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ABSTRACT 

 

The guayule (pronounced, 'why-YOO-lee') plant is a woody perennial shrub that 

is native to areas of the southwestern United States and northern Mexico, and is a well-

documented source of high-quality natural rubber.  The U.S. needs a domestic source of 

natural rubber to allay concerns about its future availability. Cultivation of guayule in 

North America has been attempted many times since the late 19th century, and 

companies, including major tire manufacturers, are again investing in guayule research. 

However, full-scale commercialization of guayule rubber needs established markets for 

the two basic by-products of guayule rubber extraction: the plant resins (primarily non-

rubber compounds) and the bagasse (fibrous residue).  

The research objective was to investigate guayule resin for use as a binder 

modifier in flexible (asphalt) pavement mixtures (FPMs). The bulk of the work occurred 

from 2006 through 2014 in collaboration with the USDA Agricultural Research Service 

and the Yulex Corporation. Yulex produced hypoallergenic guayule latex for healthcare 

applications using a water-based extraction method. Of the many guayule-based materials 

investigated, an acetone-extractable, residual resin in the dried latex was shown to be an 

effective recycling agent for FPMs with high contents of reclaimed binder.  

Beginning in 2013, the endeavor transitioned to collaborating with Bridgestone 

Americas and PanAridus. These companies used solvent-based extraction methods for 

producing tire-quality guayule rubber, thus generating resins as process by-products. The 

Bridgestone and PanAridus resins, compositionally different from each other, were 

subjected to limited laboratory evaluations and show promise as binder modifiers.  
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1. INTRODUCTION 

1.1. BACKGROUND 

The objective of this study was to evaluate the viability of using extracts from the 

guayule plant as binder (asphalt cement) modifiers in flexible pavement mixtures 

(FPMs). Specifically, the goal was to use guayule extracts as recycling agents (RAs). 

RAs essentially serve as softeners of the age-hardened binders in reclaimed asphalt 

pavement (RAP) and reclaimed asphalt shingles (RAS) that are increasingly used in 

FPMs. Consequently, the demand for sustainable, better performing RAs is ever present 

because 99% of RAP generated in the U.S. is recycled in FPMs [1].  

The guayule (pronounced, 'why-YOO-lee') plant is a woody perennial shrub that 

is native to the Chihuahuan desert of northcentral Mexico and the adjacent Big Bend area 

of western Texas, and is a well-documented source of high-quality natural rubber. Figure 

1.1 shows fields of cultivated guayule in Arizona (photo courtesy of the Yulex 

Corporation) and the first guayule rubber tire made in 1928.  

The U. S. needs a domestic source of natural rubber. The guayule plant 

(Parthenium Argentatum) has the potential to be that source. Cultivation of guayule in 

North America has been attempted many times since the late 19th century [2] [3] [4] [5]. 

Today, major tire manufacturers are, once again, cultivating and processing the guayule 

plant on a research and development level to obtain the natural rubber required in 

different types of tires [6] [7] [8]. This renewed push to find another source for natural 

rubber is due in large part to concerns about its future availability. Hevea Brasiliensis 

(commonly referred to as the “rubber tree”) has been, essentially, the only source of 

commercial-grade natural rubber and is grown primarily in Southeast Asia [9] [10]. 
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Figure 1.1. Arizona Guayule Fields and First Tire Made from Guayule Rubber 

 

 

However, to achieve full-scale commercialization of guayule rubber, markets 

need to be established for the two basic by-products of guayule rubber extraction: the 

plant resins (non-rubber compounds) and the bagasse (fibrous residue) [3, p. 61] [11].  

The successful use of guayule resins as binder modifiers in FPMs could 

simultaneously serve two purposes:  

1. Broaden the market of renewable, bio-based binder modifiers that offer fewer 

health risks than some petroleum-based modifiers. 

2. Provide a critical step in establishing a North American source of high-quality 

natural rubber, a long-standing U.S. national security goal. 
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1.1.1. Genesis of Investigation into the Guayule Plant. The impetus to this   

research began with the viewing of a History Channel Modern Marvels television 

program about the history and future of rubber [12]. The guayule plant was featured in 

this program and interest was piqued due to the increasing use of rubberized asphalt in 

the paving industry. After making several inquiries into the status of the guayule rubber 

industry, contact was established in late-summer, 2006, with Dr. Francis Nakayama, a 

recently-retired research chemist formerly with the United States Department of 

Agriculture, Agricultural Research Service, U.S. Arid Land Agricultural Research Center 

(USDA-ARS-USALARC). Dr. Nakayama arranged to provide samples of guayule-based 

materials that had been produced approximately 20 years earlier. Dr. Nakayama’s 

package contained a large piece of black rubber and a one gallon can labeled 

“derubberized guayule resin.” The resin was a very dark green, almost black, fluid with 

the consistency of honey at room temperature, and it had a piney, pleasant odor. It 

seemed the resin could have potential as a RA for age-hardened (oxidized) petroleum-

based asphalt binder, thus the resin became the focus of further investigation. Figure 1.2 

shows the original can of resin. 

Encouraging results from limited testing using the USDA-supplied resin in 

combination with petroleum-based binder prompted the submittal of a proposal in 

August, 2007 to the National Cooperative Highway Research Program (NCHRP) - 

Innovations Deserving Exploratory Analysis (IDEA) program as a Type 1 project. The 

Transportation Research Board (TRB) currently administers three IDEA programs, but  

NCHRP Highway IDEA was the particular program of the three to which said proposal 

was submitted. This program, to be referred to simply as NCHRP-IDEA throughout the 
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remainder of this document, is funded through NCHRP by the American Association of 

State Highway and Transportation Officials (AASHTO). NCHRP-IDEA Type 1 projects 

are concept explorations that demonstrate the validity of unproven concepts, whereas 

Type 2 projects develop and test prototypes of proven concepts. 

 

 

 

Figure 1.2. Original Can of De-rubberized Guayule Resin 

 

 

After the initial review by the NCHRP-IDEA committee, a set of questions 

submitted by the members of the committee was addressed and the proposal was re-

submitted in February, 2008. The re-submitted proposal resulted in a 2-year research 
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contract beginning February 1, 2009 and ending January 30, 2011. Thus, the mission was 

underway and a growing fondness for the plain-looking desert shrub had taken root. 

1.1.2. NCHRP-IDEA Type 1 Project. U.S. liquid asphalt and road oil refinery 

stocks and net production are decreasing and flat-lined, respectively, and the trends are 

shown in Figure 1.3 [13] [14].  

 

 

 

Figure 1.3. U.S. Asphalt and Road Oil Supply Trends 
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These trends are a result of the combination of increased demand for higher value 

products like gasoline and diesel fuel, and new refining technologies (e.g. cokers) that 

make it easier to further refine the heavier, residual oils into those lighter fractions. 

Additionally, a 2016 survey performed by the National Asphalt Pavement Association 

concluded, “...The use of recycled materials, primarily reclaimed asphalt pavement 

(RAP) and reclaimed asphalt shingles (RAS, either processed tear-off roofing shingles or 

roofing shingle manufacture waste), in asphalt pavements conserves raw materials and 

reduces overall asphalt mixture costs, as well as reduces the stream of material going into 

landfills. The combined savings of asphalt binder and aggregate from using RAP and 

RAS in asphalt mixtures is estimated at more than $2.1 billion” [1].  

The factors described above have resulted in the increased use of RAP and RAS, 

which, consequently, has increased the demand for recycling agents (RAs). RAs have 

traditionally been petroleum-based binder modifiers that fall into one of two functional 

classes: softening agents that simply reduce the viscosity of age-hardened RAP/RAS 

binders, or rejuvenating agents that are intended to return age-hardened RAP/RAS 

binders to their original state by reducing their viscosity and restoring depleted maltenes 

(petroleum resins and oils) [15]. However, depending on the refining process and 

resulting chemical composition, particular petroleum-based RAs (e.g. aromatic or 

paraffinic oils) may be classified as a carcinogen [16] [17]. This potential health issue 

and the inevitable depletion of crude oil reservoirs have created the opportunity for bio-

based solutions. 

There are several bio-based RAs on the market at this time. Some are 

characterized as rejuvenators, others are not. Two that are regularly used by paving 
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contractors in Missouri are HydrogreenTMS and EvoflexTMCA. The formulations are 

proprietary but they are derivatives of tall oil, a by-product of the paper manufacturing 

process [18] [19].   

 The NCHRP-IDEA Type 1 project concept was to design, produce, and evaluate a 

FPM with little-to-no virgin (recently produced) petroleum-based binder. This implied 

using high percentages of RAP and/or RAS, and a bio-based binder modifier, i.e. guayule 

resin as a RA. Originally, the proposed research plan was based on using the ~20 year 

old, USDA-supplied, de-rubberized guayule resin for the entire project. However, it 

became clear by the end of the fifth quarter (15th month) of the project that further 

dependence on the USDA-supplied guayule resin as a research material would be 

unrealistic primarily because, as it turned out, there were only a few gallons of it in 

existence. Initial concerns about the feasibility of using the USDA-supplied resin began 

during the fifth quarter of the project as a result of problematic attempts to perform a 

clay-gel chromatography procedure on the resin to determine whether it was 

contaminated with mineral oil and/or an antioxidant. Additionally, the process that would 

have been required for replication of the USDA-supplied resin seemed somewhat of a 

mystery based on analysis of the pertinent literature [11] [20] [21] and extensive 

communication with researchers familiar with the history of the resin [22] [23] [24]. 

Therefore, the decision was made within the fifth quarter of the project to generate 

research materials by extracting and recovering guayule-based materials from various 

guayule plant feedstocks (e.g. chipped whole-shrub, waste-stream leaves and stems).  

Ultimately, there were two extensions of the project performance period requested 

and approved. Delays in procurement of key testing equipment during the first year of the 
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project resulted in submission of a request for a nine month, no-cost extension and in 

January, 2010, an extension of the original research contract was granted, changing the 

end of the performance period to October 31, 2011. However, the decision to abandon the 

use of the USDA-supplied resin and generate guayule-based materials in the laboratory 

was very consequential, caused a significant increase in the scope of the project, and, 

therefore, required another nine month, no-cost extension request. This request was 

submitted on August 23, 2011. Dr. Inam Jawed, the NCHRP-IDEA director, approved 

the extension thereby moving the end of the performance period to July 31, 2012. The 

draft final report was submitted on July 31, 2012, reviewed, edited, and approved. The 

final report was submitted for publication on January 16, 2013. Publication by NCHRP-

IDEA of the final report occurred in May, 2013 [25]. On December 22, 2014, a paper 

based on the NCHRP-IDEA report was published online by the American Society of 

Civil Engineers (ASCE) in its peer-reviewed Journal of Materials in Civil Engineering 

[26].  

Beginning in 2013, the endeavor transitioned to collaborating with Bridgestone 

Americas (BSA) and PanAridus. These companies used solvent-based extraction methods 

for producing tire-quality guayule rubber, thus generating resins as process by-products. 

The BSA and PanAridus resins, compositionally different from each other, were 

subjected to limited laboratory evaluations. Details of the testing and results are included 

in this study.  

More details on the major collaborators and associated events that helped shape 

the journey over the last 12 years are given in Appendix A. 
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1.2. OBJECTIVE 

The primary objective of the research was to determine the viability of guayule 

resins for use as binder modifiers in FPMs. Depending on the extraction process, the 

resulting resin may be used as a RA to allow for the use of high contents of RAP and/or 

RAS, and/or the resin can contain some low molecular weight rubber that may improve 

the elastic and/or high-temperature performance properties of the blended binder.  

There was, however, a secondary objective. Although there are several bio-based 

binder modifiers currently on the market, successful commercialization of guayule resins 

as domestically-sourced, bio-based binder modifiers would not only add diversity to that 

market, but could have a significant (and arguably more important) secondary effect: 

helping to establish a domestic source of natural rubber, a long-standing U.S. national 

security goal. 
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2. LITERATURE REVIEW 

2.1. THE GUAYULE PLANT 

The guayule plant is a woody perennial shrub that is native to the Chihuahuan 

desert of northcentral Mexico and the adjacent Big Bend area of western Texas. Figure 

2.1 shows the areal extent of the native habitat, but it can be grown, and has been grown 

in other arid or semi-arid regions such as Australia and South Africa [3, p. 10] [27].  

First discovered near Escondido Creek, Texas, in 1852 by J. M. Bigelow, M.D., 

the guayule plant was first described by Professor Asa Gray of Harvard University in 

1859 [1, pp. 3-4]. Consequently, one may see the scientific name for guayule stated in the 

literature as “Parthenium Argentatum Gray.” However, guayule, along with other rubber-

producing plants, had been used for centuries by indigenous peoples of the Americas for 

making rubber balls for sports and toys by chewing the bark of said plants [1, p. 5] [4, p. 

1]. The plant was also used for fuel in Mexican adobe smelters and bread ovens. The high 

resin content causes the plant to burn with high heat [1, p. 6]. The plant was not popular, 

however, with the cattle ranchers of colonial Mexico because their cattle would graze on 

the plant and accumulate rubbery masses in their rumen [5, pp. 23-24]. 

The first time guayule was brought to the U.S. public’s attention was in 1876 as 

part of a display by the Mexican state of Durango at the Centennial Exposition in 

Philadelphia, Pennsylvania [1, p. 7] [28, p. 3] [5, p. 24].  

In 1888, the first endeavor into extracting guayule rubber for commercial 

purposes was carried out by the New York Belting and Packing Company after importing 

100,000 pounds of shrub from Mexico. The bark was first removed from the shrub, 

ground up, and then immersed in hot water to remove the rubber [28, p. 3] [29, p. 5]. 



 

 

11 

 

Figure 2.1. Native Habitat of Guayule in North America 

 

 

The shaded/dotted areas south of the heavy line in Figure 2.2 indicate the 

locations of approximately 5 million acres in the U.S. that were deemed climatically 

suitable for guayule cultivation in 1944 [3, pp. 6-7]. 
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Figure 2.2. Climatically Suitable Areas in the U.S. for Guayule Cultivation in 1944 

  

  

In 1902, William A. Lawrence began development of the pebble mill, a 

mechanical extraction process which was implemented successfully in 1904. It remained 

a primary method for guayule rubber extraction until the end of World War II [29, p. 5]. 

There were, however, other investigations into guayule exploitation around the turn of the 

century by the British, Germans, and Italians [1, p. 7] [5, p. 24]. 

1903 ushered in the organization of the Continental Rubber Company in New 

York, and in 1904, Continental-Mexican Rubber Company was incorporated and built a 

small mill in Torreón, Coahuila, Mexico [29, p. 5]. 

In 1909, the first American guayule rubber processing mill was established in 

Marathon, Texas, by the Texas Rubber Company. Unfortunately, it had a short debut of 
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about 9 months before shutting down, re-opening in 1925, and then shutting down again 

in 1926 before eventually being dismantled [28, p. 3]. 

Between 1900 and 1907, more than twenty guayule processing companies were 

operating in Mexico [5, p. 24]. 1910 was a high mark when approximately 21 million 

pounds of guayule rubber were produced. This quantity represented between 10% and 

50% of U.S. rubber importation/usage, depending on the reference cited [5, p. 23] [4, p. 

13] [3, p. 1]. 

When the Mexican revolution began to break out in 1911, Continental-Mexican 

Rubber Company mills and plantations in Mexico were targeted by the revolutionaries. 

As the story is told, William B. McCallum, a botanist working for Continental-Mexican 

Rubber, smuggled guayule seeds out of Mexico to the U.S. in 1911, beginning the first 

significant effort to grow guayule in America [5, p. 23]. The first stop for McCallum was 

near San Diego, California, where research resumed but on a reduced basis. Soon, 

however, McCallum had the research facilities relocated to an area south of Tucson, 

Arizona. Eventually, the company, now known as International Rubber Company, moved 

to Salinas, California in 1925 [4, p. 13] [29, pp. 5-6].  

In the years just prior to 1914, the year World War I began, poor management of 

Mexican guayule plantations and the onset of the Mexican revolution had severely 

curtailed guayule rubber production. Political, industrial, and military leaders had come 

to realize by the time WWI started, just how important natural rubber was, and how 

vulnerable nations were when the great proportion of natural rubber (Hevea Brasiliensis) 

used by the world came from, essentially, one area on the planet; southeast Asia and the 

adjoining islands (e.g. Malaysia, and Indonesia). Efforts grew with urgency to cultivate 
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and extract natural rubber from plants growing in the U.S., and luminaries like Thomas 

Edison, Henry Ford, and Harvey Firestone spearheaded some of those efforts [5, p. 2] [5, 

pp. 74-106]. 

In the 1920s, guayule exploitation in the U.S. experienced a surge when the 

British government played the monopoly card by raising prices on Hevea rubber from 

colonial plantations in Malaysia. But then there was The Great Depression in 1929, 

which brought the British plan to a halt [3, p. 18].  

On June 6, 1930, a report was issued by Major Dwight D. Eisenhower and Major 

Gilbert Van Wilkes which made the case that it was incumbent on the U.S. to consider 

guayule cultivation and rubber production. According to the report, 96% of the world’s 

rubber supply came from Southeast Asia. However, no action was taken until early 1942, 

just months after Pearl Harbor [29, pp. 3-4]. Coincidentally, on December 7, 1941, The 

New York Times ran an article about guayule and its potentiality as a source of domestic 

natural rubber. The article was titled, “U.S. Grows Own Latex” [5, p. 140]. 

Within weeks of Pearl Harbor, the Japanese had seized rubber plantations and the 

supporting facilities/logistics in Southeast Asia and the western Pacific Ocean. In 

February, 1942, Singapore fell, and as Eisenhower and others had warned 12 years 

earlier, the U.S. and the Allies were now cut off from at least 95% of their rubber supply 

[5, p. 140]. 

In March of 1942, the U.S. Congress established the Emergency Rubber Project 

(ERP). The ERP was established just after the U.S. purchased International Rubber 

Company (IRC), headquartered in Salinas, California. The ERP became a major priority 

during the war effort. Salinas became a boomtown and the Manzanar War Relocation 
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Center at Manzanar, California, was utilized as a research facility with interred Japanese 

Americans providing scientific and nursery expertise [5, pp. 149-157]. Figure 2.3 shows 

fields of guayule seedlings and harvesting activity in Salinas [30], and Figure 2.4 shows 

Manzanar internees out in the guayule fields and working with guayule beds in a lath 

house [30] [31]. There were other War Relocation Centers, like Poston, Arizona, and 17 

labor camps that housed families and single men, many of whom were Mexican 

Nationals and some German prisoners [28, pp. 54-56].  

Eventually, the war came to an end and the ERP was shut down in 1946. The 

existing land leases were cancelled and 30,000 acres of guayule were burned and plowed 

under, destroying approximately 21 million pounds of rubber [29, p. 7]. Even more 

incredulous, 230,000 pounds of guayule seed was sold to a Bakersfield farm supply for 

cattle food [5, p. 219].  

With the crisis ended, interest waned, again, and only Mexico continued to 

develop guayule in a significant way over the next couple of decades [3, p. 22]. However, 

there were two other major reasons for the decreased post-war interest in guayule rubber: 

the rapidly developing use of petroleum-based synthetic rubber and the reacquisition of 

the Southeast Asian Hevea plantations. 

But, in 1973 came the oil embargo and another guayule “revival” [5, p. 229]. 

Cries for a need to invest in renewable resources grew louder and in 1978, Congress 

passed the Native Latex Commercialization Act [5, p. 231], and in 1979, the Guayule 

Rubber Society was created but changed its name to the Association For The 

Advancement of Industrial Crops in 1988 [32]. 
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Figure 2.3. Guayule Seedling Fields (top) and Harvesting (bottom); Salinas, CA  
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Figure 2.4. Guayule Fields and Guayule Beds in Manzanar War Relocation Center  
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 There were a few more starts and stops in the 1980s and 1990s. During the 

Reagan administration, there was a fear that the Nicaraguan Sandinistas would cut off 

overland transit of Brazilian natural rubber which prompted work by Firestone Tire and 

Rubber (eventually Bridgestone) between 1983 and 1990 to establish a domestic guayule 

rubber industry. It was during this time that the original de-rubberized resin supplied by 

Dr. Nakayama to the author was generated at a pilot plant built by Firestone Tire and 

Rubber in Sacaton, Arizona, in 1987. Then in the early 1990s, the AIDS crisis hit and in 

response to major health issues created by the large number of allergic reactions to Hevea 

latex products,  research efforts focused on the hypoallergenic properties of guayule 

rubber [33] [34]. 

In 1999, Yulex Corporation was founded and marketed hypoallergenic guayule 

latex for safe medical devices and specialty consumer products. By 2015, Yulex had 

stopped work with the guayule plant and focused efforts on cleaning up Hevea rubber by 

removing 99% of the proteins and impurities that contribute to allergic reactions. Their 

new product is called YulexPure, and it is used to produce a foam that replaced neoprene 

in wetsuits [35]. 

 As discussed in the Introduction, the most recent activities involving the guayule 

plant are being undertaken by Bridgestone Americas, PanAridus, and other tire 

manufacturers and suppliers. These companies are pursuing their commercial interests 

which has happened in the past regarding efforts at guayule cultivation in the U.S. 

However, there are also governmental research projects currently being administered by 

the USDA that involves industry and academia [36] [37]. Thus, it seems that interest in 

the guayule plant is certainly not waning…at this moment in time. 
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2.1.1. Rubber. Guayule rubber (GR) is the second-most exploited natural rubber 

(NR) in world history, with Hevea being number one. Although there are approximately 

2500 plant species that produce NR, Hevea and GR top the list as the two most utilized in 

commercial applications [3, p. 1]. The reason for this ranking can be summarized by two 

physical properties: molecular weight (MW) and molecular weight distribution (MWD). 

These properties generally determine the processability of a NR, with higher MW values 

indicating greater processability [38, p. 6].  

Swanson, Buchanan, and Otey [39] evaluated 33 NR producing plants from 

northern temperate zones, along with Hevea and guayule. They ranked all 35 species 

according to the MW of the extracted NR and reported that Hevea and GR were the top 

two ranked species having MW values of 1.310 (10)6 and 1.280 (10)6, respectively, and 

MWD values of 5.2 and 6.1, respectively. The number three ranked species was 

mountain mint (Pycnanthemum incanum) with a MW and MWD of 0.495 (10)6 and 4.0, 

respectively. The highly significant gap between the mountain mint NR and GR vividly 

illustrates the rubber industry interest in GR.  

Interestingly, however, another plant species is once again gaining interest in the 

NR industry: Taraxacum kok-saghyz, also known as Russian Dandelion. This plant 

produces NR with a MW comparable to Hevea [40]. Russian Dandelion was also 

investigated as part of the Emergency Rubber Project (ERP) during World War II [41]. 

Unlike the Hevea rubber, which is tapped as latex from ducts within the rubber 

tree, GR exists in parenchyma cells within the bark and woody tissue. Thus, the shrub 

must be milled (e.g. chipped, flaked) to rupture the cell walls and release the GR. There 

are three basic procedures to extract GR and resin: flotation, sequential extraction, and 
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simultaneous extraction. The flotation method is the oldest method of the three. It is a 

water-based method that has evolved somewhat over time but is the same concept used 

by Yulex to extract the hypoallergenic latex. The ground shrub is mixed in a dilute 

alkaline-aqueous solution whereupon resinous rubber “worms” coagulate, float to the 

surface, are collected through skimming, and are then subjected to further processing. 

Figure 2.5 shows a flowchart of the water-based process used by Yulex [42]. 

Deresination of the rubber worms with a polar organic solvent (e.g. acetone) has 

been traditionally performed before further processing of the GR, but there are several 

modifications that can be made to this basic procedure to generate different products. 

 

 

 

Figure 2.5. Yulex Guayule Latex Extraction Process 
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 The sequential extraction process usually starts by deresinating the ground shrub 

with acetone before using a polar solvent (e.g. pentane or hexane) to extract the GR. 

Figure 2.6 shows an example of a sequential extraction process [11, p. 267]. 

 

 

 

Figure 2.6. Sequential Extraction Process 

 

 

 Yulex experimented with several different processes through the duration of this 

study. One process was similar to the sequential process described above in that the 

ground shrub was deresinated with acetone before further processing. In that process, 

Yulex collected the resin for further evaluation on their part but it was not used for this 
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project. However, a major part of this study did involve samples of dried latex that were 

supplied by Yulex. The dried latex contained residual resin which was extracted using 

acetone. Yulex also ran a supercritical fluid extraction experiment and supplied a sample 

of that material to Missouri S&T. However, there was no action taken with that material. 

 The simultaneous extraction process is currently being used by Bridgestone 

Americas and PanAridus. In this process, the GR and the resin are extracted 

simultaneously by using a mixture of polar (e.g. acetone) and non-polar (e.g. hexane) 

solvents. The resulting rubber-resin-solvent solution (miscella) is treated with additional 

polar solvent and the GR coagulates, precipitates out and is collected for desolventization 

and baling. Figure 2.7 shows the Bridgestone/Firestone simultaneous extraction process 

[11, p. 279]. 

 

 

 

Figure 2.7. Bridgestone/Firestone Simultaneous Extraction Process 
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The simultaneous extraction has a major advantage over the other methods in that 

the final physical properties of the GR can be better controlled. Engineering parameters 

such as the number of fractionation stages and temperature for each stage are key to 

producing a quality GR for tires and other rubber products.  

2.1.2. Bagasse. Guayule bagasse, the fibrous residue leftover after GR extraction, 

has been, and continues to be the subject of considerable investigative work. Dr. 

Nakayama, the guayulero first contacted at the beginning of the project, has investigated 

the use of bagasse to make composite particle board that is termite- and decay-resistant. 

Depending on the processing history, bagasse can have significant amounts of residual 

resin and rubber [43], and has been studied as reinforcement in thermoplastic composites 

[44]. The bagasse has an 8000 to 9000 BTU per pound content and can be pelletized for 

heating fuel [45]. Pelletizing the bagasse for sale as a fuel was common practice by Yulex 

during the period of this study. Guayule bagasse has been investigated as a nonfood 

source of bio-fuel using the fast-pyrolysis process [46]. Ethanol has also been produced 

using bagasse [45]. The intent is to develop a market for the bagasse by-product to help 

promote the GR industry.   

2.1.3. Resin. Unlike the GR which resides in cells within the bark and woody 

tissue of the plant, the guayule resin is in ducts that are found throughout the shrub [3, p. 

27]. Depending on the extraction process, the chemical makeup of the resin can vary 

significantly. The resin contains terpene-based compounds, fatty acid triglycerides, and 

low MW GR. Terpenes have the isoprene molecule, C5H8, as the building block. Figure 

2.8 shows the isoprene molecule. 
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Figure 2.8. Isoprene Molecule (C5H8) 

 

 

Terpenes are mostly single-digit multiples (n) of the isoprene unit (C5)n which 

builds up the carbon skeleton. The monoterpenes (i.e. two isoprene units or C10H16) α- 

and β-Pinene, and Limonene, are very interesting in that they are natural solvents. 

Pinenes are the basic compounds in turpentine while Limonene is used extensively in 

“citrus” cleaners. Increasing the number of isoprene units results in sesquiterpene (C15), 

diterpene (C20), or triterpenes (C25). Terpenoids are isoprene structures with some 

functional groups attached. Many terpenes are sometimes referred to as essential oils. The 

major acetone-extractables of the woody tissue are sesquiterpene esters (10-15%), fatty 

acid triglycerides (7-19%), and triterpenoids (27%) [47].    

Guayule resin has been investigated as a termite-resistant coating for wooden 

construction components [43], a viscosity modifier in natural rubber cement, and an 

adhesion modifier [48] [49]. The resin could serve as a chemical feedstock for extracting 

terpenes which can be used for various applications: food, cosmetics, pharmaceutical and 

biotechnology industries [50]. The low MW GR, a low viscosity, unavoidable product of 
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primary processing, can be used as a plasticizer [49] and has been investigated as a 

precursor in high solids, ultra-violet cured, and water-borne coating formulations [51]. 

Powder, marine, and peelable coatings have been formulated using the low MW GR and 

resin [52]. Currently, Bridgestone Americas is burning the resin to generate heat, going 

back to one of the original uses of the resin.  

 

2.2. BIO-BASED BINDERS, MODIFIERS, AND ADDITIVES 

The NCHRP-IDEA project concept was to design a FPM produced with little-to-

no virgin petroleum-based binder which implied the use of 1) high percentages of RAP 

and/or RAS, and 2) some type of non-petroleum based recycling agent (RA). Although 

RAP usage in paving applications became popular during the 1970s oil embargo, high-

RAP FPM design has become more common due to increasing crude oil and aggregate 

costs, and environmental concerns, as discussed in Section 1.1.2. However, the design 

procedure is still evolving [53] [54] [55] [56]. RAS usage also began in the 1970s and 

continues to rise with a large increase in the utilization of asphalt shingles removed from 

roofs during maintenance or replacement (i.e. tear-off shingles) and from manufacturing 

waste [57]. The state of the art in FPM design using RAS, however, is still evolving [58].  

FPM design using high percentages of RAP and/or RAS is a challenge unto itself 

and is leading to innovation. For example, new designs and construction of asphalt 

mixing facilities/equipment are occurring regularly that are marketed for the purpose of 

utilizing RAP percentages as high as 100% [59] [60] [61] [62]. Currently, the upper limit 

for RAP usage at Missouri FPM mixing facilities is about 50% with a more practical 

upper limit of 40%.  
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Although the use of guayule-based materials as components in FPMs is a unique 

concept, there are other instances of the investigation/use of other renewable and/or waste 

bio-materials as FPM binder or modifier. Early work on bio-based binder materials 

occurred in India where resin from the Anacardium Occidentale (cashew) tree was 

processed to be used as a RA [63]. Vegetable oils (virgin and waste) have been 

investigated extensively [64] [65], but a nonfood source is preferred for sustainable 

industrial applications. Pyrolysis is a thermochemical process that can efficiently 

generate bio-oils from bio-materials and has been used to investigate biomass (e.g. 

switchgrass) as a source for binder [66]. Liquefaction, also a thermochemical process, has 

been used to investigate swine manure as a source for binder [67]. 

Some proprietary RAs (e.g. Hydrogreen S and Evoflex CA) and warm-mix 

additives (added to lower the mixing temperature) are derived from tall oil, a paper 

manufacturing by-product [18] [19] [68] [69]. The tall-oil-based RAs are a large portion 

of the current state-of-the-art products used when high contents of RAP and/or RAS are 

utilized in FPMs. 

The potential volumes of guayule resin that could be utilized as a FPM binder 

modifier are huge. A short discussion of those potential volumes is given in the 

Conclusions section. 
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3. LABORATORY INVESTIGATION 

3.1. YULEX AND USDA-ARS ERA 

The bulk of the work occurred between 2006 and 2014 during the NCHRP-IDEA 

Type 1 project. The project work was divided into three Tasks: 

Task 1: Completion of administrative work; procurement of raw materials and 

equipment; development of equipment, laboratory infrastructure, and test protocols. 

a. Significant quantities (unless indicated otherwise) of raw materials obtained for 

the project are as follows: 

• RAP1: obtained from Interstate 44 in Rolla, Missouri. 

• RAP2: obtained from a city street in Washington, Missouri. 

• RAS: processed tear-off roofing shingles (i.e. shingles removed from a roof) 

obtained from a local FPM producer. 

• USDA-ARS supplied chipped, whole-shrub guayule plant. 

• Yulex-supplied post-latex-extraction (PLE) guayule bagasse. 

• Yulex-supplied waste-stream guayule leaves and attached stems. 

• Yulex-supplied pelletized defoliated whole-shrub guayule plant. 

• Yulex-supplied pelletized waste-stream guayule leaves and stems (<50 lbs.). 

• Yulex-supplied pelletized PLE guayule bagasse (<50 lbs.). 

• Centrotrade-supplied (via Yulex) guayule latex (10 gallons). 

• Yulex-supplied dried latex. 

• Three different fractions of high-quality, crushed dolomite from a local 

quarry. 
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• Six different grades of polymer-modified and non-modified performance-

graded (PG) binders. 

• Two different, commercially-available, petroleum-based recycling agents: 

Cyclogen L from Tricor Refining, and Hydrolene H125T from HollyFrontier 

Refining. 

b. Significant equipment/supply items purchased (or borrowed) are as follows: 

• Bohlin Gemini 150 Dynamic Shear Rheometer (DSR) and Cannon 

Instruments temperature probe. 

• Applied Testing Systems Bending Beam Rheometer (BBR) and 10 BBR beam 

molds. 

• Cox and Sons Rolling Thin Film Oven (RTFO), along with standard and 

large-lipped RTFO bottles. 

• Prentex Pressure Aging Vessel (PAV) and bottled, compressed breathable air. 

• 20 liter Oregon Environmental Systems Solvent Recovery Device (SRD) for 

large-scale primary distillations. 

• Clay-Gel Chromatography glassware, clay, and silica gel. 

• Large centrifuge for solvent extraction/recovery procedures. 

• Significant quantities of acetone, trichloroethylene (TCE), hexane, and lesser 

quantities of pentane, toluene, ethanol, and methanol. 

• Bottled, compressed carbon dioxide and nitrogen for gas purges during 

material recovery procedures. 
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• Buchi rotary evaporator and associated glassware/fixtures for final 

distillations/recovery. Note: this was borrowed from the Chemistry 

Department at Missouri S&T. 

c. Equipment, laboratory infrastructure, and test protocols development included: 

• Installation of an air compressor dedicated to the DSR, BBR, and RTFO. 

• Fabrication/installation of a fume hood in an isolated room with an 

independent air-exhaust system: the solvent recovery device was installed 

under the fume hood, and the room served as an area to work with and store 

the solvents. 

• Installation of compressed air lines and electrical power wiring/conduit for all 

new equipment. 

• Fabrication of a required clean and dry air filtering system for the RTFO. 

• Development of large-scale extraction and recovery procedures for RAP/RAS 

binders and guayule-based materials. 

Task 2: Material characterization and binder-blending mixture experiments. 

Task 3: FPM design, production, and testing. 

3.1.1. Initial Project Activities: Task 1. Activities during the first quarter 

(three months) of the contracted performance period included finalizing administrative 

and legal issues, beginning the procurement of project materials and additional test 

equipment, establishing a panel of experts, and gathering literature for review. Regarding 

the project materials, investigations were undertaken to find the appropriate sources. 

Additional required testing equipment ordered during the first quarter included a RTFO 

and an assembly of glassware, etc. necessary to perform a clay-gel chromatography 
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procedure for determining percent saturates and other properties of recycling agents. Bid 

specifications were written so that other necessary equipment could be put out on bid. 

These items included a DSR, a PAV, and a BBR. Individuals who agreed to serve on the 

expert panel are as follows: 

• Dr. Peter Wu, Bureau Chief – Technical Assistance, Georgia Department of 

Transportation (Assistant to Georgine Geary, IDEA Program Technical 

Project Advisor). 

• Joe Schroer, Field Materials Engineer, Missouri Department of 

Transportation. 

• Dr. Katrina Cornish, Sr. V.P. R&D, Yulex Corporation. 

• David Yates, Executive Director, Missouri Asphalt Pavement Association. 

By the end of the first three quarters (nine months) of the project, a substantial 

portion of Task 1 had been completed:  

• Modifications and/or installations of required electrical power, compressed 

air, and vacuum systems within the materials laboratories were undertaken. 

• Two sources of RAP and one source of  RAS had been secured and were 

being stockpiled in the laboratory. 

• Some of the guayule feedstock had been obtained. 

• Almost all equipment items had been delivered but not configured for use 

(e.g. the DSR and BBR).  

The delay in full implementation of test equipment usage prompted the request for 

an extension of the performance period which was submitted and approved. 
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Individual tasks listed under Task 1 would continue to be completed as the project 

progressed. It was not until after the decision was made to generate guayule-based 

materials in the laboratory that Task 2 was started in earnest. 

3.1.2. Material Characterization: Task 2, Part 1. Material characterization    

involved determination of material properties required to 1) select a minimum number of 

guayule-based extracts for further evaluation as recycling agents, 2) classify all 

petroleum- and potential guayule-based recycling agents, and 3) perform FPM design.  

3.1.2.1 Extraction and recovery of guayule-based materials. A great deal of 

time at the start of Task 2 was dedicated to obtaining a guayule-based material with the 

properties required for use as a recycling agent (RA). Ultimately, eleven different 

combinations of guayule feedstock material, solvent(s), and extraction/recovery processes 

were investigated. The general criteria for a more in-depth evaluation of an extract were 

1) similarity of the extract’s temperature-viscosity relationship to those of commercially-

available, petroleum-based RAs, 2) simplicity and relative safety of the extraction and 

recovery process, and 3) sufficient yield (weight percent of material recovered from a 

particular guayule-based feedstock).  

The plant or plant-extract precursor materials investigated were three different 

plant feedstocks, two guayule-based materials resulting from the solvent extraction of one 

of the plant feedstocks, and the dried latex (bulk rubber). The plant feedstocks were 

USDA-ARS-supplied chipped whole-shrub (WS), and Yulex-supplied post-latex-

extraction (PLE) bagasse (fibrous residue leftover after 90-95% of the high molecular 

weight rubber was removed), and waste-stream leaf and attached stems. The whole-shrub 

and waste-stream leaf/stem feedstocks were pulverized prior to solvent extraction using a 
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horizontal shaft impactor. The PLE bagasse was already in a finely-macerated state. 

Figure 3.1 shows the guayule-based feedstock supplied by Yulex and USDA-ARS, and 

used for the greatest portion of the extractions. 

The earliest acetone-extraction and recovery techniques of the guayule resin 

followed procedures outlined in the literature [11] [70]. The USDA-ARS supplied freshly 

harvested, whole-shrub guayule plants that had been field-dried, then run through a 

chipper and reduced to a size passing a 3/8 inch screen.  The chipped whole-shrub was 

further reduced in size (-1/16 inch) using the horizontal shaft impactor. The pulverized 

guayule plant material was then soaked in acetone overnight with occasional stirring. The 

following morning, the acetone-resin solution was drained off, filtered, and stored in 

glass containers. A second soaking of the guayule plant material in acetone was 

performed but did not last as long as the primary soaking. The acetone-resin solution 

from the second soaking was, again, drained off, filtered, and stored in glass containers. 

A final wash of the guayule plant material with acetone was performed with a small 

amount of acetone and this wash solution was also filtered and stored in glass containers. 

The filtered solution was further clarified using the large centrifuge specified in the 

Abson binder recovery procedure, AASHTO T 170 [70]. The clarified acetone-resin 

solution (i.e. miscella) was recovered (i.e. desolventized) using the distillation equipment 

also specified in AASHTO T 170.  

The quantity of recovered guayule resin using the method just described was 

minimal. Additionally, the Abson method of recovery was known to be somewhat 

dangerous in that, if not carefully watched, the material in the recovery flask could 

“bump” or “burp” and be violently discharged from the flask. Because the volumes of 
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resin required for this study were so large, a 20 liter solvent recovery device (SRD) was, 

therefore, purchased. Figure 3.2 shows the SRD, the primary distillation device, and the 

rotary evaporator, the final distillation device, which were used for the remainder of the 

study. General extraction and recovery details for this scaled-up procedure are given in 

Appendix B. 

 

 

 

Figure 3.1. Guayule Plant Feedstocks for Extractions 

 

 

Screening the eleven different extracts for further evaluation was sometimes 

based simply on visual observation. For example, the first acetone-extracted resins from 
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the chipped whole-shrub and the PLE bagasse would flow when slightly heated, and 

would “string out” (exhibit some cohesion and ductility) when pulled from the container 

with a small spatula, but would become stiff and/or brittle (glassy) upon cooling to room 

temperature. This behavior made these extracts ill-suited as a RA but demonstrated a 

potential to improve the high-temperature performance of FPMs as stiffening agents. 

 

 

 

Figure 3.2. Primary and Final Distillation Stations  

 

 

 Simple acetone-extraction performed on the fibrous feedstocks was not producing 

a material suitable as a RA. The viscosity of these extracts did not indicate the potential 

for significantly reducing the viscosity of the RAP/RAS binders upon blending, which is 

the basic purpose of RAs. 

 The next step beyond simple acetone-extraction was determining the extent to 

which “maltene-like” oils and hydrocarbon compounds could be isolated from the 
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acetone-extracted PLE bagasse resin. Buchanan et al. [71] present a method of 

performing acetone-extraction on whole plant material then partitioning the desolventized 

extractive into oil and polyphenol fractions using hexane (non-polar solvent) and aqueous 

methanol (polar solvent), respectively. The basic procedure outlined by Buchanan et al. 

was followed for this study but pentane was used instead of hexane to stay consistent 

with the standard clay-gel chromatography test for classifying recycling agents, which 

specifies pentane as the solvent [72]. Although the process outlined by Buchanan et al. 

involved whole plant material as the beginning feedstock, the PLE bagasse resin was 

investigated first because the PLE bagasse is a by-product of the rubber extraction 

process and finding a market for it would be most beneficial to the guayule processing 

industry. 

 The procedure, referred to as a liquid-liquid extraction, began with putting 100 

grams of the acetone-extracted PLE bagasse resin into a large glass container then 

incrementally adding several hundred grams of a 90% aqueous methanol solution (90% 

methanol, 10% water, by weight) to the container while stirring with a glass rod. The 

aqueous methanol was added until no more resin (more specifically, the solids remaining 

in the container) would dissolve. At that point, pentane was added in measured 

increments while continuing to stir. When the stirring would stop, one could see a 

definite phase separation with the lighter density, light green colored pentane solution 

floating on top of the heavier, yellowish-orange colored aqueous methanol solution in the 

bottom of the container. The pentane addition and stirring continued until all solids had 

dissolved, except for a few solids that occupied the boundary layer between the two 

liquid phases. At this point, the majority of the pentane solution was siphoned into large 
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glass jars and desolventized using the rotary evaporator device. Table 3.1 shows the 

viscosity test results for the recovered pentane solubles fraction of the acetone-extracted 

PLE resin.  

 

 

Table 3.1. Viscosity Comparison for the Pentane Soluble Fraction of the PLE Resin 

Temperature (°C) Viscosity (centipoise) 
Pentane Solubles Cyclogen L (CycL) 

60 1044 438 
80 285 93 
100 107 31 

 

 

 Table 3.1 shows the viscosity of the pentane solubles in comparison to that of  

Cyclogen L (CycL), a petroleum-based aromatic oil that is a marketed as a true 

rejuvenator, and was used throughout this study. The PLE resin pentane solubles are 

comparable to the CycL in viscosity and are also similar in that CycL is 98.2% pentane 

soluble (as determined during clay-gel absorption chromatography, to be discussed later). 

Generating and utilizing the pentane solubles from the guayule materials is the preferred 

route to obtaining a bio-based, plant-oil-type RA. However, the extraction and recovery 

process is more complicated, and yield would be considerably smaller on a weight-

percent basis of the guayule feedstock. This small investigation yielded approximately 15 

grams of pentane solubles from the 100 grams of PLE bagasse resin. This particular PLE 

resin batch was actually recovered from the small batch of PLE bagasse obtained early in 

the study. Acetone-extraction was performed on five kilograms of dried PLE bagasse. 
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Therefore, the pentane-soluble yield using the liquid-liquid extraction procedure was only 

0.3% of the dried PLE bagasse feedstock. 

The focus returned to single-solvent extractions. The following is a list of the 

various guayule plant feedstocks and the solvents used for extraction: 

• Pulverized whole-shrub: pentane. 

• PLE bagasse: toluene, pentane, and hexane. 

• Pelletized waste-stream leaf/stem: acetone, to see how it compared to whole-

shrub and PLE bagasse acetone-extracts. 

• Pulverized waste-stream leaf/stem: hexane. 

 Because they are essentially waste products (potential co-products) of the latex 

extraction procedure used by Yulex, the PLE bagasse and the waste-stream leaf/stem 

materials were the primary feedstocks of interest. 

 The toluene-extracted resin from the PLE bagasse had viscous properties similar 

to the acetone-extracted PLE bagasse resin (very stiff), but was slightly less temperature 

susceptible (i.e. exhibits less change in viscosity for an equal change in temperature). The 

pentane-extracted resin from the PLE bagasse and the WS possessed viscous properties 

more appropriate for a recycling agent but pentane is very volatile and dangerous, and 

expensive. The hexane-extracted resins of both the PLE bagasse and waste-stream 

leaf/stem materials were similar to the PLE bagasse pentane-extracted resin in terms of 

viscosity. The hexane-extraction of the PLE bagasse resulted in a 3.0% yield of resin 

based on the oven-dry (60°C overnight) weight of the bagasse, and the hexane-extraction 

of the pulverized waste-stream leaf/stem feedstock resulted in a 5.1% yield of resin (LF), 

also based on the oven-dry (60°C overnight) weight of the leaf/stem feedstock. Because 
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hexane has the advantage of being less dangerous and less expensive than pentane, 

hexane became the primary solvent to be further evaluated. 

 In an effort to improve upon the liquid-liquid extraction procedure discussed 

earlier, a method used in the “essential oil” production industry was investigated to obtain 

more of the non-polar compounds present in guayule feedstocks [73]. The basic 

methodology begins by extracting the non-aromatic waxes, pigments, and volatile 

aromatic molecules from the feedstock using a solvent, usually hexane. The solvent is 

then recovered through distillation leaving a resin (or a “concrete” in essential oil 

parlance). The waxy materials and “essential oils” in the resin are further separated with 

an alcohol (e.g. pure ethanol) while warming and stirring the resin/alcohol mixture. The 

aromatic oils (or the “absolute” in essential oil parlance) and some waxy compounds are 

dissolved by the alcohol while the majority of the waxy materials remain as a residue. 

The alcohol solution is then repeatedly cooled and filtered to remove the few dissolved 

waxy compounds. The alcohol is then recovered through distillation leaving the aromatic 

or “essential” oils. 

 For the initial investigation into this method, 50 grams of the hexane-extracted 

resin (LF) from the pulverized waste-stream leaf/stem feedstock was put in a glass beaker 

and ~1 liter of pure ethanol was added to the beaker. The beaker was then put on a hot 

plate and warmed (somewhat below the boiling point of ethanol which is 79°C) while 

stirring with a glass rod. It could be visually observed that separation was occurring as 

the ethanol took on a greenish color and the residue in the bottom of the beaker became 

very sticky. The ethanol/oil solution (miscella) was decanted into a separate container 

and the residue was covered with another liter of pure ethanol to assure maximum 
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removal of the oils. This second liter remained clear after a lengthy interval of warming 

and stirring indicating that the greatest majority of the ethanol-soluble compounds had 

been removed with the first liter. 

 The ~2 liter bottle of ethanol miscella was put in a refrigerator at a temperature of 

~ 35°F (~ 2°C) overnight then cold-filtered through coffee filters the following day. 

Several filters (typical mesh size is 10 – 15 micrometers) had to be used because there 

was a significant amount of waxy material precipitate present in the cooled miscella. The 

filtered miscella was then put in a freezer at ~ -20°F (~ -30°C) overnight then cold-

filtered the next day, removing a smaller, but significant, amount of precipitates. The 

process of cooling and filtering was repeated one more time using the freezer. The 

ethanol was then removed through distillation using a rotary evaporator and the recovered 

residue was collected for future testing. 

 Based on the first attempt at partitioning of the “oil” (ethanol-soluble) portion of 

the LF extract, the yield was 54.4 % of the weight of the LF. Therefore, based on the 

5.1% yield of the LF extract from the pulverized leaf/stem feedstock, one would estimate 

a 2.8% yield of the LF oil based on the weight of the pulverized leaf/stem. This was a big 

improvement over the 0.3% pentane soluble material yield from the dried PLE bagasse, 

as described earlier. The ethanol partitioning method was simpler, safer, produced more 

material, and said material had viscous properties that were more appropriate for use as a 

RA, relative to the acetone-extracted resins.  

Ultimately, however, the ethanol partitioning of the LF extract was not pursued 

further. The decision was made to focus on the LF material as extracted from the waste-

stream leaves and attached stems. The extraction procedure was simple and the yield 
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averaged 4.4% by weight of the oven-dry (60°C) waste-stream leaf/stem. The LF was 

dark-green in color, semi-solid at room temperature, and had a piney, pleasant odor. 

However, the LF also contained some natural rubber which increased the tackiness of any 

blend in which it was present. 

 Soon after beginning testing using the LF extract, the Yulex Corporation 

suggested acetone-extraction on the dried latex (bulk rubber) they produced as a 

secondary product. The rubber had residual, amber-colored resin in it that 1) was 

undesirable for producing a near-white rubber that enables the creation of various grades 

of rubber, and 2) could be extracted using acetone. Yulex supplied about 50 pounds of 

the rubber and a method was devised to extract the resin by cutting the rubber into 

approximately 2 inch cubes, freezing the cubes in liquid nitrogen, pulverizing the frozen 

cubes, soaking the flaked rubber in acetone for an extended period of time, then 

desolventizing the acetone-resin solution in a two-step distillation process. The acetone-

extracted rubber resin (RR) was amber in color, flowed at room temperature, and had a 

slightly pungent, but not unpleasant odor. The acetone-extraction process was relatively 

simple and the yield averaged about 13% by weight of the rubber. The procedural details 

are given in Appendix B. 

 After months of experimentation, the LF and RR were chosen for further 

evaluation. Each of the two guayule-based materials was compared to an appropriate 

petroleum-based product of similar viscosity: 1) RR was compared to CycL, and 2) the 

LF was compared to a PG52-28 binder. PG52-28 is a soft binder often used in FPMs with 

high contents of RAP and/or RAS, and in circumstances where the contract-specified 

binder grade is stiffer than PG52-28. Table 3.2 shows a summary of results, in a general 
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chronological order from top to bottom, of the investigations into obtaining a guayule-

based extract that could serve as a RA. 

 

 

Table 3.2. Summary of Initial Guayule-Based Material Generation Investigations 

Plant or Plant Extract 
Precursor Materials Solvent Results 

Whole-Shrub (WS) Acetone The WS resin is much stiffer and more temperature 
susceptible than a PG52-28 binder. 

PLE Bagasse (PLE) Acetone The PLE resin is very stiff. Viscosity-temperature 
relationship similar to RAP binders. 

Waste-Stream 
Leaf/Stem Acetone 

Visual inspection only. Visual observation was similar to 
acetone-extracted WS resin. Too glassy (brittle) at room 
temperature. 

Acetone-extracted 
PLE Bagasse Resin 

Pentane-Aqueous 
Methanol Liquid-
Liquid Extraction 

The extract has good viscous properties comparable to 
Cyclogen L. No follow-up work: pentane hazard-risk and 
high cost, and a very complex production method. Very 
small yield. 

Whole-Shrub (WS) Pentane 
Visual inspection only. The extract demonstrates 
moderate ductility, high elasticity. No follow-up work: 
pentane hazard-risk and high cost. 

PLE Bagasse (PLE) Pentane 
Visual inspection only. The extract demonstrates 
moderate ductility and elasticity. No follow-up work: 
pentane hazard-risk and high cost. 

PLE Bagasse (PLE) Toluene 
The resin is similar to the acetone-extracted PLE resin in 
terms of viscosity but is slightly less temperature 
susceptible. 

Waste-Stream 
Leaf/Stem Hexane 

The extract (LF) has viscosity similar to a PG52-28 but 
is significantly less temperature susceptible. Simple 
production method and moderate yield. Demonstrates 
high ductility, moderate elasticity upon visual 
inspection. Contains some rubber and is tacky. 

PLE Bagasse (PLE) Hexane 
The extract has a viscosity-temperature relationship 
similar to the LF material with higher viscosity; i.e. too 
stiff.  

Hexane-extracted LF Cold-filtered 
Ethanol-partition 

The extract is less viscous than a PG46-28 binder but 
more viscous than Cyclogen L, and more temperature 
susceptible. Production less complex than pentane-
aqueous methanol partitioning. Small yield 

Dried Latex (bulk 
rubber)  Acetone 

The rubber resin (RR) has viscosity similar to Cyclogen 
L but is slightly less temperature susceptible. Relatively 
simple production method and high yield. 

Note: Italicized materials chosen for further investigation 
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3.1.2.2 Raw material descriptions. RAP1 came from a Missouri Department of 

Transportation (MoDOT) project on Interstate 44 in Phelps County, Missouri. RAP2 

came from a city street project in the city of Washington, Missouri. The rationale for the 

selection of two different RAP materials was based on the early idea of evaluating RAPs 

of significantly different quality. If RAP comes from a source other than a state roadway, 

MoDOT requires additional testing on the recovered RAP aggregates, specifically, the 

Micro-Deval test. Micro-Deval is an aggregate durability test that measures resistance to 

abrasion in the presence of water [74].  

The RAPs were first processed in the laboratory by shaking them across a ¾ inch 

screen, running the +¾ inch material (retained on the ¾ inch screen) through a 

horizontal-shaft impactor, then running the pulverized RAP through the ¾ inch screen 

again such that the sample used for obtaining test specimens contained only RAP that had 

passed through the ¾ inch screen. 

 The RAS was supplied by a local asphalt contractor and had already been 

processed such that it would pass the ½ inch screen. However, MoDOT’s specification 

for RAS is that it must pass the ⅜ inch screen. Therefore, the RAS was processed in the 

laboratory in the same manner as the RAP such that the sample used for obtaining test 

specimens contained only RAS that had passed through the ⅜ inch screen. 

 Virgin aggregate used in the FPMs was a dolomite from the Gasconade 

formation, obtained from a local asphalt producer. Three different size fractions were 

obtained: ½ inch clean, ⅜ inch clean, and manufactured sand. 

