation of crack width increased with an increase in mean value over time.  
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Figure 2.12 PDF evolution of crack width on small specimens with various cover 
thicknesses: (a) 25.4 mm, (b) 38.1 mm, (c) 50.8 mm, and (d) 63.5 mm. 
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Figure 2.12 PDF evolution of crack width on small specimens with various cover 
thicknesses: (a) 25.4 mm, (b) 38.1 mm, (c) 50.8 mm, and (d) 63.5 mm. (cont.) 
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Figure 2.13 PDF evolution of crack width on large specimens with various cover 
thicknesses: (a) 25.4 mm, (b) 38.1 mm, (c) 50.8 mm, and (d) 63.5 mm. 
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2.3.4 Relationship between Mean Value and Standard Deviation of Crack 

Width. Figures 2.14 and 2.15 display the relationship between the mean value and the 

standard deviation of crack width for the small and large concrete blocks, respectively, 

with the given concrete cover thicknesses. Each scattered point on the plot shows the 

statistical property of one crack. A linear regression analysis indicated a good correlation 

between the mean and the standard deviation of crack width with a correlation coefficient 

of 0.67 to 0.90. The slopes of all the fitted straight lines are in the range of 0.147 to 

0.302.   
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Figure 2.14 Relations between the mean value and standard deviation of crack width on 
small specimens with various cover thicknesses: (a) 25.4 mm, (b) 38.1 mm, (c) 50.8 mm, 

and (d) 63.5 mm. 
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Figure 2.15 Relations between the mean value and standard deviation of crack width on 
large specimens with various cover thicknesses: (a) 25.4 mm, (b) 38.1 mm, (c) 50.8 mm, 

and (d) 63.5 mm. 
 

 

2.3.5 Relationship between Crack Width and Corrosion Level. Many 

researchers attempted to relate the width of cracks in concrete cover with the corrosion 

level. For example, Alonso et al. [80] investigated the effects of concrete cover, steel bar 

diameter, proportions of cement, water-cement ratio, cast position of the bar, transverse 

reinforcement and corrosion rate on such a relationship. They concluded that the cracking 

process of concrete can be characterized in two distinct steps: initiation and propagation. 

The first visible crack was initiated after the steel bar has lost 15-50 µm in radius, and 

then propagated with increasing length that is proportional to the corrosion-induced loss 

of steel.  

Figures 2.16 and 2.17 show the relationship between the mean crack width and 

the mean mass loss for the small and large concrete blocks, respectively, with the given 
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concrete cover thicknesses. A linear regression analysis revealed that the linear 

relationship is very weak with a correlation coefficient of 0.22 to 0.73, which is 

inconsistent with the previous finding by Alonso et al. [80]. The fitted straight line 

intersects with the vertical axis instead of the horizontal axis, indicating that cracks may 

occur even before corrosion has taken place. These two inconsistencies with the previous 

results [80] are likely attributed to the following three main reasons. First, this study takes 

a statistical approach and analyzes data collected under the same condition from multiple 

specimens and multiple cracks on each specimen while Alonso et al. [80] took a 

deterministic approach and was focused on one specimen and one crack location. Second, 

the mean crack width in this study reached a maximum of approximately 5 mm while the 

crack width was limited to 1 mm in [80]. Third and last, the relationship between the 

crack width and corrosion level is not linear particularly for large crack widths 

considered in this study. This is because the concrete cover becomes softened and 

delaminated as the crack width reaches some critical value. 
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Figure 2.16 Relationship between the mean crack width and the mean mass loss of steel 
bars for small specimens with various cover thicknesses: (a) 25.4 mm, (b) 38.1 mm, (c) 

50.8 mm, and (d) 63.5 mm. 
 

(a) 
(b) 



33 

 

  

   

0 10 20 30 40

0

1

2

3

M
ea

n
 c

ra
ck

 w
id

th
 w

 (
m

m
)

Mean mass loss η (%)

w=0.247+0.046η

R-squared=0.28

 
 

     

0 10 20 30 40

0

1

2

3

4

M
ea

n
 c

ra
ck

 w
id

th
 w

 (
m

m
)

Mean mass loss η (%)

w=0.193+0.101η

R-squared=0.62

 
 

 

Figure 2.16 Relationship between the mean crack width and the mean mass loss of steel 
bars for small specimens with various cover thicknesses: (a) 25.4 mm, (b) 38.1 mm, (c) 

50.8 mm, and (d) 63.5 mm. (cont.) 
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Figure 2.17 Relationship between the mean crack width and the mean mass loss of steel 
bars for large specimens with various cover thicknesses: (a) 25.4 mm, (b) 38.1 mm, (c) 

50.8 mm, and (d) 63.5 mm. 
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2.3.6 PDF of Crack Width for Rebar with Two Cracks in the Corner of 

Specimen. Figure 2.18 shows four pairs of PDF curves, each comparing the typical 

distributions of two cracks around a steel bar in one of the four corners of concrete blocks 

with 25.4 mm concrete cover. The two comparative PDFs for each bar appear quite 

different in terms of their shape and mean crack width. These results further justify the 

need for a statistical analysis of crack widths.  
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Figure 2.18 Representative PDF curves of cracks around corner steel bars in the large 
concrete blocks with 25.4 mm concrete cover: (a) Corner 1, (b) Corner 2, (c) Corner 3, 

and (d) Corner 4. 
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2.3.7 Crack Propagation Mechanism. Figures 2.19 and 2.20 schematically show 

the evolution of corrosion induced crack width over time as the corrosion level increases. 

In general, the crack evolution can be divided into four stages. Stage I is from the 

completion time of new construction to the initiation of cracking on the surface of 

concrete specimens. This stage takes a long time and can be further divided into three 

steps: penetration of carbon dioxide or chloride ions, onset of corrosion, and propagation 

of internal crack to the outer surface of concrete. Therefore, stage I is controlled by both 

the property of concrete cover itself and environmental factors such as concentrations of 

aggressive chemicals, moisture, and availability of oxygen. To date, most of the findings 

reported in the literature are limited to this stage. 
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Figure 2.19 Schematic illustration of corrosion-induced concrete cracking as a function of 
corrosion level or time. 
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 Figure 2.20 Schematic diagram of crack width development. 
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Stage II is from the initiation of cracking on the surface of concrete to the reach of 

a critical crack width referred to as threshold 1 in Figure 2.19. Threshold 1 can be defined 

as the deceleration of crack opening due to the softening of cover concrete. Stage III is 

the transition from Stage II to Stage IV, in which the crack width will increase gradually 

with an increase of corrosion level. Stage IV is reached when the crack width no longer 

increases or changes little over time. This stage is attributed to two reasons. One is that 

the concrete cover starts to separate from the steel bar, and the other is that the corrosion 

products would diffuse out of the concrete cover through the wide open crack. 

As pointed out previously, the relationship between the crack width and corrosion 

level becomes more uncertain over time. In the initiation stage of cracking (Stage II in 

Figure 2.19), the crack width is strongly correlated with corrosion level because the 

concrete cover at that stage remains intact with the corroded steel bar. However, in the 

propagation stage (Stage IV in Figure 2.19), the concrete cover becomes softened and 

begins to lose contact with the corroded bar, and the relationship becomes less obvious. 

 
 
 

2.4 SUMMARY 

This study experimentally investigated the complete process of corrosion-induced 

concrete cracking as a function of corrosion level. It will thus provide new knowledge to 

the after-initial-crack behavior that is lacking in the literature, and potentially provide 

new insights to the life-cycle evaluation of reinforced concrete structures. Based on the 

test data and analysis, the following conclusions can be drawn:  

(1) The crack widths on the concrete cover surfaces of 32 tested specimens were 

measured along the length of 256 steel bars and then analyzed statistically. The 

large data set indicated that the crack width can be well represented by a normal 

distribution, regardless of bar length, concrete cover thickness, and corrosion 

level.  

(2) The standard deviation of crack width linearly increased with the mean value of 

crack width. Their correlation appeared strong independent of crack length and 

concrete cover thickness, but affected by the corrosion level over time. 
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(3) The relationship between the crack width and corrosion level changed 

significantly over time. In the initiation stage of cracking, a strong correlation was 

observed because the concrete cover remained intact with the corroded steel bar. 

As the corrosion became severe and the crack width reached a critical threshold 

value, their correlation became weakened due to concrete cover spalling or 

corrosion products diffusion through wide cracks. 
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3. MECHANICAL DEGRADATION OF CORRODED STEEL BAR 

 

 

 

3.1 INTRODUCTION 

Reinforcement steel in concrete structures is generally protected by a passive film 

formed in the alkaline environment due to the hydration product of cement [82, 83]. 

However, this passive film could be destroyed by ingress of aggressive ions such as 

chloride and carbon dioxide [84, 85]. Due to the heterogeneity of external environment 

and concrete cover as well as the spatial variation of the cover thickness, the breakdown 

of this passive film on the surface of reinforcing steel bars is not uniform along the rebar 

length, resulting in local pitting corrosion. Corrosion pits reduce the cross section of steel 

rebar locally, resulting in stress concentration and significantly degrading the structural 

performance [86-88]. With further penetration of aggressive ions, more corrosion pits 

would form and propagate randomly along the surface over time. Therefore, corrosion of 

reinforcement steel in RC structures is generally a random/stochastic field problem with 

probabilistic temporal and spatial distributions. This randomness increases the failure 

probability of corroded RC members as the corroded rebar may fail at cross sections that 

are not subjected to the maximum load. 

The irregular shape of corrosion pit formed on the steel bar surface makes it 

difficult to accurately measure the loss of cross section. One conventional method is to 

compare the difference of steel bar weight before and after corrosion, and the mass loss 

was used as the only parameter to quantify the corrosion level [89-91]. However, this 

method is not scientific due to the random distribution of corrosion pits (size and 

location) on the steel bar. Corrosion pits could also be measured using a caliper [92]. 

However, there is no easy way to calculate the area loss based on these data, which is 

sometimes overestimated because this method could not measure the corrosion pit when 

curved down from the rebar surface. Other researchers tried to cut the corroded steel bar 

into many small pieces, and then measured the mass of each piece to determine the non-

uniformity of corroded cross section [93-95]. Apostolopoulos et al. [61] used image 

analysis technique to determine the size of corrosion pits. Recently, a 3-D laser scanner 

was used to determine the depth of corrosion pits; it proved to be a relatively more 
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precise measurement than other conventional methods [62]. With the aid of 3D scanner, 

any required physical dimensions, such as pit depth, cross-sectional area loss and weight 

loss could be measured precisely and conveniently.  

In the literatures, the spatial variation of the cross-sectional area of corroded rebar 

can be quantified either by the pitting factor Rp=pmax/pavg or the cross-sectional spatial 

heterogeneity factor R= Aavg/Amin, where pmax and pavg are the maximum and average 

penetration depths of corrosion pits, respectively, Amin and Aavg are the minimum and 

average cross-sectional areas of corroded rebar, respectively. Previous researchers 

showed that the average value of Rp ranged from 4.0 to 23.8 [96, 97]. Stewart et al. [98, 

99] and Zhang et al. [100] proposed that Rp can be characterized by the Gumbel 

distribution. However, these two mathematical descriptions on the variation of steel bar 

geometry are either oversimplified (pitting factor) or too complicated (cross-sectional 

spatial heterogeneity factor). 

This study aims to (1) compare two methods of characterization for the cross-

sectional area loss of steel rebar due to corrosion and (2) reevaluate the mechanical 

properties of corroded steel rebar. The two methods include a conventional gravimetric 

analysis and a geometric analysis based on 3D laser scanner data. Moreover, a critical 

cross section with the minimum area will be identified and used as an indicator for 

mechanical properties degradation. The relationships among yield strength, ultimate 

strength, and elongation will be reevaluated based on the critical cross section.   

 
 
 
3.2 EXPERIMENTAL PROCEDURE  

3.2.1 Specimen Preparation. The steel bar used in this study had a diameter of 

19.05 mm, and its chemical composition was determined and listed in Table 3.1. The 

yield and ultimate strengths of the steel bar are 420 MPa and 620 MPa, respectively.  

 

 

Table 3.1 Chemical composition of steel rebar 
Element C Si Mn P S Cr Mo Ni Co Cu V Sn Fe 

Wt.% 0.38 0.18 1.00 0.12 0.06 0.10 0.07 0.20 0.01 0.37 0.02 0.03 97.40 
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Eight pieces of steel rebar were embedded in each 228.6 mm×279.4 mm×508 mm 

concrete block as shown in Figure 3.1. To reduce the effect of crevice corrosion at the 

intersection of steel bar and concrete, each end of the rebar was encased in a PVC pipe 

filled with epoxy resin so that only the middle portion was subjected to corrosion, as 

shown in Figure 3.2. To have an electrical connection with external power supply, a 

copper wire was welded at one end of the rebar. A total of 32 specimens were prepared in 

this study.  
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Figure 3.1 Dimensions of concrete block specimen (unit: mm). 
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Figure 3.2 Details of steel bar (unit: mm). 
 

 

The concrete used in this study was a mixture of Portland cement, coarse 

aggregates, fine aggregates, and tap water with a ratio of 1:1.47:3.29:0.45 by weight. 

Type I Portland cement was used, and its chemical composition is listed in Table 3.2. 

Limestone with a maximum diameter of 19 mm was used as coarse aggregates, and river 
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sands with a fineness modulus of 2.78 were used as fine aggregates. The water cement 

ratio is 0.45 with no admixtures. The 28-day compressive strength of concrete was 

determined to be 38.58 MPa with standard concrete cylinder tests.  

 

 

Table 3.2 Chemical composition of Type-I Portland cement (wt. %). 
Loss on 
ignition 

SiO2 Al2O3 CaO MgO SO3 Na2O K2O Cl TiO2 Fe2O3 P2O5 Total 

3.98 19.48 6.80 55.35 3.32 4.35 2.39 1.00 0.02 0.20 2.18 0.19 99.27 

 

 
     

 

Figure 3.3 Mold to cast concrete block. 
 

 

For the casting of concrete, plywood molds were built as shown in Figure 3.3. 

Sixteen holes with a diameter of 28.6 mm were drilled in two side plywoods at the 

location of steel bars. After that, silicon resins were applied to seal the void between the 

plywood hole and the encasement PVC pipe. Before casting, a layer of oil was applied to 

avoid water penetration to the plywood during and after casting of concrete.   

3.2.2 Accelerated Corrosion Test. All the concrete blocks were placed in a 

corrosion bath established with wet sands, as shown in Figure 3.4(a). To accelerate 

reinforcement corrosion, direct electric current was impressed on the steel bar embedded 

in concrete using an external power supply that provides a constant electrical potential. 

The steel rebar was connected to the positive end, while a graphite rod was connected to 
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the negative end of the power supply as schematically shown in Figure 3.4(b). The 

specimens were placed side by side and the space between them was filled with sands 

flush with the top face of specimens. To create a corrosion environment, 3.5 wt% NaCl 

solution was sprayed weekly on the sands to provide moisture and chloride ions. In order 

to monitor the electrical current through the steel bar, one 10 ohm resistor was connected 

in the circuit. The voltage of the resistor was recorded with a DataLogger 880 system and 

the electrical current was determined.  

 

 

    

Wet sand with salt

Graphite rod

Steel bar

DataLogger 880
Power supply

Resistor

 

Figure 3.4 Accelerated corrosion test setup: (a) corrosion bath, and (b) electrical 
circuit to accelerate corrosion. 

 

 

3.2.3 3D Laser Scan. After the accelerated corrosion test, the corroded bars were 

taken out of the concrete specimens and then sand blasted to remove the attached 

concrete debris and corrosion products. After cleansing, all the surface morphology was 

measured using a 3D laser scanner (see Figure 3.5) to determine the remaining cross 

section, and the 3D coordinates of each point on the surface of the corroded rebar were 

acquired. Data not belonging to the corroded rebar were cleansed by ScanStudio software 

to get cleaner point cloud files with a higher signal-to-noise ratio of the data. The 

acquired 3D point cloud data were processed using ImageWare software to get the 

boundary of the cross sections of corroded steel rebar.  

 

(a) (b) 
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Figure 3.5 3D laser scanning of deformed steel bar. 
 

 

3.2.4 Tensile Test Setup. The tensile tests were conducted on the MTS880 

testing machine, as shown in Figure 3.6 (a). An extensometer with an effective range of 

50 mm was attached to the most probable failure zone where the severest corrosion was 

observed on each corroded rebar. The applied load and deformation within the gauge 

length were recorded using an automatic data sampling and processing system. The test 

results were used to calculate the stress in the test specimen. 

To further measure the total elongation of a corroded bar, two steel collars as 

shown in Figure 3.6(b) were made and attached at the two ends of the corroded portion. 

One collar supported a plastic pulley with its axle welded onto the side of steel collar and 

the other collar supported a screw by welding. During tests, a soft and strong copper wire 

went through the pulley and the screw fixed on the two steel collars and was then 

connected to a strain port to measure the elongation of the corroded rebar between the 

two steel collars. To ensure a good contact with the bar under testing, particularly when a 

significant load is applied, several layers of plastic adhesive tapes were wrapped around 

the steel bar at the location of steel collars as shown in Figure 3.6(b), and a threaded steel 

rod was then screwed through each steel collar against the plastic tapes.     
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Figure 3.6 Tensile tests: (a) setup, (b) two steel collars mounted on steel bar. 
 

 

3.3 RESULTS AND DISCUSSION  

3.3.1 Histograms of Cross Sectional Area of Corroded Rebar. Figure 3.7 

shows the scanned 3D images of one uncorroded (reference) and two corroded steel bars.  

Figure 3.7(a) indicates a uniform reference bar. Figures 3.7(b, c) clearly show that the 

corrosion-induced mass loss was not evenly distributed both around the circumference 

and along the length of the steel bar. In particular, the corroded steel bar as shown in 

Figure 3.7(c) had two large corrosion pits at its two ends, which is likely attributed to the 

crevice corrosion at the intersection of steel bar and PVC pipe. This case is referred to as 

the non-uniformly corroded bar. In Figure 3.7(b), the corrosion pits had similar sizes and 

almost evenly distributed along the length of the steel bar. This case is thus referred to as 

the almost uniformly corroded bar. 

The distributions of their cross-sectional area along the length of the steel bars are 

plotted in Figure 3.8. For the uncorroded steel bar, a very good and consistent pattern was 

observed along the length of the bar. The valleys and peaks in the black and solid line in 

Figure 3.8 represent the minimum cross section between two ribs and the cross section 

through a rib. For the almost uniformly corroded steel bar, the cross-sectional area 

fluctuated around a certain average value. However, for the non-uniformly corroded bar, 

two distinct valleys appeared near its two ends. The plots in Figure 3.8 are very 

consistent with their corresponding 3D images in Figure 3.7.  

Plastic pulley 

Screw 

Steel rod 

Strain port 

Steel collars 
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The histograms of the cross

bars in Figure 3.7 are plotted in Figure 3.9. It can be seen from Figure 3.9 that a bimodal 

distribution for the uncorroded steel bar seems reasonable, considering the effect o

(a) 

           (b) 

           (c) 
3D images of: (a) uncorroded, (b) almost uniformly corroded,

uniformly corroded steel bar. 
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 Reference Relative uniform corrosion Relative non-uniform corrosion

 

Distribution of cross sectional area along the rebar length of: (a) 
almost uniformly corroded, and (c) non-uniformly corroded steel bar

 

 

The histograms of the cross-sectional area of the uncorroded and corroded steel 

bars in Figure 3.7 are plotted in Figure 3.9. It can be seen from Figure 3.9 that a bimodal 

distribution for the uncorroded steel bar seems reasonable, considering the effect o
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: (a) uncorroded 
corroded steel bar. 

sectional area of the uncorroded and corroded steel 

bars in Figure 3.7 are plotted in Figure 3.9. It can be seen from Figure 3.9 that a bimodal 

distribution for the uncorroded steel bar seems reasonable, considering the effect of rebar 
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ribs. The mean areas are 282 mm2 and 275 mm2 for the cross sections near ribs and 

between two ribs, respectively. For the almost uniformly corroded bar, the histogram 

seems like a normal distribution since the original ribs were smoothed out in the 

corrosion process and the corrosion pits were not significant. For the non-uniformly 

corroded bar, two peaks appeared in the cross section histogram. The first peak in the 

small area represents the average area of the sections with large pits, and the second peak 

in the large area represents the average area of the sections without large pits. Therefore, 

a bimodal distribution is a better fit for corroded steel bars with large corrosion pits. 

 

 

265 270 275 280 285 290
Cross-sectional area (mm2)
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Figure 3.9 Histograms of: (a) the uncorroded, (b) almost uniformly corroded, and (c) non-
uniformly corroded steel bar. 

 

 

Figure 3.10 shows some typical cross sections of the uncorroded (a-1, a-2, a-3), 

almost uniformly corroded (b-1, b-2, b-3), and non-uniformly corroded (c-1, c-2, c-3) 

steel bars. The deformation and two ribs can be seen on the uncorroded steel bar. For the 

corroded steel bars, corrosion pits with various shapes and sizes can be observed.  

 

(a) (b) (c) 

Between ribs 

With ribs 

Corrosion pits 
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Figure 3.10 Cross sections of: (a-1, a-2, a-3) for the uncorroded, (b-1, b-2, b-3) for almost 
uniformly corroded, and (c-1, c-2, c-3) for non-uniformly corroded steel bar (unit: mm). 

 

 

Figure 3.11 shows the probability density functions (PDF) of residual cross 

section area of nine representative corroded steel bars as a function of corrosion area loss. 

These curves were obtained by fitting the PDF of a Gaussian random variable into the 

histograms based on the mean and standard deviation of measured residual cross section 

areas. The mean and standard deviation of the residual cross section area are specified in 

Rib 

Rib 

Rib 

Deformation 

Rib 

Corrosion 
pit 

Corrosion 
pit 

Corrosion 

pit 

Corrosion 

pit 

Corrosion 

pit 



48 

 

  

Figure 3.11, together with the average area loss in percentage. Obviously, the standard 

deviation increased with an increase of corrosion level (area loss). This indicated that the 

more severe the corrosion, the more non-uniform the corrosion effect.  
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Figure 3.11 PDF curves of the residual cross section area of corroded steel bar as a 
function of corrosion area loss. 

 

 

3.3.2 Comparison with Gravimetric Analysis. Figure 3.12 compares the area 

loss with the mass loss of corroded bars, both representing the level of corrosion. The 

area loss was based on the 3D laser scan data, and the mass loss was determined by 

comparing the mass difference before and after corrosion using the gravimetric analysis. 

Both the average cross-sectional area loss and the maximum area loss at the minimum 

cross section were considered. It can be seen from Figure 3.12 that the mass loss is 

linearly related to the cross sectional area loss, being the average or maximum area loss 

definition used. However, the correlation between the average area loss and the average 

mass loss (R-squared = 0.96) is stronger than that between the maximum area loss and 

the average mass loss (R-squared = 0.90). This is because the average area loss is an 

indicator of the entire steel rebar while the maximum area loss represents a small number 

of steel sections. The former is a more robust describer for the area loss than the latter. 
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The slope of the regression line based on the minimum cross section is greater than that 

based on the average cross section. Their ratio is 1.76, which is an indirect representation 

of the cross-sectional spatial heterogeneity factor R.  
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Figure 3.12 Correlation between the area loss and mass loss.  
 

 

3.3.3 Mechanical Property Degradation. Figure 3.13 shows the typical load-

elongation curves for the uncorroded (reference) and corroded steel bars tested in this 

study. It can be seen that both the yielding and ultimate loads decreased with an increase 

of average cross-sectional area loss. The yield plateau became shorter and even 

disappeared when the corrosion loss reached some values. In addition, the total 

elongation also decreased from 15 mm to 1.5 mm when the corrosion level increased 

from 0% to 48%.    
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Figure 3.13 Load-slip curves of the uncorroded and corroded steel bars. 
 

 

Under tension, steel bars typically fractured at the minimum cross section with a 

large corrosion pit. Therefore, the mechanical properties of steel rebar, such as yield and 

ultimate strengths, were intuitively related to the corrosion loss at the minimum cross 

section instead of the average corrosion loss over the entire steel bars as done by other 

researchers [60, 89]. 

Figure 3.14 shows the yielding and ultimate loads as a function of cross section 

area loss. Both the average cross sectional area loss (solid points) and the area loss at the 

minimum cross section (hollow points) were considered. A linear regression analysis was 

performed based on 50 test data points. It can be seen from Figure 3.14 that both the 

yielding and ultimate loads decreased with an increase of area loss, being it the average 

or minimum area considerations. The load capacities in relation to the area loss at the 

minimum cross section were greater than those to the average area loss since they were 

presented at the greater cross-sectional area loss. Their linear correlation with the area 

loss at the minimum cross section was also stronger with R-squared equal to 0.94 and 

0.96 for yield and ultimate strengths, respectively, in comparison with R-squared equal to 

0.85 and 0.88 based on the average area loss. The small data scattering based on the area 

loss at the minimum cross section is attributed to the eccentric loading during the tensile 

tests. For the uncorroded steel bar, the loading center likely coincided with the center of 

cross section. However, due to the effect of corrosion pits on cross sections as indicated 
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in Figure 3.10, the applied load likely created an eccentricity of various degrees at the 

minimum cross section of corroded steel bars.  
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Figure 3.14 Yielding load (a) and ultimate load (b) as a function of area loss.   
  

  

The effect of corrosion can be normalized by dividing the yielding load of a 

corroded bar by that of a corresponding uncorroded bar. To estimate the yielding load of 

uncorroded bars, the two fitted straight lines in Figure 3.14(a) were extended to intersect 

with the loading capacity coordinate axis and give the yielding load of 140.9 kN based on 

the average area loss and 142.2 kN based on the area loss at the minimum cross section. 

The yielding load can then be determined by: 

 

0(1.0 0.017 )
y y avg

F Fη −= −                                                                                               (3.1) 

 

0(1.0 0.009 )
y y crt

F Fη −= −                                                                                                (3.2) 

 

where Fy is the yielding load of corroded steel rebar, Fy0-avg (=140.9 kN) is the fitted 

yielding load at 0% corrosion level based on the average cross section area loss, Fy0-crt 

(=142.2 kN) is the fitted yielding load at 0% corrosion level based on the area loss at the 

critical/minimum cross section, and η is the corrosion level in terms of area loss. 

(a) (b) 
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Similarly, the ultimate loads at 0% corrosion level are 212.4 kN and 214.6 kN 

based on the average area loss and the area loss at the critical cross section, respectively. 

The ultimate load can be determined by:  

 

0(1.0 0.017 )
u u avg

F Fη −= −                                                                                               (3.3) 

 

0(1.0 0.009 )u u crtF Fη −= −                                                                                                (3.4) 

 

where Fu is the ultimate load of corroded steel rebar, Fu0-avg (=212.4 kN) is the fitted 

ultimate load at 0% corrosion level based on the average cross section area loss, and Fu0-

crt (=214.6 kN) is the fitted ultimate load at 0% corrosion level based on the area loss at 

the critical cross section. 

It can be clearly seen by comparing Eq. (3.1) with Eq. (3.3) and by comparing Eq. 

(3.2) and Eq. (3.4), the effects of corrosion on the normalized yielding and ultimate loads 

are basically the same so long as the same cross-sectional area loss is used. The reduction 

of loading capacity based on the average cross section area loss is more rapid than that 

based on the maximum area loss at the maximum cross section. 

The mechanical properties of steel rebar are usually expressed by the 

stress/strength instead of load carrying capability. Therefore, both the yield and ultimate 

strengths were calculated based on the average and the minimum cross sectional areas, 

respectively. Figure 3.15(a) shows the plots of yield strength as a function of both the 

average and the maximum cross-sectional losses. As one can be seen, the yield strength 

of all corroded steel bars exceeds 420 MPa based on the minimum/critical cross section, 

indicating that corrosion has not affected the yield strength of steel bars. However, the 

yield strength decreased with an increase of corrosion level based on the average cross-

sectional area loss as observed by other researchers [60, 89]. Considering that the failure 

mode in fracture is governed by the critical cross section of a steel bar instead of the 

“fictitious” average cross section of the entire steel bar, this definition of yield stress for 

corroded bars based on the average cross-sectional area loss is not reasonable in 
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engineering applications. Therefore, corrosion changes the cross section but not the yield 

strength of steel bars.  
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Figure 3.15 Yield strength (a) and ultimate strength (b) as a function of corrosion area 
loss.  

 

 

Similarly, the ultimate strength based on the critical/minimum cross section as 

shown in Figure 3.15(b) always exceeds 620 MPa while the ultimate strength based on 

the “fictitious” average cross section decreases with an increase of area loss. Therefore, 

corrosion does not change the ultimate stress, either, based on the critical cross section. 

3.3.4 Ductility. Figure 3.16 presents the elongation as a function of area loss. 

Unlike the strong linear correlation between the strength reduction and the area loss as 

discussed in Section 3.3.3, the linear correlation between the elongation and the area loss 

is significantly weaker, regardless of the use of average or maximum area loss. The R-

squared values for the two straight lines fitting into the elongation data are 0.43 and 0.56 

based on the average cross-sectional area loss and the area loss at the minimum cross 

section, respectively. 

(a) (b) 
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Figure 3.16 Elongation of steel bars as a function of area loss. 
 

 

While both the yielding and fracture of a steel bar occur at the critical cross 

section with minimum area, elongation depends on the distribution of cross-sectional area 

along the length of the steel bar. The recognition of this difference is less significant for 

uncorroded steel bars since all the cross sections have nearly the same area, resulting in 

the uniformly distributed stress and deformation of the bar under tension. It becomes 

important for corroded steel bars due to randomly distributed corrosion pits and thus 

cross-sectional areas along the steel bars. Therefore, relating the elongation to the average 

cross-sectional area loss instead of the area loss at the critical section is more reasonable 

in engineering applications. 

3.3.5 Fracture Cross Section. Figure 3.17 shows the representative fracture cross 

sections of uncorroded and corroded steel bars. As one can see, the fracture surface of the 

uncorroded steel bar is quite uniform with a significant necking area as illustrated in 

Figure 3.17(a). However, the fracture of the corroded bar initiated at the corrosion pits 

and propagated into other areas as illustrated in Figure 3.17(b). No obvious necking 

behavior was observed. This is probably due to the eccentric loading effect since the area 

center is not the same as the loading center with corrosion pits in the corroded steel bar.   

 

 

 



55 

 

  

           
Figure 3.17 Fracture cross sections of (a) uncorroded and (b) corroded steel bars after 

tensile tests. 
 
 
 

3.4 SUMMARY 

This study experimentally investigated the tensile behavior of corroded steel bars 

in a corrosion bath filled with sands sprayed with 3.5% NaCl solution weekly. Both 

mechanical strengths and elongation of corroded bars under tension were considered. The 

corrosion loss was evaluated based on two methods: the mass loss and the 3D laser scan. 

Based on the test data and analysis, the following conclusions can be drawn: 

(1) The cross-sectional area of uncorroded deformed bars followed a bimodal 

distribution due to the effect of ribs. The two peaks on the probability density 

function corresponded to a mean area of 275 mm2 and 282 mm2, respectively.  

(2) Corrosion changed the distribution of cross-sectional area of steel bars. For steel 

bars with relatively uniform corrosion, a normal distribution was observed. 

However, for steel bars with obvious corrosion pits, a bimodal distribution was 

found.  

(3) Corrosion resulted in a reduction of the cross section of steel bars, but did not 

change both yield and ultimate strengths at the critical cross section of steel bars 

with minimum area. The yield and ultimate strengths can be linearly correlated 

with the area loss at the critical cross section with little scattering that is attributed 

to the load eccentricity.  

(a) (b) 

Necking Corrosion pit 
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(4) Unlike the mechanical strengths, the elongation of corroded steel bars was less 

correlated with the area loss due to the non-uniform distribution of cross section. 

Due to the accumulative effect of cross-sectional changes, the average area loss is 

more appropriate when correlated to the elongation.  

(5) Uncorroded steel bars fractured at the critical cross section after significant 

necking while the fracture of corroded steel bars initiated at the corrosion pits and 

then propagated to the other area without obvious necking. 
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4. CORROSION-INDUCED BOND DEGRADATION  

 

 

 

4.1 INTRODUCTION 

The concrete and reinforcing steel in reinforced concrete (RC) structures can 

work together due to their mechanical interaction through bonding and anchorage. 

