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ABSTRACT

This study comprises mainly of three papers. First, a systematic evaluation of the
effects of Missouri’s Strategic Highway Safety Plan between 2004 and 2007 is presented.
Negative binomial regression models were developed for the before-through-change
conditions for the various collision types and crash severities. The models were used to
predict the expected number of crashes assuming with and without the implementation of
MSHSP. This procedure estimated significant reductions of 10% in crashes frequency
and a 30% reduction for fatal crashes. Reductions in the number of different collision
types were estimated to be 18-37%. The results suggest that the MSHSP was successful
in decreasing fatalities.

Second, ten years (2002 - 2011) of Missouri Interstate highway crash data was
utilized to develop a longitudinal negative binomial model using generalized estimating
equation (GEE) procedure. This model incorporated the temporal correlations in crash
frequency data was compared to the more traditional NB model and was found to be
superior. The GEE model does not underestimate the variance in the coefficient
estimates, and provides more accurate and less biased estimates. Furthermore, the
autoregressive correlation structure used for the temporal correlation of the data was
found to be an appropriate structure for longitudinal type of data used in this study.

Third, this study developed another longitudinal negative binomial model that
takes into account the seasonal effects of crash causality factors using Missouri crash
data. A GEE with autoregressive correlation structure was used again for model
estimation. The results improve the understanding of seasonality and whether the
magnitude and/or type of various effects are different according to climatic changes. It
was found that the traffic volume has a higher effect in increasing the crash occurrence in
spring and lower effect in winter, compared to fall season. The crash reducing effect of
better pavements was found to be highest in spring season followed by summer and
winter, compared to the fall season. The results suggest that winter season has the highest

effect in increasing crash occurrences followed by summer and spring.
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SECTION

1. INTRODUCTION

Traffic safety in transportation networks is one of the main priorities for many
government agencies, private organizations and the society as a whole. This is mainly
due to the significant monetary and non-monetary costs associated with crashes (Elvik,
2000). According to the National Highway Traffic Safety Administration, 5,505,000
traffic crashes occurred in 2009 on the US highways in which 33,808 people died and
2,217,000 people were injured (NHTSA, 2009). Peden et al. (2004) found that the trend
in road related injuries are expected to increase from ranked ninth in 1990 to the third
largest contributor to the global burden of disease and injury in 2020. This immense loss
to society resulting from motor vehicle crashes warrants careful crash evaluation and
safety analysis to accurately identify crash contributing factors and countermeasures.
HSM (2010) regards crash frequency as a fundamental indicator of “safety” in terms of
evaluation and estimation.

Crash analysis research in general has focused on the estimation of traditional
crash prediction models such as negative binomial (NB) and Poisson regression models
and their generalized forms due to their relatively good fit to the data (Shankar et al.,
1995; Poch and Mannering, 1996; Abdel-Aty and Radwan, 2000; Savolainen and Tarko,
2005; Mojtaba Ale Mohammadi et al., 2014a). These crash prediction models have also
been used for crash evaluation purposes. HSM (2010) refers to the term “crash
evaluation” as the process of determining the effectiveness of a particular treatment after
its implementation. Many studies have been conducted to investigate the effect of
improvement programs on facilities such as rail-highway grade crossings (Hauer and
Persaud, 1987), highway segments (Zegeer and Deacon, 1987; Squires and Parsonson,
1989; Knuiman et al., 1993), and intersections (Poch and Mannering, 1996; Datta et al.,
2000). One of the issues that has been raised regarding the use of these traditional models
on “crash evaluation” is the statistical phenomenon of regression to the mean that occurs

when the same unit of observations is repeatedly measured over time (Barnett et al.,



2005). This phenomenon may result in biased estimates in any such investigations and
mask the real effectiveness of any countermeasure which in turn clouds the judgment of
the evaluators and results in unwise decisions. Empirical Bayes (EB) method has also
been used for before-after studies to evaluate the effect of countermeasures on safety,
which properly accounts for the regression to the mean while normalizing for differences
in traffic volume and other factors between the before and after periods (Hauer, 1997;
Persaud et al., 2004; Guo et al., 2010b; Shively et al., 2010; Yu et al., 2013b). But EB
method is a relatively sophisticated method that requires extensive data and considerable
training and experience (Persaud and Lyon, 2007).

This study presents a simple new approach to addresses the problems mentioned
above. A traditional negative binomial regression model was developed using the
introduced method to examine the effect of implementation of the Missouri Strategic
Highway Safety Plan (MSHSP). The MSHSP data was chosen as it provides an excellent
situation of safety improvement intervention on the highways of Missouri. In addition it
and evaluate the effects of MSHSP on the crash frequency of various collision types and
severity levels. The negative binomial regression models were developed to account for
the before-through-change conditions using a continuous variable that is set to zero for
pre-implementation years and gradually increases over the implementation years to reach
a plateau at the conclusion of the plans.

In the second section of this study, a (longitudinal) negative binomial model was
developed using ten years of data (2002-2011). Lord and Persaud (2000) suggest that
more years of data adds up to the reliability of the model estimates by reducing the
standard errors in the prediction models mentioned above; However, when many years of
data is considered the serial correlation in the repeated observations violates the
independence assumptions on unobserved error terms in traditional Poisson and/or NB
crash frequency models. This violation creates biased and inefficient models by
underestimating the standard errors. Researchers have tried to use different techniques to
account for these temporal correlations between the repeated crash frequencies observed
for a highway segment over the years. Examples of the utilized methodologies can be
found in Maher and Summersgill (1996) using an iterative solution based on the method

of “constructed variables” presented by McCullagh and Nelder (1989), in Ulfarsson and



Shankar (2003) using negative multinomial (NM) models, in Dong, Richards, et al.
(2014) using multivariate random parameter models, and in Venkataraman et al. (2014)
using random parameter negative binomial models. These methodologies, however, have
shown to be not practically applicable for different situations. For example, the analyst
need to know the extent and type of correlation prior to the analysis that is not always
known (Lord and Persaud, 2000), or the estimation methodology for multivariate random
parameter models — the full Bayesian method — is complex and requires training and
practice. The implementation and transferability of the method is also a challenge. Wang
and Abdel-Aty (2006) used generalized estimating equations (GEE) technique to account
for these correlations in a frequency model for rear-end crashes at signalized
intersections. This technique has the potential of addressing the issue of serial
correlations in the repeated observations, producing reasonably accurate standard errors
and efficient parameter estimates (Méndez et al., 2010; Peng et al., 2012; Giuffre et al.,
2013; