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ABSTRACT 

This study comprises mainly of three papers. First, a systematic evaluation of the 

effects of Missouri’s Strategic Highway Safety Plan between 2004 and 2007 is presented. 

Negative binomial regression models were developed for the before-through-change 

conditions for the various collision types and crash severities. The models were used to 

predict the expected number of crashes assuming with and without the implementation of 

MSHSP. This procedure estimated significant reductions of 10% in crashes frequency 

and a 30% reduction for fatal crashes. Reductions in the number of different collision 

types were estimated to be 18-37%. The results suggest that the MSHSP was successful 

in decreasing fatalities.  

Second, ten years (2002 - 2011) of Missouri Interstate highway crash data was 

utilized to develop a longitudinal negative binomial model using generalized estimating 

equation (GEE) procedure. This model incorporated the temporal correlations in crash 

frequency data was compared to the more traditional NB model and was found to be 

superior. The GEE model does not underestimate the variance in the coefficient 

estimates, and provides more accurate and less biased estimates. Furthermore, the 

autoregressive correlation structure used for the temporal correlation of the data was 

found to be an appropriate structure for longitudinal type of data used in this study.  

Third, this study developed another longitudinal negative binomial model that 

takes into account the seasonal effects of crash causality factors using Missouri crash 

data. A GEE with autoregressive correlation structure was used again for model 

estimation. The results improve the understanding of seasonality and whether the 

magnitude and/or type of various effects are different according to climatic changes. It 

was found that the traffic volume has a higher effect in increasing the crash occurrence in 

spring and lower effect in winter, compared to fall season. The crash reducing effect of 

better pavements was found to be highest in spring season followed by summer and 

winter, compared to the fall season. The results suggest that winter season has the highest 

effect in increasing crash occurrences followed by summer and spring. 
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SECTION 

1. INTRODUCTION 

Traffic safety in transportation networks is one of the main priorities for many 

government agencies, private organizations and the society as a whole. This is mainly 

due to the significant monetary and non-monetary costs associated with crashes (Elvik, 

2000). According to the National Highway Traffic Safety Administration, 5,505,000 

traffic crashes occurred in 2009 on the US highways in which 33,808 people died and 

2,217,000 people were injured (NHTSA, 2009). Peden et al. (2004) found that the trend 

in road related injuries are expected to increase from ranked ninth in 1990 to the third 

largest contributor to the global burden of disease and injury in 2020. This immense loss 

to society resulting from motor vehicle crashes warrants careful crash evaluation and 

safety analysis to accurately identify crash contributing factors and countermeasures. 

HSM (2010) regards crash frequency as a fundamental indicator of “safety” in terms of 

evaluation and estimation. 

Crash analysis research in general has focused on the estimation of traditional 

crash prediction models such as negative binomial (NB) and Poisson regression models 

and their generalized forms due to their relatively good fit to the data (Shankar et al., 

1995; Poch and Mannering, 1996; Abdel-Aty and Radwan, 2000; Savolainen and Tarko, 

2005; Mojtaba Ale Mohammadi et al., 2014a). These crash prediction models have also 

been used for crash evaluation purposes. HSM (2010) refers to the term “crash 

evaluation” as the process of determining the effectiveness of a particular treatment after 

its implementation. Many studies have been conducted to investigate the effect of 

improvement programs on facilities such as rail-highway grade crossings (Hauer and 

Persaud, 1987), highway segments (Zegeer and Deacon, 1987; Squires and Parsonson, 

1989; Knuiman et al., 1993), and intersections (Poch and Mannering, 1996; Datta et al., 

2000). One of the issues that has been raised regarding the use of these traditional models 

on “crash evaluation” is the statistical phenomenon of regression to the mean that occurs 

when the same unit of observations is repeatedly measured over time (Barnett et al., 
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2005). This phenomenon may result in biased estimates in any such investigations and 

mask the real effectiveness of any countermeasure which in turn clouds the judgment of 

the evaluators and results in unwise decisions. Empirical Bayes (EB) method has also 

been used for before-after studies to evaluate the effect of countermeasures on safety, 

which properly accounts for the regression to the mean while normalizing for differences 

in traffic volume and other factors between the before and after periods (Hauer, 1997; 

Persaud et al., 2004; Guo et al., 2010b; Shively et al., 2010; Yu et al., 2013b). But EB 

method is a relatively sophisticated method that requires extensive data and considerable 

training and experience (Persaud and Lyon, 2007).  

This study presents a simple new approach to addresses the problems mentioned 

above. A traditional negative binomial regression model was developed using the 

introduced method to examine the effect of implementation of the Missouri Strategic 

Highway Safety Plan (MSHSP). The MSHSP data was chosen as it provides an excellent 

situation of safety improvement intervention on the highways of Missouri. In addition it 

and evaluate the effects of MSHSP on the crash frequency of various collision types and 

severity levels. The negative binomial regression models were developed to account for 

the before-through-change conditions using a continuous variable that is set to zero for 

pre-implementation years and gradually increases over the implementation years to reach 

a plateau at the conclusion of the plans.  

In the second section of this study, a (longitudinal) negative binomial model was 

developed using ten years of data (2002-2011). Lord and Persaud (2000) suggest that 

more years of data adds up to the reliability of the model estimates by reducing the 

standard errors in the prediction models mentioned above; However, when many years of 

data is considered the serial correlation in the repeated observations violates the 

independence assumptions on unobserved error terms in traditional Poisson and/or NB 

crash frequency models. This violation creates biased and inefficient models by 

underestimating the standard errors. Researchers have tried to use different techniques to 

account for these temporal correlations between the repeated crash frequencies observed 

for a highway segment over the years. Examples of the utilized methodologies can be 

found in Maher and Summersgill (1996) using an iterative solution based on the method 

of “constructed variables” presented by McCullagh and Nelder (1989), in Ulfarsson and 
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Shankar (2003) using negative multinomial (NM) models, in Dong, Richards, et al. 

(2014) using multivariate random parameter models, and in Venkataraman et al. (2014) 

using random parameter negative binomial models. These methodologies, however, have 

shown to be not practically applicable for different situations. For example, the analyst 

need to know the extent and type of correlation prior to the analysis that is not always 

known (Lord and Persaud, 2000), or the estimation methodology for multivariate random 

parameter models – the full Bayesian method – is complex and requires training and 

practice. The implementation and transferability of the method is also a challenge. Wang 

and Abdel-Aty (2006) used generalized estimating equations (GEE) technique to account 

for these correlations in a frequency model for rear-end crashes at signalized 

intersections. This technique has the potential of addressing the issue of serial 

correlations in the repeated observations, producing reasonably accurate standard errors 

and efficient parameter estimates (Méndez et al., 2010; Peng et al., 2012; Giuffrè et al., 

2013; Stavrinos et al., 2013). Liang and Zeger (1986) were the first to use this technique 

to model repeated observations and showed that the GEE method is robust to 

misspecification of the correlation structure but Giuffrè et al. (2007) and Ballinger (2004) 

demonstrated that utilizing the true data correlation structure in safety modeling results in 

higher estimation precision. In spite of all this research on the effects of temporal 

correlations in crash data, consequences arising from the omission of the serial 

correlation are still not completely understood. 

The longitudinal negative binomial model developed in the second part of this 

study presents an application of the GEE method to model several years of crash 

frequency data in Missouri. This analysis first determines the temporal correlation 

structure in the data, proceeds with the analysis, and finally validates the correlation 

structure used in the analysis as an appropriate structure in this type of data. During the 

analysis, several data-related obstacles had to be addressed including the 

multicollinearity, sufficiency of the within-cluster observations, and the confounding 

effects. Interaction of the major crash contributing factors with the area type was also 

examined to evaluate whether crash causes behave differently from rural to urban areas. 

The results of this model were then compared with a traditional NB model using the chi-
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square values of the estimated model parameters and the cumulative residual (CURE) 

plots. Details of this part of the study are presented in the section “Paper II”. 

The results of the second section provide a better understanding of the true factors 

that affect the occurrence of crashes. The third part of this study is also involved in 

improvements of the crash evaluation model. Crashes are usually caused by several 

factors related to drivers’ behavior, vehicles, highway design, and environmental 

conditions. Geographic location and the climatic environment, particularly seasonal 

weather can be a major factor that contributes to the occurrence of crashes (Garber and 

Hoel, 2008b). There are few studies in the crash evaluation realm dealing with the 

seasonal effects of crashes, but to the best knowledge of the author, no in-depth analysis 

of the seasonality of crash causes has been conducted. Some examples of the previous 

studies on the seasonality effects include the works of Carson and Mannering (2001), 

Hilton et al. (2011), Ahmed et al. (2011), Yu et al. (2013a), and Yang et al. (2013) that 

have shown that with a better understanding of the crash causes over different times of 

the year, policy-makers can improve the safety of specific roadway segments according 

to the seasonal weather patterns and that different traffic management strategies should 

be designed based on seasons.  

The objective of the analysis in the third paper is to further investigate the 

seasonal effects on crash causality factors by developing a longitudinal negative binomial 

model using ten years of crash data on six main interstate highways of Missouri. This 

analysis uses generalized estimating equation (GEE) technique to develop the model. The 

interaction of the main variables with the seasonal indicators were examined in the model 

to gain a better understanding of the change in the effect of crash causes over different 

seasons in a year. The effects of interventions made by the Missouri Strategic Highway 

Safety Plan (MSHSP) over the years 2005-2011 is also investigated. The detailed results 

of this analysis (presented in the section “Paper III”) can help in developing policies 

regarding highway safety countermeasures with insight on the effects of seasonal changes 

on roadway fatality factors. 
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PAPER 

I. SAFETY EFFECT OF MISSOURI’S STRATEGIC HIGHWAY SAFETY PLAN 

- MISSOURI’S BLUEPRINT FOR SAFER ROADWAYS 

ABSTRACT 

This study systematically evaluates the changes in motor vehicle crashes that 

occurred on the Missouri interstate highway system following the implementation of 

Missouri’s Strategic Highway Safety Plan (MSHSP) between 2004 and 2007. The 

MSHSP implemented crash injury reduction strategies in enforcement, education, 

engineering, and public policy. Empirical Bayesian methods are commonly used to 

evaluate the effects of any change in safety as a result of countermeasures. This study 

presents a simple new approach to evaluating the effects of Missouri’s safety plans on 

roadway crashes. For crash data associated with traffic and roadway characteristics, 

negative binomial regression models were developed for the before-through-change 

conditions using a variable that is set to zero for pre-implementation years and gradually 

increases over the implementation years to reach a plateau at the conclusion of the safety 

plans. The models developed for the various collision types and crash severities were 

used to estimate the expected number of crashes at roadway segments in 2008, assuming 

with and without the implementation of MSHSP. This procedure estimated significant 

reductions of 10% in the overall number of crashes and a 30% reduction for fatal crashes. 

Reductions in the number of different collision types were estimated to be 18-37%. The 

theoretical results indicate that the MSHSP was a successful policy in reducing the 

number of crashes and decreasing fatalities by reducing the most severe collision types 

like head-on crashes. The results are also consistent with many international studies and 

suggest that the safety strategic plans should be promoted as an effective treatment for 

highways. 

Keywords: negative binomial, before-after study, Missouri blueprint, strategic highway 
safety plan, MSHSP 
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1. INTRODUCTION 

In 2004, a partnership of Missouri safety advocates, including law enforcement 

agencies, health care providers, government agencies, and others formed the Missouri 

Coalition for Roadway Safety (MCRS). This group worked with regional safety 

coalitions to implement the first strategic highway safety plan, titled Missouri’s Blueprint 

for Safer Roadways. The potentially life-saving and injury reduction strategies in 

Missouri’s Blueprint were crucial in the areas of education, enforcement, engineering, 

and public policy. Some of these strategies included the increase in public education and 

information on traffic safety, expanding roadway shoulders, installation of centerline and 

shoulder rumble strips, and roadway visibility features such as pavement markings, signs, 

lighting, etc., removing fixed objects along roadside right of way, and improving curve 

recognition through the use of signs, markings, and pavement treatments. 

The primary emphasis area of the program aimed to reduce the number and 

severity of serious crash types with a specific focus on run-off-road crashes, crashes 

involving horizontal curves, head-on crashes, collisions with trees or poles, and 

intersection crashes (1). The long-range goal of the program was to reach 1000 or fewer 

fatalities by 2008 which was achieved a year early, when the total number of fatalities 

was reduced to 992 in 2007. Between 2005 and 2007, the death rate per 100 million 

vehicle miles of travel dropped from 1.8 to 1.4 and 21% fewer lives were lost on 

Missouri highways (2). These safety improvements resulted from the implementation of 

the MSHSP (1, 2). The present study theoretically examines the effect of implementation 

of the Missouri’s Blueprint for Safer Roadways on the nature and magnitude of crash 

frequency of various collision types and their severity. The next section presents a review 

of the previous studies in the literature of highway safety. The paper then describes the 

approach used in this study along with an introduction to the data set used. The results of 

the study and the conclusions follow in the next sections. 
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2. BACKGROUND 

Highway safety analysts use regression models for purposes such as establishing 

relationships between motor vehicle crashes and incorporating factors such as traffic and 

geometric characteristics of the roadway, predicting values or screening variables (3). 

Lord and Mannering (4) have documented a considerable amount of research work 

devoted to the development and application of new and innovative models for analyzing 

count data. According to Zou et al. (5), due to the over-dispersion in crash data, the 

negative binomial (NB) model is probably the most frequently used statistical model in 

various types of highway safety studies for developing crash prediction models. Shankar 

et al. (6) conducted a negative binomial multivariate analysis of roadway geometrics and 

weather-related effects. Their work presents a basis for a comprehensive before-and-after 

analysis of the effectiveness of safety improvements.  

Developing quantitative relations to relate various safety improvement plans to 

crash rates and severities provides the information required to choose between the cost 

and the benefit of better transportation networks, and also helps in prioritizing the safety 

improvement projects. Many studies have been conducted in the past decades 

investigating the effect of improvement programs on facilities such as rail-highway grade 

crossings (7), highway segments (8-10), and intersections (11, 12).  

Researchers have also used the Empirical Bayes (EB) method (13) for conducting 

observational before-after studies to evaluate the effect of engineering countermeasures 

on safety. This procedure is often used to properly account for the regression to the mean 

while normalizing for differences in traffic volume and other factors between the before 

and after periods. Persaud et al. (14) used the EB procedure to examine the reduction of 

opposing direction crashes after installation of rumble strips along the centerlines of 

undivided rural two-lane roads. Bayesian inference methods have also been used in many 

recent studies to predict crash occurrences (15, 16). Miaou et al. (17) and Ahmed et al. 

(18) employed the Hierarchical Bayes model to estimate traffic crashes. Shively et al. 

(19) employed a Bayesian nonparametric estimation procedure in their study. Huang and 

Abdel-Aty (20) also proposed a hierarchical structure to deal with multilevel traffic safety 

data. Persaud and Lyon (21) conducted extensive research on the EB methodology and its 
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statistical application in before-after studies. According to them, there is a need to 

evaluate the safety effect of roadway improvements that may impact crash frequency, and 

the EB methodology produces valid results that are substantially different than those 

produced by more traditional methods. What requires exploration is whether or not it is 

worth the effort of using a sophisticated methodology such as the EB method in which (a) 

the relative complexity of the methodology requires analysts with considerable training 

and experience, and (b) the data needs can be extensive (21). 

The more conventional alternatives to the EB method, involving a simple before–

after comparison of crash counts or rates, with or without a comparison or control group, 

are appealing in that they are relatively easy to apply. These alternative methods, 

however, are loaded with challenges (21): the comparison group needs to be similar to 

the treatment group in all of the possible factors that could influence safety, and the 

assumption that the comparison group is unaffected by the treatment is difficult to test 

and can be unreasonable in some situations.  

This study presents a simple new approach to evaluate the effects of MSHSP on 

Missouri Interstate highway crashes. Using six years of data, including the safety 

program implementation years (2005 through 2007), negative binomial crash frequency 

models were developed for predicting the crash frequency for 2008. The prediction 

models are developed in a way that will address the regression to the mean concern that 

prevails in such models. The predicted crash frequency with and without the 

improvements was compared statistically to determine the effect of MSHSP. The models 

represent a mix of urban and rural environments and were developed for various collision 

types and crash severities to investigate the safety improvements by estimating the 

expected number of crashes under different scenarios. 

3. METHODOLOGY 

The safety of an improved segment of the roadway in general should be estimated 

by mixing information of causal factors such as traffic flow, type of traffic control 

devices, geometric properties, etc. (7). The objective of this study is to develop statistical 

models of the crash frequency for all the interstate highways of Missouri. This study 
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estimates six different crash frequency models that will predict (1) total crash frequency 

(all crash types), (2) head-on crash frequency, (3) rear-end crash frequency, (4) 

sideswipe-same direction crash frequency, (5) sideswipe-opposite direction crash 

frequency, and (6) angle crash frequency. Additionally, two separate models are 

developed for the only fatal and only non-fatal crashes. The dependent variable in all 

models is the crash count with a discrete non-negative integer nature, and Poisson 

regression is the first natural choice for modeling such data (22-25); however, a major 

limitation of the Poisson model is that it constrains the variance of dependent variables to 

be equal to its mean. When the variance of the data is not equal to the mean (which is 

usually the case in most of the crash frequency data), the variance of the model 

coefficients tend to be underestimated, which results in biased estimates. Negative 

binomial models have been extensively used in literature to overcome this limitation by 

relaxing the condition of ‘variance = mean’ in standard Poisson models (5). 

If the length of segment ‘i’ (Li) and the crash observation time interval for 

segment ‘i’ (ti) for various segments are different, the observed number of crashes on the 

segment ‘i’ is proportional to the Li and ti. Length and duration of the observation are 

commonly called to be offset variables as their coefficients are restricted to be one and 

not estimated (26). In this study, since all the segments are measured over one year, the 

only offset variable used was the segment length. To describe the formulation of the 

negative binomial model, the Poisson model for crash counts is first reviewed; according 

to the Poisson distribution the probability of ‘n’ crashes occurring on segment ‘i’ during 

time period ‘j’ is: 

 

������ =
����� �

��

���

���!
 (1) 

Where ��� is the expected number of crashes on segment ‘i’ during time interval ‘j’. 

Given the vector of incorporating factors, ��� can be estimated by the equation: 

 ln ��� = ���� (2) 

Where ‘X’ is a vector of affecting variables and ‘β’ is a vector of estimable coefficients. 
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An additional stochastic component ‘ɛ’ is introduced to the link function by 

assuming ‘eɛ’ Gamma distributed (with mean ‘�’ and variance ‘�’) resulting in the 

Poisson-Gamma model (also called the negative binomial model, NB) (6, 24, 27, 28): 

 ln ��� = ���� + ��� (3) 

An additional parameter ‘�’ allows the variance to differ from the mean and will 

result in the following mean-variance relationship: 

 �������� = ������ �1 + �������� = ��(1 + ���) (4) 

If ‘�’ is equal to zero, the negative binomial reduces to Poisson, and if it is 

significantly different from zero, the data is either over-dispersed or under-dispersed. 

Using the Poisson distribution for crash count modeling, the probability of n crashes 

occurring on segment ‘i’ during time period ‘j’ is: 

 
������ =

Γ�� + ����

Γ(θ)n��!
�

�

� + ���
�

�

�
���

� + ���
�

���

 (5) 

Where � = 1/�, and Γ(. ) is a value of gamma function. ��� can be estimated using the 

maximum likelihood estimation (MLE) procedure. The likelihood function for the 

negative binomial model is: 

 

������ = � �
Γ�� + ����

Γ(θ)n��!

�

���

�

���

�
�

� + ���
�

�

�
���

� + ���
�

���

 (6) 

Where ‘T’ is the last time interval of the crash count data and ‘N’ is the number of 

roadway segments. Maximizing this function results in the estimation of ‘�’ and ‘�’ (in 

equations 2 and 3). Using a variable that is set to zero for pre-implementation years and 

gradually increases over the implementation years (2005 through 2007) to reach a plateau 

of one at the conclusion of the safety plans and the crash data associated with traffic and 

roadway characteristics, negative binomial regression models were developed for the 

before-through-change conditions.  
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The reduction in the crash frequency after the implementation of the safety plans 

relative to the frequency values prior to this implementation could be attributed to the 

simple phenomenon of regression to the mean. If the reduction in the crash frequencies 

was detected using a model that uses before and after values, then associating this 

reduction with the implementation of the safety measures may be misleading. Our 

approach, however, did not merely look at before and after figures or model the change 

using a dummy variable, but instead utilized a continuous variable named “transition” in 

the NB model of the analysis to account for the plan implementation through the years. 

This variable was assigned the value of zero prior to the commencement of the 

improvements and gradually increased from zero to one, exactly over the implementation 

period in such a way that its value coincided, approximately, with the proportion of safety 

features that were completed at a given time. For the years after the completion of the 

improvements, this variable was kept constant at 1.0, suggesting 100% implementation. 

The plan included actions such as widening roadway shoulders, installation of centerline 

and shoulder rumble strips, etc. This study is an attempt to statistically examine the 

effects of the MSHSP implementation. The transition variable turned out to be highly 

significant with a negative sign for its coefficient estimate, indicating a close correlation 

between the reduction in crash frequency and the rate of completion of the safety 

features. Hence, the likelihood that this reduction reflects a regression to the mean is very 

low. 

4. DATA ANALYZED 

The Missouri Department of Transportation (MoDOT) portal of safety 

investigation provided access to the crash data base for all the recorded years of data. The 

crash data consists of all severity types of motor-vehicle crashes (fatal, disabling injury, 

minor injury, and property damage only crashes) at 17 interstate highways in the state of 

Missouri from 2002 to 2007. Some of the major characteristics of the highways are 

presented in Table 1. These highways, with an overall length of about 1200 miles, were 

classified as divided highways located either in urban or rural areas (65% in rural areas 

and 35% in urban areas). The total number of crashes in the data set analyzed was 
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167,783 crashes, out of which 37% occurred in rural areas and 63% in urban areas. The 

rate of crash (number of crashes per mile and number of crashes per vehicle) for a 

segment in each year is shown in column 2 of the table along with the total number of 

crashes on all interstate highways presented in column 3.  

Table 1. Descriptive statistics of segment properties of interstate highways in Missouri  

Year 

Crash/mile, 

Crash/1000 car* 

(min-max) 

Total  

number of 

crashes 

AADT 

(min-max) 

Number 

of lanes 

(min-max) 

PSR 

(min-max) 

Percent 

commercial 

(min-max) 

2002 0-241 , 0-4 18955 1985-101594 1-7 19.3-66.4 0.041-0.582** 

2003 0-293 , 0-4 19581 1867-98485 1-7 17.4-37.4 0.041-0.406 

2004 0-293 , 0-4 19343 1919-109420 1-6 18.9-37.3 0.046-0.582 

2005 0-328 , 0-4 19101 1865-109573 2-6 24-39.6 0.045-0.582 

2006 0-500 , 0-3 18922 1874-114753 1-6 23.4-37.5 0.049-0.582 

2007 0-333 , 0-4 19308 1893-115901 1-6 22.9-37.6 0.049-0.622 

* 
Minimum rate for all the segments during each year was zero 

** 
This high value of truck percentage probably represents the night time at specific sections of the highways with low traffic 

The explanatory variables used in this analysis are number of lanes, lane width 

(min. 10 ft to max. 18 ft), shoulder width (min. 3 ft to max. 12 ft), average annual daily 

traffic (AADT), speed limit, congestion index, pavement serviceability rate (PSR), and 

truck percentage. Other factors such as weather information, roadway conditions, and 

drivers’ characteristics could not be aggregated for the entire state and yearly level for 

analysis. PSR is equal to two times the ride number plus the pavement condition index. 

Ride number is an index derived from controlled measurements of longitudinal profile in 

the wheel tracks and correlated with rideability of a pavement using a scale of 0 to 5, with 

5 being perfect and 0 being impassable. Pavement condition index is a numerical rating 

of the pavement condition that ranges from 0 to 100 with 0 being the worst possible 

condition and 100 being the best possible condition. More information on the indices of 

ride number and pavement condition index can be found on the standards ASTM D6433-

07 (29) and ASTM E1489-08 (30) respectively. The higher the value of PSR, the higher 

the pavement serviceability. Congestion index presents the level of congestion. It is 
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calculated by incorporating the level of service of the roadway, AADT, and number of 

lanes. A higher value of congestion index indicates a higher level of congestion. 

Variables selected for model development depended on the quality of the data 

provided, the purpose of the variables, and the significance of those variables in 

calculating the crash count. More than 6000 segments with an average length of 2.2 miles 

were identified over the six years of roadway data. MoDOT chose the beginning and 

ending points of the segments based on the geometric and traffic properties of the 

segments and were included in roadway segments database. 

When a regressor is nearly a linear combination of other regressors in the model, 

the affected estimates are unstable and have high standard errors. This problem is called 

collinearity or multicollinearity (31). It is a good idea to find out which variables are 

nearly collinear with which other variables and remove them from the analysis. Two 

variables, “congestion index rate” and “pavement index,” in the initial dataset were 

highly multicollinear with “congestion index” and “PSR” respectively. They were 

removed from the analysis. A multicollinearity diagnostic was conducted in SAS using 

PROC REG with the options COLLIN (32). Belsley et al. (31) suggest that in the results 

of collinearity diagnostics, when the value of ‘condition index’ is larger than 100, the 

estimates might have a fair amount of numerical error. The values of ‘condition index’ 

were found as 161.08 and 5210.034 for “pavement index” and ““congestion index rate” 

respectively. 

5. RESULTS 

Generalized linear model was used to model the crash counts on the Missouri 

interstate highway segments using a negative binomial link function. A  summary  of  the  

parameter  estimates  and  their  standard  errors  for  the NB models developed in this 

study are presented in Table 2. The results indicate that for almost all of the models the 

variables lane, width, shoulder width, and PSR were not statistically significant factors in 

crash occurrences.  

The signs of the parameter estimates make sense: number of lanes has a negative 

sign for all models, indicating that higher number of travel lanes reduces the number of 
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crashes. This is in contrast with some of the previous studies that found higher number of 

lanes associated with higher risk of crashes (33-36). They used both AADT/n, where n = 

number of lanes, and n in their studies. We used AADT and n. So, in our study, the 

coefficient of n stands for the effect of increasing the number of lanes while holding 

AADT constant for that segment. In other studies ( e.g. Abdel-Aty and Radwan (33) and 

Milton and Mannering (36)), increasing n means increasing the total AADT for the 

segment. Therefore, the negative sign of the coefficient of n in our study implies that 

increasing the number of lanes while keeping AADT constant enhances safely. In other 

studies, increasing n implies that not only are we increasing the number of lanes, but we 

are also increasing the amount of traffic. Hence, the positive sign of the coefficient makes 

sense for these other studies. The natural logarithm of AADT has a positive sign for all 

models, which indicates a higher number of crashes with higher traffic volume.  

Table 2. Parameter estimates and their standard errors for the different negative binomial 

models  
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Models for all collision types combined 

All severities  
(Ф=1.1777) 

-8.6195 

(0.7035) 

-0.1483 

(0.0276) 

0.03 

(0.0271) 

-0.0163 

(0.0098) 

1.2857 

(0.0528) 

-0.0416 

(0.0036) 

0.0275 

(0.0407) 

-0.0014 

(0.0061) 

-3.0067 

(0.1981) 

-0.1372 

(0.0553) 

Only fatal 
(Ф=1.7012) 

-18.5471 

(1.5354) 

-0.2567 

(0.0475) 

-0.048 

(0.0513) 

0.0042 

(0.0181) 

1.7118 

(0.1176) 

-0.001 

(0.0068) 

0.1751 

(0.0743) 

0.0104 

(0.0108) 

-3.0752 

(0.3890) 

-0.4763 

(0.0968) 

Only nonfatal 
(Ф=1.1812) 

-8.5948 

(0.7052) 

-0.1478 

(0.0276) 

0.0295 

(0.0271) 

-0.0163 

(0.0098) 

1.2863 

(0.0529) 

-0.0419 

(0.0036) 

0.0259 

(0.0407) 

-0.0019 

(0.0061) 

-3.0193 

(0.1984) 

-0.1307 

(0.0554) 

Models for all severity levels combined 

Head on 
(Ф=9.5631) 

-30.8784 

(4.7084) 

-0.5973 

(0.1431) 

0.0574 

(0.1396) 

0.0669 

(0.0553) 

2.6216 

(0.3552) 

-0.0048 

(0.0212) 

0.335 

(0.2122) 

-0.0217 

(0.0315) 

-1.1127 

(1.1768) 

-0.6067 

(0.2968) 

Rear end 
(Ф=1.7502) 

-16.5226 

(1.0727) 

-0.3263 

(0.0372) 

-0.0088 

(0.0348) 

-0.0193 

(0.0131) 

2.0702 

(0.0857) 

-0.0449 

(0.0048) 

0.1544 

(0.0556) 

-0.0001 

(0.0081) 

-4.7338 

(0.2825) 

-0.3175 

(0.0744) 

Sideswipe  
same dir. 
(Ф=22.0498) 

-30.6095 

(7.8961) 

-0.7841 

(0.2326) 

-0.2722 

(0.3013) 

-0.0652 

(0.0816) 

2.9805 

(0.5859) 

-0.0047 

(0.0330) 

0.239 

(0.3256) 

0.0161 

(0.0527) 

-3.5892 

(2.0097) 

-0.5271 

(0.4692) 

Sideswipe  
opposite dir. 
(Ф=1.4712) 

-23.9352 

(1.2394) 

-0.5014 

(0.0395) 

0.0085 

(0.0348) 

-0.0137 

(0.0136) 

2.669 

(0.1007) 

-0.0483 

(0.0052) 

0.4197 

(0.0581) 

-0.0007 

(0.0080) 

-3.4065 

(0.3146) 

-0.2656 

(0.0765) 

Angle 
(Ф=1.5897) 

-23.2943 

(1.4463) 

-0.3038 

(0.0447) 

-0.0198 

(0.0416) 

-0.0241 

(0.0157) 

2.351 

(0.1164) 

-0.0276 

(0.0061) 

0.3661 

(0.0683) 

0.0095 

(0.0093) 

-3.1084 

(0.3733) 

-0.2812 

(0.0875) 

- Bold numbers indicate significance at 95% confidence level, and italic numbers at 90% confidence level. 