 The origins and basic methodology for processing of the precursor materials for 

the LF and RR materials were discussed in the previous section. 
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3.1.2.3 RAP/RAS binder contents and guayule-based extract yields.  

Procedures ultimately used for solvent-based extraction and recovery for the RAP/RAS 

binders, and the RR and LF materials were based on guidance given in standard test 

methods and in the literature [11] [70] [75] [76] [77]. However, due to the amount of 

material needed to perform the required testing, certain aspects and/or portions of the 

standard test procedures were combined to develop the procedures utilized. The 

evolutionary development of the procedures that were eventually used account for a large 

portion of the time dedicated to this project. Detailed extraction and recovery procedures 

are in Appendix B for the guayule-based materials and Appendix C for the RAP and RAS 

binders. Recovery (yield) results are given in Table 3.3. 

Before the procedures used to generate the data in Table 3.3 were fully developed, 

binder contents (or more correctly, percent losses) of the RAP/RAS were first determined 

using a standard solvent-extraction method, AASHTO T 164 [75], and the binder ignition 

oven based on AASHTO test method T 308 [78]. Results are given in Table 3.4. 

The RAP1 and RAS binder content results in Table 3.3 (determined using the 

project-developed extraction/recovery methods) relative to the T 164 results in Table 3.4 

compare fairly well. However, the results for RAP2 in Table 3.3 ran somewhat higher 

than those in Table 3.4. 

The deltas (differences) between T 308 and T 164 shown in Table 3.4 are large. 

The differences are primarily due to a combination of factors:  

• Aggregate mass loss in the T 308 test results; largest contributor to deltas. 

• Incomplete binder extraction in T 164 (aggregates absorb binder to differing 

degrees and the extent of solvent-removal of said binder varies).  
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• Burning of small amounts of paper, plastic, and wood included in the RAS 

that show up as a mass loss in T 308.   

 

 

Table 3.3. Solvent-Based Extraction/Recovery Yield Results 

Material Batch ID 
Amount 

Recovered 
(gm) 

Content or 
Yield  
(%) 

Mean 
(%) 

St. Dev. 
(%) 

Acetone-Extracted Guayule 
Rubber Resin (RR) 

RR-1 226.6 11.5 

11.9 0.30 RR-2 247.0 12.2 
RR-3 237.6 11.8 
RR-4 248.2 12.0 
RR-5 301.3 14.6 

14.0 0.45 RR-6 410.5 13.9 
RR-7 312.5 14.0 
RR-8 339.8 13.5 

Hexane-Extract from Waste 
Stream Guayule Leaves and 
Attached Stems (LF) 

LF-1 215.9 4.5 

4.5 0.09 
LF-2 210.4 4.4 
LF-3 219.4 4.6 
LF-4 211.2 4.4 
LF-5 212.0 4.4 

RAP1 Binder 
(State Hwy Material: -3/4″) 

RAP1-1 478.6 4.8 

4.8 0.07 RAP1-2 482.0 4.8 
RAP1-3 492.3 4.9 
RAP1-4 492.5 4.9 
RAP1-5 512.1 4.8 

4.7 0.14 RAP1-6 488.6 4.7 
RAP1-7 492.4 4.7 
RAP1-8 462.1 4.5 

RAP2 Binder 
(Municipal Street Material: -3/4″) 

RAP2-1 550.3 5.5 

5.4 0.03 RAP2-2 547.1 5.5 
RAP2-3 543.3 5.4 
RAP2-4 541.7 5.4 
RAP2-5 558.8 5.5 

5.5 0.01 RAP2-6 569.1 5.5 
RAP2-7 562.2 5.4 
RAP2-8 559.1 5.5 

RAS Binder (-3/8″) 

RAS-1 465.1 22.8 

22.8 0.08 RAS-2 468.7 22.9 
RAS-3 459.8 22.7 
RAS-4 459.8 22.8 

NOTE: The binder contents of the RAPs and RAS, and the yields of the LF material are 
based on the weight of the material after drying/warming overnight at 60°C. Yields of the 
RR material are based on the weight of the air-dry rubber subjected to acetone-extraction. 
Batches 1 – 4 (and LF batches 1 – 5) were extracted much earlier than batches 5 – 8. 
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Table 3.4. T 164 and T 308 Binder Contents 

Material RAP1 RAP2 RAS 
Test/Delta T 164 T 308 Delta T 164 T 308 Delta T 164 T 308 Delta 
Trial-1 (%) 4.92 7.19 2.27 5.24 6.14 0.90 23.2 26.4 3.25 
Trial-2 (%) 5.06 6.99 1.93 5.08 6.33 1.25 22.0 26.5 4.52 
Mean (%) 4.99 7.09 2.10 5.16 6.24 1.08 22.6 26.5 3.89 
StDev (%) 0.10 0.14 0.24 0.11 0.13 0.25 0.84 0.06 0.90 

 

 

The delta for RAP2 is considerably smaller than RAP1. This could be due to the 

fact that RAP2 contained limestone and some trap rock, a hard, low-absorption aggregate 

used in many Missouri street resurfacing projects. The smaller RAP2 delta relative to 

RAP1 could also be due to the fact that RAP1 contained dolomite; i.e. limestone with an 

elevated magnesium level. Dolomite is a common Missouri mineral that can experience 

excessive mass loss that increases with increasing ignition oven test temperatures. 

The temperature for binder ignition oven testing of the reclaimed materials should 

be the same as that used during binder ignition testing of the production FPM [79]. 

However, because no FPM production had occurred prior to generating the T 308 data in 

Table 3.4, the binder ignition testing of the RAPs and RAS was performed at 538°C, the 

default temperature specified in T 308. 

3.1.2.4 RAP/RAS aggregates gradations. Gradation analyses [80] [81] were 

performed on the recovered RAP and RAS aggregates from both the AASHTO T 308 and 

AASHTO T 164 procedures used to develop the results in Table 3.4. Gradation, or 

particle size distribution, is necessary for FPM design. The gradation results are given in 

Table 3.5. 
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Table 3.5. Gradation Results for Recovered RAP/RAS Aggregates 

Material RAP1 RAP2 RAS 
Recovery Method Solvent Ignition Solvent Ignition Solvent Ignition 
Sieve Size % Pass % Pass % Pass % Pass % Pass % Pass 
¾ in. (19.0mm) 100 100 100 100 100 100 
½ in. (12.5mm) 97 96 100 100 100 100 
3/8 in. (9.5mm) 90 91 98 98 100 100 
#4 (4.75mm) 69 71 75 74 99 99 
#8 (2.36mm) 50 52 50 49 97 97 
#16 (1.18mm) 40 42 36 36 81 81 
#30 (600μm) 33 34 28 27 59 57 
#50 (300μm) 25 27 19 18 51 50 
#100 (150μm) 15 16 13 12 45 44 
#200 (75μm) 9 10 11 9 37 35 

 

 

 The difference between the solvent- and ignition-recovered-aggregate gradations 

in Table 3.5 is small, but there is some evidence that the RAP1 dolomite breaks down 

more than the RAP2 and RAS aggregates during ignition testing. For FPM design, the 

gradations of the solvent-recovered RAP/RAS aggregates from the Table 3.3 extractions 

were assumed to be the same as the average of the solvent- and ignition-recovered-

aggregate gradations in Table 3.5. Although not required for FPM design, the RAS fiber 

content was determined to be approximately 0.5% by weight of the RAS as a 

consequence of the washed sieve analysis of the recovered RAS aggregates. 

3.1.2.5 Recycling agent classification. To properly perform FPM design that 

includes reclaimed binders, standard practice calls for classification of materials intended 

to be used as recycling agents. To this end, a standard material specification, AASHTO R 

14 [82], is being referenced. The specification calls for several properties to be 

determined: viscosity, flash point, viscosity ratio (based on thin film oven (TFO) or 
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rolling thin film oven (RTFO) residue viscosity relative to the original viscosity), weight 

(mass) change, specific gravity (relative density), and percent saturates. Table 3.6 

summarizes all test results for recycling agent classification. 

 

 

Table 3.6. Recycling Agent (RA) Classification Results 

Property or Parameter LF PG52-28 RR CycL 
RTFO viscosity @ 60°C  
(centipoise) 

21450 160000 618 624 

Original viscosity @ 60°C 
(centipoise) 

36750 62125 218 438 

Viscosity ratio (RTFO/original): 
maximum = 3 

0.6 2.6 2.8 1.4 

AASHTO R 14 RA Classification RA 
250↔500 

NA  
(>RA 500) 

RA 5 RA 5 

Flash Point (°C): minimum = 218°C ~200 Not 
Determined* 

213** 254*** 

Saturates (weight %): 
maximum = 25% 

11.26*** Not 
Determined* 

1.08*** 16.38** 

Weight (mass) change (%): 
maximum = ±4% for RA1 and RA5, 
±3% for all others 

-8.475 -0.066 -11.065 -1.817 

Specific gravity (to be reported: no 
specification limits) 

1.003 1.012 1.015 1.004 

NA = Not applicable; *Details in following discussions; **Average based on two 
replicate tests; ***Based on testing only one specimen 
 

 

• Percent Saturates (Clay-Gel Absorption Chromatography Testing). 

 According to AASHTO R 14, saturates are limited to a maximum of 25% (or 30% 

if all other specified criteria are met) and are to be determined using the clay-gel 

absorption chromatographic test method ASTM D 2007 [72]. From this standardized test, 

one can determine the quantity of four different hydrocarbon types and structural groups 
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in the recycling agent: saturates, aromatics, polar compounds (or polar aromatics), and 

asphaltenes (n-pentane insolubles). The relative proportions of these four groups affect 

the properties of the petroleum-based binder, and presumably, any blend of a guayule-

based material and petroleum-based binder. 

Clay-gel chromatography was performed on the RR, LF, and the CycL. Although 

the PG52-28 binder was used as a recycling agent in this study, clay-gel chromatography 

testing on the PG52-28 binder was not deemed necessary because it does not technically 

fall within the purview of R 14. 

 As shown in Table 3.6, all materials tested for percent saturates meet the criteria 

specified in AASHTO R 14 in that they are below 25%. Although not shown in Table 

3.6, the LF and RR have a much higher polar compound content and considerably smaller 

aromatic compound content than the CycL. In a petroleum-based binder, age-hardening is 

a process by which the polar and aromatic compounds, over time, oxidize and become 

asphaltenes which are very large, complex molecules (i.e. microscopic solids) that serve 

as a bodying agent in the binder. Therefore, blends containing the LF or RR (both with 

higher polar compound contents than CycL) could possibly have an increased rate of age-

hardening relative to blends with CycL.  

Saturates (also known as paraffins) serve as non-solvents or a gelling agent in a 

colloidal system in which the asphaltenes are dispersed or peptized by the polar 

compounds (also known as nitrogen bases), and the aromatics (also known as first and 

second acidaffins) serve as a solvent for the dispersed asphaltenes [83] [84]. Figure 3.3 

shows the clay/gel percolation column chromatography test setup. 
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Figure 3.3. Clay-Gel Absorption Chromatography Test Setup 

 

 

• Mass Change. 

 Mass change testing of the LF, RR, CycL, and PG52-28 was conducted using the 

rolling thin film oven (RTFO) method AASHTO T 240 [85]. The results are presented in 

Table 3.6. 

 The mass change (loss in this case) for the RR and LF materials exceeds the 

maximum allowable (4%) for any class of recycling agent (RA) based on AASHTO R 14 
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specifications. The PG52-28 and CycL met the specification. However, it should be noted 

that AASHTO R 14, as well as most every specification referenced for this research, 

pertains to petroleum-based binders, not necessarily a bio-based alternative.  

Mass change testing occurs at 163±1°C. Some of the chemical compounds in the 

guayule-based materials are terpenes, compounds with isoprene molecules (C5H8) as the 

basic building block. Gas chromatography – mass spectrometry (GC-MS) test results 

(presented later) show some of the volatile compounds present in the RR and LF 

materials. Although these compounds are volatile and, even though they may have high 

boiling points in their pure form (terpenes especially), they have low flash points. 

• Specific Gravity (Relative Density). 

 AASHTO T 228 [86] was followed in performing specific gravity tests on the 

PG52-28, CycL, RR, and LF materials. The guayule extracts required removal of a 

significant amount of gas bubbles prior to determining the specific gravity at 25°C. This 

aspect of the resins was not surprising in that they had just been recovered using the 

rotary evaporator which unavoidably whips gas into the recovered material.  

Figure 3.4 shows the images of before and after a soft brushing of the surface of 

the RR with a propane torch. One can clearly see small bubbles in the RR in the 

pycnometer on the left. Care was taken to do as little as possible in regard to reheating the 

RR in order to facilitate the removal of the bubbles but not drive off any lighter 

compounds thereby altering the specific gravity of the original extract. The image on the 

right shows the final state of the RR in the pycnometer just prior to specific gravity 

testing. The results are presented in Table 3.6.   
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Figure 3.4. RR Specific Gravity Testing 

 

 

• Viscosity and Viscosity Ratio. 

 A Brookfield rotational viscometer was used to determine viscosity-temperature 

relationships per AASHTO T 316 [87]. Note that this is a deviation from specifications in 

AASHTO R 14 which calls for viscosity testing at 60°C using AASHTO T 201 or T 202 

and then reporting the results in the “stoke” unit of viscosity. The stoke is equal to the 

poise (viscosity units determined using T 316) divided by the density (specific gravity) of 

the liquid. However, because the density or specific gravity of the petroleum-based 

binders and guayule-based materials are very nearly 1.0, stoke and poise values are very 

nearly the same. Therefore, because R 14 classifications are based on a range of 

viscosity, and because the calculated viscosity ratio is not dependent on the actual 

viscosity unit used, viscosity results shown in Table 3.6 are given in centipoise. The 
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results given in Table 5 show that all four materials meet the viscosity ratio specification 

in R 14. Figure 3.5 shows the Brookfield viscometer. 

 

 

 

Figure 3.5. Brookfield Viscometer 

  



 

 

53 

The RA classifications in Table 3.6 line up fairly well between the materials that 

were compared. Both the RR and the CycL are classified as RA 5, but the LF and PG52-

28 classifications are somewhat different. It is important to remember, however, that the 

classifications are based on viscosity at only one temperature. Viscosity measurements at 

more temperatures for each material will be presented later in the report, and the reason 

will become clearer as to why PG52-28 was chosen as the comparative petroleum-based 

binder to the LF material. 

• Flash Point. 

 Flash point testing is required as a safety issue and was performed per AASHTO 

T 48 [88]. As shown in Table 3.6, the LF and RR materials did not meet the flash point 

specification in AASHTO R 14, but they did not fail by a large margin. In fact, the 

margin of failure of the LF (~18°C) was essentially the same as the multi-laboratory 

precision d2s (i.e. reproducibility) value of 18°C, and the margin of failure of the RR 

(5°C) was less than the single operator precision 1s (i.e. repeatability) value of 8°C. As 

discussed in earlier reports in regard to the large mass loss (volatilization) experienced by 

the guayule-based materials during heating at typical FPM mixing temperatures, it may 

be necessary to pre-condition or modify the processing of the guayule-based materials to 

make them more thermally stable and reduce the mass loss. This action would also, 

presumably, increase the flash point. Testing of the PG52-28 binder was not performed 

because it was assumed that the flash point would be higher than that of the CycL which 

has a flash point of 254°C, well above the specified minimum of 218°C. Figure 3.6 

shows the flash point test setup. 
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Figure 3.6. Flash Point Test Setup 
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3.1.2.6 Gas chromatography – mass spectrometry (GC-MS). The general 

intent of GC-MS testing was to evaluate the efficiency of the hexane and acetone 

desolventization process. Identification of major volatiles in the RR and LF materials was 

also of interest. The identification method used is called “headspace sampling using solid 

phase micro-extraction (SPME) with gas chromatography mass spectrometry (GC-MS)” 

(39). The media that was used to sample the guayule-based materials was a 

polydimethylsiloxane (PDMS) SPME fiber. The testing was done in collaboration with 

colleagues in the Environmental Engineering section of the Department of Civil, 

Architectural, and Environmental Engineering at Missouri S&T. Tests were performed on 

an operator-availability basis and not all variables (e.g. specimen size) were carefully 

controlled. The results are shown in Figure 3.7. 

The gas chromatography (GC) device has a 28 minute long heating profile (x-axis 

on each chromatogram is time in minutes). At initiation (time = 0), the temperature in the 

GC chamber is 35°C and remains so for 5 minutes. The temperature then begins to ramp 

up at 15°C per minute for 13 minutes and then holds at 230°C for the remaining 10 

minutes. The y-axis is the “abundance,” or sometimes referred to as “intensity” of the 

compound detected.  

The acetone and hexane levels (labeled low and to the left in the appropriate 

chromatogram) indicate that the desolventization procedures were very good at removing 

the solvents. Many of the compounds identified in Figure 3.7 are terpenes, compounds 

that have the isoprene molecule (C5H8) as the basic building block. Terpenes are mostly 

single-digit multiples (n) of the isoprene unit (C5)n which builds up the carbon skeleton. 

The monoterpenes (i.e. two isoprene units or C10H16) α- and β-Pinene, and Limonene, are 
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very interesting in that they are natural solvents. Pinenes are the basic compounds in 

turpentine while Limonene is used extensively in “citrus” cleaners. This capacity to serve 

as a solvent or degreaser is what makes certain guayule-based extracts attractive. They 

could be used as pre-treatment additives to RAP/RAS to help soften the hardened binder 

prior to FPM production thus improving the blending of reclaimed and virgin binders. 

The original USDA-supplied de-rubberized resin also had high monoterpene levels. It 

was the Pinenes that one could smell upon the first opening of the gallon can. 

 

 

 

Figure 3.7. Chromatograms of LF (left) and RR (right) Materials 

 

 

Other compounds identified in Figure 3.7 are sesquiterpenes (C15), diterpenes 

(C20), or triterpenes (C25). Some of the compounds may have isoprene structures with 
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some functional groups attached, which case they are referred to as terpenoids. Many 

terpenes are sometimes referred to as essential oils (e.g. Pinenes, Limonene, 

Caryophyllene, Cadinene, and Santolina Triene) (?). The mass spectrometry software 

indicated uncertainty when identifying the peak labeled as unknown, and generated a 

“best guess” which is the compound in parenthesis. It is not unusual for compounds to be 

inaccurately identified or they may be real and have been formed as reactions of other 

compounds in the feedstock material during the GC procedure.  

3.1.2.7 Viscosity testing. AASHTO T 316 [87] was used for the viscosity 

testing presented in this section. Figure 3.8 shows the viscosity results for the original 

(not-RTFO-aged) RAP1, RAP2, RAS, PG52-28, and PG46-28 binders. The PG46-28 was 

included because at the time these tests were performed, it was not clear which 

petroleum-based binder(s) would be utilized in a comparative analyses. 

Figure 3.8 shows three distinct groupings of material viscosities. The lowest 

viscosity group includes the three virgin (original) commercially-available binders, in 

ascending order of greater viscosity: PG46-28, PG58-28, and PG64-22. The next group 

has higher viscosities as expected: the two RAPs. The third material is the RAS, and as 

expected, the RAS(orig) binder is much more viscous than any of the other materials. As a 

pure blend (i.e. a non-blended material), the mixing temperature is ~265°C (~510°F) 

meaning its presence in a blend in any proportion will raise the mixing temperature of 

that blend, relative to what it would be without it. The Asphalt Institute has published 

recommended mixing and compaction viscosities for FPMs. The recommended binder 

viscosity for FPM mixing is 0.17 ± 0.02 Pa·sec or 170 ± 20 centipoise [90], as shown by 

the dashed lines in Figure 3.8. 
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The choice of comparing the RR to the CycL and the LF to the PG52-28 was 

based on their relative viscosity-temperature relationships.  It seemed to be the only 

parameter that could logically be used as a basis of comparison because the reduction of 

viscosity of the hardened binder in the RAP/RAS is a primary reason for utilizing a RA. 

The viscosity results for these comparisons are given in Figure 3.9. 

 

 

 

Figure 3.8. RAP, RAS and PG Binder Viscosities 

 

 

There are two significant features about the curves presented in Figure 3.9. One is 

the difference in the slopes for the LF and PG52-28 materials, both original and RTFO-
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aged. The slope of a viscosity-temperature curve shows a material’s temperature 

susceptibility which is the change in viscosity for a given change in temperature. Low 

temperature susceptibility is desirable in a binder material and the LF material is superior 

to PG52-28 in this respect across the entire temperature range in which they were tested. 

Also, the relative location of the LF and PG52-28 curves shows why these two materials 

were chosen to be compared; they are fairly similar over a wide range of temperatures. 

The original and RTFO-aged RR and CycL are also very similar in terms of viscosity and 

the RR shows a slight advantage in temperature susceptibility over the CycL. 

 

 

 

Figure 3.9. Comparison of Viscosity-Temperature Relationship 
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 The second significant feature in Figure 3.9 is the viscosity reduction of the LF 

upon RTFO-aging. This behavior runs counter to that of petroleum-based binders. During 

viscosity testing on the original LF, it became apparent that at a temperature somewhere 

around 150°C, the LF was undergoing changes as indicated by erratic viscosity readings 

during spindle rotation. Upon closer inspection, it was observed that large bubbles were 

appearing on the surface of the specimen soon after a spike in the viscosity reading. The 

viscosity of the LF was lowered after shearing at elevated temperatures. It is unclear why 

this occurred but degradation or de-polymerization of the rubber (polyisoprene) 

molecules could be the cause. This behavior also gave an indication that there may be 

issues with mass change for this material, which proved to be the case.  

The RR, on the other hand, behaves typically in that the viscosity increases upon 

RTFO-aging. Also note the relative distance between the original and RTFO curves for 

all four materials. The guayule-based materials have a wider separation than the 

petroleum-based binders which one would expect based upon the radical differences 

between the guayule-based materials and petroleum-based binders in terms of mass 

change upon RTFO-aging. 

3.1.2.8 Summary of Task 2, part 1: material characterization. A summary 

of the results for this section is given in the following bullet-point list: 

• Of the eleven different combinations of guayule feedstock material, 

solvent(s), and extraction/recovery processes investigated, LF and RR were 

selected for further, in-depth evaluations. 

• Yields of the LF and RR were significant and were a factor in the decision to 

investigate these two extracts further. 
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• Binder contents of the RAPs and RAS, necessary for FPM design, were 

determined. 

• Gradations of the RAPs and RAS, also necessary for FPM design, were 

determined. 

• RA classification showed that the LF and RR exceeded mass change limits. 

• The LF extract demonstrated counter-intuitive, but interesting behavior by 

becoming less viscous upon RTFO-aging. 

• GC-MS testing indicated that the extract recovery process (desolventization) 

resulted in very effective removal of the acetone and hexane solvents. 

• Viscosity testing of the original and RTFO-aged RAPs, RAS, and PG binders 

was performed with no unexpected results. 

• Viscosity testing of the original and RTFO-aged LF, RR, and CycL was 

performed. These results, along with the PG binder viscosity results, were 

used for comparison purposes. The viscosity behavior of the LF was close to 

that of the PG52-28, and the RR behavior was similar to the CycL. Results of 

the comparisons were the major factor in deciding to compare the LF to the 

PG52-28, and the RR to the CycL.   

3.1.3. Binder-Blending Mixture Experiment: Task 2, Part 2. In order to 

determine the relative effects of the guayule-based materials vs. the petroleum-based 

binders when blended with RAP/RAS binders, and to develop response surface models 

(RSMs) required for FPM design, binder-blending mixture experiments were developed. 

The experimental design matrices for the comparison of the LF and PG52-28 binders are 

given in Tables 3.8 and 3.9, and the matrices for the comparison of the RR and CycL 
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binders are given in Tables 3.10 and 3.11. The “design” blend proportions were generated 

using the Design-Expert® software program based on constraints imposed on the 

proportion limits of each individual component. The proportion limits were based on the 

literature, practical considerations, and creating as much “data space” as possible for 

modeling purposes.  

For the LF vs. PG52-28 and the RR vs. CycL binder-blending mixture 

experiments, the RAP1 and RAP2 design proportion limits were chosen to be 0 – 100%. 

This means that RAP1 and/or RAP2 could comprise up to 100% of the binder. As 

discussed in the literature review, there are FPM production facilities (i.e. asphalt plants) 

that can handle 100% reclaimed material.  

The LF vs. PG52-28 mixture experiment was performed first because the LF 

material became available much earlier than the RR. For this analysis, the RAS design 

limits were set at 0 – 50% because some investigations into the use of RAS had looked at 

percentages (weight of processed RAS as a percentage of total mix weight) as high as 

50% [91]. The RA design limits for this analysis were set at 0 – 70% based on knowing 

that the LF and PG52-28 were fairly viscous and high contents could be required to 

temper the very stiff RAP/RAS binders.  

The RAS design limits were set at 0 – 15%, however, for the RR vs. CycL 

mixture experiment. The reduction of the RAS upper limit to 15% for the RR vs. CycL 

blends was a result of difficulties during testing of the some of the very stiff, high-RAS-

content blends created in the LF vs. PG52-28 mixture experiment, which, again, occurred 

before the RR vs. CycL experiment; i.e. the experimentation was on a learning curve. 

Because the RR and CycL were much less viscous than the LF or PG52-28, and the 
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supply of RR was limited, the upper design limit for the RR and CycL RAs was lowered 

to 30%. 

Each blend (row) was physically created using a modified Brookfield rotational 

viscometer as a mixing device. Figure 3.10 shows the modified Brookfield viscometer 

setup for mixing the blends. Details about the blending procedure are in Appendix D. 

Each blend was then tested to determine 1) the TcH (high critical temperature) 

using a Dynamic Shear Rheometer (DSR), and 2) the TcL (low critical temperature) using 

a Bending Beam Rheometer (BBR). An explanation of the TcH and TcL is given, below. 

Figure 3.11 shows the Rolling Thin Film Oven (RTFO), Pressure Aging Vessel (PAV), 

DSR, and BBR stations. 

 

   

 

Figure 3.10. Modified Brookfield Viscometer for Binder Blending 
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Figure 3.11. RTFO, PAV, DSR, and BBR Stations 

 

 

Regarding the information given in Table 3.7, the high and low critical 

temperatures (TcH and TcL, respectively) are part of the basis for the grading of a PG 

binder under specifications set forth in AASHTO M 320 [92]. M 320 is still the 

predominant petroleum-based binder performance specification utilized by state DOTs. 

The mixture experiment is a special type of methodology for generating response 

surface models (RSMs) for design. RSMs are, essentially, regression models with more 

than one independent variable. What sets the mixture experiment apart from other RSM 

designs is the fact that the level of each component (factor) is dependent on the levels of 

the other components; i.e. the percentages of each component must add up to 100%. 
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Table 3.7. High (TcH) and Low (TcL) Critical Temperature Determinations 

Tests Responses: Definitions and Criteria 
Dynamic Shear 
Rheometer (DSR) 
testing of original 
binder (condition 
#1) and RTFO-
aged binder 
(condition #2) [93] 
[94] [95] 

TcH = High critical temperature: An indicator of FPM rutting 
potential and the lowest (coolest), most conservative of the two 
temperatures determined under the following conditions: 
1. The temperature at which the ratio of the complex modulus 

(G*) to the sine of the phase angle (sinδ) equals 1.00 kPa, as 
determined during DSR testing at 10 radians/second on 
original binder. 

