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ABSTRACT  

 

Enhanced Geothermal Systems (EGS) offer great potential for dramatically 

expanding the use of geothermal energy and become a promising supplement for fossil 

energy. The EGS is to extract heat by creating a subsurface system to which cold water 

can be added through injection wells. Injected water is heated by contact with rock and 

returns to the surface through production well. Fracture provides the primary conduit for 

fluid flow and heat transfer in natural rock. Fracture is propped by fracture roughness 

with varying heights which is called asperity. The stability of asperity determines fracture 

aperture and hence imposes substantial effect on hydraulic conductivity and heat transfer 

efficiency in EGS.  

Firstly, two rough fracture surfaces are characterized by statistical method and 

fractal analysis. The asperity heights and enclosed aperture heights are described by 

probability density function before cold water is pumped into fracture. Secondly, when 

water injection and induced cooling occurs, the thermomechanical analysis of single 

asperity is studied by establishing an un-symmetric damage mechanics model. The 

deformation curve of asperity under thermal stress is determined. Thirdly, deformation of 

fracture with various asperities on it in response to thermal stress is analyzed by a new 

stratified continuum percolation model. This model incorporates the fracture surface 

characteristics and preceding deformation curve of asperity. The fracture closure and 

fracture stiffness can be accurately quantified by this model. In addition, the scaling 

invariance and multifractal parameters in this process are identified and validated with 

Monte Carlo simulation.  
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1. INTRODUCTION 

1.1. ENHANCED GEOTHERMAL SYSTEMS 

A naturally occurring geothermal system, known as a hydrothermal system, is 

defined by three key elements: heat, fluid, and permeability at depth. Heat the extracted 

resource from subsurface, fluid the delivery material and permeability provides the 

pathway for fluid flow. Most hydrothermal system is close to volcanic region where the 

hot magma is close to the surface. Therefore, hydrothermal system tends to be distributed 

along the Earth’s plate boundaries, although they may also be found at intra-plate 

locations. Its usage started more than one thousand year ago, such as cooking food, 

shower etc. The disadvantage of this system is confined to limited locations. Most areas 

are infeasible for hydrothermal exploitation. The enhanced geothermal system, also 

called engineered hydrothermal system, is created to expand usage of hydrothermal 

resources. An enhanced geothermal system (EGS) is a man-made reservoir, created 

where there is hot rock but insufficient or little natural permeability or fluid saturation. In 

an EGS, fluid is injected into the subsurface under carefully controlled conditions, which 

causes pre-existing natural fracture to reopen, creating permeability.  

Most EGS rock is granite for its high heat capacity and low permeability. In 

geological aspect, geothermal resources comes from igneous intrusion in the upper crust. 

Granite, as an igneous rock, is a desirable rock in EGS. Besides that, it requires low 

permeability because the heat in the rock can be maintained, not quickly dissipated. That 

is why it is also called hot dry rock. According to the estimates of Muffler [1], a cubic 

kilometer of granitic magma at 800ºC contains 3×1018 J of heat, which is equivalent to 
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the heat content of 480 million barrels of crude oil. After intrusion in the crust, magma 

loses heat through conduction and convection. When the permeability of the host rock 

and the intrusion are low, a hot dry rock geothermal resource is developed. This impinges 

technical problem on geothermal exploitation. How to extract heat from low permeability 

rock can be tackled by technology in oil and gas industry. For brittle granite, natural 

fracture is widely distributed in the rock mass due to tectonic stress near the plate 

boundary.  

 

 

Figure 1.1 An Illustration of Enhanced Geothermal Systems. 

 

By controlling the pump rate of fluid, natural fracture can be reopened. Because 

they are sheared induced fracture, not tensile fracture. Natural fracture network provides 
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the main conduit for fluid circulation throughout the now-fractured rock and to transport 

heat to the surface where electricity can be generated. The sketch of enhanced geothermal 

system is shown in Figure 1.1, which is from department of energy report in 2012. 

Drill and injection wells are constructed into the hot rock reservoir with low 

permeability. Then, cold water is injected at sufficient pressure to reopen natural fracture 

and create fracture network. Continue operation until there is enough fractured volume to 

create a reservoir. The hot water is pumped to plant and recycled for next injection. It 

shows that fracture plays pivotal role in the heat extraction and fluid circulation. Water 

mainly flows in fracture, the fracture aperture determines the hydraulic transmissivity and 

heat transfer rate.  

Fracture is propped by discrete roughness on fracture surface. In subsurface, the 

fracture is stable and can sustain high in situ stress. However, this stability would break 

down due to cooling effect. When cold water is pumped into fracture, the cooling occurs 

between cold water and hot rock. Significant thermal stress is induced in this cooling 

process, therefore propping asperities would undergo thermomechanical process. The 

essential difference between expansion of fracture aperture and shrinkage of fracture 

aperture is determined by the cooling rate. If the cooling is rapid, only the small region 

near the surface is subjected to thermal stress while the in situ stress loads on the 

asperities. In this circumstance, the asperities deform and even break. Because the 

fracture aperture is of particular importance on the fluid circulation and heat conduction, 

the deformation of asperity is the key point to analyze variation of fracture aperture. The 

fracture aperture variation by this destructive deformation of asperity is briefly discussed 

in this dissertation and further elaboration will be worked on recently. 
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1.2. OVERVIEW 

Luo et al. [2] conducted laboratory hydrothermal experiments on artificially 

fractured granite sample. The “area ratio” is termed to define the roughness of fracture 

surface. With increase of area ratio, larger fracture aperture and higher hydraulic 

conductivity can be resulted. In addition, the fracture aperture decreases with increasing 

rock temperature owing to thermal expansion effects. A perfect exponential relationship 

between rock temperature and fracture aperture also found. 

Isaka et al. [3]conducted uniaxial compression test on granite subjected to pre-

heating to heigh temperature and then undergoing slow cooling and rapid cooling. The 

mechanical properties deteriorate much seriously under rapid cooling than slow cooling. 

Micro-cracks are created in granite under rapid cooling. This irreversible thermal shock 

demonstrates the damage of granite under rapid cooling. This can be applied to enhanced 

geothermal system and nuclear waste disposal. The thermal deterioration and damage are 

also observed by cyclic heating and cooling with circulating water by Zhu et al. [4]. 

McDermott and Kolditz [5] came up with a geomechanical model for fracture 

deformation under hydraulic, mechanical and thermal loads. The deformation of 

surrounding rock and asperity use theory of elasticity in one unit of fracture void space. 

This small model was then extended to fracture scale by fractal analysis.  

Tran [6] analyzed thermally-induced secondary cracks on existing fracture surface 

by cooling effect. The subsequent change of fracture aperture and its effect on hydraulic 

flow is also discussed. The critical condition for secondary crack initiation is the 

temperature difference between injection fluid and hot rock. In the understanding of 

thermal fracture creation, several authors made great endeavor. For example, Chen and 
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Marovelli [7] conducted an experiment to analyze thermal stress in a rock disk subjected 

to an external thermal shock by cold water. Perkins and Gonzalez [8] as well as Kocabas 

[9] proposed analytical models to investigate the state of stresses induced by cold fluid 

injection. Ghassemi et al. [10] developed an integral equation to calculate thermally 

induced stresses associated with the cooling of a planar fracture in a hot rock.  

It presents that granite is susceptible to rapid cooling effect and is likely to result 

in micro-cracks. Most research focus on solid granite without fracture. In the context of 

geothermal system, the asperity on fracture surface is likely to deform and even damage 

under severe cooling. The objective of this study is to analyze the thermomechanical 

analysis of fracture asperity in response to rapid cooling effect and its macroscopic 

characterization. 

1.3. DISSERTATION ORGANIZATION 

This dissertation is composed of nine sections, as follows: 

Section 1: The engineering background of this research is introduced. The 

prerequisite for geothermal exploitation is hot and dry granite. Fracture is indispensable 

to provide conduit for fluid circulation and heat conduction. Asperities on fracture 

surface is of particular significance to open fracture. The stability of asperity entails 

quantitative analysis.  

Section 2: To know fracture deformation under thermal shock, rough fracture 

surface requires characterization. Probability density function and spectral density 

function are used to characterize asperity height and spatial distribution. The correlation 
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length and fractal properties are determined by spectral analysis and fractal analysis. This 

work is based on the smooth transition zone study by Oglvie et al. [11]. 

Section 3: The two-dimensional fractal analysis in Section 2 is not accurate to 

characterize heterogeneity and cluster distribution of asperities. However, these features 

affect void space and thus fluid circulation. Therefore, to incorporate these feature in the 

analysis method, multifractal based hierarchical cascade is employed. Besides these 

features, the critical percolating threshold and fractal dimension of percolating cluster can 

also be determined. In this sense, both the mechanical features and hydraulic features are 

combined in this model. This statistical model is based on the stratified percolation model 

by Nolte et al.[12] . 

Section 4: After characterization of fracture surface and aperture in preceding 

sections, fracture deformation in response to stress is analyzed. In fracture deformation, 

three key components should be considered: asperity deformation, mechanical interaction 

of asperities and deformation of surrounding rock. They are analyzed in different sections 

in this section. Their effect on fracture closure is discussed. This analysis is based on the 

joint deformation model by Hopkins[13].  

Section 5: Asperity deformation by stress loading is analyzed in this section. Most 

research assumed elastic deformation of asperity and attribute nonlinear stress-

displacement property to increasing contact areas as fracture deforms. However, asperity 

damage at the tip is considered as another resource of nonlinearity. Damage mechanics 

constitutive model is established to characterize asperity deformation in both mechanical 

and thermomechanical circumstances. The deformation curve of asperity deformation is 

obtained in this section. 
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Section 6: As a porous rock, asperity deformation should consider the effect of 

porosity distribution. The porosity effect on the reduction of mechanical property and 

crack initiation is analyzed.  

Section 7: With large temperature difference, damage occurs at the connect circle 

between hemispherical asperity and surrounding rock. This crack initiation and 

propagation in respect to thermal stress and overburden loading are quantified. Fracture 

mechanics analysis is employed in this section. 

Section 8: In analysis of fracture deformation, most research assume elastic 

deformation of cylindrical asperity. However, asperity is irregular and more like 

hemisphere. In hemispherical geometry is used, too large stress on tip of asperity should 

be tackled. The hemispherical asperity with damage can resolve this problem. Therefore, 

comparison of fracture deformation under cylindrical asperity and hemispherical asperity 

is conducted to know the possible difference induced by simplistic asperity geometry. 

Section 9: The conclusion is drawn on this study and future work to extend this 

study is presented. 
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2. FRACTURE TOPOGRAPHY 

2.1. INTRODUCTION TO FRACTURE TOPOGRAPHY 

There is increasing awareness of the great effect fractures have on the mechanical 

and transport properties of rocks in enhanced geothermal systems. The fracture in granite 

may range in scale from extremely small microcracks, with a characteristic length scale 

small than the grain size of the rock, up to large fault systems in high tectonic stress area. 

The mechanical properties of rocks, described by their bulk elastic constants and shear 

strength, are known to be strongly dependent upon the presence and geometrical 

properties of fractures [14, 15]. Microscopic models of two contacting rough surfaces 

have been used to derive the elastic properties of single fracture including both normal 

and shear stiffness [16, 17], and to predict friction, wear, and the stability of shear 

behavior in rock joints. In all these models, a controlling influence is exercised by the 

aperture of the two interacting surfaces. The shape, size, and number of asperity contacts 

and the local slope of the surfaces are particularly important parameters in such models.  

The fracture is propped by rough asperities with various height distribution. The 

asperities serve as obstacles in the flow channels. The fluid flows around the asperities. 

Fluid channeling is the result of asperities distribution in the fracture surface. In addition, 

the mechanical properties of fracture in response to normal and shear loading also 

dependents the distribution of asperities in the surface. Under the stress loading, the real 

contact area only accounts less than 50% of the nominal contact area in the fracture 

surface. The various asperity heights cause the different extent of matching of two 

surfaces which influence the stiffness and modulus of rock mass. Therefore, it is 
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important for us to study the way the geometry of fracture surface affect the mechanical, 

hydraulic properties of the fractured rock mass. 

The numerical simulation has been widely accepted to study these properties in 

fracture due to the scarcity of rock samples on some conditions and cumbersome to 

obtain the sample with specified properties. As the first step, the accurate simulation 

entails the approximation of the natural fracture. Due to the effect of asperities or 

roughness on the mechanical and hydraulic properties of fractured rock mass, the detailed 

features of fracture surface should be maintained in the synthetic fractures. Several 

different methods have been used in the creation of numerical synthetic fracture. Amadei 

and Illangsekare [18] created synthetic fractures with unmatched fractal surface to study 

flow and solute transport in fracture. Brown [19] differentiated the long wavelength and 

short wavelength differently to create synthetic fractures. That is, the two fracture 

surfaces have perfect matching at short wavelength and becomes independent at long 

wavelength. This characteristics of fracture surface is also observed in natural rock 

fractures[20]. Glover et al. [21] improved that method and smoothed the transition length 

between matching and independence of two fracture surfaces. Pyrak-Nolte and Morris 

[22] used the stratified percolation theory to construct fractal aperture without explicit 

representation of fracture surfaces. In all these approaches, the one with good comparison 

to the natural fracture is preferable. Even though the fractal feature of fracture surface is 

incorporated in some synthetic fracture models, waviness and unevenness of fracture 

surface are neglected. The more accurate synthetic fracture is necessary to obtain more 

reliable results in the following analysis. Therefore, the model from Glover et al [21] will 

be constructed step by step in this section. 



10 

 

In this section, I will briefly describe the mathematical foundation of the 

geometrical parameters that describe fractures with rough surface. Then, the numerical 

techniques to create fracture is elaborated. The properties of fracture surface are analyzed 

based on synthetic fractures surfaces. Finally, the key parameters are stressed for analysis 

in the following section. 

2.2.  MATHEMATICAL DESCRIPTION OF FRACTURE SURFACES 

The mathematical description of rough fractures is well reviewed in books[23, 

24]. The key parameters to create the numerical synthetic fracture will be emphasized in 

this section. That is, the step-by-step procedure to generate the numerical fracture from 

profiling data is of main interest in this section. Firstly, the mathematical functions to 

define the fracture and aperture are classified. Then, the specific parameters in these 

functions are listed. 

 Mathematical Functions. It is best to begin with a definition of a fractal 

fracture in rock. By fractal fracture, we mean a fracture occupying three dimensional 

space with two surfaces, each with a fractal dimension between 2 and 3. In general, a 

statistical description of either of the surfaces that goes to make the fractal fracture is 

given by specifying two basic functions: (1) the probability density function for heights 

and (2) the power density spectrum. The probability density function describes the 

distribution of the surface heights about the mean value without regard to the horizontal 

spatial position, and the power density spectrum describes the texture or spatial 

correlation of heights on the surface. When the surface heights have a Gaussian (normal) 

distribution, then the 2-D surface texture is described accurately by a combination of the 
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mean and standard deviation of the Gaussian distribution and the form of the power 

density spectrum. Natural fractures often have Gaussian heights [15]. However, if the 

height distribution were more complicated, then a complete description of 2-D structure 

would require more information. 

 

 

Figure 2.1 Illustration of Composite Topography of Fracture Surface. (a) Schematic cross 

section through a joint. The surface heights are measured from parallel reference planes 

fixed in each surface. (b) The “composite topography” of a joint is defined by summing 

the heights of both surfaces at each point along the joint. The aperture is the distance 

between “composite topography” and reference plane 2 in (b). 
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Before going to introduction of probability density function and power spectrum, 

the aperture between two rough surfaces has to be elaborated. Because the fracture 

surface is rough, the aperture between two rough surfaces is intractable to define. 

Therefore, the concept of “composite topography” introduced by Brown and Scholz [25] 

is used to quantify the aperture. The schematic of “composite topography” is shown in 

Figure 2.1(b). The distance between “composite topography” and reference 2 is the 

aperture. If we do not consider the closure of fracture, the distance between two reference 

planes d is constant, thus the aperture topography can be described by the “composite 

topography”. 

2.2.1.1. Probability density function. From standard statistics, the probability is 

defined as the ratio of the number of elements of a set conforming to a particular 

condition to the total number of elements. The probability function P(z) is defined in the 

following manner. The P(z) associated with the surface height z, is defined as the fraction 

of the surface having height ≤ z. The P(z) is the integral of the probability density 

function: 

   
z

P z p x dx


         (2.1) 

The probability density function is therefore the derivative of the probability 

function, i.e. 

 
 dP z

p z
dz

      (2.2) 

The relation of p(z) and P(z) is shown in Figure 2.2.  

2.2.1.2. Power spectrum. The power spectral density is the Fourier transform of 

the autocorrelation function. Thus, they are equivalent descriptions of the same aspect of 
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surface texture. The power spectrum is computed by breaking the surface profile into a 

sum of sinusoidal components, each with its own wavelength, amplitude, and phase (see 

Figure 2.3). The squared amplitude of each component is referred to as its power, and the 

graph with relation of power to inverse of wavelength is power spectrum. The power 

spectrum normalized in a particular way is known as the power spectral density. The 

power spectral density G(k) has a power law relation with inverse of wavelength k: 

 G k Ck        (2.3) 

where C is the proportionality constant; α is the power spectrum exponent. 

Power spectral density G(k) provides a useful description of the surface roughness 

if one considers the spectral moments. The moments of the power spectral density 

function are defined as: 

 
n

n

n
k

m k G k dk


        (2.4) 

where nm  is the nth moment and 0 02k    at 0n  . 0m  is the variance of heights on 

the profile, 2m  is the variance of slopes [26], and 4m  is the variance of curvatures, also 

named kurtosis in rigorous mathematical definition. 

In summary, once the probability density function for heights and the 

autocorrelation function for a surface are known, then a complete description of the 

roughness and an individual surface is obtained.  

 Detailed Fracture Parameters. To implement the probability density 

function of asperity height and power density spectrum practically, the specific fracture 

parameters are required to create synthetic fracture. Fractal fracture is composed of two 

fracture surface. Intuitively, the fracture parameters are classified into those associated 
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Figure 2.2 Illustration of the Probability Function for Surface Height. The height of the 

surface above the mean level is z. The probability density function  p z  is approximately 

the fraction of the surface in the range of z  and z z  . The cumulative probability 

function is the integral of  p z  from −∞ to z. 

 

 

Figure 2.3 Illustration of the Power Spectrum of a Surface Profile. (a) Part of irregular 

fracture surface, (b) its sinusoidal components at different frequencies with amplitude A 

and wavelength λ, and (c) the relation of power and spatial frequency 1/λ for all 

sinusoidal components. 
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with individual surfaces, those defined for assembly of two surface, and arbitrary 

parameters. It is worth mentioning that these parameters are directly obtained from 

experimental testing. However, due to the limited experimental condition, these data are 

borrowed from literature in this section.  

2.2.2.1. Surface parameters. (1) Standard deviation s  of asperity heights on 

each fracture surface. This is a measure of the roughness of the surface asperities.  

 
22

1

1 N

s i

i

y y
N




       (2.5) 

Where iy  represents N discrete measurements of the heights of the surface, which has a 

mean value of y .  

(2) The fractal dimension fD  of each fracture surface. This is a measure of the 

scaling behavior of the surface, and contains information regarding the relative positions 

of asperities of different size on the surface. This parameter has relation with power 

exponent  by [19]: 

 
7

2
fD


       (2.6) 

 (3) The anisotropy of fractal dimension of the surface sA , which allows the 

surface to have different fractal dimensions in different directions across the surface. In 

Equation (2.3), the wavenumber k  denotes the average in x and y direction. Therefore, 

the surface is intrinsically assumed to be isotropic. Whereas the anisotropic surface is 

often observed in natural fracture, the anisotropy of fractal dimension in x and y direction 

has to be accounted.  
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2.2.2.2. Fracture parameters. (1) The matching parameters. The individual 

fracture surface follows the power law in Equation (2.3). However, when fit together to 

create aperture, the matching phenomenon occurs. That is, rough fractures are matched to 

some degree at long wavelength and relatively unmatched at short wavelength [27, 28]. 

This phenomenon shows in Figure 2.4. The data of surfaces are from Figure 2.1. Brown 

[19] came up with mismatch wavelength c  to differentiate the matching transition. But 

the transition point is abrupt. Isakov et al. [29] improved this concept with smooth 

transition between matched and unmatched segments. The difference of these two 

methods are shown in Figure 2.5 schematically. The matching of two fracture surfaces is 

defined as R. When R is 1, it means the two fracture surfaces are the same; when R is 0, it 

means the two fracture surfaces are totally independent. More parameters are introduced 

by Isokav et al. [29] in Figure 2.5(b). The second was verified and has better description 

with the natural rock. In this section, the second model is used to describe the matching 

fraction of two surfaces. The relations of these parameters in Figure 2.5 (b) are presented.  

 

2

2

c
c

c

 
 

 






      (2.7) 

           (2.8) 

where R  and R  are maximum matching fraction and minimum matching fraction to 

define the degree of matching at long and short wavelength, respectively.   and   are 

wavelength at the maximum matching fraction at minimum matching fraction, 

respectively.   is the width of transition. All these values require determination from 

experimental testing.  
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Figure 2.4 The Power Spectra from Two Fracture Surfaces and the Aperture. The black 

curve stands for top surface, the magenta curve standards for bottom surface, the green 

curve stands for the aperture. The black line is the average line to indicate the slope of the 

power spectra. The slope is -3. Wavelength at the mismatch point is λc. It shows that 

mismatch occurs at small wavelength and match well at the long wavelength. 

 

 
Figure 2.5 Approaches in the Matching of Fracture Surfaces. The horizontal axis is 

wavelength and the vertical axis is matching of both fracture surface. (a) The abrupt 

mismatch wavelength λc defined by Brown [19], (b) the smooth transition near the 

mismatch wavelength λc defined by Isakov et al [29]. 

 

(3) Standard deviation of the aperture a . This parameter is a measure of the 

complexity of the aperture, i.e. the difference between the constriction and wide portions 



18 

 

of the aperture. The relation of a  and s  is shown in Figure 2.6. The equation for the 

covariance between two surfaces with mean values y  and z  is [30]: 

  
1

1 N

yz i i

i

C y y z z
N 

        (2.9) 

If the surface y and z are completely uncorrelated, then 0yzC  . For two 

completely correlated surfaces, 
2 2

yz y zC     since at each point, i iy y z z   . The 

variance of aperture is, 

   
22 2 2

1

1
2

N

a i i z yz y

i

y y z z C
N

  


            (2.10) 

When two surfaces are completely uncorrelated, the variance of aperture should 

be twice the variance of an individual surface. When the surfaces are completely 

correlated, the variance of aperture is zero because the fracture is fully closed without 

open space. 

(4) The fractal dimension of the aperture. This parameter can be obtained from the 

log-log slope of the power density spectrum of the aperture as a function of wavelength, 

shown in Figure 2.4. Because the existence of mismatch wavelength, the fractal 

dimension of aperture is confined to the slope near the small mismatch wavelength.  

(5) The anisotropy in fractal dimension of the aperture.  

2.2.2.3. Statistically average parameters. (1) The arithmetic mean height of 

each surface a a
z . This occurs at the peak of the probability distribution of heights. (2) 

The arithmetic mean aperture a g
z . It has the same physical meaning as a a

z . Both of 

them can be obtained from probability distribution of height and aperture. 
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Figure 2.6 The Relation of Mean Square Roughness (
2

s  and 
2

a  ) as a Function of 

Profile Length λ0 in Unit of Pixel, at Any Physical Size. At large wavelength, the 

difference between surface and aperture is significant. 

 

2.2.2.4. Basic statistics. These specific parameters on surface and aperture of 

granite are tested by Ogilvie et al. [11]. Their data will be directly listed in Table 2.1 and 

used for further generation of fracture. 

2.3. SYNTHETIC FRACTURE GENERATION 

By the data in Table 2.1, the probability density function and power spectral 

density function can be obtained. Then, all the required information to generate synthetic  

fracture is ready. One method of computing the power spectral density function just  
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Table 2.1 Rock Fractures Tested on Granite by Ogilvie et al [11].  

Surface 

parameters 

Standard deviation (U) (mm) 1.97 

Standard deviation (L) (mm) 2.07 

Fractal dimension (U) 2.25 

Fractal dimension (L) 2.16 

Anisotropy in fractal dimension(U) 0.88 

Anisotropy in fractal dimension(L) 0.86 

Physical size (mm) 95.9 

Fracture 

parameters 

Mismatch wavelength 4.5 

Transition length  40 

Wavelength    2.25 

Wave length    42.25 

Minimum matching fraction 0.1 

Maximum matching fraction 0.9 

Standard deviation 0.65 

Fractal dimension 2.64 

Anisotropy in fractal dimension 1.02 

Arbitrary 

parameters 

Arithmetic mean of surface (U)(mm) 1.71 

Arithmetic mean of surface (L)(mm) 1.71 

Arithmetic mean of aperture (mm) 1.33 

Notes: the U after the name stands for upper surface, the L stands for lower surface. Some 

modifications have been made on the data for better presence in following section. 
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discussed is to take the Fourier transform of the topography. This calculation is the 

generalization of Fourier analysis and results in a series of sinusoidal components, which 

can be characterized by their wavelength, amplitude, and relative phase. This 

information, collectively known as the amplitude spectrum, is a series of complex 

number which contains both amplitude and phase information. The power spectrum is the 

modulus or square of the various amplitude components. The spectral synthesis method 

introduced by Peitgen and Saupe [23] is used to generate computer models of isotropic 

fractal surfaces. Two matrices are generated where each point in each matrix corresponds 

to that in the final matrix of Fourier components. These two matrices contain random 

number that are partially correlated to some degree. The degree of partial correlation 

depends upon the matching parameters. Finally, the inverse fast Fourier transform is 

implemented to convert the complex matrix into real space. The details of 

implementation refers to that book and the MATLAB® code is attached in Appendix A. 

The generated fracture surfaces and enclosed aperture heights are displayed in Figure 2.7, 

Figure 2.8 and Figure 2.9. 

 

 

Figure 2.7 Top Synthetic Fracture Surface. (a) 3D view and (b) top view. 
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Figure 2.8 Bottom Synthetic Fracture Surface. (a) 3D view and (b) top view of numerical 

synthetic fracture at bottom surface. 

 

 

Figure 2.9 Synthetic Fracture Aperture. (a) 3D view and (b) top view of numerical 

synthetic fracture at aperture. 

 

2.4. FRACTURE ANALYSIS 

Because the aperture height is of essential interest for fluid flow and heat transfer. 

It characterizes the space between contacting asperities. The aperture height in Figure 2.9 

is summarized and normalized. The probability density of aperture height is displayed in  

Figure 2.10. Ogilvie et al. [11] states that the distribution of aperture heights follows 

lognormal distribution. The number of small aperture takes more account in total 
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Figure 2.10 The Probability Density of Aperture Height of Synthetic Fracture. The data 

are fitted by Gaussian normal distribution. The mean and variance are 4.77 and 1.7, 

respectively.  

 

apertures. They reached this conclusion by statistical analysis of 619 synthetic rough 

fractures by their private graphing software. The lognormal distribution of aperture height 

is also ascertained by Power and Tullis [28]. Hundreds of real faults surfaces are 

measured by profilimeter. However, Brown [15] presented the Gaussian distribution of 

aperture height by surface profilimetry of granite. This contradictory results is probably 

attributed to the different rock types they measured. For the fracture data in Table 2.1, the 

aperture height for this fracture is presented in Figure 2.10. The probability density of 

aperture height is Gaussian with mean 4.77 and variance 1.7. This result confirms with 

Brown’s statement. However, it is not deterministic for this distribution. More 

investigation is required on the distribution of aperture height due to its significance.  
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The mean value of the normal distribution is more important than the variance. 

Higher mean value of aperture height means more open space between two fracture 

surfaces. Therefore, the mean value is analyzed in this section as a function of surface 

asperity distribution (standard deviation), fractal dimension, anisotropy, mismatch 

wavelength, and transition wavelength. Other parameters remain the same in Table 2.1.  

The dependence of mean aperture on standard deviation of fracture surfaces is 

shown in Figure 2.11. The fracture aperture depends linearly upon the standard deviation. 

Standard deviation characterizes scattering of asperity distribution on the fracture surface. 

Higher deviation denotes more scattering of asperity and larger fracture aperture. In this 

sense, the non-uniform distribution of asperity has higher fracture aperture. This 

implicitly complies with the results of Hopkins [13]. The fractal dimension describes the 

proportion of high-frequency to low-frequency roughness and is a measure of surface 

texture. For natural fracture surfaces, fractal dimension D tends to fall approximately in 

the range 2 ≤ D ≤ 2.5, with small values representing smoother surfaces. The variation in 

this range is investigated and the corresponding result is displayed in Figure 2.12. As the 

surface becomes rougher, the fracture aperture increase super-linearly. This result is kind 

of consistent with Figure 2.11. Non-uniform distribution and rougher distribution leads to 

larger fracture aperture. The anisotropy is also considered in this sensitivity study. For 

natural fracture surface, the roughness is usually not isotropic. The anisotropy is used to 

characterize this anisotropic roughness. When anisotropy is less than one, the anisotropy 

is transverse to x; when this value is one, the surface is isotropic; when this value is larger 

than one, the anisotropy is parallel to x. The anisotropy at which mean aperture 

minimizes in Figure 2. 13 is 0.78. The logarithmic scale is shown in horizontal x axis. 
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Figure 2.11 Mean Synthetic Fracture Aperture as a Function of the Standard Deviation of 

Surfaces. Other parameters refer to Table 2.1.  

 

 

Figure 2.12 Mean Synthetic Fracture Aperture as a Function of the Fractal Dimension of 

Surfaces. Other parameters refer to Table 2.1.  
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Figure 2.13 Mean Synthetic Fracture Aperture as a Function of the Anisotropy of 

Surfaces. Other parameters refer to Table 2.1.  

 

 

Figure 2.14 Mean Synthetic Fracture Aperture as a Function of the Mismatch 

Wavelength of Surfaces. Other parameters refer to Table 2.1.  
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Figure 2.15 Mean Synthetic Fracture Aperture as a Function of the Transition 

Wavelength of Surfaces. Other parameters refer to Table 2.1.  

 

It indicates the effect of anisotropy is not symmetric. The smaller part has more 

influence on the mean aperture. Furthermore, the mismatch wavelength and transition 

wavelength are also investigated in Figure 2. 14 and Figure 2. 15. The wiggles infers no 

monotonic relation between them.  

2.5.  DISCUSSION 

Spectral analyses show that rough fractures are fractal or self-affine in nature. 

This means [19] that surface irregularities are present at all scales, with longer 

wavelength irregularities having larger amplitude and contributing more to overall 

roughness than short wavelength features. The border between two wavelength ranges is 

the mismatch wavelength. This value is found to have a strong impact upon flow, 
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controlling channeling effects and the related hydraulic behavior at the fracture scale 

[31]. The study on mismatch wavelength requires more details on its implication on 

physical phenomena, such as flow, chemical erosion, and hydrothermal effect. The 

fracture characterization provides an effective avenue for following analysis on normal 

loading. This fracture surface is not likely to be directly used in normal loading due to 

complicated details on the fracture surface. The small wavelength dominates and it is 

hard to be considered in loading condition due to its small size. However, further 

simplification based on this characterization makes the analysis reasonable. The 

anisotropy is added in this model to consider the anisotropic feature of the fracture 

surface. But this anisotropy is very simple and makes the cluster of the contacting region 

distorted and unrealistic. A more realistic analysis of fracture surface is multifractal 

analysis [32].  
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3. STRATIFIED CONTINUUM PERCOLATION MODEL 

3.1. INTRODUCTION TO STATISTICAL MODEL 

There has been strong interest in the ability of fractal geometry to describe many 

of the characteristics of seemingly structure-less patterns. Much of this interest has come 

after the realization that an impressive number of random systems exhibit scale 

invariance, also known as self-similarity; that is, certain parameters describing the system 

remain the same regardless of the scale of magnification. Scale invariance lies at the heart 

of the notion of fractal dimension [33].  

For a random pattern to have scale invariance, the distribution of the sizes of the 

features which define the pattern must vary as a power law with some scale, b: 

   1D
P b b

 
 . The exponent D is the fractal dimension of the object. As such, the 

concept of fractal dimension is simply the consequence of power-law statistics governing 

size distributions. Power-law statistics ensure scale invariance. Invariance under 

transformation is a powerful and recurring concept in physics describing widely different 

phenomena. In many of these phenomena, invariance under scale transformation offers 

valuable insight into the physical origins of the phenomena and often provides for the use 

of powerful analytic tools for describing their structure. For instance, the scale invariance 

of fractal objects allows the analytic results of renormalization group theory to be used 

[34].  

In application, real system rarely possess the same scaling properties for all 

scales. Namely, there are scales above or below which the scaling properties change. 

These scales are called cut-offs. Often the cut-offs can carry as much information about 



30 

 

the physical processes creating the pattern as the scaling properties of the patterns. 

Typically, when a fractal dimension is assigned to a pattern, this dimension is only valid 

for scales above a lower cut-off and below and upper cut-off. In fact, measurement of 

certain fundamental properties, such as contact area, depends directly on the cut-offs. 

Also the measurement of the fractal dimension can be influenced by cut-offs when the 

measurement scale approaches the cut-off scale. For these reasons, particular attention 

must be paid to the limits of the regimes of scaling when attempting to define the 

physical properties of a pattern.  

With the power of fractal description comes considerable complexity, fractal 

objects take on a tremendous variety of forms, and sometimes several fractal dimensions 

can be defined for the same object. For example, a random percolation network at its 

critical percolation threshold has a fractal dimension of D = 1.89 [34]. At the same time, 

the fractal dimension of the backbone of the percolating cluster is D = 1.59 [35]. 

Similarly, in the case of the fracture surface, many fractal models can be used to describe 

the topography. The fracture contact areas can be viewed as random holes, or tremas 

(removed part) [33], which puncture a conductive sheet. Therefore, aperture between 

fracture surfaces can be modeled as lying on a random Sierpinski carpet. 

Three types of random Sierpinski carpet, shown in Figure 3.1, are constructed 

interactively by removing successively smaller squares (or tremas) from the original 

black square. Even though they display different topography, they have the same spatial 

fractal dimension. In the carpet shown, 8 out of 9 sub-squares, of scale b = 1/3, remain at 

each level. This gives the carpet the approximate fractal dimension D = ln 8/ln 3 = 1.89. 

The fractal dimension of a Sierpinski carpet can be measured, in principle, by counting 
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the number of tremas larger than some set value. In practice, the counting is carried out 

by superposing grids with successively smaller spacing and counting the number of grid 

squares at each level which are occluded more than 50% by a single trema. The fractal 

dimensions are derived from the slope of ln (b2-N) vs. ln b, where b is the scale size of 

the grid and N is the number of squares occluded for that scale b. The quantity (b2-N) is 

the number of grid squares which remain uncut by tremas at this scale size. This fractal 

dimension is called box-counting dimension. There are several different dimensions 

widely used in description of fractal geometry [36]. The box-counting dimension is the 

simplest and most used one.  

 

 

Figure 3.1 Three Types of Random Sierpinski Carpet with Five Size Levels of 

Recurrence. In spite of their different topography, the spatial fractal dimension D = 1.89 

is the same but in a statistical sense [37].  

 

The fluid flow in fracture follows percolation theory. The percolation theory is 

also used to construct the model. For standard percolation theory, two basic forms of 

percolation models are site percolation and bond-percolation, shown in Figure 3.2. In site 

percolation, the sites are occupied with a probability p. No flow can occur through an 

unoccupied site. In bond percolation, the bond are occupied with a probability p, and no 
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flow can occur through an unoccupied bond. The fundamental property of a random flow 

system is the existence of a critical probability pc, which defines the percolation 

threshold. For occupation probabilities below this critical probability, no connected path 

exists through the random network and the flow is totally occluded. At the percolation 

threshold, only a single percolating cluster exists. This percolating cluster has a fractal 

dimension of D = 1.89. For values of the occupation probability increasing above the 

critical density more connected paths can be found, and the connection between two 

opposing boundaries increases sharply. The critical probability is a function of the lattice 

dimension, and also of the specific model. This relation is shown in Figure 3.2c. The 

power of percolation theory comes from its ability to define the critical threshold 

parameter pc, as well as the functional form of the hydraulic conductivity near the 

percolation threshold. Because of scale invariance at the percolation threshold, the 

hydraulic conductivity slightly above the critical threshold obeys a power-law relations as 

a function of density:  
t

ck p p  , where k is the hydraulic conductivity in the region, p 

is the flow path density, pc is the critical density, and t is the exponent. As the system 

moves far above the percolation threshold, the random flow network can be characterized 

by applying the effective medium approximation [38] from which a homogeneous 

conductivity can be defined for the flow system. 

The lattice percolation model provides the basis for percolation theory, but it falls 

short in the analysis of area fraction of percolation [39]. The area fraction denotes the 

ratio of area with aperture to total area in horizontal cross section. Therefore, the fracture 

aperture simulation entails more realistic percolation model. Based on the experimental 

analysis [40], the fracture aperture follows scaling invariance. The multifractal analysis is 
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used to quantify the statistical parameters of fracture surface and aperture, such as 

momentum exponent, singularity and fractal dimension function. The multiplicative 

cascade model is a desirable model to meet this multifractal and is implemented by Nolte 

and Pyrak-Nolte [12]. The basis of multiplicative cascade is introduction in the following 

section.  

 

 

Figure 3.2 Illustration of Discrete Percolation Model. Schematic representation of (a) 

bond percolation, (b) site percolation and (c) the probability P∞ as a function of the 

occupancy, p of the network [41].  

 

3.2. MULTIPLICATIVE CASCADES 

A multiplicative cascade is an iterative process that fragments a given set into 

smaller and smaller pieces according to some geometric rule and, at the same time, 

distributes the total mass of given set according to another rule.  

Multiplicative cascade models are mathematical constructs appropriate to capture 

the intermittent and highly irregular behavior. Multiplicative cascades were initially 

proposed by Kolmogorov for turbulence modeling [42]. Currently the multiplicative 

cascade model has found applications in several areas to describe non-linear phenomena 

which have multiplicative structure [43]. 
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Of interest in some cases are cascades in which features at larger scale overlap 

with features at smaller scales. Overlap mixes the effects at different scales, so that the 

processes at one scale are no longer independent of processes at other scales. Overlap 

converts the random cascade into a random process with multiplicative cascade and an 

approximately log-normal distribution of densities. Two random Cantor bars are shown 

in Figure 3.3. one without overlap, one with overlap. In both cases, the number of 

remaining lengths are 3 and the scale factor between two generations are 4. In the case of 

no overlap, the fractal dimension is D = ln3/ ln4 =0.79. In the case with overlap, on the 

other hand, the fractal dimension is smaller than this value. Because, the averaged length 

shrinks but the scale factor remains the same. The densities of the bar after three 

iterations are shown at the bottom of the Figure. By allowing overlap, regions of very 

high density occur. The high density produces an extended tail on the mass distribution. 

The properties of multiplicative cascades with continuous overlap, and relate them to 

problem in correlated percolation.  

Stratified percolation is a correlated percolation model that generates fractal 

patterns through a self-similar cascade. Overlap of cascades is allowed, leading to 

approximately log-normal densities. This model is part of a larger class of correlated 

percolation systems, in which occupancy is conditionally dependent on local 

environments. Much of correlated percolation has been motivated through Ising 

percolation. Ising clusters in two dimensions comprise equilibrium system with near-

neighbor exchange interactions and long-range correlation. The connectivity of clusters 

in the Ising model has been related to the geometric critical behavior of percolation 
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systems. In addition to equilibrium Ising percolation, other correlated percolation systems 

have also been studied. 

 

 

Figure 3.3 Random Cantor Bars. Without overlap, the fractal dimension is D = 0.79. With 

overlap, the resulting mass distribution is multifractal.  

 

Much of continuum percolation theory is based on random continuum 

percolation. A continuum percolation pattern is shown in Figure 3.4a. Squares are 

randomly positioned within the region of interest. The pattern is generated with one 

generation having 800 squares. The stratified percolation pattern is shown in Figure 3.4b. 

This pattern is slightly below the percolation threshold because two opposing boundaries 

are not connected by black squares. The percolation threshold is usually defined for 

infinite region, but the numerical region is impossible to draw infinite region. The 

periodic boundary condition is used for four boundaries as a compromise. When the 

square is intersect with one boundary, part of it exceeding the boundary will be moved to 
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the corresponding part by periodic boundary condition. The other noticeable difference 

between two patterns resides in the cluster size. Standard continuum percolation pattern 

has small cluster size and disconnected to each other. However, stratified continuum 

percolation pattern has large cluster size and some are clumped together. The clustering is 

a typical characteristics of correlated percolation. This feature is recognized in the natural 

fracture. Figure 3.5 shows the conductive path or hydraulic path in tensile fracture [44]. 

Conductive electricity is always used to measure the distribution of asperity and void 

space in fracture. Both of them shows clusters of white space which means contacting 

asperities. This pattern is similar to Figure 3.4b where the white space also denotes the 

contacting asperities. For the correlated percolation, the critical percolation density of 

scaling parameters are of particular interest in describing the cluster size. In the 

following, the percolation property of this model is analyzed.  

3.3. PERCOLATION PATTERN FORMATION 

Stratified percolation patterns are generated by a recursive algorithm that defines 

a self-similar cascade of random sites. The construction may be regarded as applying 

random continuum percolation on successively smaller scales. Figure 3.6 shows this 

construction in four generations. The scale factor is b = 3.78 and the number of sites in 

each generation is N = 4. In the first generation, N sites are randomly placed. The N 

second squares having edge scaled by b is placed in the second generation. The algorithm 

repeats, no randomly placing N sites in each of the N squares in second generation. In the 

third generation shown in Figure 3.6, the number of squares are 43 = 64. It can be 

deduced that the total squares in nth generation is Nn, where N is the number of squares 
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Figure 3.4 Presentation of Standard Continuum Percolation Pattern and Stratified 

Continuum Percolation Pattern. (a) Standard continuum percolation pattern and (b) 

stratified continuum percolation pattern. The number of squares is 800 and scale factor of 

30 in (a). The number of generation is 5, and scale factor of 2.37 in (b). The black 

squares denote void space in fracture and the white space denotes contacting regions.  

 

 

Figure 3.5 The Electric Current and Fluid Flow in Fracture [44]. The grey lines denote 

the flow line and the white area are contacting asperities. The cluster of white area means 

the clumping of contacting asperities.  
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per generation, and n is order of generation. It’s worth noting that the largest square work 

as an initial state and is finite in size. However, the critical percolation and scaling 

exponents are defined in infinite region. To mitigate this deficiency, the periodic 

boundary condition is applied on the four outer edges on largest square. This periodic 

condition is applied only on the largest square. For “child” square, it is allowed to overlap 

and overhang the smaller regions.  

 

 

Figure 3.6 Recursive Construction of a Stratified Percolation Pattern [45]. The Figure 

includes three generations with a scale factor of 3.78 between two generations. The first, 

second and third generations are shown in red, light blue and magenta, respectively. The 

light green squares represent the plotted points. Overlaps of the smaller light green 

squares result in a variable aperture distribution. This Sierpinski carpet model is two-

dimensional pattern of Cantor bar with overlap in Figure 3.3.  

 

The stratified percolation construction is intrinsically a continuum construction. 

Because the squares is randomly placed without grid. At each scale, the sub-squares are 

centered randomly within the next larger generation, such that each generation is a 
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continuum percolation plot of its own. Even at the smallest level, when the final squares 

are plotted, the squares are placed randomly as a continuum plot. In practice, placement 

of squares is not that easy as seen in Figure 3.6. The geometry information of the squares 

is stored in numerical matrix. That is, the data has grid, like pixels on the geometry. To 

maintain the continuum pattern of percolation, the side of final squares cannot be as small 

as one pixel. In that condition, the model becomes discrete site percolation and the 

continuum pattern is lost. However, the size of final squares cannot be large in case of  

 

 

Figure 3.7 Examples of Stratified Percolation Patterns with Size of Final Squares 4 × 4 

Pixels and the Largest Square 300 × 300 Pixels. The scale factor and number of 

generation for all of them are b = 2.37 and n = 5. The difference is the number of sites in 

each generation: (a) N = 5, (b) N = 6, (c) N = 7, and (d) N = 8.  
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small scale factor and small number of generations. Based on these considerations, the 

largest square are 300 × 300 pixels and the size of final squares are 4 × 4 pixels [12].  

Examples of stratified percolation patterns are shown in Figure 3.7 for different 

numbers of sites with same scale factor and number of generations. In Figure 3.7a, the 

top and bottom edges are not connected by black squares but this arrangement is close to 

the percolation. That means the fraction of area is slightly below the percolation 

threshold. The area fraction of black squares is 24%. In Figure 3.7b, the top and bottom 

edges are connected which means percolation occurs in this pattern. The area fraction is 

45%. But one cannot draw the conclusion that the percolating area fraction is between 

24% and 45%. The percolating area fraction is applicable in the infinite region. The 

specific value of the percolating area fraction requires elaboration and more detailed 

analysis. It will be discussed in following section. Figure 3.7c and 3.7d also have 

percolation between two opposing edges. Their area fraction occupied by black squares 

are 64% and 72%. In addition, the clumped structures are obvious in four Figures, which 

is the feature of the percolation model.  

Stratified percolation has much in common with curdling. Curdling is a process 

whereby an originally uniform mass clumps together into many small regions with high 

density [33]. The curdling process, especially self-similar processes, involve a cascade in 

which the mass sequentially breaks into smaller subsets of larger subsets. Many models 

involving curdling have been developed. For example, Multifractal lattices have been 

generated through cascade processes [46, 47]. The cascade in stratified percolation is 

obvious, leading also to a curdled structure. 
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3.4. PERCOLATION PATTERN STRUCTURE 

The covered area of a percolation pattern is one of the key parameters used to 

characterize the system. The critical percolating threshold is usually expressed as covered 

area fraction in continuum model. The definition of area fraction per generation is 

calculated in the identical manner as for standard continuum percolation. For N squares 

of reduced size b plotted within a square region of unit area, the result from standard 

continuum percolation is: 

  2

1
, 1 1

N

a N b
b

 
   

 
     (3.1) 

where  ,a N b  is called the area fraction per generation. A recursive expression for the 

total area fraction of the stratified percolation pattern can be defined by applying (3.1) for 

the changing area fraction of each successive generation. For n generation, this recursive 

expression is: 

 
 

 

2

1,
, 1 1

(1, ) ,

N

A n N
A n N

b

A N a N b

 
   

 



    (3.2) 

A simpler, non-recursive approximate expression is obtained by expanding 

Equation (3.2) as: 

   
1

2, 1
n

A n N a a a a


         (3.3) 

This equation would be exact if periodic boundary condition were applied to each 

generation. However, in current construction, the periodic boundary condition is only 

applied for the largest square. Therefore, Equation (3.3) is approximate, and 
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underestimate the true area fraction. The total area fraction for n = 5 generation with b = 

2.37 is plotted in Figure 3.8, as a function of the area fraction per generation  ,a N b  for 

N varying from 3 to 10. The data are obtained from Monte Carlo simulations, and are 

compared with Equation (3.3). 

 

 

Figure 3.8 The Final Occupied Area Fraction by the Stratified Pattern as Functions of 

Initial Area Fraction with b = 2.37 and n = 5. The number of points N vary from 3 to 11. 

The curve is calculated from Equations (3.1) and (3.2), and the red markers is calculated 

by Monte Carlo simulations.  

 

The patterns in Figure 3.7 are two dimensional; positions are either covered or 

not. A third degree of freedom can be gained by considering the density of covered 

positions. The density of sites is obtained during the plotting of the pattern by counting 

the number of times that a given position is covered by a plotted square. An example with 
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five generations are displayed in Figure 3.9. The white areas represent zero density; the 

number of overlap is colored in 3.9a and 3.9b. The correlations introduced during the 

cascade algorithm are clearly visible. Regions of high density and low density are 

separately clumped. The distribution of site numbers in each pixel is shown in Figure 

3.10. The density of occurrence of a specific density is plotted as a function of site 

number. The probability density is not Gaussian, and is approximately log-normal. Log-

normal distribution are characteristics of multiplicative cascades [48, 49]. The long tail of 

high densities is caused during the cascade construction as many squares overlap with 

one another. The density of sites can be equated with distributions of apertures for a 

fluid-flow network. The long tail of large “apertures” has been found to be particular 

relevant for aperture distribution in fractures in rock [50]. 

3.5. FRACTAL STRUCTURE 

The stratified percolation patterns are fractal within the limits of the upper and 

lower cutoff lengths. The upper cutoff length is the initial sample size and the small 

cutoff length is the size of final squares. Within these limits, the black and white patterns 

are scale invariance and are characterized by a fractal dimension. The degree of 

homogeneity of the two-dimensional patterns is characterized using lacunarity. When the 

density of sites is considered, the patterns are multifractal and exhibit a distribution of 

fractal dimensions and Lipschitz-Hölder exponent. All of these aspects of the stratified 

patterns are discussed in this part. The two dimensional properties are discussed first, 

followed by the multifractal analysis. 
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Figure 3.9 Density of Sites for Stratified Continuum Percolation with N = 8, b = 2.37, n = 

5. The density of sites is strongly correlated, reflecting the overlapping cascade 

construction process. (a) the three dimensional representation; (b) the two dimensional 

representation with all generation effect involved; (c) the two dimensional representation 

with final generation effect considered.  
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Figure 3.10 Distribution of the Site Number for Figure 3.9 Showing the Frequency of 

Occurrence for Different Densities. The distribution has a long tail of large densities that 

is approximately described by a log-normal distribution. The normalized histogram is 

fitted by log-normal distribution. The mean and variance are 19 and 216, respectively.  

 

The fractal dimension of the full stratified patterns can be estimated by 

considering the cascade construction of the patterns. The fractal dimension is usually 

obtained by box-counting method. However, that is numerical calculated fractal 

dimension. The analytical version is derived by Nolte and Pyrak-Nolte [12]. The detailed 

derivation refers to their work and their analytical form of fractal dimension is simply 

presented at here. After some approximation, the fractal dimension is: 

        ln , 1 1, 2 11
2

ln

a N b a N b a N a Nn
D

n b

      
     (3.4) 

This can be roughly verified by the first generation scenario. In that condition, n = 

1 holds and D = 2 applies. This is consistent with standard continuum percolation pattern 

in Figure 3.4a. The fractal dimension is 2 for standard continuum percolation pattern. For 
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scenario of more generations, the comparison between theoretical form by Equation (3.4) 

and numerical calculation by box-counting method is presented in Figure 3.11. The 

details on box-counting method is shown in Figure 3.12. The difference is noticeable. It 

comes from the approximate formula in Equation (3.4). Based on the statement by Nolte 

and Pyrak-Nolte [12], the error is within 10% for theoretical formula. From this sense, 

the difference is in the expected range. In addition, to evaluate the sensitivity of 

generation number on the fractal dimension, two cases with different number of squares 

are considered. The corresponding fractal dimensions are plotted in Figure 3.12. It shows 

that fractal dimension is statistically invariant and is an intrinsic properties of percolation 

model. It concludes that the fractal dimension can be approximately derived and has a 

reasonable agreement with numerical results by box-counting method.  

 

 

Figure 3.11 Fractal Dimension D vs. the Area Fraction per Generation for n = 5, b = 2.37, 

N Varying from 3 to 11. The difference is noticeable, but the trend is almost the same. 
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Figure 3.12 The Calculation of Fractal Dimension by Box-Counting Method. (a) the 

binary image created by stratified percolation model at n = 5, N = 5 and b = 2.37; (b) one 

screenshot on box-counting with grid displayed; (c) the log-log plot of number of box and 

box linear size to calculate the fractal dimension D = 1.284.  

 

For two dimensional structure, the fractal dimensional can not only characterize 

the texture of structure. Lacunarity is introduced by Mandelbrot to analyze the turbulence 

[33]. Lacunarity is a counterpart to the fractal dimension that describes the texture of a 

fractal. It has to do with the size distribution of the “gap” in the texture. Roughly 

speaking, if a fractal has large gaps or holes, it has high lacunarity; on the other hand, if a 

fractal is almost translationally invariance, it has low lacunarity. Different fractals can be 
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Figure 3.13 The Fractal Dimension D with Respect to Total Area Fraction in Two 

Different Generations.  

 

constructed that has the same dimension but that look widely different because they have 

different lacunarity. Lacunarity analysis is now used to characterize patterns in a wide 

variety of fields and has application in multifractal analysis in particular.  

In many patterns or data sets, lacunarity is not readily perceivable or quantifiable, 

so computer-aided methods have been developed to calculate it. Box-counting lacunarity 

is the most widely used version. It is measured by box counting with varying box size. 

In current pattern, the lacunarity can be defined as: 

 
   

 

22

2

A L A L
L

A L


       (3.5) 

The numerator is the variance based on area fraction in a particular generation. A(L) is the  

shorthand notation for  ,A n N  with box size L from Equation (3.2) and (3.3). The  
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denominator is the squared average of area fraction with box size L. This is one of the 

definitions of lacunarity. 

 

 

Figure 3.14 The Lacunarity Takes on Approximately Universal Behavior When Plotted 

vs the Final Area Fraction. Two different generations are considered, n = 5 and n = 3.  

 

Considering the feature of box-counting method that the size of squares 

logarithmically shrink by a factor of 2 in each scale, the preferable calculation of 

lacunarity from numerical aspect is: 

 
1

1
2

n
i

in 

        (3.6) 
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Figure 3.15 Four Patterns of Black Squares with Different Lacunarity. All of them are 

created with n = 3, b = 4.22.  

 

The measured lacunarity for Monte Carlo simulations of stratified percolation 

patterns with two generations are given in Figure 3.14 as a function of the final area 

fraction. In Figure 3.14, Λ decreases sharply when the area fraction is small and with 

increasing covering area, Λ slowly approaches to zero. As stated before, lacunarity 

characterizes heterogeneity of the texture in the spatial dimension. When the region of 
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interest is fully covered by black squares, it becomes homogenous and results in zero 

lacunarity. Sliding box scanning is the usual way to run the Monte Carlo simulations. 

More details on this methods refers to Wikipedia. The MATLAB code to implement it is 

attached in Appendix C.  

Four scenarios in Figure 3.14 are selected to illustrate the physical meaning of Λ 

in Figure 3.15. Three generations with scaling factor b = 4.22 are created. The smaller 

“hole” in the region, the smaller Λ is.  

Fracture dimensions offer a systematic approach to quantifying irregular patterns 

that contain an internal structure repeated over a range of scales. In preceding two-

dimensional fractal analysis, the fractal dimension D and lacunarity Λ are both calculated 

by box-counting method. The disadvantages of the box-counting technique is that the 

process does not consider the amount of mass inside a box and is not able to resolve 

regions with high or low density mass. Multifractal methods are suited for characterizing 

complex spatial arrangement of mass because they can resolve local densities. In practice, 

a way to quantify local densities is by estimating the mass probability in the ith box as: 

   i i TP L N L N       (3.7) 

where  iN L  is the number of pixels containing mass in the ith box and TN  is the total 

mass of the system. Also important is to quantify the scaling (or dependence) of iP  with 

box size L. For heterogeneous or non-uniform systems, the probability in the ith box 

 iP L  varies as: 

  i

iP L L


      (3.8) 
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where i  is the Lipschitz-Hölder exponent characterizing scaling in the ith region or 

spatial location. These exponents reflect the local behavior of the measure  iP L  around 

the center of a box with diameter L, and be estimated from Equation (3.8) as:  

   log logi iP L L       (3.9) 

Note that similar i  values are found at different positions in an image. The 

number of boxes  N   where the probability iP  has exponent values between   and 

d   is found to scale as: 

   f
N L





     (3.10) 

where  f   can be defined as the fractal dimension of the set of boxes with exponent  . 

Multifractal measures can also be characterized through the scaling of the qth moments 

of iP  distributions in the form: 
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where qD  is the generalized fractal dimensions defined as: 
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The exponent in Equation (3.11) is known as the mass exponent of the qth order moment, 

 q : 

   1 qq q D        (3.13) 
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From Equation (3.12), we can see that when 0q   all the boxes have a weight of 

unity, the numerator becomes  N L , and qD  becomes: 

 

 
0

0

log
lim

log 1L

N L
D

L
      (3.14) 

This form is exactly the box-counting dimension used in two-dimensional fractal 

analysis. It means that monofractal is a special case of multifractal and only considers the 

homogeneous texture. The other two special moments are 1q   and 2q  . The 

corresponding dimensions are entropy dimension and correlation dimension, respectively. 

They have physical significance but is not widely in measure of fracture surface. In 

Equation (3.12), the higher order of q takes more accounts on the low mass density since 

iP  is in the range of 0 and 1. Therefore, the weights on different mass density can be 

implemented by different q. The correlation of fractal dimension  f   and mass 

exponent  q  is connected by the Legendre transformation: 

     f q q q q           (3.15) 

and  

 
 d q

q
dq


       (3.16) 

The significance of Equation (3.15) and (3.16) is feasible measure of fractal 

dimension  f   for varying  .  

In practice, the Equation (3.12), (3.15) and (3.16) can be applied to continuum 

percolation model in this section. The mass density  iP L  can be calculated by the 

density of sites in Figure 3.9. One example with n = 5, b = 2.37 is used to analyze fractal 
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dimension and mass moment. The pattern of this example is show in Figure 3.16. The 

white “hole” is non-uniformly distributed in the region of interest. This heterogeneity 

structure can be quantitatively described by τ(q), α(q) and f(q). As a comparison, the 

fractal dimension and lacunarity from monofractal analysis are also calculated. For 

pattern in Figure 3.16, the fractal dimension is 1.75 by fix-grid scan and lacunarity is 

0.2894 by sliding box scan. In multifractal analysis, the D0 is calculated by  0 0D    

which is Equation (3.13) at q = 0. Reading from Figure 3.17, it is exactly 1.75 for D0. 

Besides this box-counting dimension, the different slope on two side of q = 0 

characterizes the range of α(q). It shows that α(q) in the negative q is larger than that in 

the positive q. It means that mass density of small “hole” has more weights in the 

geometry than large “hole” in the region. This statement comes from the fact that 

moment q > 0 magnifies the contribution of boxes with large “hole” and q < 0 magnifies 

the contribution of boxes with small “hole”. The change of α(q) is shown in Figure 3.18 

associated with fractal dimension f(q). Their correlation is plotted in Figure 3.19. It shows 

highly heterogeneity in the pattern by the un-symmetric shape. To illustrate this point, an 

extreme example can be taken. If the pattern is homogeneous, the fractal dimension f(q) 

only has one value located at the peak point. This fractal dimension value is exactly for 

the largest cluster in the random percolation system in Figure 3.4a. In this circumstance, 

f(q) degenerates to D0 and the curve shape is more like a δ function.  

In addition, the heterogeneity can also be read from f(q) vs α(q) in Figure 3.20. 

Three different patterns are created with different number of squares in each generation. 

The information for these patterns are n = 5, b = 2.37 and N = (5, 7, 8). They are kind of 

clumping together due to very close fractal dimension. The peak of each curve represents 
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box-counting dimension (q = 0). That means, as increase of area fraction due to more 

squares in each generation, curve shifts on that auxiliary black line. All curves are tangent 

to that line. When large N is used, the asymptotic value for the peak would be 2 and that 

is the maximum fractal dimension in two-dimensional system. The symmetry can be an 

indicator of homogeneity of the system. For the curve in Figure 3.20, the large α(q) takes 

more portions, leading to large scaling in patterns and the non-uniform distribution of 

scaling properties. The associated MATLAB code is attached in appendix C as well. 

 

 

Figure 3.16 One Pattern with n = 5, b = 2.37.  
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Figure 3.17 Mass Exponent τ(q) with Respect to q for the Pattern in Figure 3.16. 

 

 

Figure 3.18 Lipschitz-Hölder Exponent α(q) and Fractal Dimension f(q) with Respect to q 

for the Pattern in Figure 3.16. 
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Figure 3.19 The f(α) Curve for Pattern in Figure 3.16.  

 

 

Figure 3.20 The f(α) Curves for Patterns with N = 5, 7 and 8. The curves are all tangent to 

the line D = α.  