However, the effectiveness of concrete-steel interfaces could be significantly reduced by 

deterioration of the concrete, steel, or both. Corrosion is one of the main deterioration 

processes in RC structures; it can impair the structural integrity by weakening concrete-

steel interfaces and generating concrete cover cracking as corrosion products grows 

between the concrete and steel [101-103]. 

Many studies have been conducted on the influence of corrosion on bond between 

steel and concrete. They can be categorized into two main groups: experimental 

investigation and numerical simulation. Small concrete specimens with one embedded 

steel bar were often used in direct pullout tests. Chung et al. [104] investigated the 

impacts of corrosion to the bond behavior and proposed the bond equations with 

corrosion effects properly taken into account level, using two types of specimens with a 

steel bar subjected to corrosion before and after concrete casting, respectively. Tang et al. 

[66] investigated the influence of surface crack width on the bond strength, observed a 

strong relationship between the average surface crack width and the average bond 

strength, and concluded with an inconclusive correlation between the surface crack width 

and the degree of corrosion. Fang et al. [63, 64] studied the effect of corrosion on the 

bond strength under both static and cyclic loading.  

Flexural tests were also conducted to study the effect of corrosion on the bond 

strength. For example, Al-Sulainmani et al. [105] tested RC beams. Stanish et al. [106] 

and Chung et al. [107] tested RC slabs. To date, the only parameter used in previous 

studies to quantify the corrosion effect on steel bars is the average mass loss. It was 

usually determined by comparing the weight before and after corrosion tests. Other 

corrosion effects on structural behavior are seldom investigated, including the spatially 

non-uniform reduction of steel bar cross section and the spatially non-uniform cracking in 

concrete cover. 
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The objectives of this study are: (1) to investigate the effect of corrosion non-

uniformity on the bond strength between concrete and corroded steel bars, (2) to better 

understand the bond deterioration mechanism and bond failure modes, and (3) to observe 

the effects of average corrosion level and average crack width on the bond degradation.  

 
 
  

4.2 EXPERIMETAL DETAILS   

4.2.1 Materials and Specimens. The steel bars used in this study met the 

requirements of ASTM A615 Guidelines. Their chemical composition is listed in Table 

4.1. Their average yield and ultimate strengths were determined to be 420 MPa and 620 

MPa, respectively. Type I Portland cement was used in this study; its chemical 

composition is listed in Table 4.2. The water cement ratio is 0.45 with no admixtures. 

Their compressive strength at the day of pull-out tests was determined to be 32.42 MPa, 

based on the standard concrete cylinders tests using 102 mm in diameter and 203 mm tall 

specimens. The concrete splitting tensile strength was evaluated with testing of a simply-

supported beam under third-point loading and determined to be 1.62 MPa. 

 

 

Table 4.1 Chemical composition of steel rebar 

Element C Si Mn P S Cr Mo Ni Co Cu V Sn Fe 

Wt.% 0.38 0.18 1.00 0.12 0.06 0.10 0.07 0.20 0.01 0.37 0.02 0.03 97.40 

 

 

Table 4.2 Chemical composition of Type-I Portland cement (wt. %). 

Loss on 
ignition 

SiO2 Al2O3 CaO MgO SO3 Na2O K2O Cl TiO2 Fe2O3 P2O5 Total 

3.98 19.48 6.80 55.35 3.32 4.35 2.39 1.00 0.02 0.20 2.18 0.19 99.27 

 

 
The pullout test specimen used in this study is a 152.4 mm×139.7 mm×177.8 mm 

concrete block with one embedded deformed bar as schematically illustrated in Figure 

4.1. The steel bar is located near the top face with a clear concrete cover of approximately 

41.3 mm to replicate the application condition in RC beams and restrain the potential 

cracking within the top portion. The embedment length of the steel bar was selected to be 
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127 mm, which is 6.7 times the bar diameter. To reduce the potential arching effect and 

end restraint, the steel bar was encased in a 25.4 mm long PVC pipe at both ends (within 

concrete). The above design offered ideal bond breakers for the steel bar as will be 

confirmed by the failure modes of tested specimens. The steel bar at its both ends can 

slide freely without causing any noticeable anchoring effect on concrete. To limit the 

corrosion on the embedment portion yet minimize the effect of the PVC pipes on the 

pull-out strength of the steel bar in concrete, only the ends of the PVC pipes near the 

embedment portion were sealed with epoxy resin. The millscale formed on the steel bar 

was cleaned off before casting concrete using a steel wire wheel brush.  

 

 

 25.4 127.0 25.4

177.8

PVC pipe

139.7

152.4

41.3

152.4

         

Figure 4.1 Pull-out test specimen dimensions (unit: mm).   
 

 

For the casting of concrete, formworks were constructed using 13 mm plywoods 

as shown in Figure 4.2. Two holes with a diameter of 28.6 mm were drilled on the two 

opposite side walls for bar placement at the predetermined location. Once the steel bar is 

in place, silicon resin was applied to seal the void between the holes and the PVC pipes. 

Two epxoy coated steel bar stirrups with a diamter of 12.7 mm were used as 

confinement. To ensure the placement of stirrups at the certain location, four palstic ties 

were used to mount the stirrups against the sidewalls. Before casting, a layer of oil was 

applied to avoid water penetration to the plywoods.   
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Figure 4.2 Plywood mold for pull-out specimen casting. 

 

 

4.2.2 Accelerated Corrosion Test. Figure 4.3 shows a schematic view of 

corrosion test setup. The concrete block was placed in a corrosion test container with the 

steel bar oriented horizontally and the spaces between the block and two container side 

walls were filled with sands nearly flush with the top face of the concrete block. In its 

final position, the steel bar was located underneath the top face of sands on which 3.5 

wt% NaCl solution was sprayed weekly to provide moisture and chloride ions. To 

accelerate steel corrosion, direct current was impressed on the steel bar embedded in 

concrete using an external power supply as schematically shown in Figure 4.3. The steel 

bar was connected to the positive end of the power supply while a graphite rod with a 

diameter of 6.35 mm plugged into sands was connected to the negative end. In order to 

monitor the electrical current through the steel bar and the predetermined corrosion mass 

loss, one 10 ohm resistor was connected in the circuit. The voltage of the resistor was 

recorded with a DataLogger 880 system and used to evaluate the electrical current 

through the resistor. 
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Figure 4.3 Accelerated corrosion test setup. 
 

 

4.2.3 Pullout Test Setup. Each specimen was tested on a Tinius Olsen machine 

as shown in Figure 4.4 (a) and (b) with the steel bar pulled downward. A 12.7 mm thick 

steel plate was used to provide an upward reaction to the bottom face of the concrete 

specimen. Between the steel plate and the concrete block was a 6.35 mm thick rubber pad 

with a center hole that was used to avoid stress concentrations caused by any potentially 

uneven concrete surface introduced during the casting process. To ensure that the applied 

force go downward without any potential eccentricity, a ball bearing was placed between 

the rubber pad and the reaction frame as illustrated in Figure 4.4(a). The steel bar went 

through the hole in the center of the ball bearing.  

  



 

 

Figure 4.4 Pullout 
specimen, (c) two DCVTs mounted on top of 

As detailed in Figure

Variable Differential Transformers (LVDTs) at the 

concrete surface of the concrete block

the bar as shown in Figure 4.4(d) 

attached on the bar surface to measure the strain during tests

calculate the bar slip at the bottom of concrete block

(a) 

(c) 

                   

139.7

177.8

Strain gages

Strain pot

DCVTs

                             

Pullout test setup: (a) specimen during testing, (b) schematic view of 
wo DCVTs mounted on top of the specimen, and (d) s

deformation recording.  
 
 

As detailed in Figure 4.4(c), each specimen was instrumented with two Linear 

Variable Differential Transformers (LVDTs) at the top end of the steel 

concrete block, respectively. One strain pot was mounted around 

as shown in Figure 4.4(d) to measure the bar elongation. Two strain gages were 

attached on the bar surface to measure the strain during tests, which would be used to 

calculate the bar slip at the bottom of concrete block.  

(b) 

(d) 
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4.2.4 3D Laser Scan. After pullout tests, the corroded bars were taken out of the 

concrete specimens and cleansed with sand blaster. After cleansing, the surface 

morphology of the bars was measured using a 3D laser scanner to determine the residual 

cross section as indicated in Figure 4.5. After this operation, the 3D coordinates of each 

point on the surface of the corroded bar were acquired. Data not belonging to the 

corroded rebar were cleansed by ScanStudioHD software to give point cloud files with 

higher signal-to-noise ratios. The acquired 3D point cloud data were processed using 

ImageWare software.  

 

 

 

Figure 4.5 3D laser scanning of the deformed steel bar. 
 

 

4.2.5 Acoustic Emission Test. Acoustic emission tests were performed with the 

pullout test specimens. The objective was to capture the acoustic signal of concrete 

cracking and the friction between concrete and the steel bar embedded in concrete. A 24-

channel Micro-II PCI-8 module system from Physical Acoustics Corporation was used to 

acquire data. The acoustic sensor (Model R1.5I) used in this study incorporated a built-in 

low noise input, 40 dB preamplifier and a filter. Its resonant frequency is 20 kHz.  

In order to potentially locate the source of cracks, three sensors were placed on 

three faces of a concrete block. As shown in Figure 4.6, two sensors were mounted on the 
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two side faces and one sensor was mounted on the back face. The front face near the steel 

bar was left for the monitoring of crack opening during loading as will be discussed later. 

Each sensor was fixed to a steel angle that was in turn attached to the concrete surface 

with super glue and silicone grease. Such an attachment scheme can couple the acoustic 

sensor and the concrete surface for a better transition of acoustic signals. 

 

 

139.7

152.4

41.3

AE sensor

Steel bar

 

Figure 4.6 Layout of AE sensors (unit: mm). 
 
 
 
4.3 RESULTS AND DISCUSSION 

4.3.1 Average Bond Loss. Bond stress was calculated based on the cross section 

of an uncorroded steel bar. During the tests, it was observed that corrosion effects were 

quite non-uniform over the embedment length and large corrosion pits appeared 

sometimes. Therefore, the use of the cross section of the uncorroded bar can simplify the 

calculation of bond stress as follows:  

 

avg

b d

P
u

d lπ
=                                                                                                                (4.1) 

 

where uavg is the average bond stress, P is the applied load, ld is the embedment length, 

and db is the bar diameter. 

The bar slip at the bottom of concrete block was determined based on the 

following equation:  
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s s R
Lδ ε= ∆ − − ∆                                                                                                        (4.2) 

 

where δ represents the bar slip at the bottom of a concrete specimen, ∆s is the elongation 

of steel bar measured from the strain port, L is the distance from the bottom face of the 

specimen to the strain port, εs is the strain in the steel bar, and ∆R is the deformation of 

the rubber layer which was recorded from the DCVT mounted on the top frame of the test 

machine.  

4.3.2 Cross Section of Corroded Bar. Figure 4.7 shows the scanned surface 

profiles of one uncorroded and three corroded steel bars (#2, #3, and #10) over the 

embedment length. Note that the corrosion area losses of the corroded bars are given in 

Table 4.3. As shown in Figure 4.7(a), the ribs of the uncorroded bar are periodically 

distributed along the length of the bar and their geometry and texture can be seen clearly. 

As shown in Figures 4.7(c) and (d), the residual cross sections of severely corroded bars 

change irregularly over the embedment length due to the presence of large corrosion pits. 

 

 

                                

Figure 4.7 Scanned surface profiles of (a) uncorroded bar, (b) corroded bar #2, (c) 
corroded bar #3, and (d) corroded bar #10. 

 

 

(a) (b) (c) (d) 
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Figure 4.8 gives the histograms of cross sectional area for the uncorroded steel bar 

and the corroded steel bars as shown in Figure 4.7. Two peaks of cross sectional area 

appeared in the histogram of the uncorroded steel bar around 273 mm2 and 280 mm2, 

respectively. Due to the effect of ribs, the area of cross sections at ribs is larger than that 

between two ribs as seen in Figure 4.7(a). The effect of corrosion on the bar cross section 

can be divided into two groups. One is for the steel bar with relatively uniform corrosion, 

and the other is for the steel bar with obvious corrosion pits. The residual cross sectional 

area of the bar with uniform corrosion follows a normal distribution as seen in Figure 

4.8(b). The steel bar with corrosion pits has a bimodal distribution with one peak on the 

cross section without corrosion pits and the other peak on the cross section with corrosion 

pits as shown in Figures 4.8(c) and (d).  
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Figure 4.8 Histograms of the cross section of corroded bars for (a) uncorroded bar, (b) 
corroded bar #2, (c) corroded bar #3, and (d) corroded bar #10. 

 

4.3.3 Crack Pattern and Opening. The typical crack patterns of specimens with 

corroded bars prior to pullout tests are shown in Figure 4.9. Four types of cracking 

(a) 
(b) 

(c) 
(d) 
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patterns were observed: one small crack through the concrete cover in Figure 4.9(a), two 

small cracks through the two side faces in Figure 4.9(b), two small cracks with one 

through the concrete cover and the other through one side face as shown in Figure 4.9(c), 

and three cracks through both the concrete cover and the two side faces as shown in 

Figure 4.9(d). The widths of the cracks on all specimens were recorded and listed in 

Table 4.3. For each specimen, crack widths along a crack were sampled every 1.0 mm so 

that the statistical mean and standard deviation were obtained as listed in Table 4.3. 

 

 

                   

                

Figure 4.9 Representative corrosion-induced cracking: (a) one small crack through 
the concrete cover, (b) two cracks through the two side faces, (c) two cracks with one 
though the concrete cover and the other through one side, and (d) three cracks though 

both the concrete cover and two side faces. 
 

 

For the specimen with embedded uncorroded steel bar as shown in Figure 4.10, a 

crack was initiated near the loading point and subsequently propagated parallel to the 

reinforcing bar as the applied load increased. However, for the specimen with embedded 

corroded steel bar, one additional crack was induced by corrosion and widened with an 

(a) (b) 

(c) (d) 
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increasing load as shown in Figure 4.11. At the same time, some other minor cracks may 

occur. During the tests, more small cracks were observed along the steel bar at low 

corrosion level, and less new cracks were generated but the old cracks continued to be 

widened at relatively high corrosion level. 

 

 

Table 4.3 Crack width before pullout tests 

Specimen 
Corrosion  

Area loss (%) 
Top (mm) Left side (mm) Right side (mm) 

#1 17.8 0.84±0.30 1.14±0.55  
#2 9.1 0.64±0.12 0.76±0.22  
#3 35 0.98±0.30 0.78±0.19 0.79±0.32 
#4 2.2 0.50±0.11 0.25±0.09  
#5 15.6 0.24±0.15 0.87±0.43 1.56±0.51 
#6 1.8 0.34±0.12   
#7 12.2 0.26±0.09 0.27±0.13  
#8 7.1 0.39±0.10   
#9 18.1 1.07±0.44 1.00±0.33 1.28±0.92 

#10 29.5 0.26±0.18 1.71±0.84 1.51±0.66 
#11 10.3 0.21±0.11 0.30±0.16  
#12 4.1 0.42±0.14   
#13 7.7 0.30±0.14 0.48±0.24 1.39±0.47 
#14 1.5 0.31±0.17 0.32±0.17  
#15 7.8  0.44±0.16 0.20±0.05 

 

 

                            

   (1)  0 kN         (2) 69.8 kN          (3) 56.0 kN         (4) 50.3 kN         (5) 29.8 kN      

Figure 4.10 Crack initiation and propagation of the concrete block with uncorroded 
bar under applied loads from (1) 0 kN through (3) 69.8 kN to (15) 29.8 kN. 
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(1) 0 kN        (2)  2.4 kN                 (3) 18.1 kN        (4) 31.2 kN         (5) 36.6 kN 

       
      (6) 43.4 kN        (7) 52.4 kN             (8) 57.7 kN          (9) 60.8 kN        (10) 54.0 kN            

       
    (11) 43.1 kN        (12) 33.5 kN         (13) 26.9 kN         (14) 19.4 kN         (15) 16.9 kN 

Figure 4.11 Crack widening of corroded specimen #7 at loads from (1) 0 kN through 
(9) 60.8 kN to (15) 16.9 kN.  

 
 

4.3.4 Load-slip Curves. Figure 4.12 shows representative load-deformation in 

rubber layer, load-strain in steel bar, and load-slip curves. As indicated in Figure 12(a), 

the load-deformation in rubber layer seems to show a hardening material behavior, which 

is not realistic for rubber materials. The initial hardening-like behavior was likely due to 

slack in the test setup. As a result, the deformation increased rapidly in the beginning of 

loading and less rapidly after the applied load reached a critical value or the initial slack 

was removed completely. Thereafter, the deformation increased almost linearly with the 

applied load. When unloaded to the critical value, the deformation fluctuated around the 

loading curve. The fluctuation was due to the cracking and crushing of concrete bottom 

face next to the rubber layer. 
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The relation between the applied load and strain in steel bar is linear, elastic, and 

non-hysteretic in a loading-unloading cycle as displayed in Figure 4.12(b). This is 

because the maximum pullout load of 80 kN applied to all specimens is lower than the 

yield strength in terms of loading capability. 

Figure 4.12(c) shows two representative load-slip curves. One is for the slip 

between the top end of the steel bar and the top face of concrete as shown in Figure 

4.4(b) and the other is for the slip where the steel bar exits out of concrete. The latter is 

always greater than the former because the latter represents the accumulative deformation 

over the embedment length and corresponds to the maximum steel-concrete interface 

force. This explanation is also supported by the crack initiation and propagation pattern 

as shown in Figure 4.10. The difference between the two slips measured at the top and 

bottom faces of concrete increased in the loading process and decreased in the unloading 

process. The maximum difference in slip was reached at the maximum load or bond force 

since the steel-concrete interface gradually damaged after the maximum load and the 

interfacial reaction force from the concrete and then the deformation in steel bar were 

reduced. The effect of corrosion on the maximum slip difference will be discussed later.  
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Figure 4.12 Representative curves: (a) load-deformation in rubber layer, (b) load-
strain in steel bar, and (c) load-slip. 

 
 

(a) (b) 
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Figure 4.12 Representative curves: (a) load-deformation in rubber layer, (b) load-

strain in steel bar, and (c) load-slip. (cont.) 
 

 

Figure 4.13 shows the relationships between the bond stress and the top slip at the 

end of steel bar for all specimens. The specimens were divided into three groups based on 

their characteristics that are closely related to the number of cracks and crack width 

appeared on concrete surface instead of average corrosion level. As shown in Figure 

4.13(a), the bond stress for the specimens with uncorroded (reference) steel bars suddenly 

dropped after initiation of the first crack, then increased to some extent, and finally 

decreased in a relatively rapid rate with the slip. When the bond stress dropped to 15% of 

its maximum load, the slip at the top end of the steel bar is approximately 7 mm. As 

shown in Figure 4.13(b), the specimens with less cracks on the concrete surface exhibited 

the same behavior as the specimens with uncorroded steel bars. However, the slip when 

the bond stress is 15% of its maximum value is much greater than that with the 

uncorroded steel bars, which is approximately 12 mm. For the specimens with two and 

more wide cracks, there is no sudden drop in the loading process, indicating that no new 

crack occurred as indicated in Figure 4.13(c). In the unloading process, the maximum slip 

is as large as that for the specimens with less narrow cracks, which is approximately 18 

mm. 

 

(c) 
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Figure 4.13 Bond stress-slip curves of all specimens: (a) specimens with unocrroded 
steel bar, (b) specimens with less crack, and (c) specimens with more cracks. 

 

 

4.3.5 AE Results. During pullout tests, two types of acoustic signal can 

potentially be captured by the AE system: concrete cracking and the friction between 

concrete and steel bar. The specimen with the uncorroded steel bar experienced three 

(a) 

(b) 

(c) 
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major stages that were dominated by concrete cracking, both concrete cracking and steel-

concrete friction, and steel-concrete friction, respectively. The frequency characteristics 

in each stage can be identified because the acoustic wave generated from concrete 

cracking propagated in nearby hard materials so that more acoustic energy is distributed 

over high frequencies while the acoustic wave from the friction between the steel bar and 

concrete propagated in nearby softened materials during previous concrete cracking so 

that more energy is distributed over low frequencies.  

In order to identify the frequency characteristics corresponding to different 

mechanisms, each signal was divided into three stages based on the bond-slip curves. 

Stage I is from the beginning of loading to maximum bond strength, stage II corresponds 

is from maximum bond strength to the end of rapid decrease of bond strength, and stage 

III is from the end of rapid decrease of bond strength to the termination of test. Figure 

4.14 presents the acoustic energy spectra for six specimens. During the pullout test of 

each specimen, two dominant peaks were identified from each of the three acoustic 

energy spectra in three stages. The low- and high-frequency peaks represent the friction 

and cracking effects, respectively. In Stage I, the energy released due to concrete 

cracking is generally higher than that from the friction as indicated by the solid line in 

Figure 4.14 (except the corroded bars #1 and #13). In contrast, in Stage III, the energy 

released from the steel-concrete friction is higher than that from concrete cracking as 

shown in blue dashed line in Figure 4.14 (except the corroded bar #15). In stage II, the 

energy levels released from concrete cracking and steel-concrete friction are generally 

comparable as shown in red dashed line in Figure 4.14 (except the corroded bar #15). 

Overall, the friction generated acoustic energy is mainly distributed in a low frequency 

range of 3 kHz to 15 kHz while the cracking generated acoustic energy is in a high 

frequency range of 35 kHz to 41 kHz. 
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Figure 4.14 Acoustic energy spectra of various specimens. 
 

 

The dominant frequency ranges at Stages I and III of seven representative 

specimens are presented in Table 4.4. Specimen R2 was with the uncorroded steel bar as 

a reference for other specimens, Specimens #1, #2, and #14 were with corroded steel bars 

but less small cracks, and Specimens #3, #13, and #15 were with corroded steel bars and 

many large cracks. For each specimen, three sets of signal corresponding to three AE 

Uncorroded #2-Ch2 Corroded #1-Ch3 

Corroded #2-Ch2 Corroded #13-Ch4 

Corroded #14-Ch3 Corroded #15-Ch4 
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sensors on the concrete block surface were taken at each stage; their mean and standard 

deviation were evaluated. Both the mean and standard deviation are reported in the form 

of mean ± standard deviation in Table 4.4. It can be clearly seen from Table 4.4 that the 

frequencies identified at Stage I for concrete cracking are almost the same with or 

without corrosion. The is because many new cracks would be induced as the specimens 

with uncorroded steel bars are loaded; and propagation of old cracks and generation of 

few new cracks would occur for the specimens with corroded steel bars, both of which 

released significant energy.  

 

 

Table 4.4 Frequencies identified at Stages I and III (kHz) 

Specimen Stage III (steel-concrete friction) Stage I (concrete cracking) 

#1 8.138±0.746 39.88±0.746 

#2 8.138±0.746 39.71±0.564 

#3 7.812±0.000 40.36±0.746 

#13 7.486±1.409 39.71±0.282 

#14 7.975±0.282 40.04±0.489 

#15 7.812±1.760 40.04±0.489 

R2 12.04±2.255 39.71±1.227 

 

 

Effect of corrosion on the dominant frequency can be observed at Stage III due to 

the steel-concrete friction. The specimen (R2) with the uncorroded steel bar had a much 

higher friction-associated frequency than that for the other specimens with corroded steel 

bars. This is because the steel-concrete interfacial materials through which the friction-

induced acoustic wave propagated are much harder with the uncorroded specimen (R2), 

less harder with the corroded specimens (#1, #2, and #14), and relatively loose with the 

corroded specimens (#3, #13, and #15). In addition, the acoustic energy is more sensitive 

to the number and size of cracks and less to the level of corrosion as will be demonstrated 

in Section 4.6.3. Overall, the average friction frequency is 12 kHz for the specimen with 

uncorroded steel bar (R2), 8 kHz for the specimens with less and small cracks (#1, #2, 

and #14), and 7.7 kHz for the specimens with many large cracks (#3, #13, and #15). 



76 

 

  

4.3.6 Bond Degradation. Figure 4.15 shows the relationship between the 

maximum bond stress and average corrosion level, and the relationship between the 

maximum bond stress and average crack width for all specimens. With an increase of 

corrosion level and average crack width, the maximum bond stress decreased. A linear 

regression analysis made for both cases demonstrated that the reduction of maximum 

bond stress due to corrosion was more sensitive to the average crack width and less to the 

average corrosion level. This is consistent with studies in the literature [5]. The bond 

stress depends on the confinement of concrete, which can be reduced significantly by 

concrete cracking. However, high corrosion level means more corrosion products that 

may penetrate into the concrete void and cracks rather than generate tensile stress on the 

cover concrete. 
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Figure 4.15 Relationships between (a) maximum bond stress and corrosion level, and 
(b) maximum bond stress and crack width. 

 

 

Figure 4.16 shows the corrosion effects on the difference of slips at the top and 

bottom concrete faces and corresponding to the maximum bond strength, and on the 

average crack width. It can be seen from Figure 4.16(a) that the slip difference likely 

increased with an increase of corrosion level with a weak correlation (R-square = 0.50). 

This is because corrosion reduced the cross section of steel bar embedded in the concrete, 

and some part of the embedment may yield under the maximum load and produce 

(a) (b) 
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significant deformation. Figure 4.16(b) indicated that the average crack width generally 

increased with an increase of corrosion level. However, their correlation is weak (R-

squared = 0.57). 
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Figure 4.16 Effects of steel bar corrosion on: (a) top-bottom slip difference, (b) 
average crack width. 

 

 

4.3.7 Bond Degradation Mechanism. In general, bond between concrete and 

deformed steel bar in RC structures is controlled by three mechanisms: chemical 

adhesion, bearing force of ribs against concrete (mechanical interlocking), and friction 

between concrete and steel. Adhesion is the chemical bond at the interface between the 

reinforcement and the concrete. At relatively low loads, the chemical adhesion is the 

dominant bond mechanism. Bearing of ribs against concrete is considered to be the most 

significant transfer mechanism at high loads. The friction mechanism depends on the 

surface characteristics of the reinforcing bar.  

As reported by Tassios [108], the ideal bond-slip curve of deformed steel bars in 

concrete can be divided into several stages. In this study, five stages were observed for 

specimens with uncorroded steel bar, six stages were observed for specimens with 

slightly corroded steel bar, and four stages were observed for specimens with severely 

corroded steel bar. The bond-slip curves for various specimens are schematically shown 

in Figure 4.17. In Stage I, the chemical adhesion between the reinforcing bar and 

(a) (b) 
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concrete plays a major role, corresponding to an unnoticeable slip due to strain 

localization at the bar-concrete interface layer. 
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Figure 4.17 Bond-slip curves for: (a) specimens with uncorroded steel bar, (b) specimens 
with slightly corroded steel bar concentrated at lugs, (c) specimen with slightly corroded 

steel bar concentrated at ribs, and (d) specimens with severely corroded steel bar.  
 

 

In Stage II, micro-cracks initiate in concrete near the ribs of the reinforcing bar 

due to the increased bearing force against surrounding concrete, and continue to penetrate 

towards the outer face of concrete with an increase of loading. At the same time, the 

micro-cracks continue to propagate upwards the top portion of the embedded steel bar. 

Therefore, the crack width continues to increase as shown in Figure 4.10. When the 

number of micro-cracks that penetrate through the concrete cover and propagate upwards 

along the steel bar reaches a critical value, a significant drop of bond stress occurs, which 

is referred to as Stage III.  Due to the confinement of stirrups, the outward movement of 

(a) (b) 

(c) (d) 
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cracked concrete will stop and hold the steel ribs tightly again. Therefore, the bond force 

increases again, which is referred to as Stage IV. For specimens without stirrup 

confinement, no further bond increase can be observed.  

After the bond force increases to a certain value, significant concrete crushing 

occurs locally and the shear forces of steel bar ribs against the concrete diminish, 

resulting in a rapid decrease of the bond stress, which is Stage V. With further loading, 

the steel bar can move for a distance of rib spacing, which is Stage VI. In this study, the 

friction stage was not observed for specimens with uncorroded steel bar since the applied 

load dropped rapidly corresponding to 15% of its maximum bond stress. For specimens 

with slightly corroded steel bar, a relatively flat and smooth friction stage started to 

appear when the slip of steel bar reached approximately 12.7 mm (rib spacing) as 

observed in Figures 4.13 (b) and (c). 

Corrosion changes the geometry of steel bar particularly for the depth of ribs. Due 

to varying external environment and non-homogenous concrete cover, corrosion is not 

uniform along the length of steel bar. This non-uniformity of corrosion makes the 

interface between the steel bar and concrete change over the embedment length. The ribs 

of the steel bar may corrode off at some locations and the lugs between two adjacent ribs 

may deepen due to local active corrosion as indicated in Figures 4.18 (b-2) and (c-2). In 

some cases, all steel bar ribs might corrode off as shown in Figure 4.18 (d-2). Therefore, 

the effect of corrosion on the bond behavior of steel bars in concrete is difficult to 

quantify. 

 

 

           

                                     (a-1)                                                             (a-2) 

Figure 4.18 Visual observations on steel-concrete interfaces after pullout tests: (1) 
concrete interface, (2) steel bar surface; (a) uncorroded specimen, (b) slightly corroded 

specimen on ribs, (c) slightly corroded specimen on lugs, and (d) severely corroded 
specimen. 
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                                     (b-1)                                                             (b-2) 

       

                                     (c-1)                                                             (c-2) 

      

                                     (d-1)                                                             (d-2) 

Figure 4.18 Visual observations on steel-concrete interfaces after pullout tests: (1) 
concrete interface, (2) steel bar surface; (a) uncorroded specimen, (b) slightly corroded 

specimen on ribs, (c) slightly corroded specimen on lugs, and (d) severely corroded 
specimen. (cont.) 

 

 

In this study, the corrosion-induced bond degradation is divided into three 

scenarios as illustrated in Figure 4.19: steel bar with slight corrosion concentrated on ribs 

(Figure 4.19(c)), steel bar with slight corrosion concentrated on lugs (Figure 4.19(b)), and 

steel bar with severe corrosion with all ribs corroded (Figure 4.19(d)). Figure 4.19(a) 

illustrates the bond condition of the uncorroded steel bar. Their corresponding load-slip 

curves in comparison with the uncorroded steel bar are schematically demonstrated in 

Figure 4.17(b-d). 

In Stage I, corrosion reduced the chemical adhesion between the steel bar and 

surrounding concrete. Consequently, the initial bond stress of the corroded steel bar is 

lower than that of uncorroded steel bar. Stages II-V for specimens with slightly corroded 

steel bar are similar to those for the specimens with uncorroded steel bar. However, the 
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specimens with the corrosion of steel concentrated on the lugs may exhibit a higher 

maximum bond stress than the specimens with uncorroded steel bar (Figure 4.17(b)). The 

specimens with the corrosion of steel concentrated on the ribs exhibited the lower 

maximum bond stress than that for the specimens with uncorroded steel bar (Figure 

4.17(c)). They can be explained with the aid of their corresponding failure mechanisms in 

Figures 4.19(b) and (c). The steel bar with corrosion concentrated on the ribs would 

reduce the bearing force against concrete, thus resulting in a reduced bond stress. The 

steel bar with corrosion concentrated at the lugs would increase the bearing force against 

the concrete due to relatively high ribs. 
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 Figure 4.19 Bond degradation mechanisms for specimens with: (a) uncorroded steel bar, 
(b) slightly corroded steel bar concentrated at lugs, (c) slightly corroded steel bar 

concentrated at ribs, and (d) severely corroded steel bar. 
 

 

Specimens with severely corroded steel bar can be characterized with four stages 

as shown in Figure 4.17(d). This particular characterization can be explained using Figure 

(a) 

(b) 

(c) 

(d) 
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4.18(d) and Figure 4.19(d). The absence of Stages III and IV is attributed to the 

disappearance of the bearing force of bar ribs against the concrete. As shown in Figure 

4.19(d), all the ribs stayed attached to the concrete, and a relatively smooth surface could 

be observed.  

 
 

4.4 SUMMARY 

  Based on the test data and analysis, the following conclusions can be drawn: 

(1) The cross sectional area of uncorroded steel bars followed a bi-modal 

distribution due to the effect of bar ribs. The cross sectional area of corroded steel bars 

was well represented by a normal distribution for relatively uniform corrosion and a bi-

modal distribution for non-uniform corrosion with large corrosion pits. 

(2) Three stages of acoustic energy release were identified from two types of 

acoustic emission signals acquired during pullout tests: dominant concrete cracking, 

balanced concrete cracking and steel-concrete friction, and dominant steel-concrete 

friction. The acoustic wave generated from concrete cracking propagated in nearby hard 

materials so that more acoustic energy was distributed over high frequencies (35 – 41 

kHz) while the acoustic wave from the friction between the steel bar and concrete 

propagated in nearby softened materials during previous concrete cracking so that more 

energy was distributed over low frequencies (3 – 15 kHz). 

(3) Acoustic energy is more sensitive to the number and size of cracks and 

less to the level of corrosion. As such, the frequencies identified from concrete cracking 

are almost the same with or without corrosion since both many new cracks on uncorroded 

specimens and few new cracks plus old crack propagation on corroded specimens 

released significant acoustic energy. On the other hand, the average frequency of friction-

induced acoustic signals is 12 kHz for uncorroded  specimens, 8 kHz for corroded 

specimens with less and small concrete cracks, and 7.7 kHz for corroded specimens with 

many large concrete cracks. 

(4) The maximum bond stress decreased with an increase of corrosion level in 

terms of average area loss and with an increase in crack width. At the same time, the 

difference between the bar slips at the top and bottom concrete faces and the average 

crack width increased with the area loss. However, all the above correlations are weak 
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with R-square values ranging from 0.37 to 0.50. The number and size of concrete surface 

cracks were found to result in more reduction of bond stress than the corrosion-induced 

area loss. 

(5) Three mechanisms of corrosion-induced bar-concrete bond degradation 

were identified: chemical adhesion, mechanical interlocking, and bar-concrete friction. 

With no noticeable slip, chemical adhesion was reduced when the passive film formed on 

steel bar surface started degrading due to the attack of aggressive chloride ions. With 

significant slipping, the bar-concrete friction was reduced due to the soft corrosion 

products formed in between the steel bar and concrete.  

(6) With intermediate slipping, the mechanical interlocking degraded in a 

more complicated way. Corrosion at a lug between two adjacent ribs likely increased the 

local bearing force of the ribs against surrounding concrete. On the other hand, corrosion 

at a rib likely reduced the local bearing force of the rib against surrounding concrete. For 

severely corroded steel bars, the commonly-observed local increase and decrease bond 

stress stages on a bond-slip curve, associated with micro-cracking and propagation, 

disappeared since severe corrosion made the bar ribs become flattened.  
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5. ELECTROCHEMICAL BEHAVIOR OF ENAMEL COATED CARBON 

STEEL IN SIMULATED CONCRETE PORE WATER SOLUTION WITH 

VARIOUS CHLORIDE CONCENTRATIONS 

 

 

 

5.1 INTRODUCTION 

Enamel coating has been widely used to protect metals or alloys from corrosion 

due to its strong adherence to the substrate and its chemical stability in various 

environments including acid, alkaline, high temperature, and harsh working conditions 

[109, 110]. Enamel coated carbon steel has long been used for chemical reactors, heat 

exchangers, and food-processing vessels in industry as well as cookware in domestic 

applications. Commercial enamel is a silica-based glass-forming material containing 

various oxides to obtain optimum properties for specified applications. The enamel is 

typically fused to the substrate metals at temperatures between 750°C and 850°C. The 

properties of enamel can be controlled either by adjusting the components or percentages 

of oxides or by pretreating substrate metals [111]. For example, acid resistance is  

obtained by increasing the SiO2 content and reducing B2O3 and BaO; water resistance is 

achieved by adding TiO2; alkaline resistance is improved by adding ZrO2 [112]; 

adherence to substrate metals is increased by adding CoO and NiO [113]; and the 

hardness of coating is improved by crystallization treatment [114]. 

Recently, a number of studies have been performed at Missouri University of 

Science and Technology to investigate the performance of enamel as a coating material 

applied on reinforcement steel to (i) reduce the corrosion rate [23, 115] and (ii) enhance 

the bond strength with steel and surrounding concrete [116, 117]. Three types of enamel 

coatings were investigated including pure enamel (PE), mixed enamel (ME) and double 

(DE). The PE is a commercially available product (PEMCO International) and used as a 

benchmark in this study. It was selected because it contains ZrO2 for improved durability 

of glasses in alkaline environments, and NiO and CoO for increased adherence with steel 

substrates. The ME is a mixture of 50% PE with 50% calcium silicate by weight. 

Calcium silicate was added to modify the mechanical property of the PE, improving the 

interface transition zone between the concrete and steel rebar that has traditionally been a 

weak link due to bleed water and lack of small cement particles in the shadow of the 
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concrete aggregates [118]. Our previous studies showed that an average increase of 

approximately 15% in bond strength was observed for deformed steel rebar in concrete 

and as much as a seven times increase in bond strength for smooth steel rods in mortar in 

comparison with uncoated rods [116, 117]. The DE has an inner PE layer and an outer 

ME layer; it was developed to enhance the corrosion resistance of steel rebar by the inner 

layer and increase the bond strength of steel rebar with surrounding concrete by the outer 

layer.  

For deformed steel rebar tested in 3.5 wt.% NaCl solution, all three enamel 

coatings can reduce the corrosion rate of the steel by 12-20 times [115] even though the 

coating thickness on the surface of deformed rebar was non-uniform due to the rebar 

deformation and limitations in the chosen fabrication process. For smooth steel rebar in 

mortar cylinders tested in 3.5 wt % NaCl solution, the PE and DE coatings can reduce the 

corrosion current density of the steel rebar by 50 and 360 times, respectively; the ME 

coating only reduced the current density by three times [23]. However, due to the 

influence of mortar cover, particularly with its non-homogeneity and diffusion behavior, 

both the coating properties and the coating/steel interface properties could not be 

accurately evaluated particularly for DE coated samples. Moreover, the thickness of 

enamels applied on the smooth steel rebar was relatively thin due to curvature effects, 

making it difficult to compare the properties of the three enamel coatings. 

To avoid the complexity involved in mortar or concrete, saturated Ca(OH)2 

solutions often have been used to simulate the alkaline environment of concrete pore 

water [119-121] because it is the main product from the hydration process of cement as 

follows [118]:  

 

2Ca3SiO5 +11H2O =3CaO·2SiO2·8H2O + 3Ca(OH)2                                                    (5.1) 

 

2Ca2SiO4+ 9H2O = 3CaO·2SiO2·8H2O + Ca(OH)2                                                       (5.2) 
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Therefore, in the present study, the electrochemical properties of enamel coatings 

applied on structural steel plates are studied in saturated Ca(OH)2 solution with different 

chloride concentrations. The phase compositions of the three different enamel coatings 

and the morphologies of the coatings and the coating-steel interfaces were characterized 

by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Moreover, the 

tensile strength of each enamel coating was determined with direct pull-off tests.  

 
 
 
5.2 EXPERIMENTAL 

5.2.1 Preparation of Enamel Coatings and Test Samples. Carbon steel plates of 

76.2 mm × 38.1 mm in size and 3.18 mm in thickness were used in this study. The 

chemical composition by weight is: 0.27% C, 0.28% Si, 1.03% Mn, 0.05% S, 0.03% P, 

and the balance Fe. The plates were coated by Pro-Perma Engineered Coatings with three 

types of enamel (PE, ME, and DE). Prior to coating, all steel plates were sand-blasted and 

cleansed with a commercially available cleansing solvent. 

 

 

Table 5.1 Chemical composition of alkali borosilicate glass frits. 

Composition SiO2 B2O3 Na2O K2O CaO CaF2 Al2O3 ZrO2 MnO2 NiO CoO Total 

Amount 
(wt.%) 

44.0 19.3 15.8 2.8 0.0 4.7 4.6 5.3 1.5 1.0 0.9 100 

 

 

The commercially available alkali borosilicate glass frit (PEMCO International) 

was used to prepare the PE coating [122], and its chemical composition is given in Table 

5.1. The PE slurry was made by first adding 454 kg of glass frit into 189.3 liters of water 

and mixing them for 20 min., and then adding 31.8 kg of clay and 2.3 kg of borax as 

suspension agents and mixing again for 3.5 hrs. The ME coating was obtained by adding 

50% calcium silicate to 50% the alkaline borosilicate glass frit by weight, and then 

following the same procedure to produce a slurry. Calcium silicate was directly taken 

from Portland cement as specified in ASTM C150-07 [123]. The DE coating consists of 

two layers: an inner PE layer and an outer ME layer. 
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For PE and ME coatings, the steel plate samples were dipped into their 

corresponding slurries, heated at 150 °C for 2 min. to drive off moisture, then fired at 810 

°C for 10 min., and finally cooled to room temperature. For the DE coating, the steel 

plates were first dipped into the PE slurry, heated at 150 °C for 2 min. to drive off 

moisture, and fired at 810 °C for 10 min. They were then dipped into the ME slurry, 

heated at 150 °C for 2 min. again to drive off moisture, and finally fired at 810 °C for 10 

min. The firing treatment melted the glass frit and chemically bonded the enamel to the 

steel substrate. 
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Figure 5.1 Schematic view of the steel plate sample used in the electrochemical 
experiments (unit: mm). 

 

 

For each enamel coated steel plate schematically illustrated in Figure 5.1, one 

corner was ground off to expose the steel for a soldering connection with a copper wire 

for electrochemical measurements. All four side edges and the back face of the steel plate 

were covered with EpoxyMount (ALLIED). Therefore, only the center portion on the 

front face of all steel plates, approximately 12.5 cm2, was potentially exposed to the test 

solution. For comparison, uncoated steel plates were also prepared and characterized. 

Three steel plate samples were prepared and tested in each condition to ensure the 

repeatability of the test data. 
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5.2.2 Characterization of Enamel Coating. The morphologies of enamel coated 

samples were investigated by SEM (Hitachi S4700). A small piece of an enamel coated 

steel plate, 20 mm×5 mm in size, was sectioned with a diamond blade, and directly used 

for the surface SEM imaging. Another small piece of the sample was cut across the cross 

section and cold-mounted with EpoxyMount. The cross section was then ground with 

silicon carbide papers to 1200 grit. The ground sample was rinsed with deionized water, 

cleansed with acetone, and finally dried in an oven preset at 60°C prior to SEM imaging. 

The phase composition was directly examined with XRD (Philip X’ Pert) tests on the 

surface of enamel coated steel plates.  

5.2.3 Pull-off Test. The tensile strength of enamel coatings on steel plates was 

determined following ASTM D4541-09 with an automatic PosiTest pull-off tester. To 

reduce the risk of adhesive failure, the bottom face of a 14-mm-diameter dolly and the 

enamel coating surface were slightly abraded with sandpaper and cleansed with acetone. 

The dolly was then adhered to the enamel surface of an enamel coated steel plate with 

Araldite multi-purpose adhesive. After the adhesive was cured for 24 hrs, the enamel 

coating was scored around the perimeter of the dolly before the dolly was pulled off 

perpendicular to its interface with the enamel coated plate at a stress rate of 0.41 MPa s-1. 

The maximum strength of each test sample was recorded.  

5.2.4 Electrochemical Tests. Saturated Ca(OH)2 solution was prepared by 

mixing certified Ca(OH)2 powder (Fisher Scientific) into distilled water in a 500 mL 

glass beaker. The chloride concentration in the simulated concrete pore solution was 

incrementally increased to 0.01, 0.05, 0.10, 0.50, and 1.00 mol L-1 by adding NaCl 

granules (Fisher Scientific) into the glass beaker. A steel plate sample was first immersed 

in the saturated Ca(OH)2 solution for three days so that a relatively stable passive film 

would be developed on the uncoated steel [84, 121]. Electrochemical measurements were 

then performed with the coated steel before the pH value of the solution was measured. 

After the first electrochemical test, NaCl granules were added into the solution to achieve 

a chloride concentration of 0.01 mol L-1, and the steel plate sample continued to be 

immersed for another three days prior to the next pH and electrochemical measurements. 

This process was repeated until the chloride concentration in the solution reached 1.00 

mol L-1 and the tests were completed. For proper chloride concentration adjustments, a 
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magnetic stirring bar was placed at the bottom of the glass beaker and was set to rotate 

and continuously mix the test solution for 10 min. per day in between two 

electrochemical tests. To reduce the potential carbonation of the saturated Ca(OH)2 

solution, all glass beakers remained covered with plastic sheets except when the NaCl 

was added or during electrochemical testing.  

Open circuit potential (OCP), lineal polarization resistance (LPR) and 

electrochemical impedance spectroscopy (EIS) tests were used to monitor the 

electrochemical behavior of uncoated and enamel coated steel plates. The three-electrode 

system used for the electrochemical tests included a platinum sheet (25.4 mm×25.4 

mm×0.254 mm) as counter electrode, a saturated calomel electrode (SCE )as reference 

electrode, and a steel plate as working electrode. All three electrodes were connected to a 

Gamry, Reference 600 potentiostat/galvanostat/ZRA for data acquisition. A stable OCP 

was recorded before each EIS measurement, which used a sampling rate of 5 points per 

decade with an applied sinusoidal potential of 10 mV amplitude around the OCP and with 

frequency ranging from 100 kHz to 0.005 Hz. The LPR curves were measured within 15 

mV around the OCP at a scan rate of 0.167 mV s-1. The polarization resistance, Rp, is 

equal to the slope of the polarization curve around zero current and is calculated by:  

 

/
p

R V I= ∆ ∆                                                                                                                       (5.3) 

 

in which ∆V and ∆I represents the applied potential difference and the measured current 

difference, respectively, in the linear portion of the polarization curve around I=0. The 

polarization resistance was used to evaluate the corrosion current density, j, according to 

the Stern-Geary equation [12]:  

 

/
p

j B AR=                                                                                                                                               (5.4) 

 

where A is the surface area of a sample exposed to the test solution (12.5 cm2), and B is a 

constant related to the anodic and cathodic Tafel slopes. In this study, B = 26 mV was 

used for simplicity [84, 124].  
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5.3 RESULTS AND DISCUSSION 

5.3.1 Characterization of the Coatings. 

5.3.1.1 Phase composition. X-ray diffraction patterns of the calcium silicate 

powder from Portland cement and the three enamel coatings are presented in Figure 5.2. 

It can be clearly seen from Figure 5.2(a) that the primary crystalline phase of the cement 

power is tricalcium silicate, Ca3SiO5, which is in agreement with the principle 

constituents of cement. The PE is dominated by an amorphous hump centered at 2θ=27°, 

which is consistent with the glassy nature of this borosilicate material as will be discussed 

below. Other small peaks indicate the presence of a small amount of crystalline SiO2 

(quartz).  
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Figure 5.2 XRD patterns for: (a) ordinary Portland cement, (b) PE, (c) ME, and (d) DE 
coatings. 

 

 

The ME and DE coatings are dominated by a principal phase of crystalline 

wollastonite CaSiO3 as illustrated in Figures 5.2(c) and 5.2(d). A minor phase of 

Na6(AlSiO4)6 is also detected. It can be observed that the dominant phase Ca3SiO5 in 

cement has been transformed to CaSiO3 as a result of the combined effect of cement 

(a) 

(b) 

(c) 

(d) 
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hydration in the slurry, reaction with the borosilicate frit, and the thermal treatment used 

to bond the enamel to the steel. 

5.3.1.2 Surface, cross-sectional and enamel-steel interfacial morphologies. 

Figure 5.3 shows the SEM images of the surface and cross-sectional views of three 

enamels coated on carbon steel. It can be clearly observed that the surface and cross-

sectional morphologies of the three enamel coatings are quite different. The PE has a 

smooth and glassy surface with a few pin-holes resulting from bubbles in the frit, as 

shown in Figure 5.3(a-1). From the cross-sectional view in Figure 5.3(a-2), the PE 

coating (300 µm thick) has a microstructure with isolated air bubbles trapped during the 

firing process, which is typical of enameled steel. These air bubbles were formed from 

gases such as CO2, CO, H2O and H2 as a result of high temperature chemical reactions 

between the carbon, iron and other elements in the steel and the water and oxides in the 

enamel frits [125]. Figure 5.3(a-2) also indicates that no trace of fish scaling was 

observed at the steel-enamel interface due to the occurrence of large bubbles as pointed 

out by Yang et al. [126]. The ME and DE surfaces, shown in Figures 5.3(b-1) and 5.3(c-

1), are also both much rougher than the PE surface due to the altered microstructures 

from the added calcium silicate. As illustrated in the cross-sectional view in Figure 

5.3(b-2), the ME coating (250 µm thick) has a number of open channels that are 

interconnected in the outer portion of the coating thickness with no large air bubbles. 

This is because the addition of calcium silicate formed small open channels through 

which the gases generated during the enameling process were released. As illustrated in 

Figure 5.3(c-2), the DE coating (300 µm thick) has two distinctive layers. The inner PE 

layer (150 µm thick) has larger air bubbles than those in the PE coating, which were 

likely accumulated due to the high viscosity of the outer ME layer. The largest air bubble 

was approximately 300 µm on a side, which is several times greater than that in the PE 

coating. There is no evidence of interconnected channels through the DE coating 

thickness as was observed in the ME coating. 
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Figure 5.3 SEM images for (1) surface and (2) cross-sectional morphologies of: (a) PE, 
(b) ME, and (c) DE coatings. 

 

 

Figure 5.4 shows highly magnified SEM cross-sectional images of the three 

enamel coatings and their corresponding enamel-steel interfaces. As depicted in Figure 

5.4(a-1), the PE coating is relatively uniform with the largest bubbles approximately 50 

µm in diameter. The ME (Figure 5.4(b-1)) has a complex structure with the calcium 

silicate distributed in the enamel matrix and the epoxy filled in the open channels. The 

epoxy was used to prepare the samples for SEM imaging. Calcium silicate is also present 
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in the outer layer of DE coating but absent in the inner layer (Figure 5.4(c-1)). Both the 

PE and DE coatings are wetted well to the underlying steel as shown in Figures 5.4(a-2) 

and 5.4(c-2). There exist small pores at the enamel-steel interface of the ME coated 

samples as indicated in Figure 5.4(b-2).  

It can be seen from enamel-steel interfacial morphologies as shown in Figure 5.4 

that, for all three enamel coatings, many small, Fe-rich protrusions were interconnected 

to form the so-called anchor points at the enamel-steel interface. These features have 

been described in the literature as resulting from the following reaction [113]: 

 

FeO + [CO, H2] = Fe + [CO2, H2O]                                                                              (5.5) 

 

 2FeO + SiO2 = Fe2SiO4                                                                                                 (5.6) 

 

These protrusions increase the roughness and adherence strength of the enamel-steel 

interface [127-129].  

 

 

        

Figure 5.4 SEM images for (1) cross section and (2) steel-enamel interface of (a) PE, (b) 
ME, and (c) DE coating at high magnification. 
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Figure 5.4 SEM images for (1) cross section and (2) steel-enamel interface of (a) PE, (b) 
ME, and (c) DE coating at high magnification. (cont.) 

 

 

5.3.2 Tensile Strength of Enamel Coatings. At the completion of the pull-off 

tests, the dollies were separated from their steel plate substrates. Optical micrographs of 

representative peeled steel plates are presented in Figures 5.5(a-1), 5.5(b-1) and 5.5(c-1) 

for PE, ME and DE coated samples, respectively. It was observed that all samples 

fractured within the enamel coatings – typical cohesive failure modes. The optical 

microscopic fracture interfaces are displayed in Figures 5.5(a-2), 5.5(b-2) and 5.5(c-2).  
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Figure 5.5 Optical micrographs of the fracture interfaces after pull-off tests at (1) low 
magnification and (2) high magnification of (a) PE, (b) ME, and (c) DE coated steel 

plates. 
 

 

Table 5.2 Cohesive strength of various enamel coatings 

Coating type Pure enamel ME DE 

cohesive strength / MPa 6.36±0.66 7.87±0.33 4.90±0.67 

 

As shown in Figure 5.5(a-2), the PE coating fractured across the large air bubbles. 

Similar to the PE coating, the fracture surface of the DE coating as shown in Figure 

5.5(c-2) was also across the air bubbles in the inner layer, which are even larger than 

those in the PE coating, as illustrated in Figure 5.5(a-2). The ME has a relatively dense 

fracture interface despite the presence of small interconnected channels as depicted in 

Figure 5.5(b-2). The average cohesive strengths of the three enamel coatings and their 

variations are given in Table 5.2. The variation of cohesive strengths for each enamel 

coating is less than 14% of their corresponding average strength. The ME and DE 

coatings have the highest and lowest cohesive strength, respectively, among the three 

coating systems. This is because the added calcium silicate altered the microstructure of 

the PE with isolated air bubbles to that of the ME with open channels, which released 

gases generated during the firing process and avoided the occurrence of large air bubbles 

(a-1) (b-1) 

(a-2) 
(c-2) (b-2) 

Air bubbles 

Open channels 

Air bubbles 

(c-1) 
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as discussed previously. However, the air bubbles in the inner layer of the DE coating are 

larger than those in the PE coating since the gases formed in the inner layer of the DE 

coating during the firing process appear to have been trapped by the highly viscous outer 

layer of the DE coating, resulting in a weaker link under the tensile load.    

5.3.3 Electrochemical Measurements. 

5.3.3.1 Open-circuit potential and corrosion current density. The pH values of 

the saturated Ca(OH)2 solution were approximately 12.7 without addition of sodium 

chloride,  then dropped to a value of around 12.5 when the chloride content reached 1.00 

mol L-1. This appears to be due to the carbonation of the solution during various tests and 

the addition of sodium chloride. No significant difference of pH values among the four 

samples was observed even after the initiation of corrosion had occurred in the uncoated 

steel plate. 

Figure 5.6(a) presents the average and the standard deviation of open circuit 

potentials (OCPs) for various samples in the saturated Ca(OH)2 solution with various 

chloride concentrations. In general, the variation of three data points for each test 

condition is small, indicating consistent test results. The PE and DE coated samples have 

relatively stable values with an average of approximately -100 mV and -240 mV, 

respectively. The OCPs of the uncoated steel samples decreased from -110 to -430 mV 

when the chloride concentration was increased from 0.01 to 0.10 mol L-1, and continued 

to gradually decrease as the chloride content increased. With regard to the ME coated 

steel samples, the potentials decreased gradually except for a significant drop from -410 

to -490 mV when the chloride content reached 0.5 mol L-1. The significant drop of OCPs 

in uncoated and ME coated steel plates indicated the initiation of pitting corrosion due to 

a local breakdown of the passive film. The chloride concentration at the breakdown of 

passive film in this study agrees well with that in the literatures [84, 130, 131]. When the 

chloride concentration is less than 0.05 mol L-1, the OCPs of all the test samples are 

ranked in descending order as: -122 mV for the uncoated steel plate, -211 mV for the PE 

coated steel plate, -245 mV for the DE coated steel plate, and -382 mV for the ME coated 

steel plate. These differences in potential are likely related to the microstructures of the 

passive film as affected by the enamel coatings. 
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Figure 5.6 Changes of (a) open circuit potential, and (b) corrosion current density of 
various steel plate samples in the saturated Ca(OH)2 solution with different chloride 

concentrations. 
 

 

Figure 5.6(b) displays the average and standard deviation of corrosion current 

densities calculated from equation (5.4) as a function of chloride concentration. Except 

for the uncoated steel plate samples, the three data points for each condition are quite 

consistent. Throughout the testing, the corrosion current densities of the PE and DE 

coated steel samples remained at 0.05 nA cm-2 and 0.50 nA cm-2, respectively. The 

corrosion current density of the uncoated steel sample increased from 0.11 to 0.94 µA 

cm-2 when the chloride content increased from 0.01 to 0.05 mol L-1, and the corrosion 

current density of the ME coated sample increased from 0.10 µA cm-2 to 0.50 µA cm-2 

when the chloride content increased from 0.10 to 0.50 mol L-1. The significant increase of 

corrosion current densities for uncoated and ME coated steel plates are attributed to the 

initiation of pitting corrosion as observed in the OCPs.  

5.3.3.2 EIS tests with plate samples. Figure 5.7 shows representative EIS 

diagrams for uncoated and three types of enamel coated steel plate samples in the 

saturated Ca(OH)2 solution with different chloride concentrations. It is noted that the 

Nyquist diagrams are not in the same unit scale, the scattered symbols are the 

experimental data, and the solid line represents the fitted results using equivalent circuits 

as will be discussed later. After immersion in the saturated Ca(OH)2 for three days, the 

impedance magnitude of the uncoated steel plate reached approximately 100 kΩ cm2 at 5 

(a) (b) 
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mHz as shown in Figure 5.7(a-2). This is attributed to the formation of a dense passive 

film on the steel surface. The passive film remained effective until the chloride content 

reached 0.05 mol L-1 when a significant decrease of impedance was observed due to the 

initiation of pitting corrosion. Unlike the uncoated steel sample, the PE coated sample 

possesses a capacitive behavior until the chloride content reached 0.05 mol L-1 as shown 

in Figure 5.7(b-1). The radius of the capacitive arc decreased with the increase in chloride 

concentration. When the chloride content reached 0.10 mol L-1, a small tail appeared at 

low frequencies. This tail was associated with the diffusion of oxygen throughout the 

corrosion products formed around the small coating defect [132, 133], and it gradually 

became more significant as the chloride content in the solution increased. 

When the chloride concentration was less than 0.50 mol L-1, little change was 

observed in the impedance diagrams of the ME coated samples. However, as the chloride 

reached 0.50 mol L-1, a notable decrease of impedance magnitude appeared as shown in 

Figure 5.7(c-2). This is attributed to the initiation of pitting corrosion on the exposed steel 

in the open channels of the ME coating as discussed previously. Figure 5.7(d) shows the 

EIS results of the DE coated steel sample. Two depressed loops are present in the 

impedance diagram with a chloride concentration of less than 0.50 mol L-1. Similar to the 

PE coated steel sample, the DE coated steel sample experienced the diffusion behavior 

when the chloride content reached 1.00 mol L-1 due to precipitation of corrosion products 

on the coating defects. The reason that the diffusion behavior was observed on the PE and 

DE coated steel samples but not on the uncoated and ME coated samples is that the 

coating defects on the PE and DE coating are relatively small while the passive film on 

the uncoated sample and the ME coating are porous with numerous open channels. 

Therefore, the precipitation of corrosion products at small active sites (corrosion pits) on 

the uncoated and ME coated samples did not change the overall behavior even after the 

chloride content became significant. 
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Figure 5.7 Representative EIS diagrams: (1) Nyquist plot and (2) Bode plot for (a) 
uncoated, (b) PE coated, (c) ME coated, and (d) DE coated steel plates in the saturated 

Ca(OH)2 solution with different chloride concentrations. 
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Various equivalent electric circuit models have been used to interpret impedance 

spectra on passive and active metal surfaces as well as metal surfaces with different 

coatings [134-137]. In this study, two equivalent electrical circuits as shown in Figure 5.8 

were used to fit the EIS test data with ZsimpWin software [138-140]. The suitability of 

these fits was measured by a threshold Chi-squared value of 10-3 for all cases. Model (a) 

was used for samples with a PE coating, and Model (b) was for uncoated, ME and DE 

coated samples. Although the PE coated sample appeared to be dominated by one 

capacitive behavior as indicated in Figure 5.7(b-1), it can be more accurately simulated 

with two time constants because both the PE properties and the electrochemical reaction 

at the steel-electrolyte interface were closely related to small coating defects, which are 

too small to distinguish in the EIS diagram [141]. Model (a) excluded the solution 

resistance due to the dominant properties of the PE while Model (b) included the solution 

resistance due to their relatively poor properties in comparison with the PE. The Warburg 

impedance W was included both in Model (a) and (b) to simulate the observed diffusion 

behavior. 

In each equivalent circuit model, a constant phase element (CPE) instead of a pure 

capacitor is used to represent the non-homogeneity of the corrosion system under study. 

The non-homogeneity mainly comes from the non-uniform thickness of the passive film 

and enamel coatings, coating defects, formation of corrosion pits and precipitation of 

corrosion products [142-145]. A CPE is defined by two parameters Y and n, and its 

impedance is represented by: 

 

1 ( ) n

CPEZ Y jω− −=                                                                                                                  (5.7) 

 

where Y is a parameter with dimension of Ω-1 cm-2sn, which is directly proportional to the 

capacitance of a pure capacitive electrode [119], ω is the angular frequency in rad s-1, and 

n is an index that represents the deviated degree of the capacitance of the electrode from a 

pure capacitor. A CPE resembles a pure capacitor with capacitance Y when n = 1, the 

Warburg element with admittance Y when n = 0.5, a resistor with resistance Y-1 when n = 

0, and an inductor when n = -1.  
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In the equivalent circuits shown in Figure 5.8, Rs is the solution resistance, Rc and 

CPEc represent the coating capacitance and coating resistance for the enamel coated 

samples and the passive film property for the uncoated steel sample; Rct and CPEdl are 

associated with the charge transfer resistance and the double layer capacitance of the 

underlying steel/electrolyte interface; and W is the Warburg impedance. CPEc is 

represented by Yc and nc; and CPEdl is by Ydl and ndl. An effective capacitance can be 

evaluated by [146, 147]: 

 

1/ (1 )/n n n
C Y R

−=                                                                                                                    (5.8) 

 

where R is referred to Rc and Rct, Y is referred to Yc and Ydl , and n is referred to nc and ndl 

when the coating capacitance Cc and the double layer capacitance Cdl are calculated, 

respectively. 

 

 

 

CPEc

Rc

Rct

CPEdl

              

Rs

CPEc

Rc

Rct

CPEdl

 

Figure 5.8 Equivalent electrical circuits for: (a) PE coated samples, and (b) uncoated, ME 
and DE coated samples. 

  

 

The solution resistance is associated with the ionic mobility in a solution. It is 

affected by the position of either the reference electrode or the working electrode or both, 

and it can also be affected by the thickness of the passive film and the porosity of the 

enamel coating [148]. As the chloride concentration was increased from 0 to 0.50 mol L-

1, the conductivity of the saturated Ca(OH)2 solution was increased and, therefore, the 

average solution resistance decreased from 106 to 11 Ω cm2 for uncoated steel samples, 

from 180 to 22 Ω cm2 for ME coated samples, and from 42 to 3 kΩ cm2 for DE coated 

samples, respectively. The solution resistance of ME coated samples is approximately 1.7 

(a) (b) 
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to 2.0 times that of uncoated steel plates and 136 to 233 times that of DE coating. This is 

probably because the passive film was thinner than both the ME and DE coating, and the 

defect area of the DE coating is significantly smaller than the area of open channels in the 

ME coating. 

The coating resistance measures the barrier performance of a coating against the 

penetration of water and ions. The coating capacitance indicates the water uptake ability 

of a coating. The higher the water uptake amount, the larger the coating capacitance since 

the dielectric constant of electrolytes is generally higher than that of the coating itself. 

Both of these two parameters are closely related to the dielectric property, microstructure, 

thickness, and defect of the coating itself. The coating resistances of three enamels 

generally decreased and the coating capacitances generally increased with increasing 

chloride concentrations as shown in Figure 5.9(a) and Figure 5.9(b), respectively, since 

chloride increased the conductivity of the solution within the coatings due to water 

uptake. At the same chloride concentration, the PE coating has the highest coating 

resistance and the lowest coating capacitance whereas the ME coating has the lowest 

coating resistance and the highest coating capacitance. The properties of the DE coating 

lie between the PE and ME. This is because the ME coating, with numerous open 

channels, allows easier water uptake than the PE and DE, and the defect area in the PE 

coating is smaller than that in the DE coating. In comparison with the enamel coatings, 

the passive film of the uncoated steel samples has a lower coating resistance and a higher 

coating capacitance. Note that the variation of three data points for each test condition is 

generally small except for nc values.    
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Figure 5.9 Comparison of coating properties: (a) coating resistance Rc, (b) coating 
capacitance Cc, and (c) nc. 

 

 

The charge transfer resistance measures the ease of electron transfer across the 

metal surface, which is inversely proportional to corrosion rate [149]. As shown in Figure 

5.10(a), the charge transfer resistance of all samples decreased with increasing chloride 

concentration since more corrosion pits were formed on the passive film of the uncoated 

steel samples and around the coating defects or open channels of the enamel coated 

samples. A significant drop of charger transfer resistance was observed at a chloride 

concentration of 0.05 to 0.1 mol L-1 for uncoated steel samples due to breakdown of the 

passive film. The double layer capacitance for all samples increased with the increase of 

chloride concentration as shown in Figure 5.10(b). Specifically, the double layer 

capacitance of the uncoated steel plate was increased for two possible reasons: 1) the 

passive layer became thinner or broke down, and/or 2) the electrode surface became more 

porous, which were closely associated with the chloride-induced pitting corrosion [150]. 

(a) (b) 

(c) 
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The PE coating has the highest charge transfer resistance and the lowest double layer 

capacitance, the ME coating has the lowest charge transfer resistance and the highest 

double layer capacitance, and the DE coating was ranked in between the two coatings. 

This is because the coating defect size in the DE coating is larger than that in the PE 

coating; and the ME coating has numerous open channels. 
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Figure 5.10 Comparison of steel-solution interfacial parameters: (a) charge transfer 
resistance Rct, (b) double layer capacitance Cdl, and (c) ndl. 

 

 

The indices related to the non-homogeneities of both coating and steel-solution 

interface are presented in Figures 5.9(c) and 5.10(c). The coating index nc for the 

uncoated steel samples significantly decreased when the chloride concentration reached 

0.05 mol L-1 since the pitting corrosion increased the non-homogeneity of the passive 

film. For the three enamel coatings, nc did not change considerably with the increase of 

(a) (b) 

(c) 
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chloride concentration. However, the nc values of the PE coated samples are higher than 

both the ME and DE coated samples since the former has a significantly smoother surface 

than the latter as indicated in Figure 5.3 [142]. The steel-solution interface index ndl 

fluctuated around 0.90 for the PE coated samples and ranged from 0.50 to 0.70 for the 

uncoated, ME coated, and DE coated samples. In comparison with the other coatings, the 

PE coating provided a closer-to-capacitor behavior, which is desirable in the design of 

corrosion barriers (ndl = 1 for a pure capacitor). The less desirable barrier behavior (ndl << 

1) is mainly attributed to the large air bubbles in the  DE coating, open channels in the 

ME coating, and local breakdown of the passive film in the uncoated samples. 

The diffusion behavior observed from testing of the PE and DE coated steel 

samples reflected the transport of charged ions, electrons and dissolved oxygen through 

the corrosion products around defects in the coatings, which depends on both the size of 

defect and the porosity of corrosion products. Considering similar corrosion products of 

steel in the same solution in this study, the impedance difference among the test samples 

mainly depends on the size of coating defects. The Warburg parameter for the PE coated 

steel sample (approximately 7.0 nΩ-1 cm-2 s1/2) is about 350 times smaller than that of the 

DE coated steel sample (2.5 µΩ-1 cm-2 s1/2). This is because the defects in the PE coating 

are smaller than those in the DE coating. 

 
 
 

5.4 SUMMARY  

Based on the microstructure and mechanical characterization of enamel coatings, 

and the electrochemical tests of enamel coated steel plates in simulated concrete pore 

water solution, the following conclusions can be drawn: 

(1) All three types of enamel coatings (PE, ME, and DE) are stable in a high alkaline 

environment and improve the corrosion performance of carbon steel in the presence of 

chloride. Overall, the PE coated steel plate has a better corrosion resistance than the DE 

coated steel plate, and both substantially outperform the ME coated plate.  

(2) At a chloride concentration between 0.01 mol L-1 and 0.05 mol L-1, pitting 

corrosion initiated on the uncoated steel plate due to breakdown of the passive film. The 

pitting corrosion of the ME-coated steel plate initiated at a chloride concentration 
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between 0.1 mol L-1 and 0.5 mol L-1 partly because the open channels of the ME coating 

provide a direct access of chloride ions to the steel surface. Both the PE and DE coated 

steel plates appear to remain in a passive state throughout the corrosion tests due to small 

coating defects.  

(3) All three types of enamel coatings mechanically failed across large air bubbles 

within the coating layers away from the enamel-steel interfaces. In comparison with the 

PE coating, the cohesive strength of the ME coating was about 24% greater because the 

open channels in the ME coating prevented the accumulation of bubbles. However, the 

cohesive strength of the DE coating was about 23% lower than that for the PE coating 

because bubbles were trapped, accumulated and enlarged in the DE coating during the 

high temperature enameling process.  
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6. CEMENT-MODIFIED ENAMEL COATING FOR ENHANCED CORROSION 

RESISTANCE OF STEEL REINFORCING BARS  

 

 

 

6.1 INTRODUCTION 

Steel rebar in concrete is generally protected by a thin passive film formed due to 

the high alkalinity of fresh concrete pore solution [82, 83]. However, this thin film can be 

degraded by the penetration of carbon dioxide and aggressive ions such as chloride [84, 

85]. When this happens, corrosion will initiate in the presence of moisture and oxygen, 

resulting in formation of corrosion products which are usually several times greater 

volume than the original steel consumed. The expansive corrosion products lead to 

cracking and spalling of concrete cover which is one usual consequence of corrosion of 

steel in concrete. In addition, it may impair structural capacity through reduction of 

reinforcement cross section and the loss of bond between reinforcement and concrete [87, 

91, 93]. Corrosion protection of steel rebar is often achieved by adding inhibitors in 

concrete [152-154], use of high performance concrete mixtures [155-157], using 

protective coatings [158-161], using stainless steel [162, 163], and applying cathodic 

protection [164, 165]. Among these methods, use of protective coatings is the most 

economical and effective method since it can establish a physical barrier between 

aggressive ions and the steel rebar.  

Porcelain enamel is a vitreous or glassy inorganic coating bonded to the substrate 

metal by fusing glass frits at a temperature of 750 °C to 850 °C. It has been extensively 

used in domestic and industrial applications that require chemical, high temperature, 

corrosion and mechanical protection [109]. The properties of enamel coating are flexible 

and can be controlled by altering the chemical composition or microstructure, and pre-

treating the metal substrate [111, 112]. For example, replacing B2O3 with SiO2/TiO2 can 

increase the corrosion resistance of enamel in acidic environments; adding ZrO2 can 

improve the performance of enamel in alkaline environments; increasing CoO and NiO 

can promote adherence of the enamel to a metal substrate; and crystallization treatment 

can improve the hardness of the coating [114]. Therefore, enamels can be designed and 

used to improve corrosion resistance in an alkaline environment with an enhanced 
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chemical bond to the steel substrate [116], resulting in an alternative coating for steel 

rebar applied in concrete structures. 

In a recent study by the authors [166], the microstructure and phase composition 

of three types of enamel coating (pure, mixed, and double enamels) have been examined 

using SEM and XRD techniques, and their corrosion resistances were characterized in 3.5 

wt.% NaCl solution with open-circuit potential, electrochemical impedance spectroscope 

and potentiodynamic polarization methods. The test results showed that all three enamel 

coatings can improve the corrosion resistance of steel rebar to various extents. However, 

the effectiveness of these enamel coatings to protect steel rebar from corrosion in an 

application environment in concrete/mortar, and more importantly, the change in their 

corrosion resistance over time have not been well understood. In addition, a 

comprehensive evaluation of the corrosion process over time, including chloride ion 

ingress, passive film degradation, and corrosion resistance degradation of enamel coated 

rebar have never been studied systematically. 

This study aims to investigate the time-varying corrosion performances of three 

types of enamel coating in 3.5 wt. % NaCl solution with enamel coated, smooth steel 

rebar embedded in ordinary Portland cement mortar cylinders. The chloride ion ingress, 

passive film degradation, and corrosion resistance degradation of enamel coatings were 

investigated over a period of 173 days, using chloride content, open-circuit potential 

(OCP), linear polarization resistance (LPR), and electrochemical impedance spectroscope 

(EIS) tests. After various tests, each mortar cylinder was removed and the exposed rebar 

surface was visually inspected and examined with an optical microscope for signs of 

corrosion. 

 
 
  

 6.2 EXPERIMENTAL PROCEDURES  

6.2.1 Preparation of Enamel Coatings and Mortar Cylinders. Enamels are 

typically silicate-based oxides that are deposited from slurries and fused at high 

temperature. The enamel slurry is prepared by milling glass frits, clay and certain 

electrolytes, then mixing with water to provide a stable suspension. Three types of 

enamels were investigated in this study: pure enamel, mixed enamel, and double enamel. 
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The mixed enamel was used to enhance the bond strength with surrounding concrete by 

increasing its surface roughness, and the double enamel consisted of an inner pure enamel 

layer and an outer mixed enamel layer to increase its corrosion resistance through inner 

layer as well as to enhance its bond strength with concrete through outer layer.  

The pure enamel slurry was made by first adding 454 kg alkali borosilicate glass 

frits to 189.3 L water and mixing them for 20 min., and then adding 31.8 kg clay and 2.3 

kg borax as suspension agents, and mixing again for 3.5 hr. The chemical composition of 

alkali borosilicate glass frit is given in Table 6.1 [122]. This glass frit was selected 

because it contains ZrO2 to improve the resistance of enamels in alkaline environments, 

and NiO and CoO to enhance the adherence strength with steel rebar. The mixed enamel 

was prepared by mixing 50% calcium silicate directly taken from the Portland cement 

[123] with the 50% pure enamel. The mixed enamel slurry was made following the same 

procedure as the pure enamel slurry.  

Commercial steel rebar (12.7 mm diameter) was used in this study, and its 

chemical composition was determined and is given in Table 6.2. Prior to enamel coating, 

all steel rebar was sand-blasted and cleansed with a commercially available cleansing 

solvent. For PE and ME coatings, the cleaned steel rebar was dipped into their 

corresponding liquid slurry, heated for 2 min. at 150 °C to drive off moisture, fired at 810 

°C for 10 min., and finally cooled to room temperature. For the DE coating, the steel 

rebar was first dipped into the PE slurry and heated for 2 min. at 150 °C to drive off 

moisture, then dipped into the ME slurry and heated to 150 °C again to drive off 

moisture, finally fired for 10 min. at 810 °C. The firing treatment at high temperature was 

used to melt the glass frit and chemically bond the enamel to the steel rebar.  

 

 

Table 6.1 Chemical composition of alkali borosilicate glass frit. 

Materials SiO2 B2O3 Na2O K2O CaO CaF2 Al2O3 ZrO2 CoO MnO2 NiO 

wt.% 44.0 19.3 15.8 2.8 0.0 4.7 4.6 5.3 0.9 1.5 1.0 

 

 

Mortar was prepared using a mixture of cement, fine aggregate and water. Type I 

Portland cement was used, and its chemical composition is listed in Table 6.3. Missouri 
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River sands were used as fine aggregates with a maximum size of 6.35 mm and a 

fineness modulus of 2.80. The water/cement ratio was 0.55. The proportion of sand used 

in the mix was 2.81 times the weight of the cement.  

 

 

Table 6.2 Chemical composition of steel rebar. 

Element C Si Mn P S Cr Mo Ni Co Cu V Sn Fe 

wt.% 0.43 0.22 0.95 0.15 0.07 0.17 0.03 0.10 0.01 0.46 0.02 0.02 97.37 

 

 

Table 6.3 Chemical composition of Type-I Portland cement (wt. %). 

Loss on 
ignition 

SiO2 Al2O3 CaO MgO SO3 Na2O K2O Cl TiO2 Fe2O3 P2O5 Total 

3.98 19.48 6.80 55.35 3.32 4.35 2.39 1.00 0.02 0.20 2.18 0.19 99.27 

 

 

Cylindrical mortar specimens were prepared as shown in Figure 6.1(a); each 

cylinder is 38.1 mm in diameter and 114.3 mm tall. One 88.9 mm long steel rebar 

specimen, either uncoated or enamel coated, was placed along the centerline of the 

cylinder as shown in Figure 6.1(a). A copper wire was welded to the top end of the rebar 

to provide an electrical connection. To force the corrosion activity in the middle portion 

of the steel rebar and avoid any potential crevice corrosion at the two ends, each end of 

the rebar was encased in a PVC tube filled with epoxy resin. Therefore, the actual length 

of rebar potentially exposed to the corrosive environment was approximately 50.8 mm, 

with a surface area of approximately 20.3 cm2. The clear cover of mortar around the 

exposed portion of the rebar was 12.7 mm. For the casting of each specimen, a PVC pipe 

with a nominal inside diameter of 38.1 mm was used as a mold, and the steel rebar and 

the PVC mold were held in place by grooves pre-cut on a bottom plywood sheet as 

shown in Figures 6.1(b) and 6.1(c). To ensure a proper consolidation, each mortar 

specimen was cast in three layers, each compacted 25 times with a 6.35-mm-diameter 

steel rod and tapped 15 times with a small rubber mallet on the PVC mold to close the 

potential void generated by each rodding/compaction. All specimens were de-molded 

after 24 hr, placed in a curing room at room temperature and 100% relative humidity, and 
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cured for 28 days prior to testing. Three identical specimens were prepared for each 

condition, and the specimen whose test result lies in between the other two was selected 

to represent the coating system. For reference, mortars with uncoated steel rebar were 

also prepared at the same time.    

 

 

Copper wire

25.4

50.8

38.1

38.1

12.7

88.9

12.7

Epoxy resin

#13 rebar

Mortar

                  

Figure 6.1 Mortar cylinder specimens: (a) geometries (unit: mm), (b) groove precut on 
plywood, and (c) PVC mold for casting.  

 

 

6.2.2 Mortar/Steel Interface. The microstructure of the interfaces between the 

mortar and steel rebar was investigated through scanning electron microscope (SEM, 

Hitachi S4700). One 8.0 mm thick cross section of mortar was sectioned with a diamond 

blade for each of the uncoated, PE, ME, and DE coated steel rebar reinforced specimens. 

The slices were polished using silicate carbide papers with grits of 80, 180, 320, 600, 800 

and 1200, rinsed with de-ionized water, and placed in an oven prior to the SEM study. 

Mounting epoxy was cast around each specimen to protect the mortar and enamel coating 

from damage during the sample preparation.  

6.2.3 Chloride Measurement. Six additional mortar cylinders without steel rebar 

were prepared to monitor the diffusion process of chloride ions over time. One cylinder 

was removed from the NaCl solution approximately every 30 days and sectioned with a 

diamond blade into two halves with one cross section schematically illustrated in Figure 

6.2. Mortar powder samples were taken directly from the middle cross section to avoid 

disproportionately high chloride contents at the top and bottom of the specimen. The 

samples were collected using a 3.175-mm-diameter masonry drill bit at each of three 

(a) (b) (c) 
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depths from the cylinder side face: 3.1 mm, 7.9 mm, and 12.7 mm, as indicated in Figure 

6.2. To collect representative data points, powder samples were taken from three 

locations evenly distributed around the circumference of the cylinder. The three samples 

at each respective depth were mixed together for chloride analysis, totaling 1.5 g. Using 

Rapid Chloride Testing equipment manufactured by German Instruments, Inc., the 

concentration of water soluble chlorides contained within each powder sample was 

determined. 

 

 

38.1

12.7

4.8 4.8 3.1

D=3.175

Location of steel rebarMortar

 

Figure 6.2 Locations of mortar powder samples for chloride content analysis (unit: mm) 

 

 

6.2.4 Electrochemical Measurements. All mortar cylinders were immersed up to 

173 days in glass beakers that contained 3.5 wt.% NaCl solution at room temperature and 

open to the air. The solution was made by mixing the purified sodium chloride with 

distilled water. To maintain a constant concentration of the test solution, distilled water 

was added every two days to compensate for any evaporative loss. OCP, LPR and EIS 

measurements were performed approximately every 30 days, and prior to testing, the 

NaCl solution was replaced with fresh solution to avoid any contamination of the 

electrolyte. All electrochemical measurements used a three-electrode test setup consisting 

of a 25.4 mm × 25.4 mm × 0.254 mm platinum sheet as a counter electrode, a saturated 

calomel electrode (SCE) as a reference electrode, and the mortar cylinder and rebar as a 

working electrode. These electrodes were connected to a Gamry, Reference 600 
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potentiostat/galvanostat/ZRA for data acquisition. EIS measurements were taken at 5 

points per decade with a sinusoidal potential of 10 mV applied around the open-circuit 

potential Eocp with a frequency range of 5 mHz to 100 kHz. The LPR curves were 

measured within Eocp± 15 mV at a scan rate of 0.167 mV/s. Representing the slope of the 

polarization curve, the polarization resistance, Rp, can be calculated by:  

 

/
p

R V i= ∆ ∆                                                                                                                     (6.1) 

 

where ∆V and ∆i represent the voltage and current increments, respectively, in the linear 

portion of the polarization curve at i=0. LPR measurements were used to calculate the 

corrosion current density by the Stern-Geary equation [12]:  

 

/ [2.303( ) ] /
corr a c a c p p

i R B Rβ β β β= + =                                                                                (6.2) 

 

where icorr is the corrosion current density, βa is the anodic Tafel slope, βc is the cathodic 

Tafel slope, and B is a constant related to βa and βc. In this study, a tentative value of 26 

mV for the B constant was used [84, 124].  

6.2.5 Visual Observation. After 173 days of immersion testing, all mortar 

cylinders were removed from the NaCl solution and dried in an oven at 60 °C for one 

day. The dry mortar cylinders were removed from the steel rebar using a steel hammer, 

and the surface condition of the exposed steel rebar was examined with an optical 

microscope.  

 

 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 Mortar/Steel Interfaces. Figure 6.3 shows SEM images of the interfaces 

between the mortar and coated/uncoated steel rebar prior to immersion test. For uncoated 

steel rebar, a passive film was formed due to the high alkaline mortar pore solution. This 

passive film is very thin, less than 10 nm as observed with XPS techniques by other 
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researchers [167, 168]. Therefore, it cannot be identified with the relatively low 

magnification in Figure 6.3(a). Figure 6.3(b) shows that the pure enamel coating has 

bubbles that were released from the reaction of the enamel coating with the steel during 

the enameling process. These bubbles are isolated and smaller than the coating thickness 

(150 µm). As shown in Figure 6.3(c), the mixed enamel coating, 300 µm thick, has a 

porous structure with interconnected channels that were generated due to an increase in 

the viscosity of the mixed enamel slurry as it was heated during firing. The double 

enamel coating, 250 µm thick, has similar microstructure to the pure enamel coating as 

indicated in Figure 6.3(d).  

 

 

           

            

Figure 6.3 Cross sectional SEM images of the interface between mortar and steel rebar 
for: (a) uncoated, (2) pure enamel coated, (c) mixed enamel coated, and (d) double 

enamel coated. 

 

 

6.3.2 Open-circuit Potential, Corrosion Rate and Chloride Profile. Figure 6.4 

is a plot of the OCP as a function of time up to 173 days for mortar samples with 

uncoated and enamel coated steel rebar immersed in 3.5 wt. % NaCl solution. The OCP 

values of all cylinders were larger than -273 mV/SCE at the beginning of testing and 

dropped below -273 mV/SCE at 27 days. According to ASTM C876 [6], the probability 

(a) 
(b) 

(c) (d) 
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of the initiation of corrosion is 90% at 27 days. The OCP values then remained 

approximately -700 mV/SCE and -520 mV/SCE for mortar specimens with uncoated and 

enamel coated steel reinforcement, respectively. Initiation of corrosion for mortar 

cylinders with uncoated steel rebar is due to breakdown of the passive film induced by 

chloride ions. For cylinders with mixed enamel coated steel rebar, the penetration of 

chlorides through connected channels inside the coating initiated corrosion. For pure 

enamel and double enamel coated samples, the initial decrease in OCP may indicate the 

onset of corrosion due to small defects that are inherent in the enamel coating process. 
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Figure 6.4 Open-circuit potential evolution with time for mortar cylinders reinforced with 
uncoated and three types of enamel coated steel rebar in 3.5 wt.% NaCl solution. 

 

 

Figure 6.5 shows the change of corrosion current density as a function of time by 

the LPR tests. According to the Durar Network Specification [124], the corrosion level 

may be divided into four levels: passivity when icorr<0.1 µA/cm2, low corrosion when 0.1 

µA/cm2 <icorr<0.5 µA/cm2, high corrosion when 0.5 µA/cm2 <icorr<1.0 µA/cm2, and very 

high corrosion when 1.0 µA/cm2 <icorr. Cylinders with uncoated steel rebar experienced 

all four states: passive state at the beginning of immersion, low corrosion after 27 days, 

high corrosion from 54 days to 85 days, and very high corrosion after 116 days. 

Cylinders with the mixed enamel coated steel rebar had similar behaviors but reached a 
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high corrosion level after 116 days of immersion, which indicated a greater corrosion 

resistance than the uncoated steel rebar. Mortar cylinders with the pure enamel and 

double enamel coated steel rebar remained in the passive state throughout the test. The 

corrosion current density ranged from 0.019 to 0.039 µA/cm2 for mortar cylinders with 

the pure enamel coated rebar and from 0.003 to 0.004 µA/cm2 for mortar cylinders with 

the double enamel coated rebar. The fact that the double enamel coated samples have a 

lower corrosion current density than the pure enamel coated rebar is mainly attributed to 

the thicker double enamel coating as illustrated in Figures 6.3(b) and 6.3(d). Note that the 

corrosion current density from LPR tests seems inconsistent with the OPC results at a 

first glimpse. This is because the areas of the defects in the pure enamel and double 

enamel coatings are very small, resulting in an overall small corrosion current density 

defined over the entire coating area exposed to the corrosive solution. For the mixed 

enamel coating, the defects formed during the high temperature firing are interconnected 

and covered a more significant area. As a result, the corrosion current for the mixed 

enamel coating is substantially higher than those of the pure and double enamel coatings 

as indicated in Figure 6.5. 
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Figure 6.5 Corrosion current density evolution with time for mortar cylinders reinforced 
with uncoated and three types of enamel coated steel rebar in 3.5 wt.% NaCl solution. 
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Corrosion of steel rebar initiates when the chloride content on the rebar surface 

exceeds the chloride threshold, which is a function of mortar mix, exposure condition, 

cement type, and so on. ACI Building Code 318 [36] specifies the maximum water-

soluble chloride content in concrete in a chloride rich environment to be 0.15% by weight 

of cement. According to Mehta [169], the level of chloride content that causes the 

breakdown of passive film on the surface of steel ranges from 0.23 to 1.5%. Figure 6.6 

shows the change in chloride distribution over time for mortar cylinders in 3.5 wt. % 

NaCl solution. It can be observed from Figure 6.6 that the chloride content at the location 

of the steel rebar surface (11 mm from the mortar surface) in similar mortar cylinders 

with steel rebar was 0.25% after the mortar cylinders had been immersed in the NaCl 

solution for 27 days, and increased to 1.25% after 173 days. Therefore, the mortar 

cylinders had accumulated sufficient chloride ions for breakdown of the passive film and 

the initiation of corrosion when the initial tests were made. 
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Figure 6.6 Chloride distribution in mortar with time in 3.5 wt.% NaCl solution.  
 

 

6.3.3 EIS Results. Figure 6.7 shows the impedance diagrams of mortar cylinders 

with uncoated and three types of enamel coated steel rebar up to 173 days. The phase-

frequency plots in Figures 6.7(a-3) and 6.7(c-3) indicated three time constants for 

cylinders with the uncoated and mixed enamel coated steel rebar, regardless of 
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immersion time. The first time constant in the high frequency range (>104 Hz) is 

associated with the dielectric properties of the mortar or combined mortar and mixed 

enamel coating [21]. The second time constant in the middle frequency range (1~104 Hz) 

is likely attributed to the dielectric properties of the passive layer formed on the steel 

rebar surface due to the high alkalinity of the fresh mortar pore solution during cement 

hydration process. The presence of the passive layer for cylinders with the mixed enamel 

coated steel rebar is due to the penetration of mortar pore solution through the connected 

channels to the steel surface. The third time constant in the low frequency range (<1 Hz) 

is closely related to the interface properties between steel rebar and mortar or enamel 

coating where corrosion occurs, namely the double layer capacitance and charge transfer 

resistance. The change of impedance spectra over time can only be reflected by the third 

time constant in the low frequency range. 

Mortar cylinders with the pure enamel and double enamel coated steel rebar had 

different behaviors from those with the uncoated and mixed enamel coated 

reinforcement. Regardless of the immersion time, these specimens can be represented by 

two time constants as indicated in Figures 6.7(b-3) and 6.7(d-3). The impedance 

magnitudes of these two types of mortar cylinders, Figures 6.7(b-2) and 6.7(d-2), were 

higher than those with the uncoated and mixed enamel coated steel rebar at all 

frequencies, Figures 6.7(a-2) and 6.7(c-2). The time constant in the high frequency range 

(>103 Hz for pure enamel and >102 Hz for double enamel) is associated with the 

dielectric properties of combined mortar and enamel coating. The second time constant in 

the low frequency range (<103 Hz for pure enamel and <102 Hz for double enamel) 

originated from the interface properties due to the charge transfer resistance and double 

layer capacitance.  
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Figure 6.7 Typical EIS diagrams of mortar cylinders in 3.5 wt.% NaCl solution with: (a) 
uncoated, (b) pure enamel, (c) mixed enamel, and (d) double enamel coated steel rebar in 

the format of Nyquist plots(1), and Bode plots (2) & (3).   
 

 

The intrinsic dielectric properties of mortar/enamel coating and passive film as 

well as the electrochemical behavior at the mortar-steel interface can be obtained by 

fitting an appropriate equivalent electrical circuit (EEC) model to the EIS test data. As 

illustrated in Figure 6.8, two EEC models were used in this study: (a) with two 

(a-1) (a-2) (a-3) 

(b-1) (b-2) (b-3) 

(c-1) (c-2) (c-3) 

(d-1) 
(d-3) (d-2) 
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distributed constant phase elements (CPEs) for mortar cylinders with the pure enamel and 

double enamel coated steel rebar, and (b) with three distributed CPEs for mortar cylinders 

with the uncoated and mixed enamel coated steel rebar. Model (a) consists of a salt 

solution resistance Rs, capacitance CPEm and resistance Rm of bulk-matrix (combined 

mortar and enamel coating for pure enamel and double enamel), charge transfer 

resistance Rct, and double layer capacitance CPEdl. Such a model was used by other 

researchers to study steel corrosion in carbonated alkali-activated slag concrete [29]. 

Model (b) consists of a solution resistance Rs, bulk-matrix (mortar or mortar and mixed 

enamel coating) capacitance CPEm and resistance Rm, passive film capacitance CPEf and 

resistance Rf, charge transfer resistance Rct, and double layer capacitance CPEdl. A model 

similar to (b) was used to study the electrochemical characteristics of reinforced concrete 

corrosion [170]. 

 

 

      

Rs

Rm Rct

CPEm CPEdl

Rs

Rf

CPEf

Rm Rct

CPEm CPEdl

 

Figure 6.8 Equivalent electrical circuits for mortar cylinders with: (a) pure enamel and 
double enamel coated steel rebar, and (b) uncoated and mixed enamel coated steel rebar.   

 

 

Application of CPEs in the EEC models is attributed to the non-homogeneity of 

the system under study. The non-homogeneity mainly comes from the irregularities on 

the steel surface, surface roughness, fractal surface, and in general certain processes 

associated with an irregular distribution of the applied potential [162]. The CPE is 

defined by two parameters Y and n, and its admittance representation is: 

 

( )n

CPEY Y jω=                                                                                                                      (6.3) 

 

(a) (b) 
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where Y is a parameter with dimension of Ω-1 cm-2sn, which is directly proportional to the 

capacitance of pure capacitive electrode [119], ω is the angular frequency in rad/s, and n 

represents the deviated degree of the capacitance of the electrode from the ideal condition 

of a pure capacitor. When n = 1, the CPE resembles a capacitor with capacitance Y; when 

n=0.5, it represents Warburg impedance; when n =0, the CPE represents a resistor with 

resistance Y-1, and when n=-1, it is an inductor. 

ZsimpWin software [171] was used to fit all EIS data. The Chi-squared value was 

found to be on the order of 10-3 for all results, indicating a good simulation with the 

proposed two EEC models. Figure 6.9 shows the excellent agreement between the EEC 

models and the results of four types of mortar cylinders after 116 days of immersion.  
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Figure 6.9 Impedance spectrum and fitting results for: (a) uncoated, (2) pure enamel, (c) 
mixed enamel, and (d) double enamel coated steel rebar after 116 days of immersion in 

3.5 wt. % NaCl solution. 
 

 

Tables 6.4 and 6.5 summarize the EEC model parameters for mortar cylinders 

with the uncoated and three types of enamel coated steel rebar. The solution resistance Rs 

was close to zero when the dielectric properties of the bulk-matrix were extracted by 

(a) (b) 

(c) (d) 
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extending the small arc in the high frequency range to the real axis. It was therefore not 

listed in the tables.  

 

 

Table 6.4 EEC model (b) parameters for mortar cylinders with uncoated and mixed 
enamel coated steel rebar in 3.5 wt.% NaCl solution. 

Time  

(day) 

Rm 

(kΩ 

cm2) 

nm 

Ym 

(nΩ-1 cm-2 s-

n
m) 

Rf 

(kΩ 

cm2) 

nf 

Yf 

(µΩ-1 cm-2 

sn
f) 

Rct 

(kΩ 

cm2) 

ndl 

Ydl 

(µΩ-1 cm-2 

sn
dl) 

Uncoated steel rebar        

0 2.79 0.80 1.03 1.04 0.44 16.8 285 0.70 164 

27 2.68 1.00 0.11 4.71 0.20 28.2 188 0.71 629 

54 3.05 1.00 0.10 3.07 0.26 11.5 198 0.62 652 

85 2.95 0.96 0.21 3.13 0.29 92.2 102 0.59 770 

116 3.41 0.55 4.06 1.15 0.47 54.3 76 0.48 502 

147 3.39 0.77 2.07 1.81 0.41 48.6 43 0.49 757 

173 3.18 0.87 0.46 2.25 0.38 52.7 36 0.52 795 

Mixed enamel coated steel rebar       

0 6.41 0.87 0.47 2.36 0.19 42.5 960 0.84 226 

27 6.91 0.72 3.25 1.46 0.47 42.9 829 0.87 274 

54 6.11 0.74 2.57 3.22 0.35 58.5 677 0.86 299 

85 3.96 0.80 1.48 2.41 0.38 62.1 634 0.79 308 

116 5.23 0.76 2.07 2.05 0.41 45.9 193 0.78 559 

147 5.15 0.64 9.98 2.20 0.47 34.1 148 0.76 530 

173 4.87 0.60 13.2 2.60 0.46 34.9 143 0.77 536 

 

 

The bulk-matrix resistance and capacitance reflect the ability of the 

mortar/enamel coating to resist the penetration of electrolytes containing aggressive ions 

and the dielectric properties of the mortar/enamel coating, respectively, both closely 

related to the porosity of mortar and enamel coatings. As shown in Table 6.4, for mortar 

cylinders with the uncoated steel rebar, the bulk-matrix (mortar) resistance is in the range 

of 2.68 to 3.41 kΩ cm2. For cylinders with the mixed enamel coated steel rebar, the 

mortar and mixed enamel coating resistance is in the range of 3.96 to 6.91 kΩ cm2, which 

is approximately twice as high as that for the uncoated steel rebar. This is likely because 
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the mixed enamel coating has a higher resistivity than the mortar, despite the presence of 

connected channels. Capacitance Ym of the bulk-matrix is in the range of 0.10 to 4.06 nΩ-

1 cm-2 sn
m for the uncoated and 0.47 to 13.2 nΩ-1 cm-2 sn

m for the mixed enamel coated 

specimen, respectively. This range is in reasonable agreement with other studies in the 

literature [124, 170]. 

 

 

Table 6.5 EEC model (a) parameters for mortar cylinders with pure enamel and double 
enamel coated steel rebar in 3.5 wt.% NaCl solution. 

Time  

(day) 

Rm 

(kΩ cm2) 
nm 

Yc 

(nΩ-1 cm-2 sn
m) 

Rct 

(kΩ cm2) 
ndl 

Ydl 

(µΩ-1 cm-2 sn
dl) 

Pure enamel coated steel rebar 
   

0 8.21 0.84 0.57 2410 0.54 4.12 

27 14.2 0.71 3.78 3790 0.46 4.80 

54 12.9 0.92 0.33 1910 0.58 8.54 

85 20.5 0.81 1.22 3750 0.52 8.69 

116 26.9 0.78 1.74 3460 0.43 7.07 

147 21.4 0.67 7.85 3810 0.32 6.43 

173 21.3 0.73 3.39 3350 0.48 11.9 
Double enamel coated steel rebar    

0 387 0.85 0.23 >104 0.58 1.64 

27 193 0.86 0.22 >104 0.57 1.62 

54 303 0.85 0.26 >104 0.51 1.78 

85 388 0.83 0.33 >104 0.46 1.75 

116 455 0.84 0.27 >104 0.48 1.01 

147 483 0.83 0.32 >104 0.47 0.81 

173 381 0.83 0.34 >104 0.40 0.92 

 

 

As shown in Table 6.5, the bulk-matrix resistance of mortar cylinders with the 

pure enamel coated rebar is in the range of 8.21 to 26.9 kΩ cm2, which is higher than that 

for the uncoated and mixed enamel coated rebar. This is attributed to the improved 

barrier behavior of the pure enamel coating, despite the isolated pores in the coating. The 

bulk resistance of the double enamel coating is in the range of 193 to 483 kΩ cm2, which 

is approximately 100 times higher than that with the uncoated steel bar. This is because 
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the double enamel coating has a relatively thicker coating than the pure enamel coating. 

The capacitance of the bulk-matrix is in the range of 0.67 to 0.92 nΩ-1cm-2 sn
m for the 

pure enamel coated and 0.83 to 0.86 nΩ-1cm-2 sn
m for the double enamel coated, 

respectively. These values are smaller than the uncoated and mixed enamel coated, 

indicating substantial protection from the penetration of electrolytes through the pure and 

double enamel coatings. 

For the uncoated and mixed enamel coated steel rebar, the resistance of the 

passive films varies between 1.0 and 3.2 kΩ cm2, and the capacitance is in the range of 

10 to 60 µΩ-1 cm-2 sn
f. No change in passive film dielectric property was observed for the 

uncoated steel rebar even when the passive film was broken down by chloride attack. 

This is likely because the dielectric property of the passive film is close to that of the 

corrosion products. 

The two most direct parameters to reflect corrosion resistance are charge transfer 

resistance and double layer capacitance. These parameters are related to the charge 

transfer during the corrosion process at the interface between the exposed steel and the 

electrolyte inside mortar pore structure; they are a measure of ease of corrosion [172]. 

For specimens with the uncoated steel rebar, the charge transfer resistance displayed a 

continuous reduction with time of immersion from 285 to 36 kΩ cm2, indicating a 

transition from the passive state to the active state. The same trend was also observed for 

the mixed enamel coated steel rebar from 960 to 143 kΩ cm2. The charge transfer 

resistance of the double enamel coating exceeded 104 kΩ cm2 and cannot be accurately 

obtained from the simulation since the obvious diffusion behavior appeared in the low 

frequency range. The charge transfer resistance of the pure enamel coated rebar is also 

large, ranging from 1910 to 3810 kΩ cm2. Like the double enamel coating, the pure 

enamel coated rebar appeared to remain in a passive state over the entire duration of 

testing. These results were in agreement with the LPR results.  

The double layer capacitance increased from 164 to 795 µΩ-1 cm-2 sn
dl

 for mortar 

cylinders with the uncoated steel rebar and from 226 to 536 µΩ-1 cm-2 sn
dl for mortar 

cylinders with the mixed enamel coated steel rebar, respectively. These results indicate 

that the diffusion of chloride ions increased the activity of corrosion at the double layer 

interface. The double layer capacitance ranged from 4.12 to 11.9 µΩ-1 cm-2 sn
dl for mortar 
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cylinders with the pure enamel coated steel rebar and from 0.81 to 1.78 µΩ-1 cm-2 sn
dl for 

mortar cylinders with the double enamel coated steel rebar. The smaller double layer 

capacitance of the pure and double enamel coatings also indicated a higher corrosion 

resistance than the uncoated and mixed enamel coating.  

6.3.4 Visual Observation.  Figure 6.10 shows the surface condition of the 

uncoated and three types of enamel coated steel rebar after they were removed from 

mortar cylinders at the end of the 173 days of corrosion testing. As shown in Figure 7.10, 

rust stains are apparent on the uncoated and the mixed enamel coated steel rebar only. No 

rust was observed on the pure enamel and double enamel coated steel rebar as shown in 

Figures 6.10(b) and 6.10(d). This observation verified the superior corrosion resistant 

performance of the pure and double enamel coatings as indicated by the LPR and EIS test 

results.  

 

 

         

         

Figure 6.10 Surface conditions of (a) uncoated, (b) pure enamel, (c) mixed enamel, and 
(d) double enamel coated steel rebar embedded in mortar after 173 days of immersion in 

3.5 wt.% NaCl solution.  
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 

Rust 

Rust 
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6.4 SUMMARY  

Based on the test data and analysis of 38.1-mm diameter mortar cylinders with 

embedded #13 smooth steel rebar, both uncoated and coated with three types of enamel, 

the following conclusions can be drawn: 

1. Corrosion of the uncoated and mixed enamel coated steel rebar embedded in 

mortar cylinders initiated within 27 days of immersion in 3.5 wt.% NaCl solution, as 

supported by both the OCP and LPR tests. Based on the chloride analysis in mortar, the 

level of chloride content at the mortar-steel interface also indicated that the passive film 

on the steel rebar was most likely broken down and corrosion initiated after 27 days of 

immersion in the solution. The OCP of the tested specimens significantly decreased from 

above to below -273 mV/SCE and their corrosion current density increased from below 

the passivity threshold to a very high corrosion level and high corrosion level for 

uncoated and mixed enamel coated steel rebar at 173 days, respectively.  

2. There was no sign of corrosion in pure enamel and double enamel coated steel 

rebar embedded in mortar cylinders. This finding was confirmed by visual inspections on 

the tested specimens at the end of corrosion testing. Although the OCP indicated a high 

probability of corrosion, the corrosion current density remained below the passivity 

threshold until the end of corrosion testing at 173 days. 

3. The corrosion behavior of either uncoated or enamel coated rebar in mortar can be 

characterized by a single model throughout the corrosion tests. EIS tests indicated three 

time constants for mortar cylinders with uncoated and mixed enamel coated steel rebar, 

and two time constants for mortar cylinders with pure enamel and double enamel coated 

steel rebar. The first and last time constants correspond to the high and low frequency 

behaviors of the capacitive responses of mortar/enamel coating and the double layer 

interface, respectively. The middle time constant for uncoated and mixed enamel coated 

rebar in the middle frequency range is attributed to the dielectric property of the passive 

film since the mixed enamel coating has interconnected pore channels, extensively 

exposing steel rebar to the NaCl solution. 
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7. CORROSION RESISTANCE AND MECHANISM OF STEEL REBAR 

COATED WITH THREE TYPES OF ENAMEL  

 

 

 

7.1 INTRODUCTION 

Corrosion of reinforcing steel is common in reinforced concrete structures around 

the world. It causes premature deterioration of civil infrastructures such as highway and 

railway bridges, offshore platforms, pipelines, and dams. According to Koch et al. [1], 

the annual cost of corrosion in the United States is approximately $8 billion for highway 

bridges alone. Corrosion of reinforcing steel in concrete results from two main sources: 

carbonization and chloride penetration [9]. Chloride mainly comes from road deicing 

salts in winter for highways and bridges, and marine climate for offshore and coastal 

structures. One effective way to prevent or slow down the penetration process of these 

aggressive ions is to apply a coating on the rebar surface that would establish a physical 

barrier between the steel and concrete.  

Ceramic porcelain enamel coatings for steel possess chemical and mechanical 

stability in various environments including acid, alkaline, high temperature and harsh 

working conditions [112], and so are widely used for a variety of consumer applications 

and for the protection of steel in many industrial chemical applications. The degradation 

mechanism of enamel coated steel has been investigated by several researchers [173, 

174]. Recently, enamel coated reinforcing steel for pavement and stay-in-place forms 

have been investigated by researchers with the Army Corps of Engineers [175-177]. They 

modified standard enamel compositions by adding a reactive phase, like Ca-silicate, that 

would bond to the surrounding concrete matrix, and concluded that enamel coatings 

improve the corrosion resistance and enhance the bond strength with surrounding 

concrete. However, corrosion resistance of different enamel coatings and their tolerance 

to existing damage have not been studied and quantified systematically. In particular, the 

concept of a two-layer coating, one to enhance bond strengths and the other to improve 

corrosion resistance, has never been explored prior to this study. 

In this study, corrosion resistances of enamel coated steel rebar were evaluated in 

3.5 wt. % NaCl solution by electrochemical impedance spectroscopy (EIS). The enamel 

coating systems tested include a pure enamel, an enamel mixed with 50% calcium silicate 
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(by weight), and a double enamel with an inner layer of pure enamel and an outer layer of 

the mixed enamel. Their corrosion performance was compared with commonly used 

fusion bonded epoxy (FBE) coating in reinforced concrete structures. The phase 

composition and microstructure of enamel coatings were characterized by X-ray 

diffraction (XRD) and scanning electron microscopy (SEM) coupled with an energy-

dispersive X-ray spectroscopy (EDS). Impact tests were performed on some samples to 

investigate the effect of coating damage on its corrosion resistance. The barrier ability of 

enamel coatings to aggressive ions was confirmed by mapping the chloride distribution in 

the coating of tested rebar.  

 
 
 

7.2 EXPERIMENTAL DETAILS 

7.2.1 Preparation of Enamel Coatings. Enamels are typically silicate-based 

materials that are deposited from slurries and fused at high temperature. The enamel 

slurry is made by milling glass frits, clay and certain electrolytes, then mixing with water 

to provide a stable suspension. In this study, a commercially-available alkali borosilicate 

glass frit from PEMCO (Product No. PO2025) was used for the pure enamel (PE). Its 

chemical composition is given in Table 7.1 [178]. This composition was selected because 

it contains ZrO2 which is known to improve the durability of glasses exposed to alkaline 

environments, including cement [122].  A slurry of the pure enamel was made by first 

adding 454 kg of enamel frit to 189.3 litres of water and mixing them for 20 minutes, and 

then adding clay (31.8 kg) and borax (2.3 kg) as suspension agents, and mixing again for 

3.5 hours. The mixed enamel (ME) coatings were prepared by adding 50% (by weight) 

calcium silicate into pure enamel frits. Calcium silicate particles from the Portland 

cement specified in ASTM C150-07 [123] were used. Double enamel coating (DE) 

consists of two layers, the first (inner) layer is a PE coating and the second (outer) is an 

ME coating.  

 

 

Table 7.1 Chemical composition of alkali borosilicate glass frit 

Element SiO2 B2O3 Na2O K2O CaO CaF2 Al2O3 ZrO2 MnO2 NiO CoO 

Wt.% 44.0 19.3 15.8 2.8 0.1 4.7 4.6 5.3 1.5 1.0 0.9 
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Commercial steel rebar (12.7 mm diameter) was used in this study. Its chemical 

composition was determined and is given in Table 7.2. Before coating, all rebar was 

sand-blasted and cleaned with commercially available cleansing solvent. For PE and ME 

coatings, the cleaned rebar was dipped into their corresponding liquid slurry, and heated 

for 2 minutes at 150 °C to drive off moisture then fired at 810 °C for 10 minutes, and 

finally cooled to room temperature. For the double enamel (DE) coating, the rebar was 

first dipped into the PE slurry and heated for 2 minutes at 150 °C to drive off moisture, 

then dipped into the ME slurry and heated to 150 °C again to drive off moisture,  then 

moved into furnace to fire for 10 minutes at 810 °C. The firing treatment at high 

temperature was used to melt the glass frit and chemically bond the enamel to the steel. 

During enameling, the deformed bar was hung vertically in the furnace; thus, the coating 

thickness around rebar ribs may not be uniform due to gravity effect. 

 

 

Table 7.2 Chemical composition of steel rebar 

Element C Si Mn P S Cr Mo Ni Co Cu V Sn Fe 

Wt.% 0.38 0.18 1.00 0.12 0.06 0.10 0.07 0.20 0.01 0.37 0.02 0.03 97.40 

 

 

7.2.2 Preparation of the Samples. The coated steel bars were cut into 89.0 mm 

lengths with two ends encased in PVC tubes containing epoxy resin. A copper wire was 

connected electrically at one end of the rebar. The actual length of steel rebar exposed to 

the corrosive environment was approximately 50.8 mm in the middle portion, as shown 

in the schematic view of samples in Figure 7.1. In addition, commercial FBE coated rebar 

samples with the same rebar size were also prepared for comparison. 
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Figure 7.1 Geometry of rebar samples (unit: mm) 
 

 

To study the effect of coating damage on the corrosion resistance, some samples 

were pre-damaged using an impact test apparatus designed according to the ASTM 

Standard G14 [179]. The apparatus consists of a 0.91 kg steel rod with a hemispherical 

head, a vertical section of hollow aluminum tubing to guide the rod, and a horizontal 

section of steel angle to position the coated rebar sample. The coated rebar was secured to 

the steel angle with clamps, and the weight rod was dropped from a height of 45.7 cm to 

damage the coatings. Two damage extents were considered, samples with 6 impact points 

and samples with 12 impact points. Examples of the rebar samples ready for corrosion 

tests with no coating (UN), with different coatings, and with impact points, are shown in 

Figure 7.2. A total of 39 rebar samples were prepared as detailed in Table 7.3, taking into 

account the rebar coating (UN, FBE, PE, ME, and DE) and damage extent (0 = no 

damage, 1 = 6 impact points, or 2 = 12 impact points). Each sample was designated by a 

string of letters and numbers. The designation starts with two letters for the type of 

coating and then two numbers for the number of impact points, which were followed by a 

# sign and another number representing the number of samples in the same group. The 

uncoated rebar samples were undamaged and not cleaned prior to corrosion tests, to 

simulate their as-received condition at a construction site, and so a black oxide layer (mill 

scale) was initially present on their surfaces. 

 

 

 

Copper wire

Epoxy resin

#13 rebar

50.8

31.8

31.8

50.8

19.1

19.1

PVC tube
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Table 7.3 Test matrix: 39 samples total 

Surface condition 
Numbers of impact point 

0 6 12 

FBE coating EP00#1  EP00#2  EP00#3 EP01#1  EP01#2  EP01#3 EP02#1  EP02#2  EP02#3 

Pure enamel PE00#1  PE00#2  PE00#3 PE01#1  PE01#2  PE01#3 PE02#1  PE02#2  PE02#3 

Mixed enamel ME00#1 ME00#2 ME00#3  ME01#1 ME01#2 ME01#3 ME02#1 ME02#2 ME02#3 

Double enamel DE00#1  DE00#2  DE00#3 DE01#1  DE01#2  DE01#3 DE02#1  DE02#2  DE02#3 

Uncoated UN00#1 UN00#2  UN00#3 - - 

Note: Sample ME00#3 was damaged before testing and thus no data is reported in this paper. 

 

 

                

                

                 

Figure 7.2 Steel rebar samples tested in this study: (a) uncoated rebar, (b-1, b-2) FBE 
coated rebar without and with impact points, (c-1, c-2) pure enamel coated rebar without 
and with impact points, (d-1, d-2) mixed enamel coated rebar without and with impact 

points, and (e-1, e-2) double enamel coated rebar without and with impact points 
 

 

7.2.3 Characterization and Barrier Ability of Enamel Coatings. The phase 

composition of three types of enamel coatings and the oxide layer of uncoated rebar 

before and after corrosion tests were examined directly on the rebar surface with X-ray 

diffraction (XRD, Philip X’ Pert). The microstructure and the elemental analysis of the 

coatings before corrosion test were investigated by scanning electron microscopy (SEM, 
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Hitachi S4700) coupled with an energy-dispersive X-ray spectroscopy (EDS). At the 

completion of corrosion tests, the ability of enamel coatings as a barrier to aggressive 

ions was investigated with SEM by mapping the chloride profile in the enamel coating of 

rebar. For SEM measurements, one 4.0 mm thick cross-section sample, mounted in 

epoxy, was cut from each of the coated and uncoated rebar, and then abraded with silicon 

carbide papers with grits of 80, 180, 320, 600, 800 and 1200. After abrading, all samples 

were rinsed with deionized water and dried prior to microscopy study.  

7.2.4 Electrochemical Studies. All samples were immersed in 3.5 wt. % salt 

solution consisting of distilled water and purified sodium chloride. Samples were tested 

at room temperature with a typical three-electrode setup, including a 25.4 mm × 25.4 mm 

× 0.254 mm platinum sheet as a counter electrode, saturated calomel electrode (SCE) as a 

reference electrode, and one rebar sample as a working electrode. All three electrodes 

were connected to a Gamry, Reference 600 potentiostat/galvanostat/ZRA for data 

acquisition. The electrochemical impedance spectra were obtained with an applied 

sinusoidal potential wave of 10 mV amplitude and frequency ranging from 100 kHz to 

0.005 Hz at a sampling rate of 5 points per decade.  

 

 

 

7.3 RESULTS AND DISCUSSION 

7.3.1 Microstructures and Elemental Analysis. Figure 7.3 shows cross-

sectional SEM images and representative EDS analyses of uncoated and enamel coated 

rebar samples. These cross-sections were taken between two ribs, where the coating is 

relatively uniform and thicker than that over the ribs. EDS analyses were performed on 

the coating sample taken within the small square in the respective SEM images. The 

uncoated rebar, Figure 7.3(a-1), has a thin (about 25 µm thick) oxide layer (mill scale) on 

the rebar surface, which mainly consists of iron (Fe) and oxygen (O) as shown in Figure 

7.3(a-2). This was likely formed during the hot rolling process of steel production. The 

pure enamel (PE) coating is approximately 150 µm thick, and has air voids with the 

maximum diameter of approximately 50 µm, Figure 7.3(b-1). The air voids result from 

bubbles that typically form in the molten glass during the high temperature enamel firing 

process. EDS analysis as shown in Figure 7.3(b-2) indicates that the principal 
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components in the PE coating include sodium (Na), calcium (Ca), silicon (Si) and 

aluminum (Al); boron, a major component of the glass frit, could not be detected by the 

EDS system used. The ME coating is approximately 250 µm thick and it possesses a 

more complex structure with irregular pore characteristics and relatively high porosity as 

illustrated in Figure 7.3(c-1). This porous structure was further verified by the penetration 

of mounting epoxy during preparation of the SEM sample as shown in Figure 7.3(c-2). 

EDS analysis revealed that the ME coating includes a higher content of Ca than the PE 

coating, Figure 7.3(c-3), which is consistent with the addition of calcium silicate. The 

EDS spectrum from the ME coating also exhibited a significant peak of iron (Fe) that 

presumably originates from the rebar substrate during the chemical reaction at firing 

temperature. Figure 7.3(d-1) shows an SEM image of the DE coating. It clearly indicates 

the presence of two distinct layers, approximately 160 µm and 240 µm thick for the inner 

and outer layers, respectively. The inner pure enamel layer exhibits the same 

microstructure of trapped air voids as found in the PE sample in Figure 7.3(b-1). Its EDS 

spectrum, Figure 7.3(d-2), is consistent with the components of enamel glass with a small 

peak of iron (Fe) from the rebar substrate. The outer 50/50 enamel layer has a slightly 

different microstructure from the ME sample in that less mounting epoxy was found to 

have penetrated through the outer layer. This is likely because, during the second firing 

process, some of the inner melted pure enamel flowed towards  the outer 50/50 enamel, 

and partially filled and isolated what would otherwise be connected pores in the outer 

layer as observed in the ME coating, Figure 7.3(c-1). Even though the pores in outer layer 

of the DE sample become disconnected, the EDS spectrum of the outer layer is similar to 

the ME sample, Figure 7.3(d-3), except that no iron (Fe) was detected since the outer 

layer was separated from the steel substrate by the inner layer. 
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Figure 7.3 Cross sectional SEM images and EDS analysis before corrosion tests: (a-1, a-
2) uncoated rebar, (b-1, b-2) pure enamel coated rebar, (c-1, c-2, c-3) mixed enamel 

coated rebar, and (d-1, d-2, d-3) double enamel coated rebar  
 

 

7.3.2 Coating Analysis.  Figure 7.4 shows the X-ray diffraction analyses on the 

surface of the uncoated and three enamel coated rebar samples prior to and after 

corrosion tests immersed in 3.5 wt. % NaCl solution. Magnetite (Fe3O4) and Maghemite 

(Fe2O3) are the two main oxides on the uncoated steel rebar surface prior to the corrosion 

test, consistent with reports on the nature of the mill scale on rebar [180, 181]. After the 
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corrosion test, one rust layer was formed and mainly consisted of lepidocrocite (γ-

FeOOH) and akaganeite (β-FeOOH) as shown in Figure 7.4(a-2) [182-184]. As shown in 

Figure 6.4(b-1), some crystalline quartz (SiO2), could be detected in an otherwise 

amorphous PE coating. A similar distribution of phases was found on the PE coating after 

the immersion test, Figure 7.4(b-2). The presence of some sodium chloride (NaCl) on this 

latter sample is attributed to the salt solution in which the sample was immersed. 

Crystalline Ca-silicate phases were detected in both the ME and DE coatings. These 

phases are present in the Portland cement added to the pure enamel slurry used to 

produce the ME coating prior to corrosion tests, as shown in Figures 7.4(c-1) and (d-1). 

After corrosion tests, no change in main components was observed for the DE coating. 

However, some lepidocrocite (γ-FeOOH) was observed in the ME coating, which is 

attributed to the corrosion that occurred in the immersion test. 
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Figure 7.4 XRD patterns on the surface of steel rebar before and after immersion tests in 
3.5 wt.% NaCl solution: (a-1, a-2) uncoated rebar, (b-1, b-2) pure enamel coated rebar, 

(c-1, c-2) mixed enamel coated rebar, and (d-1, d-2) double enamel coated rebar 
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7.3.3 Electrochemical Study. 

7.3.3.1 FBE coated steel bar. Figure 7.5 presents the electrochemical impedance 

spectra of the FBE coated rebar samples immersed in 3.5 wt.% NaCl solution. 

Specifically, the modulus and the phase angle of the complex impedance, Z, for intact 

and damaged samples are plotted as a function of frequency in Figure 7.5(a) and Figure 

7.5(b), respectively. It can be seen from Figure 7.5 that the intact FBE coating displayed 

capacitive behavior since the modulus-frequency curve is a 45° straight line and the 

phase angle fluctuates around -90°. Therefore, the intact FBE coating is an effective 

corrosion barrier for steel rebar. However, damaged FBE coating behaved quite 

differently. The impedance magnitude was significantly reduced from 106 MΩ cm2 to 0.1 

MΩ cm2 at 0.005 Hz, and the phase-frequency plot can be characterized with two time 

constants. The first time constant at low frequencies was attributed to the resistance and 

capacitance of the steel-electrolyte interface, the second time constant at high frequencies 

was due to the resistance and capacitance of the FBE coating. The significant change in 

the impedance spectra was caused by impact-induced damage that provided a pathway 

for chloride ions to penetrate through and resulted in corrosion of the coated rebar in the 

NaCl solution. No significant difference in corrosion performance was observed between 

the FBE coated rebar with 6 impact points and with 12 impact points. These findings are 

in reasonable agreement with previous studies on intact and defective paint systems [185, 

186]. 

 

 

        

Figure 7.5 EIS test results of FBE coated steel rebar in Bode format: (a) modulus, and (b) 
phase angle 
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The electrical equivalent circuit (EEC) as shown in Figure 7.6(a) was used to 

model the corrosion system with intact FBE coated rebar. Here, Rs represents the solution 

resistance between the reference electrode and the samples, Cdl and Rct represent the 

double layer capacitance and the charge transfer resistance at the interface between the 

epoxy coating and the substrate steel. For damaged FBE coating, a different EEC model 

as shown in Figure 7.6(b) was used to fit the EIS test results. This EEC model is widely 

used for the evaluation of coating performance and electrochemical behavior of 

reinforcing steel in concrete [187-189]. The EEC model consists of the solution 

resistance (Rs), the resistance and capacitance (Rc and CPEc) of FBE coating, and the 

charge transfer resistance and double layer capacitance (Rct and CPEdl) of the interface 

between electrolyte solution and substrate steel. Replacement of the capacitance C for the 

intact FBE coated rebar in Figure 7.6(a) with the constant phase element (CPE) in Figure 

7.6(b) was attributed to the non-homogeneity induced by the coating damage [190, 191]. 

CPE is defined by two parameters Y and n. When n = 1, CPE resembles a capacitor with 

capacitance Y. When n =0, CPE represents a resistor with resistance Y-1. The effective 

capacitance was calculated according to the following equation [192]: 

 

 
1 1 n

n nC Y R

−

=                                                                                                                       (7.1)  

 

where R is referred to Rc and Rct when  the coating capacitance Cc and the double layer 

capacitance Cdl are calculated, respectively. Correspondingly, CPEc is represented by Yc 

and nc, and CPEdl by Ydl and ndl. ZSimpWin software was used to fit the EEC model into 

the EIS test data. The Chi-squared value in the order of 10-3 confirmed a satisfactory 

fitting process. 
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         Figure 7.6 EEC model for FBE coated rebar: (a) without impact points, and (b) with 
impact points  

 

 

Figures 7.7(a, b) present the effect of coating damage on the charge transfer 

resistance and the double layer capacitance of FBE coating, respectively. Each point 

represents the average of three samples with an error bar representing one standard 

deviation. It can be seen from Figure 7.7 that all parameters vary little except for the 

exponent ndl of damaged coating with 6 impact points. They indicated a high degree of 

consistency of FBE coating. For the FBE coating without impact points, a low double 

layer capacitance of 10-3 nF/cm2 and a high charge transfer resistance of 106 MΩ cm2 

indicated a high degree of corrosion protection. For the FBE coating with impact points, 

the double layer capacitance increased to 10 µF/cm2 and the charge transfer resistance 

decreased to 0.1 MΩ cm2, corresponding to a significantly reduced degree of corrosion 

protection. The significant change in corrosion performance is attributed to the increased 

conductivity and capacitance as a result of chloride ions penetration through the impact-

induced damage area. The numbers of impact points seemed to have little influence on 

the coating capacitance and charge transfer resistance. Figure 7.7(c) shows a reduction of 

the exponent ndl of CPEdl from 1.0 for the intact coating to 0.7 for damaged coating, 

indicating a significant drift of the electrochemical behavior away from a capacitor. This 

is because the impact-induced damage increased the non-homogeneity of FBE coating. 

Therefore, FBE coating is very sensitive to the onset of any damage. 
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Figure 7.7 Fitted parameters of FBE coated rebar: (a) charge transfer resistance Rct, (b) 
double layer capacitance Cdl, and (c) CPEdl exponent ndl 

 

 

7.3.3.2 Enamel coated steel bar. The electrochemical impedance spectra of 

uncoated and three types of enamel coated samples are presented in Figure 7.8 in the 

format of Bode plots. It can be observed that all the plots featured two capacitive loops, 

similar to those for damaged FBE coating as shown in Figure 7.5. Therefore, the EEC 

model in Figure 7.6(b) was used to fit the EIS test results of uncoated and enamel coated 

rebar samples with or without impact points. In this model, Rc and CPEc respectively 

denote the resistance and capacitance of mill scale or enamel coatings. The Chi-squared 

value in the fitting process to EEC model was in the range between 10-4 and 10-3. 
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Figure 7.8 EIS test results in Bode format for: (a-1, a-2) uncoated rebar, (b-1, b-2) pure 
enamel coated rebar, (c-1, c-2) mixed enamel coated rebar, and (d-1, d-2) double enamel 

coated rebar 
 

 

The similarity between Figure 7.8 and Figure 7.5 for damaged FBE coating is 

attributed to the fact that enamel coatings have porous microstructures as illustrated in 
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Figure 7.3, non-uniform coating thickness due to the influence of rebar ribs, and potential 

coating defects induced during handling [193]. In particular, the impedance of the ME 

coating is nearly independent of the number of impact points as shown in Figure 7.8(c). 

For the PE and DE coatings, a greater number of impact points leads to smaller 

impedances, as shown in Figures 7.8(b, d).  

Figure 7.9 compares the properties of the uncoated and enamel coated rebar 

samples without impact points in terms of coating resistance Rc, coating capacitance Cc, 

and CPEc exponent nc. In general, coating resistance and coating capacitance represent a 

degree of ability of coating to resist the penetration of electrolyte solution and the 

diffusion process of electrolyte solution into the coating, respectively [194]. Among the 

three enamel coatings as shown in Figure 7.9, the PE coating had the lowest capacitance 

(0.2 µF/cm2) and the highest resistance (1.3 kΩ cm2). These values indicate the best 

protection of PE coating against chloride ion penetration, which is likely attributed to its 

less porous microstructure with isolated pores, as shown in Figure 7.3(b-1). On the other 

hand, the ME coating had the highest capacitance and relatively low resistance, indicating 

the least degree of prevention to chloride ion penetration. This is attributed to its more 

porous microstructure, with interconnected pores, as shown in Figure 7.3(c-1). The 

properties of the DE coating lie in between those of the PE and ME coatings. Compared 

to the uncoated rebar samples, however, all three enamel coatings had more favorable 

corrosion-protection properties than the mill scale on the surface of uncoated rebar. The 

exponent nc varied from 0.4 to 0.5 for all the uncoated and enamel coated samples, 

indicating significant non-homogeneities that came from the non-uniform structure of 

mill scale and the non-uniform coating thickness and defect during handling for the 

uncoated and enamel coated rebar, respectively. 

 

 



142 

 

  

          

 

Figure 7.9 Property of intact enamel coatings and mill scale: (a) coating resistance Rc, (b) 
coating capacitance Cc, and (c) CPEc exponent nc 

 

 

Figure 7.10 shows the sensitivity of three types of enamel coatings to impact 

points in terms of coating resistance Rc, coating capacitance Cc, and CPEc exponent nc. 

For all three enamel coatings, more impact points resulted in increasing capacitance and 

decreasing resistance to various extents. The PE and DE coatings were more sensitive to 

the number of impact points than the ME coating since the intact ME coating already 

revealed numerous interconnected pores and adding several impact points did not 

significantly increase the number of chloride ion penetration pathways. On the contrary, 

the intact PE and DE coatings had better barrier properties with isolated pores. Adding 

the damage points provided new pathways for chloride ions to penetrate through the 

coatings. As shown in Figure 7.10(c), the number of damage points did not affect 

significantly the electrochemical non-uniformity of all three enamel coatings. 
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Figure 7.10 Sensitivity of coating properties to impact points: (a) coating resistance Rc, 
(b) coating capacitance Cc, and (c) CPEc exponent nc 

 

 

Figure 7.11 compares the corrosion resistance of uncoated rebar and enamel 

coated rebar samples without impact points in terms of charge transfer resistance, Rct, and 

double layer capacitance, Cdl, and CPEdl exponent ndl. The charge transfer resistance is 

inversely proportional to corrosion rate and is a measure of resistance to the transfer of 

electrons across the metal surface [172]. The double layer capacitance, calculated from 

Eq. (1), is a measure of ease of charge transfer. As shown in Figure 7.11, in comparison 

with the ME coating, the DE and PE coatings had a relatively higher charge transfer 

resistance and lower double layer capacitance, which is indicative of a smaller exposed 

area of steel to the electrolyte solution. The uncoated rebar samples had the lowest charge 

transfer resistance and the highest double layer capacitance compared with the three types 
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of enamel coated samples. The CPEdl exponents ranged from 0.65 to 0.85, indicating 

great non-homogeneities of both the uncoated and enamel coated samples. 
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Figure 7.11 Corrosion behavior of three enamel coated versus uncoated samples: (a) 
charge transfer resistance Rct, (b) double layer capacitance Cdl, and (c) CPEdl exponent ndl 

 

 

Like Figure 7.10 for coating property sensitivity to damage, Figure 7.12 shows 

the corrosion sensitivity to impact points. Impact points increased the double layer 

capacitance and decreased the charge transfer resistance for all three types of enamel 

coatings. No significant difference was observed between the effect of 6 impact points 

and 12 impact points. As shown in Figure 7.12(c), there seems no obvious influence of 

impact-induced damage on the non-homogeneity of enamel coatings. 
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Figure 7.12 Sensitivity of corrosion behavior of enamel coated samples to impact points: 
(a) charge transfer resistance Rct, (b) double layer capacitance Cdl, and (c) CPEdl exponent 

ndl 
 

 

Compared with the FBE coating as shown in Figure 7.7, all three enamel coatings, 

shown in Figure 7.12, are significantly less sensitive to minor damage (0 to 6 points) but 

equally or more sensitive to further damage (6 to 12 points). This can be explained as 

follows. Intact enamel coating had some regions of exposed steel that developed during 

handling; thus, additional minor damage of the coating did not significantly affect 

corrosion performance of the intact coating; and further coating damage contributed 

relatively less corrosion degradation. On the other hand, intact FBE coating was an 

effective corrosion barrier; thus minor damage of the FBE coating added new pathways 

for chloride ions penetration and significantly degraded corrosion performance, compared 

to the intact coating. Once initiated under minor damage, corrosion was extended rapidly 

underneath the FBE coating, which is typically referred to as under-film corrosion and 
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will be further discussed in Section 7.3.5. In fact, the charge transfer resistance of the 

enamel coatings with impact points in Figure 7.12(a) is in the same order of magnitudes 

as that for the damaged FBE coating, Figure 7.7(a). 

7.3.4 Chloride Diffusion through Enamel Coatings. Figure 7.13 shows the 

cross-sectional elemental analysis of uncoated and enamel coated rebar samples after 

corrosion tests. For enamel coated rebar, the cross-sections were taken from the 

undamaged coating areas. For each sample, a SEM image and the corresponding 

distribution mappings for Fe, Cl, and Si were presented. Fe mapping was used for 

corrosion detection, Cl mapping was used for the detection of chloride ions, and Si 

mapping was used for the identification of the enamel coating location and thickness. 

 

 
 

           
(a)  

             
(b)  

        
(c)    

Figure 7.13 Elemental distribution maps of electrochemical tested samples: (a) uncoated 
rebar, (b) pure enamel coated rebar, (c) mixed enamel coated rebar, and (d) double 

enamel coated rebar. 
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(d) 

Figure 7.13 Elemental distribution maps of electrochemical tested samples: (a) uncoated 
rebar, (b) pure enamel coated rebar, (c) mixed enamel coated rebar, and (d) double 

enamel coated rebar (cont.) 
 

It can be observed from Figures 7.13(a, c) that chloride ions were clearly detected 

in the rust layer of the uncoated rebar (as-received condition) and in the ME coating, 

revealing the diffusion of chloride ions through the mill scale and the ME coating. This is 

further verified by the corrosion product (rust) on the surface of the uncoated rebar and 

near the interface of the ME coating and its substrate steel. Corrosion products were 

concentrated near the interface mainly because the sample was immersed in salt solution 

for a short duration and corrosion products diffused through a part of the coating layer 

only. As shown in Figures 7.13(b, d), no chloride ions were detected inside the PE and 

DE coatings even though isolated pores were present as discussed previously. The Fe 

mappings also verified that little or no corrosion product was detected at the interface 

between the PE/DE coating and its substrate steel. Therefore, the PE and DE coatings are 

effective physical barriers that successfully prevented chloride ions from penetration.  

7.3.5 Mechanism of the Corrosion Resistance of FBE Coating and Three 

Enamel Coatings. Based on the SEM images, electrochemical impedance spectra, and 

chloride distribution mappings, the corrosion mechanisms of the enamel coated steel in 

3.5 wt.% NaCl solution can be summarized and illustrated as shown in Figures 7.14(b-d). 

They are compared with the corrosion mechanism of FBE coated rebar as illustrated in 

Figure 7.14(a). When it remains intact, the FBE coating is an effective physical barrier to 

protect the coated steel bar from corrosion. Once damaged, the FBE coating can no 

longer prevent the electrochemical reaction between the electrolyte and the steel, and its 

ability for corrosion protection is reduced dramatically. As illustrated in Figure 7.14(a), 

the damaged coating area provides a pathway for aggressive ions to penetrate through the 

coating layer and corrosion takes place on the surface of the exposed steel. Furthermore, 
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once initiated, corrosion can extend beneath the coating, the so-called under-film 

corrosion as clearly illustrated in Figure 7.15(a). In recent years, such a corrosion 

mechanism for epoxy coated rebar was supported by several field studies in North 

America [33, 195, 196] where transportation and handling damage to FBE coatings is a 

culprit. 

 

 

 
Figure 7.14 Schemes of corrosion process of FBE and enamel coatings: (a) FBE coating 

(intact & damaged), (b) pure enamel coating (intact & damaged), (c) mixed enamel 
coating (intact & damaged), and (d) double enamel coating (intact & damaged) 

 

 

Similar to FBE coating, the intact PE and DE coatings as shown in Figures 

7.14(b, d) can also protect the coated steel rebar from corrosion, although the enamel 

coating with isolated air voids is not uniform, particularly around the rebar ribs. This non-

uniformity makes the rib regions susceptible to corrosion attack. Due to its brittleness, 

enamel coatings are susceptible to impact damage. As a result, the enamel coated rebar 

often experiences corrosion pits at isolated damage locations as illustrated in Figures 

7.14(b, d). Unlike the FBE coating, enamel coating is chemically bonded to its steel 

substrate [116], limiting the pitted corrosion in the vicinity of the damaged coating area, 

avoiding the under-film corrosion in the enamel coated rebar as detailed in Figure 

7.15(b). 
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As shown in Figure 7.14(c), the corrosion mechanism of the ME coating differs 

from those of the PE and DE coatings. Even for an undamaged coated rebar, the ME 

coating has interconnected pores due to the addition of Ca-silicate particles, potentially 

providing multiple pathways for aggressive ions to penetrate and resulting in widespread 

corrosion along the length of coated rebar. Therefore, corrosion in the ME coating takes 

place early on and is insensitive to additional damage that may be caused during 

transportation and handling. 

 

 

 

                      

Figure 7.15 Supporting evidences of corrosion mechanisms: (a) damaged FBE coating, 
and (b) damaged enamel coating  

 
 
 

7.4 SUMMARY 

In this study, the corrosion resistances of pure, mixed, and double enamel 

coatings applied on reinforcing steel bars were evaluated by means of electrochemical 

impedance spectroscopy. Their performance was compared with commercially available 

FBE coating. Corrosion sensitivity to coating damage was investigated with controlled 

levels of damage induced by a standard impact tester. Based on the test results, the 

following conclusions can be drawn about the corrosion performance of these coated 

samples: 

(1) The intact double and pure enamel coatings provided a much higher degree of 

corrosion protection than the mixed enamel coating with 50% calcium silicate by weight 

mainly due to the absence of interconnected pores in the double and pure enamel 

coatings. All enamel coatings were significantly outperformed by the intact FBE coating. 
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(2) The corrosion performances of the double and pure enamel coatings were 

more sensitive to damage than the mixed enamel coatings because damage provides 

corrosion pathways that did not exist in the undamaged DE and PE samples. The 

corrosion resistance of FBE coating was most sensitive to damage and, once damaged, 

was in the same order of that for the damaged enamel coatings.  

(3) Pitted corrosion of both double and pure enamel coatings was initiated at the 

location of damaged coating areas but restrained locally due to well-adhered glassy layers 

on the surface of coated rebar. Interconnected regions of calcium silicate particles in the 

mixed enamel coating appeared to provide a corrosion pathway to the underlying steel 

rebar so that both uniform and pitted corrosions occurred on the surface of damaged 

coated rebar. Although superior when undamaged, the corrosion performance of the FBE 

coating significantly degraded with local damage of the sort that can occur during 

transportation and handling due to the well-known under-film corrosion mechanism. 

(4) The non-uniformity of coating thickness due to rebar deformation must be 

overcome with an alternative enameling process to improve the corrosion performance of 

enamel coatings for practical applications. 
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8. DETERIORATION MECHANISMS, DETERIORATION RATE, AND TIME-

DEPENDENT EQUIVALENT CIRCUIT REPRESENTATION OF MORTAR-

COATING-STEEL SYSTEMS BY EIS  

 

 

 

8.1 INTRODUCTION 

Reinforced concrete (RC) structures are often exposed to a variety of 

environmental conditions that lead to deterioration and a reduction in service life. For 

example, corrosion in reinforcing steel bars is a form of the most severe deterioration of 

transportation infrastructure. In general, the life span of corrosion-affected concrete 

structures with uncoated reinforcing steel bars can be divided into three stages [72]. Stage 

I represents the healthy state of RC structures from the completion time of new 

construction to the initiation of corrosion. This stage is controlled by the diffusion of 

carbon dioxide or aggressive ions such as chloride through the concrete cover, which 

mainly depends on the thickness and permeability of the concrete cover and the 

concentration of aggressive ions on the concrete surface [197-199]. Stage II represents 

the damage state of the structures from the initiation of corrosion to the end of 

serviceability. The end of serviceability can be defined to correspond to the code-

specified critical concrete crack width or delamination or to the predetermined deflection 

design criterion associated with corrosion-induced reduction in stiffness. Stage II is 

controlled by the corrosion rate of the reinforcement steel, which largely depends on 

environmental factors such as temperature, moisture, and the activities of oxygen, as well 

as the characteristics of the concrete structures and materials, such as thickness and 

permeability of concrete cover [80, 93, 200]. Stage III represents the safety state of the 

structures from the end of serviceability to the ultimate failure [86-91]. The ultimate 

failure due to corrosion can occur in many modes, including losses of flexural strength 

and shear strength associated with a significant reduction of reinforcing steel cross 

section. This stage is primarily controlled by environmental factors when the reinforcing 

steel is directly exposed to the environment through corrosion-induced cracks in the 

concrete cover.  

In our previous study [115], the corrosion characteristics of deformed steel bars 

coated with three types of enamel and fusion-bonded epoxy (FBE) were investigated after 
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immersion in 3.5 wt.% NaCl solution. The enamel coatings improved the corrosion 

resistance of the steel bars to various degrees, depending on their damage and uniformity. 

Electrochemical techniques were also used to study the effects of enamel coatings on the 

corrosion resistance of smooth steel bars embedded in mortar cylinders [23] and it was 

found that the corrosion performance of enamel-coated smooth bars was significantly 

better than that of enamel-coated deformed bars. However, deformed instead of smooth 

steel bars are widely used in RC structures, and their corrosion performance is of great 

interest to engineering applications. More importantly, the influence of water-cement 

ratio, exposure conditions, and the state of coating-steel interface on the life-cycle 

performance of enamel-coated steel bars has not yet been investigated.  

In this study, uncoated, enamel-coated, and fusion bonded epoxy (FBE)-coated 

deformed steel bars embedded in mortar cylinders were tested in 3.5 wt.% NaCl solution 

for up to 244 days to understand and quantify their deterioration characteristics. The 

electrochemical behavior of various mortar-coating-steel interfaces was first 

characterized with EIS tests. The large set of data on the interfacial behavior was then 

analyzed to produce equivalent electrical circuit models for the mortar-coating-steel 

interfaces. The deterioration mechanism and rate of enamel- and FBE-coated steel bars in 

mortar were finally determined from the evolution of various parameters extracted from 

the equivalent circuits and from visual inspection of the samples at the conclusion of each 

test. Effects of water-cement ratios and exposure conditions on the deterioration rate of 

the mortar-coating-steel interfaces were investigated and related to the penetration of 

chloride ions through the mortar cover. 

 
 
 

8.2 MATERIAL AND METHODS  

8.2.1 Preparation of Enamel Coating and Cylindrical Specimens. Deformed 

steel bars (12.7 mm in diameter) used in this study are the same as the ones described in 

chapter 7 (Figure 8.1(a)). The steel bars were coated by Pro-Perma Engineered Coatings 

with pure enamel (PE), mixed enamel (ME) with 50% PE and 50% calcium silicate by 

weight, and double enamel (DE) with an inner PE layer and an outer ME layer. The 

coating materials and process are described in chapter 6. For comparison, both uncoated 
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(as-received) steel bars and commercial FBE-coated steel bars were also prepared and 

tested.  
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Figure 8.1 Geometry of samples: (a) rebar, and (b) mortar cylinder (unit: mm) 
 

 

Type-I ordinary Portland cement, described in chapter 6, was used to prepare 

mortar specimens. In this study, two water-cement ratios were used in the batch design as 

given in Table 8.1. The fine aggregates used were Missouri River sands with a maximum 

size of 6.35 mm and a fineness modulus of 2.80. 

 

 

Table 8.1 Mortar mix proportions 

Batch designation Mix proportions (relative weight ratio) 

Cement Sand Water 

40 1 1.83 0.40 

55 1 2.81 0.55 

 

 

Cylindrical mortar specimens were prepared in the same way as described in 

chapter 6 (Figure 8.1(b)). Each specimen was 114.3 mm tall and 38.1 mm in diameter 

with one concentrically embedded 88.9 mm long steel bar that is either uncoated, enamel-

coated, or FBE-coated. Twenty-four hours after casting, all specimens were moved to the 

curing room (20 °C, 100% relative humidity) for 28 days prior to testing. Three 

specimens were prepared for each of four test situations: the two water-cement ratios 
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Epoxy resin

#13 rebar

50.8

31.8
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19.1
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shown in Table 8.1 and two different exposure conditions. The mortar cylinder specimens 

were kept in glass beakers filled solutions prepared from distilled water and 3.5 wt. % 

NaCl (reagent grade, Fisher Scientific). The specimens were divided into two groups. 

One group was continuously immersed in the 3.5 wt.% NaCl solution. The other group 

was subjected to bi-weekly wet-dry cycles, each consisting of one week of continuous 

immersion (wet) followed by a second week out of solution and exposed to the room 

ambient (dry). In order to keep a constant concentration of the test solution, a prescribed 

level of distilled water was added every two days to compensate for the loss due to 

evaporation. In total, 60 mortar cylinder specimens were prepared and tested, including 

12 cylinders with uncoated steel bars, 12 with PE-coated steel bars, 12 with ME-coated 

steel bars, 12 with DE-coated steel bars, and 12 with FBE-coated steel bars. In addition, 

one specimen of each type was prepared for microstructure analysis of mortar-coating-

steel interfaces. 

8.2.2 Microstructure Examination at Mortar-Coating-Steel Interface. 

Characterization of the microstructure of the mortar-coating-steel interfaces is important 

to understanding the electrochemical behavior of coated steel bars [201, 202] and more so 

to the establishment of realistic equivalent electrical circuit models. The relevant 

interfaces were investigated by scanning electron microscopy (SEM, Hitachi S4700, 

Tokyo, Japan). One mortar specimen of each type was cross-sectioned through their 

respective axial centers using a diamond saw, and then abraded using a series of silicon 

carbide papers to 1200 grit. After abrading, the samples were rinsed with de-ionized 

water and kept in an oven preset to 60 °C for at least 48 hours to drive off any remaining 

moisture prior to the microscopic study.  

8.2.3 Chloride Profile Analysis. When the mortar specimens with steel bars were 

cast, an additional 16 mortar cylinders without steel bars were prepared to investigate 

chloride penetration through mortar over time. These pure mortar cylinders were cast 

with the same two water-cement ratios (w/c = 0.40 and 0.55), and tested under the same 

two exposure conditions (continuous immersion in 3.5% NaCl solution and bi-weekly 

wet-dry cycles) as the steel containing samples. Approximately every two months, one 

cylinder from each of the four conditions was removed from the test and cross-sectioned 

across the axis with a diamond saw. Mortar powder (equal weight) was collected from 
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three evenly-distributed points around the cylinder circumference at depths of 3.1 mm, 

7.9 mm, and 12.7 mm, respectively, from the side surface of the cylinder. For each depth, 

the three samples totaling 1.5 g were combined for a rapid chloride content analysis. The 

mortar powders were mixed with 9 ml of an extraction liquid (96% de-ionized water and 

4% hydrogen peroxide (H2O2). After agitating for five minutes, the mixture was then 

filtered into another container with 1 ml buffer solution (76% de-ionized water and 24% 

hepes, C8H18N2O4S), and a calibrated Cl-ion electrode was inserted into the filtered liquid 

and, once stabilized to within 0.2 mV, the voltage reading was recorded with the Rapid 

Chloride Test Water (RCTW) instrument (German Instruments, Inc), and the chloride 

content was then determined using appropriate calibration references. 

8.2.4 Electrochemical Measurement. EIS tests were conducted approximately 

every 30 days through the 244 days of testing. After each EIS test, the used NaCl solution 

was replaced. The EIS measurements were taken with a typical three-electrode test setup, 

consisting of a 25.4 mm × 25.4 mm × 0.254 mm platinum sheet as a counter electrode, a 

saturated calomel electrode (SCE) as a reference electrode, and a mortar cylinder as a 

working electrode. These electrodes were connected to a Gamry, Reference 600 

potentiostat/galvanostat/ZRA for data acquisition. EIS measurements were taken at 5 

points per decade with a sinusoidal potential of 10 mV applied around the open-circuit 

potential with a frequency range of 5 mHz to 100 kHz. 

8.2.5 Forensic Study on Tested Specimens. After 244 days of tests, all mortar 

cylinders were removed from the NaCl solution and dried in an oven at 60 °C for two 

days. The dry mortar cylinders were removed from the steel bars using a steel hammer, 

and the surface condition of the exposed steel bars was examined with an optical 

microscope. 

 

 

 

8.3 RESULTS AND DISCUSSION 

8.3.1 Mortar-Coating-Steel Interfacial Microstructures. Figure 8.2 shows 

cross-sectional SEM images of the mortar-coating-steel interfaces of enamel-coated 

(three types) and FBE-coated steel bars, and the mortar-steel interface of uncoated steel 

bars. These images were taken between two ribs on the deformed bars where the enamel 
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coatings are relatively uniform and thick in comparison with those areas over the ribs. 

Figure 8.2(a) clearly indicates a thin porous oxide layer approximately 30 µm thick 

between the mortar and the uncoated steel bar, representing the mill scale formed on the 

steel surface. As shown in Figure 8.2(b), the PE coating is approximately 150 µm thick 

and has many small air bubbles, likely produced from the reaction of enamel with the 

steel during the enameling process. As shown in Figure 8.2(c), the ME coating is 

approximately 250 µm thick and possesses an amorphous structure with connected 

channels through the entire coating thickness. As shown in Figure 8.2(d), the DE coating 

has two distinguishable inner and outer layers that are approximately 150 µm and 250 µm 

thick, respectively. In comparison with the PE coating, the inner layer of the DE coating 

has larger but fewer air bubbles. In comparison with the ME coating, the outer layer of 

the DE coating has fewer connected pores, which is likely attributed to its less reaction 

with the steel during the second firing. The FBE coating (Figure 8.2(e)) is approximately 

300 µm thick and also has air bubbles near the steel surface. These bubbles can weaken 

the bond between the FBE coating and its substrate, promoting the well-known under-

film corrosion as discussed in [115].  

 

 

 

                          

Figure 8.2 SEM images of interfaces for (a) uncoated, (b) pure enamel, (c) mixed enamel, 
(d) double enamel, and (e) FBE-coated steel bars. 
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Figure 8.2 SEM images of interfaces for (a) uncoated, (b) pure enamel, (c) mixed enamel, 
(d) double enamel, and (e) FBE-coated steel bars. (cont.) 

 

 

8.3.2 Chloride Profiles. Figure 8.3 shows the chloride content variation with 

mortar cover depth after 61 days, 124 days, 182 days, and 244 days of testing. Chloride 

transport in concrete is a process that involves ion diffusion, capillary suction, convective 

flow with flowing water, and physical and chemical binding [203]. For mortar specimens 

continuously immersed in NaCl solution, ion diffusion is the primary chloride transport 

mechanism. For mortar specimens subjected to bi-weekly wet-dry cycles, capillary 

suction plays an important role in chloride transport in addition to ion diffusion. For 

example, by comparing Figure 8.3(a) with Figure 8.3(c) and comparing Figure 8.3(b) 

with Figure 8.3(d), it can be clearly observed that the chloride content in mortar with 

w/c=0.40 is always lower than that with w/c=0.55 under the same exposure conditions 

since the former is less permeable than the latter [204]. By comparing Figure 8.3(a) with 

Figure 8.3(b) and comparing Figure 8.3(c) with Figure 8.3(d), it can be seen that the 

chloride content in mortar subjected to wet-dry cycles is greater than that in the 

continuously immersed mortar, due to capillary suction that accelerates the transport of 

chloride [205].  
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Figure 8.3 Chloride profiles for (a) w/c=0.40 and continuous immersion in 3.5 wt.% 
NaCl solution, (b) w/c=0.40 and bi-weekly wet-dry cycles, (c) w/c=0.55 and continuous 

in 3.5 wt.% NaCl solution, and (d) w/c=0.55 and bi-weekly wet-dry cycles. 
 

 

8.3.3 Visual Observations. Examples of the surface conditions of uncoated, 

enamel-coated (three types), and FBE-coated steel bars after the conclusion of the 244 

days of corrosion testing are shown in Figure 8.4. As clearly seen in Figure 8.4(1-a) to 

Figure 8.4(1-d), the uncoated bars subjected to the bi-weekly wet-dry cycles displayed 

more severe corrosion than the bars continuously immersed in NaCl solution.  
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Figure 8.4  Optical images of the surface conditions of 244-day tested samples with (1) 
uncoated, (2) pure enamel, (3) mixed enamel, (4) double enamel, and (5) FBE- coated 
steel bars for (a) w/c=0.40 and continuous immersion in 3.5 wt.% NaCl solution, (b) 

w/c=0.40 and bi-weekly wet-dry cycles, (c) w/c=0.55 and continuous immersion in 3.5 
wt.% NaCl solution, and (d) w/c=0.55 and bi-weekly wet-dry cycles. 
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Figure 8.4  Optical images of the surface conditions of 244-day tested samples with (1) 
uncoated, (2) pure enamel, (3) mixed enamel, (4) double enamel, and (5) FBE- coated 
steel bars for (a) w/c=0.40 and continuous immersion in 3.5 wt.% NaCl solution, (b) 

w/c=0.40 and bi-weekly wet-dry cycles, (c) w/c=0.55 and continuous immersion in 3.5 
wt.% NaCl solution, and (d) w/c=0.55 and bi-weekly wet-dry cycles. (cont.) 
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For PE- and DE-coated steel bars, shown in Figure 8.4(2-a) to Figure 8.4(2-d) and 

Figure 8.4(4-a) to Figure 8.4(4-d), respectively, only a few regions of pitting corrosion 

were observed and these could be attributed to regions where the coating was damaged 

during transportation or handling. However, significantly pitting corrosion was found on 

the surface of the ME-coated steel bars, as shown in Figure 8.4(3-a) to Figure 8.4(3-d).  It 

appears that corrosion products diffused out through the connected channels in the ME 

coating. Specimens with FBE coating also showed some pitting corrosion around each 

damaged area as illustrated in Figure 8.4(5-a) to Figure 8.4(5-d).  

8.3.4 Electrochemical Testing of Mortar-Coating-Steel Systems. Figures 8.5-

8.9 show the impedance spectra (Bode plots) collected from all samples. The spectra 

from each of the three replicate samples were similar and so only one representative 

spectrum for each condition is shown. Overall, the phase spectra are more sensitive than 

the magnitude spectra to the different water-cement ratios and exposure conditions for 

every set of experiments, and so the phase spectra will be discussed in detail. As 

indicated in Figures 8.5 and 8.7, the uncoated and ME-coated steel bars have similar 

phase spectra that can each be clearly divided into three regions at low, intermediate, and 

high frequency. As shown in Figures 8.6 and 8.8, the peaks between low and intermediate 

frequency regions in the phase spectra of the PE- and DE-coated steel bars changed with 

corrosion time. As shown in Figure 8.9, the phase spectra from the FBE-coated bars are 

different from those of the uncoated and enamel-coated bars. Therefore, all five types of 

specimens can be divided into three categories: Group A for specimens with uncoated 

and ME-coated steel bars, Group B for specimens with PE- and DE-coated steel bars, and 

Group C for specimens with FBE-coated steel bars.         

8.3.4.1 Group A: specimens with uncoated and ME-coated steel bars. The 

phase spectra from the uncoated and ME-coated samples are curved upward over 10 kHz 

for all specimens throughout the test period (Figures 8.5 and 8.7). The tail portion at high 

frequency does not change over time; this is related to the dielectric property of bulk 

matrix materials, mortar cover and the mill scale for the uncoated bars or the ME coating 

[20, 195]. A time-invariant intermediate frequency region is also present from 10 Hz to 

10 kHz for specimens with uncoated steel bars and from 1 Hz to 10 kHz for specimens 

with ME-coated steel bars. The intermediate frequency region is likely related to the 
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passive film formed around the open channel in mill scale and ME coating [20]. In the 

low frequency range (< 10 Hz for uncoated bars and < 1 Hz for ME-coated bars), 

significant changes of phase spectra are observed over time. In general, corrosion occurs 

when solution in the micro-pores of cement paste is in contact with steel or when solution 

in the connected channels of the ME coating is in contact with the steel, resulting in the 

formation of corrosion microcells [206]. Breakdown of the passive film and the 

formation and buildup of corrosion products can change the local pore microstructure and 

chemistry of the microcells, and this is reflected in the low frequency range of impedance 

spectra [195]. Therefore, the low frequency range of the phase spectra in Figures 8.5 and 

8.7 corresponds to the behavior of electrolyte-steel interfaces where corrosion occurred. 

After 61 days, the phase spectra show evidence for diffusion behavior [136, 141] 

associated with the  formation of corrosion products on the uncoated steel bars subjected 

to bi-weekly wet-dry cycles for both w/c=0.40 and w/c=0.55. However, for specimens 

with w/c=0.55, the low frequency region corresponding to diffusion behavior was 

gradually shifted to the intermediate frequency range over time, indicating an increase in 

the number of active sites due to continuing penetration of chloride. On the other hand, 

no diffusion behavior was observed for ME-coated specimens since the connected 

channels in the ME coating are larger than the pores in the mill scale and the buildup of 

corrosion products inside the channels thus does not significantly affect the diffusion of 

oxygen to the steel surface.  

For specimens with uncoated steel bars as shown in Figure 8.5, both the water-

cement ratio and exposure conditions affect the impedance spectra in the low frequency 

region, but the exposure conditions had a more significant influence on the corrosion 

behavior as indicated by a rapid decrease of phase angle in the low frequency region over 

time. For specimens with ME-coated steel bars as shown in Figure 8.7, the effect of 

water-cement ratio or exposure condition on impedance spectra in the low frequency 

region is not as significant as for the uncoated specimens. This is probably because the 

ME is 10 times thicker than the mill scale, and thus dominates the diffusion rate of 

oxygen and chloride prior to arrival to the steel surface even though the oxygen and 

chloride have penetrated through the mortar cover in different rates under the two 

exposure conditions.  
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Figure 8.5 Representative Bode plots of mortar cylinders with uncoated steel bars for (a) 

w/c=0.40 and continuous immersion in 3.5 wt.% NaCl solution, (b)  w/c=0.40 and bi-
weekly wet-dry cycles, (c)  w/c=0.55 and continuous immersion in 3.5 wt.% NaCl 

solution, and (d)  w/c=0.55 and bi-weekly wet-dry cycles.  
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Figure 8.6 Representative Bode plots of mortar cylinders with pure enamel coated steel 

bars for (a) w/c=0.40 and continuous immersion in 3.5 wt.% NaCl solution, (b)  w/c=0.40 
and bi-weekly wet-dry cycles, (c)  w/c=0.55 and continuous immersion in 3.5 wt.% NaCl 

solution, and (d)  w/c=0.55 and bi-weekly wet-dry cycles. 
 

 

It can also be observed from Figure 8.7 for the ME-coated specimens that the 

impedance magnitude suddenly dropped in the low frequency region after 61 days. This 

significant drop is attributed to the breakdown of passive films as the chloride content 
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accumulated at the steel interface exceeds a threshold value [130]. On the other hand, the 

reduction in impedance magnitude over time was progressive for specimens with 

uncoated steel bars as shown in Figure 8.5, indicating more corrosion pits formed due to 

the gradual breakdown of passive films. 

8.3.4.2 Group B: specimens with PE- and DE-coated steel bars. Figures 8.6 

and 8.8 show the impedance diagrams and their changes over time for specimens with 

PE- and DE-coated steel bars, respectively. Similar to the Group A specimens, the phase 

spectra are curved upward at a frequency of above 10 kHz, and they do not change over 

time, corresponding to the combined effects of mortar cover and the PE or DE coatings.  

Unlike Group A specimens, the intermediate and low frequency regions of the 

phase diagrams for the Group B specimens continuously immersed in 3.5 wt.% NaCl 

solution were shifted throughout the test period, as shown in Figures 8.6(a-2) and 8.6(c-

2), and Figures 8.8(a-2) and 8.8(c-2). However, after two or three months, a diffusion 

behavior appeared for specimens subjected to bi-weekly dry-wet cycles as indicated in 

Figures 8.6(b-2) and 8.6(d-2) and Figures 8.8(b-2) and 8.8(d-2), completely separating 

the intermediate frequency region from the low frequency region. The presence of the 

diffusion response is due to the buildup of corrosion products around the damaged 

coating areas. The overlapping of intermediate and low frequency regions for specimens 

continuously immersed in salt solution and the separation of intermediate and low 

frequency regions for specimens subjected to bi-weekly wet-dry cycles are both 

attributed to the different diffusion rates of oxygen through the mortar cover. Specimens 

subjected to bi-weekly wet-dry cycles transported more oxygen and chloride by 

combined capillary suction and diffusion effects than those continuously in salt solution, 

where only diffusion occurs, increasing the corrosion rate and resulting in the formation 

of more corrosion products. The amount of corrosion products accumulated in the active 

sites significantly affected the overall impedance behavior.  
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Figure 8.7 Representative Bode plots of mortar cylinders with mixed enamel coated steel 
bars for (a)  w/c=0.40 and continuous immersion in 3.5 wt.% NaCl solution, (b) w/c=0.40 
and bi-weekly wet-dry cycles, (c)  w/c=0.55 and continuous immersion in 3.5 wt.% NaCl 

solution, and (d)  w/c=0.55 and bi-weekly wet-dry cycles. 
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Figure 8.8 Representative Bode plots of mortar cylinders with double enamel coated steel 

bars for (a)  w/c=0.40 and continuous immersion in 3.5 wt.% NaCl solution, (b)  
w/c=0.40 and bi-weekly wet-dry cycles, (c)  w/c=0.55 and continuous immersion in 3.5 

wt.% NaCl solution, and (d)  w/c=0.55 and bi-weekly wet-dry cycles. 
 

 

It can also be seen that the reduction in impedance magnitude is small for 

specimens that were continuously immersed in solution and significant after two or three 

(a-1) (a-2) 

(b-1) (b-2) 

(c-1) (c-2) 

(d-1) (d-2) 
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months of testing for specimens exposed to bi-weekly wet-dry cycles. The reduction is 

attributed to the initiation of corrosion as a result of the breakdown of passive films. 

8.3.4.3 Group C: specimens with FBE-coated steel bars. Figure 8.9 shows the 

impedance spectra of mortar cylinders with FBE-coated steel bars over time. Unlike 

Group A or Group B specimens, inconsistent trends in terms of frequency region 

separation were observed in the phase diagrams. This is because the impedance spectra of 

the mortar-coating-steel systems are significantly affected by the barrier property of FBE 

coating layer and much less by mortar cover (w/c), electrolyte-steel interface, and 

exposure conditions.  

Specifically, FBE coatings that are intact suppress all contributions from other 

materials and the testing conditions to the impedance spectra, resulting in a large 

capacitive loop as shown in Figures 8.9(a-2) and 8.9(d-2). With moderate damage, the 

FBE coating may affect the contributions from other materials and the dielectric 

properties extracted from the test data are not accurately related to the materials, as 

observed from Group B specimens and some FBE-coated specimens as shown in Figures 

8.9(b-2) and 8.9(c-2). With more severe damage, the FBE coatings had poor barrier 

properties, the impedance spectra of the mortar-coating-steel system were significantly 

affected by other materials, and the properties of the other materials could thus be 

extracted, as discussed for the Group A specimens. The significant scatter in the range of 

behaviors of the FBE-coated specimens implies that inconsistent corrosion resistances of 

FBE-coated bars may be expected in field applications [33]. 

For specimens with w/c=0.40 in NaCl solution (Figure 8.9a), semi-circles in the 

Nyquist plot were observed throughout the tests with their radius gradually reduced over 

time. This is because FBE coatings, in perfect condition or with little damage, function as 

an effective insulating layer like a pure capacitor, and become increasingly conductive as 

chloride reaches the steel in damaged area of coatings. For specimens with w/c=0.55 

subjected to bi-weekly wet-dry cycles (Figure 8.9d), capacitive loops were also observed 

at the beginning of the tests but gradually replaced by diffusive behaviors towards the end 

of tests as corrosion products formed and accumulated around tiny damage areas due to 

the combined diffusion and capillary suction of oxygen. As shown in Figures 8.9b and 
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8.9c, FBE-coated specimens are similar to PE- and DE-coated specimens in Group B 

likely because the damage extent in the FBE coating is similar to PE and DE coatings. 
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Figure 8.9 Representative Bode plots of mortar cylinders with FBE coated steel bars for 

(a)  w/c=0.40 and continuous immersion in 3.5 wt.% NaCl solution, (b)  w/c=0.40 and bi-
weekly wet-dry cycles, (c)  w/c=0.55 and continuous immersion in 3.5 wt.% NaCl 

solution, and (d)  w/c=0.55 and bi-weekly wet-dry cycles. 