- Ф represents the estimated dispersion parameter. 
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Speed limit has a negative sign for all the models developed; indicating higher 

speed limits decrease the number of crashes. The sign can be explained as: these models 

do not indicate if the crash happened in an urban or rural area; it is therefore reasonable 

to state that fewer crashes occur in the rural areas as a result of lesser traffic, and rural 

areas have higher speed limit. The speed limit is another way to capture the changes in 

the number of crashes as a result of a change in type of area. The congestion index was 

also found to have a positive sign on models where it is a significant factor. This 

indicates that a higher number of crashes occur with more congestion, which is very 

similar to AADT. Percent commercial has a negative sign and was found to be 

significant, which indicates that higher percentage of heavy vehicles in the traffic mix 

results in fewer crashes. This indicates that drivers in general take caution around heavy 

vehicles. It was also found that the percentage of heavy vehicles had the highest effect on 

the reduction of rear-end crashes. 

The transition variable was designated in the model to capture the effects of the 

safety strategies during the years 2005 through 2007. This factor was found to be 

statistically significant at 95% level of confidence and have a negative sign on all the 

models developed. The negative sign of the estimate indicates a reduction in the number 

of crashes during the implementation years, 2005 - 2007.  The estimated values for this 

parameter indicates that the safety improvement strategies were mostly effective in 

reducing the fatal crashes compared to nonfatal crashes and in reducing the head-on 

crashes (leading cause of fatal crashes), compared to the other types of collisions (see the 

spider chart in Figure 1). The effect on crash type sideswipe-same direction is not shown 

in the figure as it was not found to be significant. A clear connection between the two 

findings can be observed from Figure 1; head-on collisions are the most severe types of 

crashes that result in fatalities.  

The transition variable was used with four continuous quantitative levels from 0 

before 2005, and then 0.25 to 0.75 from 2005 to 2007 for each year. It was used to 

investigate the predicted values of crashes in 2008, assuming with/without safety 

improvements, and the predicted numbers for different models were compared. shows the 

mean, standard deviation, min, max, and sum of the predicted crash counts in an 

interstate roadway segment for the year 2008, assuming there were/were not safety 
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improvements implemented on the interstate highways. Comparing the “without” 

condition with the “with” condition, a drop can be observed in all the measures shown in 

Figure 2 presents a clear illustration of the percent reduction in the expected value of the 

number of crashes for 2008 as a result of the safety improvement program. It can be 

observed that the highest reduction (highest safety improvement effect) was 30% for 

only-fatal crashes. In terms of the collision type, the safety enhancement strategies had 

the highest effect on head-on crashes. This type of crash specifically results in high 

fatalities and the goal of the MSHSP was to reduce the number of fatal crashes. It was 

also found that the highway safety improvements result in a reduction of 18-33% in the 

number of other collision types including rear-end, sideswipe same- and opposite-

direction, and angle crashes. 

 

Figure 1. Graphical comparison of the effect of safety improvements on the crash models 
developed (values represent the estimate for the transition variable for each model). 

Table 3, indicating the safety enhancing effects of the Missouri Blueprint 

strategies. It can also be observed that the maximum number of crashes included rear-end 

and sideswipe-same direction crashes. Figure 2 presents a clear illustration of the percent 

reduction in the expected value of the number of crashes for 2008 as a result of the safety 

improvement program. It can be observed that the highest reduction (highest safety 
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improvement effect) was 30% for only-fatal crashes. In terms of the collision type, the 

safety enhancement strategies had the highest effect on head-on crashes. This type of 

crash specifically results in high fatalities and the goal of the MSHSP was to reduce the 

number of fatal crashes. It was also found that the highway safety improvements result in 

a reduction of 18-33% in the number of other collision types including rear-end, 

sideswipe same- and opposite-direction, and angle crashes. 

Table 3. Comparison of the predicted crash count properties for 2008 with/without safety 

improvements 
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Models for all collision types combined 

All severities 9.590 8.652 23.186 20.919 0.04815 0.04344 188.175 169.774 10453.12 9430.98 

Only fatal 0.148 0.103 0.163 0.114 0.00083 0.00058 0.986 0.689 161.35 112.88 

Only nonfatal 9.576 8.682 23.317 21.139 0.04706 0.04266 189.527 171.830 10438.02 9463.39 

 
Models for all severity levels combined 

Head on 0.011 0.007 0.017 0.011 9.46E-06 6.00E-06 0.168 0.106 12.90 8.18 

Rear end 5.668 4.467 16.520 13.020 0.001695 0.001335 183.230 144.405 6178.20 4869.07 

Sideswipe  
same dir.  

0.005 0.003 0.009 0.006 7.56E-07 5.09E-07 0.100 0.067 5.96 4.01 

Sideswipe  
opp. dir.  

2.325 1.905 7.629 6.251 0.000216 0.000177 114.669 93.958 2535.22 2077.33 

Angle 0.445 0.361 0.949 0.768 0.00021 0.00017 10.942 8.861 486.10 393.67 

* “without” and “with” indicates that model estimates for 2008 are determined assuming without and with safety improvements 

respectively 
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Figure 2.   Percent reduction in the expected number of crashes predicted in 2008 as a 
result of safety improvement strategies. 

6. CONCLUSIONS AND RECOMMENDATIONS 

The objective of this study was to use a simple new approach to evaluate the 

effects of Missouri’s Strategic Highway Safety Plan (MSHSP) on the number of crashes 

that occurred on the Missouri Interstate highways. Through the years 2004 to 2007, the 

MSHSP was implemented in enforcement, education, engineering, and public policy. 

Using a continuous variable through the implementation years, negative binomial 

regression models were developed and used to estimate the expected number of crashes 

in 2008 with and without the implementation of MSHSP. The results show that this 

safety enhancement program was able to reach its primary goal, i.e. to reduce the number 

and severity of serious injury crash types. 

The study found a significant reduction of 10% for all crash severities combined 

and 30% for only fatal crashes. These strategies had the highest effect on the fatal crashes 

and particularly on the head-on crashes that result the most fatalities (1, 2). It was also 
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found that the highway safety improvements result in a reduction of 18-37% in the 

number of different collision types. The results from the model indicate that the MSHSP 

was a successful policy in reducing the overall number of crashes and decreasing the 

fatalities by decreasing the most severe injury crash types. The results are also consistent 

with many international studies and suggest that the safety strategic plans should be 

promoted as an effective treatment for highway crash fatalities (37, 38). However, further 

analysis of particular SHSP implementation effectiveness that focus on the specific 

emphasis areas identified in the SHSP is warranted in future studies to obtain a more 

detailed understanding of how the implementation of specific safety measures affect 

safety. Provided the specific implementation data on the highways are available, future 

studies will consider examination of the effect of safety improvement plans (such as 

‘adding median barrier’) on the type and injury severity of crashes. 
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II. CRASH FREQUENCY MODELING USING NEGATIVE BINOMIAL 

MODELS: AN APPLICATION OF GENERALIZED ESTIMATING EQUATION 

TO LONGITUDINAL DATA 

ABSTRACT 

The prediction of crash frequency models can be improved when several years of 

crash data are utilized, instead of three to five years of data most commonly used in 

research. Crash data, however, generates multiple observations over the years that can be 

correlated. This temporal correlation affects the estimated coefficients and their variances 

in commonly used crash frequency models (such as negative binomial (NB), Poisson 

models, and their generalized forms). Despite the obvious temporal correlation of 

crashes, research analyses of such correlation have been limited and the consequences of 

this omission are not completely known. The objective of this study is to explore the 

effects of temporal correlation in crash frequency models at the highway segment level.  

In this paper, a negative binomial model has been developed using a generalized 

estimating equation (GEE) procedure that incorporates the temporal correlations amongst 

yearly crash counts. The longitudinal model employs an autoregressive correlation 

structure to compare to the more traditional NB model, which uses a Maximum 

Likelihood Estimation (MLE) method that cannot accommodate temporal correlations. 

The GEE model with temporal correlation was found to be superior compared to the 

MLE model, as it does not underestimate the variance in the coefficient estimates, and it 

provides more accurate and less biased estimates. Furthermore, an autoregressive 

correlation structure was found to be an appropriate structure for longitudinal type of data 

used in this study. Ten years (2002 - 2011) of Missouri Interstate highway crash data 

have been utilized in this paper. The crash data comprises of traffic characteristics and 

geometric properties of highway segments. 

Keywords: generalized estimation equation, longitudinal analysis, temporal correlation, 

crash frequency model, autocorrelation, autoregressive 
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1. INTRODUCTION 

Crash analysis research in general has focused on the estimation of traditional 

crash prediction models such as negative binomial (NB) and Poisson regression models 

and their generalized forms due to their relatively good fit to the crash (Shankar et al., 

1995; Poch and Mannering, 1996; Abdel-Aty and Radwan, 2000; Savolainen and Tarko, 

2005; Mojtaba Ale Mohammadi et al., 2014a). Such crash prediction models take into 

account the crash frequency of a transportation facility (unit of analysis), such as an 

intersection or highway segment as a function of traffic flow and other crash-related 

factors. In these predictions, a greater amount of crash data, i.e. years of data, adds up to 

the reliability of the model estimates by reducing the standard errors (Lord and Persaud, 

2000); However, the same unit generates multiple observations over the years that might 

be correlated due to unobserved effects related to specific entities that remain constant 

over time (Park and Lord, 2009; Castro et al., 2012; Bhat et al., 2014; Mannering and 

Bhat, 2014; Zou et al., 2014). In fact, these unobserved effects create a serial correlation 

in the repeated observations from the same unit over the years. Serial correlation in 

longitudinal data is an important issue, as it violates the independence assumptions on 

unobserved error terms in Poisson and/or NB crash frequency models, and creates 

inefficiency in the coefficient estimations and bias (underestimation) in estimation of 

standard error (Ulfarsson and Shankar, 2003; Washington et al., 2011; Dupont et al., 

2013; Mohammadi et al., 2013; Bhat et al., 2014; Xiong et al., 2014).  

Marginal models appear to be the most appropriate models for handling the 

temporal correlation, such as the work of Maher and Summersgill (1996) that uses an 

iterative solution based on the method of “constructed variables” presented by 

McCullagh and Nelder (1989). However, the extent and type of temporal correlation 

requires prior information that is not always known to the analyst (Lord and Persaud, 

2000). Ulfarsson and Shankar (2003) tried to address the unit-specific serial correlation 

issue by using negative multinomial (NM) models in panel data and comparing the 

results with NB and random-effect negative binomial (RENB) model estimates. They 

showed that when there is correlation in the segment specific observations, the NM 

model is a much better fit compared to NB and RENB models. Dong, Richards, et al. 
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(2014) developed multivariate random parameter models to account for the correlated 

crash frequency data as a result of unobserved heterogeneity. However, the model 

estimation methodology –the full Bayesian method– is complex, and the implementation 

and transferability of the method is not straightforward. Other research studies have been 

conducted in road safety analysis to account for such correlations in longitudinal data, yet 

consequences of the omission of the serial correlation are still not completely known. The 

most recent studies using longitudinal crash data include the work conducted by 

Venkataraman et al. (2014) to develop random parameter negative binomial models to 

investigate heterogeneity in crash means and the effects of interchange type on crash 

frequency.  

Negative binomial models with a trend variable have also been used to study 

crash data with temporal correlation (Lord and Persaud, 2000; Noland et al., 2008; 

Quddus, 2008; Chi et al., 2012). Wang and Abdel-Aty (2006) used the technique of 

generalized estimating equations (GEE) to model rear-end crash frequencies at signalized 

intersections in order to account for the temporal and/or spatial correlation. GEE treats 

each highway segment as a cluster whose crash frequency observations have a temporal 

correlation over multiple years. In statistical terms, GEE captures the correlation 

incorporated in the error terms for model estimation. Hanley et al. (2003) showed that the 

use of GEE has the advantage of producing reasonably accurate standard errors and 

confidence intervals, especially when there are many subjects and few events. Hutchings 

et al. (2003) compared the performance of GEE with logistic regression by examining the 

change in parameter and variance estimates and the statistical significance of the 

independent variables. They found a lower number of significant variables when using 

the GEE method, and so recommended the use of nested structure models and GEE for 

analyzing motor vehicle crashes. H. L. Chang et al. (2006) applied the GEE procedure in 

a study of the effectiveness of drivers’ license revocation and its impact on offenders in 

Taiwan. Lenguerrand et al. (2006) used multilevel logistic models (MLM), GEE, and 

logistic models (LM) to analyze hierarchical correlated crash data structure and found 

that both GEE and LM underestimate the parameters and confidence intervals, making 

MLM the most efficient model followed by GEE and LM models.  
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Lord and Mahlawat (2009) used GEE method with an autoregressive (AR) 

correlation structure to investigate the effect of a small sample size and low mean value 

of crash frequency on the reliability of the inverse dispersion parameter estimate. They 

found that the standard errors of the models’ coefficients are larger when the serial 

correlation is accounted for in the modeling process. Méndez et al. (2010) used both 

logistic regression and GEE models (with exchangeable correlation structure) to study the 

relationship of a car’s registration year and its crashworthiness. Peng et al. (2012) also 

utilized the GEE method with an exchangeable correlation structure to study the 

relationship between drivers’ inattention and their inability in lane keeping. Stavrinos et 

al. (2013) used a GEE Poisson regression to study the impact of various distractions on 

driving behavior. Since the GEE models are not based on maximum likelihood estimation 

(MLE), they used a Chi-square test to estimate the significance of the variables. Giuffrè 

et al. (2013) studied the concepts of dispersion and correlation in yearly crash frequency 

data and presented a quasi-Poisson model in a GEE framework to incorporate both the 

dispersion and temporal correlation. In comparing the GEE with the COM-Poisson 

regression model, they recommended the use of GEE whenever it is handy. GEE 

procedure is robust against misspecification of the correlation structure in the response 

variable, but in that case, one may lose significant model efficiency and cause a 

misleading interpretation of the results, which in turn affects the reliability of the final 

safety estimation (Giuffrè et al., 2013). 

The examples outlined above illustrate how GEE is not actually a regression 

model, but rather a method used to estimate models for data characterized by serial 

correlation. Throughout this paper, the models with temporal correlation that use GEE 

procedure are referred to as the GEE models. Unlike the traditional marginal models, the 

GEE models can handle temporal or other forms of correlation, even if the extent and 

type of correlation is unknown. However, Giuffrè et al. (2007) demonstrated that utilizing 

data correlation structure in safety modeling results in higher estimation precision. 

Although they have acknowledged that GEE models generally are robust to 

misspecification of the correlation structure (Liang and Zeger, 1986), and researchers 

believe the true correlation structure is important only when marginal models are 

estimated by using data with missing values, but when the specified structure does not 
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incorporate all of the information on the correlation of measurements within the subjects, 

loss of efficiency in estimates can be expected Ballinger (2004).  

The objective of this paper is to present an application of GEE for developing a 

longitudinal negative binomial model that incorporates the temporal correlation of 

repeatedly measured crash counts over 10 years (2002-2011). For this purpose, the 

presence of an AR correlation structure, (AR(1), i.e. autoregressive with lag 1) in the 

longitudinal data was first determined by the Durbin-Watson test and then validated by 

the results. In this paper, a traditional NB model, namely a MLE model, was also 

developed and the results were compared with the GEE estimation results. This approach, 

however, assumes that there is no unaccounted unobserved heterogeneity correlated with 

crash-related covariates that creates a fake autoregressive correlation among the observed 

crash frequencies over the years. The remainder of the paper presents the technique of 

GEE approach followed by description of the crash data used. Results and findings are 

then followed by conclusions of the study. 

2. METHODOLOGY 

To measure the influence of different factors that change every year, crash data 

was grouped into clusters (each highway segment acts as a cluster), with crash frequency 

observations made over time in the same cluster tending to be more alike than 

observations across clusters. That means a segment is a cluster within which the crash 

frequencies are correlated over several years. This temporal correlation creates 

difficulties for traditional frequency model estimations (Ulfarsson and Shankar, 2003; 

Mannering and Bhat, 2014). While standard maximum-likelihood analysis specifies the 

full conditional distribution of the dependent variable, quasi-likelihood analysis 

postulates a relationship between the expected value of the response variable (crash 

frequency), the covariates, and between the conditional mean and variance of the 

response variable (Gill, 2001; Zorn, 2001). GEE is classified as a multinomial analogue 

of a quasi-likelihood function that offers different approaches to handle serial correlations 

(see Fitzmaurice et al. (1993) for details).  
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Zeger and Liang (1986) first used the GEE technique by extending the approach 

of generalized linear model to correlated data in the context of repeated observations over 

time. Consider a model of crash frequency observations at a highway segment � during 

time � (���) and � covariates (���), where � indexes the �  clusters (highway segments) 

and � indexes the � repeated measurements (time points), a function ℎ can be defined to 

specify the relationship between �� and �� (Zorn, 2001): 

 �� = �(��) = ℎ(���) 
(1) 

where,  

��: expected value of the crash frequency at segment �, (��), � =  1,2,. . . ,�  

�: � ×  1 vector of estimable parameters 

��: � ×  � matrix of covariates for segment � (� =  1,2,. . . � ,� =  1,2,. . . �). 

The variance of �� is specified as a function � of the mean ��: 

 �� = �(��)/� 
(2) 

where,  

��: variance of �� and 

�: scale parameter. 

The quasi-likelihood estimate of � is then the solution to a set of � “quasi-score” 

differential equations (Zeger and Liang, 1986; Zorn, 2001): 

 ��(�) = � ��
���

��(�� − ��) = 0

�

���

 
(3) 

where, 

D� = μ�/β,V� =
(� �)�/�� �(�)(� �)�/�

�
 

A�: T ×  T diagonal matrices with g(μ��) as the t�� diagonal element,  

R�(α): a T ×  T matrix of the working correlations across time for a given Y�, and 

α: a vector of unknown parameters with a specific structure (according to the type of 

correlation structure). 

The GEE estimator results can be obtained by substituting Equation (4) into 

Equation (3). In the resulting equation, it can be seen that GEE is an extension of the 

generalized linear model (GLM) approach, and that it reduces to the GLM when � equals 
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1 (Zorn, 2001). To solve GEE, every element of the correlation matrix �� is required to 

be known; although, it is not always possible to know the exact correlation type for the 

repeated measurements. To overcome this issue, the use of a “working” matrix �� for the 

correlation matrix �� based on the correlation matrix �� � was proposed by Liang and 

Zeger (1986). The estimate of � is then found from the following differential equation: 

 ��(�) = � ��
����

��(�� − ��) = 0

�

���

 
(4) 

The covariance matrix of � is given by 

 ������� = �� �� ��
�

�

���

���
�����

��

�� ��
����

�������
����

�

�� �

� �� ��
����

����

�

���

�

��

 
(5) 

Equations 5 and 6 provide almost always consistent estimates of � even with an 

inadequate estimate of the correlation matrix ��. Therefore, the confidence interval for � 

will be correct and there is no need to know the type of temporal correlation, even when 

the covariance matrix is specified incorrectly. However, to assume that ��  is an accurate 

estimate of �, the observation for each roadway segment should be known with no 

missing observations, otherwise, it will result in biased coefficient estimates (Lord and 

Persaud, 2000). 

The potential positive autocorrelation in crash frequency data was examined by 

the Durbin-Watson (DW) test. This test statistically examines if the residuals from a 

regression model are independent. The null hypothesis is that there is no autocorrelation 

(� = 0), and the alternate hypothesis is that the autocorrelation is positive (� > 0). The 

test statistic can be calculated as: 

 � =
∑ (�� − ����)��

���

∑ ��
��

���

 
(6) 

Where, �� = �� − ��� and �� and ��� are the observed and predicted values of the 

response variable for segment �, respectively. The � statistic becomes smaller as the 

serial correlations increase. For the crash data set used, the DW test statistic was found to 

be 0.5235 with 6849 degrees of freedom for the order 1 lag of autocorrelation and the 

null hypothesis was rejected at a significance level of 0.01, indicating the presence of a 
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positive autocorrelation. As mentioned earlier, what is perceived as temporal correlation 

in the crash data might be induced (infected) by the effects of unobserved heterogeneities 

that vary across years with a slow trend (Ulfarsson and Shankar, 2003). In this study, all 

the covariates in the models are considered at the highway segment level and assumed 

that there are no unobserved heterogeneity effects on the considered covariates of the 

model. This is a true assumption if the values of the working correlation matrix across 

time do not change drastically with a change in the analysis time period. In this study, 

different analysis periods were considered to determine the correlation matrices: A) three 

years (2002 – 2004), B) seven years (2002 – 2008), and C) ten years (2002 – 2011). 

Obtaining similar values of serial correlation from these analysis periods will provide 

evidence of the existence of a disinfected temporal correlation that can be addressed by 

the GEE method. In such conditions, one expects that the values of the parameter 

estimates and their level of significance will also be very similar to each other, no matter 

the number of years of data used for the longitudinal analysis. Table 1 shows the working 

correlation matrices for the AR correlation structure and the value of working correlation 

assuming an exchangeable correlation structure. The 1st to 3rd rows in each column of the 

table shows the AR correlations (lag 0 to lag 3) for the three time periods, respectively. It 

can be observed that the correlation values for each lag are very similar to each other. 

This indicates that an AR correlation structure can be reliably used to address the 

temporal serial correlation. 

Table 1. Correlation values for the autoregressive Type 1 and exchangeable structure 

A) 3 years, 2002-2004, Exchangeable working correlation = 0.7245 

B) 7 years, 2002-2008, Exchangeable working correlation = 0.7651 

 C) 10 years, 2002-2011, Exchangeable working correlation = 0.7552 

Working Correlation Matrix for autoregressive type 1 correlation structure 

 
Lag0 Lag1 Lag2 Lag3 

Period A 1 0.7462 0.5569 N/A 

Period B 1 0.7836 0.6140 0.4811 

Period C 1 0.7537 0.5681 0.4281 

N/A indicates non-applicability of the AR correlation for the lag in corresponding column for that analysis period  
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In this paper, an AR(1) (autoregressive with lag 1) correlation structure was used 

in the GEE procedure (Zorn, 2001; Allison, 2012). This correlation structure indicates 

that two observations within a segment made close in time tend to be more correlated 

than two observations made far apart in time from the same segment. There are other 

correlation structures, such as an exchangeable structure that specifies, for each segment, 

the temporal correlations are equal across the years. And an independent structure that 

forces the cross-time correlation to be zero for each segment for which, the GEE 

estimation reduces to ordinary MLE, so the estimated coefficients would be the same as 

those for traditional NB model. For detailed information about various correlation 

structures, refer to the work published by Hardin and Hilbe (2007).  

The GENMOD procedure with a REPEATED option in SAS V.9.3 was used to 

follow the GEE procedure and develop the model of interest (SAS, 2008; Allison, 2012). 

Two goodness-of-fit indices --quasi-likelihood under the independent model criterion 

(���), and its sample version, called ����-- were also found to determine the reliability 

of the coefficients estimates. As GEE is a quasi-likelihood-based method, Pan (2001) 

suggested using the ��� which is equivalent to the ��� in evaluating competitive 

models’ fit. ��� is defined as 

 ���(�) = − 2����(�),�� + 2�����(Ω�����) 
(7) 

where, ����(�),�� is the quasi-likelihood function under the independent working 

correlation assumption, evaluated with the parameter estimates under the working 

correlation of interest �, ��(�), ��� is the inverse of the model-based covariance estimate 

and ��� is the robust covariance estimate. The underlying principle of ��� is comparable 

to ���. The first term of ��� (refer to Equation 5) is the quasi-likelihood computed using 

a specified working correlation structure, which corresponds to the likelihood estimation 

equivalent of the ��� and likewise the second term is the penalty which serves similar 

effect as the second term in computing ��� (Hardin and Hilbe, 2007). Hardin and Hilbe 

(2007) also suggested the use of ���� to approximate ���. However, ���� cannot be 

applied to select the working correlation matrix R, as the presumption of ���� is that the 

specification of working correlation is correct. ���� is defined as 
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 ����(�) = − 2����(�),�� + 2� 
(8) 

where, � is the number of regression parameters. Similar to the concept of AIC, the 

smaller the QIC and QIC� are, the better the fit of the model. The importance of the above 

measures of goodness-of-fit is significant when comparing different models (e.g. with 

different correlation structures). This study also utilizes the chi-square values of the 

estimated model parameters and the cumulative residual (CURE) plots to investigate the 

quality of fit and compare the GEE models with the common negative binomial model 

(Hauer and Bamfo, 1997; Lord and Persaud, 2000). 

3. CRASH DATA  

3.1. Data Description 

The Missouri Department of Transportation (DOT) portal of safety investigation 

provided access to the accident data base for all of the recorded years of data. The data 

consists of all levels of crash severity for motor-vehicle crashes (fatal to property-

damage-only accidents) at 17 interstate highways in the state of Missouri from 2002 to 

2011. Table 2 presents the major yearly characteristics of these highways. The highways 

with a total length of about 1200 miles were classified as divided highways (65% in rural 

areas and 35% in urban areas). The total number of crashes in the data set analyzed was 

167,783 crashes, out of which 37% occurred in rural areas and 63% in urban areas. The 

rate of crash (per mile, per vehicle) for a segment in each year is shown in Column 2 of 

Table 2, with the total number of crashes on all interstate highways presented in Column 

3.  

The initial explanatory variables considered for this analysis were the area type 

(urban or rural), number of lanes, lane width (min of 10 ft. to max of 18 ft.), shoulder 

width (min 0 ft. to max of 15 ft.), AADT (Annual Average Daily Traffic), speed limit 

(55, 60, 65, and 70 mph), PSR (pavement serviceability rate), PCI (pavement condition 

index), CIR (congestion index rate), and percentage of commercial vehicles (truck 

percentage). These variables were selected for model development depending on the 

quality of the data provided, function of the variables, and the significance of those 

variables in calculating the crash frequency. 
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PSR is equal to two times the Ride number plus the PCI. The Ride number is an 

index derived from controlled measurements of longitudinal profile in the wheel tracks 

correlated with rideability of a pavement using a scale of 0 to 5, with 5 being perfect and 

0 being impassable. The PCI is a numerical rating of the pavement condition that ranges 

from 0 to 100, with 0 being the worst possible condition and 100 being the best possible 

condition. More information on the indices of the Ride number and PCI can be found on 

the standards ASTM D6433-07 (ASTM-D6433-07, 2007) and ASTM E1489-08 (ASTM-

E1489-08, 2008), respectively. A higher value of PSR indicates a higher serviceability of 

the pavement. The CIR presents the congestion level, calculated by incorporating the 

level of service of the highway, AADT, and number of lanes. A higher value of this 

variable is a sign of a higher level of congestion.  