58 

 

3.6. SUMMARY 

The stratified continuum percolation model incorporates hierarchical cascades of 

Cantor bar and percolation model. The overlap in the cascades results in multifractal 

feature of pattern, which resembles the statistical characteristics of fracture surface and 

aperture [40]. This model is two dimensional, the height distribution can be simulated by 

the density of sites in each pixel and was successfully used by Pyrak-Nolte et al.[51]. The 

main motivation of this model comes from the simulation of fluid flow conduits in a 

fracture. That means that the simulation is based on the fluid flow and on roughness 

distribution on the fracture surface, then calculate the aperture distribution. From this 

aspect, the calculation of fluid flow becomes easier, but increases the difficulty of surface 

characterization at the same time. At any rate, currently no comprehensive model can 

efficiently and accurately characterize both the fracture surface and the aperture and their 

deformation as well.  
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4. FRACTURE DEFORMATION MODEL 

4.1. INTRODUCTION TO FRACTURE DEFORMATION 

In enhanced geothermal systems, before injected water is pumped into the 

subsurface, fracture or joint in subsurface remains stable and open. This open fracture is 

propped by the roughness or asperities on two opposing surfaces. The initial state of 

asperities requires determination before thermomechanical analysis. Therefore, this 

section intends to analyze the fracture deformation under loads.  

The deformation of fractures went a long way to obtain the current understanding. 

Initially, the fracture is not assumed to be rough and the perfectly flat surfaces sustains 

loads elastically. However, the stress-strain curves for fracture loading is nonlinear 

cannot be explained by this flat surface assumption. With advance of measurement 

technology, the roughness on the surface can be quantified as in Section 2. Then, the 

elastic deformation, plastic deformation or even crushing of asperities under different 

magnitudes of loads are assumed to explain the reason for nonlinear stress-strain curve. 

In these, Hertzian contact model is widely used as the deformation model for single 

asperity. Later, Archard [52, 53] proposed that asperities on surfaces remain undamaged 

even under high loading and concluded that the nonlinear properties is probably 

attributed to new contact of asperities. The asperity deformation is still elastic even 

though it undergoes plastic deformation in initial several loading cycles. His statement 

was verified by Dyson and Hirst [54], Halliday [55]. The asperities were assumed the 

primary contributor to macroscopic deformation of fracture. Greenwood and Williamson 

[56] did the breakthrough work on the deformation fracture by numerous asperities on 
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surfaces. One rough surface was contacted upon a flat surface and the distribution of 

asperities was assumed to follow Gaussian distribution. The tip or curvature of asperity is 

treated as spherical and the deformation of asperities follows Hertzian contact model. 

They take account of the import fact that the elastic deformation of the macroscopic 

surfaces of the plane and sphere alter the forces on the asperities, and use an iterative 

process to calculate self-consistent displacement and pressure distribution. The total 

number of contacting asperities increases proportionally to the load while the average 

size of a microscopic contacting asperity is almost load independent.  

However, the interaction between asperities has not been addressed in preceding 

models. The conditions for these model to be valid is long distance between contiguous 

asperities. As shown in Section 2, the asperities is closely clustered on fracture surface. 

Therefore, their interaction should be carefully justified and taken into account. The 

interaction was observed experimentally by Williamson and Hunt [57], Pullen and 

Williamson [58]. The other significance for their work is the fact that material displaced 

from the contacting regions must reappear by raising some part of the non-contacting 

surface. Non-contacting surface denotes the void space between contacting asperities or 

other lower asperities. This infers that deformation of asperities brings bulk deformation 

of the material surrounding the joint. Usually the bulk material is long enough, bulk 

deformation on two half bulk can be analyzed by analogy to loading on half-infinite 

plane. The later has known solution. The bulk deformation would influence the surface 

shape and the pressure distribution on contacting asperities.  

Therefore, fracture deformation model should incorporate deformation of 

asperity, bulk deformation of surrounding rock and interaction of asperities. In this 
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section all of them are considered in the model. This model is similar to that used by 

Hopkins [13]. The following section follows these three components of deformation and 

validate this model with existing experimental data from literature. It is worth noticing 

that the asperity is assumed to be cylinder shape in this section and consider as 

hemisphere in thermomechanical analysis.  

4.2.  ASPERITY DEFORMATION 

As a simple case, the asperity is assumed as rod erected on fracture surface. The 

design is termed by Gangi [59] as “bed of nails” model. Gangi assigned power law 

distribution to rod’s height and the cross section area is proportional to height. This “bed 

of nails” model can be used in this section to capture nonlinear closure curve 

(displacement – loading stress plot). For single asperity, the asperity deformation can be 

calculated from Hooke’s Law for elastic materials (nonlinear deformation is not 

considered for simplicity): 

0

EA
F L

L
        (4.1) 

where ΔL is the displacement of asperity due to force F uniformly loaded on top of 

asperity. A is the cross section area of rod, A = πa2, a is the radius of rod. E is Young’s 

modulus of asperities. L is the initial length of asperity at unstressed state. The lateral 

expansion of asperity in the loading is negligible and not considered in this study. For the 

shape of asperity, hemispherical contacting asperities are widely used geometry to mimic 

deformation. That real geometry will be considered in later section and the framework of 

deformation is constructed in this section.  
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4.3.  HALF-SPACE DEFORMATION 

The bulk deformation of surrounding rock takes a primary portion in the fracture 

deformation. Due to small size of asperity compared to surrounding rock, usually less 

than 2 mm, and the surrounding rock can be treated as an infinite half space. The load F 

on surrounding rock is the same to the problem that a load is distributed over circular area 

on the half space and solve the displacement of plane surface. This solution is well 

known as Boussinesq solution for a concentrated force acting on the boundary of a semi-

infinite solid. For point inside the loaded area, displacement in the direction of the force 

is: 

 2 2
2

2

2 20

4 1
1 sini

v F r
u d

Ea a



 



      (4.2) 

where v is Poisson’s ratio; r is the distance from the center of the asperity. 

For points outside the loaded area, displacement in the direction of the force is:  
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 

    (4.3) 

The sketch of semi-infinite surface deformation is shown in Figure 4.1a. This 

situation is analogous to displacement of surrounding rock by rigid asperity loading. The 

elastic deformation of asperity is considered in Section 4.2. The displacement profile 

along the radial direction on the semi-infinite surface is shown in Figure 4.1b. The 

properties used to calculate this graph are: E = 20 GPa, v = 0.25, F = 100018 N, a = 1 

mm. The displacement in the asperity area is enclosed by two red dash lines. It shows that  
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displacement is not uniform in the asperity area, and maximizes in the center of asperity 

area. The formula for maximum displacement is: 

 2

max

2 1 v F
u

aE


      (4.4) 

At r/a = 5, the displacement u/umax ≈ 0.1. It means that the displacement outside 

of loading area is still significant. This is just the presentation for one rigid asperity, and 

becomes more obvious when bunches of asperities locates together. While in the real 

simulation the stress on the asperity remains constant from in-situ stress, the 

displacement at three different asperity radius are plotted in Figure 4.2 with same loading 

stress. It shows that large asperity takes more loads. This is an important result in terms 

of joint stiffness, which depends on the average displacement across the fracture. If the 

tall asperities are clustered together to form large contact areas, the average displacement 

across the fracture will be greater than if the asperities are dispersed. This point will be 

elaborated in later section.  

 

 

Figure 4.1 Half-Space Deformation by Rigid Asperity Loading. (a) The sketch and (b) 

the displacement along the radial direction.  
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Figure 4.2 The Displacement along Radial Direction at Different Radius of Rigid 

Asperities.  

 

Even though the displacement under and outside of asperity area in the semi-

infinite surface are calculated by Equations (4.2) and (4.3), the complicated form is 

intractable to numerous asperities on fracture surface. Therefore, the average 

displacement of surrounding rock under asperities area is: 

2

1
iu u drd

a



       (4.5) 

The integral is to calculate the volumetric displacement and u  denotes average 

displacement of surrounding rock under asperity area.  

4.4. MECHANICAL INTERACTION OF ASPERITIES 

The mechanical interaction of asperities is a simple extension to Section 4.3. In 

Figure 4.2b, loading on asperity also causes some displacement outside of asperity. When 
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other asperities are loaded in the surrounding, that displacement induced by individual 

asperities at a particular position is superposed together under the assumption of small 

deformation theory. For example, two asperities i and j are located in the position shown 

in Figure 4.3. The loading on asperity i causes displacement beneath j to be: 

 
2 2

1 1
2

1 r

ij o
r

u u r d dr
a







        (4.6) 

The loading on asperity i causes displacement beneath i to be:  

 2 0

1
2

a

ii iu u r rdr
a




      (4.7) 

where double subscripts ij denote displacement beneath asperity j caused by loading on 

asperity i, depending on the equality of i and j. iju  is the average displacement beneath j 

by loading on asperity i, a is the radius of asperity j. 

 

 

Figure 4.3 The Geometric Relation of One Asperity and Two Asperities in Mechanical 

Interaction. (a) One asperity i and (b) two asperities i and j. In (b), the closest point on j 

to center of i is r1 and longest distance to center of i is r2. The angles of arc intersected 

with j counter clockwise are θ1(r) and θ2(r).  

 

Based on simple geometric calculation (referring to Figure 4.3), the effect of 

particle i to particle j can be expressed as the function: 
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where R is the distance between two asperity centers.  

The underlying assumption used in Equations (4.7) and (4.8) is uniform radius of 

asperity. If the asperity radius varies, two radius symbols should be used instead. 

Therefore, the total average displacement beneath asperity i is the superposition of 

displacement caused by its own loading and other loadings: 

1

N

i ji

j

u u


       (4.9) 

where N is the total number of asperities in the region. Both Equations (4.7) and (4.8) are 

included in this form.  

An example is taken for illustrate the influence of mechanical interaction of 

asperities. Two cylindrical rigid asperities erect on the semi-infinite surface. The loading 

parameters and mechanical properties are: E = 20 GPa, v = 0.25, a = 0.5 mm, F = 1 kN. 

The distance between two cylindrical is dist. Two dist are selected: dist/a = 2 and dist/a = 

6. The configuration of model is shown in Figure 4.4a. The displacement profile along 

horizontal direction is shown in Figure 4.4b. The high plateaus corresponds to average 

displacement beneath rigid asperities. With longer distance between two asperities, the 

average displacement beneath rigid asperities decrease gradually. When the distance is 

long enough, the mechanical interaction of asperities vanishes and the displacement 

beneath each asperity is the same as in Figure 4.1b. Therefore, the clumping of asperity 

substantially increases the deformation of surrounding rock. This clumping property is 

characterized by multifractal analysis in Section 3. In addition, the deformation between 
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asperities is significant in Figure 4.4b. It reaches half of deformation beneath asperity 

when dist/a = 2. This significant effect of deformation cannot be neglected since it 

squeezes fracture aperture and leads to more contacting asperities between two tall 

asperities.  

 

 

Figure 4.4 Mechanical Interaction of Two Rigid Asperities Loading on Semi-Infinite 

Elastic Plane. (a) The configuration of model and (b) the resulting displacement.  

 

4.5. FRACTURE DEFORMATION 

Section 4.2 introduces deformation of single elastic asperity, and Section 4.4 

introduces the deformation of surrounding rock caused by mechanical interaction of rigid 

asperities. Combination of them tells the compression of elastic asperity and surrounding 

solid rock. With presence of more than one asperity in the fracture surface, this 
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combination can only solve the fracture displacement with asperities having same 

heights. For the varying heights, either specified stress condition or specified 

displacement condition does not determines how many asperities will come into contact. 

When the number of contacting asperities is unknown, that procedure in Section 4.2 and 

4.4 is not enough to obtain total displacement or stress between fracture surfaces. 

Therefore, more constraints are required to find the solution. In this section, the fracture 

deformation with varying heights of asperities will be determined. The constraints to 

reach that deformation is introduced below.  

For simplicity, consider a single asperity between two half space. The ketch of 

asperity in fracture is shown in Figure 4.5. The initial length of asperity is L0. After 

loading, its length becomes L, and also cause displacement of half space iu . The 

resulting fracture aperture is b. The deformation of asperity is 0L L L   . In addition, 

the relation iL u b   holds. Combining these two equations, the equation for 

deformation is: 

0iu b L L        (4.10) 

Equation (4.10) applies for contacting asperity. If the adjacent asperity with lower 

height and does not contact with both fracture surface, the inequality for deformation is: 

0iu b L       (4.11) 

Variable b is unknown beforehand. It can be determined by iterative scheme. 

Other variables are from preceding sections in this section. The loading displacement d is 

more widely used as a boundary condition, therefore it is used in the iterative procedure 

as d = L0 – b. It says that force is linear to these displacement variables and is favorable to 
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work as independent variable in the calculation. The structure of fracture has to be 

known. In this way, the positions of asperities and their heights are known. If loading 

displacement is specified, that is, d is known, the force on each asperity can be calculated 

by Equations (4.10) and (4.11) with iteration. If loading force is specified, fracture 

deformation can be calculated by Equations (4.10) and (4.11) without iteration. The 

MATLAB code is attached in Appendix C. 

 

 

Figure 4.5 Geometric Relation in Fracture Deformation. (a) The initial unstressed state of 

single asperity with length L0, (b) the stressed state of single asperity with length L, the 

displacement of surrounding rock on one side is iu  and the fracture aperture outside the 

influence distance is b.  

 

4.6. VALIDATION OF FRACTURE DEFORMATION MODEL 

As stated, the position and heights information about asperities are required 

before specific calculation. To ensure that the model calculated force with the correct 

magnitude, tests are constructed that allows model results to be compared to analytical 

solutions. As a simple case, the asperities has equal radius of 0.5 mm and are spaced 0.5 

mm apart. The height is assume to 3.5 mm for all of them. Total number of asperities are 
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50 in a row. The properties for both asperities and surrounding rock are E = 20 GPa, v = 

0.25. The force on each asperity is shown in Figure 4.6b. The force is non-uniform 

distributed. The asperities at the edge takes more force than the middle one. Because 

asperities at the edge has less interaction effect than the middle. The surface has less 

indentation and leads to relatively taller asperities than the middle. The total force taken 

by asperities is 53.98 kN. Therefore, more force is loaded on them. This result complies 

with our expectation. In addition, the relative importance of interaction and self-

deformation of asperities can be compared in this example. Take the 30th asperity for 

example, it is subjected to deformation by other 49 asperities and its own deformation. 

The loading force on it is 1.05 kN reading from Figure 4.6b. Its own deformation is 0.234 

mm and the deformation induced by other asperities is 0.266 mm. The total deformation 

is 0.5 mm. It shows that asperity deformation is less than the surrounding rock 

deformation. Therefore, it demonstrates the significance of surrounding rock 

deformation.  

More realistic case is asperities with varying heights. Taken an example of height 

distribution as  0 3 0.5sin 6 / 73.5L x  , where x is the distance to first asperity. The 

origin is at the center of first asperity. Other parameters remain the same as that example 

with equal height. The force on each asperity is shown in Figure 4.7b. The total force 

taken is 19.1 kN, much less than that in uniform height even though the displacement is 

the same. Three ‘hills’ in Figure 4.7b correspond to three humps in Figure 4.7a. 

Therefore, fracture deformation is related to asperity distribution and cluster of asperities 

sustains more weights than discrete asperities. This statement is consistent with Hopkins 

[13]. 
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Figure 4.6 Force Distribution on Row of Asperities with Equal Height under Specified 

Displacement. (a) The configuration of asperities and (b) the force loaded on each 

asperity for uniform height.  

 

After having a basic understanding of fracture deformation, a well-known model 

is used to validate our fracture deformation model. A rigid punch presses on a semi-

infinite half-space and the loading area is circular. The configuration of this model is 

shown in Figure 4.8.  



72 

 

 

Figure 4.7 Force Distribution on Row of Asperities with Sinusoidal Height under 

Specified Displacement. (a) The configuration of asperities and (b) the force loaded on 

each asperity for sinusoidal heights.  

 

Because the punch is assumed to be absolutely rigid, the displacement beneath the 

punch is constant and is given by: 

 21

2

P v
u

aE


        (4.12) 

where P is the total load on the punch, a is the punch radius, v is the Poisson’s ratio, E is 

Young’s modulus.  

The distribution of stress across the punch is given by: 

 
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
      (4.13) 

where r is the distance from the center of the punch.  
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Figure 4.8 A Rigid Punch Presses on a Semi-Infinite Half-Space. (a) Three-dimensional 

display and (b) cutting plane display.  

 

This rigid punch test can be simulated by fracture deformation model in this 

section. Due to circular loading area, the arrangement of circles has to form a large circle 

and rings can form in this arrangement shown in Figure 4.9. The number of inner circles 

to fill the outer circles of radius a is: 

2

24

a
n

b


       (4.14) 

where a is the radius of rigid punch or outer circle and b is the radius of small disks or 

inner circles. Inversely, if the number of inner circles is known, the radius of small disks 
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can be determined by Equation (4.14). Based on geometric relation that the inner circles 

along radial direction can optimally fit the outer circle, this relation holds: 

 a ≈ b(2m -1)     (4.15) 

where m is the number of rings. In Figure 4.19, two inner rings present.  

Substituting into Equation (4.14), the equation is: 

 
2

2 1
4

n m


      (4.16) 

Both m and n are integer. Therefore,  

 

 

Figure 4.9 The Arrangement of Inner Circles to Fill the Outer Circles.  

 

In addition, to satisfy the condition that the punch is rigid, the disks used to model 

the punch are given high Young’s modulus. The used parameters are Es = 20 GPa, v = 

0.25, Ep = 2000 GPa, a = 0.5 mm. The number of inner circles are 19, 62, 132 and 226. 

The corresponding radius of disks are 0.1017 mm, 0.0563 mm, 0.0389 mm and 0.0297 

mm. The configuration of circular disks is shown in Figure 4.10. The height of cylinders 
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is set to 2 mm, and the specified displacement is 0.2 mm. The analytical total force is 

calculated by equation:  

2

2

1

auE
P

v



      (4.17) 

where u is the specified displacement for rigid punch.  

For the numerical total force, it is obtained by summation of force on individual 

disk. The force on disks is obtained by formation deformation model. The small 

modification is required due to rigid punch and only half space. The total force is termed 

as numerical total force and presented in Table 4.1.  

 

Table 4.1 The Comparison of Total Force  

No. of rings No. of disks 

Disk radius 

(mm) 

Total force 

(numerical) 

Total force 

(analytical) 

Diff. 

(%) 

3 19 0.1 3.9355 

4.2667 

 

7.76 

4 38 0.0714 4.045 5.2 

5 62 0.0556 4.0872 4.21 

6 95 0.0455 4.1285 3.24 

7 132 0.0385 4.14 2.97 

8 176 0.0333 4.1575 2.56 

9 226 0.0294 4.169 1.8 

 

It shows that numerical total force gradually approaches the analytical total force. 

The difference is also shown in last column. With reduce of disk radius, the total area 
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they occupied also approaches real area of rigid punch. The real area is 0.7854 mm2. The 

area for numerical disks are 0.5969 mm2, 0.6086 mm2, 0.6021 mm2, 0.6179 mm2, 0.6147 

mm2, 0.6131 mm2, 0.6137 mm2. 

 

 
Figure 4.10 The Configuration of Circular Disks in Numerical Method.  

 

Besides the total force on the circular rings, the stress distribution along radial 

direction can also be compared with analytical solution. For analytical solution, the stress 
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distribution is given by: 

 
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      (4.18) 

This stress is inversely proportional to distance to center of rigid punch. When r 

approaches edge of punch, it becomes infinite. The numerical stress distribution is 

calculated from disk along radial direction. Because stress is independent on θ, the 

sequential disks along radial direction is selected and the stress is calculated as: 

i
i

i

f

A
        (4.19) 

where if  is the force loading on that disk and Ai is its area, σi is the average stress on that 

disk. The stress comparison is shown in Figure 4.11. Only one case is presented. With 

more rings considered, two curves become smooth and closer to each other. 

In summary, a fracture deformation model is established with cylindrical 

geometry of asperities. The fracture deformation has three components: asperity 

deformation, mechanical interaction of asperities, half-space deformation. The half-space 

deformation dominates the fracture deformation. Even though the asperity is simple, the 

significance of asperity distribution can still be captured. The asperity cluster can sustain 

more loads than discrete asperities. That explains the cluster distribution of asperities in 

Section 3. This model takes advantage of circular cross section of asperities. In this 

circumstance, the stress distribution induced by loading on asperities is well known [60].  

It is easy to group individual disks to large geometry, like the rigid punch test. This 

concept is used to validate fracture the deformation model with the rigid punch test.  
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However, this cylindrical assumption of asperities is oversimplified. The 

hemispherical geometry of an asperity is more often used in the literature. The Hertzian 

contact model is found to be unrealistic in terms of high stress concentration on the tip of 

the asperity. Therefore, a more realistic model is required to replace the cylindrical 

asperities. Other parts can remain the same. This is the objective of next section. 

 

 

Figure 4.11 The Stress Distribution with Respect to Distance from Center of Rigid Punch 

for Three Rings.  
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5. DEFORMATION OF HEMISPHERICAL ASPERITY 

5.1.  INTRODUCTION TO ASPERITY DEFORMATION 

Enhanced geothermal systems (EGS) provide an alternative energy solution by 

injecting water into hot rock and recycling the heated water for baseload electricity 

generation as clean energy [61, 62]. The report of a Massachusetts Institute of 

Technology study predicted a potential of 100 GWe of cost-competitive electricity 

capacity could be achieved by EGS in the next 50 years in the United States with suitable 

investment and improvements to existing technology [62]. In the study of EGS 

mechanisms, the energy production efficiency is mainly influenced by reservoir 

permeability, water production rate, rock thermal conductivity and injection temperature; 

among these factors, reservoir permeability is the most important one [63, 64]. It has 

been well recognized that fractures, generated either by hydraulic fracturing or by 

shearing reactivation in geothermal reservoirs, play a critical role in the determination of 

reservoir permeability and the control of flow and heat transport. Changes of fracture 

network could result in a significant impact on the energy production efficiency of EGS 

as well as the recycling rate of injected working fluid [64, 65]. Although various working 

fluids have been suggested such as CO2 [66], ammonia, n-Butane and neopentane [66], 

water is the most popular working fluid considered in EGS. Great efforts have been made 

to study the impact of fracture networks on EGS for energy production efficiency and 

water loss rate in which case the energy and water as working fluid are two of the most 

important resources for human society needs [67]. Such efforts include using the fracture 

continuum method [68], the single porosity method [69], the dual porosity method [70], 
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and the discrete fracture network method [71]. Among these fracture network studies, 

however, the geomechanical effects are seldom considered. Geothermal reservoirs are 

mainly developed in tectonically stressed sedimentary basins at depths of approximately 

3 km to 5 km with temperatures of up to 350˚C [72]. By injection of cold water into hot 

dry rock (HDR) to be heated up, large temperature differences exist between the injected 

water and the HDR of the ambient geothermal reservoir. This temperature difference 

could exert thermal stress on the rock and have a geomechanical impact on each fracture. 

Similar thermal effects also are present in other problems such as deep earth energy 

storage, CO2 sequestration and enhanced oil recovery. By assuming fractures as 

equivalent porous media, Pandey et al. [73] analyzed the thermo-elastic effect on fracture 

aperture and concluded that the cooling effect by water injection could induce fracture 

opening in the vicinity of the injection well and closure of fractures at far field locations. 

In their analysis, only the rock matrix contraction due to cooling had been considered. 

The Soultz-sous-Forêts pilot site study verified such occurrences of a thermal contraction 

zone at the reinjection zone [74]. In other aspects, thermal stimulation to generate 

secondary fracture opening by injecting cold water into primary fractures was studied 

[75]. Multiple secondary thermal fractures could be created and propagate perpendicular 

to main fracture with different rates and final lengths for distinctive temperature 

difference. This fracture initiation by thermal shock of reservoir rock were demonstrated 

in experiments [76] as well as in analyzed theoretical models [77, 78].  

In contrast to the fractures generated by hydraulic fracturing for shale oil 

recovery, most fractures in EGS are pre-existing and self-propping fractures [79]. The 

geomechanical integrity of self-propping asperities is therefore important to the integrity 
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of fracture networks in EGS. Nevertheless, extant studies have not yet paid much 

attention to the geomechanics of the self-propping asperities, especially when fractures 

with self-propping asperities are subject to degradation due to large thermal stress caused 

by sudden cooling effects. Thermal stress due to the rock/water temperature difference by 

cold-water injection can damage fracture self-propping asperities, reduce fracture 

aperture, and even close the fractures. This study aims to bring such thermal effects to the 

attention of EGS studies, encouraging researchers to study how such thermal effects 

could affect the self-propping asperity integrity. Through finite element analysis by 

assuming idealized asperity shape as semi-sphere, we have demonstrated the failure of 

fracture asperity when the water/rock temperature difference reaches critical values under 

various overburden pressures. 

5.2. PROBLEM STATEMENT AND METHODOLOGY 

To explore the thermal effect on self-propping fracture asperities and keep our 

problem focused, we considered an idealized fracture which has parallel plates as walls 

and a pair of semi-spheres as asperities (Figure 5.1c); high resolution real-world fracture 

mapped by optical profilometry [80] will be considered in our future work due to the 

duration limit of this study. The semi-spheres prop a fracture open by bearing overburden 

pressure. When the injected water is exposed to the high temperature of the surrounding 

rock matrix, the asperities are subject to a sudden large thermal stress, and pore pressure 

changes are negligible compared to corresponding large thermal stress on an asperity 

[81]. Such thermal stress could damage self-propping asperities and deteriorate fracture 

network integrity in EGS. To investigate its possible impact on EGS, a quantitative 
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model had been developed to describe the mechanical response of the asperity to the 

thermal stress by considering a damage based constitutive law on asperities [82]. Due to 

the symmetry of the semi-sphere pair contact, only one semi-sphere was considered. 

 

 

Figure 5.1 Sketch of Enhanced Geothermal System and Asperity Distribution of Interest. 

(a) Schematic of typical enhanced geothermal systems (EGS), (b) the fracture 

configuration and stress distribution in fractured zone, (c) the idealized asperity 

distribution on the surface of rough fracture, (d) idealized asperity pair bonding with rock 

matrix in one unit cell at frontal view (left) and top view (right).  

 

 Mapping of Loading Stress on Asperity. The large in-situ stress in deep 

formation does not uniformly load on fracture surface and rock matrix at its average 

magnitude in the fractured zones. The real loading stress on asperity is much lower than 

the nominal in-situ stress. A simple mapping method was used in this study to calculate 

the loading stress on asperities; for more accurate but complicated methods readers may 

refer to the work by Hopkins [13]. In our model, in-situ stress distribution along depth 
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was specified as in Soultz-sous-Forêts geothermal project [83]. Overburden pressure σv 

was taken to be a linear function of EGS depth z (in a unit of m): σv = -1.3 + 25.5z kN/m2, 

and pore pressure was also modeled as a linear function of depth z: u = 0.9 + 9.8z kN/m2. 

We defined the net pressure difference between σv and u as effective overburden pressure 

σ’v = σv – u. As demonstrated in Figure 5.1b, when a fracture is present at certain depth of 

fractured zone, the fracture asperities only take up a small portion of the loading 

compared to rock matrix body. The far-field overburden pressure is balanced partially by 

pressure on fracture surface and pressure through rock matrix body, respectively (Figure 

5.1b). In this model, a conservative 2:1 model of pressure on rock matrix to pressure on 

fracture surface was specified. That is, σ’vA = σfAf+σmAm applies based on the force 

balance and Af=2Am. The physical presentation of these symbols are in Figure 5.1b. Need 

to note that the configuration of fracture in geothermal reservoir has small aperture but 

large depth. The sketch in Figure 5.1b is exactly the cross section in the depth direction. 

The assumed relation of area occupied by fracture and rock matrix is appropriate [84]. 

We also assumed that asperities on the fracture surface had the same spherical shape 

(Figure 5.1c) and size to simplify analysis. The contact area of asperities in fractures is 

generally known to be less than 40% of the total surface area of the fracture [13]. In this 

model, we set the contact area of asperities to be 30% of the fracture surface area. That 

means that the ratio of asperity area to unit cell area is 30%, πR2/l2=30% as shown in 

Figure 5.1d. The fluid pressure is related to injection pressure and site along the straight 

line path from production well to injection well. In this regard, the force or pressure 

loading on asperity pair can be correlated to far-field overburden pressure with the 



84 

 

embedded effect of pore pressure/fluid pressure. In the following part of this paper, this 

relation frequently will be used. 

 Thermal Conduction. The temperature field within the asperity is 

determined by the heat exchange between the low-temperature water with temperature Tw 

and the high-temperature rock matrix with temperature Tr. The temperature difference 

between the rock and water is ∆Tw-r = Tr - Tw. This cooling process can be interpreted as 

the thermal unloading process. The governing equation for this heat exchange is written 

as: 

𝑘∇2𝑇 + 𝑞 = 𝜌𝑐
𝜕𝑇

𝜕𝑡
      (5.1) 

where T is the temperature within the asperity; q denotes the rate of heat generated inside 

the medium; k is the apparent thermal conductivity of the medium; ρ is the bulk density 

of medium; c is the specific heat or heat capacity of the medium, and t is the time. In this 

study, we assumed the cooling process occurs immediately after the injection of water. 

Since size of asperities is much smaller than that of matrix rocks, the injected water can 

cause a much faster cooling of asperities, which are completely immersed in the water, 

compared to the fracture walls. At the same time, the water has not been significantly 

heated up immediately. Therefore, for the boundary conditions, the temperature of the 

connection between asperity and rock matrix was set as constant Tr while the free surface 

of asperity was assumed at the inlet water-temperature Tw before the water had been 

heated. The spatial temperature distribution in asperity was obtained by solving Equation 

5.1. In this calculation, a temperature change ∆T defined as ∆T = Tr - T is the change of 

asperity temperature after the heat exchange between water and rock matrix reaches 

equilibrium. The ∆T of the asperity is critical in our study and will be coupled with the 
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asperity geomechanical process. A thermo-mechanical process was modeled by adding 

∆T to the constitutive model described below by considering thermal expansion of 

asperity.  

 Asymmetric Damage Mechanics Model. The failure of quasi-brittle 

heterogeneous materials such as rocks is mostly due to propagation and intersection of 

pre-existing micro-cracks [85, 86]. A macroscopic representation of micro-crack 

development was qualitatively described by continuum damage mechanics [82]. A 

damage variable was generally introduced to characterize surface density of intersection 

of micro-cracks, as justified by principles of irreversible thermodynamics [87]. In our 

work, an isotropic damage variable is used to model deterioration of elastic modulus:  

𝐸 = 𝐸0(1 − 𝐷)    (5.2) 

where 𝐸 is the degraded elastic modulus; 𝐸0 is initial Young’s modulus; 𝐷 is an isotropic 

damage variable and satisfies the criterion 0 ≤ D ≤ 1. The value D = 0, corresponds to a 

state in which the rock is intact (without degradation of Young’s modulus), while the 

value D = 1, corresponds to, complete loss of bearing capacity and (almost) no stiffness 

of the asperity material (rock).  

The stress-strain relationship, by considering the thermal expansion (∆εij = 

α∆Tδij), can be expressed as,  

𝜎𝑖𝑗 = [𝜆̅𝜀𝑖𝑗 − (3𝜆̅ + 2𝜇̅)𝛼Δ𝑇] 𝛿𝑖𝑗 + 2𝜇̅𝜀𝑖𝑗    (5.3) 

where σij and εij are the stress and strain tensor, respectively; δij is the Kronecker delta; 

and α is the coefficient of thermal expansion. The 𝜆̅ and 𝜇̅ are damaged Lamé’s constants 

defined as 𝜆̅ =
𝐸𝑣

(1+𝑣)(1−2𝑣)
, 𝜇̅ =

𝐸

2(1+𝑣)
, where ν is Possion’s ratio. 



86 

 

To determine D, by combining the uniaxial compression/tension test results and 

the results of indirect Brazilian disk tests conducted on granites [88-90], we imposed 

asymmetric triangular stress-strain profiles with peak strengths followed by the residuals 

(Figure 2a). Similar profiles had been used as well [82]. A bilinear elastic response was 

assumed prior to reaching the peak for both compressive and tensile loading conditions. 

The reduced stiffness in the second linear stage represents the propagation of micro-

cracks. After reaching the peak, an instantaneous reduction in strength was introduced to 

represent the brittle nature of rock failures in both tensile and compressive loading 

conditions. A linear softening behavior was given to the tensile loading case based on the 

micro-crack coalescence. A flat residual strength was used in the model of the 

compressive loading scenario, to represent the residual confining effects [91]. A 

maintenance of small residual value (0.01% of initial value) was kept to reduce the 

computational instability. The damage variables for tension and compression were 

calculated respectively as follows, 

𝐷𝑡 =

{
 
 
 

 
 
 

0   0 < 𝜀 < 𝜀𝑡𝑖
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and 

𝐷𝑐 =

{
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where the symbol σ represents maximum principal stress σ1 in (5.4) and minimum 

principal stress σ3 in (5.5). The value ε is the equivalent principal strain: 𝜀 =
𝜎

𝐸
. The 

subscripts t and c stand for tension and compression, respectively.  The subscript i 

signifies the elastic limits; the subscript o the peak strengths; the subscript r indicates the 

residual strengths; and the subscript u the ultimate failure. Although the tangential 

stiffness in each linear segment remains constant, the secant stiffness is proportionally 

reduced, describing the irreversible damages. The elastic unloading process at each stage 

and the following reduced secant stiffness are also illustrated in Figure 5.2a. The 

parameters used to define the constitutive law in this study are based on the uniaxial 

experimental values [88] for granite in consideration of significant confining pressure 

[92] and laboratory loading difference [93]. It should be noted that the constitutive law 

profile described above is the projection of the failure surface in the principal stress space 

(σ1, σ2, σ3), which can be divided into tension and compression zones as follows: 

𝜎𝑓 = {
|𝜎1| 0 < 𝜎3 < 𝜎2 < 𝜎1

|𝜎3|              𝜎3 < 0 < 𝜎2 < 𝜎1 || 𝜎3 < 𝜎2 < 0 < 𝜎1 || 𝜎3 < 𝜎2 < 𝜎1 < 0
  (5.6) 

where 𝜎𝑓 defines the failure surface. Note that, the absence of cohesion in brittle rocks 

[94] limits the ratio between compressive and tensile strengths giving |
𝜎1

𝜎3
| < 0.1 in 

compression zone. The failure surface in the principal stress coordinate is plotted in 

Figure 5.2b. The indices 1-4 correspond to the linear segments illustrated in Figure 5.2a. 

Following a tension-positive sign convention, the first quadrant shown in Figure 5.2a is 

in tension, and the third quadrant is in compression. The pyramidal failure volume 

constructed by the failure surface (Figure 5.2b) quantifies the failure zones in the 
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principle stress space as found in the experiments. An asymmetric constitutive 

relationship was then established for the modeling of rock failures under complex loading 

conditions. 

By solving (5.1), (5.3) and equilibrium Equation (5.7) given below together, we 

can obtain the distribution of ∆T, σij, εij and D within the asperities, and estimate damage 

and deformation of asperities. 

𝜎𝑖𝑗,𝑖 + 𝐹𝑗 = 0      (5.7) 

where Fj is the body force tensor. 

In our modeling, we firstly applied σ’v to the asperity contact, which represents a 

self-propping situation before applying any cold-water injection, i.e. ∆Tw-r = 0. Then, we 

used obtained stress and strain distributions as the initial stress and strain status for 

further calculation. For the boundary conditions, the displacement of the asperity/rock 

matrix interface is fixed in the tangential direction which can be interpreted as rigid 

connection between the asperities and the rock matrix. 

In our study, two asperity damage mechanisms were investigated, including the 

contact induced damages and the thermally induced radial crack propagations. The 

mechanical performance of the self-propping asperity was evaluated through the force-

displacement response. Then the cooling process due to water injection was modeled to 

exhibit interaction between the two damage mechanisms. A quantified failure prediction 

was reached by the characterization of such interaction. At the end, we correlated our 

modeling results with actual field data to provide meaningful interpretations of the 

modeling results. 
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Figure 5.2 Elastic Damage-Based Tension-Compression Asymmetric Constitutive 

Relation: (a) the stress-strain curve, 1: linear elastic limit; 2: peak strength; 3: residual 

strength; 4: ultimate failure; (b) Failure surface in three-dimension principal stress space, 

therein blue color denotes tension zone and red color denotes compression zone.  

 

5.3. NUMERICAL RESULTS 

The result from numerical simulation is presented in this part. 

 Initial Stress-Strain Response. Before applying any thermal effect, we 

need to know the initial stress status of the self-propping asperity at varying depth in the 

deep earth. To reconstruct the stress status of asperities, we conducted the strain-

controlled loading to obtain a complete stress-strain characteristics for asperities 

numerically. The stress-strain relationship is plotted as a dashed curve in Figure 5.3. By 

connecting the peak values of the dashed curve in a monotonically increasing manner, we 

can re-create the stress-strain relationship under stress-controlled loading mode as 

indicated by solid curve in Figure 5.3. Each stress drop after the peak in the strain-

controlled loading mode indicates a local damage within the asperity contact zone. From 

the stress-controlled perspective, the monotonic increments of strain, which cause 
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snapping of stress and result in plateaus as illustrated by the solid line in Figure 5.3, 

indicates large vertical crushes of the asperity.  

 

 

Figure 5.3 The Relation of Stress on Top of Asperity and Strain (Deformation/Radius) at 

Force Control Loading (Blue Line) and Displacement Control Loading (Black Dash 

Line). Overburden pressure σv and corresponding pore pressure u at three typical strain 

conditions are shown as well.  

 

The Hertzian contact model was used to analyze the deformation of contacting 

asperity under normal stress [25, 95]. But it was criticized by Beeler and Hickman [96] 

that the excessive strain of contacting asperity at prescribed normal stress cannot be 

accommodated. For example, asperity strain, defined as the ratio of mean value of 

asperity deformation to asperity tip radius of curvature, is used to quantify the vertical 

deformation of contacting asperity. Asperity strains during experiment at 7 MPa 
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macroscopic normal stress range are typically 0.14 [96]. In this study, with the uniform 

height assumption of asperities on fracture surface, the asperity strain is approximately 

0.15 at normal stress of 7 MPa. The result is very close to the experimental data. 

Whereas, the Hertzian contact stress is about 19 GPa at asperity strain of 0.14 based on 

the equation 〈𝜎𝑐〉 = 0.42𝐸
∗√𝛿 𝑅⁄  in Beeler and Hickman’s work [96]. Thus, the normal 

loading-displacement relation in this study can replicate the similar result with 

experimental data, but the Hertzian model cannot accommodate excessive asperity strain 

at prescribed normal stress.  

 Boundary Setting for Thermo-Mechanical Analysis. To capture the 

deformation behavior of mated asperity pair by cooling, the temperature distribution 

within asperity and rock matrix is required. The temperature distribution around the 

asperity is decided by heat convection in fluid and heat conduction in solid rock. 

Therefore, another hydrothermal simulation is conducted separately. The simulation is 

implemented in COMSOL® Multiphysics. The considered region is one unit cell as 

shown in Figure 5.4a. Notice that this region is the same as that in Figure 5.1d 

comprising one single asperity pair. Based on the assumed ratio of real contact area to 

nominal surface area 30% in Section 5.2.1, the edge length of rock matrix block is l=8.1 

mm. Two layers are set for the rock matrix in either side of asperity: the one connecting 

asperity is regular solid domain and the other one is infinite element domain. Their 

lengths are a = b = 3 mm. The thermal parameters of solid and water are from Table 5.1. 

The cold water flows along positive x direction. The transverse direction (y-z plane) are 

symmetric boundaries for both solid and fluid. One difference compared to asperity 

model in this study is the contacting state of asperity pair. The asperity pair is artificially 
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separate to reduce the mesh singularity near the asperity tip. The inlet and outlet for 

thermal boundary condition of water are constant temperature and open boundary 

condition. The temperature at utmost solid surface in x-y plane is set to constant 

temperature. The hydraulic condition of water at the inlet and outlet are flow rate 

Q=6×10-8 m3/s and outflow boundary condition. The cross section in the x-z plane 

crossing the center of asperity is presented in Figure 5.4b. Because of the equivalent 

length in the x direction and y direction, the cross section in the y-z plane crossing the 

center of asperity should be the same as Figure 5.4b. This is a simple model focusing on 

single asperity to demonstrate the thermal conductivity effect. 

 

 

Figure 5.4 Schematic Diagram of Single Asperity Model to Illustrate the Hydrothermal 

Simulation: (a) 3D view and (b) cross section in the x-z plane. Matrix I: nearby rock 

matrix domain, Matrix II: infinite element domain of rock matrix in simulation.  
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Table 5.1 Model Data Used in Simulation 

Category Parameter name Value 

Elastic parameters 
Young’s modulus, E 111.36 GPa 

Poisson’s ratio, v 0.25 

Thermal parameters 

Heat capacity, c 790 J/kg·K  

Thermal conductivity, k 10.7 W/m·K 

Reservoir temperature, Tr 350˚C 

Injection water temperature, Tw 50˚C 

Granite density, ρ 2750 kg/m3 

Geometric parameters Hemisphere radius, R 2.5 mm 

Compression parameters 

Elastic limit stress, σci 294 MPa 

Peak compressive strength, σco 600 MPa 

Residual compressive strength, σcr 58.2 MPa 

Elastic limit strain, εci 2.64×10-3 

Residual compressive strain, εcr 6.87×10-3 

Ultimate compressive strain, εcu 1.0×10-2 

Tension parameters 

Elastic limit stress, σti 24.54 MPa 

Peak tensile strength, σto 40.2 MPa 

Residual tensile strength, σtr 9.42 MPa 

Ultimate tensile stress, σtu 1.5 MPa 

Elastic limit strain, εti 2.2×10-4 

Residual tensile strain, εtr 6.65×10-4 

Ultimate tensile strain, εtu 1.5×10-3 

 

The temperature distribution around the asperity pair is shown in Figure 5.5. Only 

the temperature distribution in the solid domains display for better illustration. The three  
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Figure 5.5 The Temperature Distribution at Three Instants of Time around the Asperity. 

(a1)-(a3) are cross-sections in the x-z plane through center of single asperity shown in 

Figure 5.4, (a4)-(a6) are cross sections in the y-z plane through center of single asperity 

shown in Figure 5.4.  

 

graphs in the first row (a1-a3) are temperature distribution at three time steps (t = 0.01s, 

0.1s and 1s) in the x-z plane crossing the center of asperity. The blue spots near the 

entrance indicate low temperature from inlet boundary condition. As the temperature 

contour moves faster in the fluid domain than in the solid domain, the thermal front 
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propagates faster in fluid domain. This can be more obvious in the temperature maps (a4-

a6) in the y-z plane crossing the center of asperity. The asperity pair extruded into fluid 

domain has more rapid temperature change. The real temperature distribution around the 

surface of asperity is not uniform as seen from Figure 5.5(a6). To simplify the calculation 

in ABAQUS®, the constant temperature on the spherical surface is set. More accurate 

temperature distribution around the asperity will be considered in further work. In 

addition, the temperature drop in the rock matrix is small compared to asperity. 

In our numerical implementation in ABAQUS®, the asperity was firstly loaded to 

prescribed overburden pressure, which simulated initial conditions of asperity before 

cooling. Then, gradually increased temperature difference ∆Tw-r was applied on the outer 

surface of the asperity while the loading pressure was kept constant. The schematic 

illustration of loading process are displayed in Figure 5.6a. This intends to simulate the 

contact of water and rock at different site along fracture direction. Because the cold water 

near the injection well would be heated up and hence the temperature difference of warm 

water and hot rock reduces along fracture direction. The premise for rapid cooling of 

asperity while constant temperature of fracture matrix is the instantaneous touching 

moment of cold water and hot rock. Two reasons can substantiate this point.  

Heat transfer in fluid and solid is mainly controlled by convection and 

conduction, respectively. In the transfer direction perpendicular to fracture surface, the 

thermal conduction within the solid and solid/fluid interface can be characterized by 

thermal diffusivity of the solid. From the parameters in Table 5.1, the thermal diffusivity 

of solid is about 5×10-6 m2/s by 𝛼 = 𝑘 𝜌𝑐𝑝⁄ . For the small size of asperity (R=2.5 mm),  

the time scale for this cooling can be roughly estimated to be 1.25 s by ∆𝑡 = 𝑅2 𝛼⁄ . 
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Figure 5.6 Deformation of Asperities under Cooling Effect. (a) Illustration of 

deformation process, (b) asperity deformation with response to rising temperature 

difference for damage model and elastic model on solid asperity. 

 

In this sense, the time to asymptotically reach steady state is approximately 1.25 s. 

In the transfer direction longitudinal to fluid flow, the thermal convection within the fluid 

can similarly be characterized by hydraulic diffusivity of the fluid. The hydraulic 

diffusivity of water in geothermal test is typically in the order O(101) m2/s [97]. The time 

scale for cold water to flow through the asperity pair is about 2.5×10-5 s. Hence, this 
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local thermal non-equilibrium causes insufficient heating of water. It also means that the 

impact of thermal diffusion is much smaller than the convection in the fracture. 

Considering the small size of asperity to rock matrix and exposure of asperity surface to 

cold water, the variation of temperature in the rock matrix is negligible.  However, for a 

long term of EGS heat production, the rock matrix will eventually be cooled down. The 

fixed asperity/rock matrix boundary condition becomes invalid. Therefore, the proposed 

asperity failure mechanism below only works at the early production stage of EGS. 

 Temperature-Strain Response under Cooling. The thermal loading of 

damage model firstly is compared with standard elastic model. The elastic model is set up 

in ABAQUS® CAE with the same parameters as in Table 5.1. The same mesh size and 

loading procedure shown in Figure 5.6a is followed in elastic model. The comparison of 

thermal loading of damage model and elastic model are displayed in Figure 5.6b. The 

initial vertical strain due to mechanical loading is larger for the damage model at low 

temperature compared to elastic model. Because the elements near the contact region are 

damaged (D=1) or partially damaged (0<D<1) in the mechanical loading stage and the 

induced thermal stress would cause some damage near the contact region. With 

increasing temperature, more elements will lose bearing capacity for damage model, 

leading to approximately linear relationship between ∆T and ∆ε. For the elastic model, 

with increasing contact area, higher loading can be withstood and the curve 

asymptotically levels off with increasing temperature difference. 

To understand the “temperature”-“strain” response of the asperity when subject to 

cooling process, three typical overburden pressure σv1 = 83.6 MPa, σv2 = 100.3 MPa, and 

σv3 = 126.7 MPa, and their corresponding pore pressure u1 = 33.5 MPa, u2 = 39.8 MPa, 
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and u3 = 49.9 MPa were selected for the “temperature”-“strain” test. Here, the 

“temperature” is actually the temperature difference between the hot rock and injected 

cool fluid, and the “strain” is the induced strain change due to the cooling effect. The 

corresponding depths of these overburden pressure were referred to the top, middle and 

bottom of regular EGS reservoir (3 km ~ 5 km). Three overburden pressure scenarios are 

depicted in Figure 5.7 with corresponding initial strain ε0. With fixed temperature 

difference, the higher overburden pressure leads to the lower vertical deformation of 

asperity by cooling effect, which indicates the overburden pressure could inhibit the  

 

 

Figure 5.7 The Effect of Water-Rock Temperature Difference on Strain Change at Three 

Overburden Pressure Cases, Critical Strain Changes to Define Asperity Failure is 

Delineated by Horizontal Dash Line.  
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Figure 5.8 Damage Value Contour and Normalized Hoop Stress Contour at Different 

Temperature Difference. (a) The contour of damage variable D and (b) normalized hoop 

stress 𝜎𝜃
∗ at overburden pressure σv=100.3 MPa. Normalized hoop stress is defined as 

𝜎𝜃
∗ = 2

𝜎𝜃−𝜎𝜃,𝑚𝑖𝑛

𝜎𝜃,𝑚𝑎𝑥−𝜎𝜃,𝑚𝑖𝑛
− 1, where σθ,max and σθ,min are spatially overall maximum and 

minimum hoop stress in each temperature difference case, in this normalization, hoop 

stress is mapped into [-1,1].  
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deformation caused by cooling process. A bilinear trend can be observed for the variation 

of ∆ε with respect to ∆Tw-r with different slopes (Figure 5.7). The turning points for 

different overburden pressure cases are almost at the same ∆Tw-r ≈ 30˚C. This fact can be 

interpreted as that σv in horizontal orientation of fracture has little effect on turning point. 

We took the case of σv = 100.3 MPa as an analysis example to better understand 

this invariant of temperature difference on vertical deformation. The damage variable and 

hoop stress contours at six spots with different ∆Tw-r (triangles in red dash line in Figure 

5.7) are plotted in Figure 5.8. It is noticed that there is only vertical contact damage at the 

contact area of the asperity before ∆Tw-r reaches 30 ˚C and the initiation of radial cracks 

occurs once ∆Tw-r reaches 30 ˚C (Figure 5.8(a3)). After the initiation of a radial crack, the 

vertical stiffness is reduced due to continuing radial cracking. This radial cracking 

induces vertical stiffness reduction, however, gives a smaller vertical strain response 

compared to vertical contact damage. 

 Asperity Damage Process. In this study, it was observed that the asperity 

had two damage mechanisms: the contact damage and the cracking inside the asperity. 

The contact damage has already existed when bearing the earth overburden pressure 

before applying any thermal effect (Figure 5.8(a1)). After applying the cooling process 

due to cold fluid injection, the cracking inside the asperity could initiate. Both two 

damage mechanisms could potentially lead to a failure of the asperity. To determine 

which damage mechanism exerts primary control on the asperity failure when the 

asperity is subject to cooling process, we used the same three overburden pressure 

schemes as described above in Section 5.3.3 for this asperity failure mechanism study. 
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As shown in Figure 5.8(a1), the contact damage has already existed due to the in-

situ overburden pressure at initial condition ∆Tw-r = 0. Prior to the turning point 

temperature difference, i.e., ∆Tw-r = 30 ˚C, thermal effect of temperature difference only 

extends vertical elastic compression but not sufficiently induces fracture closure, and the 

damage area near the asperity contact point is barely changed. The fracture-related hoop 

stress is also presented in Figure 5.8b. To emphasize the redistribution and sign of hoop 

stress in asperity by change of temperature difference, hoop stress σθ is mapped into the 

range [-1, 1]. Figure 5.8b shows that the change in σθ mainly comes from the induced ∆T 

gradient within the asperity. As ∆Tw-r exceeds the turning point, the large shrinkage of 

semi-sphere with fixed top surface causes significant σθ. When the tensile strength is 

exceeded, a radial cracking initiates near the edge of top surface. As the temperature 

difference increases, the radial cracking near the top surface grow towards the center, 

leading to a reduction in effective contact area at the asperity-matrix connection. At the 

radial crack, the thermal strain has no constraints, and thermal stress is released. 

Consequently, σθ is redistributed and intensified at other parts as demonstrated in Figure 

5.8b. As ∆Tw-r continues to increase, the radial crack deviates downwards in Figure 

5.8(a6) since the σθ going downwards is larger than that going radially forward [98]. At 

this moment, the radial crack length is maximal at current overburden pressure and 

labeled as critical crack length ac. Then, crack deviates downwards at two spots in Figure 

5.8(a6). 

More detailed mechanical analysis on the fracture propagation refers to Section 4. 

The deviation of fracture propagation is due to the combined effect of thermal stress and 

overburden pressure retards the cracking. 
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5.4. DISCUSSION 

The asperity failure is discussed in this part. In the mechanical loading, the 

asperity has vertical damage and in the thermomechanical loading, the asperity has both 

vertical and circumferential damage. The quantitative analysis and presentation is shown. 

 Asperity Failure Mechanisms. In the asperity damage study, it is clear 

that the contact damage can hardly cause any failure of asperity by cooling (Figure 5.8). 

The asperity failure by cooling is mainly attributed to the cracking inside the asperity. 

Two asperity failure mechanisms could exist: shearing and spalling. 

When the radial cracking initiates (Figure 5.8(a3)), the asperity becomes fragile to 

any shear disturbance in the fracture. Although there is no shear failure occurs in our 

simulation, it is mainly due to our pure compression loading for simplification. In the real 

geothermal reservoir, shear force ubiquitously exists in the fracture network. This radial 

cracking could directly lead to the shear failure of the asperity and therefore a potential 

closure of the fracture. 

When the cracking propagates downwards as shown in Figure 5.8(a6), due to the 

brittleness of granite rock, cracked parts are most likely detached from the asperity and 

flushed away by the injected fluids. Spalling process of asperity surface will occur. After 

detachment of the damaged parts, the rest of asperity gets exposure to cold fluid and the 

same cooling process occurs. The evolution of asperity configurations can be illustrated 

in Figure 5.9a. Notice that the crack propagates downward and along outer surface after 

reaching the critical crack length (second sketch in Figure 5.9a). The remaining part 

beneath radial cracks length is cut off artificially to renew the new geometry in order to 

reduce computational cost. It’s reasonable because that part is disconnected with rock 
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matrix and has no support of compressive loading, leading to negligible influence on 

stress distribution in other regions within asperity. The damage contour of renewed 

asperity is shown in Figure 5.9b. With elevated temperature difference, crack initiates at 

the edge of asperity, then propagates radially, and eventually deviates downwards to 

detach a large chunk. It’s noticed that temperature difference at crack initiation is 

changed to ΔTw-r=60 ˚C. It’s probably due to stress redistribution in new asperity 

configuration. This spalling gradually “peel” the asperity and reduce its effective force-

bearing volume, and the asperity would break at constant overburden pressure. 

 

 

Figure 5.9 Secondary Thermal-Mechanical Loading with Rising Temperature Difference. 

(a) Illustration of asperity configuration at different stages (b) damage variable contour 

with elevated temperature difference at secondary thermal-mechanical loading at 

overburden pressure σv=100.3 MPa.  
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This failure phenomena can be indirectly validated by flow-through experiments 

on fractured cores in the literature review. Kamali-Asl et al [99] performed a series of 

flow-through experiments on artificially fractured granite. The amount of dissolved 

minerals in the effluent is much higher than estimated from chemical analysis. It 

highlights other process taking effects in the flowing experiments. Rutqvist [100] 

observed irreversible change of permeability that significantly deviated from supposedly 

reversible permeability. This difference is attributed to inelastic shortening of fracture 

asperity. Isaka et al. [3] and Kumari et al. [101] observed damage of fracture surface after 

rapid cooling of hot granite in laboratory experiment. This surface damage is highly 

related to the rate and extent of cooling. All of these experiments provide evidence to the 

topography change of fracture surface by cooling. 

 

 

Figure 5.10 Correlation of Loading Stress and Vertical Strain for Three Different 

Asperity Radii. 
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 Sensitivity of Asperity Size. The fracture surface constitutes different sizes 

of asperities. The viability of this model to different sizes of asperities is analyzed herein. 

Based on the work of Sharifzadeh et al. [102], most asperities have wide range of height 

from micrometers to millimeters. In this study, two more asperity radii, which were 0.25 

mm and 0.025 mm respectively, were chosen to further analyze the size  

 

 
Figure 5.11 Strain Change with Response to Different Water-Rock Temperature 

Difference for Asperity Radius: (a) R=0.25 mm, (b) R=0.025 mm.  

 

 

Figure 5.12 Contour of Damage Variable D at Overburden Pressure σv=100.3 MPa for 

Asperity Radius at (a) R=0.25 mm and (b) R=0.025 mm.  
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Figure 5.13 Strain Change with Respect to Water-Rock Temperature Difference for 

Vertical Fracture Orientation.  

 

sensitivity of failure mechanisms of asperities. The same mapping method is used to 

correlate the loading pressure on asperity to the overburden pressure as introduced above. 

Similar as Figure 5.3, the force-controlled loading curve is shown in Figure 5.10. The 

difference of the mechanical deformation of asperities with three different radii is minor. 

The vertical strain change by temperature difference is shown in Figure 5.11. Two stages 

in curves can be noticed but not that obvious as in Figure 5.7. The turning point is still the 

same, around 30 ˚C. Taking σv=100.3 MPa as an example, the damage variable contours 

at six spots of temperature difference are shown in Figure 5.12. The radial cracking 

shows the same trend as the counterpart with the asperity radius of 2.5 mm. Overall, it 

shows no significant size sensitivity in this model to analyze failure mechanisms and 

vertical deformation of asperity by cooling effect. 
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 Effect of Fracture Orientation. Due to the lower porosity of granite in 

deep formation (about 2%), natural fractures and hydraulic fractures are two main 

pathways for heat transfer. Field tests showed that minimum principal stress of 

subsurface formation was generally horizontal, so the shearing failure or dilation of 

natural joints was vertical or near vertical [64, 103] and new hydraulic fractures were 

most likely in vertical or oblique direction [104]. The laboratory injection experiment on 

granite also provides evidence on the oblique or near vertical propagation of hydraulic 

fractures [105]. Horizontal injection and extraction wells could be designed for EGS [63]. 

Hence, the analysis of oblique or near vertical fracture orientation is necessary. As a 

lower bound of the tectonic stress in the horizontal direction, the vertical orientation of 

fractures is considered in the part to delimit the minimum deformation of asperity.  

Taking the in-situ stress in Soultz-sous-Forêts site as an example [83], the 

compression stress on asperity was from far-field horizontal minimum stress σhmin. The 

bounds for σhmin in depth of 3~5 km is between 40.4 MPa and 70.5 MPa. In this regard, 

three horizontal minimum stress 40.4 MPa, 55.2 MPa and 70.0 MPa were chosen to show 

the horizontal deformation of asperity by cooling. As expected, the same turning point of 

temperature 30 ˚C can be observed in Figure 5.13. The bilinear curves are in the same 

trend as those in Figure 5.7. However, the turning point of blue dash curves is different 

from the other two curves. At σv = 70.0 MPa, the turning point is 30˚C while it is 24˚C at 

overburden pressure smaller than 70.0 MPa. It verified the mitigation of radial cracking 

by overburden pressure, as like mitigation of vertical deformation at higher overburden 

pressure in Figure 5.7.  
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 Thermal and Overburden Pressure Effect on Asperity Cracking. To 

quantify the effect of overburden pressure and temperature difference on the asperity 

cracking, we firstly investigated the evolution of radial crack length. For the horizontal 

orientation of fracture, the evolution of radial crack length is shown in Figure 5.14a at 

four different overburden pressure scenarios. The radial cracking of all scenarios initiates 

at 30 ˚C and propagates radially with elevated temperature difference. When it reaches 

the critical crack length ac, cracking starts to deviate downwards in two spots as shown in 

Figure 5.8. The temperature difference at which cracking starts to deviate downwards is 

defined as critical temperature difference ΔTc since it indicates the most fragile status of 

asperity to any shearing disturbance and a start of the asperity spalling. Figure 5.14a 

shows that the critical crack length keeps the same but the critical temperature difference 

increases with overburden pressure. The fracture propagation analysis on radial cracking 

is analyzed in Section 7. Radial crack propagation terminates when the energy release 

rate G is less than the fracture toughness Gc. The correlation of critical temperature 

difference and loading pressure on asperity is (see Section 7):  

𝐺𝑐 =
8𝑎𝑐

𝜋𝐸
[−

𝐸𝛼∆𝑇𝑐

1−𝜈
+

𝜈

1−𝜈

𝑅2𝜎

(𝑅−𝑎𝑐)2
]     (5.8) 

where ac is the critical crack length; σ is the loading pressure on top of asperity; Gc is the 

fracture toughness. In Equation (5.8), the relation of ΔTc and σ is linear. From Section 

5.2.1, relation of loading pressure on top of asperity σ and tectonic pressure σv and σhmin is 

linear. Therefore, the relation of ΔTc and σv (or σhmin) is also linear.  

The correlation of critical temperature difference and overburden pressure are 

presented in Figure 5.14b. Two numerical data points are fitted by linear function: ΔTc = 

1.234σv + 42.06. The minor divergence of discrete points could be due to mesh size  
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Figure 5.14 Crack Information at Different Temperature Difference for Horizontal 

Fracture. (a) Evolution of crack lengths at different temperature difference and (b) critical 

temperature difference at different overburden pressures for horizontal fracture, the 

fitting equation is ΔTc = 1.234σv+42.06.  
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Figure 5.15 Crack Information at Different Temperature Difference for Horizontal 

Fracture. (a) Evolution of crack lengths at different temperature difference and (b) critical 

temperature difference at different overburden pressures for vertical fracture, the fitting 

equation is ΔTc = 1.04σhmin+120.8.  
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restraint. It shows clearly the constraints of overburden pressure on radial cracking and 

failure of asperity. 