(a-1) (a-2) 

(b-1) (b-2) 

(c-1) (c-2) 

(d-1) (d-2) 
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8.3.5 Equivalent Electrical Circuit Representations of Mortar-Coating-Steel 

Interfaces. Equivalent electrical circuit (EEC) modeling of steel-concrete interfaces is a 

subject of continuing debate due to non-homogeneity and diffusion behavior involved in 

the electrochemical process [207-209]. Feliu et al. [28] summarized several common 

features of a steel-concrete system: (i) presence of more than one semi-circle in a Nyquist 

plot, (ii) possible appearance of low frequency tails, and (iii) existence of a depressed 

semi-circle. Multiple semi-circles in various frequency regions corresponded to different 

material layers of the system [21, 22], low frequency tails resulted from a diffusion 

behavior, and the depressed semi-circle was related to the non-homogeneity of the 

system. Introduction of a coating layer between the mortar (concrete) and steel interface 

significantly changed the spectral characteristics as discussed in Section 8.4. Therefore, 

different EEC models were proposed to simulate the mortar-steel system with different 

coatings.  

As discussed in Section 8.3.4, the relative effects of various material layers may 

be changed over time, corresponding to overlapping or separating frequency regions in 

the impedance spectra depending on the coating layer property. In this study, for 

simplicity, each frequency region is represented by a constant phase element (CPE) and a 

resistor in parallel, and several of these pairs are connected in series to represent the 

entire frequency range of a mortar-coating-steel system, as indicated in Figure 8.10. The 

use of a CPE instead of a pure capacitor was to consider the non-homogeneity of 

different materials, including the mortar cover, coating layer and coating-steel interface. 

The non-homogeneity of the mortar cover mainly came from the random distributions of 

sand particles, voids and other hydration products in the cement paste as well as their 

different dielectric properties [210]. The non-homogeneity of coating layers mainly came 

from random distributions of air bubbles (or connected channels), coating damage, and 

penetration of chemical species such as chloride, water and hydration products into the 

damaged coating area [115]. The non-homogeneity of steel-coating interface mainly was 

related to irregularities on the steel surface like a non-uniform passive film, local 

breakdown of the passive film, local buildup of corrosion products, random distribution 

of corrosion microcell, and certain processes associated with an irregular distribution of 

the applied potential [14, 15, 124].  
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The small tail of an impedance spectrum associated with diffusion behavior in the 

low frequency range was combined into the impedance model pair related to the coating-

steel interface. The diffusion behavior can be generally represented by the Warburg 

impedance. The Warburg impedance (n=0.5) is theoretically represented by a 45° straight 

line in the Nyquist plot, but experimentally by a straight line higher or lower than 45°. 

The underlying cause for the theory-experiment difference in concrete-steel and other 

systems remains debatable [211, 212]. For example, Zhang et al. suggested that a 

capacitor and a resistor in parallel be used to fit the impedance spectra when a diffusion 

behavior revealed [213, 214]. Hu et al. used CPE to represent diffusion impedance 

because the value of n ranged from 0.1 to 0.3 deviating from the Warburg impedance 

[215]. In this study, non-ideal diffusion behavior was observed from specimens with 

coated steel bars, and a CPE was used to represent the diffusion impedance. For 

specimens with uncoated steel bar, Warburg impedance W was used.  

Figure 8.10a shows three equivalent electrical circuits used to model the corrosion 

of the Group A specimens: (a-I) for the uncoated specimens continuously immersed in 

NaCl solution and all ME-coated specimens, (a-II) for the uncoated specimens subjected 

to bi-weekly wet-dry cycles after the appearance of diffusion behavior, and (a-III) for the 

uncoated specimens after the appearance of significant corrosion products particularly, 

when w/c= 0.55 and subjected to bi-weekly wet-dry cycles after 182 days. Figure 8.10b 

shows two EECs of Group B specimens: (b-I) and (b-II) for the specimens without and 

with diffusion behaviors, respectively. Figure 8.10c show three equivalent circuits for 

Group C (FBE-coated) specimens: (c-I) for the specimens with w/c=0.4 in solution with a 

large capacitive loop, (c-II) for the specimens with w/c=0.55 and subjected to bi-weekly 

wet-dry cycles with a large capacitive loop and a diffusion behavior in the low frequency 

range, and (c-III) for the specimens with minor coating damage. For the EECs in Figure 

8.10, CPEm and Rm are the impedance and resistance of the bulk matrix, respectively; 

CPEf and Rf represent the electrical properties of the passive films formed on each 

sample, e.g., at the open channels for uncoated and ME-coated specimens, and around the 

damaged coating area for PE-, DE-, and FBE-coated specimens; CPEdl and Rct represent 

the electrical properties of the electrolyte-steel interface where corrosion occurred; W is 

the Warburg impedance, and CPED represents the non-ideal diffusion behavior. 
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Figure 8.10 Equivalent electrical circuits for mortar cylinders with (a) uncoated and 
mixed enamel coated steel bars, (b) pure and double enamel coated steel bars, and (c) 

FBE-coated steel bars. 
 

 

ZSimpWin was used to fit the EIS data with the different EEC models. The chi-

squared values in the fitting to EEC models ranged from 10-4 to 10-3, indicating an 

excellent fitting. Figures 8.11-8.15 present some representative solutions to EEC 

simulations after different corrosion times. The fitting parameters from the EEC models 

and the chi-squared values are tabulated in Tables 8.2-8.6. 

8.3.6 EEC Parameter Evolution. By analyzing the impedance spectra over a 

wide frequency range, conclusions may be drawn on the electrochemical properties of 

various materials in the mortar-coating-steel system. Furthermore, by monitoring the 

evolution of impedance spectra over a relatively long time, the evolution of the dielectric 

properties for various materials can be obtained. As discussed previously, the impedance 

(I) (II) (III) 

(I) (II) 

(I) (II) (III) 
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spectra can be divided into high, intermediate, and low frequency regions related to 

various materials.  

8.3.6.1 High frequency region (mortar cover and coating layer). The high-

frequency regions in an EIS  spectrum reflects the dielectric properties of the mortar cover 

and coating layer, both closely related to their microstructure and the electrolyte that 

might penetrate that microstructure. These dielectric properties largely depend on the 

water-cement ratio for the mortar cover, the number and size of open channels in the ME 

coating, and extent of the damaged areas of the PE, DE, and FBE coatings. For the 

specimens with uncoated steel bars, bulk matrix (mortar) resistances (Rm) are presented in 

Table 8.2. No clear trend was observed over time. However, influences of water-cement 

ratio and exposure condition can be seen clearly. With the same water-cement ratio, 

specimens subjected to bi-weekly wet-dry cycles have lower resistances than those 

continuously immersed in NaCl solution, and under the same exposure condition, 

specimens with w/c=0.55 have lower mortar resistances than those with w/c=0.40. For 

example, Rm = 4.41±0.46 kΩ cm2 for specimens with w/c=0.40 immersed in solution, 

2.70±0.21 kΩ cm2 for specimens with w/c=0.40 subjected to bi-weekly wet-dry cycles, 

3.18±0.26 kΩ cm2 for specimens with w/c=0.55 immersed in solution, and 2.31±0.87 kΩ 

cm2 for specimens with w/c=0.55 subjected to bi-weekly wet-dry cycles. Mortars with 

higher water-cement ratios are more porous and can thus absorb more NaCl solution, 

resulting in increased conductivity (lower Rm). Specimens subjected to bi-weekly wet-dry 

cycles absorb more chloride into the mortar micro-pores than those immersed in salt 

solution since additional capillary suction increases their conductivity. The Rm values for 

uncoated steel bar in this study are in good agreement with the reported values from the 

literature [216, 217]. 
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Figure 8.11 Measured versus simulated Bode plots of mortar cylinders with uncoated 
steel bars for (a) w/c=0.40 and continuous immersion in 3.5 wt.% NaCl solution, (b) 

w/c=0.40 and bi-weekly wet-dry cycles, (c) w/c=0.55 and continuous immersion in 3.5 
wt.% NaCl solution, and (d) w/c=0.55 and bi-weekly wet-dry cycles at (1) 1 day, (2) 124 

days, and (3) 244 days test. 
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Figure 8.12 Measured versus simulated Bode plots of mortar cylinders with pure enamel 
coated steel bars for (a) w/c=0.40 and continuous immersion in 3.5 wt.% NaCl solution, 
(b) w/c=0.40 and bi-weekly wet-dry cycles, (c) w/c=0.55 and continuous immersion in 

3.5 wt.% NaCl solution, and (d) w/c=0.55 and bi-weekly wet-dry cycles at (1) 1 day, (2) 
124 days, and (3) 244 days test. 
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Figure 8.13 Measured versus simulated Bode plots of mortar cylinders with mixed 
enamel coated steel bars for (a) w/c=0.40 and continuous immersion in 3.5 wt.% NaCl 

solution, (b) w/c=0.40 and bi-weekly wet-dry cycles, (c) w/c=0.55 and continuous 
immersion in 3.5 wt.% NaCl solution, and (d) w/c=0.55 and bi-weekly wet-dry cycles at 

(1) 1 day, (2) 124 days, and (3) 244 days test. 
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Figure 8.14 Measured versus simulated Bode plots of mortar cylinders with double 
enamel coated steel bars for (a) w/c=0.40 and continuous immersion in 3.5 wt.% NaCl 

solution, (b) w/c=0.40 and bi-weekly wet-dry cycles, (c) w/c=0.55 and continuous 
immersion in 3.5 wt.% NaCl solution, and (d) w/c=0.55 and bi-weekly wet-dry cycles at 

(1) 1 day, (2) 124 days, and (3) 244 days test. 
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Figure 8.15 Measured versus simulated Bode plots of mortar cylinders with FBE coated 
steel bars for (a) w/c=0.40 and continuous immersion in 3.5 wt.% NaCl solution, (b) 

w/c=0.40 and bi-weekly wet-dry cycles, (c) w/c=0.55 and continuous immersion in 3.5 
wt.% NaCl solution, and (d) w/c=0.55 and bi-weekly wet-dry cycles at (1) 1 day, (2) 124 

days, and (3) 244 days test. 
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Table 8.2 Mortar cylinders with uncoated steel bars 

Time  

(day) 

Rm 

(kΩ 

cm2) 

nm 

Ym 

(nF 

cm-2 s-

(1-n
m

)) 

Rf 

(kΩ 

cm2) 

nf 
Yf 

(µF cm-2 s-(1-n
f
)) 

Rct 

(kΩ cm2) 
ndl 

Ydl 

(µF cm-2 s-(1-n
dl

)) 

YW 

 (mF cm-2 

s-0.5) 
EEC 

Chi 

Squared 

(×10-4) 

w/c=0.40, in 3.5 wt.% NaCl solution 
   

1 3.56 0.96 0.12 1.79 0.47 54 677 0.74 47 - a-I 1.27 

29 3.76 0.88 0.34 1.44 0.50 30 230 0.68 59 - a-I 1.05 

61 4.29 0.84 0.53 1.84 0.51 23 269 0.69 57 - a-I 2.59 

94 4.77 0.79 0.94 1.81 0.56 13 264 0.60 67 - a-I 3.46 

124 4.71 0.98 0.09 3.11 0.41 30 264 0.60 83 - a-I 1.17 

154 4.48 1.00 0.06 4.72 0.30 60 220 0.59 106 - a-I 0.89 

182 4.63 1.00 0.06 6.06 0.28 68 224 0.60 109 - a-I 0.74 

213 4.67 1.00 0.07 6.42 0.28 68 229 0.60 107 - a-I 0.81 

244 4.82 0.97 0.11 6.37 0.27 75 255 0.61 106 - a-I 0.86 

 
          

w/c=0.40, bi-weekly wet-dry cycles         

1 2.81 0.57 27.2 5.06 0.45 20 208 0.75 166 - a-I 1.44 

29 2.91 1.00 0.08 0.50 0.55 15 132 0.46 155 - a-I 0.83 

61 2.94 1.00 0.08 1.44 0.35 275 6 0.55 270 0.32 a-II 0.13 

94 2.85 1.00 0.09 3.41 0.33 227 12 0.49 249 0.58 a-II 0.12 

124 2.55 1.00 0.11 1.82 0.27 122 5 0.56 219 0.93 a-II 0.20 

154 2.67 1.00 0.10 1.57 0.31 84 3 0.57 239 0.96 a-II 0.14 

182 2.52 1.00 0.11 2.67 0.17 197 7 0.61 255 0.04 a-II 0.31 

213 2.30 1.00 0.13 3.88 0.15 175 10 0.56 276 0.05 a-II 0.44 

244 2.75 1.00 0.12 2.15 0.27 106 3 0.55 321 1.42 a-II 0.23 

 
          

w/c=0.55, in 3.5 wt.% NaCl solution    

1 2.85 0.99 0.08 2.16 0.38 119 527 0.77 55 - a-I 0.63 

29 3.56 0.98 0.09 2.12 0.41 43 185 0.66 102 - a-I 1.13 

61 3.45 1.00 0.07 3.57 0.31 77 199 0.63 143 - a-I 0.43 

94 3.24 1.00 0.08 4.61 0.28 95 237 0.61 163 - a-I 0.33 

124 3.46 1.00 0.08 5.43 0.27 105 302 0.59 182 - a-I 0.27 

154 3.04 1.00 0.08 4.52 0.20 207 361 0.64 386 - a-I 0.33 

182 3.05 1.00 0.09 3.52 0.21 193 413 0.66 461 - a-I 0.44 

213 3.00 1.00 0.09 1.46 0.22 191 466 0.67 524 - a-I 0.48 

244 2.93 1.00 0.10 1.67 0.22 197 402 0.67 504 - a-I 0.46 

 
          

w/c=0.55, bi-weekly wet-dry cycles         

1 2.19 1.00 0.10 0.45 0.48 66 60 0.60 140 - a-I 1.53 

29 2.68 0.91 0.31 1.06 0.48 32 53 0.60 126 - a-I 1.48 

61 2.37 1.00 0.10 2.19 0.32 100 8 0.57 455 0.27 a-II 0.25 

94 3.14 1.00 0.08 3.23 0.30 89 7 0.64 231 0.74 a-II 0.17 

124 2.12 1.00 0.13 0.72 0.34 100 6 0.35 339 2.81 a-II 0.21 

154 1.86 1.00 0.13 0.78 0.36 177 7 0.21 291 5.13 a-II 0.17 

182 1.94 0.91 0.48 0.81 0.37 228 7 0.21 765 4.23 a-II 0.12 

213 2.33 0.93 0.32 - - - 4 0.27 189 3.88 a-III 0.07 

244 2.16 1.00 0.14 - - - 3 0.28 179 4.87 a-III 0.18 
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Table 8.3 Mortar cylinders with pure enamel coated steel bars 

Time  

(day) 

Rm 

(kΩ 

cm2) 

nm 

Ym 

(nF cm-2 s-

(1-n
m

)) 

Rf 

(kΩ 

cm2) 

nf 

Yf 

(µF cm-2 

s-(1-n
f
)) 

Rct 

(MΩ 

cm2) 

ndl 

Ydl 

(µF cm-2 s-

(1-n
dl

)) 

Yd 

 (µF cm-2 

s-(1-n
d
)) 

nd EEC 

Chi 

Squared 

(×10-4) 

w/c=0.40, in 3.5 wt.% NaCl solution 
       

1 5.85 0.89 0.51 26.8 0.36 6.37 18.8 0.60 1.40 - - b-I 3.64 

29 5.47 0.99 0.13 22.4 0.29 8.85 16.6 0.59 1.70 - - b-I 1.95 

61 6.07 1.00 0.12 17.7 0.31 6.53 17.4 0.55 2.31 - - b-I 0.68 

94 8.12 0.88 0.55 39.2 0.28 8.93 40.3 0.54 2.76 - - b-I 0.96 

124 9.47 0.78 1.86 30.1 0.31 8.85 67.1 0.52 3.03 - - b-I 0.35 

154 9.99 0.81 1.30 31.4 0.34 8.32 64.5 0.50 3.64 - - b-I 1.90 

182 10.6 0.81 1.15 30.4 0.35 7.32 54.8 0.50 3.48 - - b-I 2.06 

213 8.45 0.84 1.59 17.1 0.41 5.28 65.5 0.49 3.43 - - b-I 1.61 

244 8.55 0.86 0.72 36.4 0.28 11.3 29.8 0.50 3.48 - - b-I 1.32 

 
           

w/c=0.40, bi-weekly wet-dry cycles          

1 5.81 0.85 1.49 352 0.31 4.45 858 0.68 1.11 - - b-I 0.20 

29 5.98 0.83 1.98 298 0.27 6.47 833 0.66 1.08 - - b-I 2.57 

61 6.40 0.94 0.31 23.3 0.35 2.92 50.0 0.56 1.60 - - b-I 1.15 

94 9.03 0.72 4.62 - - - 0.38 0.37 3.50 17.4 0.76 b-II 3.15 

124 7.90 0.80 1.67 - - - 0.23 0.35 4.12 39.3 0.76 b-II 1.52 

154 7.77 0.74 4.16 - - - 0.33 0.34 4.54 36.9 0.87 b-II 2.55 

182 8.04 0.78 2.50 - - - 0.53 0.36 3.24 55.9 0.76 b-II 2.03 

213 6.58 0.85 1.10 - - - 0.29 0.33 4.79 44.0 0.65 b-II 1.64 

244 6.51 0.87 0.82 - - - 0.29 0.33 4.67 66.3 0.68 b-II 1.47 

 
           

w/c=0.55, in 3.5 wt.% NaCl solution        

1 6.46 0.83 1.61 121 0.41 2.29 28.1 0.72 1.03 - - b-I 3.64 

29 10.8 0.79 2.56 19.7 0.37 3.41 27.2 0.57 0.67 - - b-I 1.67 

61 12.0 0.77 3.39 18.6 0.23 2.03 11.6 0.51 0.93 - - b-I 6.33 

94 7.62 0.96 0.27 10.6 0.42 6.87 10.0 0.50 0.96 - - b-I 2.17 

124 8.72 0.91 0.47 18.8 0.45 5.95 10.3 0.48 1.06 - - b-I 1.69 

154 11.6 0.83 1.36 14.9 0.34 1.88 10.9 0.48 1.17 - - b-I 1.40 

182 15.3 0.73 5.04 22.4 0.44 1.54 11.1 0.60 4.26 - - b-I 2.35 

213 13.1 0.74 4.67 15.6 0.45 1.76 15.2 0.54 4.32 - - b-I 2.57 

244 15.4 0.73 5.17 25.1 0.42 5.81 18.3 0.49 1.41 - - b-I 2.84 

 
           

w/c=0.55, bi-weekly wet-dry cycles          

1 8.26 0.61 26.5 195 0.45 2.58 46.0 0.60 1.02 - - b-I 1.12 

29 9.33 0.52 92.7 154 0.44 5.99 61.2 0.57 0.86 - - b-I 1.90 

61 6.70 0.64 19.2 - - - 0.82 0.48 1.43 16.2 0.74 b-II 4.97 

94 5.14 0.71 19.4 - - - 0.59 0.49 1.60 6.82 0.49 b-II 3.88 

124 5.28 0.89 0.53 - - - 0.33 0.55 2.15 4.27 0.38 b-II 2.07 

154 6.10 0.86 0.80 - - - 0.31 0.59 1.79 4.51 0.37 b-II 1.91 

182 5.58 0.85 0.86 - - - 0.38 0.60 1.74 4.44 0.38 b-II 2.37 

213 11.3 0.64 19.3 - - - 1.19 0.51 1.11 7.10 0.46 b-II 6.62 

244 9.97 0.64 20.4 - - - 0.97 0.50 1.21 7.20 0.43 b-II 6.42 
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Table 8.4 Mortar cylinders with mixed enamel coated steel bars 

Time  

(day) 

Rm 

(kΩ 

cm2) 

nm 

Ym 

(nF cm-2 s-(1-

n
m

)) 

Rf 

(kΩ 

cm2) 

nf 

Yf 

(µF cm-2 s-(1-

n
f
)) 

Rct 

(kΩ 

cm2) 

ndl 

Ydl 

(µF cm-2 s-(1-

n
dl

)) 

EEC 

Chi 

Squared 

(×10-4) 

w/c=0.40, in 3.5 wt.% NaCl solution         

1 2.59 0.96 0.14 2.49 0.43 176 487 0.79 630 a-I 1.77 

29 3.53 1.00 0.08 2.33 0.32 89 571 0.74 740 a-I 0.67 

61 3.57 1.00 0.09 3.41 0.18 145 631 0.77 2310 a-I 1.37 

94 3.84 1.00 0.09 3.79 0.21 112 84 0.78 1520 a-I 2.37 

124 3.34 1.00 0.11 4.73 0.19 159 76 0.78 1670 a-I 1.99 

154 3.12 0.99 0.13 5.03 0.18 178 59 0.79 1820 a-I 2.28 

182 3.00 1.00 0.12 4.34 0.20 199 55 0.79 1500 a-I 4.12 

213 3.36 1.00 0.17 3.51 0.26 178 52 0.77 1400 a-I 6.45 

244 3.24 0.98 0.19 3.47 0.24 221 50 0.77 1460 a-I 5.79 

 
         

w/c=0.40, bi-weekly wet-dry cycles        

1 6.37 0.88 0.33 2.83 0.28 87 864 0.74 260 a-I 1.50 

29 6.89 0.98 0.24 2.57 0.22 76 887 0.83 430 a-I 1.04 

61 4.07 1.00 0.07 1.55 0.35 60 884 0.73 810 a-I 0.62 

94 4.09 1.00 0.08 2.13 0.31 81 77 0.74 1460 a-I 2.15 

124 4.42 1.00 0.32 2.76 0.27 77 71 0.74 2570 a-I 2.18 

154 4.97 1.00 0.07 3.05 0.26 70 81 0.64 1440 a-I 1.62 

182 3.19 1.00 0.11 2.19 0.31 86 71 0.63 2150 a-I 1.17 

213 6.24 1.00 0.06 4.42 0.25 59 42 0.68 1080 a-I 1.06 

244 4.72 1.00 0.08 3.36 0.26 86 49 0.58 2690 a-I 0.70 

 
         

w/c=0.55, in 3.5 wt.% NaCl solution         

1 3.55 0.98 0.12 2.23 0.30 167 243 0.80 410 a-I 1.39 

29 4.26 0.97 0.14 4.54 0.20 87 444 0.85 470 a-I 0.66 

61 3.96 0.95 0.10 4.24 0.30 73 85 0.81 1260 a-I 5.77 

94 3.47 1.00 0.12 6.90 0.21 46 92 0.78 850 a-I 5.51 

124 4.28 0.83 1.26 7.95 0.21 86 79 0.81 1080 a-I 3.75 

154 4.17 0.84 1.13 9.40 0.22 99 54 0.86 1330 a-I 5.43 

182 4.43 0.84 1.04 14.9 0.20 103 57 0.86 1500 a-I 3.61 

213 4.60 0.84 1.26 17.8 0.23 96 54 0.87 1550 a-I 4.40 

244 4.13 0.86 0.97 15.7 0.25 104 67 0.80 1250 a-I 3.29 

 
         

w/c=0.55, bi-weekly wet-dry cycles        

1 3.75 1.00 0.08 1.45 0.33 171 459 0.84 370 a-I 0.85 

29 4.07 1.00 0.07 1.77 0.31 83 160 0.76 510 a-I 0.88 

61 3.64 1.00 0.09 2.52 0.26 91 72 0.64 1410 a-I 1.13 

94 3.91 0.99 0.11 3.83 0.23 92 77 0.65 1200 a-I 1.49 

124 3.11 1.00 0.12 3.81 0.20 97 64 0.64 1760 a-I 0.93 

154 7.40 1.00 0.12 3.10 0.39 48 46 0.47 490 a-I 2.73 

182 2.64 1.00 0.12 2.27 0.30 87 32 0.47 1880 a-I 1.40 

213 4.78 1.00 0.08 2.69 0.33 47 33 0.42 440 a-I 1.68 

244 3.66 1.00 0.10 5.04 0.22 13 24 0.54 1720 a-I 0.99 
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Table 8.5 Mortar cylinders with double enamel coated steel bars 

Time  

(days) 

Rm 

(kΩ 

cm2) 

nm 

Ym 

(nF cm-2 

s-(1-n
m

)) 

Rf 

(kΩ 

cm2) 

nf 

Yf 

(µF cm-2 

s-(1-n
f
)) 

Rct 

(MΩ 

cm2) 

ndl 

Ydl 

(µF cm-2 

s-(1-n
dl

)) 

Yd 

 (mF cm-2 

s-(1-n
d
)) 

nd EEC 

Chi 

Squared 

(×10-4) 

w/c=0.40, in 3.5 wt.% NaCl solution          

1 6.61 0.72 2.56 83 0.86 3.16 3.87 0.64 5.8 - - b-I 6.27 

29 9.68 0.67 4.76 115 0.90 3.43 0.62 0.61 7.2 - - b-I 8.40 

61 9.95 0.61 11.4 133 0.88 3.64 1.35 0.58 8.5 - - b-I 9.93 

94 11.3 0.40 180 214 0.83 3.54 0.78 0.58 11.2 - - b-I 6.77 

124 11.0 0.39 236 262 0.79 3.97 1.30 0.61 12.3 - - b-I 6.71 

154 10.7 0.39 245 296 0.79 4.03 1.35 0.62 11.4 - - b-I 5.97 

182 10.5 0.59 15.1 173 0.85 6.05 1.25 0.62 7.2 - - b-I 12.6 

213 10.3 0.60 12.9 221 0.85 6.88 1.50 0.60 8.4 - - b-I 12.8 

244 9.94 0.65 7.49 198 0.84 7.72 1.53 0.60 9.1 - - b-I 13.4 

 
           

w/c=0.40, bi-weekly wet-dry cycles          

1 10.4 0.82 0.48 108 0.88 7.52 4.38 0.65 2.99 - - b-I 3.78 

29 7.41 0.77 1.55 39 0.66 9.17 0.29 0.46 20.7 - - b-I 2.10 

61 8.93 0.72 2.23 - - - 0.07 0.60 5.43 0.02 0.34 b-II 5.36 

94 10.7 0.70 2.76 - - - 0.06 0.58 5.98 0.04 0.37 b-II 6.35 

124 8.83 0.98 0.06 - - - 0.02 0.75 7.86 0.04 0.27 b-II 1.54 

154 9.79 0.56 21.3 - - - 0.03 0.56 8.91 0.11 0.39 b-II 1.91 

182 6.74 0.55 31.5 - - - 0.02 0.50 1.47 0.22 0.40 b-II 1.42 

213 15.0 0.61 9.29 - - - 0.06 0.53 7.19 0.21 0.54 b-II 2.77 

244 13.7 0.61 11.4 - - - 0.03 0.53 8.51 0.29 0.49 b-II 3.04 

 
           

w/c=0.55, in 3.5 wt.% NaCl solution          

1 4.36 1.00 0.19 63 0.88 5.47 93.7 0.60 4.07 - - b-I 17.8 

29 10.4 0.71 2.45 49 0.94 3.95 12.5 0.64 4.77 - - b-I 7.51 

61 10.6 0.68 4.24 89 0.87 4.23 0.68 0.54 9.37 - - b-I 9.16 

94 8.96 0.72 2.77 91 0.82 5.00 0.64 0.47 14.4 - - b-I 9.04 

124 8.71 0.68 4.83 117 0.81 4.65 0.82 0.50 13.6 - - b-I 9.66 

154 7.99 0.65 7.87 116 0.80 5.25 0.68 0.52 13.4 - - b-I 9.16 

182 8.87 0.68 5.05 124 0.81 5.27 0.74 0.53 11.8 - - b-I 10.4 

213 8.82 0.70 3.56 131 0.81 5.58 0.82 0.55 10.4 - - b-I 10.8 

244 8.99 0.71 3.22 150 0.80 5.53 0.89 0.57 9.91 - - b-I 12.3 

 
           

w/c=0.55, bi-weekly wet-dry cycles          

1 9.12 0.81 0.58 298 0.71 4.97 6.25 0.69 6.84 - - b-I 4.42 

29 8.50 0.79 0.96 54 0.76 8.01 0.44 0.55 12.7 - - b-I 5.42 

61 8.24 0.80 0.89 35 0.77 8.38 0.25 0.42 21.6 - - b-I 4.23 

94 6.70 0.76 1.58 - - - 0.03 0.69 8.49 0.06 0.29 b-II 1.48 

124 4.64 0.49 90.2 - - - 0.01 0.54 16.0 0.21 0.39 b-II 1.85 

154 4.70 0.84 0.63 - - - 0.02 0.71 9.50 0.08 0.26 b-II 0.85 

182 3.78 0.59 26.0 - - - 0.02 0.48 20.5 0.56 0.50 b-II 2.11 

213 6.67 0.73 3.10 - - - 0.06 0.55 8.77 0.25 0.50 b-II 7.18 

244 7.23 0.51 64.2 - - - 0.03 0.60 7.20 0.06 0.21 b-II 3.10 
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Table 8.6 Mortar cylinders with FBE coated steel bars 

Time  

(days) 

Rm 

(MΩ 

cm2) 

nm 

Ym 

(nF cm-2 s-(1-

n
m

)) 

Rf 

(MΩ 

cm2) 

nf 

Yf 

(nF cm-2 s-(1-

n
f
)) 

Rct 

(GΩ 

cm2) 

ndl 

Ydl 

(nF cm-2 s-

(1-n
dl

)) 

Yd 

 (nF cm-

2 s-(1-n
d
)) 

nd EEC 

Chi 

Squared 

(×10-3) 

w/c=0.40, in 3.5 wt.% NaCl solution           

1 - - - - - - 2210 0.97 0.03 - - c-I 8.26 

29 - - - - - - 528 0.97 0.03 - - c-I 8.30 

61 - - - - - - 256 0.96 0.03 - - c-I 6.76 

94 - - - - - - 190 0.96 0.03 - - c-I 8.33 

124 - - - - - - 75 0.96 0.03 - - c-I 8.57 

154 - - - - - - 49 0.96 0.03 - - c-I 8.70 

182 - - - - - - 30 0.96 0.04 - - c-I 9.00 

213 - - - - - - 26 0.96 0.03 - - c-I 9.72 

244 - - - - - - 23 0.96 0.04 - - c-I 9.80 

 
           

w/c=0.40, bi-weekly wet-dry cycles          

1 4.44 1.00 0.03 327 0.73 1.76 0.80 0.72 11.6 - - c-III 4.34 

29 4.52 1.00 0.03 148 0.73 1.40 0.39 0.68 18.0 - - c-III 6.64 

61 4.12 1.00 0.03 76.8 0.73 1.38 0.31 0.64 25.4 - - c-III 7.88 

94 6.23 1.00 0.04 92.6 0.78 0.78 0.19 0.70 10.5 - - c-III 9.52 

124 1.36 0.98 0.03 50.0 0.81 3.01 0.16 0.64 20.8 - - c-III 2.58 

154 8.31 0.96 0.04 76.4 0.78 0.79 0.19 0.69 9.6 - - c-III 8.95 

182 7.21 0.98 0.03 40.9 0.84 5.31 0.09 0.67 26.7 - - c-III 1.71 

213 3.15 0.97 0.04 72.5 0.73 1.72 0.14 0.71 8.2 - - c-III 7.05 

244 2.69 0.97 0.04 105 0.72 1.90 0.19 0.70 8.2 - - c-III 7.13 

 
           

w/c=0.55, in 3.5 wt.% NaCl solution           

1 1.39 0.97 0.03 171 0.75 9.44 1.89 0.73 18.2 - - c-III 2.38 

29 1.53 0.96 0.03 177 0.79 8.83 3.22 0.71 18.9 - - c-III 2.25 

61 1.66 0.96 0.03 84.6 0.81 10.4 2.56 0.69 15.2 - - c-III 1.96 

94 1.70 0.99 0.02 43.5 0.74 10.6 1.54 0.77 18.0 - - c-III 4.30 

124 1.68 0.96 0.04 17.4 0.79 14.5 1.54 0.70 15.9 - - c-III 2.14 

154 0.75 0.90 0.08 16.0 0.78 27.3 1.12 0.69 23.3 - - c-III 4.31 

182 0.74 1.00 0.02 10.2 0.65 58.0 1.20 0.64 25.9 - - c-III 2.57 

213 0.88 0.98 0.03 13.0 0.69 32.2 0.87 0.60 31.6 - - c-III 2.60 

244 0.55 0.93 0.06 11.7 0.62 34.0 0.65 0.62 34.2 - - c-III 3.89 

 
           

w/c=0.55,bi-weekly wet-dry cycles          

1 - - - - - - 1330 0.97 0.03 - - c-I 8.78 

29 - - - - - - 5.70 0.97 0.03 - - c-II 4.91 

61 - - - - - - 0.29 0.97 0.03 2.93 0.36 c-II 5.15 

94 - - - - - - 0.11 0.97 0.03 0.52 0.23 c-II 6.23 

124 - - - - - - 0.09 0.97 0.03 0.48 0.21 c-II 6.01 

154 - - - - - - 0.08 0.97 0.03 0.42 0.20 c-II 5.84 

182 - - - - - - 0.09 0.97 0.03 0.50 0.22 c-II 5.99 

213 - - - - - - 0.13 0.97 0.03 1.47 0.27 c-II 4.97 

244 - - - - - - 0.17 0.97 0.03 0.93 0.28 c-II 5.41 
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For the specimens with ME-coated steel bars, no general trend was observed 

either over time or under different exposure conditions. The average bulk matrix 

resistance for all specimens over time as presented in Table 8.4 is 4.12±1.10 kΩ cm2, 

which is higher than what was determined for specimens with uncoated steel bars 

(3.15±0.87 kΩ cm2). The overall average bulk matrix resistance for specimens with PE-

coated steel bars is 8.48±2.69 kΩ cm2 as shown in Table 8.3, and 8.85±2.40 kΩ cm2 for 

specimens with DE-coated bars as shown in Table 8.5. The greater resistances for the 

three sets of enamel coated specimens, compared with the uncoated specimens, is related 

to the different dielectric properties of the ME coating, compared with the mortar paste, 

and the superior barrier properties of the PE and DE coatings. Therefore, the effects of 

the water-cement ratio and exposure condition were less obvious in comparison to the 

dominant effect of the coatings, particularly the PE and DE coatings.  

Table 8.6 lists the bulk matrix resistances of the specimens with FBE coated bars. 

It can be seen from Table 8.6 that the specimens with FBE-coated bars and with 

w/c=0.40 subjected to bi-weekly wet-dry cycles have an average bulk matrix resistance 

of 4.67±2.28 MΩ cm2, about 1000 times higher than those with uncoated and ME-coated 

steel bars and 500 times higher than those with PE- and DE-coated bars. This is because 

the bulk matrix resistance is significantly influenced by the outstanding barrier properties 

of the FBE coating. 

The capacitive parameters Ym and nm of the combined mortar cover and coating, 

obtained by fitting EEC models to the EIS test results, were less useful because of the 

frequency range used in this study. Specifically, the semicircle in the test frequency up to 

100 kHz was incomplete as other authors suggested that tests ought to be done up to the 

MHz range to get accurate values of Ym and nm [203-205]. Therefore, comparison of these 

parameters between different specimens would be less meaningful. 

8.3.6.2 Intermediate frequency region (passive film). The intermediate 

frequency region reflects the properties of the passive film that is formed around the 

connected channels in the porous mill scale on the uncoated samples and in the ME 

coatings, or around the damaged areas of the PE, DE, and FBE coatings. As presented in 

Table 8.2 for specimens with uncoated steel bars, the passive film resistances (Rf ) range 
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from 0.45 to 6.42 kΩ cm2, and the capacitances range from 13 to 275 µF cm-2 s-(1-n
f
); these 

values are similar to those observed in other studies [215]. As shown in Table 8.4, the 

passive film formed on the ME coating has similar dielectric properties to that formed on 

the uncoated specimens. The resistances and capacitances are in the range of 1.45~17.8 

kΩ cm2 and 13~221 µF cm-2 s-(1-n
f
), respectively. Influences of both water-cement ratio 

and exposure condition on the properties of the passive film formed on the uncoated and 

the ME coated samples were not observed even after the formation of corrosion products. 

This is probably because the passive film and corrosion products have similar properties. 

As shown in Tables 8.3 and 8.5, the passive film resistances of the PE- and DE-

coated bars are in the range of 14.9~121 kΩ cm2  and 49~296 kΩ cm2, respectively, when 

immersed in the 3.5 wt.% NaCl solution. Their corresponding passive film capacitances 

are in the range of 1.54~11.3 µF cm-2 s-(1-n
f
) and 3.16~7.72 µF cm-2 s-(1-n

f
), respectively. 

The higher passive film resistance and lower passive film capacitance formed on the PE- 

and DE-coated specimens, compared to those formed on the uncoated and the ME coated 

samples, are attributed to the small coating damage areas compared to the connected 

channels in the mill scale and ME coatings. When normalized by the total surface area of 

the steel bar, these differences are amplified. For specimens subjected to bi-weekly wet-

dry cycles, their impedance spectra representing the passive film disappeared after two or 

three months, indicating the initiation of corrosion. This is because, prior to the initiation 

of corrosion, a passive film was formed on the exposed steel surface around any damaged 

coating area, the EIS measurement circuit was distributed around the entire steel bar 

surface, and the dielectric properties of mortar cover, enamel coating, and enamel-steel 

interface were then reflected in the impedance spectra. After breakdown of the passive 

film around the damaged coating area, the flow of charge was concentrated around the 

small damaged area, which is significantly affected by the buildup of corrosion products. 

The passive film resistance and capacitance of FBE-coated steel bars can only be 

observed in two specimens with moderate surface damage. The passive film resistances 

are in the range of 10.2~327 MΩ cm2, which are 100~1000 times higher than those for 

the PE- and DE-coated bars, and 10,000 times higher than those for the uncoated and 

ME-coated samples. The passive film capacitances are in the range of 0.78~58 nF cm-2 s-

(1-n
f
), which is significantly lower than the capacitances associated with the other samples 
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and likely reflects the much smaller damage areas on the FBE-coated samples, as shown 

in Figure 8.4. 

8.3.6.3 Low frequency region (coating-steel interface). The low frequency 

region reflects properties of the electrolyte-steel interface at active sites: charge transfer 

resistance Rct and double layer capacitance Ydl. Charge transfer resistance represents the 

difficulty of charges across the interface of steel where corrosion occurs and is inversely 

proportional to the rate of corrosion. Double layer capacitance represents the separation 

of charge at the steel-electrolyte interface [19]. For specimens with uncoated steel bars 

immersed in salt solution, Rct evolution over time is not as obvious as for specimens 

subjected to bi-weekly wet-dry cycles (Table 8.2). After one month on test, specimens 

immersed in salt solution reached relatively stable values of Rct of 244±21 kΩ cm2 with 

w/c=0.40, and 321±106 kΩ cm2 with w/c=0.55, respectively. However, for specimens 

subjected to bi-weekly wet-dry cycles, Rct decreased significantly after two months on 

test, from 208 to 6 kΩ cm2 with w/c=0.40 and from 60 to 8 kΩ cm2 with w/c=0.55. The 

decrease of Rct indicated the penetration of chloride ions to the steel interface and 

initiation of pitting corrosion. The double layer capacitance Ydl increased over time for all 

specimens, although there is no obvious trend. For example, Ydl increased from 47 to 106 

µF cm-2 s-(1-n
dl

) with w/c=0.40 and from 55 to 504 µF cm-2 s-(1-n
dl

) with w/c=0.55 for 

samples continuously immersed in solution. The increase in double layer capacitance 

probably reflects the change of steel surface due to the arrival of chloride. The Rct values 

for the uncoated steel bars in this study are in good agreement with values reported in the 

literature [214-216]. 

For ME-coated bars as shown in Table 8.4, Rct significantly decreased for all 

testing after two or three months on test. The significant decrease is attributed to the 

breakdown of the passive film due to the arrival of chlorides and the initiating steel bar 

corrosion. Accompanying the decrease in Rct was an increase in the double layer 

capacitance, Ydl, for all samples tested. After the breakdown of the passive film and onset 

of corrosion, the average charge transfer resistance and the double layer capacitance for 

all samples remained stable, with values of 62±18 kΩ cm2 and 1480±512 µF cm-2 s-(1-n
dl

), 

respectively.  
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For the PE-coated bars immersed in salt solution, as shown in Table 8.3, Rct 

remained stable over time and had values of 42±22 MΩ cm2 with w/c=0.40 and 16±7 MΩ 

cm2 with w/c=0.55, which is approximately 100 times higher than those with the 

uncoated steel bars. For specimens subjected to weekly wetting-drying cycles, after two 

or three months of test, Rct decreased significantly, from 858 to 0.38 MΩ cm2, with 

w/c=0.40 and from 46 to 0.82 MΩ cm2 with w/c=0.55. This decrease indicated the 

initiation of pitting corrosion due to breakdown of passive film on damaged PE coating 

area. After the decrease, Rct remained stable and had an average value of 0.51±0.30 MΩ 

cm2 for specimen both with w/c=0.40 and with w/c=0.55. The double layer capacitance 

Ydl, remained constant for all specimens, with a value of 2.29±1.32 µF cm-2 s-(1-n
dl

), which 

is lower than the uncoated and ME-coated steel bars. The higher Rct and lower Ydl values 

demonstrated that the PE coating outperformed the uncoated and the ME coating in terms 

of corrosion resistance.  

For the DE-coated steel bars in salt solution, as shown in Table 8.5, Rct decreased 

significantly after one or two months on test for all specimens, reflecting a transition 

from corrosion passivity to activity. After the decrease, Rct remained stable and had 

values of 1.21±0.33 MΩ cm2 for specimens with w/c=0.40 continuously immersion in 

salt solution, 0.04±0.02 MΩ cm2 for specimens with w/c=0.40 subjected to bi-weekly 

wet-dry cycles, 0.75±0.10 MΩ cm2 for specimens with w/c=0.55 continuous immersion 

in salt solution, and 0.03±0.02 MΩ cm2 for specimens with w/c=0.55 subjected to bi-

weekly wet-dry cycles. The Ydl average value of all specimens in both exposure 

conditions is 9.82±4.65 µF cm-2 s-(1-n
dl

), significantly lower than those for the specimens 

with uncoated and ME-coated steel bars, indicating that the DE coating provided a better 

corrosion protection. Compared with the PE coating, however, the DE coating was less 

protective. 

For specimens (a, d) with FBE-coated steel bars, Rct decreased gradually from 

2210 to 23 GΩ cm2 with w/c=0.40 when immersed in salt solution, and from 1330 to 0.17 

GΩ cm2 with w/c=0.55 when subjected to bi-weekly wet-dry cycles. However, Ydl 

remained stable and had values of 0.03±0.003 nF cm-2 s-(1-n
dl

) in both situations. The 

greater reduction in charge transfer resistance over time with w/c=0.55 is attributed to the 

continuous penetration of chloride between wetting and drying cycles, resulting in 
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increased corrosion activity of these samples. In addition, an average Rct of 0.95±0.91 

GΩ cm2 and Ydl of 18.9±7.8 nF cm-2 s-(1-n
dl

) was obtained for specimens (b, c) with 

w/c=0.40 when subjected to weekly wet-dry cycles and with w/c=0.55 when immersed in 

salt solution. The lower charge transfer resistance and the higher double layer capacitance 

for specimens (b) and (c) indicated that these samples experienced more severe damage 

than specimens (a) and (d).  

8.3.6.4 Diffusion behavior. In this study, diffusion behavior was observed with 

samples of uncoated bars, PE- and DE-coated bars, and FBE-coated bars. As described 

previously, the diffusion behavior of the uncoated and coated bar surfaces can be 

simulated using the Warburg impedance W and the CPED. The diffusion behavior 

observed from the impedance spectra reflects the transport of charged ions, electrons and 

dissolved oxygen through the corrosion products formed at connected channels and 

around coating defect areas, and depends on both the size of the defects and the porosity 

of corrosion products [14].   

The diffusion admittances are in the range of 0.04 ~ 5.13 mF cm-2 s-0.5  for 

specimens with uncoated steel bars, 4.27 ~ 66.3 µF cm-2 s-(1-n
d

)  with PE-coated steel bars, 

and 0.02 ~ 0.56 mF cm-2 s-(1-n
d

)  with DE-coated steel bars, and 0.42 ~ 2.93 nF cm-2 s-(1-n
d

)  

with FBE-coated steel bars. If similar corrosion products form on each sample, the 

difference in diffusion admittance then mainly depends on the size of coating damage, 

and so the coatings, FBE-coated samples are the least damaged, followed by the PE-

coated samples, then the DE-coated samples. 

8.3.6.5 Non-homogeneities of mortar-coating-steel system. The non-

homogeneity of materials is reflected by the CPE coefficient n as discussed in [115]. Due 

to incomplete tests in terms of mortar cover effect, the following discussion will be 

focused on the passive film and electrolyte-steel interface where corrosion occurs.  

The passive film parameter nf indicates the overall non-homogeneity of a passive 

film that is randomly formed over the entire surface of a test specimen, and is affected by 

the microstructure of the coating layer. The nf values are 0.34±0.11 for the passive film 

formed within the mill scale on the uncoated samples, 0.26±0.06 within the connected 

channels of ME coating, 0.36±0.07 on the damaged area of the PE coatings, 0.83±0.05 on 

the damaged area of the DE coatings, and 0.75±0.06 on the damaged area of the FBE 
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coatings. The lower nf values of the passive films formed on the uncoated and ME-coated 

specimens are attributed to the significant randomness of the large connected channels 

leading to the steel as a result of large variations in the microstructure of the mill scale 

and ME coating, respectively. The greater nf values of passive films formed on the DE 

and FBE-coated specimens are due to less coating damage and the relatively 

homogeneous microstructures of these coatings.  

The average ndl values of electrolyte-steel surface are 0.57±0.14 for the active 

corrosion areas of the uncoated specimens, 0.52±0.10 in the damaged areas of the PE-

coatings, 0.73±0.12 for the connected open channels of the ME coatings, and 0.58±0.07 

in the damaged areas of the DE-coatings. These values are all significantly less than the 

average value of 0.97±0.01 for the FBE-coated specimens with w/c=0.40 immersed in 

salt solution and w/c=0.55 subjected to weekly wet-dry cycles. This is because FBE 

coating has less active corrosion area compared with uncoated, ME-, PE- and DE-coated 

steel rebar specimens. However, the ndl values of the other two FBE-coated specimens 

with w/c=0.40 when subjected to weekly wet-dry cycles and w/c=0.55 when immersed in 

salt solution are 0.68±0.04. This is because the coatings of specimens both with w/c=0.40 

when in salt solution and w/c=0.55 when subjected to weekly wet-dry cycles are less 

severely damaged than the other two specimens as pointed out in Section 8.3.3 

8.3.7 Deterioration Mechanism and Rate over Time. 

8.3.7.1 Deterioration mechanism. The deterioration process, over time, of the 

uncoated steel bars is illustrated in Figure 8.16(a). Three stages of corrosion, 

corresponding to the three equivalent circuits in Figure 8.10a, were observed: (I) initial 

protection by the passive film; (II) occurrence of pitting corrosion after the partial 

breakdown of the passive film due to chloride attack; (III) buildup of the corrosion 

products through the increase of the active area due to continuous penetration of chloride. 

In Stage I, corrosion kinetics is controlled by charge transfer across the passive film [30]. 

In Stage II, the spatial randomness of connected pores and chloride concentration 

controls the rate at which the passive film breaks down locally, leading to pitting 

corrosion.  Diffusion impedance due to the formation of corrosion products appears in 

this stage. In Stage III, substantial concentrations of chloride ions have penetrated to the 

surface of the steel, extending the active corrosion area over time. When the active area 
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exceeds the passive area, the electrochemical behavior of the passive film disappears and 

the diffusion process through the corrosion products (rust film) becomes dominant. The 

diffusion component has been suggested to be related to oxygen transport across the 

interface [207], and this is probably why the diffusion impedance is associated with 

active corrosion [140, 208]. 
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Figure 8.16 Schemes of deterioration processes of mortar with: (a) uncoated, (b) pure 
enamel, (c) mixed enamel, and (d) double enamel, and (e) FBE coated steel bar. 

 

 

For specimens with ME-coated steel bars, two stages as illustrated in Figure 

8.16(c) were observed, corresponding to the two equivalent circuits in Figure 8.10. In 

Stage I, the steel bars were protected by the passive film formed inside the connected 

channels due to the penetration of pore solution during cement hydration. In Stage II, the 

chloride concentrations in the connected channels reached threshold values so that the 

passive film broke down and then corrosion initiated. Unlike the uncoated steel bars, the 
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ME-coated bars have large cavities inside the ME coating, which functioned as 

reservoirs, accumulated and redistributed chloride and oxygen around the steel surface, 

and broke down the passive film through the connected pores, as indicated by a sudden 

drop of impedance magnitude as shown in Figure 8.13.   

The PE- and DE-coated bars followed similar deterioration patterns, as indicated 

in Figures 8.16(b) and 8.16(d). Both coatings served as effective physical barriers to the 

penetration of aggressive ions. Therefore, the corrosion processes of PE- and DE-coated 

bars were mainly controlled by the extent of coating damage prior to testing. Two stages 

corresponding to the two equivalent circuits in Figure 8.10(b) were identified. In Stage I, 

small damage areas were protected by the passive film that initially formed due to the 

hydration of cement, and the electrochemical system was controlled by the charge 

transfer through the small passive film and PE or DE coating. In Stage II, corrosion 

initiated and corrosion products formed as the chloride content was increased and 

exceeded the critical threshold.  

Figure 8.16(e) illustrates the corrosion mechanism of the FBE-coated steel bars. 

Despite a large variation in the extent of the coating damage, the corrosion behavior can 

be grouped into a passive state (stage I) and active state (stage II). In Stage I, steel rebar 

was protected by both the FBE coating and the passive film that formed around the 

damaged coating area. In Stage II, the passive film around the entire steel surface broke 

down, and active corrosion initiated.  

8.3.7.2 Deterioration rates. The deterioration rate of the samples is inversely 

related to the charge transfer resistance. Figure 8.17 shows the evolution of charge 

transfer resistance over time for all samples with different coatings, water-cement ratios, 

and exposure conditions. After two or three months, each sample experienced a transition 

from passive (Stage I) to active corrosion (Stage II), as indicated by the shaded area in 

Figure 8.17. The enamel coatings did not substantially delay this transition (extend stage 

I to stage I’, Figure 1) since the coatings used in this study were not pristine, due to defect 

and damage as pointed out previously. 
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Figure 8.17   Evolution of charge transfer resistance of mortar with: (a) uncoated, (b) 
pure enamel coated, (c) mixed enamel coated, (d) double enamel, and (e) FBE coated 
steel bar. (Note: 40WW--- w/c=0.40, in 3.5 wt.% NaCl solution; 40WD--- w/c=0.40, 

weekly wet-dry cycles; 55WW--- w/c=0.55, in 3.5 wt.% NaCl solution; 55WD--- 
w/c=0.55, weekly wet-dry cycles.) 

 

 

Table 8.7 shows the deterioration rates of the three enamel- and three FBE-coated 

steel bars, normalized by the deterioration rates of the uncoated steel bars under the same 

respective conditions. Among all coatings, the FBE- and PE-coated specimens have the 

lowest deterioration rates and the ME-and DE-coated specimens have greater 

deterioration rates. The ME-coated bars continuously immersed in salt solution have a 

greater deterioration rate than the uncoated bars. Table 8.8 shows the deterioration rates 

of specimens under different exposure conditions, normalized by the rates of the 
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(c) (d) 
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respective samples with w/c=0.40 and continuously immersed in salt solution. The effect 

of exposure conditions on the deterioration rate is more significant than that of water-

cement ratio for all but the ME-coated samples. When subjected to weekly wet-dry 

cycles, all specimens deteriorated more rapidly than when those samples were immersed 

continuously in salt solution. This is probably due to the slower diffusion rates of oxygen 

through the pore networks of the mortar cover under the latter conditions. When samples 

are subjected to the weekly wet-dry cycles, the dissolved oxygen in salt solution can be 

rapidly transported by capillary suction and the oxygen contained in the pore networks 

significantly contributed to the specimen deterioration in the drying process. For ME-

coated specimens, no significant differences of deterioration rate were observed for all 

four exposure conditions. 

 

 

Table 8.7 Normalized average deterioration rates in stage II according to coating type 

Exposure conditions Uncoated PE-coated ME-coated DE-coated FBE-coated 

w/c=0.40 
Continuously in solution 

1 4.5×10-3 3.85 0.20 5.9×10-6 

w/c=0.40 
Bi-weekly wet-dry cycles 

1 1.9×10-2 0.10 0.09 4.2×10-5 

w/c=0.55 
Continuously in solution 

1 2.5×10-2 4.55 0.43 2.7×10-4 

w/c=0.55 
Bi-weekly wet-dry cycles 

1 8.5×10-3 0.12 0.20 5.9×10-5 

 

 

Table 8.8 Normalized average deterioration rates in stage II according to corrosion 
conditions 

Exposure conditions Uncoated PE-coated ME-coated DE-coated FBE-coated 

w/c=0.40 
Continuously in solution 

1 1 1 1 1 

w/c=0.40 
Bi-weekly wet-dry cycles 

37 159 1 17 256 

w/c=0.55 
Continuously in solution 

1 4 1 1 34 

w/c=0.55 
Bi-weekly wet-dry cycles 

41 77 1 40 410 
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8.4. SUMMARY  

Based on the test results and discussion in this study, the following conclusions 

can be drawn on the equivalent circuit representation, deterioration mechanism and 

deterioration rate of mortar-coating-steel systems with uncoated, enamel-coated, and 

FBE-coated steel bars, either continuously immersed in 3.5% NaCl solution or subjected 

to bi-weekly wetting-drying cycles:  

(1). A mortar-coating-steel system can be modeled by an equivalent electrical 

circuit (EEC) that consists of a series of components representing the behavior of various 

material layers in different frequency ranges. Each EEC component included a parallel 

pair of CPE and resistor. The CPE accounted for the non-homogeneity of the mortar, 

coating, and electrolyte-steel interfaces. The EEC representation of the mortar-coating-

steel system depended on the thickness and porosity of the mortar (concrete) cover, 

barrier and dielectric property as well as the damage extent of the coating layer and the 

state of the steel surface. 

(2). The diffusion behavior can be generally modeled with a Warburg element for 

uncoated steel bar but must be represented by a CPE for steel bars with PE-, DE-, and 

FBE-coating since the diffusion process is affected by the characteristics of the corrosion 

products. 

(3). Three stages of deterioration were observed for uncoated steel bars: 

protection by dense passive film prior to the accumulation of chloride ions to the 

threshold value, local breakdown of the passive film and appearance of pitting corrosion, 

and significant breakdown of the passive film and buildup of corrosion products.  

(4). Two stages of deterioration were observed for ME-coated steel bars: 

protection by passive film formed during cement hydration due to the penetration of high 

pH pore solution, and dramatic damage of the passive film and buildup of corrosion 

products. The passive film damaged suddenly and significantly since the thick porous 

ME coating accelerated the transport of chloride to the steel. 

(5). Two stages of deterioration were observed for PE- and DE-coated steel bars: 

stage I for protection by enamel coating and passive film in small damage areas, and 

stage II for breakdown of the passive film, initiation of corrosion, and buildup of 
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corrosion products. Buildup of corrosion products prevented the diffusion of oxygen, thus 

decelerating the corrosion process over time.    

(6). No coatings tested in this study delayed the initiation of deterioration 

associated with the breakdown of passive film. However, once deterioration initiated, 

FBE and PE coatings can significantly reduce the deterioration rate of steel bars; DE 

coatings had little effect on deterioration rates, and ME coatings may increase the 

deterioration rate for samples continuously immersed in salt solution. Bi-weekly wet-dry 

cycles accelerated the deterioration rates of almost all samples since oxygen transport 

was enhanced by capillary suction. The effect of different water-cement ratios on the 

deterioration rates was not as significant as that of the different exposure conditions.  
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9. CONCLUSIONS AND FUTURE WORK 

 

 

 

9.1 MAIN FINDINGS FROM THE OVERALL DISSERTATION WORK 

In this dissertation, the corrosion-induced deterioration of steel reinforced 

concrete (RC) structures and the corrosion performance of various enamel coatings 

applied to structural steel and reinforcement steel were investigated to lay down a solid 

foundation for the long-term durability and life-cycle performance assessment of RC 

structures. Three main components affecting RC structural deterioration were studied, 

including concrete cracking, steel property degradation, and steel-concrete bond loss. To 

combat the structural deterioration due to steel corrosion, porcelain enamel coating as a 

barrier to aggressive chloride ions was developed and evaluated for corrosion resistance 

improvement. Specifically, three types of enamel coating (pure enamel, mixed enamel, 

and double enamel) were investigated with four types of specimens (steel plates, 

deformed steel bar, smooth steel bar and deformed steel bar embedded in mortar 

cylinder) tested in 3.5 wt.% NaCl and saturated Ca(OH)2 solutions. Their corrosion 

resistances and mechanisms were also compared with fusion-bonded epoxy coating. The 

effects of coating thickness, thickness variation, potential damage, mortar cover, 

corrosion environment, and coating microstructures were investigated.  

9.1.1 Corrosion-induced RC Structural Deterioration. Based on the test data 

and analysis on corrosion-induced RC structural deterioration, several main conclusions 

can be drawn: 

(1) Concrete cover cracking due to reinforcement steel corrosion can be divided 

into four stages: I from the completion of new construction to the initiation of cracking, II 

from the initiation of cracking to a critical crack width that defines a transition from 

steady to decelerating crack propagation as corrosion of steel bars continues, III that 

transits from II to IV in which cracks in concrete cover stop growing even though steel 

bars continue to be corroded. Stage II represents the strongest correlation between the 

crack width and corrosion level in all times.  

(2) Corrosion changes the cross section of steel bars but not their mechanical 

properties such as yield stress and ultimate stress. Both yielding and ultimate loads 
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depend upon the minimum cross section of corroded steel bars while the elongation of 

steel bars depends on the distribution of cross sections along the length of steel bars. As 

such, the minimum and average cross section areas are recommended to evaluate the 

mechanical strengths and elongation, respectively. 

(3) Corrosion of a deformed steel bar reduces the bond stress between the bar and 

its surrounding concrete. The reduced bond stress depends on both the corrosion level 

and the spatial distribution of corrosion pits. If the steel bar is subjected to light 

corrosion, in comparison with a corresponding uncorroded steel bar, the bond stress 

increases slightly when corrosion pits are located along the lugs between two adjacent 

ribs and decreases when corrosion pits are located at the ribs. If the steel bar is subjected 

to severe corrosion, all the ribs corrode and become flattened, thus resulting in different 

bond-slip behaviors from the uncorroded and lightly corroded steel bars. 

9.1.2 Corrosion Performance of Three Types of Enamel-coated Steel. Based 

on extensive corrosion tests, the following conclusions can be drawn: 

(4) Three types of enamel coating can all improve the corrosion resistance of 

structural steel plate, deformed steel rebar, smooth steel rebar and deformed steel bar in 

mortar cylinder. Since the air bubbles generated during high temperature firing are 

isolated in pure and double enamel coatings and interconnected in mixed enamel coating, 

the pure and double enamel coatings are generally more effective barriers to aggressive 

chloride ions. 

(5) The corrosion behaviors of three types of enamel coating are similar whether 

enamel-coated steel are immersed in 3.5 wt% NaCl or saturated Ca(OH)2 solution. This is 

because enamel coating includes a ZrO2 compound that makes it highly alkaline resistant. 

(6) The thickness of pure and double enamel coatings significantly affects the 

corrosion resistance of coated steel bars. A thicker enamel layer can better prevent the 

penetration and diffusion of electrolytes in a corrosive environment. Similarly, the mortar 

cover on steel bars also helps protect the steel from corrosion.  

(7) Coating damage and thickness variation are two main causes for the low 

corrosion resistance of deformed steel bars compared to steel plates and smooth steel 

bars. 
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(8) The pure and double enamel coatings can protect the substrate steel from 

corrosion over a long period of time. The double enamel coating also performs more 

consistently than the pure enamel coating. Therefore, it is recommended that double 

enamel coating be used for the design of RC structures in corrosion-sensitive 

environments. 

(9) In short term, the enamel coatings presented in this dissertation are less 

corrosion resistant than intact fusion-bonded epoxy coating. However, once damaged, 

epoxy coating deteriorates over time much more rapidly than the enamel coating due to 

the weak bond between the epoxy coating and the substrate steel. As a result, the so-

called under-film corrosion has been clearly observed in the damaged epoxy-coated bar. 

On the contrary, the corrosion of enamel-coated bar is limited to a local damaged area. 

For the long-term durability of RC structures, enamel coating is thus a viable alternative 

to the commonly-used epoxy coating for steel bars after more implementation studies 

with enamel coating technology have been carried out on real-world structures.  

  
 
 

9.2 FUTURE WORK 

The corrosion-induced structural deterioration and the corrosion performance of 

enamel coatings on structural steel and steel reinforcement have been comprehensively 

studied in individual entireties. However, their integration is necessary for the structural 

safety evaluation of RC structures with enamel-coated reinforcement. Specifically, future 

works should be directed to address the following topics:  

9.2.1 Effect of Enamel Coating on Concrete Cover Cracking, Steel Bar 

Corrosion, and Steel-Concrete Bond. In space, the probability distribution of crack 

width depends on the distribution of corrosion products, concrete cover thickness, coarse 

aggregates, void and cement paste in concrete along the length of steel bars. Over time, 

crack width propagation is nonlinearly related to the corrosion-induced mass loss with 

their correlation gradually weakened as cracks are widened due to the diffusion of 

corrosion products and concrete softening. Enamel coating can alter the crack width 

distribution both spatially and temporally since the chemical bond between the coating, 

even damaged, and the surrounding concrete/steel can prevent the spreading of corrosion 
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products away from the damage location. Therefore, enamel coating will affect the 

cracking behavior in concrete cover in space and over time. 

The mechanical strengths and elongation of enamel-coated steel bars quite differ 

from those of uncoated bars prior to and after corrosion. Damage spots of an enamel-

coated steel bar will be the potential locations of pitting corrosion. The small damaged 

areas will probably produce a local macro-cell corrosion that potentially accelerates 

further corrosion in comparison with a corresponding uncoated steel bar. 

The bond behavior of an enamel-coated steel bar is expected to be quite different 

from the uncoated bar both before and after corrosion. The bond behavior of mixed 

enamel-coated steel bars in concrete has been studied already. It was concluded that the 

mixed enamel coating significantly increased the bond strength with surrounding 

concrete. The effects of pure and double enamel on the bond behavior, particularly after 

corrosion, are yet to be investigated. The distribution of potential corrosion pits would be 

concentrated on the damaged coating area of enamel-coated steel bars, thus changing the 

bond behavior. 

9.2.2 Development of a Reliability-based Durability and Life-Cycle 

Performance Evaluation Framework. To apply the research results in this dissertation 

into the condition assessment of RC structures, a system-level assessment framework and 

its specific design equations must be developed. For example, an empirical or analytical 

equation is needed to integrate the effect of concrete cover cracking, steel section 

reduction, and steel-concrete bond loss into a probabilistic evaluation of structural 

behaviors. Currently, there is no equation in the ACI design code to consider these 

effects. In the development of design equations, two limit states must be considered. One 

is the serviceability limit state that can be defined as a specified concrete cover crack 

width that can be evaluated using the probability density function of concrete crack width 

developed in this dissertation. The other is the ultimate limit state that can be defined as 

the reduction of structural capacity such as flexural and shear. The capacity reduction is 

directly related to the corrosion-induced area loss that can be modeled with the 

probability density function of cross sectional area developed in this dissertation.  

Enamel coating can be applied to decelerate the deterioration process of RC 

structures associated with reinforcement steel corrosion. Application of enamel coating 
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can not only change the spatial distribution of potential active corrosion sites, but also 

moderate the corrosion rate over time. Therefore, the system performance improvement 

of RC structures with enamel coating technology must be evaluated in order to promote 

the use of enamel coating in various applications. 
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