2. The temperature at which the ratio of the complex modulus 
(G*) to the sine of the phase angle (sinδ) equals 2.20 kPa, as 
determined during DSR testing at 10 radians/second on 
RTFO-aged binder. 

Bending Beam 
Rheometer (BBR) 
testing of PAV-
aged binder [94] 
[95] [96] 

TcL = Low critical temperature:  An indicator of FPM cold-
temperature (thermal) cracking potential and the highest 
(warmest), most conservative of the two temperatures 
determined under the following conditions: 
1. The temperature at which the creep stiffness (S) equals 300 

MPa at 60 seconds of loading.  
2. The temperature at which the m-value (the absolute value of 

the slope of the logarithm of the stiffness curves versus the 
logarithm of the time) equals 0.300 at 60 seconds of loading.  

 

 

Generation of the RSMs required ten experimental runs (i.e. data points or blends) 

in order to fit a Scheffe quadratic model to the data. Additionally, at least three additional 

unique blends were created to check for lack of fit, and at least four replicated tests 

(duplicates of some of the other blends) were generated to calculate pure error.  

An example of “replicated tests” and “repeated measurements” is shown by 

looking at the 7th and 8th rows from the top of the data in Table 3.8 (50% RAP1 and 50% 

RAP2). Each of these batches of blended RAP was created separately using the modified 

Brookfield viscometer, described earlier, making them replicate blends. The TcH and TcL 

values for each replicate blend are the average of two test results or “repeated 

measurements,” i.e. tests performed on specimens sampled from the same batch. Since 
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each replicate blend was created and tested in the same manner, all process variability 

was present making the 7th and 8th rows replicated tests. 

Listed below each component in Tables 3.8 through 3.11 are the decimal 

percentage proportions (by weight) of each component per blend or run, and the colored 

blends indicate replicate tests where each pair of replicate tests is the same color. 

 

 

Table 3.8. Binder-Blending Mixture Experiment: LF as Recycling Agent 

Data
Type RAP1 RAP2 RAS LF TcH (°C) TcL (°C)

1.000 0.000 0.000 0.000 86.9 -8.3
1.000 0.000 0.000 0.000 87.0 -8.1
0.000 1.000 0.000 0.000 95.4 -0.9
0.000 1.000 0.000 0.000 95.2 -1.0
0.000 0.500 0.500 0.000 127.7 10.5
0.000 0.500 0.500 0.000 127.3 10.6
0.500 0.500 0.000 0.000 91.7 -4.4
0.500 0.500 0.000 0.000 91.9 -4.2
0.500 0.000 0.500 0.000 122.4 6.5
0.750 0.000 0.250 0.000 102.1 -1.9
0.000 0.300 0.000 0.700 55.5 -14.5
0.150 0.000 0.150 0.700 54.1 -16.5
0.650 0.000 0.000 0.350 71.5 -9.0
0.000 0.000 0.500 0.500 90.3 -4.8
0.000 0.360 0.260 0.380 93.7 -1.6
0.325 0.325 0.000 0.350 74.2 -6.2
0.167 0.167 0.500 0.167 121.4 4.8
0.000 0.650 0.000 0.350 78.4 -6.3
0.360 0.000 0.260 0.380 88.5 -1.8

Blended-Binder Components/Proportions Responses
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Two regression analyses were performed for each of the four tables: one to 

generate a TcH RSM and another to generate a TcL RSM. The component (RAP1, etc.) 
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percentages (in decimal form) were the independent variables, and the responses (TcH 

and TcL) were the dependent variables. In other words, TcH and TcL can be predicted 

from the proportions of the four binder materials: RAP1, RAP2, RAS, and the RA. To 

clarify the previous statement, Equations 1 and 2 are given below. They are the TcH and 

TcL RSMs (predictive equations) generated based on the RAP/RAS/RR data in Table 

3.10. Equations 1 and 2 will be discussed in more detail in Section 3.1.5. 

 

         (1) 

          (2) 

 

It should be noted that for both comparisons (LF vs. PG52-28, and RR vs. CycL), 

the blends that do not include RA (i.e. No-RA or reclaimed binders only) were only 

created and tested once; i.e. that data was “shared” between the guayule-based RA and 

petroleum-based RA analyses. 

Once the RSMs are established, DesignExpert can be used to “optimize” the 

component proportions to meet a desired TcH and/or TcL value or range of values. In 

other words, DesignExpert will try many combinations of proportions rapidly to arrive at 

the best (or several acceptable) combinations, rather than calculate it all manually. If 

possible, many different optimization solutions can be generated by DesignExpert 

imparting more flexibility in the FPM design process. 

The term "original binder," as it is used in Table 3.7 when describing TcH 

determination, means that the reclaimed RAP/RAS binder or blend, or a RAP/RAS/RA 
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blend has not been subjected to any aging (i.e. RTFO or PAV) in the laboratory. In 

reality, however, the reclaimed binders have already experienced significant aging as a 

result of their in-service history. With this in mind, it is important to point out that none 

of the blends shown in Tables 3.8 – 3.11 were PAV-aged, although this is required for 

standard BBR testing, as described earlier. The blends were not PAV-aged because 

approximately half of the blends per table were entirely reclaimed binder(s), no RA. The 

AASHTO 323 Appendix [95] specifies that when characterizing reclaimed binders, 

RTFO-aging is sufficient and is used in-lieu of PAV-aging. Thus to keep from injecting 

another variable into the mixture experimental designs, all blends, those that had a RA 

and those that did not (i.e. No- RA), were RTFO-aged only when aging was required for 

testing. Therefore, the TcL RSMs generated are based on RTFO-aged binder which 

means that estimated TcL values using the RSMs would be lower (cooler) than actual TcL 

values based on PAV-aged binder. 

Finally, any blend ultimately used in FPM design should first be verified as to 

whether or not it meets the required specifications using the appropriate test procedures, 

which would, normally, include testing of the PAV-aged blend. Therefore, although the 

testing and response descriptions given below in Table 3.12 are about verification testing, 

including TcInt determination of PAV-aged binder, these descriptions are just definitions 

within the standard specifications. However, as discussed in the previous paragraph, no 

PAV-aging was performed on any of the blends in the binder-blending mixture 

experiments. 
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Table 3.9. Binder-Blending Mixture Experiment: PG52-28 as Recycling Agent 

Data
Type RAP1 RAP2 RAS PG52-28 TcH (°C) TcL (°C)

1.000 0.000 0.000 0.000 86.9 -8.3
1.000 0.000 0.000 0.000 87.0 -8.1
0.000 1.000 0.000 0.000 95.4 -0.9
0.000 1.000 0.000 0.000 95.2 -1.0
0.000 0.500 0.500 0.000 127.7 10.5
0.000 0.500 0.500 0.000 127.3 10.6
0.500 0.500 0.000 0.000 91.7 -4.4
0.500 0.500 0.000 0.000 91.9 -4.2
0.500 0.000 0.500 0.000 122.4 6.5
0.750 0.000 0.250 0.000 102.1 -1.9
0.000 0.300 0.000 0.700 69.1 -19.3
0.150 0.000 0.150 0.700 73.9 -18.3
0.650 0.000 0.000 0.350 76.5 -14.6
0.000 0.000 0.500 0.500 103.3 -4.7
0.000 0.360 0.260 0.380 94.6 -5.3
0.325 0.325 0.000 0.350 79.8 -12.4
0.167 0.167 0.500 0.167 117.3 4.3
0.000 0.650 0.000 0.350 83.4 -9.6
0.360 0.000 0.260 0.380 91.0 -9.2

Blended-Binder Components/Proportions Responses

N
o-

R
A

 (s
ha

re
d)

 D
at

a 
  

(D
ec

im
al

 %
 P

ro
po

rt
io

ns
)

R
A

-S
pe

ci
fic

 D
at

a 
 

(D
ec

im
al

 %
 P

ro
po

rt
io

ns
)

 

 

 

The MSCR test responses, Jnr(3.2), Jnr(diff), R(3.2), and R(diff) are determined through 

DSR testing as described in the AASHTO provisional test method TP 70 [97]. These 

responses are indicators of rutting potential, stress sensitivity, the presence of a polymer 

and, if present, the quality of blending of that polymer. The MSCR test is specified to be 

performed on RTFO-aged binder and the test temperature depends on the environmental 

high pavement temperature and is usually selected by the specifying agency. For 

example, MoDOT now allows the use of the AASHTO specification MP 19 [98] as a 

supplement to AASHTO M 320 [92], which is the PG binder specification MoDOT still 
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uses in its contracts. If used, MoDOT specifies that the MSCR test be performed at 64°C 

on FPM binders used on Missouri state highways.  

 

 

Table 3.10. Binder-Blending Mixture Experiment: RR as Recycling Agent 

Data
Type RAP1 RAP2 RAS RR TcH (°C) TcL (°C)

1.000 0.000 0.000 0.000 87.7 -6.2
1.000 0.000 0.000 0.000 87.5 -6.3
0.000 1.000 0.000 0.000 93.9 -1.0
0.000 1.000 0.000 0.000 94.5 -1.3
0.210 0.718 0.072 0.000 97.1 -1.1
0.210 0.718 0.072 0.000 97.0 -1.5
0.648 0.202 0.150 0.000 97.8 -2.6
0.832 0.162 0.006 0.000 90.1 -5.4
0.000 0.768 0.150 0.082 91.0 -5.8
0.425 0.454 0.003 0.119 77.7 -13.0
0.425 0.454 0.003 0.119 77.5 -14.4
0.215 0.513 0.150 0.122 83.7 -10.4
0.740 0.000 0.092 0.168 72.4 -17.0
0.740 0.000 0.092 0.168 72.6 -17.4
0.000 0.685 0.043 0.272 62.4 -22.5
0.631 0.069 0.000 0.300 56.3 -22.5
0.401 0.149 0.150 0.300 62.0 -22.4
0.204 0.346 0.150 0.300 62.2 -22.6
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In MP 19, traffic loading is the only other criteria for grading a binder when using 

the MSCR test. Traffic loading designations are "S" for standard, "H" for heavy, "V" for 

very heavy, and "E" for extremely heavy traffic. This traffic loading designation system 

replaces the "grade bumping" practice traditionally performed when following M 320. 
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Under MP 19, Jnr(3.2) and Jnr(diff) are the only criteria required for making pass/fail 

determinations.  

For all temperatures and traffic loading designations, Jnr(diff) cannot exceed 75%. 

The maximum Jnr(3.2) value, on the other hand, is a function of traffic but not temperature. 

For example, Jnr(3.2) cannot exceed 4.0 kPa-1 for the standard traffic "S" grade but the 

maximum Jnr(3.2)  is lowered to 1.0 kPa-1 for the very heavy traffic "V" grade. R(3.2) and 

R(diff) are obtained through MSCR testing and are used to determine the elastic response 

and stress dependence of polymer modified and neat binders, but they are not required as 

part of MP 19. 

 

 

Table 3.11. Binder-Blending Mixture Experiment: CycL as Recycling Agent 

Data
Type RAP1 RAP2 RAS CycL TcH (°C) TcL (°C)

1.000 0.000 0.000 0.000 87.7 -6.2
1.000 0.000 0.000 0.000 87.5 -6.3
0.000 1.000 0.000 0.000 93.9 -1.0
0.000 1.000 0.000 0.000 94.5 -1.3
0.210 0.718 0.072 0.000 97.1 -1.1
0.210 0.718 0.072 0.000 97.0 -1.5
0.648 0.202 0.150 0.000 97.8 -2.6
0.832 0.162 0.006 0.000 90.1 -5.4
0.000 0.768 0.150 0.082 91.3 -6.4
0.425 0.454 0.003 0.119 76.1 -14.4
0.425 0.454 0.003 0.119 76.3 -15.2
0.215 0.513 0.150 0.122 84.0 -11.7
0.740 0.000 0.092 0.168 72.0 -19.1
0.740 0.000 0.092 0.168 72.2 -19.6
0.000 0.685 0.043 0.272 62.7 -23.5
0.631 0.069 0.000 0.300 54.9 -23.7
0.401 0.149 0.150 0.300 61.0 -23.8
0.204 0.346 0.150 0.300 62.1 -23.9
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Table 3.12. Binder Blend Verification Tests 

AASHTO M 320 Tests Responses: Definitions and Criteria 
Dynamic Shear Rheometer 
(DSR) testing of original 
binder (condition #1) and 
RTFO-aged binder 
(condition #2) [93] [94] 
[95] 

TcH = High critical temperature: An indicator of FPM 
rutting potential and the lowest (coolest), most 
conservative of the two temperatures determined under 
the following conditions: 
1. The temperature at which the ratio of the complex 

modulus (G*) to the sine of the phase angle (sinδ) 
equals 1.00 kPa, as determined during DSR testing at 
10 radians/second on original binder. 

2. The temperature at which the ratio of the complex 
modulus (G*) to the sine of the phase angle (sinδ) 
equals 2.20 kPa, as determined during DSR testing at 
10 radians/second on RTFO-aged binder. 

Bending Beam Rheometer 
(BBR) testing of PAV-
aged binder [94] [95] [96] 

TcL = Low critical temperature:  An indicator of FPM 
cold-temperature (thermal) cracking potential and the 
highest (warmest), most conservative of the two 
temperatures determined under the following conditions: 
1. The temperature at which the creep stiffness (S) 

equals 300 MPa at 60 seconds of loading.  
2. The temperature at which the m-value (the absolute 

value of the slope of the logarithm of the stiffness 
curves versus the logarithm of the time) equals 0.300 
at 60 seconds of loading.  

Dynamic Shear Rheometer 
(DSR) testing on PAV-
aged binder [93] [94] [95] 

TcInt = Intermediate critical temperature: An indicator of 
FPM fatigue cracking potential and the temperature at 
which the product of G* and sinδ equals 5000 kPa as 
determined during DSR testing at 10 radians/second. 

Brookfield Rotational 
Viscometer testing [87] 
[92] 

Maximum viscosity at 135°C = 3 Pa∙sec = 3000 
centipoise 

Flash Point testing [88] 
[92] 

Minimum flash point = 230°C 

Mass Change testing [85] 
[92] 

Maximum mass change = ±1.00% 

AASHTO MP 19 Tests Responses: Definitions and Criteria 
Multiple Stress Creep 
Recovery (MSCR) testing 
on RTFO-aged binder 
using a DSR: All averages 
based on 10 creep – 
recovery cycles [97] [98] 

1. Jnr(3.2) [Jnr(0.1)] = Average non-recoverable creep 
compliance at 3.2 kPa of creep stress [and 0.1 kPa, 
respectively] 

2. Jnr(diff) = Percent difference between Jnr(0.1) and Jnr(3.2) 
3. R(3.2) [R(0.1)] = Average percent recovery at 3.2 kPa of 

creep stress [and 0.1 kPa, respectively] 
4. R(diff) = Percent difference between R(0.1) and R(3.2) 
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In this study, the MSCR test was originally intended to be run just after each TcH 

determination, thereby generating several more data responses per blend to use in any 

subsequent analyses. However, the DSR software would occasionally crash during the 

last few cycles of the MSCR test. Therefore, the MSCR data collected during the binder-

blending mixture experiment is incomplete. But as will be discussed later, the MSCR test 

was successfully used to verify the chosen blend for mix design, production, and testing. 

A summary of results for this section is given in the following bullet-point list: 

• DesignExpert software was used to generate design proportions for blends of 

the RAPs, RAS, and RAs based on selected limits of each component. 

• For each of the four RAs used in this comparative analysis (LF vs. PG52-28, 

and RR vs. CycL), blends were created based on the design proportions. 56 

different blends were created using a modified Brookfield viscometer. 

• TcH and TcL were determined for all 56 batched blends. All TcH and TcL 

reported values were the average of two repeated measurements. 

3.1.4. LF vs. PG52-28 and RR vs. Cyclogen L Comparisons. The RA-specific 

data in Tables 3.8 –3.11 (i.e. those blends that include a RA) was used to develop Figures 

3.12 – 3.17. These plots show the correlations between the TcH and TcL, and the absolute 

temperature spread (TcH – TcL) of the materials being compared. A wider absolute 

temperature spread means better overall performance. 

As indicated in Figures 3.12 – 3.14, the PG52-28-RAP/RAS blends generally had 

higher (warmer) TcH values, lower (cooler) TcL values, and, therefore, generally larger 

absolute temperature spreads than the proportionally-identical LF-RAP/RAS blends.  
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Figure 3.12. TcH Correlation (LF vs. PG52-28) 

 

 

The results presented in Figures 3.12 – 3.14 were discouraging. Though the LF 

did not favorably compare in a direct manner to the PG52-28 binder, the LF material, 

because of its guayule rubber (GR) content, may prove useful as a polymer-modifier to 

increase the high-temperature performance of a FPM while holding the low-temperature 

performance constant. This speculation applies to any resin that might contain some GR, 

low MW and/or high MW. Nonetheless, the results presented in this section focused the 

remaining effort in the NCHRP-IDEA project on the RR. Figures 3.15 – 3.17 show the 

same correlations for the RR vs. CycL comparison. 
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The plots in Figures 3.15 – 3.17 clearly show that the RR vs. CycL direct 

comparisons are much more favorable than the LF vs. PG52-28. The TcH correlation is 

almost perfect but slightly favors the RR. The TcL correlation definitely favors the CycL 

but the bias is only a degree or two on average. The absolute temperature spread 

correlation is significantly different at an alpha value of 0.05, but, again, is only slightly 

biased toward the CycL, and not for every blend. These results demonstrated that the RR 

could be used in a practical sense as a RA, and prompted the move to start FPM design, 

production, and testing. 

 

 

 

Figure 3.13. TcL Correlation (LF vs. PG52-28) 
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A summary of results for this section is given in the following bullet-point list: 

• Simple correlations of the TcH, TcL, and TcH – TcL parameters were 

performed for each pair of RAs analyzed on a comparative basis: LF vs. 

PG52-28, and RR vs. CycL. 

 

 

 

Figure 3.14. TcH – TcL Correlation (LF vs. PG52-28) 

 

 

• Based on the simple correlations, the LF extract was discontinued as a subject 

of further evaluation as a RA. TcH – TcL of the LF blends, compared to the 

PG52-28 blends, was smaller by ~10°C, on average, and more variable; i.e. 
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standard deviation of TcH – TcL for the LF blends was 14.5°C versus 8.4°C 

for the PG52-28 blends. However, because the LF contained some rubber, it 

may prove useful as a polymer-modifier to increase the high-temperature 

performance of a FPM while holding the low-temperature performance 

constant. 

• The RR vs. CycL correlations showed that the RR could, in a practical sense, 

serve as a RA. Therefore, RR became the focus of the remainder of the study. 

 

 

 

Figure 3.15. TcH Correlation (RR vs. CycL) 
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3.1.5. Response Surface Models: Generation and Optimization. Generation of 

the response surface models (RSMs) was performed using regression analysis procedures 

within DesignExpert using the data in Tables 3.8 – 3.11. It is important to reiterate, two 

RSMs were generated per table: one for TcH and one for TcL. As the focus was now only 

on the RR, only the RR RSMs were necessary to utilize and are repeated, below, in 

Equations 1 and 2, where the independent variables (RAP1, etc.) are the decimal fractions 

of the proportions in a given blend. 

 

         (1) 

          (2) 

 

The goodness-of-fit statistics for Equations 1 and 2 are as follows: 

• Equation 1 (TcH): Adjusted R2 = 0.9992, Predicted R2 = 0.9888. 

• Equation 2 (TcL): Adjusted R2 = 0.9974, Predicted R2 = 0.9832. 

Before the beginning of the FPM design procedure, a particular blend had to be 

developed that would result in a desired grade of binder. The DesignExpert optimization 

process was utilized to determine sets of component proportions (or solutions) that would 

generate a blend meeting the specifications for a PG64-22 binder. The solutions were 

based on the RR TcH and TcL RSMs shown in Equations 1 and 2. 

If one should choose to use Equations 1 and 2, the component proportions 

(independent variable values) should be in the form of decimal percentages, and the sum 

of those percentages must be 1.00 (i.e. 100%). For example, if one wanted to estimate 
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TcH for a blend that had 70% RAP1, 0% RAP2, 5% RAS, and 25% RR (all percentages 

sum to 100%), one would input 0.70 everywhere RAP1 appears in Equation 1, 0.00 

everywhere RAP2 appears in Equation 1, 0.05 everywhere RAS appears in Equation 1, 

and 0.25 everywhere RR appears in Equation 1. The same procedure would be used for 

estimating TcL, Equation 2. It is very important to remember, however, that the 

regression coefficients on the main effects terms and the interaction terms are specific to 

the materials used in this project. 

Figure 3.18 shows the DesignExpert optimization output for producing a blend 

estimated to meet specifications for a PG64-22 binder. 

 

 

 

Figure 3.16. TcL Correlation (RR vs. CycL) 
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Figure 3.17. TcH – TcL Correlation (RR vs. CycL) 

 

 

 

Figure 3.18. Optimization Solutions to Meet PG64-22 TcH and TcL Specifications 
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 The optimization constraints (i.e. lower and upper limits) on the RAPs, RAS, and 

RR proportion limits shown in Figure 3.18 were selected to be the same as those used in 

the design proportion generation at the very beginning of the binder-blending mixture 

experiments. This selection utilizes the entire data space created during the testing of the 

various design blends. The “response” constraints shown in Figure 3.18 were chosen such 

that estimated TcH would be greater than or equal to 67.5°C and the TcL would be less 

than or equal to -20.2°C. The “weight” and “importance” of each constraint setting could 

also be adjusted, but were left at their default values for this project. 

 At this point, it is necessary to understand that there is a 10°C offset on the TcL 

value when actually identifying a PG binder. During development of the standard BBR 

test procedure [96], a time/temperature superposition phenomenon was observed that was 

adopted in the test procedure. Researchers noticed that if the test temperature was 

increased 10°C (thereby decreasing the stiffness) and the loading time was decreased 

from two hours to 60 seconds, they obtained similar deflection results [99]. Therefore, in 

order for a binder to meet the specification for, say, a PG64-22 binder, the TcH must be 

greater than or equal to 64°C (thus the estimated TcH response constraint of 67.5°C, 

which allows for a 3.5°C margin of estimation error), and the TcL must be less than or 

equal to -12°C. Remember that the TcL is, by specification, to be determined on PAV-

aged binder. Therefore, selection of -20.2°C as the upper threshold TcL temperature for 

optimization purposes was based on engineering judgment knowing that the TcL RSMs 

were based on RTFO-aged blends, which are not expected to be as stiff, generally 

speaking, as PAV-aged blends. 
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 Solution #1 in Figure 3.18 is only one of four solutions found in the optimization 

process that has the highest possible desirability rating of 1.000. Solution #1 is bolded 

and italicized because it was selected as the beginning blend for FPM design. Based on 

discussion in the previous paragraph, the estimated “true” grade of the Solution #1 blend 

is PG67.5-30.2, again remembering that none of the mixture experiment blends were 

PAV-aged. 

 The next step was to physically build the Solution #1 blend, to be referred to as 

the RR5 blend (a blend made using RR from the 5th batch of 8 extraction batches), and 

verify that it did, indeed, meet the specifications for a PG64-22 binder.  

Binder grade verification testing, as described in Table 3.12, was performed on 

the RR5 blend. Its true grade was determined to be PG65.5-24.3 even after appropriate 

PAV-aging of the blend per M 320 specifications.  

MSCR testing was performed per TP-70 [97] and the RR5 blend met the PG64-

22S (standard traffic) grade specifications set forth in MP-19 [98]. Rotational viscosity of 

the original (non-aged) RR5 blend at 135°C was 390 centipoise or 0.39 Pa∙sec, well 

below the maximum limit of 3 Pa∙sec.  

Flash point was not determined. It was assumed that the RR5 blend would easily 

meet the minimum of 230°C based on the high RAP/RAS content and the fact that the 

RR pure blend (not-blended with other materials) flash point was 213°C. 

The RR5 blend, however, did not meet the mass change specification. Mass 

change was -3.1% and the maximum allowable change is ±1.0%. The importance of 

meeting the mass change limits is debatable. The rationale behind its continued inclusion 
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as a material specification in light of all of the new bio-based binder modifiers is not clear 

at this time.  

FPM design was initiated knowing that the RR5 blend met nearly all of the 

specifications for a PG64-22 binder. 

3.1.6. Flexible Pavement Mixture Design, Production, and Testing: Task 3. It  

is important to point out that for all of the design, production, and testing of FPMs, CycL 

was used in lieu of the RR during the initial trial runs because of the limited amount of 

RR on hand. For example, it was not until CycL-based FPM volumetric properties were 

close to the targets that FPMs using RR were produced and tested. This use of CycL for 

the initial trials did not mean, however, that the subsequent RR-based FPM volumetric 

properties met the targets upon the first few trial runs. Remember that the RR and CycL 

had similar, but not identical, viscosity-temperature relationships which meant that 

performing several trial runs using the RR was not unexpected.  

3.1.6.1 FPM design and production. The goals of the FPM design process were 

to achieve a blend of reclaimed and virgin materials (aggregates and binder, and the RR) 

that would: 1) achieve the desired binder grade (e.g. PG64-22), 2) meet gradation 

specifications, and 3) meet state DOT FPM volumetric criteria (% air voids, % voids in 

the mineral aggregate or VMA, and % voids filled with asphalt or VFA). Using the 

verified RR5 blend discussed in Section 3.1.5, a spreadsheet was developed to control the 

blended-binder grade and the aggregate gradation of the FPM. The FPM design given in 

the spreadsheet was the first to be attempted in the laboratory and used no virgin 

petroleum-based binder. The FPM design spreadsheet and usage details are given in 

Appendix E.   
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 Following specification-verification of the RR5 blend, all effort had been focused 

on producing a FPM that met, preferably, MoDOT Superpave specifications (i.e. SP125), 

or alternatively, plant mix bituminous pavement/base specifications (i.e. BP-1). However, 

many attempts to use the RR5 blend in a SP125 mix failed to produce a FPM meeting the 

volumetric and dust-to-effective binder ratio (D/Pbe) specifications; there are just too 

many fines in the RAPs. It seemed that the only way to achieve a high-RAP/RAS FPM 

that meets Superpave specifications would be to fractionate the RAPs into two or more 

fractions thus allowing for much more gradation control. Of course, this would require 

much more characterization testing of the fractionated RAPs (FRAPs). Failure to produce 

a SP125 FPM using the RR5 blend and high percentages of RAP/RAS shifted the focus 

to producing a FPM using the RR5 blend that would meet BP-1 specifications. 

 MoDOT requires the use of a modified Marshall FPM design procedure for BP 

mixes but allows for the use of 150 mm diameter, gyratory-compacted specimens (GCSs) 

for volumetric determination, when applicable. Once a design gradation is determined, at 

least three total binder contents (at a maximum separation of 0.5%) are to be evaluated. 

 The original RR5 blend FPM design (given in Appendix E) was used as the 

starting point for subsequent FPM designs. The combined gradation met the BP-1 

specification, and there was no virgin, petroleum-based binder (i.e. PG64-22) added to 

the mixture, a feature that was highly relevant to the original NCHRP-IDEA project 

concept. However, after many trial batches (again, using CycL in lieu of the RR during 

some of the initial trials), it became apparent that the original RR5 blend FPM design was 

not conducive to producing a BP-1 mix with no added virgin petroleum-based binder, and 

satisfying volumetric specifications.  
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Three total binder contents were evaluated per the Marshall mix design method. 

The low-level binder content was satisfied by the basic RR5 blend FPM design, but the 

mid-level and high-level total binder content FPMs had some PG64-22 added to the basic 

RR5 blend FPM. For each FPM design, sufficient mix was produced for a theoretical 

maximum specific gravity (Gmm) specimen and two, 150 mm diameter GCSs. All 

specimens were treated the same during production and each GCS was compacted using 

the MoDOT-specified 35 gyrations. The results are shown in Table 3.13. 

 

 

Table 3.13. RR5 FPM Design Results 

Property Pb  
(%)** 

PG64-22 
(%)** 

Pbe  
(%)** 

D/Pbe GCS 
Height 
(mm)* 

Air 
Voids 
(%)* 

VMA 
(%) 

VFA 
(%) Binder 

Level 
Low 4.28 0.00 3.64 2.03 117.8 5.83 14.2 58.7 
Mid 4.58 0.31 3.94 1.87 116.2 4.60 13.7 66.4 
High 4.88 0.63 4.25 1.74 114.8 3.47 13.4 74.1 
BP-1 
Spec. 

   *** 110 – 120 3.5 ≥13.5 60 – 80 

* Based on the average of two specimens 
**Based on mix weight  
***No MoDOT specification (spec.); BP-1 mix designers strive for D/Pbe of 1.5 – 2.0 
 

 

 As can be seen in Table 3.13, a Pb of 4.88% should result in a FPM with the 

desired level of air voids and VFA. However, VMA would be borderline out-of-

specification, and VMA could be argued to be the most important volumetric property to 

use for prioritizing FPM design selection. Many designers purposely select designs with 

VMA levels 0.5% higher than the required minimum. This is especially true when there 

is RAP/RAS in the FPM because the use of the effective specific gravity (Gse) of the 
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RAP/RAS as a substitute for the RAP/RAS aggregate bulk specific gravity (Gsb) 

artificially inflates the calculated VMA of the FPM, and MoDOT requires the use of Gse 

in RAP/RAS FPM designs. Therefore, because the RAP/RAS content was so high for the 

RR5 FPM, 4.50% was chosen as the design Pb content as it should produce a VMA of 

about 13.8% and a VFA that is still within specification limits. However, it was expected 

that air void levels would be higher than desired but still within a generally acceptable 

level of 4 ± 1%. 

 Four batches of FPM were ultimately produced using the original no-virgin-

binder design but with 30 grams of PG64-22 added (i.e. Pb of 4.50%). Prior to batching 

the aggregates, the RAPs were split (fractionated) on the ¼ inch screen in an effort to 

better control the gradation during batching. The percentages of the -¼ inch (percent 

passing the ¼ inch sieve or P1/4ʺ) and +¼ inch (percent retained on the ¼ inch sieve or 

R1/4ʺ) for each RAP were determined and, during batching of the RAPs, the P1/4ʺ and 

R1/4ʺ fractions were recombined at the same percentages. This was done to assure that 

the RAP binder properties were not changed; i.e. without knowing the binder content and 

grade of each FRAP, recombining them in proportions other than the original percentages 

could have affected the total reclaimed binder content and/or blended binder grade. 

 To minimize variability in the FPM batching process, each of the six aggregates 

(the four FRAPS, the RAS, and the ⅜ inch clean) were reduced through splitting such 

that each half of the last split was used to build one FPM batch; one half for a RR-based 

FPM and the other half for a CycL-based FPM. This process was repeated twice resulting 

in two aggregate batches, or four FPM batches. The CycL for both CycL batches came 

from the same 5-gallon can while the RR for each RR batch came from two previously 
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extracted/recovered samples (i.e. batches RR-6 and RR-7; see Table 3.3). The design for 

this FPM with 30 grams of PG64-22 virgin binder is also included in Appendix E. 

 For each of the four FPM batches, sufficient mix was produced for a Gmm 

specimen and two, 150 mm diameter GCSs. All specimens were treated the same 

throughout the production process and all eight GCSs were compacted using 35 

gyrations. The results are shown in Table 3.14. 

 

 

Table 3.14. RR and CycL FPM Volumetric Comparison 

Property GCS Height 
(mm) 

Air Voids (%) VMA (%) VFA (%) 

Recycling 
Agent 

RR CycL RR CycL RR CycL RR CycL 

Batch1-GCS1 116.9 115.0 5.28 3.90     
Batch1-GCS2 116.4 115.2 4.99 4.08     
Batch1 Mean 116.7 115.1 5.13 3.99 14.2 13.4 63.9 70.1 
Batch2-GCS1 114.1 114.5 3.29 3.53     
Batch2-GCS2 114.2 114.6 3.38 3.67     
Batch2 Mean 114.2 114.6 3.33 3.60 12.6 13.0 73.5 72.3 
Overall Mean   4.24 3.80 13.4 13.2 68.7 71.2 
BP-1 
Specification 

110 – 120 3.5 ≥13.5 60 – 80 

 

 

 The batch-to-batch variability of the RR FPMs is high and is speculated to be a 

function of differences between the RR-6 and RR-7samples used for FPM batching. Over 

an extended period of time, solids resembling fat globules would form in the RR and 

settle on the bottom of the storage container. The formation of these solids was probably 

due to oxidation of unsaturated fatty acid triglycerides [47] in the RR. The separation of 

the more viscous compounds from the RR was not accounted for before obtaining the RR 
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from the container for mixing Batch2. The RR used for Batch2 was, apparently, the less 

viscous portion of the two separation phases in the storage container. It was placed into 

the mixing bucket and, not surprisingly, reduced the overall binder blend viscosity 

relative to Batch1. This reduced viscosity was reflected in reduced resistance to 

compaction and resulted in a relatively shorter specimen with a considerably lower VMA 

and % air voids. 

 Setting the variability issue aside, the basic FPM design resulted in a fair mix;  

• % air voids were slightly high of specification, but fell in the generally 

acceptable range of 4 ± 1%.  

• VMA was within 0.1% of meeting specification.  

• VFA met specification.  

• The FPM utilized 53% reclaimed aggregate (from the RAPs and RAS) which 

means major cost savings. 

• Only 0.23% of the total FPM mass (or 5.62% of total binder mass) was virgin 

PG64-22 binder, a result that relates favorably to the IDEA project concept.  

• The rest of the binding materials was reclaimed RAP/RAS binder (i.e. more 

cost savings) and RR as the RA. 

3.1.6.2 Hamburg wheel-track testing. Hamburg wheel-track testing of the FPM 

was performed using the same FPM design reflected in Table 3.14 results except 

specimen mass and thickness was controlled to produce 150 mm diameter specimens 

with a % air voids of 7±1% as recommended in the T 324 procedure [100]. The batching 

procedure was the same as described in the previous section, and four GCSs were 

produced per RA. A Hamburg specimen was produced by cutting two, 62 mm thick 
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GCSs in such a manner that when butted against one another resulted in a continuous 

wheel path approximately 10 inches long. Two Hamburg specimens were submerged in 

50°C water and subjected to 20,000 wheel passes, or however many passes that produced 

a pre-determined, maximum impression depth based on the applicable specification (the 

software default of 14 mm was used for this study). A full 20,000 wheel passes takes 

about 7 hours to complete. Figure 3.19 shows the Hamburg test results. Figure 3.20 

shows the Hamburg wheel-track device.  

 

 

 

Figure 3.19. RR vs. CycL FPM-Hamburg Wheel-Track Testing Comparison 
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Hamburg wheel-track testing is a good indicator of rutting and stripping (moisture 

damage) potential of a FPM. There are four basic parameters identified in Figure 3.19: 

post-compaction consolidation, creep slope, strip slope, and stripping inflection point. 

Post-compaction consolidation is usually taken at 1000 wheel passes and is considered to 

be the result of the wheel load densifying the mixture. Creep slope is a measure of the 

rutting susceptibility due to gradation, binder stiffness, particle shape, etc., but not 

moisture damage. The stripping inflection point and strip slope are measures of moisture 

damage. Where the strip slope is a measure of accumulated deformation due to moisture 

damage, the stripping inflection point is a way to identify when the mixture performance 

becomes mostly a function of moisture damage. The Colorado Department of 

Transportation reports that a stripping inflection point occurring before 10,000 wheel 

passes indicates a stripping susceptible FPM [101]. 

 

 

 

Figure 3.20. Hamburg Wheel-Track Test 
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The test data from two Hamburg specimens was averaged to produce the curves 

shown in Figure 3.19. The test method recommends a void content of 7 ± 1% for the test 

specimens. The average voids content (based on four GCSs) for each mix is indicated on 

Figure 3.19 and shows that the voids in the CycL specimens compare very closely with 

the RR specimens having slightly higher voids. Variability among the GCSs voids 

content is essentially the same for each mix. 

 In making conclusions about the results shown in Figure 3.19, one must consider 

that the short-term aged viscosity of the RR is slightly higher than the short-term aged 

viscosity of the CycL. The increased post-compaction consolidation of the CycL FPM 

relative to the RR FPM could be due to this viscosity differential. All other major 

properties of the two FPMs (aggregate gradation, particle shape and geology, binder 

content, and volumetrics) are, however, essentially the same. The creep and strip slopes 

of both FPMs are parallel indicating that the rates of deformation due to non-moisture 

and moisture-induced damage are identical. However, the locations of the stripping 

inflection points indicate that the RR FPM performed better than the CycL FPM insofar 

as the onset of moisture damage is concerned. Because of the slight short-term aged 

viscosity differential between the RR and the CycL, one can conservatively conclude that 

the RR FPM performed as well as the CycL FPM in the Hamburg tests. Work is 

underway on precision statements for this test method. 

3.1.6.3 Tensile strength ratio (TSR) testing. The Tensile Strength Ratio (TSR) 

test, arguably the most widely used standard test for evaluating the stripping potential of 

FPMs, was performed on RR and CycL FPMs, again, for comparative purposes [102]. 

The same process and FPM design used to produce the Hamburg GCSs was used for 
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producing the TSR specimens. Six, 95 mm thick, 150 mm diameter GCSs per RA were 

produced with a specified % air voids of 7 ± 0.5% as the target.  

After determining the actual % air voids for each GCS, the six were grouped into 

two groups of three specimens each such that the average % air voids of each group was 

approximately equal. One group of three specimens was designated as the unconditioned 

(dry) set and the other group of three specimens was designated as the conditioned (wet). 

Conditioning of the wet set and handling of the dry set of specimens were performed per 

standard procedure. TSR is calculated as the ratio of the average wet indirect tensile 

strength (ITS) to the average dry ITS. TSR is usually expressed as a percentage, but not 

always, and is sometimes referred to as “retained strength.” Table 3.15 shows the TSR 

test results. Figure 3.21 shows the TSR test device.  

 

 

Table 3.15. TSR Test Results 

GCS 
Condition 
& Number 

RR-based FPM CycL-based FPM 
Voids 
(%) 

Avg. 
Voids 
(%) 

ITS 
(psi) 

Avg. 
ITS 
(psi) 

Voids 
(%) 

Avg. 
Voids 
(%) 

ITS 
(psi) 

Avg. 
ITS 
(psi) 

Wet-1 7.34  79  7.28  91  
Wet-2 8.04  77  7.41  90  
Wet-3 7.57 7.65 80 79 7.14 7.28 93 91 
Dry-1 7.57  124  7.22  122  
Dry-2 7.81  123  7.29  122  
Dry-3 7.52 7.63 123 123 7.28 7.27 124 123 
   TSR (%) 63.9   TSR (%) 74.3 

 

 

The test results shown in Table 3.15 indicate that the RR FPM is more prone to 

stripping than the CycL FPM; a difference in the TSRs of 10% seems pretty conclusive in 
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this regard. However, the TSR test is highly variable. The most recent study on 

developing precision statements for the TSR test report a single-operator standard 

deviation (i.e. 1s) of 3.3%, and the single-operator acceptable range of two results (i.e. 

d2s) as 9.3% [103]. Although the precision limits have not yet been adopted by 

AASHTO, the report verifies what has been widely recognized for some time now; the 

TSR test variability is problematic and a better method of evaluating the moisture-

susceptibility of a FPM is needed. The Hamburg wheel-track test is increasingly the 

preferred alternative to the TSR in assessing stripping potential [104] [105] even though 

there are no precision statements for the Hamburg test at this time [100]. 

 

 

 

Figure 3.21. Tensile Strength Ratio Test Device 
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Table 3.15 also shows that the RR GCS average % air voids for both the wet and 

dry sets were slightly out of specification on the high side, and were about 0.35% higher 

than the average % air voids of the CycL GCSs. One could argue that this higher void 

content allowed for greater penetration of the water into the RR wet GCSs and resulted in 

greater moisture damage. However, an observation made during the hot water bath 

conditioning procedure may also explain the lower TSR for the RR FPM. When the hot 

water bath lid was raised just prior to transferring the specimens to the room temperature 

bath, the odor of the RR was unmistakable. It is speculated that there was some 

dissolution of the RR by the 60°C water during the 24 hour submergence period. This 

observation was not totally unexpected. One must remember that the RR was extracted 

from the bulk rubber using acetone, but the rubber was extracted from the guayule shrub 

using a water-based process. The issue of potential water solubility of the RR under 

certain conditions was always a concern. It may be instructive that the 50°C water 

temperature during the 7 hour long Hamburg test did not seem to negatively impact the 

results whereas the 60°C water temperature during the 24 hour TSR conditioning 

procedure may have had the opposite effect. 

3.1.6.4 Low-temperature flexural creep stiffness testing. A relatively new 

test was used to determine low-temperature flexural creep stiffness of the RR and CycL 

FPMs. Two documents were used as guidance in this exercise: a Utah DOT research 

report [106] and a NCHRP-IDEA report [107]. The test is essentially the same used to 

determine the low critical temperature of binders with two basic exceptions: the test 

specimens are FPM beams instead of binder beams, and the creep load is larger. The 

FPM beams are of the same dimensions as the binder beams (6.35 mm thick, 12.70 mm 
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wide, and 127 m long) and, for this study, were cut from the center of the gyratory-

compacted volumetric specimens. 

 Eight FPM beams were cut from each of the eight volumetric specimens resulting 

in 32 RR FPM beams and 32 CycL FPM beams. A masonry saw was used to cut a 20 mm 

thick disk from the center of each of the volumetric specimens, and then a wet tile saw 

was used to reduce each 20 mm thick, 105 mm diameter disk to eight FPM beams of the 

proper dimensions. The cutting and subsequent determination of the actual dimensions of 

the FPM beams were done at Missouri S&T while the BBR testing was performed at the 

MoDOT Central Laboratory. Figure 3.22 shows the 64 FPM beams. 

Regarding test temperatures, the Utah report draft protocol states, “For quality 

control purposes the single test temperature shall be 10 ºC above the specified binder 

grade used in the mixture. For performance prediction at least 3 temperatures shall be 

used at 6 ºC intervals. The test temperatures of 4 ºC, 10 ºC, and 16 ºC above the specified 

binder grade used in the mixtures have been successfully used. Other temperatures can 

also be used depending on the project requirements.” For this investigation, testing was 

performed at -12°C to meet the quality control criteria discussed above, and -18°C to be 

able to do a temperature-dependency analysis. Because the beam specimens can only be 

tested once, four of the beams cut from each of the eight volumetric specimens were 

tested at -12°C and the other four were tested at -18°C. Test results of interest for this 

comparative analysis were the stiffness and the m-value at 60 seconds of creep load 

which were obtained from the BBR software output. The results are shown graphically in 

Figures 3.23 and 3.24. It should be noted that “R” identifies the RR FPM and “C” 
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identifies the CycL FPM. The numbers “1&2” mean that all valid data from the testing of 

both batches of each FPM are included in the trendline determination.  

 

 

 

Figure 3.22. Cut FPM BBR Beams 
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Figure 3.23. RR vs. CycL Low-Temperature Flexural Creep Tests: Stiffness 

 

 

 There are only 63 data points reflected in Figures 3.23 and 3.24. One beam test 

was discarded due to testing irregularities. The Utah DOT report recommends testing five 

beams per treatment combination and if the coefficient of variation (CV) for those five 

repeated measurements is greater than 15%, one should check for an outlier, remove it if 

it exists, then recalculate CV for the four remaining beams. If CV is still greater than 

15%, the entire test is invalid. If this precision recommendation had been applied to the 

data in this investigation, a majority portion would have been invalid. Personnel at the 

MoDOT Central Lab indicated that test data they have been collecting for their purposes 

also sometimes violates this 15% CV level. Therefore, this recommended precision 
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statement was disregarded in this investigation. It is also important to note that the 

referenced NCHRP-IDEA report concluded that differences in % air voids have no 

significant effect on creep stiffness of FPMs at low temperatures. No attempt was made 

during this exercise to verify this conclusion. 

 Figure 3.23 shows trends of increasing stiffness variability (at 60 seconds of creep 

load) as the temperature decreases, higher variability in the RR stiffness data relative to 

the CycL data as measured by R2, and interestingly, a flatter stiffness – temperature 

trendline slope for the RR FPM. A check on the flatter RR FPM stiffness – temperature 

slope was performed by fitting trendlines individually to each set of FPM batch data. The 

result corroborated the trend shown in Figure 3.23.  

The increasing variability at decreasing temperature is reasonable. Greater beam 

stiffness at lower temperatures exacerbates the effect of flaws within the aggregate/binder 

structure. It is not as clear as to why the RR data is more variable relative to the CycL 

data. Since the beams were cut from the volumetric GCSs, the variability issue might 

derive from the condition of the GCSs. The flatter stiffness – temperature slope for the 

RR FPM trendline is curious. As an outlier analysis was not performed on the data, as 

discussed in the previous paragraph, it could be that some of the stiffness data points in 

the RR dataset at both temperatures were actually outliers with high leverage that skewed 

the mean stiffness per temperature in the direction that would result in the flatter 

trendline.     

 The Utah report also has recommended maximum stiffness and minimum m-value 

limits. The report states, “The average stiffness of the mixture at 60-seconds and at a 

temperature of 10 ºC above the performance grade of the binder shall not exceed 15,000 
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MPa; the average m-value at the same loading time and temperature shall not exceed 

0.12.” Note that the last part of this statement could be worded more specifically to 

indicate that 0.12 is a recommended “minimum” value. As indicated in Figure 3.23, both 

the RR and CycL FPMs meet the maximum stiffness recommendation. Additionally, 

even though the RR trendline is slightly higher than the CycL trendline at -12°C, a two-

sided t-test (blocked across the different FPM batches) showed that the 60 second creep 

stiffness of the RR and CycL FPMs are not significantly different, based on a 

significance level of 5% (i.e. alpha=0.05). 

 

 

 

Figure 3.24. RR vs. CycL Low-Temperature Flexural Creep Tests: m-value 
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 Although stiffness is an important and specified parameter to consider when 

evaluating the low temperature cracking potential of a FPM, the m-value is usually the 

parameter that controls when checking both parameters against the specifications, for 

example, in binder testing. Remember that the stiffness (or modulus) is a measure of a 

beam’s resistance to deflection (strain), whereas the m-value is a measure of the rate-of-

change of stiffness with time; i.e. as the temperature decreases, the thermal shrinkage 

stresses are dissipated quicker as the m-value increases [99]. 

 Figure 3.24 shows trends of increasing m-value variability (at 60 seconds of creep 

load) as the temperature decreases (the same trend as stiffness), and higher variability in 

the CycL m-value data relative to the RR data as measured by R2 (opposite of the 

stiffness trend). The trendline slopes are approximately the same, but the relative position 

of the CycL trendline to the RR trendline indicates that the CycL FPM has superior stress 

relaxation properties than the RR FPM.  

Again, as with all of the other comparative analyses presented in this report, an 

analytical result such as this does not necessarily mean that the RR cannot be used as a 

RA. For example, as shown in Figure 3.24, even though the RR FPM m-value trendline 

at -12°C is slightly below (i.e. “exceeded”) the recommended minimum, adjustment of 

the blended binder proportions of the mix design could increase the m-value.  

3.1.6.5 Summary of FPM design, production, and testing. A summary of the 

results for this section is given in the following bullet-point list: 

• The final FPM % air voids were slightly high of specification, but fell in the 

generally acceptable range of 4 ± 1%. VMA was within 0.1% of meeting 

specification. VFA met specification.  
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• The FPM utilized 53% reclaimed aggregate (from the RAPs and RAS) which 

means major cost savings. 

• Only 0.23% of the total FPM mass (or 5.62% of total binder mass) was virgin 

PG64-22 binder, a result that relates favorably to the IDEA project concept 

which was to produce a successful FPM with little-to-no virgin petroleum-

based binder.  

• The rest of the binding materials was reclaimed RAP/RAS binder (i.e. more 

cost savings) and RR as the RA. 

• The results of the Hamburg wheel-track testing showed that the RR-based 

FPM performed as well as the CycL-based FPM, conservatively speaking. 

• The Tensile Strength Ratio (TSR) testing indicated that the CycL-based FPM 

performed somewhat better than the RR-based FPM. Speculation was that 

some dissolution of the RR may have occurred during the hot water bath 

conditioning which may have affected the indirect tensile strength of the RR-

based FPM TSR specimens. Also, % air voids of the RR-based FPM TSR 

specimens were slightly out of specification on the high side, and they were 

about 0.4% higher than the CycL-based FPM TSR specimens. 

• The non-standard test, Low-Temperature Flexural Creep Stiffness of the FPM 

beams, indicated a fair comparison between the RR-based, and CycL-based 

FPMs at -12°C.  

3.1.7. Yulex and USDA-ARS Era Summary. After viewing a 2004 

documentary on rubber that included a short piece on the guayule plant, contact was 

made with Dr. Francis Nakayama of the USDA in 2006 and the first samples of guayule 
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rubber and resin were obtained. The resin was of particular interest and became the focus 

of further investigation. A NCHRP-IDEA  research contract was awarded in 2009 to 

evaluate the USDA-supplied guayule resin as a RA in FPMs with high contents of RAP 

and/or RAS.  

Short supplies of the USDA-supplied resin and insufficient information and time 

needed to replicate the resin, however, forced a change in the scope of the IDEA project. 

The decision was made to extract resins directly from guayule plant feedstocks. Those 

feedstocks included chipped whole-shrub and post-latex-extraction bagasse, and were 

supplied by the USDA and the Yulex Corporation. Ultimately, eleven different 

combinations of guayule-based feedstock, solvent(s), and extraction procedures were 

investigated.  

Of the eleven extracts evaluated, two were selected for further investigation: the 

RR and the LF. These were compared to two commercially-available, petroleum-based 

RAs, CycL and a PG52-28 binder, respectively. Test results showed that the LF was not 

well suited as a RA, but could prove to be useful as a polymer-modifier to improve high-

temperature performance of FPMs. Therefore, the focus of the study turned solely onto 

the RR.  

The RR performed as a RA in every respect except that it suffered some 

moderate, out-of-specification mass loss when blended with petroleum-based reclaimed 

and virgin binders at the proportions selected for the binder grade verification and FPM 

testing. Though the RR did not always compare identically with the CycL in a binder 

blend or in a FPM, this does not mean that the RR could not be used as a RA.  
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Despite the fact that the Yulex Corporation is not pursuing commercialization of 

guayule plant products at this time, the test results obtained during the NCHRP-IDEA 

project were encouraging and showed that compounds from the guayule plant could be 

used as binder modifiers in FPMs. Dissemination of these results has led to the interest by 

companies such as Bridgestone Americas and PanAridus to pursue the use of guayule 

resins as binder modifiers in FPMs. 

 

3.2. BRIDGESTONE AMERICAS AND PANARIDUS ERA 

The guayule resins discussed in this section were extracted through simultaneous 

extraction processes using a proprietary mixture of acetone and hexane as the solvents. 

Nevertheless, the Bridgestone Americas (BSA) and PanAridus crude, process run resins 

are considerably different. Limited testing was performed on both process run resins and 

a few other guayule rubber (GR) extraction by-products supplied by the two companies. 

The results are presented in the following sections. 

3.2.1. PanAridus. The first solvent-extracted resin sample was delivered by 

PanAridus to Missouri S&T on May 29, 2015. This first sample, designated as PA1, had 

similar viscosity, color, and odor as the original USDA-ARS de-rubberized resin sent by 

Dr. Nakayama in 2006. However, PA1 contained a considerable amount of low 

molecular weight (LMW) GR that would float to the top of the sample if left undisturbed 

for a sufficient length of time. The second PanAridus resin sample, designated as PA2, 

arrived on February 16, 2016. PA2 was a laboratory improved version of PA1 in that it 

had less LMW GR and residual solvents (hexane and acetone). The third sample, 
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designated as PA3, was delivered on July 12, 2016. PA3 was a newer process run resin 

based on the improvements in PA2. 

Because the testing of the PanAridus resins was pro bono, test methods were not 

always performed strictly by the specifications. This work was a real-time collaboration 

in which a basic, cursory evaluation of the different resins was performed and the results 

were reported back to PanAridus. Testing included gas chromatography – mass 

spectrometry (GC-MS), Brookfield rotational viscosity [87], a modified-version of the 

standard test method ASTM D 7173, Separation Tendency of Polymer from Polymer 

Modified Asphalt [108], and two non-standard examinations: RAP dispersal in the resin 

over time (i.e. resin-as-solvent), and dissolution of the resin in 60°C water for an 

extended period of time.  

The only investigation on the PA1 resin involved observing any dispersal or 

dissolution of RAP in a container of the resin. This exercise was called the resin-as-

solvent test. Figure 3.25 shows the steps in starting the exercise. 

As shown in Figure 3.25, a backlit Petri dish was used as the container for 

viewing purposes. The four numbered steps took a very short amount of time to 

complete, and as one can see in Step 4, unidentified compounds in the RAP had already 

started to disperse throughout the resin. Figure 3.26 shows the same setup but a 7 month 

time period had elapsed between the two pictures. 

As can be seen in Figure 3.26, long-term continual dispersion of RAP compounds 

(admittedly, unidentified at this point) occurred. Speculation is that the monoterpenes in 

the resin act as a solvent. As discussed earlier, Pinenes are major constituents in 

turpentine and Limonene is the basis of “citrus” cleaners. This result was encouraging, 
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most notably in regard to the potential prolonged durability of in-service FPM 

binders/modifiers. The hope is that the resin can help alleviate premature age-hardening 

(oxidation) of the FPM binder through its apparent capability to dissolve and disperse, 

perhaps, aggregations of asphaltenes and/or petroleum resins over time. Also, and more 

likely, high monoterpene content resin may be useful as a pre-treatment to RAP and 

RAS. The application of the resin to RAP/RAS prior to final mixing with heated virgin 

binder and aggregates may promote a more thorough blending of the reclaimed 

RAP/RAS binders with the virgin binder, which is of concern to asphalt technologists and 

producers. 

 

 

 

Figure 3.25. PA1 Resin-as-Solvent Test 
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Figure 3.26. PA1 Resin-as-Solvent Test, Extended Time Lapse 

 

  

 The first test results to be presented on PA2 are the GC-MS results. PanAridus 

indicated that their crude, process run resin usually had about 10% LMW GR in it. 

However, significant effort had gone into removing as much LMW GR from the PA2 

sample as possible. PanAridus also indicated that the PA2 sample had 5 to 10% more of 

the volatile terpenes like α- and β-Pinene in it relative to their crude, process run resin. 

Figure 3.27 shows the GC-MS chromatograph for PA2. 

Figure 3.27 shows GC-MS results for PA2 that were expected based on the initial 

observations of the resin and its similarity to the original de-rubberized resin supplied by 

Dr. Nakayama: a high concentration of monoterpenes (C10H16) α- and β-Pinenes, 

Limonene, and Camphene. Also, there is a significant presence of sesquiterpenes 

(C15H24) Caryophyllene and Elemene, although these compounds are not annotated. The 

presence of acetone and hexane was also expected. 
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Figure 3.27. PA2 GC-MS Results 

 

 

It was known before receiving confirmation from PanAridus that there was a 

significant amount of LMW GR in the PA1 resin simply by observing the sample over 

time; the GR would float (separate) to the surface of the sample. When the PA2 resin was 

delivered, and even though PanAridus stated it removed the LMW GR from that sample, 

it seemed worthwhile to evaluate the compatibility of any trace or residual LMW GR in 

the PA2 resin with petroleum-based binders. Therefore, a blend of PG64-22 (50%), 

RAP2 (46%), and PA2 (4%) was generated using only heat and stirring utensils; i.e. the 

Brookfield mixer setup was not used in any of the Bridgestone Americas/PanAridus Era 

testing. Discussion of how the blend percentages were determined will follow 

presentation of the results. 
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Using this blend, a modified-version of the ASTM D 7173 separation tendency 

test was performed. Specimen preparation followed the standard test procedure. The 

blend was put in a sealed aluminum tube and conditioned in a vertical position for 48 

hours at 163 ± 5°C. After conditioning, the tube was put in a freezer for the specified 

period of time, the top and bottom thirds were cut from the tube and those thirds were 

evaluated for differences. 

 Regarding the standard test method, MoDOT still specifies performing the 

separation test on original PG binder [109]. However, MoDOT specifies an older version 

of the test, ASTM D 5976 (discontinued). The MoDOT specification requires 

determining G* (complex shear modulus) using a DSR on the top and bottom thirds of 

the specimen, computing the percent difference in the G*s, and comparing that percent 

difference to specification criteria. For example, MoDOT requires that the percent 

difference in G* values does not exceed 10% on original binders that have absolute 

temperature spreads of 92, 98, or 104°C; i.e. usually polymer-modified binders. 

However, for this cursory examination of the PA2 resin, the viscosity of the top and 

bottom thirds was determined using the Brookfield viscometer and a percent difference 

evaluation was performed. Table 3.16 shows the test parameters and results. 

Referring to Table 3.16, the percentage of the virgin petroleum-based binder, 

PG64-22, was set at a minimum of 50% to stay within real-world expectations during any 

future field work in Missouri, and its viscosity at 135°C was chosen as the target 

viscosity of the blend. Viscosities of the PG64-22, RAP2, and PA2 at 135°C were 410, 

2770, and 36 centipoise, respectively. It should be noted that the PA2 viscosity was 
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estimated through extrapolation as the Brookfield viscometer did not have the capacity to 

measure viscosities that low. 

 

 

Table 3.16. PA2 Blend Separation Test Parameters and Results 

Blend Components and 
Proportions (mass %) 

Blend 
Viscosity 

(centipoise) 
at 135°C 

Separation Testing  
(Viscosity: centipoise) 

Top 1/3 
at 

135°C 

Bottom 
1/3 at 
135°C 

Top 1/3 
at 

165°C 

Bottom 
1/3 at 
165°C 

PG64-22 
(orig) RAP2 PA2 

50.0 46.0 4.0 663 741 742 180 180 
 

   

The same weighted-average calculation method used for determining Gsb of a 

blend of aggregates for FPM mix design purposes was used to estimate viscosity of a 

blend of binder materials. Substituting viscosities of each blend component for the Gsb of 

the individual aggregate fractions, the percentages of the RAP2 and PA2 were toggled 

until the calculated weighted-average was close to 410 centipoise, the target blend 

viscosity. Several trial runs were performed using this method and slightly different 

RAP2 and PA2 percentages to attempt to home in on the target viscosity. As one can see 

in Table 3.16, the viscosity of the actual blend determined at 135°C was 663 centipoise, 

which, after a few attempts, was surprisingly close to the target. This method of utilizing 

a weighted-average of viscosities to determine blend percentages is a topic for future 

research. 

 Regarding the separation testing results shown in Table 3.16, there was no 

apparent difference in the top and bottom thirds of the blend, implying that there was no 
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separation of the GR in the PA2, provided there was actually any present. Also, it should 

be reiterated that standard protocol calls for determination of G*, a more sensitive test 

than viscosity, to evaluate potential separation. G* would be a more sensitive test and 

may have detected any separation had it occurred. Nevertheless, there were things learned 

during this exercise that would prove to be useful later during the evaluation of the 

Bridgestone Americas guayule-based materials. 

 The next set of results to present corresponds to an issue experienced during the 

TSR testing of the RR-based FPMs in Section 3.1.6.3. To review, the conditioning of the 

RR TSR specimens in the 60°C water bath for 24 hours caused concern because when the 

water bath lid was raised after the 24 hour period, one could distinctly smell the RR. The 

assumption was that the prolonged exposure to the high temperature water caused some 

dissolution of the RR in the blended FPM binder. That assumption was strengthened 

when the RR TSR results turned out to be considerably poorer than the CycL-based FPM 

TSR test results. Therefore, to determine the possibility of this issue occurring with the 

solvent-extracted resins, a simple test was performed in which a small sample of each of 

the two process run resins were put in 500 ml Erlenmeyer flasks, covered with water, and 

put in a 60°C oven for 24 hours. Figure 3.28 shows the results of this exercise on the PA2 

resin. 

There is some dissolution/separation of unidentified compounds shown in Figure 

3.28, but this was not unexpected. It is possible that these are lighter compounds, such as 

the monoterpenes, that would be driven off anyway as a result of heating during FPM 

production. Although not pursued at the time, a follow-up exercise might be to create a 

blend similar to that discussed above during the separation testing and perform the 60°C 
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dissolution test. Heating the blend to mix it would drive off some of the lighter 

compounds in the resin, and if after the dissolution test there was no material floating on 

the water in the flask, one could surmise that the floating material was likely 

monoterpenes. 

 

 

 

Figure 3.28. PA2 60°C Dissolution Test: 6 hours (top), 24 hours (bottom) 
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 Figure 3.29 shows the viscosity testing results on the PA2 and PA3 resins. The 

viscosity-temperature curves of the RR and CycL are included for comparison purposes. 

It should be noted that the PA3 resin was the latest PanAridus’ process run resin supplied 

to Missouri S&T during this period of collaboration. PanAridus reported that the PA3 

sample had about 5% LMW GR whereas the PA2 sample had, reportedly, 0%.  
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Figure 3.29. PA2 and PA3 Viscosity Results 

 

 The CycL and PA2 viscosity-temperature curves line up almost on top of one 

another, a result that would make them the next two candidates for comparisons in a more 
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in-depth investigation. The PA3 resin is slightly more viscous than the PA2 resin which 

is logical due to the elevated LMW GR levels in PA3, according to PanAridus.  

3.2.2. Bridgestone Americas. Bridgestone Americas (BSA) supplied several 

different guayule-based materials during the course of the collaboration. The first 

shipment contained several quart cans of the crude resin by-product of the rubber 

extraction at the BSA Biorubber Process Research Center, and a multi-pound block of the 

crude resin that had been processed (e.g. heated) to remove most of the lighter, more 

volatile fractions. For identification purposes in this section, these two items are 

designated as BV (Bridgestone with volatiles) and BNV (Bridgestone no volatiles), 

respectively. The second shipment contained a small sample of the BNV resin with a 

moderate amount of residual rubber (BMR), and another similarly-sized sample of BNV 

resin with a larger amount of residual rubber (BHR). Laboratory evaluations were 

performed on the BV, BNV, and BMR materials. The same five ad hoc examinations 

performed on PanAridus materials were performed on some, but not all, of the BSA 

materials. 

 It is important to point out that the BSA process run or crude resin has much more 

LMW GR in it than the PanAridus crude resin. This fact was abundantly clear when the 

lid was removed from the first BV quart container inspected after delivery. The resin will 

string out substantially, at room temperature, indicating a significant presence of 

elastomeric materials. 

 Figure 3.30 shows the results of the dissolution testing on the BV and BNV 

resins. The effect pre-heating the BV and driving off the volatiles will have before 

dissolution testing is shown in Figure 3.30. There are some floating compounds in the BV 
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flask while the BNV flask water is still clear after 24 hours at 60°C. This phenomenon 

helps corroborate the assumption made about the PanAridus dissolution test results, that 

lighter, more volatile compounds can be extracted at elevated temperatures in the 

presence of water. Suggested follow-up work would be to collect samples of the floating 

materials in both the PanAridus and BSA dissolution testing and perform GC-MS and/or 

other compound-characterization testing to identify them. 

 

 

 

Figure 3.30. BV and BNV Dissolution Test at 60°C for 24 Hours 
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GC-MS testing was performed on the BV and BNV resins. The BV was tested 

after pre-heating the GC-MS specimens to two different temperatures: 25 and 60°C. 

Figure 3.31 shows the BV GC-MS results after pre-heating to 25°C. 

 

 

 

Figure 3.31. BV Resin GC-MS Results (Pre-heated to 25°C) 

 

 

 The three common monoterpenes (C10), the Pinenes and the Limonene, are 

present but in reduced abundance relative to the PanAridus resin Pinenes and Limonene, 

and relative to the five other identified compounds in Figure 3.31, all sesquiterpenes (C15) 

or terpenoids (e.g. A-Eudesmol is an oxygenated sesquiterpene). Figure 3.32 shows the 

BV resin GC-MS results but after the specimen was pre-heated to 60°C. Figure 3.33 

shows the GC-MS results for the BNV resin pre-heated to 25°C. 
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Figure 3.32. BV Resin GC-MS Results (Pre-heated to 60°C) 

 

 

 

Figure 3.33. BNV Resin GC-MS Results (Pre-heated to 25°C) 
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As one can see in Figure 3.32, the monoterpenes were driven off by preheating 

the BV resin. Only the heavier sesquiterpenes were detected. The results in Figure 3.33 

simply reiterate the effect of heating the resins, at any time: the lighter compounds are 

reduced in abundance. 

 The resin-as-solvent exercise was carried out on the BV and BNV resins, as well. 

Figure 3.34 shows those results. 

 

 

 

Figure 3.34. BV and BNV Resin-as-Solvent Test 

 

 

The two pictures per specimen in Figure 3.34 are simply to give one a better view 

of the surface and as backlit. Neither the BV nor the BNV specimens showed any 
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dispersal over an extended period of time. This was not unexpected as the monoterpene 

(i.e. the solvent) content was significantly reduced relative to the PanAridus resin. It is a 

little hard to distinguish, but the BNV specimen actually cracked after cooling to room 

temperature. To review, the specimens were slightly heated so that when the RAP 

particle was placed in the resin, the RAP particle would melt slightly and level out in the 

resin.   

 Separation (compatibility) testing was performed on three different blends using 

the BSA materials: The BV, BNV, and the BMR. Table 3.17 shows the results of the BV 

and BNV separation testing. 

 

 

Table 3.17. BV and BNV Blend Separation Test Parameters and Results 

Blend Components and 
Proportions (mass %) 

Blend 
Viscosity 

(cp)  
at 135°C  

Separation Testing  
(Viscosity: centipoise) 

Top 1/3 
at 

135°C 

Bottom 
1/3 at 
135°C 

Top 1/3 
at 

165°C 

Bottom 
1/3 at 
165°C 

PG64-22 
(orig) RAP2 BV BNV 

50.0 37.0 13.0 0.0 512 559 553 151 150 
50.0 12.0 0.0 38.0 376 396 397 122 122 

 

 

Referring to the separation test results given in Table 3.17, all of the procedural 

particulars that were followed for the PA2 analysis (Table 3.16) were followed for the 

BV and BNV analysis. As in the PA2 analysis, the target blend viscosity was 410 

centipoise. The results shown in Table 3.17 show no indication of separation in the 

blends, as proportioned.  
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However, separation testing was also performed on a blend of the BMR (BNV 

with moderate amount of GR) and PG64-22 binder. The blend consisted of 10% BMR 

and 90% PG64-22, by mass. The results are given in the form of a viscosity plot, shown 

in Figure 3.35. 

 

 

 

Figure 3.35. BV, BNV, and BMR Blend Viscosity and Separation Testing 

 

  

There are viscosity-temperature curves for several materials shown in Figure 3.35 

for comparison purposes. It is interesting to note the position of the BV and BNV curves 

relative to the softer PG binders PG46-28 and PG52-28. The BNV is considerably more 
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viscous than the BV, which is logical considering the lighter compounds in the BV were 

driven off through heating to create the BNV resin. 

The results from the separation testing on the BMR/PG64-22 blend are shown in 

the form of three curves identified in the plot legend. It is not unexpected that the blends 

are more viscous than the neat PG64-22 binder because the blends were subjected to high 

temperature as part of the separation test specimen preparation procedure. However, the 

viscosity between the upper third (BMR Blend (upper)) and the lower third (BMR Blend 

(lower)) of the separation specimen, at both temperatures, is considerably different. 

Percent difference was calculated as the difference between the measured values per 

temperature, expressed as a percentage of the average of those values. There are no 

known (at least at this time) percent difference criteria for viscosity testing in a separation 

test, but 9.4% and 13.8% seem significant. This indicates that, like other polymer-

modifiers for asphalt binder, separation can occur during high temperature storage and, 

therefore, continual agitation is required. The BMR blend not only had a higher viscosity 

than the neat PG64-22 binder (which was, again, not unexpected), but it also changed the 

performance by flattening out the viscosity-temperature curve, somewhat, relative to the 

neat PG64-22, which is a good thing. A flatter curve means the blend is less temperature 

susceptible; i.e. there is less change in viscosity for a given change in temperature. 

3.2.3. Bridgestone Americas and PanAridus Era Summary. Although the  

testing was limited during this relatively short examination of the Bridgestone Americas 

(BSA) and PanAridus crude resins and other resinous materials, the results were very 

encouraging.  
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The high monoterpene content of the PanAridus crude resin indicates possibilities 

for use as a RA. The binder dispersal capacity seen during the limited testing suggests the 

monoterpenes could help the resin act as a pre-treatment to RAP/RAS to soften the age-

hardened binder before addition to the mixing drum. This may allow for lower mixing 

temperatures, similar to a warm-mix technology. 

The BSA crude resin is interesting in that, like the LF material, the low molecular 

weight rubber content could cause it to perform as a polymer-modifier, improving the 

high-temperature performance of a FPM while holding the low-temperature performance 

constant. 

Although not related to test results, the fact that huge quantities of these resins are 

projected to be produced in the near future helps answer one of the most common 

questions asked by proposal reviewers and potential investors/stakeholders; “Will there 

be enough of this material available?” Hopes are high. 
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4. CONCLUSIONS 

4.1. YULEX AND USDA-ARS ERA 

Eleven different combinations of guayule feedstock material, solvent, and 

extraction/recovery process were investigated to determine the viability of the extract as a 

binder modifier. Out of the eleven resultant extracts, two were selected for further 

investigation: the acetone-extracted rubber resin (RR), and the hexane-extract (LF) from 

the waste-stream guayule leaves and attached stems. These were compared to two 

commercially-available, petroleum-based recycling agents (RAs), Cyclogen L and a PG 

binder PG52-28, respectively. 

Results of binder-blending mixture experiments were useful for comparative 

analyses and necessary for FPM design. The experiments required creating, in total, 

almost 60 different blends of the RAP/RAS binders with the RR and LF, recreating those 

same blends but substituting the RR and LF with the appropriate petroleum-based RA or 

PG binder, testing each blend, and then generating response surface models (RSMs) 

using those test results. Conclusions from material characterization and the binder-

blending experiments are as follows: 

• Clay-gel chromatography testing verified that the pentane-soluble portion of 

the RR and LF pure blends (not blended with petroleum-based binder; i.e. 

100% guayule-based material) met recycling agent specifications. Both 

contain polar and aromatic compounds, but less than 25% saturates by mass. 

• The RR and LF pure blends are less temperature susceptible than the 

petroleum-based RAs and binders. 
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• The RR and LF pure blends suffer significant mass loss upon short-term aging 

at 163°C. Additionally, the RR can oxidize at room temperature if exposed to 

the air for prolonged periods of time, and may dissolve if exposed to hot water 

for prolonged periods of time. 

• The absolute temperature spreads (TcH – TcL) for the LF-RAP/RAS blends 

were, to a large degree, significantly different than the proportionally-identical 

PG52-28-RAP/RAS blends. Eight of the nine LF-RAP/RAS blends in the 

analysis had, on average, a 12.3°C smaller temperature spread than the 

proportionally-identical PG52-28-RAP/RAS blends. This finding turned the 

remaining investigative effort solely onto the RR. 

• Statistical analyses showed that the RR-RAP/RAS blends did perform the 

same as proportionally-identical CycL-RAP/RAS blends in terms of high-

temperature stiffness (TcH), but did not perform exactly the same in terms of 

cold-temperature cracking resistance (TcL). The difference between the 

absolute temperature spread (TcH – TcL) for the RR-RAP/RAS blends relative 

to proportionally-identical CycL-RAP/RAS blends was small, but statistically 

different. Of the ten blends in the analyses, seven of the CycL-RAP/RAS 

blends had the larger absolute temperature spread (an average of 1.1°C) while 

three of the RR-RAP/RAS blends had a slightly larger temperature spread (an 

average of 0.3°C). So, although the RR-RAP/RAS blends did not perform 

exactly as the CycL-RAP/RAS blends in terms of TcH and TcL, this does not 

mean the RR cannot be used as a RA. 
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• A RR-RAP/RAS blend estimated by the RSM to meet PG64-22 binder 

specifications was produced and verification testing was performed. The RR-

RAP/RAS blend met all PG64-22 specifications except mass change. 

Using the verified binder blend, a RR-based FPM was designed, produced, and 

tested that met the gradation specification for a MoDOT BP-1 FPM, but did not quite 

meet all of the volumetric requirements. This FPM utilized 53% reclaimed aggregate 

(from the RAPs and RAS) and 47% virgin aggregate. More importantly, and in relation to 

the NCHRP-IDEA project concept, only 0.23% of the total FPM mass (or 5.62% of total 

binder mass) was virgin PG64-22 binder. The rest of the binder was RAP/RAS binder 

and RR. A CycL-based FPM using the same design process and proportions was also 

produced and tested for comparative analyses. Conclusions from the FPM performance 

testing are as follows: 

• Standard Hamburg Wheel-Track testing, which specifies full submersion of 

the specimens in 50°C water during the approximately 7 hours of rut testing, 

was performed. The results indicated that the RR-based FPM performed as 

well as or better than the CycL-based FPM in regard to rutting and stripping 

(moisture damage) resistance. 

• Standard Tensile Strength Ratio (TSR) testing, which specifies a 24 hour full 

submersion of the specimens in 60°C water, was performed. The results of 

this moisture-susceptibility test, however, indicated that the RR-based FPM 

may be more prone to stripping than the CycL-based FPM. 

• A non-standard, but promising test protocol for determining low-temperature, 

FPM flexural creep stiffness was performed on the RR- and CycL-based 
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FPMs. At -12°C, statistical analyses showed that the creep stiffness of the RR-

based FPM was not significantly different than the CycL-based FPM. 

However, the m-value of the RR-based FPM was statistically different (lower) 

than the CycL-based FPM m-value which indicates a somewhat higher cold-

temperature cracking potential for the RR-based FPM relative to the CycL-

based FPM. 

 

4.2. BRIDGESTONE AMERICAS AND PANARIDUS ERA 

The testing of the Bridgestone Americas (BSA) and PanAridus crude, process 

run resins and some additional BSA experimental resinous materials proved to be very 

encouraging in relation to planned future research. Although the investigation was ad 

hoc, and some of the test methods were non-standard, implications are good that the 

solvent-extracted guayule resins can be used as FPM binder modifiers. The conclusions 

are as follows: 

• The PanAridus crude resin was higher in monoterpene content, but lower in 

low molecular weight (LMW) guayule rubber (GR) content than the BSA 

crude resin. 

• Although the PanAridus resin’s more volatile fractions (i.e. the monoterpenes) 

would likely be driven off during production of a warm or hot mix FPM, the 

concept of using the resin as a pre-treatment to RAP/RAS to soften the age-

hardened binder prior to elevated-temperature mixing with virgin binder could 

be extremely beneficial to the industry. 
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• The solvent-extracted resins seem less likely to suffer moisture-related issues 

than the RR, a water-based extraction product. 

• The significant quantities of LMW GR in the BSA crude resin, at least relative 

to the PanAridus resin, could be beneficial to the performance of FPMs in 

regard to high-temperature performance and elastic properties. 

• Both crude resins would satisfy the basic purpose of a RA by reducing the 

viscosity of FPM with high RAP and/or RAS content. 

 

4.3. ECONOMIC CONSIDERATIONS 

This project verified that the guayule plant holds potential as a renewable, 

domestic source of bio-based binder modifiers such as resins, oils, and polymers. 

The major advantage of the successful use of guayule resin as a RA is to reduce 

the costs of constructing flexible pavements by increasing the amount of RAP/RAS in 

FPMs. As discussed in the Introduction, a 2016 survey performed by the National 

Asphalt Pavement Association concluded, “... The use of recycled materials, primarily 

reclaimed asphalt pavement (RAP) and reclaimed asphalt shingles (RAS, either 

processed tear-off roofing shingles or roofing shingle manufacture waste), in asphalt 

pavements conserves raw materials and reduces overall asphalt mixture costs, as well as 

reduces the stream of material going into landfills. The combined savings of asphalt 

binder and aggregate from using RAP and RAS in asphalt mixtures is estimated at more 

than $2.1 billion” [1]. 

Adoption of the use of guayule resins in FPM will also increase the competition 

within the bio-based FPM binder modifier market, further reducing costs. Based on a 
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recent phone survey of Missouri paving contractors conducted by the author, the price of 

the two most commonly used bio-based RAs, Hydrogreen and Evoflex, ranges from 

$0.60 to $1.00 per pound, depending on the volume purchased and distance shipped. 

BSA and PanAridus have claimed that once they are up and running on a commercial 

scale, they can compete in the bio-based RA market based on this price range. 

 It is important to point out the projected quantities of resin production that the 

industry partners foresee in the near future. Projections are as follows: 

• Bridgestone Americas: “Commercial scale output of resin is envisioned in the 

range of 28,000 MT/year per factory…in the early to mid-2020s” [110]. 

• PanAridus: “On a commercial scale, PanAridus envisions ~80,000 tons of 

resin to be produced annually. The projected annual production could be 

500,000 tons should the United States meet domestic natural rubber needs” 

[111]. 

Connecting the potential production of resin to the potential usage of resin can be 

done through an example calculation. Over the last few years, MoDOT has placed 

between three and four million tons of asphalt mixtures on its roadways each year. 

However, a product like guayule resin would not be required or would not be allowed in 

certain mixture types. For example, let’s say only 25% of total asphalt tonnage is 

appropriate for resin addition, and the average resin addition rate is 0.5% by weight of 

mix. Based on three million tons of asphalt mixture placed in Missouri per year, 3750 

tons of resin would be needed per year. Also consider that these numbers are based on 

looking only at state highway projects. County, city, and private asphalt projects have 
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recently been a large portion of overall asphalt usage due to federal/state infrastructure 

funding issues.  

The same 2016 NAPA survey cited above also concluded, “The estimated total 

production of WMA [warm mix asphalt] for the 2016 construction season was 116.8 

million tons. This was a decline of 2.5 percent from the estimated 119.8 million tons of 

WMA in 2015, due largely to a 10.2 million ton decrease in DOT tonnage for the year, 

but is still a greater than 595 percent increase from the estimated 16.8 million tons in the 

2009 construction season. WMA made up 31.2 percent of the total estimated asphalt 

mixture market in 2016. Production Plant foaming, representing nearly 77 percent of the 

market, is the most commonly used warm-mix technology; chemical additive 

technologies accounted for a little more than 21 percent of the market.” 

Therefore, based on the above NAPA statement, that total WMA production was 

116.8 million tons and that it represented 31.2 percent of the total estimated asphalt 

mixture market in 2016, one can estimate that ~375 million tons of asphalt mixture was 

produced in the U.S. in 2016. So, application of the same assumptions from the Missouri 

example (above) to 375 million tons of asphalt mixture produced nationwide would result 

in ~470,000 tons of resin required to meet the need nationwide. 

Strictly for discussion purposes, let us assume BSA envisions 10 factories once 

production is at full-scale. That would be ~280,000 tons of resin produced annually by 

one company. Taking into account the PanAridus projection of 500,000 tons of resin 

produced annually (by all producers) if the U.S. natural rubber needs are met, it seems 

resin supplies would be more than adequate to meet demand from the paving industry, 

based on the example scenario. 
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As with many ideas and existing technologies, commercialization did not, 

necessarily, follow a straight line. Such is the case with the guayule plant. Serious efforts 

in commercialization over the last 100+ years have usually come as the result of a 

military, economic, or health crisis and once the crisis was over, interest declined [33]. 

Currently, interest is high because of concerns over the status and long-term stability of 

the natural rubber market [112]. Thus, guayule may finally be on the cusp of becoming 

an established source of high-quality natural rubber. If so, process by-products like the 

resins and bagasse will require further investigation to determine their potential as 

marketable co-products, i.e. by-products with value. 

 

4.4. FUTURE RESEARCH 

Follow-up research to this study is focused on an experimental paving project 

using the BSA and PanAridus crude resins. Approximately 11 tons of the BSA resin and 

5 tons of the PanAridus resin are currently stored at Missouri S&T. Research proposals 

have been, or are in the process of being submitted for further laboratory verification of 

the use of the BSA and PanAridus resins as binder modifiers and a field demonstration 

using these resins in a paving project somewhere in Missouri. 
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The following discussion gives descriptions of the major collaborators and 

associated events that helped shape the journey over the last 12 years. The information is 

given in a manner that is as chronologically correct as possible to establish the general 

timeline but also retain brevity of presentation. 

USDA-ARS and Yulex Corporation Era (2006-2014)     

The initial contact with a “guayulero” (i.e. a guayule enthusiast [113]) was with 

Dr. Francis Nakayama in late-summer, 2006. In mid-2007, correspondence began with 

Dr. Colleen McMahan, a research chemist with the USDA Agricultural Research Service 

(USDA-ARS). Through Dr. McMahan, contact was established with Dr. Katrina Cornish 

in the summer of 2008.  

Dr. Cornish was the Senior Vice President, Research and Development, of the 

Yulex Corporation. Dr. Cornish was considered the leading U.S. scientific expert on 

guayule cultivation and domestic production of hypoallergenic guayule latex for safe 

medical devices and specialty consumer products. She had previously worked at the 

USDA-ARS but joined Yulex in 2004. The list of her guayule-focused patents and 

publications is extensive. In May, 2009, she agreed to become a member of the NCHRP-

IDEA expert panel for the project and was an invaluable source of knowledge and 

support. In 2010, Dr. Cornish became a professor and Ohio Research Scholar, 

Bioemergent Materials, at Ohio State University in Wooster, Ohio, but continued in her 

role as a member of the NCHRP-IDEA project expert panel.  

Approximately a year after the NCHRP-IDEA project had started, contact was 

established with Dr. William W. Schloman, Jr., another guayulero with extensive 

experience working on guayule rubber and resin processing, and product development. 
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At the time of contact, he was retired from the University of Akron, Ohio. He had 

previously been a senior research chemist with Goodyear Tire and Rubber (1977-1983) 

and then a senior research scientist with Bridgestone/Firestone (1983-1990). His 

expertise in the chemistry of guayule rubber and resin was extremely helpful during the 

NCHRP-IDEA project. Additionally, his keen knowledge of the history behind the efforts 

to cultivate guayule in the U.S. was a highly-valued resource. His explanations of the 

various reasons why commercialization of the guayule plant has never quite materialized 

were informative and forthright [33].  

Yulex supplied the majority of the guayule-based feedstock used during the 

NCHRP-IDEA project. Dr. Cornish, Jim Mitchell (Yulex VP of technology 

development), and Ray McCoy (Yulex pilot plant manager) delivered several different 

guayule-based materials over the course of the project:  

• Approximately 1 ton of pelletized whole-shrub. 

• Several hundred pounds of dried, post-latex-extraction (PLE) bagasse. 

• Pelletized PLE bagasse. 

• Whole and pelletized waste-stream leaves/stems. 

• 10 gallons of latex (via Centrotrade Minerals and Metals). 

• Dried latex. 

• A sample of waxy, resinous material produced during an experimental 

supercritical fluid extraction run.  

Dr. McMahan, David Nicholson (technology transfer coordinator, USDA-ARS), 

and Dr. Terry Coffelt (research geneticist, USDA-ARS-USALARC) delivered additional 

guayule-based materials, over time, from USDA-ARS research facilities:  
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• Three more gallons of the de-rubberized resin first submitted by Dr. 

Nakayama. 

• Hundreds of pounds of chipped whole-shrub. 

• Approximately 30 gallons of a rubbery, resinous precursor to the de-

rubberized resin (in a 55 gallon drum labeled, “Resin, 8-24-90, #380”). 

Bridgestone Americas and PanAridus Era (2013-Present)  

Bridgestone Americas (BSA) is the U.S. subsidiary of Bridgestone Corporation, 

which has a long history in the rubber and tire industry [114]. The first contact with BSA 

was also made possible through Dr. Colleen McMahan. In May, 2013, Dr. McMahan 

indicated that the original sample of guayule rubber submitted by Dr. Nakayama in 2006, 

and the drum of rubbery, resinous precursor material had become “hot commodities.” She 

requested that the block of bulk rubber be sent to her at the USDA-ARS, and the drum of 

precursor material be sent to Dr. Yingyi Huang, a senior research engineer with BSA at 

their Akron, Ohio, research facility. Correspondence with Dr. Huang was necessary to 

accommodate the shipment of the precursor material to Akron, thus making her the first 

BSA contact. 

An important and relevant event occurred on September 22, 2014: a ribbon 

cutting ceremony took place at the new BSA Biorubber Process Research Center in 

Mesa, Arizona [115]. This event is important because it denotes a major commitment by 

private industry to commercialize guayule rubber. It is relevant because, as will be 

discussed later, some of the personnel at the facility have become instrumental in the 

author’s endeavor.  
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In January, 2015, Mike Fraley, founder and CEO of PanAridus, LLC, contacted 

the author after reading the ASCE paper based on the NCHRP-IDEA project final report. 

PanAridus, founded in 2009, is an Arizona-based biotechnology company specializing in 

genetics, yield optimization, agronomics, and rubber extraction processes required to 

commercialize guayule. PanAridus was involved in the Biomass Research and 

Development Initiative (BRDI) grant, “Securing the Future of Natural Rubber—an 

American Tire and Bioenergy Platform from Guayule.” The grant was a 5-year, $6.9 

million research project that began in 2012 and was funded by the Department of Energy 

and the USDA. PanAridus was part of a research consortium during that project that 

included Cooper Tire and Rubber Company (the lead entity), Clemson University, 

Cornell University, and the USDA-ARS [116]. 

Through Dr. Yingyi Huang of BSA, contact was established in March, 2015, with 

Dr. Michael Beaulieu, senior materials scientist, also at the BSA research facility in 

Akron, Ohio. Extensive interaction with Dr. Beaulieu resulted in the receipt of four 

different guayule-based materials in two different shipments. The first shipment arrived 

March 9, 2016 and contained several quart cans of the raw resin by-product of rubber 

extraction at the BSA Biorubber Process Research Center in Mesa, Arizona, and a multi-

pound block of the raw resin that had been processed to remove most of the lighter, more 

volatile fractions. The second shipment arrived on June 14, 2016, and contained a small 

sample (200 grams) of the devolatilized resin with a moderate amount of residual rubber, 

and another similarly-sized sample of devolatilized resin with a larger amount of residual 

rubber. Laboratory evaluations were performed on the raw resin (still containing 
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volatiles), the devolatilized raw resin, and the devolatilized resin with a moderate rubber 

content. The results were sent to Dr. Beaulieu as they became available. 

In May of 2015, just a few months after the initial contact with Mike Fraley, Dr. 

Bruce King, senior polymer researcher for PanAridus, contacted the author. Discussions 

focused on the resin PanAridus was generating at the time, and future plans to work 

together to promote its use in FPMs. Within three weeks of the initial contact with Dr. 

King, the first delivery of PanAridus resin occurred. The first sample was about two 

gallons of their latest process run or crude resin. Upon initial inspection, the PanAridus 

resin had similar viscosity, color, and odor as the original USDA-ARS de-rubberized 

resin sent by Dr. Nakayama in 2006. This was very encouraging. However, this first 

batch of resin was different from the USDA-ARS resin in that it contained a considerable 

amount of low molecular weight rubber that would float to the top of the sample if left 

undisturbed for a sufficient amount of time. Laboratory evaluations of the more resinous 

portion of this sample were performed and the results were reported to Dr. King and 

Mike Fraley.  

Since the beginning of the relationship with PanAridus, four separate deliveries of 

their resin to the Missouri S&T asphalt laboratory have occurred: the first arrived May 

29, 2015 (described above), the second on February 16, 2016, and the third on July 12, 

2016. The second sample had been some of the process run resin improved (refined) in 

the laboratory by removing more of the low molecular weight rubber and solvents 

(hexane and acetone), and the third sample was a newer process run resin based on those 

improvements. The last delivery, March, 2017, was approximately 5 tons (20, 55-gallon 

drums) of resin that the company had collected and stored since startup of their 
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processing facility. The intent is to use this resin in an experimental paving project, to be 

discussed later in this document.  

At the invitation of Dr. Cornish, the author gave a presentation at the October, 

2015, 27th annual meeting of the Association for the Advancement of Industrial Crops 

(AAIC) on the work accomplished during the NCHRP-IDEA project, and the preliminary 

testing of the original sample of PanAridus resin. At that meeting, Dr. Colleen McMahan 

and Dr. William Schloman were in attendance and the first face-to-face discussions with 

them took place with much pleasure and gratitude. Also in attendance were Dr. David 

Dierig, section manager of agricultural operations at BSA, and Dr. Lauren Johnson, 

agricultural research director with PanAridus. On a side note, it was during this same 

month that Bridgestone announced it had successfully built tires in which 100% of the 

natural rubber components were derived from the guayule plant. 

Through Dr. Dierig, contact was established with William Niaura, director of new 

business development, and Bob White, section manager of research at the BSA Biorubber 

Process Research Center. Through William Niaura and Bob White, approximately 11 

tons (60, 55-gallon drums) of the BSA resin were delivered to Missouri S&T on 

September 21, 2016. This resin and the 5 tons of PanAridus resin are intended to be used 

on an experimental paving project. 

Continuing Contact and Recent Activities  

Correspondence has continued with many of the major players described above: 

Dr. Inam Jawed, Dr. Colleen McMahan, Dr. Katrina Cornish (whom the author finally 

met in person in 2017 at the 29th Annual AAIC meeting in Ames, Iowa), Jim Mitchell, 

Dr. William Schloman, Mike Fraley, Dr. David Dierig, William Niaura, and Bob White. 
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A few new contacts have been made very recently: Dr. Howard Colvin, a senior scientist 

at Cooper Tire and Rubber Company, and Dr. Everett Crews, technology development 

director for Ingevity (a specialty chemical company that develops and markets binder 

modifiers).  

One of the most informative and enjoyable recent activities was a tour of the BSA 

Biorubber Process Center in Mesa, Arizona, on February 6, 2018 [117]. Bob White 

arranged for the author to tour the center and discuss the potential of any follow-up 

research. It was during this same week that the author attended the Association for 

Modified Asphalt Producers (AMAP) conference in Phoenix, Arizona, and established 

contact with Dr. Everett Crews, the president of AMAP. 

Because the fondness for the inconspicuous guayule plant continues to grow, it 

should be noted that several research proposals have recently been submitted.  

An equipment grant proposal submitted in August of 2016 was awarded in June 

of 2017. The funding agency was the USDA, National Institute of Food and Agriculture, 

Agriculture and Food Research Initiative (USDA-NIFA-AFRI), Sustainable Bioenergy 

and Bioproducts Challenge Area program. The grant was for a $63,000 asphalt testing 

system that affords several methods of evaluating the fatigue and thermal cracking 

potential of FPMs. This may strike one as confusing or unusual. However, the proposal 

was written in a way that 1) stressed the necessity of obtaining the system to continue 

pursuing the use of guayule resin in FPMs, and 2) made the case the system would add to 

the educational opportunities at Missouri S&T. The device is capable of performing the 

Disk-shaped Compact Tension (DCT) test (a cold-temperature or thermal cracking test), 
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and the Semi-Circular Bend (SCB) test (a room-temperature fatigue cracking test). Figure 

A1 shows the DCT/SCB device and specimen preparation equipment. 

 

 

 

Figure A1. DCT/SCB Device and Specimen Preparation Equipment 
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The USDA funding agency covered 50% of the total cost and the remaining 50% 

was picked up by several entities on the Missouri S&T campus: the Office of Sponsored 

Programs (OSP), the Department of Civil, Architectural, and Environmental Engineering 

(CArEE), and the Center for Infrastructure Engineering Studies (CIES). Noteworthy is 

the fact that through the proposal/award process, contact was established with Dr. 

William Goldner (National Program Leader, Biomass Feedstock Development and 

Production Systems, Division of Sustainable Bioenergy, Institute of Bioenergy, Climate, 

and Environment), and Dr. Toby Ahrens (National Program Leader, Agricultural 

Bioproducts), both with the USDA-NIFA program. Additionally, these two officials were 

very familiar with the BSA Biorubber Process Center. 

A NCHRP-IDEA Type 2 (transfer to practice) proposal was submitted in March, 

2017. The focus of the proposed research was to validate the BSA and PanAridus resins 

for use as binder modifiers, and to perform an experimental paving project in Missouri. 

That submittal and a subsequent re-submittal in August of 2017 were declined funding. 

However, Dr. Inam Jawed indicated that another re-submittal would not be discouraged. 

With input, again, from Dr. Toby Ahrens at the USDA-NIFA offices, a Letter of Intent 

(LOI) to submit an Exploratory Research proposal was sent on February 3, 2018 to the 

USDA-NIFA-AFRI, Foundational Program. The proposed work was along the very same 

lines as the NCHRP-IDEA Type 2 proposal. On February 13, 2018, a response from the 

LOI reviewers indicated that they would not discourage submission of a full proposal, but 

they thought the proposed work did not meet the Exploratory Research program criteria 

and there were other, more appropriate programs within the Foundational Program 

catalog. 
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On February 11, 2018, a research idea (i.e. a brief summary of the NCHRP-IDEA 

Type 2 proposal) was submitted to the Transportation and Environmental Research Ideas 

(TERI) database, maintained by The Center for Environmental Excellence within the 

American Association of Highway and Transportation Officials (AASHTO) organization. 

AASHTO's Committee on the Environment and Sustainability regularly reviews the ideas 

for merit and then makes them available to policy makers and researchers that have 

access to the database. 

It is the intent of the author to submit another proposal, based on the NCHRP-

IDEA Type 2 proposal, through the USDA-NIFA-AFRI Foundational Program. The 

applicable research area within the Foundational Program to which the proposal will be 

submitted is called Bioprocessing and Bioengineering. The description of this area of 

research does seem much more appropriate for the author’s intended research than the 

Exploratory Research area, to which a LOI was earlier submitted, and softly discouraged. 
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ACETONE-EXTRACTION AND RECOVERY OF GUAYULE RESINS 
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 As described in the Laboratory Investigation section, 11 different combinations of 

guayule feedstock, solvent(s), and extraction/recovery procedures were ultimately 

performed and the resultant extracts evaluated for use as a recycling agent. A few of the 

simpler and more complex procedures were described in the Laboratory Investigation 

section: visual observations of some of the acetone-extracted materials, pentane-aqueous 

methanol liquid-liquid extraction, and cold-filtered ethanol-partitioning. However, the 

majority of the extractions and recovery procedures involved one feedstock and one 

solvent; e.g. pulverized whole-shrub and acetone.  

There are two sections in this Appendix: a section describing a basic procedure 

for acetone-extraction and recovery of the whole-shrub resin, and a section describing a 

procedure for the acetone-extraction and recovery of the RR from the dried latex. 

 

Acetone-extraction and Recovery of Pulverized Whole-shrub Guayule Resin 

 The chipped guayule shrub (particles pass a 3/8 inch opening; i.e. -3/8 inch) was 

further reduced in size (-1/16 inch) by pulverizing using a horizontal shaft impactor. Five 

kilograms of the pulverized shrub was dried in a 60°C, forced-air oven for 24 hours (see 

Figure B1). The drying step was not performed to determine moisture content but to 

remove most of the moisture so it did not show up in the resin (if possible) or in the 

recovered acetone.  

The dried, pulverized shrub was soaked in 11 liters of ACS certified acetone for 

24 hours, at room temperature, with occasional stirring. The resin-acetone solution 

(miscella) was drained and filtered (~75 micron mesh filter), and stored in glass 

containers. A second 24 hour soaking of the shrub in 7 liters of fresh ACS certified 
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acetone was performed. The miscella from the second soaking was also drained and 

filtered, and stored in glass containers.  

 

 

Figure B1. Horizontal Shaft Impactor and Drying Ovens 

 

The majority of the adsorbed/absorbed miscella remaining in the bagasse was 

then removed using a bowl-type batch centrifuge as described in the binder extraction 

procedure, AASHTO T 164 Method A [75]. All collected miscella was further clarified 

(i.e. fines removal) using a large centrifuge described in the binder recovery procedure, 

AASHTO T 170 [70]. Figure B2 shows the various steps just described. 
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A solvent-resistant plastic bag, supplied with the 20-liter solvent recovery device 

(SRD), was placed in the SRD to facilitate easy removal of the SRD residue. The 

clarified miscella was placed in the SRD bag, the SRD lid was secured, and the program 

was initiated to begin primary distillation. Figure B3 shows the loaded SRD. 

 

 

Figure B2. Extraction of Whole-shrub Resin 

 

The SRD is programmable with the capability to run two different cycles of 

heating time and temperature, which allows for a double boiling point distillation (i.e. a 

two solvent mixture), if necessary. For primary distillation of the miscella, the first cycle 

was set to run for 8 hours with the oil-bath heating temperature set at 88°C. The second 

cycle began immediately following the end of the first cycle and ran for one hour at 
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78°C. The lower temperature setting during the second cycle is an attempt to maximize 

the acetone removal yet minimize thermal damage to the resin. Although the SRD 

manual specifically states that the second cycle heating temperature must be greater than 

the first cycle temperature, the manufacturer was contacted and, after some testing, 

indicated that the second cycle temperature could be up to 15° lower than the first cycle 

temperature without a programming error. 

 

 

Figure B3. Guayule Resin-Acetone Miscella in the SRD 

 

Once the primary distillation program ended, the SRD was allowed to cool for 

several hours. Once cool, the SRD bag containing the resin (and a small amount of 

acetone) was removed and drained into a glass container. Figure B4 shows the primary 

distillation product in a quart (~1 liter) jar.  

It is notable that approximately 17 liters of miscella were introduced into the SRD 

for primary distillation. About one liter of acetone was lost in the process, left in the 
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bagasse and lost to evaporation. The use of the SRD, which ran unattended for about 11 

hours (overnight), made the primary distillation procedure extremely simple and efficient, 

reducing the miscella from 17 liters to about one-half liter. 

 

 

Figure B4. Primary Distillation Product 

 

Final distillation of the miscella during the trial batches was performed using the 

rotary evaporator device. The initial specimen mass was approximately one hundred and 

fifty (150) grams, about one-third (1/3) of the SRD product shown in Figure B4. Test 

methods referenced for performing final distillation were AASHTO T 319 [76] and 

ASTM D 5404 [77]. Because these methods are applicable to asphalt binder, several 

deviations from the standard procedures were imposed because of the natures of the 
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solvent and the extractive, i.e. acetone and guayule resin, respectively. For example, the 

hot oil bath temperature for resin recovery was set at 70°C (acetone’s boiling point is 

56°C at atmospheric pressure) whereas specified oil bath temperatures for binder 

recovery are higher: 100°C and 174°C for AASHTO T 319, and 140°C for ASTM D 

5404. The level and sequencing of the applied vacuum, the flask rotation rate, and the 

nitrogen gas purge rate during resin recovery also deviated from the AASHTO and 

ASTM specifications. 

For batches #11 and #12 (the two acetone-extracted whole-shrub resin batches 

used for the binder blending mixture experiment), final distillation proceeded as follows: 

1. The SRD (primary distillation) product was divided into thirds with each third placed 

in a 2000 ml boiling flask. 

2. The hot oil bath set point temperature was increased to 110°C  in an attempt to 

remove any residual water and to decrease resin viscosity thereby increasing the 

potential for maximum acetone removal. However, the temperature was not set so 

high as to drive off potentially beneficial compounds. 

3. The condenser chiller set point temperature was 20°C. It has been observed that the 

rotary evaporator condenser temperature needs to correlate to the boiling point 

temperature of the solvent in order to optimize solvent removal; i.e. if the condenser 

is too cold, the solvent vapor condenses before reaching the condenser coil and 

returns to the boiling flask, while if the condenser is too hot, the solvent vapor 

bypasses the condenser coil and can accumulate in the vacuum pump oil. 
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4. The flask was rotated at 50 rpm while being lowered into the hot oil bath to its 

maximum possible depth; i.e. the flask was submerged in the oil to a depth of 1 – 2 

inches. 

5. Ten inches Hg gauge vacuum was applied, the nitrogen gas purge rate was set at ~200 

ml/min, and flask rotation rate continued at 50 rpm for 5 minutes. Most of the acetone 

had been removed by the end of this time period. 

6. Flask rotation was stopped for a few seconds to allow the extractive to flow to the 

lowest point in the boiling flask and remix. 

7. Flask rotation was resumed at varying lower rpm rates (e.g. 30 or 20 rpm) for varying 

amounts of time per rpm rate (e.g. 3 minutes @ 30 rpm and 2 minutes @ 20 rpm) for 

a total of 5 minutes. Rotation rate is based on the behavior of the extractive inside the 

boiling flask; it is desired that the extractive flow down the upwardly moving side of 

the boiling flask thus shearing the extractive and exposing the trapped acetone. 

Experience plays a big part in determining rotation rate. 

8. Rotation rate was increased (e.g. 40 rpm) then the vacuum level was increased to 15 

inches Hg gauge vacuum. The nitrogen purge was allowed to increase on its own as a 

result of the increased vacuum. Flask rotation was again varied and intermittently 

stopped. This step continued for ~5 minutes. 

9. The vacuum was incrementally increased over a period of another ~5 minutes to a 

maximum of 20 inches Hg gauge vacuum where the nitrogen purge rate was held at 

~1000 ml/min. The vacuum and nitrogen purge rate were held at these levels for 30 

minutes while the flask rotation was varied and intermittently stopped to maximize 

acetone removal. 
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10. After a total of ~50 minutes of final distillation, the vacuum was released, the 

nitrogen purge and flask rotation were stopped, and the flask was raised from the hot 

oil bath to allow the excess oil to drip back into the bath. The remaining oil was 

wiped from the flask with clean rags, and the flask was weighed to determine the 

amount of binder recovered. 

11. The flask was put into a 145°C oven and allowed to sit with the neck oriented 

horizontally for 10 minutes to allow the majority of the extractive to flow to one side 

of the flask. After 10 minutes, the flask was inverted and allowed to flow into a 

storage container (a one quart, unlined paint can) for an additional 15 minutes. The 

emptied flask was then weighed to determine the binder content remaining in the 

flask. 

Steps 2 through 11 were repeated for the remaining 2 boiling flasks with all of the 

recovered resin accumulated in the same one quart paint can. Figure B5 shows the rotary 

evaporator station, a sample being desolventized, and drainage of the boiling flask. 

The same basic, scaled-up procedure outlined above was used for the hexane 

extraction and recovery of the LF material, as well. Details such as SRD temperature 

settings, rotary evaporator operations, etc. were different due to the nature of the solvent 

and the resultant extract. 

 

Acetone-extraction of the Dried Latex RR 

 Yulex supplied about 50 pounds of the dried latex rubber over the course of 

several months during 2011-2012. As with many of the procedures developed during this 

study, extraction of the RR from the dried latex evolved over time. The major difference 
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between extraction/recovery of the RR from the dried latex and the extraction/recovery of 

the resin from the whole-shrub (described in the previous section) was in how the dried 

latex rubber was handled prior to introducing the resin-acetone miscella into the SRD. 

Details are given below. 

 

 

Figure B5. Final Distillation - Resin Recovery Procedure 

 



 

 

151 

The first major hurdle to overcome was how to reduce the dried latex rubber 

samples supplied by Yulex to a size that would maximize RR yield; i.e. the surface area 

of the rubber to be exposed to acetone needed to be maximized. Figure B6 shows what 

the rubber samples looked like upon arrival. 

 

 

Figure B6. Dried Latex Rubber Sample as Delivered 

 

 The rubber sample was a long tube of dried latex that had been wrapped into a 

round shape or plug. Processing of the plugs to prepare for the acetone-soak changed 

over time. When the first sample arrived, the initial step in sample preparation was to 

“uncoil” the tube by starting at the exposed end of the tube and cutting it away from the 

main body of the plug with a box cutter, as best as possible. The rubber “rope” was then 

cut into smaller pieces using scissors. Figure B7 shows the end result of this early method 

of size reduction. 
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Figure B7. Earliest Method of Rubber Plug Size Reduction 

 

 It became apparent, pretty quickly, that the size reduction method needed some 

modifications. It was well known that the scrap tire industry used two methods for 

production of ground tire rubber: 1) shearing the scrap rubber at ambient temperature 

(basically the method shown in Figure B7), and 2) freezing/hardening the scrap rubber 

with liquid nitrogen and fracturing through impact. Freezing and fracturing of the dried 

latex rubber was adopted for this study and became instrumental in speeding up the 

process of RR extraction and recovery. 

 An additional method of speeding up the process was to use a band saw to reduce 

the plugs to a size that could be frozen with liquid nitrogen and then dropped into the 
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pulverizer for flaking. Figure B8 shows the process that was used for the majority of the 

RR extraction and recovery activities. Explanations of the numbered steps are given 

below Figure B8. 

 

 

Figure B8. Basic Procedure for RR Extraction and Recovery 

 

1. The dried latex rubber plug, as delivered. 

2. The rubber plug was cut into ~2 inch cubes using a band saw. 

3. Immersion of several cubes of rubber into liquid nitrogen for several minutes to allow 

for thorough freezing/hardening of the rubber. 

4. The frozen cubes were immediately dropped into the pulverizer. 

5. The rubber was flaked and captured in a receptacle underneath the pulverizer. 
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6. The flaked rubber was immediately submerged in acetone, covered, and allowed to 

soak at room temperature for a certain amount of time (usually 24 hours). 

7. Primary distillation of the resin-acetone miscella proceeded in the SRD as was 

described in the previous section. 

8. Final distillation of the SRD residue proceeded in the rotary evaporator as was 

described in the previous section. 

 

Beginning with the fifth batch of RR extracted and recovered, the flaked rubber 

was submerged in acetone on a double-stack of screens, inside a home-made pressure 

vessel; a 30-gallon drum outfitted with compressed air connectors, regulator, and 

pressure gauge. Pressure during soaking was kept low, approximately 5 psi.  

The purpose of the pressurized acetone-soak was to increase the yield of the RR 

in hopes to not only increase the amount of RR on hand for laboratory testing but to 

demonstrate to Yulex that the rubber could be made whiter (one of Yulex’s initial goals 

when the acetone-extraction of the RR was first suggested). Figure B9 shows the pressure 

vessel setup. Explanations of the numbered steps are given below. 

 

1. View of the home-made pressure vessel. The lid had a rubber gasket to give a tight fit 

on the drum rim, and the lid openings were welded and silicone-caulked on the 

underside to prevent any leaks during pressurization. The all-thread was attached to a 

large aluminum plate on which the drum sat. 
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2. View of the first layer of flaked rubber suspended off of the bottom of the drum on a 

piece of window screen. The second layer of window screen is in place on top of the 

first layer of rubber. 

 

 

Figure B9. Pressure Vessel Setup for Acetone-Soaking Under Pressure 

 

3. View of the fully-loaded drum with two layers of flaked rubber suspended on window 

screen inside of the drum. 

4. Securing of a heavy steel plate on top of the lid to keep the pressure seal tight. 

5. Pressure regulator and applied pressure gauge configuration. 

6. Visualization of the difference in color of the rubber after RR extraction under 

pressure (two whiter pieces, bottom left) and without pressure (amber-colored piece, 

top right). 
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The color differentiation in the two samples of deresinated rubber shown in 

Figure B9 is dramatic but it should be noted that the whiter pieces were still wet with 

acetone. After some time, the whiter pieces would dry and darken somewhat, but not to 

the degree of the more amber-colored piece in the image. 

The effect of the pressurized acetone-soak can be seen in the yield results in Table 

3.3 in the Laboratory Investigation section. The first four batches, those soaked in 

acetone at atmospheric pressure, yielded 11.9% RR, on average. The last four batches, 

those pressurized during acetone-soaking, yielded an average of 14.0% RR, an increase 

in yield of about 17%. 

 There were a total of 14 different extraction and recovery runs performed to 

obtain the RR needed for the project. Not all of the runs, however, were performed in 

such a manner as to obtain statistical data. Some were performed as part of the learning 

process and others, specifically at the end of the study, were performed simply to obtain 

enough RR to complete the laboratory investigation. 

 

 



 

 

157 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

EXTRACTION AND RECOVERY OF RAP AND RAS BINDERS 
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RAP Binder Extraction/Recovery 

Based on the previously determined binder contents of the two RAPs utilized in 

this study, ~5.0% for RAP1 (from a Missouri Department of Transportation roadway) 

and ~5.5% for RAP2 (from a municipal street), specimen size was held to ~10 kg of RAP 

per batch in order that the primary and final distillation equipment would not be 

overloaded with solvent (trichloroethylene or TCE) and/or recovered binder. 

 

RAP Binder Extraction 

The basic steps of the RAP binder extraction procedure were as follows: 

1. Five pans, each containing ~2 kg of RAP, were first weighed then put in a 60°C oven 

overnight (≥16 hours). 

2. The following morning, Pan #1 was removed from the oven, quickly weighed, and 

1200 ml of fresh, technical grade TCE was placed in the pan with the warm RAP. 

3. The RAP in Pan #1 was stirred, covered, allowed to sit for 5 minutes, stirred one 

more time, and then allowed to sit undisturbed for 10 minutes of soaking. 

4. Moving slowly so as not to re-suspend the settled fines, the majority of the 

binder/TCE solution in Pan #1 was decanted through a deep-fat fryer filter funnel 

(~75 μm mesh) and into a 2 liter glass jar, while being careful not to spill or lose any 

RAP aggregate (the pan angle rarely exceeded 45°). 

5. An additional 100 ml of fresh TCE was added to Pan #1, and then the pan was 

swirled in a circular motion while held at a slightly-inclined angle in order to move 

the aggregate to the drip-free, pouring corner of the pan. The pan was propped up at 

this angle and allowed to sit undisturbed for 2 – 3 minutes. 
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6. The binder/TCE solution was, again, decanted through the filter funnel into the 2 liter 

glass jar. 

7. Using a stainless steel spoon, the RAP aggregate remaining in Pan #1 was carefully 

transferred to a one gallon, unlined paint can. Pan #1 was then rinsed with the 

minimal amount of fresh TCE into the gallon can. 

8. A lid was placed loosely onto the gallon paint can and Can #1 was placed into an 

80°C oven. 80°C was chosen because it is hot enough to re-warm the RAP aggregate 

but does not exceed the boiling point of TCE, 86°C. 

9. The filter funnel was rinsed with fresh TCE, and then set aside for 2 more uses. A 

new filter funnel was used for Pans #4 and #5. The 2 liter glass jar of binder/TCE 

solution was lidded and set in a safe place. 

10. Steps 2 – 9 were repeated for Pans #2 through #5. There were now 5, one gallon cans 

of RAP aggregate and TCE in the 80°C oven. 

11. One to two hours later, the warmed Can #1 was removed from the oven, 700 ml of 

fresh, technical grade TCE was added to the can, the lid was securely attached with a 

hammer, and the can was placed on its side inside the drum of a wet-ball mill device 

(see Figure C1). This particular step was included to approximate guidance in 

AASHTO T 319 [76] in which a specified extraction vessel is rotated at a specific 

rpm for a specific length of time, the purpose being to maximize the separation of 

bound aggregate particles in the RAP and, thus, maximize binder extraction 

12. Can #1 was rotated at 60 rpm for 5 minutes in the wet-ball mill device. 

13. After the 300 revolutions, the contents of Can #1 were transferred to a round, 

stainless steel pan, and then Can #1 was rinsed clean with fresh TCE. 
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14. The contents in the round, stainless steel pan were carefully transferred to the small 

centrifuge bowl specified in AASHTO T 164 [75], and the pan was rinsed with fresh 

TCE. 

15. The contents in the centrifuge bowl were stirred slowly to distribute the solids evenly 

in order to minimize vibration during the high-speed rotation of the small centrifuge. 

16. The centrifuge bowl was placed on the centrifuge, an oven-dry, pre-weighed filter 

ring (~4 μm mesh) was placed on the bowl, the lid was attached, and the binder/TCE 

solution was carefully centrifuged into a 2.5 liter glass jar. 

 

 

Figure C1. Wet-Ball Mill Device Used For Can Rotation 

 

17. Three subsequent washes of the RAP aggregate in the centrifuge bowl were 

performed using 200 ml per wash of TCE recovered during the previous batch 

extraction (i.e. the TCE had only been used once before). 

18. The RAP aggregate was removed from the centrifuge bowl, put back into the round, 

stainless steel pan and put into a 105°C drying oven, along with the filter ring. The 
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filter ring before-and-after weights were used to determine the amount of fines (≥ 4 

μm) captured by the filter ring. 

19. The 2.5 liter glass jar was lidded and set aside in a safe place. 

20. Steps 11 – 19 were repeated for Cans #2 through #5. 

 

RAP Binder Recovery 

The basic steps of the RAP binder recovery (i.e. primary and final distillation) 

were as follows: 

Primary distillation: 

1. The 2 and 2.5 liter glass jars were allowed to sit undisturbed for at least 4 hours to 

facilitate settlement of the considerable fines still present, especially in the 2 liter 

glass jars containing the first-soak binder/TCE solution. 

2. After considerable settling time, the SRD was loaded with a bag, and all 10 glass jars 

were slowly poured into the SRD bag, attempting to keep as many fines in each jar as 

possible. 

3. After each jar was poured into the SRD bag, fresh and/or recovered TCE was used to 

rinse the residual contents of the jar into a pre-weighed “fines” jar. The idea was to 

continually isolate fines through a series of settlement periods to minimize the 

amount of fines in the binder/TCE solution during the upcoming large centrifuge 

procedure. 

4. The SRD was programmed to run at 115°C for 6 hours and was then turned on. 

5. The following morning, after checking to make sure the SRD had cooled to a safe 

temperature, the small amount of binder/TCE solution in the “fines” jar (~500 ml) 
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was slowly decanted into the SRD bag that contained the primary distillation product. 

The “fines” jar was put into a 105°C drying oven for a “fines” (≤ 75 μm) weight 

determination at a later date. 

6. The binder/TCE solution in the SRD bag was transferred to a rectangular, stainless 

steel pan with a drip-free pouring corner.  

7. Using a glass funnel, the binder/TCE solution was then transferred in approximately 

equal parts to 8, 250 ml plastic centrifuge bottles. The pan was rinsed with TCE and 

the rinse solution was used to equalize the level of binder/TCE solution in the 8 

bottles such that their weights would be approximately equal. 

8. The 4-cup centrifuge rotor had to be balanced so each pair of opposing filled 

centrifuge bottles and their corresponding centrifuge rotor cups were balanced by 

weight using a glass pipette to transfer solution from the heavy bottle/cup to the light 

bottle/cup. 

9. The large, now balanced, centrifuge was run for 45 minutes at an rpm rate that 

resulted in a force of at least 770 times the force of gravity on the binder/TCE 

solution. 

10. The contents of 2 of the centrifuge bottles were transferred to a 2000 ml boiling flask 

for final distillation. A total of 4 boiling flasks were used for final distillation of each 

batch of RAP (and RAS). 

Final distillation: 

The final distillation procedure basically followed the steps outlined in the 

Acetone-Extracted Whole-Shrub Resin Extraction/Recovery section above, except for the 

following major items: 
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1. The hot oil bath temperature was set at 175°C. 

2. The condenser chiller temperature was set at 30°C. 

3. The initial flask rotation rate was 60 rpm. 

4. The flask was initially lowered into the hot oil bath such that the flask barely came 

into contact with the oil. This was done to reduce the initial condensation rate to a 

safe level. Once the majority of the TCE had been removed from the boiling flask, the 

flask was then lowered into the oil to its maximum depth (1 – 2 inches). 

5. The initial vacuum level was set to ~5 inches Hg gauge vacuum. 

6. Carbon dioxide was used instead of nitrogen for the gas purge. 

Vacuum and gas purge levels were incrementally increased, while flask rotation 

rates were varied and stopped intermittently, but in accordance with the behavior of the 

RAP binder in the flask and the condensation rate. 

7. The maximum vacuum capable of being applied by the stand-alone vacuum pump 

was utilized. Once the vacuum had reached a level of 60 mm Hg absolute vacuum 

(~27 inches Hg gauge vacuum), final distillation was continued for another 30 

minutes. During these 30 minutes, the vacuum increased slightly and generally ended 

up between 50 and 40 mm Hg absolute. During the highest vacuum application, the 

CO2 gas purge rate could not be held below ~1200 ml/min without the flow rate 

indicator bead violently oscillating up and down the tube. 

8. The oven temperature setting for draining the binder from the boiling flasks was 

175°C. 
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Reclaimed Asphalt Shingle (RAS) Binder Extraction/Recovery 

Because of the earlier determined RAS binder content of ~22%, original specimen 

size per batch was limited to ~2 kg (5 pans of 400 grams each). The basic procedure for 

extraction/recovery of the RAS binder was very much the same as outlined in the RAP 

binder extraction/recovery procedure above. The few exceptions are as follows: 

1. Considerably less TCE was used during extraction because of the smaller specimen 

size per batch. 

2. Due to the smaller amount of TCE, the SRD was programmed to run for 5.5 hours 

instead of 6. 

3. The hot oil bath temperature setting during final distillation was 195°C. 

4. The initial flask rotation rate was 80 rpm. 

Once again, vacuum and gas purge levels were incrementally increased, while 

flask rotation rates were varied and stopped intermittently, but in accordance with the 

behavior of the RAP binder in the flask and the condensation rate. The RAS binder 

behaved much differently than the RAP binder once most of the TCE had been removed 

(usually within the first 5 – 10 minutes). The RAS binder “puffed up” and looked very 

much like a sponge in the flask, especially when the first increment of vacuum increase 

was applied. 

5. Once the vacuum had reached a level of 60 mm Hg absolute vacuum, final distillation 

was continued for another 45 minutes. Because the viscosity of the RAS binder is so 

much higher than the RAP binder, the flask rotation was stopped most of the time 

during the last 45 minutes and when it was rotating, the rpm rate was set as low as the 

device would allow, ~8 rpm. 
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The oven temperature setting for draining the binder from the boiling flasks was 

225°C and the time in the oven was 20 minutes horizontally oriented and 20 minutes 

inverted in the storage container. 
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APPENDIX D 

BINDER-BLENDING PROCEDURE 
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The method for blending the different components involved using a Brookfield 

rotational viscometer (see Figure D1). Originally, the intent was to mix each blend at the 

same temperature. D'Angelo and Dongre performed research on polymer-modified 

binders and mixed all of the blends at 188°C for two hours using a high shear mixer, then 

stored the blends in a 163°C oven overnight [118]. Because the viscosities of the blends 

in this experiment could vary so widely, a different approach was adopted. 

The Asphalt Institute published literature in which they present recommended 

mixing and compaction viscosities for HMA. The recommended binder viscosity for 

HMA mixing is 0.17 ± 0.02 Pa·sec or 170 ± 20 centipoise [90]. It seemed that mixing the 

blends at this viscosity for a short, but specific length of time would be the most logical 

method to use for several reasons: 

• The binder materials would be very fluid at this viscosity and the potential for a more 

complete blending would be increased, relative to holding the mixing temperature 

constant, thus minimizing the potential for increased variability in the test results. 

• Although the mixing temperatures for each blend will very likely be different, one 

could say that holding constant the viscosity during mixing across all blends would 

remove it as a variable in the binder-blending mixture experiment. 

• The blending could take place over a short period of time (relative to the D'Angelo 

and Dongre method) thereby reducing the potential for excessive, additional 

hardening of the blended binders. 

• The determination of the mixing temperature for each blend could be beneficial in the 

design and creation of FPMs. 
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Figure D1. Binder-Blending Mixer Using a Brookfield Rotational Viscometer 

 

Using the rotational viscometer as a binder mixer posed an apparent problem in 

that the mixer impeller did not possess a standard geometry; i.e. the viscosity readings of 

the viscometer were not calibrated to the non-standard geometry of the mixer impeller 

and were, therefore, invalid. The problem was solved by observing the torque being 

measured by the viscometer at a particular revolutions-per-minute (RPM) rate while the 

mixer impeller was rotating within 150 grams of mineral oil at a viscosity of 170 

centipoise. The temperature at which this particular mineral oil's viscosity was 170 

centipoise (33.7°C) was previously determined using a second Brookfield viscometer 

setup strictly for viscosity testing. The viscometer in Figure D1 indicates 67.6% torque at 
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250 RPMs when the material within which the mixer impeller was rotating possesses a 

viscosity of 170 centipoise. It was important that the level of the material in the half pint 

paint can remained fairly constant for all blending. If the material amount was always 

150 grams, the level within the paint can could vary based on the varying specific gravity 

of the material being blended. An advantage to mixing within the paint can was that it 

could be capped right away and serve as a storage container.  

The only parameter to control was the temperature of the binder material being 

blended. The hot oil bath in which the paint can was immersed used high temperature oil 

specified to handle temperatures as high as 225°C, which was not out of the realm of 

possibility because of the RAS binder viscosity – temperature relationship.  

The choice of a mixing time was somewhat arbitrary although it seemed logical to 

start the time period once the temperature of the material in the paint can had stabilized to 

the point that the viscometer torque verified the viscosity of the material was steady at 

170 (±20) centipoise. A mixing time of 15 minutes seemed adequate but not excessive, 

although plant produced HMA that contains RAP and/or RAS is mixed for a much 

shorter period of time. The mixing time using the Brookfield viscometer varied 

depending on the stability of the viscosity reading. For the higher temperature blends 

(e.g. RAP and RAS only blends), mixing time could last for 30 minutes or more. 
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APPENDIX E 

FPM DESIGNS USING RR5 BINDER BLEND 
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FPM Designs Using RR5 Binder Blend 

Using the verified RR5 blend, discussed in Section 3.1.5, a spreadsheet was 

developed to control the blended-binder grade and the aggregate gradation of the FPM. 

Figure E1 shows a major portion of the spreadsheet.  

 

RAP1 RAP2 RAS 1/2" Clean 3/8" Clean MS SUM chk % Reclaim.
Aggregate

36.89% 13.43% 2.80% 0.00% 46.88% 0.00% 100.00% 53.12%
Pbr 4.76% 5.45% 22.79%

Agg Wt. (g) 12200 RAP1 RAP2 RAS 1/2" Clean 3/8" Clean MS SUM
(2 gyro, 1 Rice) 4500.6 1638.5 341.6 0.0 5719.4 0.0 12200.0
Reclaimed Binder Weights (g) 224.9 94.4 100.8
Total Reclaimed binder (g) 420.2

RAP1 RAP2 RAS 1/2" Clean 3/8" Clean MS SUM RR PG64-22
4725.5 1732.9 442.4 0.0 5719.4 0.0 12620.2 125.0 0.0

R1/4" P1/4" R1/4" P1/4"
%/fraction 39.8 60.2 34.2 65.8
Batch wt. 1881.3 2844.2 593.4 1139.5

Target %s of Blended Binder: RAP1 RAP2 RAS RR NOTE: Based on only RTFO-aging, no PAV-aging.
Design Expert Results--> 42.4% 17.8% 15.0% 24.8% Estimated True Grade = PG67.5-30.2

56.38% 23.67% 19.95% Actual True Grade = PG65.5-24.3
This is based on PAV-aging

Blue highlighted proportions (above & below) should be about equal per reclaimed material.

% Binder Available for Blending
RAP1 RAP2 RAS SUM Total Total
100.0% 100.0% 100.0% 53.53% 22.48% 24.00% 100.00% Added Mix %RR %PG64-22
95.0% 95.0% 75.0% 56.38% 23.67% 19.95% 100.00% RR PG64-22 Binder (g) Weight (g) by mix wt. by mix wt.

Blended Binder weight (g) 213.7 89.7 75.6 379.0 125.0 0.0 125.0 12745.2 0.98% 0.00%
%VB Pbr by Pbr by

% of Total Binder = 42.40 17.80 15.00 24.80 0.00 by mix wt. binder wt. mix wt.
Pb = 4.28% 0.98% 77.07% 3.30%

Weighted Gb = 1.029

1/2" Clean 3/8" Clean MS RAP1 RAP2 RAS 1/2" Clean 3/8" Clean MS Sieve size Combined SP125 BP-1
Gradation Spec Spec

% Pass % Pass % Pass % Pass % Pass % Pass % Pass % Pass % Pass % Pass % Pass % Pass
100.0 100.0 100.0 36.9 13.4 2.8 0.0 46.9 0.0 3/4" 100.0 100 min 100 min
83.0 100.0 100.0 35.6 13.4 2.8 0.0 46.9 0.0 1/2" 98.7 90-100 85-100
38.6 100.0 100.0 33.5 13.2 2.8 0.0 46.9 0.0 3/8" 96.4 90 max
4.6 44.3 100.0 25.7 10.0 2.8 0.0 20.8 0.0 #4 59.3 50-70
4.0 12.2 76.3 18.7 6.6 2.7 0.0 5.7 0.0 #8 33.8 28-58 30-55
3.9 6.8 47.2 15.1 4.8 2.3 0.0 3.2 0.0 #16 25.3
3.7 5.6 29.5 12.3 3.6 1.6 0.0 2.6 0.0 #30 20.2 10-30
3.5 5.0 18.5 9.5 2.5 1.4 0.0 2.3 0.0 #50 15.7
3.0 4.3 13.0 5.8 1.7 1.3 0.0 2.0 0.0 #100 10.7
2.3 3.4 9.6 3.5 1.3 1.0 0.0 1.6 0.0 #200 7.4 2-10 5-12

Added Binder (g)
Mix ID

RR5M T23(6")

% of Blended binder
Added Binder (g)

Fractional Gradations

Aggregate Percentages

Aggregate Batch Weights (grams)

RAP/RAS-Aggregate-Added Binder Batch Weights (grams)

RAP1 RAP2

 

Figure E1. Original FPM Design using No PG64-22 Virgin Binder 
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The goals of the FPM design process were to achieve a blend of reclaimed and 

virgin materials (aggregates and binder, which includes the RR) that will 1) achieve the 

desired binder grade (e.g. PG64-22), 2) meet gradation specifications, and 3) meet FPM 

volumetric criteria (% air voids, % voids in the mineral aggregate or VMA, and % voids 

filled with asphalt or VFA). 

The first items to point out in Figure E1 are the pink highlighted cells marked as 

“DesignExpert Results.” These are input cells for any verified binder blend component 

proportions. In this case, it is the component proportions for the verified RR5 blend 

discussed in section 3.1.5, 42.4% RAP1, 17.8% RAP2, 15.0% RAS, and 24.8% RR (or 

CycL for FPM comparative analyses). 

 The next step in using the spreadsheet is to decide the “% Binder Available for 

Blending” percentages (green cells, center-left). It cannot be overstated how much of an 

issue this is in the FPM paving industry today. The question of how much of the binder in 

the RAP/RAS is actually blending with virgin binder and contributing to the performance 

of the FPM continues to be the topic of major investigation at this time. Based on the 

literature and engineering judgment, the actual percentage of binder available for 

blending is less than 100% (complete binder availability) and much more than 0% (the 

“black rock” scenario). Therefore, based on many conversations with industry 

practitioners and experts, the RAP and RAS binder availability percentages were set at 

95% and 75%, respectively. 

 The next step is to adjust the purple highlighted cells at the very top so that the 

light-blue highlighted cells directly above one another in the reclaimed materials columns 

are approximately equal per reclaimed material. This step adjusts the proportions of the 
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reclaimed materials to keep the blended-binder grade at the desired level. At the same 

time, it changes the combined aggregate gradation and the reclaimed binder content. 

 The next step is to adjust the virgin aggregate percentages to fine-tune the 

combined gradation. The aggregate percentages, reclaimed and virgin, must sum to 

100%. 

 Finally, the total binder content as a percentage of the mix (Pb) can be adjusted 

upward by adding some virgin petroleum-based binder (e.g. PG64-22). On the other 

hand, if Pb is too high initially, the proportions of reclaimed materials can be lowered but 

in a manner that keeps the blended-binder grade at its desired level. 

 There is quite a bit of flexibility in this design process:  

• There is choice in the binder blend proportions (DesignExpert solutions) that can 

produce a desired binder grade.  

• The % Binder Available for Blending percentages can be changed if so desired.  

• The number and gradation of the different virgin aggregates can be adjusted.  

• The relative proportion of the reclaimed materials to the virgin aggregates can be 

adjusted.  

• The reclaimed materials could be fractionated to provide much more control of the 

gradation. 

Starting with the Figure E1 original (no-virgin-binder) design, an additional 30 

grams of PG64-22 was added (i.e. Pb of 4.50%), and four batches of FPM were ultimately 

produced. Prior to batching the aggregates, the RAPs were split on the ¼ inch screen, 

producing fractionated RAPS or FRAPS. This was done in an effort to better control the 
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gradation during batching. The design for this FPM with minimal PG64-22 virgin binder 

is shown in Figure E2. 

  

RAP1 RAP2 RAS 1/2" Clean 3/8" Clean MS SUM chk % Reclaim.
Aggregate

36.89% 13.43% 2.80% 0.00% 46.88% 0.00% 100.00% 53.12%
Pbr 4.76% 5.45% 22.79%

Agg Wt. (g) 12200 RAP1 RAP2 RAS 1/2" Clean 3/8" Clean MS SUM
(2 gyro, 1 Rice) 4500.6 1638.5 341.6 0.0 5719.4 0.0 12200.0
Reclaimed Binder Weights (g) 224.9 94.4 100.8
Total Reclaimed binder (g) 420.2

RAP1 RAP2 RAS 1/2" Clean 3/8" Clean MS SUM RR PG64-22
4725.5 1732.9 442.4 0.0 5719.4 0.0 12620.2 125.0 30.0

R1/4" P1/4" R1/4" P1/4"
%/fraction 39.8 60.2 34.2 65.8
Batch wt. 1881.3 2844.2 593.4 1139.5

Target %s of Blended Binder: RAP1 RAP2 RAS RR NOTE: Based on only RTFO-aging, no PAV-aging.
Design Expert Results--> 42.4% 17.8% 15.0% 24.8% Estimated True Grade = PG67.5-30.2

56.38% 23.67% 19.95% Actual True Grade = PG65.5-24.3
This is based on PAV-aging

Blue highlighted proportions (above & below) should be about equal per reclaimed material.

% Binder Available for Blending
RAP1 RAP2 RAS SUM Total Total
100.0% 100.0% 100.0% 53.53% 22.48% 24.00% 100.00% Added Mix %RR %PG64-22
95.0% 95.0% 75.0% 56.38% 23.67% 19.95% 100.00% RR PG64-22 Binder (g) Weight (g) by mix wt. by mix wt.

Blended Binder weight (g) 213.7 89.7 75.6 379.0 125.0 30.0 155.0 12775.2 0.98% 0.23%
%VB Pbr by Pbr by

% of Total Binder = 40.01 16.80 14.16 23.41 5.62 by mix wt. binder wt. mix wt.
Pb = 4.50% 1.21% 73.05% 3.29%

Weighted Gb = 1.029

1/2" Clean 3/8" Clean MS RAP1 RAP2 RAS 1/2" Clean 3/8" Clean MS Sieve size Combined SP125 BP-1
Gradation Spec Spec

% Pass % Pass % Pass % Pass % Pass % Pass % Pass % Pass % Pass % Pass % Pass % Pass
100.0 100.0 100.0 36.9 13.4 2.8 0.0 46.9 0.0 3/4" 100.0 100 min 100 min
83.0 100.0 100.0 35.6 13.4 2.8 0.0 46.9 0.0 1/2" 98.7 90-100 85-100
38.6 100.0 100.0 33.5 13.2 2.8 0.0 46.9 0.0 3/8" 96.4 90 max
4.6 44.3 100.0 25.7 10.0 2.8 0.0 20.8 0.0 #4 59.3 50-70
4.0 12.2 76.3 18.7 6.6 2.7 0.0 5.7 0.0 #8 33.8 28-58 30-55
3.9 6.8 47.2 15.1 4.8 2.3 0.0 3.2 0.0 #16 25.3
3.7 5.6 29.5 12.3 3.6 1.6 0.0 2.6 0.0 #30 20.2 10-30
3.5 5.0 18.5 9.5 2.5 1.4 0.0 2.3 0.0 #50 15.7
3.0 4.3 13.0 5.8 1.7 1.3 0.0 2.0 0.0 #100 10.7
2.3 3.4 9.6 3.5 1.3 1.0 0.0 1.6 0.0 #200 7.4 2-10 5-12

Added Binder (g)
Mix ID

RR5M T25-RR(6")

% of Blended binder
Added Binder (g)

Fractional Gradations

Aggregate Percentages

Aggregate Batch Weights (grams)

RAP/RAS-Aggregate-Added Binder Batch Weights (grams)

RAP1 RAP2

 

Figure E2. FPM Design with Minimal PG64-22 Virgin Binder 

 

The percentages of the -¼ inch (percentage passing the ¼ inch screen or P1/4ʺ) 

and +¼ inch (percentage retained on the ¼ inch screen or R1/4ʺ) for each RAP were 
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determined and, during batching of the RAPs, the P1/4ʺ and R1/4ʺ fractions were 

recombined at the same percentages. This was done to assure that the RAP binder 

properties were not changed; i.e. without knowing the binder content and grade of each 

FRAP, recombining them in proportions other than the original percentages could have 

affected the total reclaimed binder content and/or blended binder grade. 

Discussions of the results of the FPM designs shown in Figures E1 and E2 are 

given in Section 3.1.6.1. 
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