For the vertical orientation of fracture, the evolution of critical crack length with 

respect to temperature difference and overburden pressure is shown in Figure 5.15a. With 

difference in critical crack length in Figure 5.14a for the horizontal fracture, the critical 

crack length ratio is at 0.5 for the vertical fracture. This is attributed to the fact that 

smaller overburden pressure leads to less constraint on radial cracking. Also we need to 

know that the larger critical crack length indicates the smaller radius (R-ac) in Figure 5.9b 

and more likely to have shear failure and thermal spalling. Similarly, the numerical  

correlation of critical temperature difference and overburden pressure is fitted by linear 

function: ΔTc = 1.04σhmin + 120.8 shown in Figure 5.15b. 

 Conventional Upscaling to Fracture Scale. The deformation behavior of 

single asperity pair in preceding analysis can be used to analyze the macroscopic 

behavior of fracture at fracture scale. Existing models about rough fracture deformation 

originated from a statistical description of loaded rough surfaces was proposed by 

Greenwood and Williamson [95]. The spherical topography of asperities was assumed in 

that seminal work. The mechanical behavior of contacting asperity under normal loading 

was simplified to follow Hertzian contact theory, which was demonstrated to be 

unrealistic by other researchers [96]. The asperity model in this study replaces Hertzian 

contact model to represent the deformation of roughness under mechanical loading or 

thermal stress.  

When two rough fracture surfaces are loaded to contact, the concept of composite 

topography from Brown and Scholz [25] is used to represent the topography  of rough 
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surface. Two reference planes are set and the height of asperity in top surface is denoted 

as z2 and the height of asperity in bottom surface is denoted as z1. The composite 

topography are z=z1+z2 and the separation of two reference planes is d, as shown in 

Figure 5.16a. The probability p that any asperity makes contact with opposite fracture 

surface is 

𝑝 = ∫ 𝜑(𝑧)𝑑𝑧
∞

𝑑
    (5.9) 

where φ(z)dz is the probability that a particular asperity has height z in the range z+dz. 

Assuming that the force F exerted by a single asperity is a function of the local 

deformation F=f(z-d), the total macroscopic resisting normal stress σn is  

𝜎𝑛 = 𝜂 ∫ 𝑓(𝑧 − 𝑑)𝜑(𝑧)𝑑𝑧
∞

𝑑
    (5.10) 

where η is the areal density of asperities on the surface. The form of f(z-d), i.e., the force-

displacement relation on one asperity, can be calculated from Figure 5.3. For the 

prescribed mechanical properties in this study, the asperity strain and normal stress in the 

base line are used to define the deformation behavior of asperity. This would 

underestimate the normal stress. The corresponding force and displacement relation is 

(Figure 5.16b), 

𝑓(𝑧 − 𝑑) = 116𝜋𝑅2 (
𝑧−𝑑

𝑅
)
1.879

   (5.11) 

where R is the radius of spherical asperity. Substituting (5.11) into (5.10) yields 

𝜎𝑛 = 𝜂 ∫ 116𝜋𝑅2 (
𝑧−𝑑

𝑅
)
1.879

𝜑(𝑧)𝑑𝑧
∞

𝑑
   (5.12) 

For the probability density function φ(z), the detail of calculation for 

approximately Gaussian distribution and inverted chi-square distribution refers to 

appendix D by Brown and Scholz [25].  
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In addition, the hydraulic conductivity at the fracture scale can also be calculated 

in this process. First, the hydraulic aperture needs to be calculated. The mean value of 

asperity deformation as a function of closure is [96], 

〈𝛿𝑎〉 = ∫ (𝑧 − 𝑑)𝜑(𝑧)𝑑𝑧
𝑑0

𝑑
    (5.13) 

where d0 is the surface separation at σn=0. Notice that d in Equation (5.13) depends on σn, 

which means that the separation of two reference plane reduces with loading. Thus, the 

mean aperture of open space in fracture 〈ℎ〉 are, 

〈ℎ〉 = ∫ (𝑑 − 𝑧)𝜑(𝑧)𝑑𝑧
𝑑

0
− 〈𝛿𝑎〉   (5.14) 

where the integral in the right-hand side denotes the statistically mean value of aperture at 

the initial state. The initial average aperture subtracts mean value of asperity deformation  

is equivalent to the transient mean aperture of fracture. 

Then the hydraulic aperture can be obtained by the theoretical formula [106],  

𝑒3 ≈ 〈ℎ〉3[1 − 1.5𝜎ℎ
2/〈ℎ〉2][1 − 2𝑐]   (5.15) 

where 〈ℎ〉 is the average aperture size, from Equation (5.14), σh is the standard deviation 

of the aperture size, and c is the contact area between the fracture surfaces. σh can be 

found from the probability density function in Brown and Scholz [25] and c can also be 

obtained from probability density function. 

The fracture permeability is then given by 

𝑘 =
𝑒3

12
       (5.16) 

The cubic law is used in the calculation of permeability from Equation (5.16).  

The macroscopic force and permeability at fracture scale can be obtained from the 

equations from (5.9) to (5.16). The coefficients m0, m2, m4, σ and d0 in the probability 
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density function φ(z) are determined by surface profiling prior to experimental 

measurement of closure [96].  

 

 

Figure 5.16 Deformation Curve of Asperities. (a) Two rough surfaces in contact. The 

actual topography is defined by upper surface heights z2 measured with respect to the 

upper reference surface and lower surface heights z1 measured with respect to the lower 

reference surface. (b) The fitting of base line in Figure 5.3. 

 

This damage of asperity is irreversible. The normal stress and permeability 

calculated from Equation (5.12) and (5.16) can be used to analyze the long-term effect of 

thermal effect. The stress-permeability relation in asperity scale is the key to analyze the 

thermal effect in reservoir scale and long-term term. Current stress-permeability models 

[107, 108] did not consider this damage in their models. This upscaling can be used to 

supplement or refine those stress-permeability models. 

5.5. SUMMARY 

This section presented the comprehensive study of asperity failure under sudden 

cooling process under the EGS scenario. The effect of pore pressure, overburden 
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pressure, asperity size and fracture orientation were analyzed in this section. The main 

findings are summarized as follows:  

(1) Thermo-mechanical analysis was conducted to investigate the deformation 

and potential failure of asperity. The results demonstrated the likelihood of fracture 

closure under the combined overburden pressure and injection-cooling process. Two 

major asperity damage mechanisms, which were contact damage and cracking within the 

asperity, potentially leading to fracture closure were revealed and analyzed. The contact 

damage dominates compressive deformation of the asperity, but it cannot induce the 

asperity failure by itself. The radial cracking inside the asperity counteracts compressive 

deformation of the asperity, and this cracking induced spalling and shear failure is 

responsible for the asperity failure and the possible fracture closure. Based on the 

significant effect of the thermal spalling and shear failure, the thermal cracking 

dominates the failure of asperity in EGS fractures. Further, the evolution of cracking of 

asperity shows significant impact of temperature difference on radial crack length, while 

the overburden pressure partially counteracts this deterioration. It demonstrates that 

considerable thermal stress is a primary factor of asperity damage in cooling process. 

(2) The generality of this model was verified by considering the sensitivity of the 

asperity size. It shows the same failure patterns with varied asperity radius.  

(3) The horizontal and vertical fracture orientations were considered in this study 

to resemble the real configuration of fracture distribution in EGS. Bilinear curves of Δε in 

response to ΔTw-r and σhmin reveal the similar failure patterns of the asperity in possible all 

fracture orientations.  
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In addition, the deformation curve of hemispherical asperity can be used as a good 

substitute to cylindrical asperity in Section 4. This model has more realistic asperity 

geometry and incorporates the damage of asperity tip. This extension to 

thermomechanical analysis will be explained in last section. 
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6. DEFORMATION OF POROUS ASPERITY 

6.1. BACKGROUND 

Understanding the stress-induced deformations of asperities is critical to control 

deformation of fracture and gain insight on induced seismicity in geothermal problems. 

However, modeling the deformation of the contact asperities is challenging due to the 

rock heterogeneity and the complicated damaging and fracturing process under combined 

thermal-mechanical loadings. Laboratory experiments have shown various cracking 

patterns of rocks under thermal loading including fracture branching, coalesces, and 

spalling [109-111]. The failure of the quasi-brittle granite is mostly due to the 

propagation and intersection of pre-existing micro-cracks [82, 86]. This macroscopic 

representation of micro-crack development can be qualitatively described by damage 

mechanics [85, 112]. The damage variable is generally introduced to characterize surface 

density of intersecting micro-cracks following the thermodynamic principle [87]. The 

reduced material stiffness can then be calculated using the damage variable [113]. In the 

context of geothermal system, damage mechanics has been used to couple with 

hydrothermal effect to analyze the stress or permeability variation under crack 

propagation and nucleation [114-116].  

To account for the heterogeneity of the materials, the probabilistic description was 

introduced into the damage model framework [117]. This probabilistic damage model 

(PDM) has then been widely used in rock mechanics due to its good depiction of 

macroscopic rock behavior by incorporating the spatial distribution of mechanical 

properties or structures. It is relatively easy to describe and calibrate the microstructures  
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and rock heterogeneity using the statistical distributions. The relatively low 

computational cost (compared with other computationally intensive method, such as 

Monte Carlo method [118]) and well-behaved convergence provide flexibilities in 

modeling problems with the complex boundary conditions and the mechanical contact. 

Liu et al. [119] established a mesoscale numerical model for thermal loading induced 

rock fracture problem. The coefficients of thermal expansion of mineral grains were 

varied to observe the effect of heterogeneity on the damaging process. 

In the present work, we conducted a three-dimensional thermal-mechanical finite 

element model of two hemispherical asperities in contact with the porosity dependent 

PDM. Based on the uniaxial compression/tension, and indirect Brazilian disk experiments 

on granites[89, 120], we proposed an asymmetric triangular/trapezoidal stress-strain 

profiles describing both elastic and softening stages of the material behavior. An isotropic 

damage variable was introduced based on the proposed stress-strain profiles. The porosity 

effect on the material stiffness and strength was quantified using the energy-based 

effective medium theory [121]. The Weibull distribution function was implemented to 

consider the probabilistic characteristics of the porosity and the corresponding effects on 

the material stiffness and strength.  

In the computational model, constant loading pressure on the top of asperity was 

maintained while asperities underwent the variation of the temperature field. The 

shrinkage of asperity would initiate crack at the connected position of asperity and rock 

block. This crack would propagate radially towards the center of connected circle. In this 

study, damages and this radial cracking induced by contact and displacement constraints 

from the fracture aperture were considered. The associated stiffness reduction in the 
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asperities was identified and characterized. The interaction between the contact induced 

damage and the radial cracking dominant deformation mechanisms was quantified using 

the analytical model. At the end, a semi-analytical fitting model was utilized to obtain the 

deformations with the overburden pressure and average temperature differences input. In 

addition, the effect of porosity on this coupled failure mechanism has been investigated. 

Field data were collected and compared with the modeling results providing predictions 

on fracture closure. 

6.2. POROSITY DEPENDENT FAILURE CRITERION 

For the compacted granite, the porosity is rarely considered in the mechanical 

analysis. However, porosity, particularly the porosity distribution, influences the 

compressive mechanical behavior of the granite significantly [122]. In addition, higher 

amount of pre-existing micro-cracks, pores and voids reduces the stiffness of the rock 

skeleton and contributes to the increase in the induced cracks at peak stress. As a part of 

granite block (in Figure 5.1), porous structure and porosity effect of asperities should be 

incorporated to mimic real response of fracture surface. Porous granites, as shown in 

Figure 6.1a-b [123], typically have statistical distributions in both elastic modulus and 

strength which significantly affect the average properties. This effect is typically 

quantified using Nur’s critical porosity model [124]:  

𝐾 = 𝐾𝑠𝑜𝑙𝑖𝑑 (1 −
𝜙

𝜙𝑐
)     (6.1) 

𝐺 = 𝐺𝑠𝑜𝑙𝑖𝑑 (1 −
𝜙

𝜙𝑐
)     (6.2) 
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where 𝜙 is porosity, 𝜙𝑐 is critical porosity or percolation porosity and set to 0.4 for 

crystalline granites [125] . 𝐾𝑠𝑜𝑙𝑖𝑑 and 𝐺𝑠𝑜𝑙𝑖𝑑are bulk and shear modulus of solid phase in 

granites. 𝐾 and 𝐺 are the bulk modulus and shear modulus of dry porous granites. 

 

 

Figure 6.1 Microstructure of Granite. (a) Before loading and (b) after loading [123], red 

arrows pointing at microcracks, (c) strength reduction due to porosity, (d) spatial 

distribution of reduction factor.  

 

 Hence, the elastic strain energy of dry granite is:  

𝑊𝑒 =
3

2
𝜀𝑘𝑘
2 𝐾       (6.3) 

where 𝑊𝑒 is the elastic strain energy density, 𝜀𝑘𝑘 is the trace of the strain tensor. Based 
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on laboratory result, the variation of the strains at rupture is independent of the porosity 

[122]. Therefore, the failure strains (𝜀𝑐0 𝑎𝑛𝑑 𝜀𝑡𝑜) introduced in Equations (5.4) and (5.5) 

stay unchanged while the Young’s modulus and strength are reduced correspondingly by 

a reduction factor (𝑅) defined below, 

𝑅 ≡
𝑊𝑒 (𝐾)

𝑊𝑒 (𝐾𝑠𝑜𝑙𝑖𝑑)
=

𝐾 

𝐾𝑠𝑜𝑙𝑖𝑑 
= 1 −

𝜙

𝜙𝑐
    (6.4) 

Petrophysical heterogeneity analysis widely adopts the Weibull distribution [126] 

to research the structural strength, fatigue, and other problems of rocks, which have 

obtained some satisfactory numerical simulation effect and good consistency with the 

experiments [116, 127]. The porosity distribution is assumed to follow the Weibull 

distribution 𝑓(𝜙), 

𝑓(𝜙) = 𝛼𝛽𝜙𝛽−1𝑒−𝛼𝜙
𝛽
     (6.5) 

𝜙𝑚 = 𝛼
1

𝛽Γ (1 +
1

𝛽
)      (6.6) 

𝜆2 = 𝛼
−
2

𝛽 [Γ (1 +
2

𝛽
) − Γ2 (1 +

1

𝛽
)]     (6.7) 

Γ(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥
∞

0
     (6.8) 

where α and β are scale and shape parameters, respectively. 𝜙𝑚 and λ are the mean and 

standard deviation, respectively. Γ(𝑧) is the Gamma function. 

From Equation (6.8), the probability distribution function 𝑓(𝑅) for reduction 

factor R is then calculated as: 

𝑓(𝑅) = 𝜙𝑐𝛼𝛽[𝑅
−1(𝜙)]𝛽−1𝑒−𝛼[𝑅

−1(𝜙)]
𝛽

   (6.9) 

𝑅−1(𝜙) = 𝜙𝑐(1 − 𝑅)     (6.10) 
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Figure 6.2 Flow Chart of UEL Subroutine. 

 

where 𝑅−1(𝜙) is inverse function of 𝑅(𝜙). Since the actual 𝜙 is in the range between 

0.1% to 30% [128], 𝑅(𝜙) monotonously decreases in the range between 0.996 to 0.0893 

as 𝜙 increases. A typical spatial distribution of 𝑅 in the model is shown in Figure 6.1d. In 

the numerical analysis, the standard deviation versus the mean porosity ratio is fixed 
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(
𝜆

𝜙𝑚
= 0.5) simulating the actual porosity distribution. The mean porosity is varied to 

investigate its effect on the failure process. 

6.3. NUMERICAL IMPLEMENTATIONS 

The thermal-mechanical coupling and the porosity dependent constitutive models 

are integrated using the user-defined element subroutine (UEL) on the ABAQUS® finite 

element analysis platform. The flow chart is presented in Figure 6.2. The porosity 

distribution input is determined prior to the analysis. This is followed by the coupled 

damage algorithm which allows the simultaneous computation of both temperature and 

displacement fields. 

 Random Porosity and Weibull’s Distribution. The Weibull’s distribution 

is implemented following the algorithm in Figure 6.3a. The mean porosity ϕm and the 

variation λ are determined first. The shape parameters α, β are determined from 

Equations (6.6) and (6.7). The Monte-Carlo method [118] is then applied to generate 

probabilistic material properties.  

In this implementation, a random number U uniformly distributed in the range of 

(0, 1) is generated. Given the α, β, the porosity can be obtained as: 

ϕ = (−
1

α
ln (1 − U))

1

β
    (6.11) 

The corresponding strength reduction factors are then computed as illustrated in 

Figure 6.3b. Considering the gap between the physical range of porosity (0.001, 0.3) and 

the natural range of Weibull’s distribution (0, ∞). Truncations are performed on the 

numerically generated porosity as shown in Figure 6.4a for several distributions of mean  



124 

 

 

Figure 6.3 Computational Algorithms of (a) 𝜙 and R, Update of (b) E and D. 
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Figure 6.4 Display of Probability Density Function Used in Model. (a1, a2, a3) 

Numerical and theoretical Weibull distribution of different porosities (insets showing 

truncated porosity distribution), (b1, b2, b3) reduction factor distributions. 
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Figure 6.5 Probability Density Function and Cumulative Distribution Function. (a) 

Probability density function and (b) cumulative distribution functions of reduction factor 

at three porosities.  

 

porosities. The corresponding strength reduction factors are then obtained with a 

truncated range of (0.1, 1.0) as shown in Figure 6.4b. These numerical inputs are then 
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fitted with a truncated probability distribution function. A Chi-square fitting criterion 

[129] is applied to ensure a high confidence in maintaining the original shape and 

accumulated probabilities, which are shown in Figure 6.5a-b. It should be noted that the 

porosity variation changes the distribution of strength reduction factor significantly. From 

the numerical results, the high porosity more likely gives a large strength reduction factor 

(blue lines). 

 Thermal-Mechanical Coupling and Damage Variable. The initial 

temperature of the top flat surface is set at the reservoir temperature, and the bottom 

curved surface is set as the water temperature. The temperature, as an additional degree 

of freedom, is obtained and coupled with the stress during the transient heat transfer 

process. 

The numerical algorithm implemented is shown in Figure 6.3b. Tension and compression 

stress states are determined using Equation (5.6). Then, the equivalent strains are 

calculated. The tangent Young’s modulus E and damage variable D are updated based on 

Equations (5.4) and (5.5) .The mechanical and thermal properties used are listed in Table 

5.1. 

6.4. RESULTS AND DISCUSSIONS 

This section is discussed in three parts. In the first part, the response of contacting 

asperities under pure mechanical loading is investigated. Part of this result is presented in 

Section 5 The nominal stress and strain response are obtained from dividing the reaction 

force and displacement by the area of top surface and the radius of the asperity, 

respectively. In addition, this correlation of loading force and deformation of asperity is 
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validated with existing results. In the second part, the cooling process under constant 

pressure was investigated. The interaction between the contact induced damage and radial 

cracking was identified from the nominal strain responses. In the last part, the modeling 

results were compared with actual field data providing meaningful interpretations. The 

effect of porosity was also investigated by comparing with the results from deterministic 

model. 

 Mechanical Loading on Asperities. Two different cases are discussed: 

solid asperity and porous asperity. The effect of porosity is elaborated in the deformation. 

6.4.1.1.  Solid asperity. Neglecting the thermal and porosity effect, the contacting 

asperities show a gradual crushing failure described by the stress-strain responses in 

Figure 6.6. Responses from the displacement (solid line in Figure 6.6a) and the force 

controlled (solid line in Figure 6.6b) loading protocols are presented. The spikes in the 

displacement controlled response (Figure 6.6a) are mainly from the local crushing in the 

contact area. Linking these spikes, we obtain the relative smooth force controlled 

responses (Figure 6.6b) showing plateaus whenever the instability or snap-through occur 

due to the loss of local stiffness from contact. Both the displacement and force controlled 

responses show the increasing trend as the applied pressure increases. This indicates a 

relative stable deformation propagation under pure mechanical loading for solid 

asperities. 

It’s worth noting that the asperities on the rough fracture surface are dispersed. 

The real contact area would increase with rising loading on the fracture surface. To 

simplify the calculation in this study, the contacting asperities are assumed to have the 

same curvature of contacting tip as the same assumption made by Greenwood and 



129 

 

 

Figure 6.6 Stress Versus Strain Responses for Deterministic and Probabilistic Models 

under (a) Displacement and (b) Force Controlled Mechanical Loadings.  

 

Williamson [56, 95]. In addition, considering the real contact area of asperities pairs 

maximally takes up 50% of the nominal area of fracture surface [22], the reasonable 

contact area of 27% is assumed for this study. That is, contacting asperities occupy 27% 

area of basic cell (comprising one asperity pair and residual void space). At here, the 

deformation of void space under loading is not considered. Therefore, the loading force 

on one basic cell can be calculated and is denoted as P in Figure 6.7. The correlation of 

loading force P and real contacting area A can be obtained by fitting the discrete data in 

numerical simulation and is shown in Figure 6.7. The power is 1.643 and is very close to 

the 1.5 in reference by Greenwood and Williamson [56, 95]. In addition to the power of 

calculation, this model can also get verified by the experimental data. In Beeler and 

Hickman’s work[96], the asperity strain (defined as vertical deformation divided by 

radius of hemispherical asperity) at 7 MPa macroscopic normal stress range is typically 

0.14. In this study, the normal stress corresponding to 0.14 asperity strain is 

approximately 4 MPa. The results are in the same order of magnitude. This small 
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difference is from the omission of deformation at void space region. The average nominal 

stress from purely elastic contact can be calculated by 〈𝜎𝑐〉 = 0.42𝐸∗√𝛿 𝑅⁄  in 

reference[96]. The Hertizan contact stress is about 19 GPa at asperity strain of 0.14. It 

shows that the damage model can obtain the similar result with experiment but the 

Hertizan model is not physically plausible. 

 

 

Figure 6.7 The Loading Force and Contact Area for Mechanical Loading of Solid 

Asperity in Numerical Simulation.  

 

6.4.1.2.  Porosity effect. Three different porosities (𝜙𝑚 = 0.05, 0.15, 0.25) are 

considered. The results show significant stress reductions in both displacement and force 

controlled responses as shown in Figure 6.6. As the porosity increases, the stiffness of the 

contacting asperity reduces. This reduced stiffness comes from the increased damaged 

area as presented in Figure 6.8. As shown in Figure 6.8a, two specific data points along 
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the force controlled response for the deterministic model and the case with porosity 

(𝜙𝑚 = 0.15) are selected. The associated damage contours show a significant increase of 

damaged area with 𝜙𝑚 = 0.15.  

 

 

 

Figure 6.8 Response of Solid and Porous Asperities: (a) the stress-strain curve and (b) 

damage variable contour at critical points.  
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Figure 6.9 Comparison of Deterministic and Probabilistic Models. (a) At stress-strain 

curve and (b) fitting of reduction factor 𝑅𝜙 versus mean porosity 𝜙𝑚.  
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To quantify this effect, an overall reduction factor 𝑅𝜙 is defined as the ratio 

between the baseline stress response of deterministic model and porous model as 

illustrated in Figure 6.9a. This effect is plotted in Figure 6.9b, an approximately linear 

relationship is observed between the increasing porosity and overall reduction factor 𝑅𝜙 

by data fitting. This indicates a proportional reduction in vertical stiffness of the 

contacting asperities under overburden pressure. 

 Thermal-Mechanical Loading. Neglecting the porosity effect, the 

thermal-mechanical loading of the asperity is applied by maintaining the overburden 

pressures (𝜎𝑣) while increasing the temperature difference (∆𝑇) between cold water and 

hot asperity. During this process, the lateral component of displacement at the top surface 

of the asperity remains fixed. The temperature profile follows the solution obtained in the 

heat transfer process in the transient state. This loading procedure is illustrated in Figure 

5.6a. Firstly, the thermal loading of damage model is compared with standard elastic 

model. The elastic model is set up in ABAQUS® CAE with the same parameters setting 

in Table 5.1. The same mesh size and loading procedure is followed in elastic model. The 

vertical deformation of asperity responding to increasing temperature difference is shown 

in Figure 5.6b. The thermal loading leads to smaller thermal deformation for elastic 

model compared to damage model on solid asperity in the whole stage. Because the 

element is always intact for elastic model, whereas the elements at contact region is 

damaged (D=1) or close to damage (0<D<1). With increasing temperature, more 

elements will loss bearing capacity for damage model, leading to approximately linearity. 

For the elastic model, with increasing contact area, higher loading can be withstood and 

the curve asymptotically flats out with increasing temperature difference. 
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For the thermal loading of porous asperity, three particular overburden pressure 

were selected spanning the feasible range in relationship with the actual exploration depth 

range (3-5 km) [83]. They are 83.6, 100.3, 126.7 MPa, Which can be mapped into the 

nominal pressure applied on the top surface of the asperity. The overall overburden 

pressure loads on the fracture surface and matrix rock region without fracture. The same 

asperity size on the fracture is assumed to calculate the force on each small basic region 

(composed of asperity pair and the cavity enclosed by two neighboring asperity pairs). 

The concept of this region is similar to that one in reference [5]. The force on this basic 

region is balanced by the stress on the asperity and fluid pressure in fracture.  The fluid 

pressure (pore pressure) is set to hydrostatic pressure along the fracture length for 

simplification. Even though fluid pressure is function of various complicated factors, 

such as fracture length, flow rate, injection temperature etc., the total pressure drop 

between injection well and production is insignificant compared to temperature effect 

[130]. The detail for this mapping method refers to Section 5. The final mapping equation 

from global overburden pressure to loading stress on the top surface of asperity is: 

𝜎 = (𝜎𝑣 − 2.46𝑃𝑝) 0.54⁄ ,    (6.12) 

where 𝑃𝑝 is the pore pressure at the depth of the asperity. Subtracting the initial strain (𝜀0) 

caused by initial overburden pressure (𝜎𝑣), the fracture aperture closure (∆𝜀) is readily 

obtained and plotted against the temperature difference (∆𝑇) in Figure 10. As the 

temperature difference (∆𝑇) increases, which means that the asperities cool down to 

lower temperature, the fracture aperture closure (∆𝜀) increases over two linear stages with 

different slopes (𝑘1 > 𝑘2). The critical temperature separating these two stages is about 

30 °C. From the detailed analysis described below, we found the fracture aperture 
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closures of the two stages were mainly controlled by the contact induced damage and its 

interaction with radial fracture growth. These two stages were also found for cases with 

different overburden pressures (𝜎𝑣). As the overburden pressure increases, both slopes 

(𝑘1, 𝑘2) reduce showing a pressure dependent fracture aperture closing behavior. 

 

 

Figure 6.10 Fracture Aperture Closure versus Temperature Difference. (𝜀0: initial strains 

before cooling, triangular symbols: selected temperatures for contour plots).  

 

To examine and explain the two linear stages, we show the quarter-sectional 

contour plots of these state variables at ∆𝑇 at 0, 25, 30, 60, 120, and 300 °C under an 

overburden pressure of 𝜎𝑣 = 100.3 MPa as presented in Figure 6.11.  
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Figure 6.11 Damage Variable D, Hoop (σθ) and Vertical (σz) Stress Contours at 

σv=100.3MPa for (a) Deterministic Model; (b) Probabilistic Model at 𝜙𝑚=0.25, 

𝜆 𝜙𝑚⁄ =0.5.  
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Figuure 6.11 Damage Variable D, Hoop (σθ) and Vertical (σz) Stress Contours at 

σv=100.3MPa for (a) Deterministic Model; (b) Probabilistic Model at 𝜙𝑚=0.25, 

𝜆 𝜙𝑚⁄ =0.5. (cont.) 
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6.4.2.1. Contact dominant stage. Before ∆𝑇 reaches 30 °C, the thermal 

contraction in the asperity leads to stress release in the vertical direction (𝜎𝑧) comparing 

to the initial stress state due to overburden pressure loading. The contact induced damage 

zone remains without causing significant change of the overall vertical stiffness of the 

asperity. Therefore, a linear relation was found between fracture closure (∆𝜀) and ∆𝑇 

with the slope 𝑘1. 

6.4.2.2. Radial fracture growth stage. When ∆𝑇 exceeds the critical temperature 

of 30 °C, the hoop stress (𝜎𝜃) increases significantly due to the lateral constraint at the 

top surface. This introduces a radial fracture along with the increase of ∆𝑇. However, as 

the radial crack propagates, the vertical stiffness reduces due to the loss of materials 

stiffness near the top surface. This causes intensified vertical stress near the contact zone 

leading to the increased damage in the bottom contacting zone. In this stage, the radial 

crack growth induced damage competes with the contact damage at the bottom giving 

rise to a reduced slope comparing to the first stage (𝑘2 < 𝑘1). This is due to the reduction 

in the overall vertical stiffness of the contacting asperities. To quantify this competition, 

we define a damage ratio based on the volume integral of the damage variable over the 

top and bottom domain, 𝛾 ≡
∫ 𝐷𝑑𝑣Ω𝑡

∫ 𝐷𝑑𝑣
Ω𝑏

, where the top and bottom domain were separated by 

the geometrical center. Plotting 𝑟 against ∆𝑇 in Figure 6.12, we found the critical points 

where the radial fracture occurs at ∆𝑇= 30 °C and stop growing at ∆𝑇= 150 °C for an 

overburden pressure of 𝜎𝑣 = 100.3 MPa, shown as the dashed lines. We also plotted the 

radial fracture growth in Figure 6.13a and found that the fracture initial temperature ∆𝑇= 

30 °C does not vary with different overburden pressures, however the fracture growth 
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termination temperature does. As the overburden pressure increases, the radial crack 

growth stops at higher ∆𝑇. This is mostly due to the reduced hoop stress from the 

increased vertical compression. However, it is worth noting that the radial fracture 

growth terminates at the same length due to a constant fracture toughness of granites and 

fully constrained top surface in terms of lateral displacement. The energy release rate of 

the system increases slowly and reaches to a steady state. This can also be explained as 

the crack grows to the point at which the induced thermal stress is less than the tensile 

strength which arrests the radial fracture [98]. 

 

 
Figure 6.12 Damage Ratio γ with Respect to ΔT at Five Different Mean Porosity and 

Deterministic Model.  
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Figure 6.13 Relative Radial Crack Length Δa/R0 versus Temperature Difference for (a) 

Deterministic Model; (b) Probabilistic Model at 𝜎𝑣=100.3MPa and 𝜆 𝜙𝑚⁄ =0.5.  

 

6.4.2.3. Analysis and data fitting. An analytical model based data-fitting was 

also carried out to achieve a more efficient fracture closure prediction. Since the cooling 

process induced deformation is essentially elastic unloading, we could describe the 

fracture closure and temperature relation using the Hertzian contact theory [131], which 

gives the displacement and force response as follows,  

𝛿 = (
9𝐹2

16𝑅0𝐸∗2
)
1 3⁄

    (6.13) 

where δ is the vertical displacement on the top of hemisphere. F is the force applied. 𝑅0 is 

radius of hemisphere. 𝐸∗ =
𝐸

1−𝑣2
 is equivalent Young’s modulus. δ and F relation follows 

the proportionality, δ~𝐹2 3⁄ . Divided by 𝑅0∆𝑇 on both sides and combined with ∆𝜀 =
𝛿

𝑅0
 

and 𝜎𝑣 =
𝐹

𝜋𝑅0
2, this proportionality gives the relationship between the stiffness and over 

burden pressure as 𝑘1~𝜎𝑣
2 3⁄ . We then fitted the numerical data with the derived 

functional form as shown in Figure 6.14a with close agreements. For 𝑘2, we applied the 
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same functional form but considering a reduction caused by the radial fracture. A linear 

fitting was then obtained with close agreement as well as shown in Figure 6.14b. The 

competing failure mechanisms give us a pressure-dependent relation of 𝑘2/𝑘1 as shown 

in Figure 6.14c. We then fit 𝑘2 with varying overburden pressures as illustrated in Figure 

6.14d with close agreement as well. With these fitting equations, we could directly obtain 

the fracture closure with known overburden pressure (𝜎𝑣) and temperature difference 

(∆𝑇). 

 

 

 
Figure 6.14 Fitting of Slope to Overburden Pressure. (a) Fitting of 𝑘1 versus 𝜎𝑣 for 

deterministic model, (b) corresponding fitting of 𝑘2 to 𝜎𝑣, (c) ratio of 𝑘1 to 𝑘2 with 

respect to 𝜎𝑣, (d) fitting of 𝑘2 by equation in (b) and ratio in (c).  

 



142 

 

6.4.2.4. Effect on failure mechanism. Observing the fracture closure (∆𝜀) versus 

temperature responses (∆𝑇) in Figure 6.15 with varying overburden pressure (𝜎𝑣) and 

increasing mean porosities (𝜙𝑚), the bi-linear behavior remains, so does the result from 

deterministic model. Therefore, the reduced stiffness and strength of the asperity induced 

by porosity did not alter the two-stage failure mechanism. However, the increased mean 

porosity gives rise to the significant reductions in both 𝑘1 and 𝑘2. In the contact-damage 

dominant stage (∆𝑇 ≤ 30 °C), the reduced stiffness due to porosity led to a significant 

reduction in the asperity stiffness. This is confirmed by a more uniformly distributed 

vertical (𝜎𝑧) and hoop stress (𝜎𝜃) comparing to the deterministic model results as shown 

in Figure 6.11b. The reduced strength due to the porosity contributes to a significantly 

larger damage area near the contact as shown in Figure 6.11b. As the temperature entered 

the radial fracture growth stage (∆𝑇 > 30 °C), the initiation of radial fracture occurred. 

The identical critical temperature (∆𝑇𝐶 = 30 °C) indicates that the initiation of the radial 

fracture is not affected by the porosity. As temperature increases, we found a slight 

reduction in fracture growth rate and the delayed fracture arresting point as illustrated in 

Figure 6.11b. This fact is also corroborated with the evolution of damaging competition 

ratio 𝛾 shown in Figure 6.12. The damaged volume near top surface due to the radial 

fracture growth increases much slower than that of the bottom surface due to contact. As 

the porosity increases, this phenomenon becomes more apparent as shown in Figure 6.12 

in terms of reduced 𝛾. In addition, we compared the radial fracture growth as shown in 

Figure 6.13b. We found that the increasing porosity causes the slower fracture growth 

and higher ∆𝑇 to reach the fracture arrest length. In addition, the radial fracture stops at 

the same level, about 0.44 of the asperity radius, comparing to the deterministic model 
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without porosity. Therefore, the porosity induced reduction in stiffness and strength did 

not change the beginning and ending state of the radial fracture growth stage. However, 

the increasing porosity significantly added the amount of temperature difference (∆𝑇) to 

reach the fracture arrest length. 

 

 

 
Figure 6.15 Effect of Temperature Variation on Asperity Strain Change at (a) 

𝜎𝑣=83.6MPa, (b) 𝜎𝑣=100.3MPa and (c) 𝜎𝑣=126.7MPa.  
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Figure 6.16 Fitting of Reduction Factor with Slope. (a1, a2, a3) Fitting of reduction 

factor 𝑅𝑘1 for 𝑘1 with respect to mean porosity 𝜙𝑚 and ratio 𝜆 𝜙𝑚⁄  at 𝜎𝑣=83.6MPa, 

𝜎𝑣=100.3MPa and 𝜎𝑣=126.7MPa, (b1, b2, b3) the corresponding fitting of reduction 

factor 𝑅𝑘2 for 𝑘2.  

 

6.4.2.5. Analysis and fitting. The correlation between the overburden pressure 

(𝜎𝑣) and both slopes in two stages (𝑘1,  𝑘2) is obtained by fitting the numerical data. 

However, we took advantage of the proportional reduction observed and conducted the 
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fitting with reduction factors (𝑅𝑘1 ≡
𝑘1,𝑝𝑜𝑟

𝑘1
, 𝑅𝑘2 ≡

𝑘2,𝑝𝑜𝑟

𝑘2
) as shown in Figure 6.16. The 

increased overburden pressure gives rise to the additional increase in these reduction 

factors. Least-square fit was also used for fast extractions with close agreements. Similar 

analytical model based fitting were conducted for cases with porosities as shown in 

Figure 6.17. The results show an average lower fitting coefficients comparing to the case 

without porosity. 

 

 

Figure 6.17 Fitting of Slope to Overburden Pressure for Probabilistic Model. Fitting of 

(a) 𝑘1 and (b) 𝑘2 with respect to 𝜎𝑣 for probabilistic model at 𝜙𝑚=0.15, 𝜆 𝜙𝑚⁄ =0.5. 

Fitting of 𝑘2 𝑘1⁄  (c) and 𝑘2 (d) with respect to 𝜎𝑣.  
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We collected all data as well as each corresponding least-square fit and compared 

them with the deterministic model results in Figure 6.18. As the overburden pressure 

increases, linear-wise reduction was found for both slopes 𝑘1, 𝑘2. However, the ratio 

between the two slopes (𝑘2/ 𝑘1) becomes more nonlinear due to the increased fracture 

process zone from the high porosity. 

 

 

 
Figure 6.18 Fitting of Slopes Ratio to Overburden Pressure. Fitting of (a) 𝑘1, (b) 𝑘2 and 

(c) 𝑘2 𝑘1⁄  with respect to overburden pressure. 

 

 Fracture Aperture Closure Prediction. Given the analysis and fitting 

above, we could generate the critical fracture aperture closure (∆𝜀𝑐) contour given the 
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over-burden pressure (𝜎𝑣) and average temperature difference (∆𝑇𝑐) in Figure 6.19a. As 

shown in the contour plot, ∆𝜀𝑐 increases rapidly as both 𝜎𝑣 and ∆𝑇𝑐 increase. The 

porosity leads to a significant reduction in ∆𝜀𝑐 as observed from Figure 19a. Based on 

this result, the fracture aperture closures can be predicted by using the actual overburden-

pressure and temperatures from the filed data [132]. We found that most of the data fell 

between these two ∆𝜀𝑐 surfaces (with and without porosity). It is also worth mentioning 

that the high temperature difference used in the model is taken from the laboratory and 

field measurements. Laboratory experiments [133] show that the micro-cracks initiation 

near the injection point is mainly decided by rate of cooling. Considering the rapidly 

hydraulic diffusivity of water [97], the rapid cooling of hot rock is likely to occur. 

Secondly, the temperature of some geothermal reservoirs around the world is collected in 

the review paper [132]. From the data presented, the current highest reservoir temperature 

is in Northwest Geysers, at 400°C. 

To evaluate the porosity effect, we also plotted the percentage difference between 

∆𝜀𝑐 with and without a porosity of 0.25 (
Δ𝜀𝑑−Δ𝜀0.25

Δ𝜀𝑑
, %) in Figure 6.19b. A distinct turning 

point was found at a critical temperature of 30˚C, below which the fracture aperture 

remains at a constant position. Above this temperature, we observe the enhanced porosity 

effect with high overburden pressure (𝜎𝑣 = 100.3, 130 MPa). Opposite effect was found 

when we have low overburden pressure (𝜎𝑣 = 60 MPa). The critical overburden pressure 

with a constant porosity effect of 18.57% is about 79 MPa. We then plotted the critical 

overburden pressure (𝜎𝑣,𝑐𝑟) under which the critical porosity effect remains constant (𝛾𝑐𝑟) 

in Figure 6.19c. We found that the higher porosity it has, the higher critical overburden 
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pressures (𝜎𝑣,𝑐𝑟) and critical porosity effect (𝛾𝑐𝑟) on the fracture aperture closures there 

are. It shows the effect of porosity on the failure of asperity. 

The physical interpretations of this finding are threefold: (1) the porosity will 

reduce the fracture aperture closure; (2) the porosity effect is sensitive to the overburden 

pressure; (3) when the over-burden pressure exceeds a critical value (e.g., blue dotted 

horizontal line in Figure 22b), more porosity effect is expected with the increased 

temperature. Less porosity effect can be expected with increased temperature when this 

overburden pressure is below the critical value. We also plotted all the field data 

prediction and found that the porosity effect is in a wide range of 18.87%-81.41%.  

6.5. SUMMARY 

This section presents a comprehensive modeling and analysis of single pair of 

asperities deformed under the cooling process and overburden pressure. The results 

demonstrated the failure of deformable asperities under the combined thermal-

mechanical loading. Two main failure mechanisms leading to the fracture aperture 

closures were revealed, which are the contact induced damage and the lateral constraint 

induced radial cracking. Each of the mechanisms as well as the interactions were 

quantified using numerical and analytical models. 

It was also found that the porosity induces reductions in the overall stiffness and 

strength of the asperity. However, this does not alter the deformation mechanism. The 

presence of porosity causes delays in the radial crack growth and reduced fracture 

aperture closure. This reduction effect from porosity was also found sensitive to the 

overburden pressure and temperature. 
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The predication of fracture aperture closures was also obtained using the field 

data retrieved from the ongoing worldwide geothermal systems. The thermal-mechanical 

modeling and analysis provide insights into estimating deformations of porous asperities 

in complex operating conditions. 

 

 

 

Figure 6.19 The Effect of Porosity on Fracture Parameters. (a) Strain change surface with 

respect to overburden pressure and temperature difference, ratio of strain changes at 

𝜙𝑚 = 0.25 to deterministic property with response to (b) temperature difference and (c) 

overburden pressure.  
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7. FAILURE PATTERN OF ASPERITY 

7.1. INTRODUCTION TO ASPERITY FAILURE 

Fracture as a major factor which greatly affect the fluid flow, heat recovery, 

colloid transport in environmental remediation, geothermal exploitation, and oil 

production. These natural and/or man-made fractures are mainly propped by nominal 

contact of uneven surfaces unless proponents are used. These discrete contacting 

roughness on fracture surfaces are called asperities. The importance of fractures on 

hydraulic transmissivity, flow channeling and heat recovery efficiency in fractures has 

long been acknowledged in areas such as the water flooding for secondary oil recovery 

[134, 135], the heat extraction in geothermal energy development [136, 137], and the 

high-level radioactive waste disposal storage [138, 139]. The integrity of asperity is 

essentially important in controlling fracture apertures in geological formation.  

In natural fractures, multiple factors have been investigated for their influence on 

the deformation of asperity and the evolution of fracture aperture. Intensive work has 

been made to identify the individual effect of the thermal cooling [140], chemical erosion 

[141], elastic deformation [142] and pressure solution [143]. Attempts to couple those 

effects together have been made recently to comprehensively understand the evolution of 

fracture aperture. However, the inelastic deformation and/or failure of asperity caused by 

thermo-mechanical effects have been rarely considered in the investigations. 

Taron et al. [144] conducted thermo-hydro-mechanical-chemical (THMC) 

coupled analysis of fracture asperity and found an irreversible reduction in aperture after 

a cycle of thermal loading and unloading. This abnormal change in aperture reduction 
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cannot be reasonably explained by elastic deformation models in their simulation. 

Accurate interpretation for this irreversible change of fracture aperture was not given in 

their paper. Lang et al.[145] also did THMC pore scale simulation of fracture sealing. 

While the initial contact stress between two contacting asperities was as high as 590 

MPa, the temperature effects with a maximum 200°C temperature difference of fluid and 

rock on failure of asperity was ignored, leading to a lack of consideration for asperity 

failure in their study. Yasuhara et al. [143] conducted THMC coupled analysis on the 

evolution of fracture apertures in high-level radioactive waste storage. A significant 

temperature difference between water and rock was considered but thermal stress and 

inelastic behavior of asperity was disregarded. This lack of consideration for significant 

thermal stress could deviate their simulation results from the real fracture evolution. A 

more comprehensive study on the evolution of fracture apertures for granite rock at 

various temperature had been done both experimentally and numerically [146]. Their 

study inferred that there was a non-negligible effect of thermal effect on the fracture 

asperity failure when subjected to elevated temperature difference between water and 

granite. In the process of analyzing field data in Yucca Mountain drift scale test by 

Rutqvist [100], the irreversible permeability change had been observed in experimental 

data. This irreversible permeability change significantly deviated from reversible thermo-

hydro-elastic solution through numerical analysis, and it was hypothetically attributed to 

inelastic compaction of fracture asperity.  

To sum up, in current fracture studies, the effect of the temperature difference on 

the asperity integrity has not been extensively explored. We also has done thermo-

mechanical coupled analysis on asperity failure and found two failure mechanisms of 
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asperity: contact failure and radial cracking in Section 6. However, the radial cracking 

was not theoretically explained in that work. The objective of this work is to investigate 

the mechanism of the radial cracking within the asperity under the cooling process by the 

cold fluid injection at various overburden pressure. A fracture mechanics based analytical 

solution is proposed to reveal radial crack propagation within the asperity. The effects of 

loading stress and temperature differences on the radial crack propagation are quantified 

through our analysis. 

7.2. PROBLEM DESCRIPTION AND ANALYSIS METHODOLOGY 

Natural fractures are usually maintained by the asperity self-propping. The size of 

asperity varies from tens of nanometers to several millimeters. In some engineering 

projects, e.g., enhanced geothermal systems, the cold fluid flows through fracture of hot 

rocks (temperature is even more than 300 °C) and thus, heat transfer occurs at fracture 

surface, shown in Figure 1. Along flow direction, injected fluid is heated up and rock is 

cooled down, the temperature difference between fluid and rock is varying. By 

considering the small size of asperity pairs, the cooling of the asperity is way faster than 

the cooling of the rock matrix. The considerable temperature difference between the 

invading fluid and hot asperity induces the asperity stress change and the shrinkage of 

contacting asperity. At the same time, the overburden pressure loading on asperity 

remains the same. This stress change and asperity shrinkage due the temperature 

difference could lead to a potential failure of asperity. 

This potential failure of asperity by cooling and pressure loading has been 

analyzed in Section 6. In that work, asperity was idealized to hemisphere and bonded to 
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Hot rock

Fracture
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Figure 7.1 Cold Fluid Flows Through Fracture with Hot Matrix Rock. 

 

stiff plate representing matrix rock. For simplicity and computational efficiency, one 

asperity bonding with overlying stiff plate was contacted with rigid surface to simulate 

real contacting of asperity pair (Figure 7.2a). Damage mechanics based asymmetric 

constitutive model was employed to simulate the deformation process of the asperity. 

Three-dimensional thermo-mechanical coupled finite element model was built to analyze 

the integrity of asperity under cooling and overburden loading. Two mechanisms of 

asperity failure were identified: the damage at contact zone and the radial cracking at top 

of asperity. The damage at contact zone was well explained by Hertzian contact model 

and damage mechanics, but the radial cracking was not fully investigated. Due to 

practical significance of asperity integrity, the condition to cause the radial cracking of 

asperities is crucial for the fracture evolution. An analytical model has been developed to 

understand the mechanism of the radial cracking by considering both thermal-mechanical 

analysis and linear elastic fracture mechanics. 

 Temperature Field and Boundary Condition. When asperity is much 

smaller than the rock matrix, the cold fluid injection could lead to the instant cooling of 

asperity but no temperature change of the rock matrix. In this study, the temperature of 
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cold fluid is denoted as wT , and rT  denotes the initial temperature of hot rock. In 

consistency with our result in Section 5 and 6, the temperature of curved surface of 

hemisphere is set to wT  and temperature for top flat surface of hemisphere is constant, 

which is equal to rT . Temperature distribution in asperity can be approximated as steady 

state. The sketch of heat conduction model is in Figure 7.2b. Spherical coordinates are 

used with axial symmetry (dash line). Steady-state heat conduction equation in spherical 

coordinates [147] can be given as 

2 1 1
sin 0

sin

T T
r

r r


  

    
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where   is the angle rotating from axial symmetry, ,
2 2

 


 
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 ,  T r finite       (7.3) 

 , wT R T        (7.4) 

The analytical solution for this hemispherical heat conduction equation is, 
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where cosq  ,  2 1mP q  is  2 1m   degree Legendre polynomials of q , and R  is the 

radius of hemisphere.  
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Figure 7.2 Sketch of Asperity Model to Fracture Mechanics Analysis. (a) 3D 

hemispherical contact model used in numerical simulation, (b) symmetric hemisphere 

with spherical coordinates to calculate temperature distribution and (c) simplified 

axisymmetric model.  

 

 Stress Distribution with Thermal Effect. The enclosed area by red dash 

rectangle in Figure 7.2a and 7.2c is where the radial cracking occurs. The stress 

distribution in this axisymmetric zone (Figure 7.2c) is analyzed in the following sections. 

Because it’s a circular thin disk, cylindrical coordinates are set to the center of disk. The 

thickness of two layers is negligible compared to circular radius R. The stress-strain 

relation with thermal effect in radial and circumferential direction in lower layer (bright 

grey zone) are, 

 
1

r r zv T
E

               (7.7) 

 
1

r zv T
E

               (7.8) 
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where E  and v  are Young’s modulus and Poisson’s ratio of asperity, r and  are radial 

strain and circumferential strains in lower layer, r ,   and z are radial stress, hoop 

stress and vertical stress in lower layer respectively.  is the coefficient of thermal 

efficient, T  are temperature difference with reference to initial hot rock temperature, 

 , rT T r q T   . 

For the uniform shrinkage of the circular disk, the radial strain and the 

circumferential strain are the same, r   . Regarding the constant temperature of the 

rock matrix, no lateral deformation is induced in upper layer (dark grey zone). By 

assuming the upper layer and lower layer bond well, no lateral deformation for the lower 

layer. It infers both r  and   in lower layer be zero, 

0r         (7.9) 

In Figure 7.2c, the radial cracking length is symbolized by a. Pressure P from 

vertical lithostatic pressure loads on the top of the stiff plate. Based on the normal depth 

of enhanced geothermal formation (3~5 km), the vertical lithostatic pressure has a range 

of 75 MPa to 135MPa by referencing to the Soultz-sous-Forets geothermal project [74]. 

The corresponding loading pressure P on asperity is in the range of 2.0 ~ 7.5 MPa. The 

conversion of loading pressure P and vertical lithostatic pressure is elaborated in Section 

5.2.1. 

Thus, 
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Combining Equations (7.7), (7.8), (7.9) and (7.10) gives hoop stress distribution 

in lower layer (bright grey zone), 
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 Crack Propagation Analysis. The cracking of the granite (reservoir rock 

in enhanced geothermal systems) can be analyzed by linear elastic fracture mechanics. 

The propagation of cracks can be characterized by the relative value of energy release 

rate G and fracture toughness Gc. G is a measure of the energy available for an increment 

of crack propagation, and thus it is also called crack driving force. Gc indicates the energy 

needed for an increment of crack surface, so it’s called resistant force. Thus, crack 

propagation criteria used at here are, 

cG G      (7.12) 

where Gc is a property of granite, set to 0.1 kJ/m2 [148]. Because of the equivalence of 

energy approach and stress intensity approach, G can be calculated from stress intensity 

factor. For configuration in Figure 7.2c, Mode I fracture is the most likely cracking 

pattern along radial direction, 

2

IK
G

E
       (7.13) 

where KI is Mode I stress intensity factor. Because crack face traction σθ is a function of 

r, weight function method is employed to calculate KI for circular disk, 
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Weight function for radial constant displacement in circular disk is given in 

reference [149], only the first dominant term is used without much loss of accuracy. 



158 

 

Combining Equations (7.11), (7.13) and (7.14), energy release rate G is, 
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    (7.15) 

The radial crack propagation can be gauged by Equation (7.11). The material data 

in Equation (7.15) to calculate G is listed in Table 7.1. They are consistent with those 

used in the numerical simulation in Table 5.1. 

 

Table 7.1 Material Data Used in Numerical Simulation and Analytical Model 

Young’s modulus, E 111.36 GPa 

Poisson’s ratio, v 0.25 

Initial rock temperature, Tr 350 °C 

Initial water temperature, Tw 50 °C 

Thermal expansion, α 8×10-6 1/°C 

Hemisphere radius, R 2.5 mm 

Fracture roughness, Gc 0.1 kJ/m2 

Tensile strength, σt 6.7 MPa 

 

7.3. RESULTS AND DISCUSSION 

In this section, effects of overburden loading and thermal unloading on the radial 

cracking are investigated using our analytical model. The crack propagation is assessed 

by the comparison of energy release rates G and Gc. Whereas, the temperature difference 

facilitates the crack propagation due to the tensile hoop stress, the overburden pressure 

inhibits the energy release and the crack propagation by means of the compressive hoop 
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stress. Subsequently, their effects on critical crack propagation length are compared for 

analytical results and numerical results, and the comparison validates the accuracy of the 

analytical model. At the end, their comparative impacts on the crack propagation length 

are examined. It shows a higher impact of the temperature difference on the crack 

propagation length than the overburden pressure. 

 Crack Propagation.  Crack starts to propagate when energy release rate G 

larger than fracture toughness Gc. G, as a function of crack length a, is plotted in Figure 

7.3. The effect of overburden loading on energy release rate G is analyzed at here. The 

relation of G and crack length a under different overburden pressures are shown in Figure 

7.3a. The temperature difference of water and rock is constant for this condition, 

30w rT C   . The overall trend of G  with respect to a  is a parabolic curve in small 

range of crack length. When G  is larger than 0.1 kJ/m2, crack extends. In the figure, two 

G – a curves intersect with Gc line (horizontal dash line). As shown in Figure 7.3a, there 

are two intersection points which have different indication of cracking. First intersection 

point indicates the length at which crack starts to extend, namely the pre-existing crack 

length. While the second intersection point means the end of extension, is the variable of 

interest in this study. Crack length corresponding to second interaction point is denoted as 

ca . It will be used extensively in following analysis. At the same time, the effect of 

overburden pressure on G is clearly displayed. Higher overburden pressure has lower 

energy release rate which indicates restraint of crack propagation subject to overburden 

pressure. This can be explained more clearly by the hoop stress in Figure 7.3b. The 

vertical overburden pressure causes the compressive hoop stress in the asperity to 

counteract the tensile hoop stress which is the driving force for inducing cracks. 
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Compared at the disk edge, the overburden pressure has larger impact in the proximity of 

disk center. 

 

 

Figure 7.3 Strain Energy Release Rate and Hoop Stress Variation at Different Loading 

Pressure. (a) Strain energy release rate G with respect to crack length at three different 

overburden pressures at 30w rT C   . (b) Associated hoop stress σθ along radial 

direction from edge.  

 

Thermal effect: The effect of temperature difference on the G is shown in Figure 

7.4. The constant overburden pressure for this scenario is P = 4.2 MPa. From Figure 7.4a, 

energy release rate is sensitive to temperature effect: only 5ºC variation can make a 

significant difference of the energy release rate. At this overburden pressure, cracking 

temperature is approximately 30ºC. The thermal effect on the energy release rate is 

opposite to the overburden loading effect. The higher temperature difference, which 

cause the larger tensile hoop stress near the disk edge, can cause the larger energy release 

rate. 

 Comparison of Numerical Simulation and Analytical Results. A damage 

mechanics based asymmetric model was developed to simulate the damage of asperity 
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under the impact of thermal effect and overburden loading. 22,384 elements for finite 

element simulation were set to model hemisphere. 

 

 

Figure 7.4 Strain Energy Release Rate and Hoop Stress Variation at Different 

Temperature Difference. (a) Strain energy release rate G with respect to crack length at 

three temperature difference at P = 4.2 MPa. (b) Associated hoop stress σθ along radial 

direction from edge.  

 

The uniform edge length of each element is around 0.1 mm and about 25 elements 

are distributed along radial direction on the top of hemisphere. More details about 

numerical simulation can be referenced to Section 6. Some graphical results are presented 

at here to show the limit length of radial crack propagation. Figure 7.5a shows the 

damage variable D contours with increasing temperature difference at P = 4.2 MPa.  

The Damage variable D is in the range of 0.0 ~ 1.0. 0.0 means the element is 

uncracked, and 1.0 means the element is fully damaged. Aggregates of damaged elements 

signify coalescence of micro-cracks and fracture. In Figure 7.5, contact zone and top  
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Figure 7.5 Damage Variable Contours with Difference Temperature Difference and 

Overburden Pressure. (a) The damage variable contours with elevated temperature 

difference of water and rock w rT   at P = 4.2 MPa. (b) The damage variable contour with 

increasing overburden pressure P at 60w rT C   .  

 

corner are red, indicating damage of element and cracking. A thin strip of red color on the 

top corner is the place of interest for the radial cracking. We can observe three stages for 

the radial cracking from damage variable contours. At w rT   less than 30ºC, no crack 

initiates at top corner. It starts to initiate and extend at when temperature difference is 

approximately equal to 30ºC. As w rT   increases, crack extends further towards center of 

asperity. Close to 300ºC, crack deviates downwards. Figure 7.5b shows the damage 

variable D contours with increasing overburden pressure at 60w rT C   . For the broad 

range of overburden pressure from 2 MPa to 7.5 MPa (physically meaning of vertical 

depth of 3 km to 5 km), the radial crack length varies slightly. Specifically, higher 

overburden pressure causes smaller radial crack length, which demonstrates the restraint 

effect of the overburden loading to the radial cracking. 

Comparison with Analytical Results: The crack length with response to elevated 

temperature difference at three different overburden pressures from numerical simulation 
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and analytical model is presented in Figure 7.6. Three stages of crack length variation can 

be clearly visualized for both numerical results and analytical results. Crack starts to 

extend at 30°C for both models. The threshold temperature difference can be well 

captured by both models. When temperature difference of water and rock is in between 

30°C and 150°C, both numerical curves and analytical curves have steep slopes with 

slight difference. The zigzag shape of numerical curves is attributed to relative coarse 

mesh along radial direction. The edge length of each element in numerical simulation is 

roughly 0.1 mm along radial direction, damage of elements leading to jump of curves. 

Numerical curves and analytical curves have overall match in this range. 

 

 

Figure 7.6 Comparison of Numerical Result and Analytical Result for the Effects of 

Temperature Difference on Critical Crack Propagation. 

 

When temperature difference exceeds 150°C, there’s an apparent discrepancy of 

trend of curves. For numerical results, the curves show the upper limit of crack length at 
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different overburden pressures, at 1.11 cm. This maximum crack length is denoted as au. 

After arrival of this limit, larger temperature difference has no effect on the radial 

cracking length. Notice that the red numerical curve at overburden pressure of 4.2 MPa 

depicts evolution of crack length in Figure 7.5a. The last damage variable contour shows 

the deviation of cracking downwards close to 300w rT C   . It infers the deviation of 

crack propagation after curves levels out in Figure 7.6b for numerical results. However, 

analytical curves show an asymptotic increase of crack length ac with elevated 

temperature difference. This discrepancy is the limitation of our analytical model to 

interpret deviation of cracking or kinking. Equation (7.13) is only valid to Mode I crack, 

not for shearing and tearing. The details analysis of this kinking can refer to Hutchinson 

and Suo [150], Ševeček et al. [151]. It can still be partially interpreted in ensuing 

paragraph by stress approach of our analytical model.  

Corresponding to finite element condition, the hoops stress underneath maximum 

crack length au is analyzed to explain the kinking effect in numerical simulation. ϕ is 

defined as the angle rotating from right horizontal plate, shown in inset of Figure 7.7. ϕ = 

5.7º corresponds to depth of two elements underneath crack length au, similarly, ϕ = 7.2º 

and ϕ = 8.6º are depths of three and four elements in numerical simulation at crack length 

au. Hoop stress σθ at those three vertical depths are plotted from analytical model in 

Figure 7.7. With depth underneath au goes downwards, σθ increases. The tensile strength 

for granite is set to σt = 6.7 MPa in simulation. It infers more likelihood for crack to 

deviate downwards than straightly radial extension. 

Regarding Figure 7.6, the temperature differences required to reach maximum 

crack length au for different overburden pressure P is varied. Larger overburden pressure 
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instead retards this approaching. This opposition to crack from overburden pressure is 

explained by analytical model. This can be explained from Equation (7.11). Larger 

overburden pressure brings larger compressive stress to negate extensive driving force for 

Mode I crack, which slows down the arrival of maximum crack length. Hence, the 

numerical curves and analytical curves show similar pattern for effect of overburden 

pressure in Figure 7.6.  

 

 
Figure 7.7 The Hoop Stress Distribution along Radial Direction toward Disc Center 

Calculated from Analytical Model. Inset indicates σθ distribution underneath maximum 

crack length au.  

 

More elaborated analysis of overburden pressure effect on critical crack length is 

shown in Figure 7.8. The variation of critical crack length with response to increasing 

overburden pressure at three distinctive temperature difference scenarios is displayed.  
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The overall trend for critical crack length is inversely proportional to overburden 

pressure for both numerical and analytical results. As the same reason as before, the 

zigzag is due to coarse mesh of finite element simulation. The drop of one indent is 

around one edge length of element. Without this difference, the analytical results show 

good agreement with numerical results. Notice that the curve with w rT   equal to 60°C 

corresponds to scenario in Figure 7.5b. For three temperature difference scenarios, the 

reduction of critical crack length in the broad range of overburden pressure is only about 

2 mm. As comparison, increase of critical crack length by temperature difference is about 

1.11 cm from Figure 7.6. It indicates the greater impact of temperature difference on the 

radial cracking. 

 

 

Figure 7.8 Comparison of Numerical Result and Analytical Result for the Effect of 

Overburden Pressure on Critical Crack Length. 
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 Combined Effects of thermal Cooling and Overburden Pressure. After 

calibration of analytical model with numerical simulation, the quantified significance of 

temperature difference and overburden loading to radial cracking and the condition to 

induce radial cracking will be analyzed respectively in what follows. 

 

 
Figure 7.9 The Combined Effect of Overburden Pressure and Temperature Difference on 

Critical Crack Propagation Length from Analytical Model. 

 

Comparative Significance: The critical crack length is important to the indication 

of the asperity failure. It’s the combined outcome of overburden loading and thermal 

unloading. The variation surface of critical crack length ac with response to the 

temperature difference w rT   and overburden pressure P is displayed in Figure 7.9. 

Slight decrease of critical crack length ac shows with increasing overburden pressure and 

arbitrary fixed temperature difference. Whereas appreciable increase of critical crack 

length presents with elevated temperature difference and arbitrary fixed overburden 

pressure. Notices that analytical curves from Figure 7.6 and Figure 7.8 is the cutting 
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curve at prescribed overburden pressure and temperature difference respectively. The 

temperature difference shows greater impact on the cracking of asperity.  

 

 
Figure 7.10 The Cracking Condition Defined by Combination of Temperature Difference 

and Overburden Pressure: Cracking Zone and Safety Zone.  

 

Cracking Condition: When critical crack length ac is zeros, it means safety of 

asperity on the top of asperity based on our analytical model. Therefore, extract the front 

intersection curve of crack length curve with ac = 0 plane. That intersection curve is 

shown in Figure 7.10. It indicates the cracking zone (ac > 0) and safety zone (ac = 0). The 

critical boundary curve between two zones are fitted to be: ΔTw-r = 1.022P + 23.9846. It 

can apply to different scenarios with broader range of temperature difference and loading 

pressure. Specially, for the thermal-hydraulic-chemical-mechanical coupled analysis of 

asperity, it can be used with great convenience to assess the cracking issue of asperity. 
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When the data points fall into safety zone, cracking is not an issue, otherwise the failure 

of asperity on top of asperity should be considered in the coupled model.  

7.4. SUMMARY 

The integrity of asperities has significant effect on the aperture of natural 

fractures. Potential failure patterns of asperity under thermos-mechanical effects are 

identified in our previous numerical simulation: the damage at contact zone and the radial 

cracking on the top of asperity. The mechanism of the radial cracking is theoretically 

analyzed in this study. A linear fracture mechanics model is developed to investigate two 

main factors to radial cracking: the cooling process and the overburden loading. Firstly, 

analytical results is compared with previous numerical results with good agreement 

which validates the analytical model. Then, competing impacts of overburden pressure 

and thermal cooling are obtained. It shows that thermal cooling dominantly drives radial 

cracking, whereas overburden loading slightly counteracts this cracking failure of 

asperity. Combined effects on critical crack propagation length is presented. At the end, 

the cracking condition under such combined effects are quantitatively described. This can 

assist current multi-physics coupled analysis of asperities by introducing the thermal 

effect on the asperity radial cracking. 
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8. MECHANICAL ANALYSIS OF FRACTURE DEFORMATION 

8.1. FRACTURE DEFORMATION 

Before going to the thermomechanical analysis of fracture deformation in the 

circumstance of enhanced geothermal systems, the mechanical deformation of fracture 

should firstly be elaborated, that is, be verified by existing data. The fracture surface is 

complicated to characterize as shown in Section 2. It is due to three reasons. Firstly, it is 

time-consuming and resorts to high-tech device to measure the roughness of fracture, 

secondly, the measured data is not easy to analyze. For example, fractal analysis and 

multifractal analysis involve numerous parameters to be determined. Their determination 

is very sensitive to experimental operation. Thirdly, the fracture surface doesn’t represent 

real condition. Because when rock sample with fracture is cored from subsurface or cut 

from core cube, the surface profile has changed due to stress relief or erroneous 

operation. Therefore, a quantity is required to directly or indirectly characterize fracture 

surface. Normal fracture stiffness was introduction by Goodman et al. [152] to describe 

the deformation of fracture. This parameter has been widely used in fracture deformation. 

Thus, its definition will be introduced in this section and it will be used as a parameter to 

validate our fracture deformation model.  

This section will present as the following procedure. Firstly, the normal fracture 

stiffness is defined and the effect of asperity distribution on its variation will be analyzed. 

Two asperity geometry, hemisphere and cylinder, will be used as a comparison. 

Secondly, the fracture deformation with two asperity geometry will be compared with 

existing experimental data. The significance of each component will be highlighted. 
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Thirdly, the stratified continuum percolation model introduced in Section 3 will be used 

to specify asperity height. The resulting fracture deformation will be compared with 

experimental data as well. 

8.2. NORMAL FRACTURE STIFFNESS 

Fracture is exchangeable with the term joint in geoscience. The term “unit joint 

stiffness” is defined by Goodman et al. for a specimen containing a joint of length L and 

unit width. When subjected to a force normal to the joint, the specimen shorten by an 

amount that depends on the deformation of the fracture (confined to the roughness thin 

region) and the elastic compression of the solid material on eight side of the fracture. If 

the elastic deformation of the solid rock is subtracted from the total deformation, the 

resulting is the normal deformation of the fracture. If the fracture deformation is plotted 

as a function of force per unit length, then the slope of the resulting curve is to be the unit 

normal stiffness of the joint. The sketch of deformation and the deformation curve are 

shown in Figure 8.1 and Figure 8.2.  

 

 

Figure 8.1 Fracture Deformation to Define Fracture Stiffness: (a) Elastic deformation of 

solid material and (b) deformation of fractured material.  
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Figure 8.2 Normal Stress versus Rock and Joint Deformation for Intact Rock Specimen 

and Specimen with Single Fracture for Granodiorite [153].  

 

The limiting cases of the definition is discussed. If the fracture is absent in the 

rock, the deformation caused by fracture is zero, leading to infinite normal stiffness. That 

is, the curve in Figure 8.2 is directly vertical. The physical interpretation is that the 

fracture is perfectly mated so that all deformation is due to that of the intact rock. If the 

fracture is wide enough, there is no contact between two opposite fracture surface, the 
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normal stiffness is zero. This corresponds to horizontal trend of curve in Figure 8.2. The 

physical interpretation is no contact between surfaces at zero stiffness.  

In Section 4, fracture deformation is composed of three components: compression 

of asperity, deformation of two half-space by self-indentation and mechanical interaction. 

Recall that stiffness is defined in terms of the additional normal displacement due to the 

fracture. The additional displacement due to the fracture is the difference between 

fracture deformation and elastic deformation of solid materials (shown in Figure 8.1). In 

order to be consistent with the symbols in Section 4, the normal stiffness K can be 

calculated from: 

2 2
K

u L l




 
     (8.1) 

where σ is the applied stress in fractured rock specimen; u  is the average normal 

displacement of half-space, defined in Equation (4.9); ΔL is compression of asperity, 

which will be either hemispherical asperity or cylindrical asperity, l is the displacement 

of the half-space that would occur if the fracture were perfectly mated (shown in Figure 

8.1a). 

The calculation of four variables in Equation (8.1) is discussed at here. The u  can 

be readily calculated from Equations (4.9). The ΔL has two possible variables depending 

on hemispherical asperity or cylindrical asperity.  

For cylindrical asperity, ΔL can be calculated from Equation (4.1), 

0

2

FL
L

Ea
        (8.2) 
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where F is the force acting on individual cylindrical asperity; L0 is the initial length of 

asperity, E is the Young’s modulus of asperity, a is the cross-sectional radius of 

cylindrical asperity.  

 

 
Figure 8.3 The Approximation of Damage Contact Model with Production of Elastic 

Contact Model with a Reduction Factor R. 

 

For a hemispherical asperity, ΔL can be calculated from Section 5. The procedure 

to obtain the deformation curve is explained below. 

For elastic standard Hertzian contact model, the displacement and force relation is: 

 
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     (8.3) 

where v is the Poisson’s ratio. This equation is for elastic deformation of a hemisphere. 

However, when stress loading on asperity exceeds tensile strength, damage occurs as 
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analyzed in Section 5. The damage effect can be represented by a reduction factor, R. 

Therefore, the force of hemispherical asperities considering damage is: 

eF RF       (8.4) 

This reduction factor R can be determined by comparison of stress-strain curves 

for damage model in Figure 5.6b versus the elastic Hertzian contact model. Because the 

stress-strain curve is size independent, this factor multiplier is valid.  

With the parameters in Table 5.1, the R is found to be 0.0054. After this reduction 

is multiplied, the approximation of new model to damage contact model is shown in 

Figure 8.3. There is still slight difference due to different power in the equation. The 

power for hertzian contact model is 1.5 for blue curve, but it is 1.845 for red curve. This 

small difference can be neglected due to constraint of allowable displacement in the real 

situation. For hemispherical contact, the displacement cannot be too large to in order to 

meet hertzian contact assumption. It is worth mentioning that this reduction factor R is 

much less than 1, meaning the less stress can be sustained by damage contact model. 

Conversely, under the same loading, the displacement of hemispherical asperity is much 

larger than that in elastic standard hertzian contact model. Combining Equations (8.3) and 

(8.4), the displacement equation for hemispherical asperity with damage feature is: 
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     (8.5) 

This equation establishes the relation of displacement and force on hemispherical 

asperity considering damage. This compression formula can be compared with 

cylindrical asperity in Equation (8.2). The underlying assumption of Equation (8.5) is that 

length of asperity is twice of radius of asperity cross section. This assumption is imposed 
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on Equation (8.2) to be L0 = 2a. The Hertzian Equation (8.3) is also compared. The 

comparison curve is shown in Figure 8.4. The parameters used refer to Table 5.1. The 

black curve is very close to the y axis. It shows that cylindrical asperity has smallest 

deformation and hemispherical asperity has largest deformation at the constant force 

loading on asperity. This result is very interesting because cylindrical asperity is widely 

used in the fracture deformation analysis for its simplification. However, this usage 

underestimates the deformation effects of asperity and would be likely to neglect their 

significance on fracture deformation. Hopkins [13] made the statement that asperity 

deformation only account for five percent of total fracture deformation based on his 

cylindrical asperity model. Obviously, this statement mislead the truth.  

The variable l in Equation (8.1) is the displacement of half-space in response to 

uniformly distributed load. It can be calculated from the Boussinesq solution for 

displacement of an elastic half-space under a uniformly distributed load. The variable σ 

can be calculated from the total force divided by region area of interest.  

To compare the difference of these two stress-displacement models, a simple 

model is constructed to analyze its force distribution under specified displacement 

boundary condition. Five asperities with equal height are located between two half-pace. 

Hemispherical and cylindrical asperities are differently analyzed. The sketch is illustrated 

in Figure 8.5. The Young’s modulus and Poisson’s ratio for both asperities and half-space 

are the same, 50 GPa and 0.25. The radius of asperity is 0.5 mm and the height of 

cylinder is 1 mm. The specified displacement is 0.1 mm. 

The force distribution in both cases are shown in Figure 8.6. It presents the same 

profile as Figure 4.6. The asperity at the edge sustains most loading and the asperity in 
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Figure 8.4 Force versus Displacement Curve for Three Models.  

 

 
Figure 8.5 Five Asperities with Equal Height between Two Half-Space. 

 

the center has least loading. This trend holds for both asperity geometries. However, the 

value of force has large difference. It shows that hemispherical asperity sustains much 

less force than cylindrical asperity which is confirmed in Figure 8.4. For the enhanced 

geothermal system, the fracture is subjected to in situ stress condition, fracture 
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deformation is critical to fluid flow and heat conduction. For specified force boundary 

condition of F = 1 kN, the deformation of half-space and asperity at the edge are 0.0203 

mm and 0.0255 mm for cylindrical asperity; the deformation of half-space and asperity at 

the edge are 0.0203 mm and 0.477 mm cylindrical asperity. It says that asperity 

compression takes most portion of displacement than half-space displacement, which is 

different from Hopkins statement[13]. That means, asperity geometry shows importance 

on the fracture deformation. If the asperity is hemisphere, the mechanical interaction and 

half-space is negligible. However, if the asperity is cylinder, the mechanical interaction 

and half-space in significant. In this section and next section, all compression 

components are included for better accuracy.  

Summing up the total force acting on all asperities, the normal stiffness can be 

calculated by Equation (8.1). The area used is the occupied region by largest distance, A 

= 1 mm × 37 mm. The stiffness is calculated assuming that the total area is the same for 

all cases. It shows that normal fracture stiffness is about six times difference for two 

asperity model. The x axis dist is the distance between two neighboring asperities. It 

intends to illustrate the effect of distance between asperities on normal fracture stiffness. 

This information is also presented for cylindrical asperities in Section 5. The result is re-

confirmed in this graph. For a constant total area, dispersed contact points form a stiffer 

interface than clustered contacts. The other aspect is that height, spatial distribution and 

geometry of asperity have importance on normal stiffness. With increasing displacement, 

the normal stiffness is constant for equal 8.7. However, if the asperities have varying 

heights, the normal stiffness would change. This is the nonlinear feature in fracture  

closure in Figure 8.2. The nonlinearity in the stress-strain curve for fracture in Figure 8.2 
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is due to increasing numbers of asperities coming into contact with increasing load. In 

numerical simulation of fracture deformation, all of them require careful characterization 

before simulation. 

Based on characterization in Section 2, fracture aperture and asperity height 

follows lognormal distribution. That is, low asperities take most portion and tall asperities 

are a small portion. Therefore, random number generator is used in MATLAB to set the 

 

 

Figure 8.6 The Force Distribution along the Row on Asperities: (a) For cylindrical 

asperity and (b) for hemispherical asperity.  

 

 
Figure 8.7 The Normal Fracture Stiffness versus Distance between Two Neighboring 

Asperities for Two Models: (a) Cylindrical asperity and (b) hemispherical asperity.  
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Figure 8.8 The Setting of Asperity with Lognormal Distribution of Height. (a) The 

positions of asperity and (b) the height distribution.  

 

set asperity height for 100 asperities as shown in Figure 8.8. The random number follows 

lognormal distribution. The used height distribution and number are plotted in Figure 

8.8b. The fitting is used to reassure the distribution of height. The arithmetic mean of 

height is 1.0618 mm and the maximum height is 3.361 mm. The different radii of circle 

in Figure 8.8a is due to relation of height and radius. This is the constraint from 

hemispherical asperity and applies to both cases.  

The stress displacement curve for two asperity models are shown in Figure 8.9. 

The area used to calculate stress is 169 mm2. The stress for cylindrical model is about 

five times that for hemispherical model, consistent with the result in Figure 8.7. The 

curves shape have similar trend as Figure 8.2 from experimental data. Normal stiffness, 

the slope of curve, increases gradually with more closure of fracture. 

It is worth mentioning the relation of preceding result to fracture information. As 

analyzed in Section 2, two fracture surface and fracture aperture follows lognormal 

distribution. Composite topography is the sum of surface height from two reference 
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Figure 8.9 Stress versus Displacement Curve for Two Asperity Models: (a) Cylindrical 

asperity and (b) hemispherical asperity.  

 

planes. It is the negative of fracture aperture. That means, composite topography is 

complementary to fracture aperture. The lognormal distribution of asperity height used is 

similar to simulate composite topography. The information about individual fracture 

surface is embedded together. In other words, the correlation length, scaling feature and 

other properties on composite topography or fracture aperture can apply to asperity height 

in this model. The preceding example only represents the distribution property. More 

comprehensive illustration is based on characterization of fracture aperture.  

The stratified continuum percolation model established in Section 3 meets this 

need. Because the scaling feature, correlation length and other properties have been 

presented in stratified continuum percolation model. The site density in each pixel 

follows lognormal distribution. The site density can be used to represent asperity height. 

Using this approach, the fracture is modeled by two half-spaces separated by an 

arrangement of hemispherical asperities. The asperities are arranged on a regular lattice 
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with heights determined by the aperture distribution generated by the stratified continuum 

percolation algorithm. The radii of the asperities are set such that they are half of their 

height. The same size of area as Pyrak-Nolte and Morris [22] is used: 300 by 300 pixel. It 

represents 0.1 m area, giving an asperity radius of 0.1667 mm. for this analysis, the 

physical properties of both asperity and half-spaces refer to Table 5.1. The geometric 

constraint in Section 4 is used to update the height of asperity when in contact. 

8.3. POROSITY EFFECT 

The porosity effect is analyzed on the deformation of asperity in both mechanical 

loading and thermomechanical loading process in Section 4. The equivalent reduction of 

stiffness by the porosity is considered in the constitutive curve in Figure 6.1c. From the 

damage contour display, the porosity has more significant effect on the potential failure 

of asperity not partial damage on the contact region. This can also be represented in the 

normal fracture stiffness curve. The deformation curve for single asperity with porosity 

and without porosity is shown in Figure 8.10. 

It shows that porosity has negligible effect on the normal stiffness of asperity 

deformation. Therefore, without consideration of abrupt failure or crush, the porosity can 

be ignored in the fracture deformation model. For simplicity, the porosity is not 

considered in the following analysis.  

8.4. FRACTURE DEFORMATION 

Based on the stratified continuum percolation model, the fracture geometry can be 

generated. However, due to constraint of computational resource, the geometry size 
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cannot set too large. The calculation of individual force on asperity is based on global 

calculation is very computational intensive. To reduce the computational time, a small 

model is generated. The size is 50 × 50 pixels to mimic the real fracture region of 100 

mm × 100 mm. 4 stratified layers are used in the calculation. The scaling factor is 2.37. 

The number of squares in each layer is 6. Therefore, the total asperity is 2500. The model 

geometry is shown in Figure 8.11. 

 

 

Figure 8.10 The Normal Stiffness Curve for Asperity Deformation. 
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Figure 8.11 The Model Geometry of Fracture: (a) The stratified percolation model by 

squares and (b) the stratified percolation model by hemispherical asperities. 

 

  Mechanical Loading. For the geometry in Figure 8.10b, the far field 

displacement is applied and the force is calculated and then summed to obtain the total 

force. The total force can be used to obtain the loading, because the fracture area is 0.01 

m2. With different loadings, the asperity displacement are displayed in Figure 8.12.  

It shows that with higher stress loading, the fracture aperture reduces 

significantly. The yellow region in initial state becomes cold color at σ = 100 MPa. The 

height information of asperity can be extracted and presented in Figure 8.13.  

The height changes is more pronounced in Figure 8.13. The number of asperity 

height of 0 mm increases substantially. It means that more parts of model is closed by 

stress loading. It is interesting to notice that there is still some small asperity heights even 

at σ = 100 MPa. If they are connected, they are able to provide flow path for percolation. 

Therefore, the flow transmissivity highly depends on the initial geometry of asperity 

positions.  
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Figure 8.12 The Fracture Aperture at Different Loading Stresses. 

 

  Thermomechanical Loading. To account for the potential failure of 

asperity, the artificial damage is forced randomly on the asperity. Ten percent of 

contacting asperity is forced to be damaged totally. This is artificial setting of damage, 

more accurate setting of potential damage can come from the hydrothermal simulation of 

fracture and analyze the temperature distribution in the fracture. When the temperature is 

higher than the critical damage temperature, the fracture can be set to be damaged. In this 

circumstance, the upstream in the fracture has more damage than the downstream. In 

present study, random selection of certain percentage of damage oversimplify this 

complicated process. More accurate analysis will be conducted in the future. The 

geometry and corresponding numerical scheme are shown in Figure 8.14.  
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Figure 8.13 Asperity Height Histogram at Different Loading Stresses. 

 

 

Figure 8.14 The Sketch of Thermomechanical Loading and Numerical Scheme Used in 

Simulation. 
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Figure 8.15 The Fracture Aperture at Different Loading Stresses. 

 

The corresponding fracture deformation can be obtained and shown in Figure 8. 

14 and 8.15. The presentation maintains the same as in Figure 8.12 and Figure 8.13. Due 

to damage of contacting asperities, the closure of fracture is more remarking than 

mechanical loading. At σ = 100 MPa, most asperities almost closed and the connection is 

become invisible indicating the almost disconnection of flow channels. It shows the 

significant effect of thermal effect by damage of asperities. In Figure 8.16, the symbol δ 

denotes the thermal damage induced additional closure. The δ is displayed in the graphs. 

It shows that thermal induced closure is more significant for high stress loading, which is 

follows the common sense.  
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Figure 8.16 Asperity Height Histogram at Different Loading Stresses. 
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9.  CONCLUSION 

This dissertation deals with fracture deformation with effect of thermal and 

mechanical analysis. Due to the rough fracture surface, the direct finite element analysis 

is infeasible. The contacting asperities consume high computational cost. To alleviate this 

obstacle, a statistical percolation model is used to analyze the deformation. The 

deformation of asperity is separately characterized by numerical simulation. The general 

stress-deformation curve is extracted for individual asperity. This stress-deformation 

curve is used in the stratified percolation model to analyze the overall closure of fracture. 

The abrupt crush and additional closure of fracture can be analyzed by this 

method. It shows that at high loading stress, thermal closure is significant and has more 

impact on the fluid flow. The porosity effect is also analyzed in this dissertation. It has 

negligible effect on the normal stiffness of fracture.  

To extend this work, the comparison with experimental data can be done and 

verify this model. In additional, the fluid flow and transport can be analyzed in this model 

as well. The remaining aperture between fractures determines the flows channel for fluid 

flow and contaminant transport. Therefore, this model can serve as a basic framework to 

analyze more hydrological phenomena in geoscience. 
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APPENDIX A. 

SPECTRAL SYNTHESIS METHOD 
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The spectral synthesis method is programmed in MATLAB. This code 

implements approximation of the spectral analysis and inverse Fourier transform.  The 

XA and XB are matrices of bottom surface and top surface respectively. The standard 

deviation of height is not applied in this code. After the matrices XA and XB are plotted. 

The height data can be imposed by setting standard deviation.  

 

function [XA,XB] = 

SpectralSynthesisFM2D(H,Aniso,Rplus,Rminus,tao,lambdac) 

% the algorithm based on Oglive et al. (1998) 

% Argument: 

% X --- doubly indexed array of complex variables of size N^2 

% N --- size of array X along one direction 

% H --- 0<H<1 determines fractal dimension D = 3-H 

% Aniso --- anisotropy factor 

% Rplus --- max matching fraction, (0,1) 

% Rminus --- min matching fraction, (0,1) 

% tao --- transition length, mm 

% lambdac --- mismatch wavelength, mm 

% Size --- physical size, mm 

 

% NOTES: the default size N = 512 

N = 512; 

 

lambdaminus = lambdac*(2*lambdac+tao)/2/(lambdac+tao);   % minimum 

correlation scale 

lambdaplus = lambdaminus + tao;   % maximum correlation scale 

 

kminus = 2*pi/lambdaminus;   % wavenumber(-) 

kplus = 2*pi/lambdaplus;  % wavenumber(+) 

 

 

A = zeros(N,N);     % matrix for lower surface 

B = zeros(N,N);     % matrix for the upper surface 

 

for ii = 1: N/2+1 

    for jj = 1: N/2+1 

        if (sqrt(ii*ii+jj*jj)<kplus) 

            R = Rplus; 

        elseif (sqrt(ii*ii+jj*jj)>kminus) 

            R = Rminus; 

        else 

            R = (Rplus-Rminus)/(kplus-kminus)*(sqrt(ii*ii+jj*jj)-

kplus)+Rplus; 

        end 

        phase1 = 2*pi*normrnd(0,1);     % for lower surface 

        phase2 = 2*pi*normrnd(0,1); 

        phase3 = R*phase1 + (1-R)*phase2;   % for upper surface 
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        if (ii~=1 || jj~=1) 

            rad = power(ii*ii+jj*jj/(Aniso*Aniso),-(H+1)/2); 

        else 

            rad = 0; 

        end 

        A(ii,jj) = rad*cos(phase1)+1i*rad*sin(phase1); 

        B(ii,jj) = rad*cos(phase3)+1i*rad*sin(phase3); 

        if (ii==1) 

            i0 = 1; 

        else 

            i0 = N+2-ii; 

        end 

        if (jj==1) 

            j0 = 1; 

        else 

            j0 = N+2-jj; 

        end 

        A(i0,j0) = rad*cos(phase1)-1i*rad*sin(phase1); 

        B(i0,j0) = rad*cos(phase3)-1i*rad*sin(phase3); 

    end 

end 

A(N/2+1,1) = real(A(N/2+1,1)); 

A(1,N/2+1) = real(A(1,N/2+1)); 

A(N/2+1,N/2+1) = real(A(N/2+1,N/2+1)); 

B(N/2+1,1) = real(B(N/2+1,1)); 

B(1,N/2+1) = real(B(1,N/2+1)); 

B(N/2+1,N/2+1) = real(B(N/2+1,N/2+1)); 

for ii = 2:N/2 

    for jj = 2:N/2 

        if (sqrt(ii*ii+jj*jj)<kplus) 

            R = Rplus; 

        elseif (sqrt(ii*ii+jj*jj)>kminus) 

            R = Rminus; 

        else 

            R = (Rplus-Rminus)/(kplus-kminus)*(sqrt(ii*ii+jj*jj)-

kplus)+Rplus; 

        end 

        phase1 = 2*pi*normrnd(0,1);     % for lower surface 

        phase2 = 2*pi*normrnd(0,1); 

        phase3 = R*phase1 + (1-R)*phase2;   % for upper surface 

        rad = power(ii*ii+jj*jj/(Aniso*Aniso),-(H+1)/2); 

        A(ii,N-jj+2) = rad*cos(phase1)+1i*rad*sin(phase1); 

        A(N-ii+2,jj) = rad*cos(phase1)-1i*rad*sin(phase1); 

        B(ii,N-jj+2) = rad*cos(phase3)+1i*rad*sin(phase3); 

        B(N-ii+2,jj) = rad*cos(phase3)-1i*rad*sin(phase3);         

    end 

end 

 

% fast inverse Fourier transform in 2 dimensions 

XA=ifft2(A); 

XB=ifft2(B); 

 

end 
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APPENDIX B. 

HIERARCHICAL CASCADES OF SQUARES 
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The stratified continuum percolation model is implemented in MATLAB. All 

code is attached in this appendix. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Chao Zeng 

% 07/2019 

% This code creates Stratified Percolation Model 

 

% Inputs 

% len: Length of Lattice 

% 

% Global Declarations 

% random: Binary Variable for Traditional(0) or Randum(1) Medium 

% b: scaling factor 

% N: number of tiers 

% d: initial pore size 

% L: number of pores to remove in each tiers 

%----------------------------------------------------------------------

--- 

clear 

clc 

clf 

 

N=5;             % number of tiers 

 

struct1.L = 2;        %number of squares in each tier 

struct1.b = 2.37;        %scale factor 

struct1.Len = 300;     %length of intial geometry 

struct1.Len_large = struct1.Len;   % the length of largest square 

     

struct1.squres_x_all={}; 

struct1.squres_y_all={}; 

struct1.gridmatrix = zeros(round(struct1.Len),round(struct1.Len)); 

     

[pts,squres_x,squres_y,struct1] = 

my_mante_carlo_Simulation(N+1,struct1); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% set(0,'DefaultFigureWindowStyle','docked') 

% rng(1); % set reset random seed to a fixed 

% 

function [pts,squres_x,squres_y,struct1] = 

my_mante_carlo_Simulation(N,struct1) 

 

 

cMap = colormap(gray); 

 

% lowest level 

if N<=1 

 

    pts = [0, 0, N, 1, 1];   % [x y tier, parent_tag, child_tag] 
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    squres_x = {[pts(1)-struct1.Len/2  pts(1)-struct1.Len/2  

pts(1)+struct1.Len/2  pts(1)+struct1.Len/2]}; 

    squres_y = {[pts(2)+struct1.Len/2  pts(2)-struct1.Len/2  pts(2)-

struct1.Len/2  pts(2)+struct1.Len/2]}; 

    set(gcf, 'Position',  [100, 100, 386, 386]) 

    fill(squres_x{1,1}, squres_y{1,1}, 'w','EdgeColor','none'); 

     set(gca,'xtick',[],'ytick',[]) 

     set(gca,'xticklabel',[],'ytick',[]) 

%     set(gca,'Visible','off') 

    %box off 

    pbaspect([1 1 1]) 

    hold on 

else 

     

    %-----------recursive function call--------------------------------

--- 

    [pts, squres_x, squres_y,struct1] = my_mante_carlo_Simulation(N-

1,struct1); 

     

    sL = size(pts,1)*struct1.L; 

    pts_center=zeros(sL,4); 

    pts_center(:,1:2) = repmat(pts(:,1:2),[struct1.L,1]) + 

(2*rand([sL,2])-1)*struct1.Len/2;   %ceter point of smaller square 

    pts_center(:,3) = N; 

    pts_center(:,4) = repmat(pts(:,4),[struct1.L,1]); 

    pts_center(:,5) = cumsum(ones(sL,1)); 

    struct1.Len = struct1.Len/struct1.b;     

     

    %clear the squares_x and squares_y in parent squares 

    squres_x = {}; 

    squres_y = {}; 

     

%   %   divide the region for the sites 

%   %   with intersection with the border      

    for k = 1:size(pts_center,1) 

        [squres_x, squres_y] = wraparound_boundary(k, 

struct1.Len_large, struct1.Len, pts_center, squres_x, squres_y); 

    end 

 

%   display the model 

    if N == 5 

     for k1 = 1:size(pts_center,1) 

         for k2 = 1:size(squres_x,2) 

             fill(squres_x{k1,k2}, 

squres_y{k1,k2},'k','EdgeColor','none'); 

%              set(gca,'xtick',[],'ytick',[]) 

%              set(gca,'xticklabel',[],'ytick',[]) 

%              set(gca,'Visible','off') 

             %box off 

         end 

     end 

    end 

     

    %-----------calculate the density distribution in the grid---------

--- 
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    struct1.gridmatrix = 

calculate_density_distribution(struct1.gridmatrix,struct1.Len_large,squ

res_x,squres_y); 

  

     

    %-----------calculate the total area fraction----------------------

- 

%     squres_x_all = {squres_x_all{:,:} squres_x{:,:}}; 

%     squres_y_all = {squres_y_all{:,:} squres_y{:,:}}; 

%     total_area = calculate_area_parent(squres_x_all,squres_y_all); 

%     total_area_fraction = total_area/(Len_large^2);     

%     fprintf('the total area fraction is: %f \n', 

total_area_fraction);    

     

    %-----------calculate subtier area fraction------------------------

- 

    subtier_area = calculate_area_parent(squres_x,squres_y); 

    subtier_area_fraction = subtier_area/(struct1.Len_large^2);     

    fprintf('the subtier area fraction is: %f \n', 

subtier_area_fraction);     

     

     

     

    pts_center(:,4) = pts_center(:,5); 

    pts = pts_center; 

     

 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [x, y] = wraparound_boundary(k, Len_large, Len, pts_center, 

squres_x, squres_y) 

 

%divide the region for the sites 

        % with intersection with the border 

        if pts_center(k,1)>(Len_large/2-Len/2)&& 

pts_center(k,1)<(Len_large/2+Len/2)  

            if pts_center(k,2)> (Len_large/2-Len/2) && 

pts_center(k,2)<(Len_large/2+Len/2) 

                flag = 1; 

            elseif pts_center(k,2)<-(Len_large/2-Len/2) && 

pts_center(k,2)>-(Len_large/2+Len/2) 

                flag = 2; 

            elseif pts_center(k,2)<= (Len_large/2-Len/2)&& 

pts_center(k,2)>=-(Len_large/2-Len/2)  

                flag = 3; 

            end 

        elseif pts_center(k,1)<-(Len_large/2-Len/2)&& pts_center(k,1)>-

(Len_large/2+Len/2) 

            if pts_center(k,2)> (Len_large/2-Len/2) && pts_center(k,2)< 

(Len_large/2+Len/2) 

                flag = 4; 

            elseif pts_center(k,2)<-(Len_large/2-Len/2) && 

pts_center(k,2)>-(Len_large/2+Len/2) 

                flag = 5; 
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            elseif pts_center(k,2)<= (Len_large/2-Len/2)&& 

pts_center(k,2)>=-(Len_large/2-Len/2)  

                flag = 6; 

            end 

        elseif pts_center(k,1)>=-(Len_large/2-Len/2) && 

pts_center(k,1)<=(Len_large/2-Len/2) 

            if pts_center(k,2)>= (Len_large/2-Len/2) && 

pts_center(k,2)<=(Len_large/2+Len/2) 

                flag = 7; 

            elseif pts_center(k,2)<=-(Len_large/2-Len/2) && 

pts_center(k,2)>=-(Len_large/2+Len/2) 

                flag = 8; 

            elseif pts_center(k,2)< (Len_large/2-Len/2)&& 

pts_center(k,2)>-(Len_large/2-Len/2) 

                flag = 9; 

            end 

        end 

         

        %without intersection with the border 

        if pts_center(k,1)>=(Len_large/2+Len/2) 

            if pts_center(k,2)>=(Len_large/2+Len/2) 

                flag = 11; 

            elseif pts_center(k,2)<=-(Len_large/2+Len/2) 

                flag = 12; 

            elseif pts_center(k,2)>=-(Len_large/2-

Len/2)&&pts_center(k,2)<=(Len_large/2-Len/2) 

                flag = 13; 

            elseif pts_center(k,2)>-

(Len_large/2+Len/2)&&pts_center(k,2)<-(Len_large/2-Len/2) 

                flag = 23; 

            elseif pts_center(k,2)>(Len_large/2-

Len/2)&&pts_center(k,2)<(Len_large/2+Len/2) 

                flag = 24; 

            end 

        elseif pts_center(k,1)<=-(Len_large/2+Len/2) 

                if pts_center(k,2)>= (Len_large/2+Len/2) 

                    flag = 14; 

                elseif pts_center(k,2)<=-(Len_large/2+Len/2) 

                    flag = 15; 

                elseif pts_center(k,2)>=-(Len_large/2-

Len/2)&&pts_center(k,2)<=(Len_large/2-Len/2)  

                    flag = 16; 

                elseif pts_center(k,2)>-

(Len_large/2+Len/2)&&pts_center(k,2)<-(Len_large/2-Len/2) 

                    flag = 25; 

                elseif pts_center(k,2)>(Len_large/2-

Len/2)&&pts_center(k,2)<(Len_large/2+Len/2) 

                    flag = 26; 

                end 

        elseif pts_center(k,1)>=-(Len_large/2-Len/2) && 

pts_center(k,1)<=(Len_large/2-Len/2)   

            if pts_center(k,2)>=(Len_large/2+Len/2) 

                flag = 17; 

            elseif pts_center(k,2)<=-(Len_large/2+Len/2) 

                flag = 18; 

            end 
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        elseif pts_center(k,1)>(Len_large/2-Len/2) && 

pts_center(k,1)<(Len_large/2+Len/2) 

            if pts_center(k,2)>=(Len_large/2+Len/2) 

                flag = 19; 

            elseif pts_center(k,2)<=-(Len_large/2+Len/2) 

                flag = 20;  

            end 

        elseif pts_center(k,1)>-(Len_large/2+Len/2) && 

pts_center(k,1)<-(Len_large/2-Len/2) 

            if pts_center(k,2)>=(Len_large/2+Len/2) 

                flag = 21; 

            elseif pts_center(k,2)<=-(Len_large/2+Len/2) 

                flag = 22;  

            end             

        end 

         

        if flag == 1 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 Len_large/2 Len_large/2]; 

            squres_y{k,1} = [Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 Len_large/2]; 

            squres_x{k,2} = [Len_large/2 Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,2} = [Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 Len_large/2]; 

            squres_x{k,3} = [Len_large/2 Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,3} = [pts_center(k,2)+Len/2 Len_large/2 

Len_large/2 pts_center(k,2)+Len/2]-Len_large; 

            squres_x{k,4} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 Len_large/2 Len_large/2]; 

            squres_y{k,4} = [pts_center(k,2)+Len/2 Len_large/2 

Len_large/2 pts_center(k,2)+Len/2]-Len_large; 

        elseif flag == 2 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 Len_large/2 Len_large/2]; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 -Len_large/2 -

Len_large/2 pts_center(k,2)+Len/2]; 

            squres_x{k,2} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 Len_large/2 Len_large/2]; 

            squres_y{k,2} = [-Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 -Len_large/2]+Len_large; 

            squres_x{k,3} = [Len_large/2 Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,3} = [-Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 -Len_large/2]+Len_large; 

            squres_x{k,4} = [Len_large/2 Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,4} = [pts_center(k,2)+Len/2 -Len_large/2 -

Len_large/2 pts_center(k,2)+Len/2]; 

        elseif flag == 3 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 Len_large/2 Len_large/2]; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]; 
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            squres_x{k,2} = [Len_large/2 Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,2} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]; 

        elseif flag == 4 

            squres_x{k,1} = [-Len_large/2 -Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,1} = [Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 Len_large/2]; 

            squres_x{k,2} = [-Len_large/2 -Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,2} = [pts_center(k,2)+Len/2 Len_large/2 

Len_large/2 pts_center(k,2)+Len/2]-Len_large; 

            squres_x{k,3} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 -Len_large/2 -Len_large/2]+Len_large; 

            squres_y{k,3} = [pts_center(k,2)+Len/2 Len_large/2 

Len_large/2 pts_center(k,2)+Len/2]-Len_large; 

            squres_x{k,4} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 -Len_large/2 -Len_large/2]+Len_large; 

            squres_y{k,4} = [Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 Len_large/2]; 

        elseif flag == 5 

            squres_x{k,1} = [-Len_large/2 -Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 -Len_large/2 -

Len_large/2 pts_center(k,2)+Len/2]; 

            squres_x{k,2} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 -Len_large/2 -Len_large/2]+Len_large; 

            squres_y{k,2} = [pts_center(k,2)+Len/2 -Len_large/2 -

Len_large/2 pts_center(k,2)+Len/2]; 

            squres_x{k,3} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 -Len_large/2 -Len_large/2]+Len_large; 

            squres_y{k,3} = [-Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 -Len_large/2]+Len_large; 

            squres_x{k,4} = [-Len_large/2 -Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,4} = [-Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 -Len_large/2]+Len_large;             

        elseif flag == 6 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 -Len_large/2 -Len_large/2]+Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]; 

            squres_x{k,2} = [-Len_large/2 -Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,2} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2];             

        elseif flag == 7 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,1} = [Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 Len_large/2]; 

            squres_x{k,2} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,2} = [pts_center(k,2)+Len/2 Len_large/2 

Len_large/2 pts_center(k,2)+Len/2]-Len_large; 
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        elseif flag == 8 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,1} = [-Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 -Len_large/2]+Len_large; 

            squres_x{k,2} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,2} = [pts_center(k,2)+Len/2 -Len_large/2 -

Len_large/2 pts_center(k,2)+Len/2];  

        elseif flag == 9 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]; 

        elseif flag == 11 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]-Len_large; 

        elseif flag == 12 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]+Len_large; 

        elseif flag == 13 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2];   

        elseif flag == 14 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]+Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]-Len_large;  

        elseif flag == 15 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]+Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]+Len_large; 

        elseif flag == 16 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]+Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]; 

        elseif flag == 17 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]-Len_large; 

        elseif flag == 18 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]+Len_large;             

        elseif flag == 19 
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            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 Len_large/2 Len_large/2]; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]-Len_large; 

            squres_x{k,2} = [Len_large/2 Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,2} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]-Len_large; 

        elseif flag == 20 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 Len_large/2 Len_large/2]; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]+Len_large; 

            squres_x{k,2} = [Len_large/2 Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,2} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]+Len_large; 

        elseif flag == 21 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 -Len_large/2 -Len_large/2]+Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]-Len_large; 

            squres_x{k,2} = [-Len_large/2 -Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,2} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]-Len_large;  

        elseif flag == 22 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 -Len_large/2 -Len_large/2]+Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]+Len_large; 

            squres_x{k,2} = [-Len_large/2 -Len_large/2 

pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]; 

            squres_y{k,2} = [pts_center(k,2)+Len/2 pts_center(k,2)-

Len/2 pts_center(k,2)-Len/2 pts_center(k,2)+Len/2]+Len_large; 

        elseif flag == 23 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 -Len_large/2 -

Len_large/2 pts_center(k,2)+Len/2]; 

            squres_x{k,2} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,2} = [-Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 -Len_large/2]+Len_large; 

        elseif flag == 24 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 Len_large/2 

Len_large/2 pts_center(k,2)+Len/2]-Len_large; 

            squres_x{k,2} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]-Len_large; 

            squres_y{k,2} = [Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 Len_large/2];  

        elseif flag == 25 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]+Len_large; 
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            squres_y{k,1} = [pts_center(k,2)+Len/2 -Len_large/2 -

Len_large/2 pts_center(k,2)+Len/2]; 

            squres_x{k,2} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]+Len_large; 

            squres_y{k,2} = [-Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 -Len_large/2]+Len_large; 

        elseif flag == 26 

            squres_x{k,1} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]+Len_large; 

            squres_y{k,1} = [pts_center(k,2)+Len/2 Len_large/2 

Len_large/2 pts_center(k,2)+Len/2]-Len_large; 

            squres_x{k,2} = [pts_center(k,1)-Len/2 pts_center(k,1)-

Len/2 pts_center(k,1)+Len/2 pts_center(k,1)+Len/2]+Len_large; 

            squres_y{k,2} = [Len_large/2 pts_center(k,2)-Len/2 

pts_center(k,2)-Len/2 Len_large/2];     

        end 

         

        x = squres_x; 

        y = squres_y; 

     

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function gridmatrix = 

calculate_density_distribution(gridmatrix,Len_large,squres_x,squres_y) 

 

%NOTE: length of unit is 1 

M = round(Len_large);    % horizontal direction 

N = round(Len_large);    % vertical direction 

 

for k1 = 1: size(squres_x,1) 

    for k2 = 1: size(squres_x,2) 

        if isempty(squres_x{k1,k2}) 

            continue 

        end 

        % the vector info of squres 

        x1 = squres_x{k1,k2}(2); 

        x2 = squres_x{k1,k2}(3); 

        y1 = squres_y{k1,k2}(2); 

        y2 = squres_y{k1,k2}(1); 

        width = x2 - x1; 

        height = y2 - y1; 

        temp_B = [x1 y1 width height]; 

        % the vector info of units 

        i1 = floor(x1)+M/2+1; 

        i2 = floor(x2)+M/2+(x2~=M/2); 

        j1 = floor(y1)+N/2+1; 

        j2 = floor(y2)+M/2+(y2~=N/2); 

        if i1 == i2 

            i2 = i2 + 1; 

        end 

        if j1 == j2 

            j2 = j2 + 1; 

        end 

        for i = i1:i2 
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            for j = j1:j2 

                coord_x = i-M/2-1; 

                coord_y = j-N/2-1; 

                temp_A = [coord_x coord_y 1 1]; 

                if rectint(temp_A, temp_B) > 0.5 

                    gridmatrix(i,j) = gridmatrix(i,j) + 1; 

                end 

            end 

        end 

    end 

end 

 

end 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function total_area = calculate_area_parent(squres_x,squres_y) 

 

 

% sort all squares according to their x-values of right edges 

squres_x_array = {}; 

squres_y_array = {}; 

squres_x_array = {squres_x_array,squres_x{:,:}}; 

squres_y_array = {squres_y_array,squres_y{:,:}}; 

squres_x_matrix = cell2mat(squres_x_array(2:end)); 

squres_y_matrix = cell2mat(squres_y_array(2:end)); 

squres = [squres_x_matrix(2:4:end-2)' squres_x_matrix(4:4:end)' 

squres_y_matrix(2:4:end-2)' squres_y_matrix(4:4:end)']; 

rangeOfX = [squres_x_matrix(2:4:end-2)'; squres_x_matrix(4:4:end)']; 

 

squres = sortrows(squres,2);   

IDX = 1:size(squres,1); 

 

%sort a vector of all x-values 

rangeOfX = sort(rangeOfX); 

% diffX = diff(rangeOfX); 

% total_area = 0.0; 

%  

% for i = 1: size(rangeOfX)-1 

%     idx = IDX(squres(:,1) <= rangeOfX(i) &squres(:,2) >= 

rangeOfX(i+1)); 

%     rangeOfY = [squres(idx,3);squres(idx,4)];   % extract the y 

coordinate info 

%     rangeOfY = sort(rangeOfY);   %sort a vector of all y-values 

%     diffY = diff(rangeOfY);     % the distance of neighbouring points 

%     total_length_Y = 0.0; 

%     for j = 1: size(rangeOfY)-1 

%         if sum(squres(idx,3)<=rangeOfY(j) & 

squres(idx,4)>=rangeOfY(j+1)) > 0 

%             total_length_Y = total_length_Y + diffY(j); 

%         end 

%     end 

%     total_area = total_area + diffX(i)*total_length_Y; 

% end 
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%  

% end 

 

N = size(rangeOfX,1);           %number of x-range 

total_area = 0.0; 

 

for i = 1:N-1 

     

     idx = IDX(squres(:,1) <= rangeOfX(i) &squres(:,2) >= 

rangeOfX(i+1)); 

     rangeOfY = [squres(idx,3) squres(idx,4)];   % extract the y 

coordinate info 

     iter = numel(idx); 

 

    %------Merge the overlapping Y--------------------------- 

    if iter == 0 

        continue 

    else 

    rangeOfY = sortrows(rangeOfY,1);   % sort based on bottom 

coordinate      

    gap = 0.0; 

    end 

     

    if iter > 1    

        for k = 2:iter    %check top coordinate 

            max_Y = max(rangeOfY(1:k-1,2)); 

            if rangeOfY(k,1) > max_Y  % no overlapping 

                gap = gap + rangeOfY(k,1)-max_Y; 

            end 

        end 

    end 

    total_area = total_area + (rangeOfX(i+1)-

rangeOfX(i))*(max(rangeOfY(:,2))-rangeOfY(1,1)-gap); 

     

end 

  

end 
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APPENDIX C. 

FRACTAL FEATURES 



206 

 

Fractal features analysis in section three resorts to a box-counting method. The 

box-counting method is used to numerically estimate fractal dimension and lacunarity of 

the pattern. The calculated dimension is called box-counting dimension, and is different 

from value calculated from other methods, but is the default way to approximately 

measure fractal dimension. It has two parts, fix-grid scan for fractal dimension and 

sliding grid scan for lacunarity. The associated code to calculate each of these is attached. 

The code is validated by FracLac plug-in in ImagJ software. This code is based on code 

snippets from the MALTAB community and their contributions are sincerely appreciated 

(the authors and data is noted in code as comments).  

The multifractal analysis is also included in this appendix as an indispensable 

component on heterogeneity of structure. The code is programmed and attached. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

NOTE: This code is revised upon the MATLAB code online by F. Moisy, 2008. 

His contribution to the original code is appreciated. 

function [n,r] = boxcount(c,varargin) 

% control input argument 

narginchk(1,2); 

% check for true color image (m-by-n-by-3 array) 

if ndims(c)==3 

    if size(c,3)==3 && size(c,1)>=8 && size(c,2)>=8 

        c = sum(c,3); 

    end 

end 

warning off 

c = logical(squeeze(c)); 

warning on 

dim = ndims(c); % dim is 2 for a vector or a matrix, 3 for a cube 

if dim>3 

    error('Maximum dimension is 3.'); 

end 

% transpose the vector to a 1-by-n vector 

if length(c)==numel(c) 

    dim=1; 

    if size(c,1)~=1    

        c = c'; 

    end    

end 
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width = max(size(c));    % largest size of the box 

p = log(width)/log(2);   % nbre of generations 

% remap the array if the sizes are not all equal, 

% or if they are not power of two 

% (this slows down the computation!) 

if p~=round(p) || any(size(c)~=width) 

    p = ceil(p); 

    width = 2^p; 

    switch dim 

        case 1 

            mz = zeros(1,width); 

            mz(1:length(c)) = c; 

            c = mz; 

        case 2 

            mz = zeros(width, width); 

            mz(1:size(c,1), 1:size(c,2)) = c; 

            c = mz; 

        case 3 

            mz = zeros(width, width, width); 

            mz(1:size(c,1), 1:size(c,2), 1:size(c,3)) = c; 

            c = mz;             

    end 

end 

n=zeros(1,p+1); % pre-allocate the number of box of size r 

switch dim 

    case 1        %------------------- 1D boxcount --------------------

-% 

        n(p+1) = sum(c); 

        for g=(p-1):-1:0 

            siz = 2^(p-g); 

            siz2 = round(siz/2); 

            for i=1:siz:(width-siz+1) 

                c(i) = ( c(i) || c(i+siz2)); 

            end 

            n(g+1) = sum(c(1:siz:(width-siz+1))); 

        end 

    case 2         %------------------- 2D boxcount -------------------

--% 

        n(p+1) = sum(c(:)); 

        for g=(p-1):-1:0 

            siz = 2^(p-g); 

            siz2 = round(siz/2); 

            for i=1:siz:(width-siz+1) 

                for j=1:siz:(width-siz+1) 

                    c(i,j) = ( c(i,j) || c(i+siz2,j) || c(i,j+siz2) || 

c(i+siz2,j+siz2) ); 

                end 

            end 

            n(g+1) = sum(sum(c(1:siz:(width-siz+1),1:siz:(width-

siz+1)))); 

        end 

    case 3         %------------------- 3D boxcount -------------------

--% 

        n(p+1) = sum(c(:)); 

        for g=(p-1):-1:0 

            siz = 2^(p-g); 



208 

 

            siz2 = round(siz/2); 

            for i=1:siz:(width-siz+1) 

                for j=1:siz:(width-siz+1) 

                    for k=1:siz:(width-siz+1) 

                        c(i,j,k)=( c(i,j,k) || c(i+siz2,j,k) || 

c(i,j+siz2,k) ... 

                            || c(i+siz2,j+siz2,k) || c(i,j,k+siz2) || 

c(i+siz2,j,k+siz2) ... 

                            || c(i,j+siz2,k+siz2) || 

c(i+siz2,j+siz2,k+siz2)); 

                    end 

                end 

            end 

            n(g+1) = sum(sum(sum(c(1:siz:(width-siz+1),1:siz:(width-

siz+1),1:siz:(width-siz+1))))); 

        end 

end 

n = n(end:-1:1); 

r = 2.^(0:p); % box size (1, 2, 4, 8...) 

if any(strncmpi(varargin,'slope',1)) 

    s=-gradient(log(n))./gradient(log(r)); 

    semilogx(r, s, 's-'); 

    ylim([0 dim]); 

    xlabel('r, box size'); ylabel('- d ln n / d ln r, local 

dimension'); 

    title([num2str(dim) 'D box-count']); 

elseif nargout==0 || any(strncmpi(varargin,'plot',1)) 

    loglog(r,n,'s-'); 

    xlabel('r, box size'); ylabel('n(r), number of boxes'); 

    title([num2str(dim) 'D box-count']); 

end 

if nargout==0 

    clear r n 

end 

 

% box-accounting technique 

 

% add the sub-directory into the path 

cd IMAGE_EXPORT; 

 

% export the image 

axe_handle = gca; 

export_fig(axe_handle,'-transparent','-tif','-m1') 

 

cd C:\Users\zc727\Desktop\Upscaling-Dissertation 

% extract the binary matrix of image (black--0; white---1) 

imgmatrix = imread('C:\Users\zc727\Desktop\Upscaling-

Dissertation\IMAGE_EXPORT\export_fig_out.tif'); 

imgmatrix = imgmatrix < 100; 

 

% display the fractal dimension vs box size 

Figure(2) 

boxcount(1-imgmatrix,'slope') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

NOTE: This code is revised upon the MATLAB code online by Tegy J. Vadakkan, 

2009. His contribution to this fractal analysis is appreciated. The 

algorithms is based on the work by Tolle et al., Physica D, 237,306-315, 

2008 

cd IMAGE_EXPORT; 

 

% export the image 

axe_handle = gca; 

export_fig(axe_handle,'-transparent','-tif') 

 

cd C:\Users\zc727\Desktop\Upscaling-Dissertation 

a = imread('C:\Users\zc727\Desktop\Upscaling-

Dissertation\IMAGE_EXPORT\export_fig_out.tif'); 

a = a > 30; 

[rows, cols] = size(a); 

a = 1 - a; 

%% 

n = 2; 

while(n <= rows) 

nn = n-1; 

rnn = rows - nn; 

cnn = cols - nn; 

index = uint8(log2(n)); 

count(index)= rnn*cnn; 

sigma(index) = 0.0; 

sigma2(index) = 0.0; 

for i=1:rnn 

    for j=1:cnn 

        sums = sum(sum(a(i:i+nn,j:j+nn))); 

        sigma(index) = sigma(index) + sums; 

        sigma2(index) = sigma2(index) + power(sums,2); 

    end 

end 

n = n * 2; 

end 

%% 

for i=1:index 

    M(i,1)= (count(i)*sigma2(i))/(power(sigma(i),2))-1; 

end 

sprintf('the average lacunarity is: %.5f\n',sum(M)/double(index)) 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

NOTE: a is the matrix from density of sites in stratified continuum 

percolation model. This code is revised upon the MATLAB code online by 



210 

 

Tegy J. Vadakkan,2009. His contribution to this multifractal analysis is 

appreciated. The algorithms is based on the work by Posadas et al., Soil 

Sci. Soc. Am. J. 67:1361-1369, 2003. 

function multifractal_analysis(a) 

npix = sum(sum(a)); 

 

width = max(size(a));    % largest size of the box 

p = log(width)/log(2);   % nbre of generations 

if p~=round(p) || any(size(a)~=width) 

    p = ceil(p); 

    width = 2^p; 

    mz = zeros(width, width); 

    mz(1:size(a,1), 1:size(a,2)) = a; 

    a = mz; 

end 

 

max_boxes = power(width,2)/power(2,2); 

nL = double(zeros(max_boxes,p)); 

for g=(p-1):-1:0 

    siz = 2^(p-g); 

    sizm1 = siz - 1; 

    index = log2(siz); 

    count = 0; 

    for i=1:siz:(width-siz+1) 

        for j=1:siz:(width-siz+1) 

            count = count + 1; 

            sums = sum(sum(a(i:i+sizm1,j:j+sizm1))); 

            nL(count,index) = sums; 

        end 

    end 

end 

%----------------------Log of L----------------------------------------

-- 

qran = 10; 

logl = zeros(p,1); 

for l=1:p 

    logl(l) = log(power(2,l)); 

end 

 

%-----------------normalized masses------------------------------------

--- 

pL = double(zeros(max_boxes,p)); 

for l=1:p 

    nboxes = power(width,2)/power(power(2,l),2); 

    norm = sum(nL(1:nboxes,l)); 

    if(norm ~= npix) 

        FPRINTF('error'); 

    end 

    for i=1:nboxes 

        pL(i,l) = nL(i,l)/norm; 

    end 

end 
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%---------------------calculate the parameters-------------------------

--- 

%------------f(alpha), alpha, tao(q) etc.------------------------------

--- 

for l=1:p 

     

    count = 0; 

    nboxes = power(width,2)/power(power(2,l),2); 

     

    for q = -qran:+0.1:qran        

         

        %denominator of muiql 

        qsum = 0.0; 

        for i=1:nboxes 

            if(pL(i,l) ~= 0) 

                qsum = qsum + power(pL(i,l),q); 

            end 

        end 

  

        fqnum = 0.0; 

        aqnum = 0.0; 

        smuiqL = 0.0; 

        for i=1:nboxes 

            if(pL(i,l) ~= 0)  

                  muiqL = power(pL(i,l),q)/qsum; 

                  fqnum = fqnum + (muiqL * log(muiqL)); 

                  aqnum = aqnum + (muiqL * log(pL(i,l))); 

                  smuiqL = smuiqL + muiqL; 

            end  

        end 

        if(uint8(smuiqL)~=1) 

            FPRINTF('error'); 

        end 

         

        count = count + 1; 

        fql(l,count) = fqnum; 

        aql(l,count) = aqnum; 

        qval(count) = q; 

        taoql(l,count) = log(qsum); 

    end 

end 

 

% ==============calculate the R^2 in the 

fitting========================= 

%--------------tao(q)--------------------------------------------------

-- 

for i=1:count 

    line = polyfit(logl,taoql(:,i),1); 

    tao(i) = line(1); 

end 

 

% -------------alpha(q)------------------------------------------------

--- 

for i=1:count 

     line = polyfit(logl,aql(:,i),1); 

     aq(i) = line(1); 
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     yfit = polyval(line,logl); 

     sse = sum(power(aql(:,i)-yfit,2)); 

     sst = sum(power(aql(:,i)-mean(aql(:,i)),2)); 

     ar2(i) = 1-(sse/sst); 

end 

 

%----------------f(q)--------------------------------------------------

--- 

for i=1:count 

     line = polyfit(logl,fql(:,i),1); 

     fq(i) = line(1); 

     yfit = polyval(line,logl); 

     sse = sum(power(fql(:,i)-yfit,2)); 

     sst = sum(power(fql(:,i)-mean(fql(:,i)),2)); 

     fr2(i) = 1-(sse/sst); 

end 

 

%================plot result 

============================================= 

Figure 

plot(qval,tao,'r:o'); 

legend('tao(q)');  

xlabel('q','FontSize',14); 

% 

Figure 

plot(qval,aq,'r:o',qval,fq,'g:o'); 

legend('alpha(q)','f(q)');  

xlabel('q','FontSize',14); 

% 

Figure 

plot(aq,fq,'r:o'); 

xlabel('alpha(q)','FontSize',14); 

ylabel('f(q)','FontSize',14); 

% 

line=polyfit(aq,fq,2); 

pfit = polyval(line,aq); 

Figure 

plot(aq,fq,'r:o',aq,pfit,'g:o'); 

legend('f(q)','Parabolic fit to f(q)');  

xlabel('alpha(q)','FontSize',14); 
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APPENDIX D. 

FRACTURE DEFORMATION MODEL 
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This MATLAB code intends to solve the force on each elastic asperity between 

two semi-infinite surfaces. The mechanical interaction of asperities, asperities 

deformation and deformation of surrounding rock are all included.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function result = TESTI(h,position,step) 

%NOTE: the commented variables entail input in advance!  

 

% test I case with 50 asperity in a row  

N = length(h);    % number of asperities 

%position = 0:2.5:2.5*N; 

%h = 3.5; 

 

C = zeros(N,N); 

for i = 1:N     % the order of asperity 

    for j = 1:i 

        Length = sqrt((position(i,1)-position(j,1))^2+(position(i,2)-

position(j,2))^2); 

        [dii_bar, dij_bar, 

Delta_h]=displacement_component(Length,h(i)); 

        if i == j 

            C(i,j) = Delta_h + 2*dii_bar; 

        else 

            C(i,j) = 2*dij_bar; 

        end 

    end 

end 

C = C' + C; 

C(1:N+1:end) = diag(C)/2; 

 

d = step; 

 

force = quadprog(C,[],-C,max(h)-d-h); 

 

result = sum(force);   %total force 

 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [dii_bar, dij_bar, Delta_h]=displacement_component(R,h) 

 

 

a = 0.5;    %radius of asperity, mm 

v = 0.25;  %Poisson's ratio 

E1 = 20;   %Young's modulus of inifite plate, GPa 

E2 = 20;  % Young's modulus of disk, GPa 

%R = 5;      % length between centers of asperity, mm 

f = 1;      % the force, kN 

%h = 3;      % initial height of asperity, mm 
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N = 12;    % Gaussian quadrature points 

if R == 0 

    R1 = 0; 

else 

    R1 = R-a; 

end 

R2 = R+a; 

[theta,w1]=lgwt(N,0,pi/2); 

[r,w2]=lgwt(N,R1,R2); 

dij = 0;    % units: mm 

dii = 0;    % units: mm 

 

for i=1:N     %theta 

    for j=1:N    %r 

        if R == 0  

            dii = dii + w2(j)*2*pi*r(j)*4*(1-    

v^2)*f/(pi^2*a*E1)*w1(i)*sqrt(1-r(j)^2/a^2*sin(theta(i))^2);             

        else 

            dij = dij + w2(j)*2*r(j)*acos((R^2+r(j)^2-

a^2)/(2*R*r(j)))*4*(1-v^2)*f*r(j)/(pi^2*E1*a^2) ... 

                  *w1(i)*(sqrt(1-a^2/r(j)^2*sin(theta(i))^2)-(1-

a^2/r(j)^2)/sqrt(1-a^2/r(j)^2*sin(theta(i))^2)); 

        end 

    end 

end 

 

dij_bar = dij/(pi*a^2); 

dii_bar = dii/(pi*a^2); 

Delta_h = f*h/(pi*a^2*E2); 

 

end 
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