Table 2. Descriptive statistics of segment properties of Missouri interstates (2002-2011) 

Year Number of crashes,  

per segment  

(min-mean-max) 

Number  

of crashes,  

Total  

Annual Average  

Daily Traffic (AADT) 

(min-mean-max) 

Number of  

lanes (min- 

mean- max) 

Pavement 

Serviceability Rate 

(min-mean-max) 

Percent commercial 

(min-mean-max) 

2002 0-17.5-347 18955 1985-29477-101594 2-2.6-7 19.3-32.1-66.4 0.041-0.215-0.582* 

2003 0-18.1-361 19581 1867-29467-98485 2-2.6-7 17.4-32.3-37.4 0.041-0.208-0.406 

2004 0-17.9-131 19343 1919-29861-109420 2-2.6-6 18.9-32.1-37.3 0.046-0.229-0.582 

2005 0-17.5-150 19101 1865-29933-109573 2-2.6-6 24.0-33.0-39.6 0.045-0.234-0.582 

2006 0-17.3-176 18922 1874-30418-114753 2-2.5-6 23.4-34.1-37.5 0.049-0.234-0.582 

2007 0-19.0-168 19308 1893-31446-115901 2-2.6-6 22.9-34.1-37.6 0.049-0.229-0.622 

2008 0-16.9-121 18474 1920-30301-115182 2-2.6-6 24.9-33.5-37.0 0.049-0.228-0.582 

2009 0-17.3-133 17823 1955-30678-107689 2-2.7-6 26.3-33.4-37.0 0.034-0.234-0.582 

2010 0-17.0-149 17900 830-30335-106612 2-2.7-6 18.4-30.7-36.8 0.050-0.230-0.674 

2011 0-16.5-188 17742 813-30158-105546 2-2.7-6 19.9-31.1-37.5 0.050-0.224-0.674 

* This high value of truck percentage probably represents night time at specific segments of the highways with low traffic 

More than 6000 segments, with an average length of 2.2 miles, were identified 

over the 10 years of crash data. The Missouri DOT determined the segmentation, i.e., 

chose the beginning and ending points of the segments based on the homogeneity of the 

geometric (number of lanes, lane width, etc.) and traffic properties (AADT) of segments. 

Other segment properties that are recorded in the segmentation database take the value of 

that property that prevails throughout the majority of the segment. That is, for example, if 

the majority of a segment has pavement type A and the rest is type B, the value for the 

pavement type of that segment is recorded as type A. Therefore, one cannot say for 

certain that a segment is homogenous in terms of all the variables throughout the length 
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of the segment. Some of the pavement-related variables that were in the original dataset 

include: shoulder type, surface type, PSR, and pavement index out of which, only the 

continuous variable PSR was considered in this study. If the geometric or traffic 

characteristic of a segment changed for any year, that segment was identified as a new 

segment with new sets of properties for the rest of the years until it undergoes another 

change in the deterministic homogenous properties. The crash related databases can be 

accessed through Missouri DOT’s virtual private network that requires coordination with 

the transportation planning section. 

Figure 1 depicts the total number of crashes occurred on the interstate highways 

of Missouri during 2002 to 2011. Only those highways with the most variation in crashes 

are shown in the chart. It can be observed that there is not much variation in the number 

of crash statistics over the years, which might imply there is correlation in crash 

frequency observations. Interstate-70, I-44, and I-270 have the highest total number of 

crashes per year amongst the highways. For similar studies that have used several years 

of data with consideration of the correlation amongst the repeated observations, the 

interested reader is referred to Guo et al. (2010a), Venkataraman et al. (2011), Castro et 

al. (2012), Venkataraman et al. (2013), and Venkataraman et al. (2014).  

 

Figure 1. Total number of crashes on a selected few of the interstate highways of 
Missouri with most variation. (legend presents the name of the interstate highways, e.g. 

44 indicates interstate 44) 
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3.2. Multicollinearity 

Variables that were involved in multicollinearity were removed from the analysis. 

When a regressor variable is nearly a linear combination of other regressors in the model, 

the affected estimates are unstable and have high standard errors. This problem is called 

collinearity or multicollinearity. It is beneficial to find out which sets of variables are 

multicollinear and withdraw one variable from each set (Washington et al., 2011). In this 

study, in addition to the Pearson’s correlation coefficient, variance inflation factor (VIF), 

tolerance, and condition index (CI) were also used for detecting multicollinearity (Littell 

et al., 2002). Table 3 presents the Pearson’s correlation coefficient between the suspected 

variables, VIF, and Tolerance values. The approach used in the analysis follows that of 

Belsley et al. (2005).  

Table 3. Pearson correlation coefficients and collinearity diagnostics  

Pearson Correlation Coefficients Collinearity Diagnostics 

Parameter PSR† PCI† CIR† Percent commercial VIF‡ Tolerance 

PSR 1 0.99994 0.01968 0.0976 7.653 0.13066 

PCI 0.99994 1 0.01959 0.09764 6.261 0.15971 

CIR 0.01968 0.01959 1 0.64054 8745.4 0.0001143 

Percent commercial 0.0976 0.09764 0.64054 1 8745.4 0.0001143 

† PSR, PCI, and CIR stand for pavement serviceability rate, pavement condition index, and congestion index rate, respectively 

‡ VIF represents the variance inflation factor 

Note: Bold values are statistically significant at 99% level of confidence 

The Pearson correlation coefficient between the PCI and PSR is almost 1. Also, 

CI values of 5210 and 161 were found in the analysis, indicating that there is a group of 

multicollinear variables in the dataset including the variable PCI. Belsley et al. (2005) 

suggest that, when this number is larger than 100, the estimates might have a fair amount 

of numerical error. The VIF value for CIR is as high as 8745, which is much higher than 

10 and, according to Kutner et al. (2004), an indication of multicollinearity. Percent 

commercial also has a high VIF value which probably indicates collinearity with the CIR. 

The variables PCI and CIR were removed from the analysis and a multicollinearity 

diagnosis was rerun, with no sign of multicollinearity was observed. 
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3.3. Sample Size 

As this study uses the GEE method, the number of observations for each class of 

crash incorporating categorical factors within each year should be examined (Maas and 

Hox, 1999; Hutchings et al., 2003). For the sake of brevity, the frequency tables for each 

factor at each step of this process are not included in the paper. However, the detailed 

results of this examination for the variables shoulder width, PSR, number of lanes, and 

speed limit can be found elsewhere (Mohammadi, 2014). 

In order to verify the sufficiency of the sample size for analysis, the variable 

shoulder width was examined within each year for the number of observations in each 

class. Assuming 60 observations as a sufficient number in each class (Mancl and 

DeRouen, 2001), it was observed that the shoulder width classes except 10 ft. (with 86% 

of the observations) lacked enough observations. The observations for the various classes 

of shoulder width were categorized into three groups according to its mean (9.4814) and 

standard deviation, SD (1.5622): A) less than mean – SD, B) between mean – SD and 

mean + SD, and C) more than mean + SD. This categorization also did not work as 

groups A and C still lacked enough data within the majority of the years considered. 

Further, the 25th, 50th, and 75th percentiles (used to group observations in sufficient 

numbers) did not resolve the problem, as all three percentile values had the same value, 

10 ft. Therefore, it was decided to remove the variable shoulder width from the analysis.  

PSR, which is a factor related to the PCI, is a continuous variable and the only 

way to verify the sufficiency of observations was to categorize the observations 

according to its mean value (32.474) and standard deviation (2.640). In order to obtain an 

optimal categorization (with at least 60 observations within each year), three classes of 

PSR were defined in the following format:  

 Class 1, “PSR < (mean – 0.3 x SD) = 24.55”,  

 Class 2, “(mean – 0.3 x SD) < PSR < (mean + 0.3 x SD)”, and  

 Class 3, “(mean + 0.3 x SD) < PSR”. 

The number of observations categorized by number of lanes was then tabulated to 

verify the sufficiency of observations in each class. It was observed that the categories 

equal to 4, 5, 6, and 7 lanes lacked enough observations. For this reason, it was decided to 
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combine these groups into one category of number of lanes which include more than 

three (nolanes>3). Therefore, three groups of nolanes were determined as follows: 

nolanes=2, nolanes=3, and nolanes>3. Similar to the other variables, speed limit (SL) was 

also examined for the number of observations in each class per year and the inspection 

showed that few groupings (6 out of 40 groups with observations in the range of 41 to 53) 

lack enough observations for some years. The variable speed limit was nevertheless used 

in the model, as the shortage in the number of observations was relatively minor.  

3.4. Confounding Effects and Variable Specification 

The possible confounding effect of the classes of number of lanes, and speed limit 

(SL) with the variable area type (urban or rural) was examined. Table 4 presents the 

distribution of the number of observations for number of lanes and speed limit classes 

within each area type. The top and bottom row for each combination presents the actual 

number and percentage of the observations (e.g. 915 segments were observed in the 

urban areas with speed limit of 55 mph that consists 13.9% of all the observed segments 

in the dataset). 

Table 4. Number and percentage of observations within area types, by number of lanes 

and speed limit  

Area type 
Number of Lanes  Speed Limit (mph) 

2 3 >3 Total  55 60 65 70 Total 

Rural 
2463 39 - 2502  0 28 14 2459 2501 

36.2 0.57 - 36.8  0 0.43 0.21 37.35 37.99 

Urban 
1641 1474 1188 4303  915 1194 913 1060 4082 

24.1 21.7 17.5 63.2  13.9 18.14 13.87 16.1 62.01 

Total 
4104 1513 1188 6805  915 1222 927 3519 6583 

60.3 22.2 17.5 100  13.9 18.56 14.08 53.46 100 

 

For rural areas, highways with only two or three lanes were observed in the data. 

Moreover, only 39 observations were found for number of lanes equal to three. Two 

analyses were conducted: 1) rural segments with three lanes were deleted from the 

dataset, and 2) the 39 rural segments with three lanes were combined with rural segments 

with two lanes rather than delete these observations. Since no significant change was 
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observed in the estimates, it was decided to keep the 39 observations combined with the 

observations with two lanes. For urban areas, sufficient data were found for each class.  

For the speed limit classes, it was observed that the rural area lacks a sufficient 

number of observations in the SL classes of 55, 60, and 65 mph, while 98.32% of the 

rural segments have a speed limit of 70 mph. This issue was not observed in the urban 

category. One might suspect that there is confounding amongst the variables speed limit, 

number of lanes, and area type. To investigate this issue, several different analyses were 

conducted using these newly defined categories to examine the effect of each variable 

when fitted simultaneously as classification variables. Since there were confounding 

effects, some of the effects and their interactions could not be estimated. Such 

estimability issues arising out of confounding are to be expected. As a solution, it was 

decided to define new dummy variables, and each represents one of the ���� ×

 ������� ×  �� interactions. Three groupings were chosen for the three nolanes 

categories of two, three, and more than three lanes, four SL categories of 55, 60, 65, and 

70 mph, with the exception that there was no observation for the rural areas with speed 

limit 55 mph across all categories of nolanes. Table  5 presents these dummy variables 

along with the number of observations for each category. The three parts of the dummy 

variables indicate the area type, number of lanes, and speed limit criteria, respectively. 

There are overall 12 categories defined for urban and six categories for the rural area 

segments.  

The group in rural area with three lanes and speed limit of 60 mph (rural_3_60) 

had zero observations, and therefore was not used in the model. The rural category with 

two lanes and speed limit of 70 mph (rural_2_70) was used as the base condition in the 

model. The other categories in the rural area type did not have the target value of 60 

observations, but were retained to avoid removing the data. The soundness of this 

decision was double-checked by running two models –one with and another without the 

small-sized rural variables– and comparison of the two models. All the dummy variables 

in the rural category were not found to be significant variables in the model. In other 

words, these categories did not result in statistically different effects from the base 

condition represented by rural_2_70. This might be because of the small number of 
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observations that exist in those categories. Therefore, all of those rural categories were 

lumped together with the rural_2_70 group.  

Table 5. List of the dummy variables considered for the analysis 

Variable1 (Obs.)2 Definition  

Urban_2_55 (699) 1, if area = Urban, number of lanes = 2, and speed limit = 55 mph, 0 otherwise 

Urban_2_60 (180) 1, if area = Urban, number of lanes = 2, and speed limit = 60 mph, 0 otherwise 

Urban_2_65 (261) 1, if area = Urban, number of lanes = 2, and speed limit = 65 mph, 0 otherwise 

Urban_2_70 (877) 1, if area = Urban, number of lanes = 2, and speed limit = 70 mph, 0 otherwise 

Urban_3_55 (415) 1, if area = Urban, number of lanes = 3, and speed limit = 55 mph, 0 otherwise 

Urban_3_60 (323) 1, if area = Urban, number of lanes = 3, and speed limit = 60 mph, 0 otherwise 

Urban_3_65 (484) 1, if area = Urban, number of lanes = 3, and speed limit = 65 mph, 0 otherwise 

Urban_3_70 (140) 1, if area = Urban, number of lanes = 3, and speed limit = 70 mph, 0 otherwise 

Urban_3p_553 (216) 1, if area = Urban, number of lanes > 3, and speed limit = 55 mph, 0 otherwise 

Urban_3p_60 (691) 1, if area = Urban, number of lanes > 3, and speed limit = 60 mph, 0 otherwise 

Urban_3p_65 (168) 1, if area = Urban, number of lanes > 3, and speed limit = 65 mph, 0 otherwise 

Urban_3p_70 (143) 1, if area = Urban, number of lanes > 3, and speed limit = 70 mph, 0 otherwise 

Rural_2_60 (28) 1, if area = Rural,  number of lanes = 2, and speed limit = 60 mph, 0 otherwise 

Rural_2_65 (12) 1, if area = Rural,  number of lanes = 2, and speed limit = 65 mph, 0 otherwise 

Rural_2_701 (2422) 1, if area = Rural,  number of lanes = 2, and speed limit = 70 mph, 0 otherwise 

Rural_3_60 (0) 1, if area = Rural,  number of lanes = 3, and speed limit = 60 mph, 0 otherwise 

Rural_3_65 (2) 1, if area = Rural,  number of lanes = 3, and speed limit = 65 mph, 0 otherwise 

Rural_3_70 (37) 1, if area = Rural,  number of lanes = 3, and speed limit = 70 mph, 0 otherwise 

1. Dummy variables were defined in this format due to confounding effects of the incorporating variables. Variables in bold were used 

in the final model. 

2. The values in the parentheses present the number of observations for the corresponding variable. 

3. 3p means 3-plus indicating more than 3 lanes. 

Finally, to incorporate the impact of the main variables on crash count differently 

in urban and rural road segments, a new dummy variable, “area”, was defined and was set 

to be zero for rural (base category) and one for urban. The interactions of this variable 

with the other main factors of the model were considered to be included in the model as: 

������ =  ���� ×  ������; 

�������������� =  ���� ×  �����������������; 

��������� =  ���� ×  ��������ℎ; 
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������� =  ���� ×  ���; 

The interaction term AREAWIDTH term gave rise to a complicated convergence 

iteration process that did not satisfy the convergence criterion. Investigating the number 

of observations per lane width category for the rural and urban areas revealed that, since 

only three of seven lane width classes were observed in the rural area, estimation of the 

complete set of interaction effects was not possible with the available data. Therefore, 

this term was removed from the model. The interaction term AREAPSR was not found to 

be statistically significant in any of the two GEE and MLE models and so was also 

removed from the analysis. However, the main factors that were not found to be 

statistically significant but were involved in a significant interaction term were left to 

remain in the model. That is, the “conditional effects” of the main factors that were not 

statistically significant remained in the model to correctly interpret the interaction 

parameters (Nelder, 1977; Cox, 1984). Although, the dummy variable “area” was not 

used in the model as it was confounded by the combinatory dummy variables (see Table 

5). Table 6 presents the name and definition of the continuous and categorical variables 

used in this study. 

Table 6. List of the continuous and classification variables considered for the analysis 

Variable Definition 

Continuous variables 

LnAADT  Natural logarithm of the annual average daily traffic in vehicle per day. 

Percentcommercial The annual average percentage of trucks or heavy vehicles. 

Lanewidth  The width of the highway lane in feet. 

Areadt  The interaction between two variables “Area”† and “LnAADT”.  

Areacommercial The interaction between two variables “Area” † and “Percentcommercial”. 

Classification variable 

PSRclass 

 

Classification of PSR, an index for pavement serviceability rate: 

 PSRclass = 1 when              PSR < 24.55 

 PSRclass = 2 when 24.55 ≤ PSR < 40.39 

 PSRclass = 3 when 40.39 ≤ PSR 

† “Area”=0 for rural, and =1 for urban areas; though, it was not used in the model due to confounding effect with combinatory dummy 

variables (see Table 5) 
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4. RESULTS AND DISCUSSION 

4.1. Model estimates and comparisons 

Two models were developed, an autoregressive type 1 (AR1) GEE model 

incorporating temporal correlation and a traditional NB (MLE model). A negative 

binomial distribution was used to specify the error structure; however, In the GEE model, 

the crash frequency for each year was used as a separate observation (a dependent 

variable), to be modeled by the crash covariates. Table 7 presents the results of the 

estimates and standard errors of the coefficients for the GEE and MLE models along with 

the ��� and ���� values for the GEE model. The signs of the parameter estimates make 

sense, however, interpreting these signs may not be completely accurate, as some 

variables were not found to be significant in the GEE model. A primary objective of this 

study is also to find out whether factors that are found to be statistically significant in 

MLE model are truly significant.  

The natural logarithm of AADT has a positive sign for both models that indicates 

a higher number of crashes with higher traffic volume. PSRclass was not found to be a 

statistically significant factor in any of the models, except lower classes of PSR in the 

MLE model. Observing the trend of the PSRclass estimates reveals that higher classes of 

PSR (better pavement) results in comparatively lower crash frequency. Truck percentage 

(percentcommercial) was not found to be a significant factor in the GEE model, but it 

was found to be significant with a negative value of estimate in the MLE model, 

indicating that more heavy vehicles result in fewer crashes. This indicates that drivers are 

generally more cautious when they see or are traveling close to large vehicles. According 

to Carson and Mannering (2001), the reduction in crash frequency due to this factor 

might also relate to the reduction in speed that heavy vehicles have on the traffic stream. 

Lao et al. (2014) also found similar results of the effect of truck percentage on rear-end 

crash occurrences. 

Lanewidth was only found to be significant in the MLE model, with a positive 

sign indicating that a higher lane width increases the likelihood of crash occurrence, 

which may seem counterintuitive. (For example, see the works of Li et al. (2008), Manuel 

et al. (2014), who found a result inconsistent with this study). According to Martens et al. 



41 

 

(1997), possible explanation may be that the drivers show improved lane-keeping and 

reduce their speed when the lane widths decrease. Similar results to this study regarding 

the effect of lane width have been found by other researchers (Aguero-Valverde and 

Jovanis, 2009; Dong, Clarke, Richards, et al., 2014; Dong, Clarke, Yan, et al., 2014). 

These contradictory findings indicate that further investigation of this issue may be 

required. 

The interaction of the area type and the LnAADT (areadt) was found to be 

statistically significant in both models with a negative sign. This indicates that the effects 

of LnAADT in urban areas are smaller than that for rural areas. This estimate actually 

adjusts for the effect of LnAADT on the crash frequency depending on the area type 

considered. On the contrary, the effect of the interaction of area type with the percentage 

of commercial vehicles (Areacommercial) has a positive sign, indicating that the impact 

of truck percentage on crash frequency is higher in urban areas. Having said that, this 

interaction was only found to be statistically significant in the MLE model. 

Similar to the findings of Lord and Persaud (2000), the results show that not 

accounting for temporal correlation does not affect the way a variable affects crash 

frequency, but it considerably underestimates their variances. This may indicate that 

explanatory variables may be incorrectly attributed as significant if the temporal 

correlation is ignored in the model. Contrary to the results from Lord and Persaud (2000), 

temporal correlation affected the magnitude of the estimates in this study. 

The results in Table 7 show that the interactions among area type, number of 

lanes, and speed limit are statistically significant. The estimates of the interaction terms 

in the model are graphically shown in Figure 2. From the overall trend of change in the 

model estimate, it can be interpreted that the increase in speed limit results in a decrease 

in crash frequency in urban areas (a somewhat counterintuitive result), and the change in 

the number of lanes does not show a consistent trend in affecting the crash frequency, 

except when the speed limit is low (55 mph). In that case, increasing the number of lanes 

decreases the crash frequency. In contrast, previous similar studies have found that an 

increase in the number of lanes results in an increase in crash frequency (Milton and 

Mannering, 1998; Abdel-Aty and Radwan, 2000; Zegeer et al., 2002; Noland and Oh, 

2004; L.-Y. Chang, 2005).   
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Table 7. NB model estimates (see Tables 5 and 6 for variable definitions) 

Bold estimates are significant at 95% level of confidence (p-value < 0.05) 

Parameters 

Estimation method 

Generalized Estimating Equations   Maximum Likelihood Estimation  

Estimate Standard error  Estimate Standard error 

Intercept -18.8958 (1.2095)  -19.8319 (0.7870) 

lnAADT 1.8585 (0.0998)  1.9049 (0.0589) 

PSRclass1 -0.0047 (0.0337)  0.0613 (0.0313) 

PSRclass2 -0.0258 (0.0359)  -0.0077 (0.0381) 

PSRclass3 0 0  0 0 

Percentcommercial -0.5613 (0.3237)  -2.1734 (0.3166) 

Lanewidth 0.0436 (0.0593)  0.1272 (0.0403) 

Areadt -1.0045 (0.1194)  -0.9315 (0.0699) 

Areacommercial 0.3557 (0.4614)  2.1823 (0.4218) 

Urban_2_55 11.4347 (1.1854)  10.1408 (0.7159) 

Urban_2_60 10.9176 (1.1930)  9.5232 (0.7255) 

Urban_2_65 11.0373 (1.1907)  9.7382 (0.7218) 

Urban_2_70 10.7066 (1.1661)  9.5483 (0.7095) 

Urban_3_55 11.3496 (1.2071)  10.0128 (0.7312) 

Urban_3_60 11.2504 (1.2104)  9.9191 (0.7317) 

Urban_3_65 10.9705 (1.1992)  9.5883 (0.7263) 

Urban_3_70 10.6691 (1.1851)  9.1762 (0.7212) 

Urban_3p_55 11.3188 (1.2100)  9.9131 (0.7325) 

Urban_3p_60 11.1489 (1.2138)  9.7283 (0.7342) 

Urban_3p_65 11.1138 (1.2090)  9.6287 (0.7313) 

Urban_3p_70 10.7204 (1.2325)  9.3086 (0.7424) 

QIC -152184.0149      N/A 

QICu -152184.6453      N/A 
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Figure 2. Estimates of the interaction terms between number of lanes, and speed limit in 
urban areas (Top: effect of number of lanes within each class of speed limit, Bottom: 

effect of speed limit within each class of number of lanes)  
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The significance of these effects on crash frequency, however, cannot be directly 

determined from Table 7, because the p-values which determine the statistical 

significance are tailored to determining whether these categories have significantly 

different effects relative to the base category, which in this case is rural_2_70. While the 

effect of moving from one category to another can be computed by subtracting the slope 

estimates of one category from the other one, the statistical significance of this difference 

had to be tested using an additional step. For example, suppose we wish to determine the 

effect of changing the road segment from 2 to 3 lanes with the speed limit held constant 

at 60 mph. This effect is the difference between the slopes of urban_3_60 and 

urban_2_60, which is 11.2504 - 10.9176 = 0.3328. To determine if this difference is 

statistically significant, we redefined the dummy variable urban_2_60 to take the value of 

1 when SL=60, nolanes=2, or when SL=60 and nolanes=3. This new dummy variable 

would be the appropriate variable to use in the model if there is no difference between the 

(SL=60, nolanes=2) category and the (SL=60, nolanes=3) category. This is the null 

hypothesis for the test we are conducting. This dummy variable was fitted in the model 

along with urban_3_60. If the estimate for urban_3_60 is found to be statistically 

significant, then that means that there is significant deviation from the null hypothesis 

and the change from nolanes=2 to nolanes=3 for urban road segments with speed limit of 

60 mph, is statistically significant. Tables 8 and 9 show the results for the GEE model for 

all the possible changes that can be made between the number of lanes and the speed 

limit, using the GEE and MLE methodologies, respectively. 

Studying the results of the analysis (Tables 8 and 9) reveals that the standard 

errors estimated using MLE method are higher than those estimated by the GEE method, 

as was also the case for the other main factors of the model. This results from not 

accounting for the temporal correlation between the yearly observations of the same 

segments over the years. These results are consistent with others in the literature 

(Mannering and Bhat, 2014). The shaded areas in both tables show the statistically 

significant effects of the change in the number of lanes or speed limits. For example, 

changing the number of lanes from 2 to 3 lanes while keeping the speed limit of 70 mph, 

has a negative effect of e-0.372 on crash frequency in the MLE model, which is statistically 
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significant compared to the same change examined using the GEE method with an effect 

of e-0.038, though it is not statistically significant. 

Table 8. Analysis of statistical significance of the effect of change in the number of lanes 

and speed limit on crash frequency (using generalized estimating equation method) 

NoLanes 2 3 3+ 

2 

SL 55 60 65 70 55 60 65 70 55 60 65 70 

55 
Est. -0.517 -0.397 -0.728 -0.085 -0.184 -0.464 -0.766 -0.116 -0.286 -0.321 -0.714 

SD  0.178 0.154 0.143 0.143 0.156 0.140 0.202 0.159 0.145 0.172 0.332 

60 
0.517 Est. 0.120 -0.211 0.432 0.333 0.053 -0.249 0.401 0.231 0.196 -0.197 

0.178 SD 0.168 0.154 0.165 0.168 0.158 0.216 0.182 0.163 0.189 0.341 

65 
    Est. -0.331 0.312 0.213 -0.067 -0.368 0.282 0.112 0.077 -0.317 

    SD 0.136 0.137 0.146 0.120 0.197 0.156 0.134 0.161 0.329 

70 
      Est. 0.643 0.544 0.264 -0.038 0.612 0.442 0.407 0.014 

      SD 0.141 0.151 0.127 0.185 0.160 0.142 0.166 0.328 

3 

55 
        Est. -0.099 -0.379 -0.681 -0.031 -0.201 -0.236 -0.629 

        SD 0.126 0.111 0.193 0.135 0.111 0.150 0.323 

60 
          Est. -0.280 -0.581 0.068 -0.102 -0.137 -0.530 

          SD 0.122 0.200 0.148 0.114 0.157 0.327 

65 
            Est. -0.301 0.348 0.178 0.143 -0.250 

            SD 0.186 0.136 0.108 0.139 0.321 

70 
              Est. 0.650 0.480 0.445 0.051 

              SD 0.208 0.193 0.214 0.348 

3+ 

55 
                Est. -0.170 -0.205 -0.598 

                SD 0.133 0.158 0.332 

60 
                  Est. -0.035 -0.429 

                  SD 0.142 0.321 

65 
                    Est. -0.393 

                    SD 0.336 

70 
                    0.393 Est. 

                    0.336 SD 

Note. Nolanes, and SL represent the number of lanes and speed limit in mph, respectively. Est. presents the model 

estimates (effect of change in nolanes or SL), and SD stands for estimate’s standard error. Bold values are statistically 

significant at 95% level of confidence. 

Figure 3 presents a graphical comparison of the standard errors of the models’ 

estimates. It can be observed that the standard errors for the GEE model estimates are 

higher than those for their MLE model counterparts, except for the variable PSR, which 

has a subtle difference in standard error values. This indicates that the MLE model 

ignores serial correlation, underestimates the variance of the coefficient estimates, 

resulting in more significant factors. Some explanatory variables may become 

insignificant when temporal correlation is considered (Lord and Persaud, 2000), which is 

also the case here.  
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Table 9. Statistical significance of the effect of change in the number of lanes and speed 

limit in the model estimated by the method of maximum likelihood estimation  

NoLanes 2 3 3+ 

2 

SL 55 60 65 70 55 60 65 70 55 60 65 70 

55 
Est. -0.618 -0.403 -0.593 -0.128 -0.222 -0.553 -0.965 -0.228 -0.413 -0.512 -0.832 

SD  0.105 0.090 0.081 0.086 0.090 0.082 0.110 0.099 0.083 0.105 0.172 

60 
0.618 Est. 0.215 0.025 0.490 0.396 0.065 -0.347 0.390 0.205 0.106 -0.215 

0.105 SD  0.105 0.091 0.102 0.106 0.098 0.124 0.114 0.099 0.119 0.182 

65 
    Est. -0.190 0.275 0.181 -0.150 -0.562 0.175 -0.010 -0.110 -0.430 

    SD  0.083 0.084 0.088 0.080 0.110 0.097 0.080 0.104 0.172 

70 
      Est. 0.465 0.371 0.040 -0.372 0.365 0.180 0.081 -0.240 

      SD  0.085 0.090 0.078 0.105 0.100 0.083 0.104 0.172 

3 

55 
        Est. -0.094 -0.425 -0.837 -0.100 -0.285 -0.384 -0.704 

        SD  0.075 0.069 0.106 0.086 0.063 0.094 0.166 

60 
          Est. -0.331 -0.743 -0.006 -0.191 -0.290 -0.611 

          SD  0.074 0.109 0.090 0.069 0.098 0.168 

65 
            Est. -0.412 0.325 0.140 0.041 -0.280 

            SD  0.102 0.085 0.062 0.093 0.165 

70 
              Est. 0.737 0.552 0.453 0.132 

              SD  0.117 0.103 0.122 0.183 

3+ 

55 
                Est. -0.185 -0.284 -0.605 

                SD  0.080 0.106 0.173 

60 
                  Est. -0.100 -0.420 

                  SD  0.090 0.163 

65 
                    Est. -0.320 

                    SD  0.177 

70 
                    0.320 Est. 

                    0.177 SD  

Note. Nolanes, and SL represent the number of lanes and speed limit in mph, respectively. Est. presents the model estimates (effect of 

change in nolanes or SL), and SD stands for estimate’s standard error. Bold values are statistically significant at 95% level of 

confidence. 

Figure 4 presents the results of the χ�-values for the variables used in the models. 

The χ�-values for the PSRclass1, PSRclass2, percentcommercial, lanewidth, and 

areacommercial were too small to be visible in the figure. Their values are shown in 

Table 10. By comparing the χ�-values of the GEE model with the MLE model, it can be 

observed that almost all of the χ�-values for the GEE model are lower than those for the 

MLE model. This is also an indication that the GEE model incorporates temporal 

correlation and provides more reliable estimates compared to the MLE model. The 

decrease in χ�-value results in a higher p-value, and consequently makes the variables 

PSRclass1, percentcommercial, lanewidth, and the interaction variable areacommercial 
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insignificant at 95% level of confidence. A lower χ�-value indicates a better fit of the 

model (Allison, 2012). The only statistic that might make a difference in the resulting 

conclusion is the χ�-value of the PSRclass2, which is larger for the GEE model. 

Furthermore, this result verifies that the autoregressive correlation structure is an 

appropriate form of correlation to be used for this type of data. 

 

Figure 3. Comparison of the models’ standard errors using generalized estimating 
equations and maximum likelihood estimation methods (see Tables 5 and 6 for variable 

definitions) 

Lin et al. (2002) have discussed the cumulative residual (CURE) method to 

investigate models’ quality of fit. This method generates a plot in which the cumulative 

residuals are plotted for an independent variable of the model and compared against the 

zero-residual line (Lord and Persaud, 2000; Wang and Abdel-Aty, 2006; Lord and Park, 

2008). Lord and Persaud (2000) found that the crash models that incorporate time trend 

usually perform better than traditional models without time trend. In this study, CURE 

method was also used to evaluate the goodness of fit. This was done using the ASSESS 

option of the GENMOD procedure in the SAS code written for the model (SAS, 2008). 

Figure 5 shows an example of the CURE plots for the independent variable LnAADT, 

generated by SAS, for the GEE model with AR(1) correlation structure and MLE model.  
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Table 10. Comparison of relatively smaller χ�-values (see Tables 5 and 6 for variable 

definitions) 

Parameter 
Estimation method 

Generalized estimating equation Maximum likelihood estimation 

PSRclass1 0.0196 3.84 

PSRclass2 0.5184 0.04 

Percentcommercial 2.9929 47.12 

Lanewidth 0.5476 9.97 

Areacommercial 0.5929 26.76 

 

Figure 4. Comparison of the models’ χ�-values using generalized estimating equations 
and maximum likelihood estimation methods (see Tables 5 and 6 for variable definitions) 

The graph presents the actual cumulative residuals for the model (bold line) and 

the simulated residual paths (dotted lines). In order to evaluate an entire model these 

cumulative residual graphs were produced for all the variables and the link function. A 

comparison of the CURE plots for the independent variables in the GEE model and the 

MLE model indicated that the actual residual pattern for the GEE model is closer to the 

expected patterns generated by simulation. Also, similar to the result of the study 

conducted by Wang and Abdel-Aty (2006), in this study, higher p-values for the CURE 

test were obtained for the GEE model compared to the MLE model. A comparison of 
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these CURE plots in this study indicated a similar result to the study by Lord and Persaud 

(2000), confirming that the GEE model with temporal correlation is an improved crash 

frequency model with less biased and more accurate coefficient estimates. 

 

Figure 5. Cumulative residuals plot for LnAADT for the negative binomial models 
estimated using the methods of generalized estimating equation (top) and maximum 

likelihood estimation (bottom) 

 
4.2. Validation of correlation structure 

As a validation on the possible effects of unobserved hetrogeneities on the 

investigated temporal serial correlation, the estimates of the GEE models with three, 

seven, and 10 years of analysis periods (the same periods as were used for examining the 

correlation values) were compared to verify the assumption of having no unobserved 
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hetrogeneity left unaccounted for in the longitudinal crash data. Table 11 shows the 

results of the GEE model with AR(1) correlation structure for the three above-mentioned 

analysis periods. It can be observed that the covariate estimates and their significance in 

the model are very similar to each other. This result verifies the correctness of the 

assumption that AR correlation structure is present in the longitudinal crash data and 

further endorses the outcomes of the study. 

Table 11. Negative binomial model estimates using generalized estimating equations for 

three different analysis periods (see Tables 5 and 6 for variable definitions) 

Parameter 
3 years (2002-2004) 7 years (2002-2008) 10 years (2002-2011) 

Estimate Sd. Error Estimate Sd. Error Estimate Sd. Error 

Intercept -19.1238 1.5903 -18.5554 1.2734 -18.8958 1.2095 

lnAADT 1.9011 0.143 1.8462 0.1092 1.8585 0.0998 

PSRclass1 0.0315 0.0535 0.0318 0.0374 -0.0047 0.0337 

PSRclass2 -0.016 0.0545 0.0151 0.0369 -0.0258 0.0359 

PSRclass3 0 0 0 0 0 0 

Percentcommercial -0.3908 0.4322 -0.5687 0.3424 -0.5613 0.3237 

Lanewidth 0.0327 0.0641 0.0313 0.0576 0.0436 0.0593 

Areadt -0.979 0.1745 -1.012 0.1297 -1.0045 0.1194 

Areacommercial 0.3306 0.6253 0.1616 0.4875 0.3557 0.4614 

Urban_2_55 11.1303 1.7393 11.4822 1.2912 11.4347 1.1854 

Urban_2_60 10.7334 1.7334 10.9673 1.298 10.9176 1.193 

Urban_2_65 10.7175 1.7323 11.0483 1.2953 11.0373 1.1907 

Urban_2_70 10.5082 1.6966 10.747 1.2711 10.7066 1.1661 

Urban_3_55 11.0502 1.759 11.3884 1.3127 11.3496 1.2071 

Urban_3_60 10.9185 1.7637 11.251 1.3155 11.2504 1.2104 

Urban_3_65 10.6881 1.7503 11.0405 1.3053 10.9705 1.1992 

Urban_3_70 10.1052 1.7329 10.793 1.2934 10.6691 1.1851 

Urban_3p_55 11.0791 1.7652 11.3817 1.316 11.3188 1.21 

Urban_3p_60 10.7896 1.7697 11.2124 1.3194 11.1489 1.2138 

Urban_3p_65 10.8692 1.762 11.1962 1.3147 11.1138 1.209 

Urban_3p_70 10.3051 1.7811 10.7672 1.3418 10.7204 1.2325 

* Bold values are significant at 95% level of confidence   
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5. CONCLUSIONS  

The objective of this study was to use the generalized estimating equations (GEE) 

method to develop a longitudinal negative binomial (NB) model for analysis of the 

interstate highways of Missouri over the years 2002 through 2011. General modeling 

approaches used in other research studies usually neglect to account for the temporal 

correlation in crash frequencies observed over several years. The GEE procedure 

overcomes these difficulties in developing unbiased estimates by accommodating 

temporal correlation in crash observations and not underestimating the variation in 

coefficient estimates.  

A GEE model was developed using autoregressive type 1 correlation structure 

and compared to an equivalent MLE estimation model that do not account for the 

temporal correlation. This study examined the standard errors and the Chi-square values 

of the variables estimated using GEE and MLE methods along with evaluation of the 

cumulative residual plots for the two models. The GEE model, allowing for temporal 

correlations proved to be a superior model compared to the traditional NB model using 

MLE method, providing more accurate and less biased model estimates. This result is in 

agreement with the literature (Lord and Persaud, 2000; Ulfarsson and Shankar, 2003; 

Mannering and Bhat, 2014).  

The natural logarithm of AADT (LnAADT) was found to be a statistically 

significant factor with a positive sign in both models (GEE and MLE), indicating higher 

number of crashes with higher traffic volume. Also, the significance of the interaction of 

the LnAADT with the area type with a negative estimate in both models showed that the 

effect of traffic volume in urban areas is smaller than rural areas. An increase in speed 

limit was found to result in a decrease in crash frequency in urban areas (a somewhat 

counterintuitive result), and the change in the number of lanes did not show a consistent 

trend in affecting the crash frequency, except when the speed limit was low at 55 mph. In 

that case, increasing the number of lanes results in a decrease in the crash frequency 

which is in contrast to the results of some of the previous studies (Noland and Oh, 2004; 

L.-Y. Chang, 2005). 
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By considering temporal correlation in the model, some explanatory variables 

may become insignificant which was also the case found in this study. Percent 

commercial with a negative estimate was only found to be significant in the MLE model 

indicating that heavy vehicles result in fewer crashes. This indicates drivers may use 

more caution and reduce their speed when they travel close to large vehicles. Carson and 

Mannering (2001) and Lao et al. (2014) also found similar results of the effect of truck 

percentage on ice-related crash and rear-end crash occurrences, respectively. Also, the 

interaction of this variable with the area type was found to be significant with a positive 

sign indicating that the impact of commercial vehicles on crash frequency is higher in 

urban areas. Another factor that was only found to be significant in the MLE model was 

lane width. The positive sign of the estimate for lanewidth, however, seems to be 

counterintuitive (For example, see the works of Li et al. (2008), Manuel et al. (2014), 

whose results are inconsistent with this study); however, some other recent studies have 

found similar results to this study regarding the effect of lane width (Aguero-Valverde 

and Jovanis, 2009; Dong, Clarke, Richards, et al., 2014; Dong, Clarke, Yan, et al., 2014). 

Martens et al. (1997) note that when the lane widths decrease drivers show improved 

lane-keeping and reduce their speed. These inconsistent conclusions indicate that further 

study of this matter may be required. 

Furthermore, the autoregressive correlation structure was found to be an 

appropriate structure for this longitudinal type of data. If crash data is available for 

several years, it is recommended to use larger data sets to increase the model reliability, 

but also to incorporate temporal correlations when modeling crashes are aggregated over 

several years. This provides more accurate crash frequency models and therefore, safety 

policies and crash countermeasures based on such models will be more efficient in saving 

lives and resources. This study confirms that the use of GEE is a good approach for 

addressing the serial correlation in crash frequency data. 
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III. SEASONAL EFFECTS OF CRASH CONTRIBUTING FACTORS ON 

HIGHWAY SAFETY 

ABSTRACT 

A longitudinal negative binomial model is developed in this paper that takes into 

account the seasonal effects of crash causality factors based on ten years (2002-2011) of 

Missouri Interstate highway crash data. The technique of generalized estimating equation 

(GEE) with autoregressive correlation structure is used. The results explain the overall 

effect of seasonality and whether the magnitude and/or type of various effects are 

different according to climatic changes. Traffic volume was found to have an appreciable 

effect in increasing the crash occurrence in spring and lower effect in winter, compared to 

the fall season. Fewer crashes were associated with higher pavement serviceability 

(measure of pavement surface quality, higher value is better) and this effect was found to 

be highest in the spring season followed by summer and winter, again when compared to 

the fall season. Heavy vehicles were found to reduce the likelihood of crash occurrences 

and this effect is higher in urban areas; although compared to other times of the year, the 

effect of heavy vehicles is lower during the summer season. The results indicated that the 

fall season is associated with the lowest crash frequency compared to the other seasons; 

winter season having the highest impact followed by summer and spring. This paper also 

evaluated the effects of the Missouri’s Strategic Highway Safety Plan (MSHSP) 

implemented from 2005-2011. The plan was found to be effective as it reduced the crash 

frequency. Similar strategic plans therefore should be initiated in the future as well. 

Keywords: seasonal effect, seasonality, generalized estimation equation, crash frequency 

model, strategic highway safety plan 

1. INTRODUCTION 

Traffic safety in transportation networks is one of the main priorities for many 

government agencies, private organizations and the society as a whole. This is mainly 
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due to the significant monetary and non-monetary costs associated with crashes (Elvik, 

2000). The National Highway Traffic Safety Administration (NHTSA) estimated the 

economic cost of motor vehicle crashes to be around $230 billion a year in 2000 

(NHTSA, 2008). In 2009, an estimated 5,505,000 traffic crashes occurred, which 

included 33,808 fatalities and 2,217,000 people were injured (NHTSA, 2009). Peden et 

al. (2004) have forecasted that road related injuries are expected to increase from ranked 

ninth in 1990 to the third largest contributor to the global burden of disease and injury in 

2020. This immense loss of life and property to society from motor vehicle crashes 

warrants accurate identification of crash contributing factors and countermeasures. 

Crash frequency is a fundamental indicator of “safety” in terms of evaluation and 

estimation (HSM, 2010). The term “crash evaluation” refers to determining the 

effectiveness of a particular treatment after its implementation. Safety investigators have 

continually sought ways to gain a better understanding of crash causes and propose 

measures to reduce it (Lord and Mannering, 2010). Crashes mainly occur due to factors 

that stem from drivers’ behavior, vehicular characteristics, highway design, and 

environmental conditions. Geographical location and climatic environment, particularly 

weather can be a major factor that contributes to the occurrence of crashes (Garber and 

Hoel, 2008a). Few studies in the crash evaluation realm deal with the seasonal effects of 

crashes that incorporate crash causality factors. Hilton et al. (2011) provided a basic 

understanding of the seasonal patterns of fatal crashes particularly in the summer and 

showed that with a better understanding of the crash causes over different times of the 

year, policy-makers can improve the safety of specific roadway segments according to 

the climatic conditions. Ahmed et al. (2011) and Yu et al. (2013a) have demonstrated a 

significant seasonal effect on crash frequencies in mountainous terrain with adverse 

weather conditions and that different traffic management strategies should be designed 

based on seasons. Yang et al. (2013) accounted for the seasonal fluctuations of crash 

frequency in work zones by adjusting the AADT using seasonal correction factors. A 

survey conducted by the Center For Excellence in Rural Safety on seasonal crash 

frequency perceptions identified that the general public (83% of participants) believed 

that winter is the most dangerous time to drive due to hazardous road conditions during 

and after a snow fall (CERS, 2010).  
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To the best of the authors’ knowledge, there are no in-depth analyses of 

seasonality effects of crash causes. The objective of this study is to investigate the 

seasonal effects on crash causality by developing a longitudinal negative binomial model 

using several years of crash data on Interstate highways of Missouri. The results of this 

paper will help in developing policies regarding highway safety countermeasures with 

insight on the effects of seasonal changes on roadway crashes. For example, a previous 

study conducted by Carson and Mannering (2001) found no significant effects on the use 

of warning signs in reducing the ice related crash frequency or severity. They believed 

that the maintenance cost and personnel for those signs required a justification. This 

paper uses generalized estimating equation technique to develop a negative binomial 

crash frequency model with longitudinal crash data to address the seasonal effects on 

crash causal factors and the interventions of the Missouri Strategic Highway Safety Plan 

(MSHSP). 

2. METHODOLOGY 

The technique of generalized estimating equations (GEE) is used in this paper for 

correlated crash data (as a result of repeated observations over time) to estimate the 

model parameters. Zeger and Liang (1986) first used the technique of GEE by using 

generalized linear models for repeated observations. Since then, many research studies 

have used this methodology to account for the temporal correlation amongst the 

observations made from the same unit of analysis (Lord and Persaud, 2000; Wang and 

Abdel-Aty, 2006; Giuffrè et al., 2007). Consider a model of crash frequency observations 

at a highway segment � during time � (���) and � covariates (���). According to Zorn 

(2001) the relationship between �� and �� can be shown as: 

 �� = �(��) = ℎ(���) 
(1) 

where,  

�� : Expected value of the crash frequency at segment �, (��), � =  1,2,. . . ,�  

� : � ×  1 vector of estimable parameters 

�� : � ×  � matrix of covariates for segment � (� =  1,2,…  � ,� =  1,2,. . . �). 

The variance of ��, (��) is specified as a function of the mean: 
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 �� = �(��)/� 
(2) 

Where, � is the scale parameter. The quasi-likelihood estimate of � is then the solution to 

a set of � “quasi-score” differential equations (Zeger and Liang, 1986; Zorn, 2001): 

 ��(�) = � ��
���

��(�� − ��) = 0

�

���

 
(3) 

 

where, 

�� = ��/�, 

�� =
(��)

�/���(�)(��)
�/�

�
 

�� : � ×  � diagonal matrices with �(���) as the ��� diagonal element,  

��(�): a � ×  � matrix of the working correlations across time for a given �� , and 

� : vector of unknown parameters with a specific structure (according to the type of 

correlation structure). 

Substituting Equation (4) into Equation (3) results in the GEE estimators and it 

can be seen that it reduces to a generalized linear model when � =  1 (Zorn, 2001). 

Every element of the correlation matrix �� should be known in order to solve the GEE; 

however, the exact correlation type for the repeated measurements is not always known. 

An alternative approach suggested by (Zeger and Liang, 1986) is to use a “working” 

matrix �� of the correlation matrix ��, based on the correlation matrix �� �, which results in 

estimating the � parameters using the following differential equations: 

 ��(�) = � ��
����

��(�� − ��) = 0

�

���

 
(4) 

The covariance matrix of Equation 5 is given by 

 ������� = �� �� ��
�

�

���

���
�����

��

�� ��
����

�������
����

�

�� �

� �� ��
����

����

�

���

�

��

 
(5) 

Using this methodology, ��  provides consistent estimates of � even if the 

correlation matrix �� is estimated inadequately and the confidence interval for � is 

correct. Therefore, the need to know the type of correlation is eliminated even when the 

covariance matrix is specified incorrectly. However, it has been argued that there should 
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be no missing observations for any segment to assume that ��  is a correct estimate of �, 

otherwise, coefficient estimates will be biased (Lord and Persaud, 2000). 

The potential positive autocorrelation in the Missouri crash data was examined by 

the Durbin-Watson (DW) test. The results indicated the presence of a positive 

autocorrelation. More details of this test is presented in a study by Mojtaba Ale 

Mohammadi et al. (2014b). In the data used for this study, all the covariates were 

considered at the segment level and it is assumed that there are no unobserved 

heterogeneity effects on the considered covariates of the model. Mojtaba Ale 

Mohammadi et al. (2014b) have shown that this is a valid assumption for the data used in 

this study. 

3. CRASH DATA AND MODEL VARIABLES 

Missouri Department of Transportation (DOT) provided the data used in this 

study. Ten years (2002-2011) of crash data used consisted of all crashes that occurred 

over the following Interstate highways: I-29, I-35, I-44, I-49, I-55, and I-70 with an 

overall length of 1169 miles. The highways were more than 100 miles long and covered 

different parts of the state. A total number of 7,742 unique segments with an average 

length of 2.29 miles were identified. Missouri DOT determined the boundaries of these 

segments based on the homogeneity of the geometric and traffic properties. The total 

number of crashes analyzed in this study was 126,211, 64.7% of which occurred in urban 

areas. For the four seasons, the minimum and maximum number of crashes analyzed was 

2523 and 4039, respectively. 

The explanatory variables selected for the analysis were the area type (urban or 

rural), number of lanes (range 2 to 7 lanes), lane width (min of 10 ft. to max of 18 ft.), 

AADT (min of 4198 to max of 101594 vehicles per day), speed limit (min of 55 to max 

of 70 mph), PSR (pavement serviceability rate, ranging from 17.4 to 66.4), and truck 

percentage (3% to 67%). A higher value of PSR indicates a healthier pavement condition. 

The high truck percentages observed are located on transit highways with low traffic and 

night time trucks. A similar data set was utilized in a study by Mojtaba Ale Mohammadi 

et al. (2014b). Additionally, four dummy variables were created to account for the 
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seasonal variations: Spring_dummy, Summer_dummy, Fall_dummy, and 

Winter_dummy. The Fall_dummy variable was used as the base category against which 

the effects of the other seasons were statistically examined. Table 1 presents the list of 

continuous and dummy variables used in the analysis. 

Multicollinearity among variables was checked, but no variables were found. This 

was conducted to reduce any inflation of the standard errors and to stabilize the estimated 

effects of the variables. Specific details of the multicollinearity check can be found 

elsewhere (Mojtaba Ale Mohammadi et al., 2014b). In order to avoid the confounding 

effects observed amongst the variables area, number of lanes, and speed limit, different 

classes of these variables were combined together to form distinct dummy variables. 

These dummy variables are defined in a way that each variable represents an area, 

number of lanes, and a speed limit (for example, “urban_3p_65” represent the segments 

located in urban areas with more than 3 lanes and a speed limit of 65 mph). Three 

categories were defined for the nolanes i.e., 2, 3, and 3+ in each direction, and four speed 

limit categories were chosen for speed limits of 55, 60, 65, and 70 mph. Overall, 12 

categories for urban and 6 categories for rural areas were defined. Of course, the number 

of observations was not sufficient for the segments in rural areas with three lanes in each 

direction. Data for these rural categories, however, were kept in the analysis and 

considered with the rural_2_70 group as the base category. Prior to this action, their 

effect was tested statistically and found to be not significant. Therefore, the interpretation 

of the effect of the dummy variables with regards to the base category would not be 

affected. Additional dummy variables were defined for each season by interacting the 

dummy variables defined above with seasonal dummy variables. The new variables 

combined represent a season, an area type, number of lanes, and a speed limit (e.g. 

“winter_urban_3p_65”). Similar categories of number of lanes and speed limit were used 

to create dummy variables with seasonal interaction.  

Further, the interaction of the main factors of the model with the area type and 

seasons were considered to examine their effects on crash frequency across area types 

and seasons. A dummy variable, “area” was set to 0 for rural and 1 for urban, and the 

interactions of this variable was defined with the main variables LnAADT, percent of 

heavy vehicles, lane width, and PSR. The variable “area” was confounded with the 
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combinatory dummy variables such as “urban_3p_65” and, therefore, was not used in the 

model. Table 2 shows the interaction variables used in this study. 

A continuous variable named “Safety_plan” was also defined to account for the 

MSHSP implementation through the years, 2005-2011. This variable takes the value of 0 

for all the months of 2002 to 2004 and gradually increases from 0 to 1 for each month 

over the implementation period starting January 2005. The increase in the value of this 

variable coincides approximately with the proportion of the safety features completed at a 

given time (e.g. see MoDOT (2004) and MoDOT (2008) for more information on the 

objectives of the MSHSP).  

A preliminary frequency analysis of the data was conducted in order to ensure 

that a sufficient number of observations (60 observations were considered satisfactory) 

were available. This was conducted to estimate the effect of each level of variables within 

each season using the analysis of repeated measurements by the GEE method (Mancl and 

DeRouen, 2001; Hutchings et al., 2003). Note that the dependent variable used in this 

study is the monthly crash count, therefore the above frequency analysis was carried out 

on a monthly basis.  
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Table 1. Definition of the continuous and dummy variables considered for analysis 

Variable1 Definition 

Continuous variables 

LnAADT  Natural logarithm of annual average daily traffic in vehicles per day 

PSR Index representing pavement serviceability rate 

Percentcommercial Annual average percentage of trucks or heavy vehicles. 

Congestionindex Index representing congestion level  

Lanewidth  Width of the highway lane in feet 

Safety_plan Proportion of the safety strategies implemented at a given time 

Combinatory dummy variables2 

Urban_2_55 1, if area = Urban, number of lanes = 2, and speed limit = 55 mph, 0 otherwise 

Urban_2_60 1, if area = Urban, number of lanes = 2, and speed limit = 60 mph, 0 otherwise 

Urban_2_65 1, if area = Urban, number of lanes = 2, and speed limit = 65 mph, 0 otherwise 

Urban_2_70 1, if area = Urban, number of lanes = 2, and speed limit = 70 mph, 0 otherwise 

Urban_3_55 1, if area = Urban, number of lanes = 3, and speed limit = 55 mph, 0 otherwise 

Urban_3_60 1, if area = Urban, number of lanes = 3, and speed limit = 60 mph, 0 otherwise 

Urban_3_65 1, if area = Urban, number of lanes = 3, and speed limit = 65 mph, 0 otherwise 

Urban_3_70 1, if area = Urban, number of lanes = 3, and speed limit = 70 mph, 0 otherwise 

Urban_3p_553 1, if area = Urban, number of lanes > 3, and speed limit = 55 mph, 0 otherwise 

Urban_3p_60 1, if area = Urban, number of lanes > 3, and speed limit = 60 mph, 0 otherwise 

Urban_3p_65 1, if area = Urban, number of lanes > 3, and speed limit = 65 mph, 0 otherwise 

Urban_3p_70 1, if area = Urban, number of lanes > 3, and speed limit = 70 mph, 0 otherwise 

Rural_2_60 1, if area = Rural,  number of lanes = 2, and speed limit = 60 mph, 0 otherwise 

Rural_2_65 1, if area = Rural,  number of lanes = 2, and speed limit = 65 mph, 0 otherwise 

Rural_2_705 1, if area = Rural,  number of lanes = 2, and speed limit = 70 mph, 0 otherwise 

Seasonal dummy variables 

Spring_dummy Indicator variable for spring season (1, if season4 = “spring”, 0 otherwise) 

Summer_dummy Indicator variable for summer season(1, if season = “summer”, 0 otherwise) 

Winter_dummy Indicator variable for winter season (1, if season = “winter”, 0 otherwise) 

1. For a list of interaction variables see Table 2 

2. These variables were defined in this format due to confounding effects of the incorporating variables. Variables in bold were used 

in the final model. 

3. 3p means 3-plus indicating more than 3 lanes. 

4. Spring season defined “March to May”, summer as “June to August”, fall as “September to November”, and winter as “December 

to February” 

5. This variable is considered as the base category for the other combinatory dummy variables and not directly used in the model; 

however, the interaction of this variable with the seasonal dummies is used in the model (see Table 2) 
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Table 2. Definition of the interaction variables considered for analysis 

Variable1 Definition (interaction between variables) 

Area type interaction variables 

Areadt  “Area”2 and “LnAADT” 

Areapsr “Area” and “PSR” 

Areacommercial “Area”  and “Percentcommercial” 

Areacongestion  “Area” and “Congestionindex” 

Arealanewidth “Area” and “Lanewidth” 

AreaSafety_plan “Area” and “Safety_plan” 

Seasonal interaction variables3 

Season_area seasonal dummy variable3 and “Area” 2 

Season _lnAADT seasonal dummy and “LnAADT” 

Season _PSR seasonal dummy variable and “PSR” 

Season _percentcommercial seasonal dummy variable and “Percentcommercial” 

Season _congestion seasonal dummy variable and “Congestionindex” 

Season _lanewidth seasonal dummy variable and “Lanewidth” 

Season _Safety_plan seasonal dummy variable and “Safety_plan” 

Season _rural_2_60 seasonal dummy variable and the dummy “Rural_2_60”1 

Season_rural_2_65 seasonal dummy variable and the dummy “Rural_2_65” 

Season_rural_2_70 seasonal dummy variable and the dummy “Rural_2_70” 

Season_urban_2_55 seasonal dummy variable and the dummy “Urban_2_55” 

Season_urban_2_60 seasonal dummy variable and the dummy “Urban_2_60” 

Season_urban_2_65 seasonal dummy variable and the dummy “Urban_2_65” 

Season_urban_2_70 seasonal dummy variable and the dummy “Urban_2_70” 

Season_urban_3_55 seasonal dummy variable and the dummy “Urban_3_55” 

Season_urban_3_60 seasonal dummy variable and the dummy “Urban_3_60” 

Season_urban_3_65 seasonal dummy variable and the dummy “Urban_3_65” 

Season_urban_3_70 seasonal dummy variable and the dummy “Urban_3_70” 

Season_urban_3p_55 seasonal dummy variable and the dummy “Urban_3p_55” 

Season_urban_3p_60 seasonal dummy variable and the dummy “Urban_3p_60” 

Season_urban_3p_65 seasonal dummy variable and the dummy “Urban_3p_65” 

1. For a list of continuous or dummy variables see Table 1 

2. “Area”=0 for rural, and =1 for urban areas; though, it was not used in the model due to confounding effect with combinatory 

variables (see Table 1) 

3. Seasonal interaction terms were defined for each one of the seasonal dummy variables (see Table 1) but for the sake of brevity, only 

in this table, the term “Season” is substituted for all the season names of “spring”, “summer”, and “winter” 
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4. RESULTS AND DISCUSSION 

A negative binomial model was developed using the GEE method incorporating 

an autoregressive Type 1 correlation structure within each segment over ten years of data. 

Table 3 presents the results of the model estimates, standard errors of the coefficients, 

and variables that were found to be statistically significant in the final model. Variables 

that were not statistically significant in the model were removed from the analysis in a 

one-variable-at-a-time manner and the model was run again. The main factors that were 

not significant remained in the model if an associated interaction term was found to be 

significant. This helped correctly interpret the interaction parameters of the model 

(Nelder, 1977; Cox, 1984). 

The positive coefficient estimate for LnAADT indicates that higher traffic volume 

relates to higher number of crashes, a trend commonly observed in the literature (Zhang 

et al., 2012; Roque and Cardoso, 2014). A negative estimate for the interaction of this 

variable with the area type (Areadt) indicates that the overall effect of LnAADT (over all 

seasons) is lower in urban areas compared to rural areas. A statistically significant 

seasonal interaction of a variable provides information on how the effect of that variable 

alters in a given season. The interaction terms of LnAADT with spring and winter 

dummy variables (Spring_lnAADT and Winter_lnAADT) were found to have a positive 

and negative estimate, respectively. This indicates that the impact of traffic volume in 

increasing crash frequency is higher in spring and lower in winter, when compared to the 

fall season. This points to cautious driving and lower speeds as traffic volume increases 

(Elvik et al., 2004; Aarts and van Schagen, 2006) during the winter compared to the 

warmer seasons such as spring and summer. This seasonal effect was not found for 

summer when compared to the fall season. It should be noted that the overall effects of 

such seasonal interaction of any season on crash frequency was considered together to 

determine the effect of the season on crash frequency, and presented at the end of the 

current section. 
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Table 3. Negative binomial model parameter estimates 

Parameter Estimate Standard Error Pr > |Z| 

Intercept -35.45 1.4066 <0.0001 

LnAADT 3.3607 0.1219 <0.0001 

PSR -0.009 0.0064 0.1582 

Percentcommercial -1.9996 0.3547 <0.0001 

Congestionindex 0.1579 0.1335 0.2368 

Safety_plan -0.1854 0.0509 0.0003 

Areadt -2.566 0.1541 <0.0001 

Areacommercial 1.9305 0.4522 <0.0001 

Areacongestion -0.3362 0.1402 0.0165 

Urban_2_55 27.285 1.7470 <0.0001 

Urban_2_60 26.4782 1.7293 <0.0001 

Urban_2_65 26.8975 1.7241 <0.0001 

Urban_2_70 26.5672 1.7146 <0.0001 

Urban_3_55 27.3625 1.7503 <0.0001 

Urban_3_60 26.7808 1.7535 <0.0001 

Urban_3_65 26.6031 1.7484 <0.0001 

Urban_3_70 25.9504 1.7381 <0.0001 

Urban_3p_55 27.2925 1.7698 <0.0001 

Urban_3p_60 26.9873 1.7661 <0.0001 

Urban_3p_65 26.5842 1.7702 <0.0001 

Urban_3p_70 26.1134 1.7668 <0.0001 

Rural_2_60 0.6788 0.1727 <0.0001 

Rural_2_65 1.532 0.3626 <0.0001 

Spring_dummy -0.3435 0.2498 0.1690 

Spring_lnAADT 0.0671 0.0181 0.0002 

Spring_PSR -0.0125 0.0046 0.0068 

Spring_urban_2_70 0.0815 0.0314 0.0095 

Summer_dummy 0.3949 0.1373 0.0040 

Summer_percentcommer 0.4588 0.0941 <0.0001 

Summer_PSR -0.013 0.0042 0.0019 

Summer_Safety_plan -0.2151 0.0292 <0.0001 

Summer_urban_3_55 -0.1088 0.0306 0.0004 

Winter_dummy 3.6691 0.3648 <0.0001 

Winter_lnAADT -0.3375 0.0350 <0.0001 

Winter_PSR -0.0114 0.0047 0.0158 

Winter_Safety_plan 0.251 0.0323 <0.0001 

Winter_urban_2_55 0.2911 0.0599 <0.0001 

Winter_urban_2_65 0.1799 0.0511 0.0004 

Winter_urban_3_55 0.2339 0.0534 <0.0001 

Winter_urban_3_60 0.3067 0.0567 <0.0001 

Winter_urban_3_65 0.372 0.0542 <0.0001 

Winter_urban_3_70 0.2279 0.0895 0.0109 

Winter_urban_3p_55 0.3625 0.0591 <0.0001 

Winter_urban_3p_60 0.4104 0.0535 <0.0001 

Winter_urban_3p_65 0.4258 0.0886 <0.0001 

Note 1: The p-values are used to determine the statistical significance of the variables. Bold estimates are significant at 

95% level of confidence (p-value < 0.05) 

Note 2: For variable definitions see Tables 1 and 2  
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The variable PSR and its interaction with the area type were not found to be 

significant, but the interactions of PSR with the seasonal dummy variables (Spring_PSR, 

Summer_PSR, and Winter_PSR) were found to be statistically significant with negative 

estimates. This shows that although the effect of the pavement condition is not significant 

in affecting crash frequency during fall, a pavement in better condition reduces the 

likelihood of crashes by varying degrees over the spring, summer, and winter seasons, 

compared to the fall season. This effect was found to be highest for spring, followed by 

summer and winter seasons. Anastasopoulos and Mannering (2011) and Buddhavarapu et 

al. (2013) considered similar pavement characteristics in their analysis on an aggregated 

dataset over several years and found similar results. 

The negative estimate for the coefficient of percentcommercial indicates that 

higher percentage of heavy vehicles is associated with lower crash frequency. This shows 

that drivers reduce their speed and are cautious while traveling close to heavy vehicles 

(Carson and Mannering, 2001; Lao et al., 2014). The positive estimate of the interaction 

of this variable with area (areacommercial) indicates that trucks have an increasing effect 

on crash frequency in urban areas compared to rural. Although Khorashadi et al. (2005) 

found that trucks result in higher severity (or fatal) crashes in rural areas compared to 

urban areas, this study considered all crash severities. And the difference in results may 

be due to the drivers being relatively less experienced with driving around heavy vehicles 

in urban areas and their interaction with these vehicles increased the likelihood of a crash 

occurrence. Also, percentcommercial showed a positive interaction effect with the 

summer variable (summer_percentcommercial) indicating a positive impact on crash 

frequency associated with truck percentage during the summer. This can be due to higher 

percent of recreational vehicles –RVs (considered as heavy vehicles) as well as freight 

movement during the summer. Further research is warranted in this regard. 

Congestionindex was not found to be statistically significant, however, its 

interaction with area type (areacongestion) was found significant with a negative sign 

indicating fewer crash occurrences in congested urban areas compared to rural areas. A 

possible explanation is that drivers are used to congestion in urban areas and are prepared 

to prevent collisions, whereas in rural areas it is not that common to face congestion 
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especially on Interstate highways. Therefore, relative to urban areas, congestion in rural 

areas is more likely to cause crashes. 

The safety_plan variable, designated to capture the effects of implementation of 

strategies during the years 2005-2011 (MoDOT, 2004, 2008), was found to be 

statistically significant. The negative sign of its estimated coefficient indicates a 

reduction in the crash frequency during the implementation years through its completion 

and that the safety improvement strategies were effective. For a more detailed analysis, 

the interested reader is referred to Mojtaba A Mohammadi et al. (2014) on the safety 

effects of MSHSP during the first phase i.e., 2005-2008. The interaction terms of this 

variable with summer and winter dummy variables (summer_safety_plan and 

winter_safety_plan) were found to have a negative and positive estimate, respectively. 

This indicates that compared to the fall (or spring season), the effect of MSHSP in 

lowering crash frequency was higher for the summer, but none in the winter. This may be 

due to the severity-types of crashes (fatal, serious injury, etc.), as the main objective of 

MSHSP was to reduce the fatal and severe injury crashes (MoDOT, 2004, 2008) and such 

crashes were reduced as a result of its implementation; however, an increase in less 

severe crashes (e.g. run-off-road collisions due to snow/ice) occurred during the winter in 

spite of the safety strategies implemented. Further research is needed in this respect to 

model crash frequency for various levels of crash severity and collision types. 

The combinatory dummy variables defined by the interaction of the variables area 

type, number of lanes, and speed limit were all found to be significant with a positive 

estimate for all the terms related to urban areas and two of the terms related to rural areas 

(rural_2_60, and rural_2_65). The results for the rural areas indicate that the speed limit 

less than 70 mph has an increasing effect on crash frequency when the number of lanes 

equals two. It should be noted that rural_2_70 was used as the base condition for all the 

combinatory variables, and the results have to be interpreted with comparison to the base 

variable. For the urban areas, keeping two factors fixed and observing the change in the 

estimate for the third factor (e.g. fix area type and number of lanes, and change speed 

limit) presents how each contributing factor (within the combination) affects the crash 

frequency. Figure 1 shows the results of this investigation. A consistent trend was not 

found for the effect of number of lanes on crash frequency. It should be noted that 
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Noland and Oh (2004) and L.-Y. Chang (2005) found that higher number of lanes result 

in lower crash frequency. Increasing speed limit results in lower crash frequency except 

when the number of lanes is two, which is a somewhat counterintuitive result. However, 

when the overall Interstate highway system is considered, it is known that the interstate 

highway system is the safest system in the United States compared to the US and State 

highway systems. And most of the rural interstate highways have two lanes in each 

direction.  

From Table 3 only the relative significance of the effect of combinatory dummy 

variables on crash frequency compared to the base factor (i.e. rural_2_70) can be 

determined by the corresponding p-values for each variable. A variable changing from 

one level to another has an effect on crash frequency, which is determined by subtracting 

the estimates of the two levels. The statistical significance of this difference was tested 

separately. For example, to test the significance of the effect of changing the speed limit 

from 50 to 60 mph for a segment in an urban area with 2 lanes (changing urban_2_50 to 

urban_2_60). The variable urban_2_50 was redefined to take the value of 1 when 

nolanes=2, and SL=50 or SL=60. This variable would be applicable if there was no 

difference as a result of this change in speed limit, which is the null hypothesis of our 

test. If the model used this new variable together with urban_2_60, a low p-value (e.g. 

less than 0.05) for the effect of urban_2_60 will indicate that the null hypothesis is 

rejected (at 95% level of confidence) and there is a statistically significant effect as a 

result of changing the speed limit from 50 mph to 60 mph (for a segment in an urban area 

with 2 lanes in each direction). Table 4 shows the effect and statistical significance of all 

the possible combinations for the two variables, number of lanes and speed limit. 
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Figure 1.  Estimates of the interaction terms between number of lanes, and speed limit in 
urban areas (top: effect of number of lanes within each class of speed limit, bottom: effect 

of speed limit within each class of number of lanes). 
  

2
7

.2
8

5

2
6

.4
7

8
2 2

6
.8

9
7

5

2
6

.5
6

7
22
7

.3
6

2
5

2
6

.7
8

0
8

2
6

.6
0

3
1

2
5

.9
5

0
4

2
7

.2
9

2
5

2
6

.9
8

7
3

2
6

.5
8

4
2

2
6

.1
1

3
4

25

25.5

26

26.5

27

27.5

55 60 65 70

Speed Limit (mph)

Es
ti

m
at

e

Number of lanes 2
Number of lanes 3
Number of lanes 3+

2
7

.2
8

5

2
7

.3
6

2
5

2
7

.2
9

2
5

2
6

.4
7

8
2 2

6
.7

8
0

8

2
6

.9
8

7
3

2
6

.8
9

7
5

2
6

.6
0

3
1

2
6

.5
8

4
2

2
6

.5
6

7
2

2
5

.9
5

0
4

2
6

.1
1

3
4

25

25.5

26

26.5

27

27.5

2 3 3+

Nolanes

Es
ti

m
at

e

Speed Limit 55 mph Speed Limit 60 mph Speed Limit 65 mph Speed Limit 70 mph



75 

 

Table 4. Overall amount and statistical significance of the effect of change in the number 

of lanes and speed limit on crash frequency in urban areas of Missouri  

Nolanes 2 3 3+ 

2 

SL 55 60 65 70 55 60 65 70 55 60 65 70 

55 
Est. -0.8069 -0.3875 -0.7178 0.0775 -0.5043 -0.682 -1.3347 0.0075 -0.2978 -0.7008 -1.1716 

SD  0.1309 0.1151 0.1305 0.0942 0.0937 0.0948 0.1651 0.1225 0.0979 0.1504 0.2566 

60 
0.8069 Est. 0.4194 0.089 0.8844 0.3026 0.1249 -0.5278 0.8143 0.5091 0.1061 -0.3647 

0.1309 SD  0.1073 0.0955 0.1066 0.1112 0.103 0.1628 0.1399 0.1163 0.1586 0.2573 

65 
    Est. -0.3304 0.465 -0.1168 -0.2945 -0.9472 0.395 0.0897 -0.3133 -0.7841 

    SD  0.09 0.0915 0.0955 0.0878 0.1527 0.1294 0.1035 0.1516 0.2526 

70 
      Est. 0.7954 0.2136 0.0359 -0.6168 0.7253 0.4201 0.0171 -0.4537 

      SD  0.1069 0.1147 0.0996 0.1524 0.1449 0.1188 0.1583 0.254 

3 

55 
        Est. -0.5818 -0.7595 -1.4122 -0.07 -0.3753 -0.7783 -1.2491 

        SD  0.0606 0.0602 0.145 0.0967 0.064 0.1299 0.2453 

60 
          Est. -0.1777 -0.8304 0.5118 0.2065 -0.1965 -0.6673 

          SD  0.0608 0.1523 0.095 0.0629 0.1301 0.2465 

65 
            Est. -0.6527 0.6895 0.3842 -0.0188 -0.4896 

            SD  0.1446 0.0976 0.0621 0.1272 0.2439 

70 
              Est. 1.3421 1.0369 0.6339 0.1631 

              SD  0.1698 0.1486 0.1851 0.2744 

3+ 

55 
                Est. -0.3052 -0.7083 -1.1791 

                SD  0.0906 0.1458 0.2573 

60 
                  Est. -0.403 -0.8738 

                  SD  0.1211 0.2438 

65 
                    Est. -0.4708 

                    SD  0.2675 

70 
                    0.4708 Est. 

                    0.2675 SD  

Note. Nolanes, and SL represent the number of lanes and speed limit, respectively. Est. presents the model estimates 
(effect of change in nolanes or SL), and SD stands for estimate’s standard error. Bold values are statistically significant 
at 95% level of confidence. 

The two combinatory variables rural_2_60 and rural_2_65 were found to be 

statistically significant with positive coefficient estimates. This indicates that with two 

lanes in a rural area, the likelihood of crash occurrence becomes higher when the speed 

limit changes from 70 mph to 60 or 65 mph, with the latter change showing a higher 

effect (see coefficient estimates in Table 3). The effect of changing speed limit from 60 to 

65 mph was tested separately, similar to the tests conducted for the urban area and this 

effect was not statistically significant. The highway sections with a speed of 60 or 65 

mph were those with the highest crash frequency or hotspots and to make these 

vulnerable sections safer, Missouri DOT lowered the posted speed limits to 65 mph and 

at times to 60 mph (from 70 mph).  
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The positive estimate of spring_urban_2_70 indicates that in the spring season 

reducing the number of lanes from more than three to two lanes and keeping the speed 

limit at 70 mph in urban areas will result in a higher crash frequency. The negative 

estimate for the Summer_urban_3_55 indicates that in the summer season a reduction in 

speed limit from 70 to 55 mph and number of lanes from more than three to three lanes 

will result in a significantly lower crash frequency in urban areas. Similar to the effect of 

change in speed limit and the number of lanes for urban areas, from Table 3 many of the 

interaction terms of these combinatory variables (urban_nolanes_sl) with the 

winter_dummy were found to be statistically significant. For each season, the 

combination of the highest level of the number of lanes (more than three) and highest 

level of speed limit (70 mph) was used as the base category. That is, for example, all the 

interaction terms found to be significant in the winter are compared with the base 

category for winter, which is winter_urban_3p_70. Figure 2 shows the result of 

coefficient estimates for these terms during the winter. Further, Table 5 presents the 

effect of the change in speed limit and/or number of lanes during the winter. A consistent 

trend was not observed as a result of these estimates except that a change in the number 

of lanes from three to more than three lanes while keeping the speed limit constant results 

in an increase in crash frequency during the winter season. Also, increasing speed limit to 

65 mph showed an increase in crash frequency only when there were three or more than 

three lanes. These findings represent winter season in urban areas only. 
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Figure 2.  Estimates of the significant interaction terms between number of lanes, and 
speed limit in urban areas during winter season (top: effect of number of lanes within 
each class of speed limit, bottom: effect of speed limit within each class of number of 

lanes). 
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Table 5. Amount and statistical significance of the effect of change in the number of 

lanes and speed limit on crash frequency in urban areas during the winter season  

Nolanes 2 3 3+ 

2 

SL 55 65 55 60 65 70 55 60 65 

55 
Est -0.1112 -0.0573 0.1525 0.0809 0.1459 0.0714 0.2577 0.1346 

SD 0.0642 0.0532 0.0533 0.0579 0.0909 0.0559 0.0503 0.0893 

65 
  Est 0.0539 0.2218 0.1921 0.1768 0.1826 0.326 0.2458 

  SD 0.0581 0.056 0.0608 0.0908 0.0615 0.0528 0.0917 

3 

55 
    Est 0.0728 0.1382 -0.0059 0.1287 0.1765 0.1919 

    SD 0.0449 0.0495 0.0928 0.047 0.0408 0.0843 

60 
      Est 0.0653 -0.0788 0.0558 0.1037 0.1191 

      SD 0.0516 0.0948 0.0472 0.0404 0.0846 

65 
        Est -0.1441 -0.0095 0.0384 0.0538 

        SD 0.0951 0.0526 0.0471 0.0872 

From the estimates of the seasonal variables summer_dummy and winter_dummy, 

it can be stated that the summer and winter seasons affect crash frequency differently 

than the fall season and this effect is significant. The coefficient estimates of these 

variables, however, must be interpreted together with the estimates for their interactions 

with other main factors of the model. Since there are also negative coefficient estimates 

in the model for statistically significant interaction terms related to the summer and 

winter seasons, the positive sign of the estimate for these seasons does not necessarily 

mean that there are higher crash occurrences in those seasons. Similarly, statistically 

significant interaction terms related to the spring season were found in the model that 

affects the interpretation of the negative sign found for the estimated coefficient for 

spring_dummy variable, however, it was not found to be a significant factor in the model. 

In order to find the effect of a season, only those variables related to the season of 

interest were considered in the model to predict the crash frequency. For example, to 

determine the effect of summer season in crash frequency the variables summer_dummy, 

summer_percentcommerial, summer_PSR, summer_safety_plan, and 

summer_urban_3_55 were used to predict the number of crashes for each segment. The 

sum of these predicted values is the crash frequency over the period of analysis 

attributable only to the specific seasonal effect (summer). This value provides a criterion 

for comparison of the overall effect of each season. The sum of the predicted crash 
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frequency values for all seasonal effects were calculated and compared. All of the crash 

predictions were found to be positive values with the highest value for winter followed by 

summer and spring. Note that these effects are statistically significant as they were 

calculated using those significant factors of the model.   

5. CONCLUSIONS AND RECOMMENDATIONS 

The objective of this study was to investigate the seasonal effects on crash 

causality factors. A longitudinal negative binomial model was developed using the 

generalized estimating equation (GEE) method with autoregressive Type 1 correlation 

structure. The study used crash data from 2002-2011 for six main Interstate highways in 

Missouri. This study also evaluated the effects of Missouri’s Strategic Highway Safety 

Plan (MSHSP) on crash frequency using a relatively simple approach. 

The natural logarithm of AADT (LnAADT) was found to be statistically 

significant with a positive estimate indicating higher traffic volume results in higher 

number of crashes. The negative estimate for the interaction term, LnAADT and area 

type showed that the traffic volume had a smaller effect on urban areas compared to rural 

areas. Furthermore, LnAADT had statistically significant interaction terms with spring 

and winter seasons with positive and negative estimates, respectively. This indicates that, 

compared to the fall season, traffic volume had a higher effect in increasing the crash 

occurrence in spring and lower in winter time. Such seasonal effect of traffic volume was 

not found to be significant for the summer compared to the fall season. 

Pavement serviceability rating (PSR) was not found to be statistically significant, 

but had significant interactions with the seasonal variables in the model. This indicated 

that a better quality pavement reduces the likelihood of crash occurrence by varying 

degrees over the seasons of spring, summer, and winter, compared to the fall season. This 

crash reducing effect was highest for spring season followed by summer and winter but 

the difference between the effects is minor. 

Similar to PSR, only interaction terms of Congestion Index with area type was 

significant indicating a decrease in crash frequency associated with congestion in urban 

areas compared to rural areas. This indicated that drivers do not commonly experience 
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congestion in rural areas especially on Interstate highways, hence, it is more likely to 

cause crashes relative to urban areas. 

Higher percentage of heavy vehicles showed reduction in crash frequency. This 

effect was found to be higher in urban areas. Also, this variable showed a positive 

interaction effect with the summer variable indicating higher crash frequency associated 

with truck percentage during the summer. This indicated increase in travel during the 

warmer season and as a result, higher frequency of crashes. This result is similar to the 

LnAADT variable; as traffic increases the frequency of crashes also increase. 

In terms of the effects of number of lanes and speed limit on crash frequency, this 

study did not show a consistent trend. This result is contrary to the findings of Noland 

and Oh (2004) and L.-Y. Chang (2005), who found that higher number of lanes results in 

lower crash frequency. A more in-depth analysis is therefore required to explain this 

behavior. 

A significant difference was found in the effect of winter and summer seasons on 

crash frequency compared to fall season. The model estimates for the seasonal variables 

show that the summer and winter seasons affect crash frequency significantly different 

than the fall season. Spring season was not found to be a significant factor in the model. 

Considering all the main and interaction seasonal terms in the model and analyzing for 

the effects of seasons on crash frequency, the results indicate that summer, spring and 

winter seasons have an increasing effect on the crash frequency compared to the fall 

season. Winter season had the highest effect in positively affecting crash occurrences 

followed by summer and spring. Many of the interaction terms defined by the area type, 

number of lanes, and speed limit were found to be statistically significant only in the 

winter season but a consistent trend in their estimated values was not observed. 

A significant difference was found in the effects of winter and summer seasons on 

crash frequency compared to the fall season. The model estimates for the seasonal 

variables show that the summer and winter seasons affect crash frequency significantly 

different than the fall season. Considering all of the main and interaction terms in the 

model and analyzing for the effects of seasons on crash frequency, the results indicate 

that summer, spring and winter seasons have an increasing effect on the crash frequency 

compared to the fall season. Winter season had the highest effect in positively affecting 
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crash occurrences followed by summer and spring. Many of the interaction terms defined 

by the area type, number of lanes, and speed limit were found to be statistically 

significant only in the winter season, but a consistent trend in their estimated values was 

not observed.  

Safety_plan defined the effectiveness of the MSHSP and was found to be 

statistically significant with a negative estimate. This indicates that MSHSP effectively 

reduced the crash frequency during the years of implementation and similar strategic 

plans should be promoted as an effective way to reduce crashes. Other studies also 

support the findings of this study (Jung et al., 2013b). Safety_plan showed statistically 

significant negative and positive interaction with the summer and winter variables, 

respectively. This indicated that MSHSP had a larger effect in reducing the crashes 

during the summer and smaller effect during the winter, compared to the fall (or spring 

seasons). One of the objectives of the MSHSP was to reduce fatal and severe injury 

crashes (MoDOT, 2004, 2008). It is possible that these safety improvement strategies 

reduced severe crashes during the winter, but with an increase in less severe crashes. 

Crash frequency specifically in terms of crash severity requires further research. Also, 

Mojtaba A Mohammadi et al. (2014) conducted a more detailed study on the effects of 

MSHSP (during the first phase, i.e. 2005-2008) on crash frequency by various collision 

types and severity. The availability of more detailed data for specific countermeasures 

(such as adding median barriers, rumble strips, etc.) will certainly provide detailed 

understanding of how certain measures affect crash statistics. 

The developed model in this paper enhances the understanding of seasonal crash 

patterns and whether the magnitude and/or types of various effects are different according 

to climatic changes. The results of this study will help in better identification of crash 

countermeasures with regards to the different times of the year. 
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SECTION 

2. CONCLUSIONS 

The objectives of this study were developed and presented in three different steps 

and the results of the analyses conducted in steps one to three were presented in the 

sections “Paper I”, “Paper II”, and “Paper III”.  

The first objective of this study was to develop a traditional negative binomial 

(NB) regression model using the maximum likelihood technique that overcomes the 

limitations of the regression to the mean phenomenon (Barnett et al., 2005) in 

before/after crash evaluation studies and does not have the complexity of the empirical 

Bayesian models which, comparatively, requires training and practice in addition to 

extensive data (Hauer, 1997; Persaud et al., 2004; Guo et al., 2010b; Shively et al., 2010; 

Yu et al., 2013b). A simple approach was introduced to address the issues mentioned 

above in evaluation of the effectiveness for the Missouri Strategic Highway Safety Plan 

(MSHSP) over the years 2005-2007. Several negative binomial regression models were 

developed for crash frequency of various collision types and severity levels. These 

models considered the frequency observations for the before-through-change conditions 

and accounted for the safety plan progression using a continuous variable that was set to 

zero for pre-implementation years and gradually increased to one over the 

implementation years. The results of the first part of this study (presented in the section 

“Paper I”) show that the MSHSP was a successful policy by reaching its primary goal, 

that is, to reduce the frequency and severity of serious injury crash types. This study 

found a significant reduction of 10% in all crashes combined. These strategies had the 

highest effect on the fatal crashes (30% reduction) and particularly on the head-on 

crashes (37% reduction) that result the most fatalities. The results were also found to be 

consistent with other studies and suggest that the safety strategic plans should be 

promoted (Kempton et al., 2006; Jung et al., 2013a).  

The next part of this study (presented in the section “Paper II”) uses more years of 

data to increase the reliability of the frequency models developed. More years of data 

reduces the standard errors of the model estimates but creates a serial correlation in 
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repeated observations of a highway segment over the years (Park and Lord, 2009; Castro 

et al., 2012; Bhat et al., 2014; Mannering and Bhat, 2014; Zou et al., 2014). This 

correlation results in the underestimation of standard errors and subsequently biased 

model estimates (Ulfarsson and Shankar, 2003; Washington et al., 2011; Dupont et al., 

2013; Mohammadi et al., 2013; Bhat et al., 2014; Xiong et al., 2014). The second part of 

this study aims to address this problem of biased model estimates due to temporal 

correlation in repeated observations. A longitudinal negative binomial model was 

developed using generalized estimating equations (GEE) technique to model ten years 

(2002-2011) of crash frequency data in Missouri. The GEE method used in this study 

accounts for the temporal correlation of repeatedly measured frequency data.  

An autoregressive Type 1 structure was determined to be an appropriate 

correlation structure for the data. The results of the model using GEE method were then 

compared with the results of a traditional NB model using the maximum likelihood 

estimation (MLE) method. It was found that the GEE model, allowing for temporal 

correlations is a superior model comparatively providing more accurate and less biased 

estimates which is agreement with the literature (Lord and Persaud, 2000; Ulfarsson and 

Shankar, 2003; Mannering and Bhat, 2014).  

The natural logarithm of AADT (LnAADT) found to be a statistically significant 

factor in the model with a positive estimate, indicating higher number of crashes with 

higher traffic volume. Also, the negative estimate for the interaction term of LnAADT 

and area type showed that the traffic volume have a smaller effect in urban than rural 

areas. An increase in speed limit was found to result in a decrease in crash frequency in 

urban areas (a somewhat counterintuitive result which may be related to the reverse 

association of crash occurrence with the speed limit), and the change in the number of 

lanes did not show a consistent trend in affecting the crash frequency. 

The results show that by considering temporal correlation in the model (using 

GEE technique), some variables may become insignificant. Percent commercial with a 

negative estimate was only found to be significant in the MLE model indicating that 

heavy vehicles result in fewer crashes. This indicates drivers may use more caution and 

reduce their speed when they travel close to large vehicles. Carson and Mannering (2001) 

and Lao et al. (2014) also found similar results of the effect of truck percentage on crash 
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occurrences. Also, the positive sign of the significant interaction of this variable with the 

area type indicated that the impact of commercial vehicles on crash frequency is higher in 

urban areas. Another factor that was only found to be significant in the traditionally 

estimated model (using MLE method) was lane width with a positive sign. This result, 

however, seems to be counterintuitive (see Li et al. (2008) and Manuel et al. (2014) 

whose results are inconsistent with this study); however, other recent studies have found 

similar results to this study regarding the effect of lane width (Aguero-Valverde and 

Jovanis, 2009; Dong, Clarke, Richards, et al., 2014; Dong, Clarke, Yan, et al., 2014). 

Martens et al. (1997) note that when the lane widths decrease drivers show improved 

lane-keeping and reduce their speed. These inconsistent conclusions indicate that further 

study of this matter may be required. Additionally, the autoregressive Type 1 correlation 

structure was found to be an appropriate structure for this type of data. The results of this 

analysis suggest that if crash data is available for several years, it is recommended to use 

larger data sets to increase the model reliability, but also to account for the temporal 

correlations in the data. This provides more accurate models and therefore, safety policies 

and crash countermeasures based on such models will be more efficient in saving lives 

and resources. This study confirms that the use of GEE is a good approach for addressing 

the serial correlation in crash frequency data. 

The third part of this study seeks to further enhance the applicability of the crash 

prediction models by investigating the seasonal effects on crash causality factors. The 

few studies found in this regard in the literature (Carson and Mannering, 2001; Ahmed et 

al., 2011; Hilton et al., 2011; Yu et al., 2013a) suggest that policy-makers can improve 

the safety of specific roadway segments according to seasonal changes of the effect of 

crash factors. The last part of this study presents an in-depth analysis of the seasonality of 

crash causes by developing a longitudinal negative binomial model using ten years of 

crash data on six main interstate highways of Missouri. This analysis also uses 

generalized estimating equation (GEE) technique to develop the model. The statistical 

significance of the interaction of the main crash factors with the seasonal variables were 

examined in the model. The effects of interventions made by the Missouri Strategic 

Highway Safety Plan (MSHSP) over the years 2005-2011 is also investigated. The results 
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(presented in the section “Paper III”) provide a better understanding of the change in the 

effect of crash causes over different seasons in a year.  

Similar to the results of the previous part, the natural logarithm of AADT 

(LnAADT) and its interaction with area type were found to be statistically significant 

with a positive and negative estimate, respectively. This indicates higher traffic volume 

results in higher number of crashes and this effect of traffic volume on crash occurrence 

is smaller in urban areas compared to rural. Furthermore, LnAADT had statistically 

significant interaction terms with spring and winter seasons with positive and negative 

estimates, respectively. This indicates that, compared to the fall season, traffic volume 

has a higher effect in increasing the crash occurrence in spring and lower in winter time. 

Results indicate that better quality pavement reduces the crash occurrence differently 

over the seasons; this crash reducing effect was highest for spring season followed by 

summer and winter. The significant interaction of congestion index with area type 

indicates a decrease in crash frequency associated with congestion in urban areas 

compared to rural areas. This suggests that drivers do not commonly expect congestion in 

rural areas especially on interstate highways, hence, it is more likely to cause crashes 

relative to urban areas. Higher truck percentage showed reduction in crash frequency and 

this effect was found to be higher in urban areas. Also, this variable showed a positive 

interaction effect with summer variable indicating higher crash frequency associated with 

truck percentage during summer time. This may be due to the increase in recreational 

driving in the warmer season and as a result, higher frequency of crashes. No consistent 

trend was found in terms of the effects of number of lanes and speed limit on crash 

frequency. This result is contrary to the findings of Noland and Oh (2004) and L.-Y. 

Chang (2005), who found that higher number of lanes results in lower crash frequency. A 

more in-depth analysis is therefore required to explain this behavior. The results indicate 

that winter season had the highest effect in positively affecting crash occurrences 

followed by summer and spring. Many of the interaction terms defined by the area type, 

number of lanes, and speed limit were found to be statistically significant only in the 

winter season, but a consistent trend in their estimated values was not observed. Results 

show that the MSHSP effectively reduced the crash frequency during the years of 

implementation and similar strategic plans should be promoted as an effective way to 
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reduce crashes. It was also found that MSHSP had a larger effect in reducing the crashes 

during the summer and smaller effect during the winter, compared to the fall (or spring 

seasons). One of the objectives of the MSHSP was to reduce fatal and severe injury 

crashes (MoDOT, 2004, 2008). It is possible that these safety improvement strategies 

reduced severe crashes during the winter, but with an increase in less severe crashes. 

Crash frequency specifically in terms of crash severity requires further research.  

Further analysis of the effectiveness of particular SHSP that focus on the specific 

emphasis areas (such as adding median barriers, rumble strips, etc.) identified in the 

SHSP is warranted in future studies to obtain a more detailed understanding of how the 

implementation of specific safety measures affect safety. Provided the specific 

implementation data on the highways are available, future studies will consider 

examination of the effect of safety improvement plans (such as ‘adding median barrier’) 

on the type and injury severity of crashes. 
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APPENDIX A. 

MATLAB ALGORITHM FOR READING THE CRASH DATA BASE, ROAD 
INVENTORY DATA BASE, ASSIGNING SEGMENT IDENTIFICATIONS, 

AGGREGATING YEARLY, MONTHLY, AND SEASONAL CRASH FREQUENCY 
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%% ############################################################ 
% ################ The State and US highways reading ########## 
% ############################################################# 
% the file below cannot be read in one run, it was divided into three 
% sheets so the MATLAB could read it and perform the tasks 
  
data=xlsread('final MO-US 1999-2012 ready','mixed valids'); 
  
index_rural=data(:,15)==1; 
data_rural=data(index_rural,:); 
  
index_urban=or(data(:,15)==2, data(:,15)==3); 
data_urban=data(index_urban,:); 
  
index_rural_divided=and(data(:,15)==1, data(:,16)==0); 
data_rural_divided=data(index_rural_divided,:); 
  
index_rural_undivided=and(data(:,15)==1, data(:,16)==1); 
data_rural_undivided=data(index_rural_undivided,:); 
  
index_urban_divided=and(or(data(:,15)==2, data(:,15)==3), 
data(:,16)==0); 
data_urban_divided=data(index_urban_divided,:); 
  
index_urban_undivided=and(or(data(:,15)==2, data(:,15)==3), 
data(:,16)==1); 
data_urban_undivided=data(index_urban_undivided,:); 
  
SAVEPATH=strcat(pwd,filesep,'matlab');  
if ( ~isdir(SAVEPATH)) 
    mkdir(SAVEPATH); 
end 
SAVEFILENAME=strcat(SAVEPATH,filesep,'mixed_valid_mous.mat'); 
disp(['The count data was saved to: ',SAVEFILENAME]); 
save(SAVEFILENAME, 
'data','data_rural','data_urban','data_rural_divided',... 
                   
'data_rural_undivided','data_urban_divided','data_urban_undivided'); 
  
clear index_rural index_urban SAVEFILENAME SAVEPATH 
index_rural_divided... 
        index_rural_undivided index_urban_divided 
index_urban_undivided; 
 
 
%% ######################################################## 
% ################ The Interstate highways reading ######## 
% ######################################################### 
% reading data from excel and saving into a .mat file along 
% with the data divided for light and dark time 
 
data=xlsread('final interstates 1999-2012 ready.xlsx','mixed valids'); 
indexlight0=data(:,46)==0; 
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indexlight1=data(:,46)==1; 
indexweather1=data(:,47)==1; 
indexweather2=data(:,47)==2; 
indexweather3=data(:,47)==3; 
indexseverefatal=data(:,48)==1; 
indexseverenotfatal=data(:,48)==0; 
indexseverefataldisable=data(:,49)==1; 
indexseverenotfataldisable=data(:,49)==0; 
  
data_dark=data(indexlight0,:); 
data_light=data(indexlight1,:); 
data_cold=data(indexweather2,:); 
data_rain=data(indexweather3,:); 
data_clear=data(indexweather1,:); 
data_severe_fatal=data(indexseverefatal,:); 
data_severe_notfatal=data(indexseverenotfatal,:); 
data_severe_fataldisable=data(indexseverefataldisable,:); 
data_severe_notfataldisable=data(indexseverenotfataldisable,:); 
  
indexlight0weather1severefatal= (data(:,46)==0 & data(:,47)==1 & 
data(:,48)==1); 
datalight0weather1severefatal= data(indexlight0weather1severefatal,:); 
  
indexlight0weather1severenotfatal= (data(:,46)==0 & data(:,47)==1 & 
data(:,48)==0); 
datalight0weather1severenotfatal= 
data(indexlight0weather1severenotfatal,:); 
  
indexlight0weather2severefatal= (data(:,46)==0 & data(:,47)==2 & 
data(:,48)==1); 
datalight0weather2severefatal= data(indexlight0weather2severefatal,:); 
  
indexlight0weather2severenotfatal= (data(:,46)==0 & data(:,47)==2 & 
data(:,48)==0); 
datalight0weather2severenotfatal= 
data(indexlight0weather2severenotfatal,:); 
  
indexlight0weather3severefatal= (data(:,46)==0 & data(:,47)==3 & 
data(:,48)==1); 
datalight0weather3severefatal= data(indexlight0weather3severefatal,:); 
  
indexlight0weather3severenotfatal= (data(:,46)==0 & data(:,47)==3 & 
data(:,48)==0); 
datalight0weather3severenotfatal= 
data(indexlight0weather3severenotfatal,:); 
  
  
indexlight1weather1severefatal= (data(:,46)==1 & data(:,47)==1 & 
data(:,48)==1); 
datalight1weather1severefatal= data(indexlight1weather1severefatal,:); 
  
indexlight1weather1severenotfatal= (data(:,46)==1 & data(:,47)==1 & 
data(:,48)==0); 
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datalight1weather1severenotfatal= 
data(indexlight1weather1severenotfatal,:); 
  
indexlight1weather2severefatal= (data(:,46)==1 & data(:,47)==2 & 
data(:,48)==1); 
datalight1weather2severefatal= data(indexlight1weather2severefatal,:); 
  
indexlight1weather2severenotfatal= (data(:,46)==1 & data(:,47)==2 & 
data(:,48)==0); 
datalight1weather2severenotfatal= 
data(indexlight1weather2severenotfatal,:); 
  
indexlight1weather3severefatal= (data(:,46)==1 & data(:,47)==3 & 
data(:,48)==1); 
datalight1weather3severefatal= data(indexlight1weather3severefatal,:); 
  
indexlight1weather3severenotfatal= (data(:,46)==1 & data(:,47)==3 & 
data(:,48)==0); 
datalight1weather3severenotfatal= 
data(indexlight1weather3severenotfatal,:); 
  
  
SAVEPATH=strcat(pwd,filesep,'matlab');  
if ( ~isdir(SAVEPATH)) 
    mkdir(SAVEPATH); 
end 
SAVEFILENAME=strcat(SAVEPATH,filesep,'mixed_valid_interstates.mat'); 
disp(['The count data was saved to: ',SAVEFILENAME]); 
save(SAVEFILENAME, 'data', 'data_dark', 'data_light', 'data_cold', 
'data_rain', 'data_clear', ... 
                    'data_severe_fatal', 'data_severe_notfatal', 
'data_severe_fataldisable', ... 
                    'data_severe_notfataldisable', 
'datalight0weather1severefatal', ... 
                    'datalight0weather1severenotfatal', 
'datalight0weather2severefatal', ... 
                    'datalight0weather2severenotfatal', 
'datalight0weather3severefatal', ... 
                    'datalight0weather3severenotfatal', 
'datalight1weather1severefatal', ... 
                    'datalight1weather1severenotfatal', 
'datalight1weather2severefatal', ... 
                    'datalight1weather2severenotfatal', 
'datalight1weather3severefatal', ... 
                    'datalight1weather3severenotfatal'); 
                 
clear indexlight0 indexlight1 SAVEFILENAME SAVEPATH indexweather1 
indexweather2 indexweather3 ... 
    indexseverefatal indexseverenotfatal indexseverefataldisable 
indexseverenotfataldisable ... 
    indexlight0weather1severefatal indexlight0weather1severenotfatal 
indexlight0weather2severefatal ... 
    indexlight0weather2severenotfatal indexlight0weather3severefatal 
indexlight0weather3severenotfatal... 
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    indexlight1weather1severefatal indexlight1weather1severenotfatal 
indexlight1weather2severefatal ... 
    indexlight1weather2severenotfatal indexlight1weather3severefatal 
indexlight1weather3severenotfatal; 
 
 
 
 
%% ############################################################# 
% ################ The Interstate Segment data reading ######### 
% ############################################################## 
% reading the segment data and saving it into a .mat file 
% to make it easy to access next time 
% -------------------------------------------------------------- 
SegmentData=xlsread('interstates segment data','mixed'); 
  
SAVEPATH=strcat(pwd,filesep,'matlab'); 
if ( ~isdir(SAVEPATH)) 
    mkdir(SAVEPATH); 
end 
SAVEFILENAME=strcat(SAVEPATH,filesep,'InterstateSegmentData.mat'); 
disp(['Segment data was saved into: ',SAVEFILENAME]); 
save(SAVEFILENAME, 'SegmentData'); 

 
%% ############################################################ 
% ################ Preparing data for analysis in SAS ######### 
% ############################################################# 
clc; clear all; close all; format long; tic; 
data=load('mixed_valid_interstates.mat'); 
segdata=load('segments_data_numbered.mat'); 
crashdata=data.data; 
segdata=segdata.data3; 
  
yearindex_crashdata=6; 
monthindex_crashdata=7; 
highwayname_index_crashdata=3; 
travelwayid_index_crashdata=4; 
novariables=size(data,2); 
logindex_crashdata=12; 
highwayname_index_segdata=1; 
travelwayid_index_segdata=2; 
yearindex_segdata=3; 
beglogindex_segdata=6; 
endlogindex_segdata=7; 
  
% defining unique segment ids over all years for each highway/travelway 
uniqueid = 
segdata(:,highwayname_index_segdata)*10000000000+segdata(:,travelwayid_
index_segdata)*10000+segdata(:,27); 
segdata(:,28) = uniqueid; 
% the matrix that will include the final monthly count data 
monthly_count_noremainid=[]; 
% separating crash/segment data for unique highway/travelway/year 
unique_highway=unique(crashdata(:, highwayname_index_crashdata)); 
for highway = 1:length(unique_highway) 
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index1=crashdata(:,highwayname_index_crashdata)==unique_highway(highway
); 
    
index2=segdata(:,highwayname_index_segdata)==unique_highway(highway); 
    highway_crashdata=crashdata(index1,:); 
    highway_segdata=segdata(index2,:); 
     
    
unique_travelway=unique(highway_crashdata(:,travelwayid_index_crashdata
)); 
    for travelway = 1:length(unique_travelway) 
        index1=highway_crashdata(:,travelwayid_index_crashdata)== 
unique_travelway(travelway); 
        index2=highway_segdata(:,travelwayid_index_segdata)== 
unique_travelway(travelway); 
        travelway_highway_crashdata=highway_crashdata(index1,:); 
        travelway_highway_segdata=highway_segdata(index2,:); 
         
        
unique_year=unique(travelway_highway_crashdata(:,yearindex_crashdata)); 
        for year = 1: length(unique_year) 
            if isempty(travelway_highway_segdata)==1;  break; end 
            
index1=travelway_highway_crashdata(:,yearindex_crashdata)==unique_year(
year); 
            
index2=travelway_highway_segdata(:,yearindex_segdata)==unique_year(year
); 
            
year_travelway_highway_crashdata=travelway_highway_crashdata(index1,:); 
            
year_travelway_highway_segdata=travelway_highway_segdata(index2,:); 
             
% separating only crash data for unique 
% highway/travelway/year/month 
            
unique_month=unique(year_travelway_highway_crashdata(:,monthindex_crash
data)); 
            for i = 1:length(unique_month) 
                
index1=year_travelway_highway_crashdata(:,monthindex_crashdata)==unique
_month(i); 
                
month_year_travelway_highway_crashdata=year_travelway_highway_crashdata
(index1,:); 
                 
% separating crash data within unique 
% highway/travelway/year/month for unique segments from the 
% segdata separated within unique highway/travelway/year 
                for segment=1:size(year_travelway_highway_segdata,1) 
                    
index=month_year_travelway_highway_crashdata(:,logindex_crashdata)>= 
year_travelway_highway_segdata(segment,beglogindex_segdata) &... 
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month_year_travelway_highway_crashdata(:,logindex_crashdata)< 
year_travelway_highway_segdata(segment,endlogindex_segdata); 
                    
segment_month_year_travelway_highway_crashdata=month_year_travelway_hig
hway_crashdata(index,:); 
                    
segment_month_year_travelway_highway_count=size(segment_month_year_trav
elway_highway_crashdata,1); 
                     
% creating monthly count: column 29 is month and column 30 is the count 
% for a highway-travelway-segment-year 
                    
monthly_count_segment=[year_travelway_highway_segdata(segment,:), i, 
segment_month_year_travelway_highway_count]; 
                    
monthly_count_noremainid=vertcat(monthly_count_noremainid, 
monthly_count_segment); 
                end 
            end 
        end 
        t_stop=toc; 
        hr=floor(t_stop/3600); mod1=mod(t_stop,3600); 
        minut=floor(mod1/60); mod2=mod(t_stop,60); 
        secon=floor(mod2); 
        msg =strcat('   Counted monthly for highway-', 
num2str(unique_highway(highway)), '  travelway-', ... 
            num2str(unique_travelway(travelway)), '   Elapsed Time:', 
num2str(hr),':', num2str(minut),':',num2str(secon)); 
        disp (msg) 
    end 
end 
  
% separating unique segments from the monthly count data created above 
unique_segment_monthly_count=unique(monthly_count_noremainid(:,28)); 
% the matrix that will include the final quarterly count data 
quarterly_count_noremainid=[]; 
for segment=1:length(unique_segment_monthly_count) 
    
index=monthly_count_noremainid(:,28)==unique_segment_monthly_count(segm
ent); 
    uniquesegment_monthlydata=monthly_count_noremainid(index,:); 
     
% creating quarterly count from the monthly count for each unique seg. 
    quarter=0; 
    for i=3:3:size(uniquesegment_monthlydata,1) 
        if i+2 > size(uniquesegment_monthlydata,1); break; end 
        uniquesegment_quarterdata=uniquesegment_monthlydata(i:i+2,:); 
        quarter_count=sum(uniquesegment_quarterdata(:,30)); 
        quarter=quarter+1; 
        
uniquesegment_quarterlydata=[uniquesegment_quarterdata(1,1:28),quarter,
quarter_count]; 
        
quarterly_count_noremainid=vertcat(quarterly_count_noremainid,uniqueseg
ment_quarterlydata); 
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        if quarter == 4; quarter=0; end 
        t_stop=toc; 
        hr=floor(t_stop/3600); mod1=mod(t_stop,3600); 
        minut=floor(mod1/60); mod2=mod(t_stop,60); 
        secon=floor(mod2); 
        msg =strcat('   Finishied counting quarterly for segment-', 
num2str(segment),... 
            ' th unique segment out of-', 
num2str(length(unique_segment_monthly_count)),... 
            '       Elapsed Time:', num2str(hr),':',... 
            num2str(minut),':',num2str(secon)); 
        disp (msg) 
    end 
end 
  
% separating unique segments from the monthly count data created above 
% the matrix that will include the final yearly count data 
yearly_count_noremainid=[]; 
for segment=1:length(unique_segment_monthly_count) 
    
index=monthly_count_noremainid(:,28)==unique_segment_monthly_count(segm
ent); 
    uniquesegment_monthlydata=monthly_count_noremainid(index,:); 
     
    % creating yearly count from the monthly count for each unique seg. 
    
unique_year_uniquesegment_monthlydata=unique(uniquesegment_monthlydata(
:,yearindex_segdata)); 
    for i=1: length(unique_year_uniquesegment_monthlydata) 
        year=unique_year_uniquesegment_monthlydata(i); 
        index=uniquesegment_monthlydata(:,yearindex_segdata)==year; 
        uniquesegment_yeardata=uniquesegment_monthlydata(index,:); 
        year_count=sum(uniquesegment_yeardata(:,30)); 
        
uniquesegment_yearlydata=[uniquesegment_yeardata(1,1:28),year,year_coun
t]; 
        yearly_count_noremainid=vertcat(yearly_count_noremainid, 
uniquesegment_yearlydata); 
        t_stop=toc; 
        hr=floor(t_stop/3600); mod1=mod(t_stop,3600); 
        minut=floor(mod1/60); mod2=mod(t_stop,60); 
        secon=floor(mod2); 
        msg =strcat('   Finishied counting Yearly for segment-', 
num2str(segment),... 
            ' th unique segment out of-', 
num2str(length(unique_segment_monthly_count)),... 
            '       Elapsed Time:', num2str(hr),':',... 
            num2str(minut),':',num2str(secon)); 
        disp (msg) 
    end 
end 
  
% the matrix that will include the final monthly, quarterly, and yearly 
% count data plus the number of months, quarters, years remained 
% unchanged 
monthly_count=[]; quarterly_count=[]; yearly_count=[]; 
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for segment=1:length(unique_segment_monthly_count) 
    
index1=monthly_count_noremainid(:,28)==unique_segment_monthly_count(seg
ment); 
    uniquesegment_monthlydata=monthly_count_noremainid(index1,:); 
    uniquesegment_monthlydata(:,31)=size(uniquesegment_monthlydata,1); 
    monthly_count=vertcat(monthly_count,uniquesegment_monthlydata); 
  
    
index2=quarterly_count_noremainid(:,28)==unique_segment_monthly_count(s
egment); 
    uniquesegment_quarterlydata=quarterly_count_noremainid(index2,:); 
    
uniquesegment_quarterlydata(:,31)=size(uniquesegment_quarterlydata,1); 
    
quarterly_count=vertcat(quarterly_count,uniquesegment_quarterlydata); 
     
    
index3=yearly_count_noremainid(:,28)==unique_segment_monthly_count(segm
ent); 
    uniquesegment_yearlydata=yearly_count_noremainid(index3,:); 
    uniquesegment_yearlydata(:,31)=size(uniquesegment_yearlydata,1); 
    yearly_count=vertcat(yearly_count,uniquesegment_yearlydata); 
end 
  
%% ====save all the count files into a mat database===== 
SAVEPATH=strcat(pwd,filesep,'matlab'); 
if ( ~isdir(SAVEPATH)) 
    mkdir(SAVEPATH); 
end 
SAVEFILENAME=strcat(SAVEPATH,filesep,'countdata_new.mat'); 
disp(['The count data was saved to: ',SAVEFILENAME]); 
save(SAVEFILENAME, 'yearly_count', 'monthly_count', 'quarterly_count'); 
  
%% ====save all the count files into a three txt files for SAS===== 
fileID = fopen('yearlycount_new.txt','w'); 
fprintf(fileID, '%g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g 
%g %g %g %g %g %g %g %g %g %g %g %g %g\n',yearly_count'); 
fclose(fileID); 
  
fileID = fopen('quarterlycount_new.txt','w'); 
fprintf(fileID, '%g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g 
%g %g %g %g %g %g %g %g %g %g %g %g %g\n',quarterly_count'); 
fclose(fileID); 
  
fileID = fopen('monthlycount_new.txt','w'); 
fprintf(fileID, '%g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g 
%g %g %g %g %g %g %g %g %g %g %g %g %g\n',monthly_count'); 
fclose(fileID); 
  
%% ====produce a sound after the run time is done===== 
t1=1/10000:1/10000:1; 
si=(sin(2*pi*500*t1)); 
sound(si,40000); 
clear t1 si; 
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APPENDIX B.  

SAS CODES FOR MODELING CRASH FREQUENCY 
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options ls=120 formdlim='-' nodate nonumber; 
dm "out;clear;log;clear;"; 
 
*===================================================;  
data monthlycount; 
set Seasonal.monthly; 
where  sl > 50 and  
  nolanes > 1 and  
  year > 2001 and year < 2012 
  ; 
n=count; 
LnAADT = log(AADT); 
LnLength = log(segmentlength); 
uniqueid = highway*10000000000+travelway*10000+id; 
*--------------------------; 
urban_2 = 0; urban_3 = 0; urban_3p = 0; 
rural_2 = 0; rural_3 = 0; 
*--------------------------; 
urban_55 = 0; urban_60 = 0; urban_65 = 0; urban_70 = 0; 
     rural_60 = 0; rural_65 = 0; rural_70 = 0; 
*--------------------------; 
urban_2_55 = 0; urban_3_55 = 0; urban_3p_55 = 0; 
urban_2_60 = 0; urban_3_60 = 0; urban_3p_60 = 0; 
urban_2_65 = 0; urban_3_65 = 0; urban_3p_65 = 0; 
urban_2_70 = 0; urban_3_70 = 0; urban_3p_70 = 0; 
rural_2_60 = 0; rural_3_60 = 0; 
rural_2_65 = 0; rural_3_65 = 0; 
rural_2_70 = 0; rural_3_70 = 0; 
*--------------------------; 
lanewidthdummy = 0; 
*--------------------------; 
psrclasslow = 0; psrclassmed = 0; psrclasshigh = 0; 
*--------------------------; 
nolanes2 = 0; nolanes3 = 0; nolanes3p = 0;  
*--------------------------; 
sl55 = 0; sl60 = 0; sl65 = 0; sl70 = 0; 
*--------------------------; 
spring_dummy = 0; 
fall_dummy  = 0; 
summer_dummy = 0; 
winter_dummy = 0; 
*--------------------------; 
spring_2 = 0; spring_3 = 0; spring_3p = 0; 
summer_2 = 0; summer_3 = 0; summer_3p = 0; 
fall_2  = 0; fall_3  = 0; fall_3p = 0; 
winter_2 = 0; winter_3 = 0; winter_3p = 0; 
*--------------------------; 
spring_55 = 0; summer_55 = 0; fall_55 = 0; winter_55 = 0; 
spring_60 = 0; summer_60 = 0; fall_60 = 0; winter_60 = 0; 
spring_65 = 0; summer_65 = 0; fall_65 = 0; winter_65 = 0; 
spring_70 = 0; summer_70 = 0; fall_70 = 0; winter_70 = 0; 
*--------------------------; 
spring_2_55 = 0; spring_3_55 = 0; spring_3p_55 = 0; 
spring_2_60 = 0; spring_3_60 = 0; spring_3p_60 = 0; 
spring_2_65 = 0; spring_3_65 = 0; spring_3p_65 = 0; 
spring_2_70 = 0; spring_3_70 = 0; spring_3p_70 = 0; 
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summer_2_55 = 0; summer_3_55 = 0; summer_3p_55 = 0; 
summer_2_60 = 0; summer_3_60 = 0; summer_3p_60 = 0; 
summer_2_65 = 0; summer_3_65 = 0; summer_3p_65 = 0; 
summer_2_70 = 0; summer_3_70 = 0; summer_3p_70 = 0; 
fall_2_55  = 0; fall_3_55   = 0; fall_3p_55   = 0; 
fall_2_60  = 0; fall_3_60   = 0; fall_3p_60   = 0; 
fall_2_65 = 0; fall_3_65  = 0; fall_3p_65   = 0; 
fall_2_70  = 0; fall_3_70   = 0; fall_3p_70   = 0; 
winter_2_55 = 0; winter_3_55 = 0; winter_3p_55 = 0; 
winter_2_60 = 0; winter_3_60 = 0; winter_3p_60 = 0; 
winter_2_65 = 0; winter_3_65 = 0; winter_3p_65 = 0; 
winter_2_70 = 0; winter_3_70 = 0; winter_3p_70 = 0; 
*--------------------------; 
fall_rural_2_60 = 0; fall_rural_2_65 = 0; fall_rural_2_70 = 0; 
fall_rural_3_60 = 0; fall_rural_3_65 = 0; fall_rural_3_70 = 0; 
fall_urban_2_55 = 0; fall_urban_2_60 = 0; fall_urban_2_65 = 0; 
fall_urban_2_70 = 0;  
fall_urban_3_55 = 0; fall_urban_3_60 = 0; fall_urban_3_65 = 0; 
fall_urban_3_70 = 0; 
fall_urban_3p_55 = 0; fall_urban_3p_60 = 0; fall_urban_3p_65 = 0; 
fall_urban_3p_70 = 0; 
spring_rural_2_60 = 0; spring_rural_2_65 = 0; spring_rural_2_70 = 0; 
spring_rural_3_60 = 0; spring_rural_3_65 = 0; spring_rural_3_70 = 0; 
spring_urban_2_55 = 0; spring_urban_2_60 = 0; spring_urban_2_65 = 0; 
spring_urban_2_70 = 0; 
spring_urban_3_55 = 0; spring_urban_3_60 = 0; spring_urban_3_65 = 0; 
spring_urban_3_70 = 0; 
spring_urban_3p_55 = 0; spring_urban_3p_60 = 0; spring_urban_3p_65 = 0; 
spring_urban_3p_70 = 0; 
summer_rural_2_60 = 0; summer_rural_2_65 = 0; summer_rural_2_70 = 0; 
summer_rural_3_60 = 0; summer_rural_3_65 = 0; summer_rural_3_70 = 0; 
summer_urban_2_55 = 0; summer_urban_2_60 = 0; summer_urban_2_65 = 0; 
summer_urban_2_70 = 0; 
summer_urban_3_55 = 0; summer_urban_3_60 = 0; summer_urban_3_65 = 0; 
summer_urban_3_70 = 0; 
summer_urban_3p_55 = 0; summer_urban_3p_60 = 0; summer_urban_3p_65 = 0; 
summer_urban_3p_70 = 0; 
winter_rural_2_60 = 0; winter_rural_2_65 = 0; winter_rural_2_70 = 0; 
winter_rural_3_60 = 0; winter_rural_3_65 = 0; winter_rural_3_70 = 0; 
winter_urban_2_55 = 0; winter_urban_2_60 = 0; winter_urban_2_65 = 0; 
winter_urban_2_70 = 0; 
winter_urban_3_55 = 0; winter_urban_3_60 = 0; winter_urban_3_65 = 0; 
winter_urban_3_70 = 0; 
winter_urban_3p_55 = 0; winter_urban_3p_60 = 0; winter_urban_3p_65 = 0; 
winter_urban_3p_70= 0; 
*--------------------------; 
transition = 0; 
spring_transition = 0; 
summer_transition = 0; 
*fall_transition   = 0; 
winter_transition = 0; 
*--------------------------; 
 
*###################################################; 
*###################################################; 
*###################################################; 
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*###################################################; 
proc format; 
 value area  1='Urban' 
             0='Rural'; 
run; 
 
data count; 
set monthlycount; 
*--------------------------; 
if year > 2001 then overallmonth = (year-2002)*12+month; 
if year > 2004 then transition = (overallmonth-36)/84; 
* the 35 is the number of months for 2002- November 2004; 
*--------------------------;  
if month = 3  or month = 4  or month = 5  then do spring_dummy = 1; 
season = 1; end; 
if month = 6  or month = 7  or month = 8  then do summer_dummy = 1; 
season = 2; end; 
if month = 9  or month = 10 or month = 11 then do fall_dummy   = 1; 
season = 3; end; 
if month = 12 or month = 1  or month = 2  then do winter_dummy = 1; 
season = 4; end; 
*--------------------------;  
if spring_dummy = 1 and nolanes = 2 then spring_2 = 1; 
if summer_dummy = 1 and nolanes = 2 then summer_2 = 1; 
if fall_dummy   = 1 and nolanes = 2 then fall_2  = 1; 
if winter_dummy = 1 and nolanes = 2 then winter_2 = 1; 
if spring_dummy = 1 and nolanes = 3 then spring_3 = 1; 
if summer_dummy = 1 and nolanes = 3 then summer_3 = 1; 
if fall_dummy   = 1 and nolanes = 3 then fall_3  = 1; 
if winter_dummy = 1 and nolanes = 3 then winter_3 = 1; 
if spring_dummy = 1 and nolanes > 3 then spring_3p= 1; 
if summer_dummy = 1 and nolanes > 3 then summer_3p= 1; 
if fall_dummy   = 1 and nolanes > 3 then fall_3p  = 1; 
if winter_dummy = 1 and nolanes > 3 then winter_3p= 1; 
*--------------------------;  
if spring_dummy = 1 and sl = 55 then spring_55 = 1; 
if summer_dummy = 1 and sl = 55 then summer_55 = 1; 
if fall_dummy   = 1 and sl = 55 then fall_55   = 1; 
if winter_dummy = 1 and sl = 55 then winter_55 = 1; 
if spring_dummy = 1 and sl = 60 then spring_60 = 1; 
if summer_dummy = 1 and sl = 60 then summer_60 = 1; 
if fall_dummy   = 1 and sl = 60 then fall_60   = 1; 
if winter_dummy = 1 and sl = 60 then winter_60 = 1; 
if spring_dummy = 1 and sl = 65 then spring_65 = 1; 
if summer_dummy = 1 and sl = 65 then summer_65 = 1; 
if fall_dummy   = 1 and sl = 65 then fall_65   = 1; 
if winter_dummy = 1 and sl = 65 then winter_65 = 1; 
if spring_dummy = 1 and sl = 70 then spring_70 = 1; 
if summer_dummy = 1 and sl = 70 then summer_70 = 1; 
if fall_dummy   = 1 and sl = 70 then fall_70   = 1; 
if winter_dummy = 1 and sl = 70 then winter_70 = 1; 
*--------------------------;  
if nolanes = 2 then nolanes2 = 1; 
if nolanes = 3 then nolanes3 = 1; 
if nolanes > 3 then nolanes3p = 1; 
*--------------------------; 
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if sl = 55 then sl55 = 1; 
if sl = 60 then sl60 = 1; 
if sl = 65 then sl65 = 1; 
if sl = 70 then sl70 = 1; 
*--------------------------;  
if area = 1 and nolanes = 2 then urban_2 = 1; 
if area = 1 and nolanes = 3 then urban_3 = 1; 
if area = 1 and nolanes > 3 then urban_3p= 1; 
if area = 0 and nolanes = 2 then rural_2 = 1; 
if area = 0 and nolanes = 3 then rural_3 = 1; 
*--------------------------;  
if area = 1 and sl = 55 then urban_55 = 1; 
if area = 1 and sl = 60 then urban_60 = 1; 
if area = 1 and sl = 65 then urban_65 = 1; 
if area = 1 and sl = 70 then urban_70 = 1; 
if area = 0 and sl = 60 then rural_60 = 1; 
if area = 0 and sl = 65 then rural_65 = 1; 
if area = 0 and sl = 70 then rural_70 = 1; 
*--------------------------;  
if area = 1 and nolanes = 2 and sl = 55 then urban_2_55 = 1; 
if area = 1 and nolanes = 2 and sl = 55 then  
  select (season); 
   when (1) spring_urban_2_55 =1; 
   when (2) summer_urban_2_55 =1; 
   when (3) fall_urban_2_55 =1; 
   when (4) winter_urban_2_55 =1; 
  end; 
if area = 1 and nolanes = 2 and sl = 60 then urban_2_60 = 1; 
if area = 1 and nolanes = 2 and sl = 60 then  
  select (season); 
   when (1) spring_urban_2_60 =1; 
   when (2) summer_urban_2_60 =1; 
   when (3) fall_urban_2_60 =1; 
   when (4) winter_urban_2_60 =1; 
  end; 
if area = 1 and nolanes = 2 and sl = 65 then urban_2_65 = 1; 
if area = 1 and nolanes = 2 and sl = 65 then  
  select (season); 
   when (1) spring_urban_2_65 =1; 
   when (2) summer_urban_2_65 =1; 
   when (3) fall_urban_2_65 =1; 
   when (4) winter_urban_2_65 =1; 
  end; 
if area = 1 and nolanes = 2 and sl = 70 then urban_2_70 = 1; 
if area = 1 and nolanes = 2 and sl = 70 then  
  select (season); 
   when (1) spring_urban_2_70 =1; 
   when (2) summer_urban_2_70 =1; 
   when (3) fall_urban_2_70 =1; 
   when (4) winter_urban_2_70 =1; 
  end; 
if area = 1 and nolanes = 3 and sl = 55 then urban_3_55 = 1; 
if area = 1 and nolanes = 3 and sl = 55 then  
  select (season); 
   when (1) spring_urban_3_55 =1; 
   when (2) summer_urban_3_55 =1; 



105 

 

   when (3) fall_urban_3_55 =1; 
   when (4) winter_urban_3_55 =1; 
  end; 
if area = 1 and nolanes = 3 and sl = 60 then urban_3_60 = 1; 
if area = 1 and nolanes = 3 and sl = 60 then  
  select (season); 
   when (1) spring_urban_3_60 =1; 
   when (2) summer_urban_3_60 =1; 
   when (3) fall_urban_3_60 =1; 
   when (4) winter_urban_3_60 =1; 
  end; 
if area = 1 and nolanes = 3 and sl = 65 then urban_3_65 = 1; 
if area = 1 and nolanes = 3 and sl = 65 then  
  select (season); 
   when (1) spring_urban_3_65 =1; 
   when (2) summer_urban_3_65 =1; 
   when (3) fall_urban_3_65 =1; 
   when (4) winter_urban_3_65 =1; 
  end; 
if area = 1 and nolanes = 3 and sl = 70 then urban_3_70 = 1; 
if area = 1 and nolanes = 3 and sl = 70 then  
  select (season); 
   when (1) spring_urban_3_70 =1; 
   when (2) summer_urban_3_70 =1; 
   when (3) fall_urban_3_70 =1; 
   when (4) winter_urban_3_70 =1; 
  end; 
if area = 1 and nolanes > 3 and sl = 55 then urban_3p_55 = 1; 
if area = 1 and nolanes > 3 and sl = 55 then  
  select (season); 
   when (1) spring_urban_3p_55 =1; 
   when (2) summer_urban_3p_55 =1; 
   when (3) fall_urban_3p_55 =1; 
   when (4) winter_urban_3p_55 =1; 
  end; 
if area = 1 and nolanes > 3 and sl = 60 then urban_3p_60 = 1; 
if area = 1 and nolanes > 3 and sl = 60 then  
  select (season); 
   when (1) spring_urban_3p_60 =1; 
   when (2) summer_urban_3p_60 =1; 
   when (3) fall_urban_3p_60 =1; 
   when (4) winter_urban_3p_60 =1; 
  end; 
if area = 1 and nolanes > 3 and sl = 65 then urban_3p_65 = 1; 
if area = 1 and nolanes > 3 and sl = 65 then  
  select (season); 
   when (1) spring_urban_3p_65 =1; 
   when (2) summer_urban_3p_65 =1; 
   when (3) fall_urban_3p_65 =1; 
   when (4) winter_urban_3p_65 =1; 
  end; 
if area = 1 and nolanes > 3 and sl = 70 then urban_3p_70 = 1; 
if area = 1 and nolanes > 3 and sl = 70 then  
  select (season); 
   when (1) spring_urban_3p_70 =1; 
   when (2) summer_urban_3p_70 =1; 
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   when (3) fall_urban_3p_70 =1; 
   when (4) winter_urban_3p_70 =1; 
  end; 
if area = 0 and nolanes = 2 and sl = 60 then rural_2_60 = 1; 
if area = 0 and nolanes = 2 and sl = 60 then  
  select (season); 
   when (1) spring_rural_2_60 =1; 
   when (2) summer_rural_2_60 =1; 
   when (3) fall_rural_2_60 =1; 
   when (4) winter_rural_2_60 =1; 
  end; 
if area = 0 and nolanes = 2 and sl = 65 then rural_2_65 = 1; 
if area = 0 and nolanes = 2 and sl = 65 then  
  select (season); 
   when (1) spring_rural_2_65 =1; 
   when (2) summer_rural_2_65 =1; 
   when (3) fall_rural_2_65 =1; 
   when (4) winter_rural_2_65 =1; 
  end; 
if area = 0 and nolanes = 2 and sl = 70 then rural_2_70 = 1; 
if area = 0 and nolanes = 2 and sl = 70 then  
  select (season); 
   when (1) spring_rural_2_70 =1; 
   when (2) summer_rural_2_70 =1; 
   when (3) fall_rural_2_70 =1; 
   when (4) winter_rural_2_70 =1; 
  end; 
if area = 0 and nolanes = 3 and sl = 60 then rural_3_60 = 1; 
if area = 0 and nolanes = 3 and sl = 60 then  
  select (season); 
   when (1) spring_rural_3_60 =1; 
   when (2) summer_rural_3_60 =1; 
   when (3) fall_rural_3_60 =1; 
   when (4) winter_rural_3_60 =1; 
  end; 
if area = 0 and nolanes = 3 and sl = 65 then rural_3_65 = 1; 
if area = 0 and nolanes = 3 and sl = 65 then  
  select (season); 
   when (1) spring_rural_3_65 =1; 
   when (2) summer_rural_3_65 =1; 
   when (3) fall_rural_3_65 =1; 
   when (4) winter_rural_3_65 =1; 
  end; 
if area = 0 and nolanes = 3 and sl = 70 then rural_3_70 = 1; 
if area = 0 and nolanes = 3 and sl = 70 then  
  select (season); 
   when (1) spring_rural_3_70 =1; 
   when (2) summer_rural_3_70 =1; 
   when (3) fall_rural_3_70 =1; 
   when (4) winter_rural_3_70 =1; 
  end; 
*--------------------------;  
if lanewidth ne 12 then lanewidthdummy = 1; 
*--------------------------;  
areadt   = area * lnAADT; 
areacommercial = area * percentcommercial; 
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areawidth  = area * lanewidth; 
areapsr   = area * psr; 
areacongestion = area * congestionindex; 
areawidthdummy = area * lanewidthdummy; 
areatransition  = area * transition; 
areaseason  = area * season; 
*--------------------------;  
urban_2dt = urban_2  * Lnaadt; 
urban_3dt = urban_3  * Lnaadt; 
urban_3pdt = urban_3p * Lnaadt; 
*--------------------------;  
if  psr < (32.498298-.3*2.63746) then do psrclasslow = 1; psrclass=1; 
end; 
if  psr > (32.498298-.3*2.63746) and psr < (32.498298+.3*2.63746) 
then do psrclassmed = 1; psrclass=2; end; 
if  psr > (32.498298+.3*2.63746) then do psrclasshigh = 1; 
psrclass=3; end; 
*--------------------------;  
* Creating interactions with seasonal dummy variables; 
spring_area     = spring_dummy*area; 
summer_area     = summer_dummy*area; 
winter_area     = winter_dummy*area; 
spring_nolanes     = spring_dummy*nolanes;  
summer_nolanes     = summer_dummy*nolanes;  
winter_nolanes     = winter_dummy*nolanes; 
spring_lanewidth    = spring_dummy*lanewidth;  
summer_lanewidth    = summer_dummy*lanewidth;  
winter_lanewidth    = winter_dummy*lanewidth; 
spring_shoulderwidth   = spring_dummy*shoulderwidth;  
summer_shoulderwidth   = summer_dummy*shoulderwidth;  
winter_shoulderwidth   = winter_dummy*shoulderwidth;  
spring_lnAADT     = spring_dummy*lnAADT;  
summer_lnAADT     = summer_dummy*lnAADT;  
winter_lnAADT     = winter_dummy*lnAADT;  
spring_SL      = spring_dummy*SL; 
summer_SL      = summer_dummy*SL; 
winter_SL      = winter_dummy*SL; 
spring_congestionindex   = spring_dummy*congestionindex; 
summer_congestionindex   = summer_dummy*congestionindex; 
winter_congestionindex   = winter_dummy*congestionindex; 
spring_PSR      = spring_dummy*PSR; 
summer_PSR      = summer_dummy*PSR; 
winter_PSR      = winter_dummy*PSR; 
spring_percentcommercial = spring_dummy*percentcommercial; 
summer_percentcommercial = summer_dummy*percentcommercial; 
winter_percentcommercial = winter_dummy*percentcommercial; 
spring_transition   = spring_dummy*transition; 
summer_transition   = summer_dummy*transition; 
winter_transition   = winter_dummy*transition; 
*--------------------------;  
/* 
if spring_dummy = 1 and nolanes = 2 and sl = 55 then spring_2_55 = 1; 
if spring_dummy = 1 and nolanes = 3 and sl = 55 then spring_3_55 = 1; 
if spring_dummy = 1 and nolanes > 3 and sl = 55 then spring_3p_55= 1; 
if spring_dummy = 1 and nolanes = 2 and sl = 60 then spring_2_60 = 1; 
if spring_dummy = 1 and nolanes = 3 and sl = 60 then spring_3_60 = 1; 
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if spring_dummy = 1 and nolanes > 3 and sl = 60 then spring_3p_60= 1; 
if spring_dummy = 1 and nolanes = 2 and sl = 65 then spring_2_65 = 1; 
if spring_dummy = 1 and nolanes = 3 and sl = 65 then spring_3_65 = 1; 
if spring_dummy = 1 and nolanes > 3 and sl = 65 then spring_3p_65= 1; 
if spring_dummy = 1 and nolanes = 2 and sl = 70 then spring_2_70 = 1; 
if spring_dummy = 1 and nolanes = 3 and sl = 70 then spring_3_70 = 1; 
if spring_dummy = 1 and nolanes > 3 and sl = 70 then spring_3p_70= 1; 
 
if summer_dummy = 1 and nolanes = 2 and sl = 55 then summer_2_55 = 1; 
if summer_dummy = 1 and nolanes = 3 and sl = 55 then summer_3_55 = 1; 
if summer_dummy = 1 and nolanes > 3 and sl = 55 then summer_3p_55= 1; 
if summer_dummy = 1 and nolanes = 2 and sl = 60 then summer_2_60 = 1; 
if summer_dummy = 1 and nolanes = 3 and sl = 60 then summer_3_60 = 1; 
if summer_dummy = 1 and nolanes > 3 and sl = 60 then summer_3p_60= 1; 
if summer_dummy = 1 and nolanes = 2 and sl = 65 then summer_2_65 = 1; 
if summer_dummy = 1 and nolanes = 3 and sl = 65 then summer_3_65 = 1; 
if summer_dummy = 1 and nolanes > 3 and sl = 65 then summer_3p_65= 1; 
if summer_dummy = 1 and nolanes = 2 and sl = 70 then summer_2_70 = 1; 
if summer_dummy = 1 and nolanes = 3 and sl = 70 then summer_3_70 = 1; 
if summer_dummy = 1 and nolanes > 3 and sl = 70 then summer_3p_70= 1; 
 
if fall_dummy   = 1 and nolanes = 2 and sl = 55 then fall_2_55  = 1; 
if fall_dummy   = 1 and nolanes = 3 and sl = 55 then fall_3_55  = 1; 
if fall_dummy   = 1 and nolanes > 3 and sl = 55 then fall_3p_55 = 1; 
if fall_dummy   = 1 and nolanes = 2 and sl = 60 then fall_2_60  = 1; 
if fall_dummy   = 1 and nolanes = 3 and sl = 60 then fall_3_60  = 1; 
if fall_dummy   = 1 and nolanes > 3 and sl = 60 then fall_3p_60 = 1; 
if fall_dummy   = 1 and nolanes = 2 and sl = 65 then fall_2_65  = 1; 
if fall_dummy   = 1 and nolanes = 3 and sl = 65 then fall_3_65  = 1; 
if fall_dummy   = 1 and nolanes > 3 and sl = 65 then fall_3p_65 = 1; 
if fall_dummy   = 1 and nolanes = 2 and sl = 70 then fall_2_70  = 1; 
if fall_dummy   = 1 and nolanes = 3 and sl = 70 then fall_3_70  = 1; 
if fall_dummy   = 1 and nolanes > 3 and sl = 70 then fall_3p_70 = 1; 
*/ 
if winter_dummy = 1 and area = 1 and nolanes = 2 and sl = 55 then 
winter_urban_2_55 = 1; 
if winter_dummy = 1 and area = 1 and nolanes = 3 and sl = 55 then 
winter_urban_3_55 = 1; 
if winter_dummy = 1 and area = 1 and nolanes > 3 and sl = 55 then 
winter_urban_3p_55= 1; 
if winter_dummy = 1 and area = 1 and nolanes = 2 and sl = 60 then 
winter_urban_2_60 = 1; 
if winter_dummy = 1 and area = 1 and nolanes = 3 and sl = 60 then 
winter_urban_3_60 = 1; 
if winter_dummy = 1 and area = 1 and nolanes > 3 and sl = 60 then 
winter_urban_3p_60= 1; 
if winter_dummy = 1 and area = 1 and nolanes = 2 and sl = 65 then 
winter_urban_2_65 = 1; 
if winter_dummy = 1 and area = 1 and nolanes = 3 and sl = 65 then 
winter_urban_3_65 = 1; 
if winter_dummy = 1 and area = 1 and nolanes > 3 and sl = 65 then 
winter_urban_3p_65= 1; 
if winter_dummy = 1 and area = 1 and nolanes = 2 and sl = 70 then 
winter_urban_2_70 = 1; 
if winter_dummy = 1 and area = 1 and nolanes = 3 and sl = 70 then 
winter_urban_3_70 = 1; 
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if winter_dummy = 1 and area = 1 and nolanes > 3 and sl = 70 then 
winter_urban_3p_70= 1; 
*--------------------------;  
if spring_dummy = 1 and area = 1 and nolanes = 2 and sl = 55 then 
spring_urban_2_55 = 1; 
if spring_dummy = 1 and area = 1 and nolanes = 3 and sl = 55 then 
spring_urban_3_55 = 1; 
if spring_dummy = 1 and area = 1 and nolanes > 3 and sl = 55 then 
spring_urban_3p_55= 1; 
if spring_dummy = 1 and area = 1 and nolanes = 2 and sl = 60 then 
spring_urban_2_60 = 1; 
if spring_dummy = 1 and area = 1 and nolanes = 3 and sl = 60 then 
spring_urban_3_60 = 1; 
if spring_dummy = 1 and area = 1 and (nolanes > 3 or nolanes=2) and (sl 
= 60 or sl=70) then spring_urban_3p_60= 1; 
if spring_dummy = 1 and area = 1 and nolanes = 2 and sl = 65 then 
spring_urban_2_65 = 1; 
if spring_dummy = 1 and area = 1 and nolanes = 3 and sl = 65 then 
spring_urban_3_65 = 1; 
if spring_dummy = 1 and area = 1 and nolanes > 3 and sl = 65 then 
spring_urban_3p_65= 1; 
if spring_dummy = 1 and area = 1 and nolanes = 2 and sl = 70 then 
spring_urban_2_70 = 1; 
if spring_dummy = 1 and area = 1 and nolanes = 3 and sl = 70 then 
spring_urban_3_70 = 1; 
if spring_dummy = 1 and area = 1 and nolanes > 3 and sl = 70 then 
spring_urban_3p_70= 1; 
*--------------------------;  
dataset = "original"; 
run;  
 
*###################################################; 
*###################################################; 
*###### This section is for the modeling which was done first to find 
the sig. variables 
/**********************************************************************
***********/  
*GEE NB model. Each segment count is a repeated observation | With 
Interaction; 
proc sort data = count; by uniqueid year month; run; 
 
proc genmod data = count; 
where highway=29 or highway=35 or highway=44 or highway=49 or 
highway=55 or highway=70; 
class  uniqueid ; 
model  n = lnAADT  
   psr  
   percentcommercial  
   congestionindex 
   transition 
   areadt  
   areacommercial  
/*   lanewidthdummy Removed backward! */ 
/*   areapsr Removed backward! */ 
/*   areatransition Removed backward! */ 
   areacongestion 
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   urban_2_55  
   urban_2_60  
   urban_2_65  
   urban_2_70  
   urban_3_55  
   urban_3_60  
   urban_3_65  
   urban_3_70  
   urban_3p_55  
   urban_3p_60  
   urban_3p_65  
   urban_3p_70  
   rural_2_60  
   rural_2_65  
/*   rural_2_70 base for area_nolane_sl */ 
 
/*   spring_area Removed backward! */ 
   spring_dummy  
   spring_lnAADT  
/*   spring_percentcommercial Removed backward! */ 
   spring_PSR 
/*   spring_lanewidth Removed backward! */ 
/*   spring_rural_2_60 Removed backward! */ 
/*   spring_rural_2_65 Removed backward! */ 
/*   spring_rural_2_70 Removed backward! */ 
/*   spring_transition Removed backward! */ 
/*   spring_urban_2_55 Removed backward! */ 
/*   spring_urban_2_60 Removed backward! */ 
/*   spring_urban_2_65 Removed backward! */ 
   spring_urban_2_70  
/*   spring_urban_3_55 Removed backward! */ 
/*   spring_urban_3_60 Removed backward! */ 
/*   spring_urban_3_65 Removed backward! */ 
/*   spring_urban_3_70 Removed backward! */ 
/*   spring_urban_3p_55 Removed backward! */ 
/*   spring_urban_3p_60 Removed backward! */ 
/*   spring_urban_3p_65 Removed backward! */ 
/*   spring_urban_3p_70 base for spring_area_nolane_sl */ 
 
/*   summer_area Removed backward! */ 
   summer_dummy  
/*   summer_lnAADT Removed backward! */ 
   summer_percentcommercial  
   summer_PSR 
/*   summer_lanewidth Removed backward! */ 
/*   summer_rural_2_60 Removed backward! */ 
/*   summer_rural_2_65 Removed backward! */ 
/*   summer_rural_2_70 Removed backward! */ 
   summer_transition 
/*   summer_urban_2_55 Removed backward! */ 
/*   summer_urban_2_60 Removed backward! */ 
/*   summer_urban_2_65 Removed backward! */ 
/*   summer_urban_2_70 Removed backward! */ 
   summer_urban_3_55  
/*   summer_urban_3_60 Removed backward! */ 
/*   summer_urban_3_65 Removed backward! */ 
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/*   summer_urban_3_70 Removed backward! */ 
/*   summer_urban_3p_55 Removed backward! */ 
/*   summer_urban_3p_60 Removed backward! */ 
/*   summer_urban_3p_65 Removed backward! */ 
/*   summer_urban_3p_70 base for summer_area_nolane_sl */ 
 
/*   winter_area Removed backward! */ 
   winter_dummy  
   winter_lnAADT  
/*   winter_percentcommercial Removed backward! */ 
   winter_PSR  
/*   winter_lanewidth Removed backward! */ 
/*   winter_rural_2_60 Removed backward! */ 
/*   winter_rural_2_65 Removed backward! */ 
/*   winter_rural_2_70 Removed backward! */ 
   winter_transition 
   winter_urban_2_55  
/*   winter_urban_2_60 Removed backward! */ 
   winter_urban_2_65  
/*   winter_urban_2_70 Removed backward! */ 
   winter_urban_3_55  
   winter_urban_3_60  
   winter_urban_3_65  
   winter_urban_3_70  
   winter_urban_3p_55  
   winter_urban_3p_60  
   winter_urban_3p_65  
/*   winter_urban_3p_70 base for winter_area_nolane_sl */ 
 
   /offset= segmentLength d=nb; 
repeated subject=uniqueid / type=ar;  
assess var=(lnaadt)/ resample=1000; 
run; 
 
*###################################################################; 
*###################################################################; 
*###### This section is for finding the effect of seasons after  
*###### the modeling is finalized. only sig. variables are used here; 
********************************************************************; 
*###################################################; 
*###################################################; 
*###################################################; 
*###################################################; 
 
data countnew; 
set count; 
 n    = .; 
 lnAADT    = 0; 
 psr     = 0; 
 percentcommercial  = 0; 
 congestionindex   = 0; 
 transition    = 0; 
 areadt    = 0; 
 areacommercial   = 0; 
 lanewidthdummy   = 0; 
 areapsr    = 0; 
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 areatransition   = 0; 
 areacongestion   = 0; 
 
 urban_2_55   = 0; 
 urban_2_60   = 0; 
 urban_2_65   = 0; 
 urban_2_70   = 0; 
 urban_3_55   = 0; 
 urban_3_60   = 0; 
 urban_3_65   = 0; 
 urban_3_70   = 0; 
 urban_3p_55   = 0; 
 urban_3p_60   = 0; 
 urban_3p_65   = 0; 
 urban_3p_70   = 0; 
 rural_2_60    = 0; 
 rural_2_65    = 0; 
 rural_2_70    = 0; 
/* 
 spring_area   = 0; 
 spring_dummy   = 0; 
 spring_lnAADT   = 0; 
 spring_percentcommercial = 0; 
 spring_PSR   = 0; 
 spring_lanewidth  = 0; 
 spring_rural_2_60  = 0; 
 spring_rural_2_65  = 0; 
 spring_rural_2_70  = 0; 
 spring_transition  = 0; 
 spring_urban_2_55  = 0; 
 spring_urban_2_60  = 0; 
 spring_urban_2_65  = 0; 
 spring_urban_2_70  = 0; 
 spring_urban_3_55  = 0; 
 spring_urban_3_60  = 0; 
 spring_urban_3_65  = 0; 
 spring_urban_3_70  = 0; 
 spring_urban_3p_55  = 0; 
 spring_urban_3p_60  = 0; 
 spring_urban_3p_65  = 0; 
 spring_urban_3p_70  = 0; 
*/ 
 summer_area   = 0; 
 summer_dummy   = 0; 
 summer_lnAADT  = 0; 
 summer_percentcommercial= 0; 
 summer_PSR   = 0; 
 summer_lanewidth   = 0; 
 summer_rural_2_60  = 0; 
 summer_rural_2_65  = 0; 
 summer_rural_2_70  = 0; 
 summer_transition  = 0; 
 summer_urban_2_55  = 0; 
 summer_urban_2_60  = 0; 
 summer_urban_2_65  = 0; 
 summer_urban_2_70  = 0; 
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 summer_urban_3_55  = 0; 
 summer_urban_3_60  = 0; 
 summer_urban_3_65  = 0; 
 summer_urban_3_70  = 0; 
 summer_urban_3p_55  = 0; 
 summer_urban_3p_60  = 0; 
 summer_urban_3p_65  = 0; 
 summer_urban_3p_70  = 0; 
 
 winter_area   = 0; 
 winter_dummy   = 0; 
 winter_lnAADT   = 0; 
 winter_percentcommercial= 0; 
 winter_PSR    = 0; 
 winter_lanewidth   = 0; 
 winter_rural_2_60  = 0; 
 winter_rural_2_65  = 0; 
 winter_rural_2_70  = 0; 
 winter_transition  = 0; 
 winter_urban_2_55  = 0; 
 winter_urban_2_60  = 0; 
 winter_urban_2_65  = 0; 
 winter_urban_2_70  = 0; 
 winter_urban_3_55  = 0; 
 winter_urban_3_60  = 0; 
 winter_urban_3_65  = 0; 
 winter_urban_3_70  = 0; 
 winter_urban_3p_55  = 0; 
 winter_urban_3p_60  = 0; 
 winter_urban_3p_65  = 0; 
 winter_urban_3p_70  = 0; 
 
 dataset    = "new"; 
run; 
*###################################################; 
*###################################################; 
*===================================================; 
data countfinal;  
set count countnew;  
run; 
*===================================================; 
proc genmod data = countfinal; 
where highway=29 or highway=35 or highway=44 or highway=49 or 
highway=55 or highway=70; 
class  uniqueid ; 
model  n = lnAADT  
   psr  
   percentcommercial  
   congestionindex 
   transition 
   areadt  
   areacommercial  
   areacongestion 
   urban_2_55  
   urban_2_60  
   urban_2_65  
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   urban_2_70  
   urban_3_55  
   urban_3_60  
   urban_3_65  
   urban_3_70  
   urban_3p_55  
   urban_3p_60  
   urban_3p_65  
   urban_3p_70  
   rural_2_60  
   rural_2_65  
 
   spring_dummy  
   spring_lnAADT  
   spring_PSR 
   spring_urban_2_70  
 
   summer_dummy  
   summer_percentcommercial  
   summer_PSR 
   summer_transition 
   summer_urban_3_55  
 
   winter_dummy  
   winter_lnAADT  
   winter_PSR  
   winter_transition 
   winter_urban_2_55  
   winter_urban_2_65  
   winter_urban_3_55  
   winter_urban_3_60  
   winter_urban_3_65  
   winter_urban_3_70  
   winter_urban_3p_55  
   winter_urban_3p_60  
   winter_urban_3p_65  
 
   /offset= segmentLength d=nb; 
repeated subject=uniqueid / type=ar;  
output out=preddata lower=lowerb 
    upper=upperb 
    resraw=residuals  
    xbeta=linear_function_values 
    pred=predicted_values; 
run; 
*************************************************; 
proc print data = preddata (obs=10);  
var uniqueid n  predicted_values residuals;  
where summer_dummy = 1 and dataset="new"; 
run; 
 
proc means data = preddata min max mean var sum; 
var uniqueid n predicted_values;  
where summer_dummy = 1 and dataset="new"; 
run; 
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APPENDIX C. 

DETAILS OF THE EXAMINATION FOR CONFOUNDING AND SUFFICIENCY OF 
OBSERVATIONS 
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Examining Shoulderwidth 
The shoulder width and PSR were examined for the number of observations in 

each class to verify the sufficiency for analysis. Table 1 shows this tabularization for the 

shoulder width and year. In each group there are two numbers presented in the table that 

shows the actual number of observation and the overall percentage for that group. For 

example there are 31 segments observed with shoulderwidth=4’ during the year 2002 

which is 0.46% of the overall number of observations. It can be observed that for all the 

shoulder widths except 10’ there are not enough observations (as suggested by the 

reviewer to be at least 60). The histogram of the total number of observations is also 

presented in Figure 1). 

Table 1 clearly shows that the distribution of shoulderwidth that is present in this 

data set eliminates the possibility of grouping this data into reasonable categories based 

on shoulderwidth because 86% of the observations have shoulderwidth=10. Categorizing 

the observations according to the mean (9.4814107) and sd (1.5621976) of this variable 

as suggested by the reviewer, will also not work as seen in Table 2. Using the 25th, 50th, 

and 75th percentiles as the divider to group observations in sufficient numbers also will 

not resolve the problem (Table 3) as all three percentile values were one number (equal 

10’). Therefore, it was decided to remove the variable shoulderwidth from the analysis 

noting that it was also found to be not statistically significant (p-value= 0.9596 )in the old 

series of analyses. 
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Table 1. Frequency and percentages for each class of shoulder width within each year 

year 
shoulderwidth 

0 1 2 3 4 5 6 7 8 9 10 11 12 15 Total 

2002 
0 0 5 0 31 5 36 5 49 18 916 0 11 0 1076 

0 0 0.07 0 0.46 0.07 0.53 0.07 0.72 0.26 13.5 0 0.16 0 15.81 

2003 
4 0 6 0 36 5 46 7 47 17 891 0 14 0 1073 

0.06 0 0.09 0 0.53 0.07 0.68 0.1 0.69 0.25 13.1 0 0.21 0 15.77 

2004 
4 2 5 2 38 13 52 7 52 17 867 0 17 1 1077 

0.06 0.03 0.07 0.03 0.56 0.19 0.76 0.1 0.76 0.25 12.7 0 0.25 0 15.83 

2005 
3 2 3 0 37 13 44 4 44 16 771 0 17 1 955 

0.04 0.03 0.04 0 0.54 0.19 0.65 0.06 0.65 0.24 11.3 0 0.25 0 14.03 

2006 
0 1 0 1 3 0 5 4 5 12 210 0 4 0 245 

0 0.01 0 0.01 0.04 0 0.07 0.06 0.07 0.18 3.09 0 0.06 0 3.6 

2007 
0 1 0 2 7 4 9 4 15 12 400 0 7 0 461 

0 0.01 0 0.03 0.1 0.06 0.13 0.06 0.22 0.18 5.88 0 0.1 0 6.77 

2008 
0 1 2 2 5 5 14 4 15 7 436 1 6 0 498 

0 0.01 0.03 0.03 0.07 0.07 0.21 0.06 0.22 0.1 6.41 0 0.09 0 7.32 

2009 
0 0 2 3 5 1 17 9 14 0 352 1 8 0 412 

0 0 0.03 0.04 0.07 0.01 0.25 0.13 0.21 0 5.17 0 0.12 0 6.05 

2010 
0 0 3 9 1 4 19 4 19 0 481 0 5 0 545 

0 0 0.04 0.13 0.01 0.06 0.28 0.06 0.28 0 7.07 0 0.07 0 8.01 

2011 
0 0 3 5 4 3 26 4 20 0 394 0 4 0 463 

0 0 0.04 0.07 0.06 0.04 0.38 0.06 0.29 0 5.79 0 0.06 0 6.8 

Total 
11 7 29 24 167 53 268 52 280 99 5718 2 93 2 6805 

0.16 0.1 0.43 0.35 2.45 0.78 3.94 0.76 4.11 1.45 84 0 1.37 0 100 
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Figure 1. Histogram of the total number of segment observations for each class of 
shoulder width 
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Table 2. Frequency and percentages for the newly defined shoulderwidth group within 

each year 

year 
shoulderwidthclass 

1 2 3 Total 

2002 
82 983 11 1076 

1.2 14.5 0.16 15.8 

2003 
104 955 14 1073 

1.53 14 0.21 15.8 

2004 
123 936 18 1077 

1.81 13.8 0.26 15.8 

2005 
106 831 18 955 

1.56 12.2 0.26 14 

2006 
14 227 4 245 

0.21 3.34 0.06 3.6 

2007 
27 427 7 461 

0.4 6.27 0.1 6.77 

2008 
33 459 6 498 

0.48 6.75 0.09 7.32 

2009 
37 367 8 412 

0.54 5.39 0.12 6.05 

2010 
40 500 5 545 

0.59 7.35 0.07 8.01 

2011 
45 414 4 463 

0.66 6.08 0.06 6.8 

Total 
611 6099 95 6805 

8.98 89.6 1.4 100 
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Table 3. Quantiles of the shoulderwidth variable 

Quantiles (Shoulderwidth) 

Quantile Estimate 

100% Max 15 

99% 12 

95% 10 

90% 10 

75% Q3 10 

50% Median 10 

25% Q1 10 

10% 8 

5% 6 

1% 3 

0% Min 0 

Examining PSR 
PSR (pavement serviceability rate) which is a factor related to the pavement 

condition is a continuous variable and the only way to address the reviewers’ comment 

was to categorize the observations according to its mean vale (32.474004) and standard 

deviation (2.6395756). In order to be able to obtain   an optimal categorization across the 

maximum number of years, three classes of PSR was defined in the following format:  

 Class 1, “PSR < (mean – 0.3 x standard deviation)”,  

 Class 2, “(mean – 0.3 x standard deviation) < PSR < (mean + 0.3 x standard 

deviation)”, and  

 Class 3, “(mean + 0.3 x standard deviation) < PSR”. 

Table 4 shows the number of observation in each category. It can be observed that 

three of the PSR categories by year groups lack enough data (based on the recommended 

60 observations). This categorization was nevertheless used in the model as these 

anomalies occurred in a minor portion of the whole data set and the shortage in the 

number of observations is relatively minor.  
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Table 4. Frequency in each newly defined PSR (pavement serviceability rate) categories 

year 
PSR class 

1 (low) 2 (med) 3 (high) Total 

2002 
445 187 420 1052 

6.76 2.84 6.38 15.98 

2003 
396 200 455 1051 

6.02 3.04 6.91 15.97 

2004 
439 196 427 1062 

6.67 2.98 6.49 16.13 

2005 
239 205 496 940 

3.63 3.11 7.53 14.28 

2006 
46 43 151 240 

0.7 0.65 2.29 3.65 

2007 
65 56 334 455 

0.99 0.85 5.07 6.91 

2008 
110 85 279 474 

1.67 1.29 4.24 7.2 

2009 
93 80 226 399 

1.41 1.22 3.43 6.06 

2010 
321 92 82 495 

4.88 1.4 1.25 7.52 

2011 
284 68 63 415 

4.31 1.03 0.96 6.3 

Total 
2438 1212 2933 6583 

37 18.4 44.6 100 

 

Examining Number of Lanes (Nolanes) 
First the number of observations for each number of lanes category were tabulated 

to see if there is a sufficient number of observations in each group. Table 5 shows the 

results of this tabularization. In each group there are two numbers presented in the table: 

namely the actual number of observations and the overall percentage for that group. For 

example there are 38 segments observed with nolanes=5 during the year 2002 which is 

0.6% of the overall number of observations. It can be observed that the nolanes categories 
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equal to 4, 5, 6, and 7 lanes lack enough observations (as suggested by the reviewer to be 

at least 60). For this reason it was decided to combine all these groups into one category 

of nolanes>3. Therefore, three groups of nolanes were determined as follows:  those with 

nolanes=2, nolanes=3, and nolanes>3. Table 6 presents the new sets of categories and the 

number of observations (nolaneclass) in each one of them which shows that there are 

acceptable values as the sufficient number of observations. 

Now there is another issue which is the confounding effect of the nolanes with the 

urbanrural variable. To illustrate this, another table that shows the distribution of the 

number of observations for each type of urban or rural is presented (Table 7).  

Table 5. Frequency and percentages for each class of nolanes within each year 

year 
nolanes 

2 3 4 5 6 7 Total 

2002 
672 212 140 38 12 2 1076 

9.88 3.12 2.06 0.6 0.2 0 15.81 

2003 
663 221 141 34 12 2 1073 

9.74 3.25 2.07 0.5 0.2 0 15.77 

2004 
658 220 147 46 6 0 1077 

9.67 3.23 2.16 0.7 0.1 0 15.83 

2005 
555 216 139 39 6 0 955 

8.16 3.17 2.04 0.6 0.1 0 14.03 

2006 
91 87 54 13 0 0 245 

1.34 1.28 0.79 0.2 0 0 3.6 

2007 
278 104 63 15 1 0 461 

4.09 1.53 0.93 0.2 0 0 6.77 

2008 
326 112 46 13 1 0 498 

4.79 1.65 0.68 0.2 0 0 7.32 

2009 
243 102 44 21 2 0 412 

3.57 1.5 0.65 0.3 0 0 6.05 

2010 
337 133 42 33 0 0 545 

4.95 1.95 0.62 0.5 0 0 8.01 

2011 
281 106 58 17 1 0 463 

4.13 1.56 0.85 0.3 0 0 6.8 

Total 
4104 1513 874 269 41 4 6805 

60.3 22.2 12.8 4 0.6 0.1 100 
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Table 6. Observation frequency and percentages for the newly defined nolanes group 

within each year 

year 
nolaneclass 

2 3 >3 Total 

2002 
672 212 192 1076 

9.88 3.12 2.82 15.81 

2003 
663 221 189 1073 

9.74 3.25 2.78 15.77 

2004 
658 220 199 1077 

9.67 3.23 2.92 15.83 

2005 
555 216 184 955 

8.16 3.17 2.7 14.03 

2006 
91 87 67 245 

1.34 1.28 0.98 3.6 

2007 
278 104 79 461 

4.09 1.53 1.16 6.77 

2008 
326 112 60 498 

4.79 1.65 0.88 7.32 

2009 
243 102 67 412 

3.57 1.5 0.98 6.05 

2010 
337 133 75 545 

4.95 1.95 1.1 8.01 

2011 
281 106 76 463 

4.13 1.56 1.12 6.8 

Total 
4104 1513 1188 6805 

60.31 22.23 17.46 100 
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Table 7. Distribution of number of observations for each of the nolanes within the area 

types 

Area type 
nolanes 

2 3 4 5 6 7 Total 

Rural 
2463 39 0 0 0 0 2502 

36.19 0.57 0 0 0 0 36.77 

Urban 
1641 1474 874 269 41 4 4303 

24.11 21.66 12.84 3.95 0.6 0.06 63.23 

Total 
4104 1513 874 269 41 4 6805 

60.31 22.23 12.84 3.95 0.6 0.06 100 

It can be seen that the rural area includes only highways with 2 or 3 lanes. 

Moreover, there are only 39 observations in the nolanes=3 category for rural and also 

nolanes 6 and 7 for the urban have much fewer than 60 observations as recommended. 

Since the nolanes factor was converted into the grouping nolanes=2, =3 and >3, a table 

giving the sample size for each of these categories was obtained (Table 8). 

Table 8. Distribution of number of observations for the newly defined nolanes group 

within area types 

Area type 
nolaneclass 

2 3 >3 Total 

Rural 
2463 39 0 2502 

36.2 0.57 0 36.8 

Urban 
1641 1474 1188 4303 

24.1 21.7 17.5 63.2 

Total 
4104 1513 1188 6805 

60.3 22.2 17.5 100 

The second reviewer suggested considering the urban/rural designation of the 

road segments in the model. Accommodating this as well as including a categorical 

variable for the number of lanes pose a challenge because of the confounding observed 

between the two variables. In other words, an effect associated with the number of lanes 

categorical variable cannot be separated from the effect due to the urban/rural variable.  
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To overcome this problem, four categories were defined (under the variable name 

arealane): urban two lanes (arealane=1), urban three lanes (arealane=2), urban three plus 

lanes (arealane=3), and rural (arealane=4). The 39 rural road segments with 3 lanes were 

combined into rural segments with 2 lanes rather than delete these observations. One 

might say it should not be done, but a separate analysis was also conducted where that 

rural segments with 3 lanes were deleted from the dataset. No significant change was 

observed in the estimates (Tables 9 and 10). 

Table 9. Model estimates with road segments with 2 and 3 lanes combined for rural type 

Parameter 
 

Estimate Standard Error 95% Confidence Limits Z Pr > |Z| 

Intercept 
 

-11.548 0.8813 -13.2752 -9.8208 -13.1 <.0001 

lanewidth 
 

0.0271 0.0541 -0.079 0.1332 0.5 0.6168 

shoulderwidth 
 

-0.0005 0.0099 -0.0199 0.0189 -0.05 0.9596 

arealane 1 1.2733 0.0934 1.0903 1.4563 13.6 <.0001 

arealane 2 1.1949 0.108 0.9833 1.4065 11.1 <.0001 

arealane 3 1.144 0.1178 0.9131 1.3749 9.71 <.0001 

arealane 4 0 0 0 0 . . 

lnAADT 
 

1.1702 0.0557 1.0609 1.2794 21 <.0001 

SL 
 

-0.0067 0.0017 -0.0102 -0.0033 -3.86 0.0001 

PSR 
 

-0.0045 0.005 -0.0142 0.0053 -0.9 0.3687 

percentcommercial 
 

-0.4511 0.2491 -0.9394 0.0371 -1.81 0.0702 

Table 10. Model estimates with rural road segments with 3 lanes removed from dataset 

Parameter   Estimate Standard Error 95% Confidence Limits Z Pr > |Z| 

Intercept   -11.4554 0.8793 -13.1789 -9.7319 -13.03 <.0001 

lanewidth   0.028 0.0544 -0.0785 0.1346 0.52 0.6059 

shoulderwidth   -0.0039 0.0094 -0.0224 0.0146 -0.42 0.6775 

arealane 1 1.2946 0.0944 1.1096 1.4796 13.71 <.0001 

arealane 2 1.2338 0.1068 1.0245 1.443 11.56 <.0001 

arealane 3 1.1785 0.1174 0.9483 1.4087 10.03 <.0001 

arealane 4 0 0 0 0 . . 

lnAADT   1.1603 0.0554 1.0518 1.2689 20.94 <.0001 

SL   -0.0066 0.0017 -0.01 -0.0032 -3.79 0.0001 

PSR   -0.0048 0.005 -0.0145 0.0049 -0.97 0.3329 

percentcommercial   -0.4264 0.2508 -0.918 0.0651 -1.7 0.0891 
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Examining Speed limit 
Similar to the previous variables, speed limit was examined for the number of 

observations in each class per year (Table 11). It can be observed that a few of the 

groupings lack enough observations for some years.  

Table 11. Frequency and percentages for each class of speed limit within each year 

year 
SL 

55 60 65 70 Total 

2002 
113 223 137 579 1052 

1.72 3.39 2.08 8.8 15.98 

2003 
113 221 137 580 1051 

1.72 3.36 2.08 8.81 15.97 

2004 
140 218 123 581 1062 

2.13 3.31 1.87 8.83 16.13 

2005 
128 204 118 490 940 

1.94 3.1 1.79 7.44 14.28 

2006 
66 81 22 71 240 

1 1.23 0.33 1.08 3.65 

2007 
78 99 48 230 455 

1.18 1.5 0.73 3.49 6.91 

2008 
69 53 82 270 474 

1.05 0.81 1.25 4.1 7.2 

2009 
72 41 85 201 399 

1.09 0.62 1.29 3.05 6.06 

2010 
76 41 90 288 495 

1.15 0.62 1.37 4.37 7.52 

2011 
60 41 85 229 415 

0.91 0.62 1.29 3.48 6.3 

Total 
915 1222 927 3519 6583 

13.9 18.56 14.08 53.46 100 

Similar to the nolanes variable, a tabularization was conducted for the SL classes 

versus the area type to see if there are similar patterns. It was again observed that the 

rural area lacks a sufficient number of observations in the SL classes of SL=55, 60, and 

65 and 98.32% of the rural segments observed have a speed limit of 70 mph. This issue 

was not observed in the urban category. 
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Table 12. Distribution of number of observations for each of the speed limit classes 

within the area types 

Area type 
Speed Limit 

55 60 65 70 Total 

Rural 
0 28 14 2459 2501 

0 0.43 0.21 37.35 37.99 

Urban 
915 1194 913 1060 4082 

13.9 18.14 13.87 16.1 62.01 

Total 
915 1222 927 3519 6583 

13.9 18.56 14.08 53.46 100 

One can say that there is confounding amongst the variables SL, nolanes, and the 

type of the area (urban or rural). Several different analyses were conducted using these 

newly defined categories to investigate the effect of each one of the categories (area, 

number of lanes, and speed limit) when fitted simultaneously as categorical variables.  

Since there is confounding, some effects and their interactions were not estimable. Such 

estimability issues arising out of confounding are to be expected. As a solution it was 

decided to define new dummy variables each of which represents one of the 

area*nolanes*SL combinations. Three groupings were chosen for the three nolanes 

categories of 2, 3, and 3+ lanes, Four SL categories of 55, 60, 65, and 70 mph with the 

exception that there was no observation for the rural area with 55 mph speed limit. The 

new categories (dummy variables) that were used in the model and the number of 

observation in each variable are presented in Table 13. In the name of the dummy 

variables, first part indicates the area type criterion, second part indicates the number of 

lanes criterion and the third part indicates the speed limit criterion.  
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Table 13 Name and number of observations of the Combinatory dummy variables 

Category Number of observation 

urban_2_55 699 

urban_2_60 180 

urban_2_65 261 

urban_2_70 877 

urban_3_55 415 

urban_3_60 323 

urban_3_65 484 

urban_3_70 140 

urban_3p_55 216 

urban_3p_60 691 

urban_3p_65 168 

urban_3p_70 43 

rural_2_60 28 

rural_2_65 12 

rural_2_70 2422 

rural_3_60 0 

rural_3_65 2 

rural_3_70 37 

So there are overall 12 categories defined for urban and 6 categories for the rural 

area segments. The group in rural area with 3 lanes and speed limit of 60 mph 

(rural_3_60) had zero observation and therefore not used in the model. The rural category 

with 2 lanes and 70 mph (rural_2_70) was used as the base condition in the model. It 

should also be mentioned that the other categories in the rural arena did not have our 

target value of 60 observations but they were retained to avoid removing the data. The 

soundness of this decision was double checked by running two models, one with and 

another without the small-sized rural variables and comparing the two model estimates 

(Table and Table). 

From the results it is seen that all the dummy variables in the rural category were 

not found to be significant variables in the model. In other words, these categories are not 
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resulting in statistically different effects from the base condition which is the rural_2_70. 

This might be because of the small number of observations that exist in those categories. 

Therefore, all those rural categories were lumped together with the rural_2_70 group.  

This result also indicates that there is an overall significant difference between the 

urban and rural areas and how they affect the crash occurrences (higher frequency in 

urban areas). A similar pattern was also observed for the tradition NB model. Table 15 

show the refined results for the GEE model wherein, only the urban categories were 

considered in the model.  

Table 14. Analysis of parameter estimates using generalized estimating equations with 

the rural variables in the model 

Parameter Estimate Standard Error 95% Confidence Limits Z Pr > |Z| 

Intercept -11.7718 0.9555 -13.6445 -9.8991 -12.32 <.0001 

lnAADT 1.1278 0.0642 1.0019 1.2537 17.56 <.0001 

Psrclass 1 (low) -0.0079 0.0273 -0.0614 0.0456 -0.29 0.7725 

Psrclass 2 (med) -0.03 0.0272 -0.0834 0.0234 -1.1 0.2712 

Psrclass 3 (high) 0 0 0 0 . . 

Percentcommercial -0.3222 0.2601 -0.832 0.1876 -1.24 0.2154 

Lanewidth 0.0237 0.0592 -0.0923 0.1397 0.4 0.689 

urban_2_55 1.7909 0.1327 1.5308 2.051 13.49 <.0001 

urban_2_60 1.3385 0.1659 1.0134 1.6637 8.07 <.0001 

urban_2_65 1.348 0.1177 1.1172 1.5787 11.45 <.0001 

urban_2_70 1.1648 0.1035 0.9618 1.3677 11.25 <.0001 

urban_3_55 1.5297 0.1361 1.2628 1.7965 11.24 <.0001 

urban_3_60 1.4034 0.1489 1.1116 1.6952 9.43 <.0001 

urban_3_65 1.2075 0.1232 0.9659 1.449 9.8 <.0001 

urban_3_70 1.0119 0.1922 0.6353 1.3886 5.27 <.0001 

urban_3p_55 1.504 0.1586 1.1932 1.8148 9.49 <.0001 

urban_3p_60 1.2735 0.1381 1.0028 1.5442 9.22 <.0001 

urban_3p_65 1.323 0.1381 1.0523 1.5938 9.58 <.0001 

urban_3p_70 0.9379 0.2723 0.4041 1.4717 3.44 0.0006 

rural_2_60 0.3894 0.3343 -0.2658 1.0447 1.16 0.2441 

rural_2_65 0.1594 0.2113 -0.2548 0.5736 0.75 0.4507 

rural_3_65 0.5008 0.7014 -0.874 1.8755 0.71 0.4753 

rural_3_70 0.0761 0.2965 -0.505 0.6571 0.26 0.7975 
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Table 15. Analysis of parameter estimates using generalized estimating equations without 

the rural variables in the model 

Parameter Estimate Standard Error 95% Confidence Limits Z Pr > |Z| 

Intercept -11.7783 0.9549 -13.6499 -9.9068 -12.33 <.0001 

lnAADT 1.1295 0.0642 1.0037 1.2553 17.6 <.0001 

psrclass -0.0106 0.0273 -0.0641 0.0429 -0.39 0.6983 

psrclass -0.0322 0.0274 -0.086 0.0216 -1.17 0.2407 

psrclass 0 0 0 0 . . 

percentcommercial -0.3285 0.2602 -0.8384 0.1815 -1.26 0.2068 

lanewidth 0.0239 0.0591 -0.092 0.1397 0.4 0.6865 

urban_2_55 1.7816 0.1322 1.5225 2.0408 13.47 <.0001 

urban_2_60 1.3297 0.1656 1.0052 1.6542 8.03 <.0001 

urban_2_65 1.338 0.1173 1.108 1.5679 11.4 <.0001 

urban_2_70 1.1583 0.1024 0.9577 1.3589 11.32 <.0001 

urban_3_55 1.519 0.1355 1.2535 1.7846 11.21 <.0001 

urban_3_60 1.3922 0.1483 1.1015 1.6828 9.39 <.0001 

urban_3_65 1.1952 0.1239 0.9524 1.438 9.65 <.0001 

urban_3_70 1.0006 0.1915 0.6253 1.3758 5.23 <.0001 

urban_3p_55 1.4934 0.158 1.1836 1.8031 9.45 <.0001 

urban_3p_60 1.2618 0.1373 0.9926 1.5309 9.19 <.0001 

urban_3p_65 1.3114 0.1377 1.0414 1.5814 9.52 <.0001 

urban_3p_70 0.9277 0.272 0.3945 1.4609 3.41 0.0006 

In order to allow the other main variables in the model to have different impact on 

accident count in urban and rural road segments, a new dummy variable “area” set to be 0 

for rural (base) and 1 being urban and the interactions of this variable with the other main 

factors of the model were also included in the model: 

Areadt    = area x lnAADT; 

Areacommercial  = area x percentcommercial; 

Areawidth   = area x lanewidth; 

Areapsr   = area x psr; 

This will allow us to determine if the main factors influence crash frequency 

differentially across area. From these new terms, the areawidth resulted in a complicated 
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convergence iteration process that did not satisfy the convergence criterion. Investigating 

the number of observations per lanewidth category for the rural and urban areas revealed 

that only 3 of 7 lane width levels were observed in the rural area and a complete 

examination of the interaction effect was not possible with the available data. Therefore, 

this term was removed from the model. The interaction term Areapsr was not found to be 

statistically significant in any of the two models, GEE and MLE models (traditional NB 

model) and was also removed from the analysis; however, the main factors that were not 

found statistically significant were left to remain in the model. The final model included 

the following variables: 

 LnAADT  

 psrclass  

 percentcommercial  

 lanewidth  

 areadt  

 areacommercial  

 urban_2_55, urban_2_60, urban_2_65, urban_2_70  

 urban_3_55, urban_3_60, urban_3_65, urban_3_70  

 urban_3p_55, urban_3p_60, urban_3p_65, urban_3p_70  
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This section was added to the dissertation to address the comments received from 

the committee members during the defense session. Since this dissertation is paper-based 

and at the time of defense the first and second papers are already published and in-press, 

respectively, the comments are addressed as an addendum to the dissertation file. 

Comments for paper I 

 Abstract section, line 1, changes to “This study systematically evaluates the 

changes in the frequency of motor vehicle crashes that…” 

 Abstract section, line 1, changes to “…following the implementation of 

Missouri’s Strategic Highway Safety Plan (MSHSP) between 2005 and 2007” 

 Abstract section, line 16, changes to “The empirical results indicate that the 

MSHSP was a successful…” 

 Introduction section, paragraph 2, line 9, changes to “The present study 

empirically examines the effect of implementation of the…” 

 Introduction section, paragraph 1, line 5, changes to “The potentially life-saving 

and injury-reducing strategies in Missouri’s Blueprint…” 

 Background section, paragraph 1, line 1, changes to “Highway safety analysts use 

regression models for purposes such as estimating relationships between 

motor…” 

 Methodology section, last paragraph, the following bibliography should be cited 

at the end of the first sentence related to the phenomenon of regression to the 

mean in negative binomial models: 

Maher, M. 1990. A bivariate negative binomial model to explain traffic 

accident migration. Accident Analysis and Prevention, Vol. 22(5), 487-498. 

 Caption of Table 3 changes to “Comparison of the predicted crash count per 

segment properties for 2008 with/without safety improvements” 

 The first heading inside the Table 3 changes from “Models for all collision types 

combined” to “models for different severity levels combined over all collision 

types” 

 The second heading inside the Table 3 changes from “Models for all severity 

levels combined” to “models for different collision types combined over all 

severity levels” 

Comments for paper II 

 Caption of Figure 1 changes to “Total number of crashes on a select few of the 

interstate highways of Missouri with most variation. (legend presents the name of 

the interstate highways, e.g. 44 indicates interstate 44)” 
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 Caption of Figure 5 changes to “Cumulative residuals plot for LnAADT for the 

negative binomial models estimated using generalized estimating equation 

methods (top) and maximum likelihood estimation (bottom)” 

 Caption of Table 1 changes to “Correlations for the autoregressive Type 1 and 

exchangeable structure” 

 Abstract section, sentence 1, changes to “The prediction in crash frequency 

models can be…” 

 Abstract section, sentence 1, changes to “… years of data most commonly used in 

the literature” 

 Abstract section, sentence 4, changes to “Despite the obvious temporal correlation 

of crashes, analyses of such correlation have been limited and the consequences 

of omitting temporal correlation are not completely understood” 

 Introduction section, paragraph 2, sentence 7, changes to “…omission of the serial 

correlation are still not completely understood” 

 Introduction section, paragraph 3, sentence 3, changes to “The GEE approach 

treats each highway segment as a cluster…” 

 Introduction section, paragraph 4, sentence 1, changes to “Lord and Mahlawat 

(2009) used a GEE method with an…” 
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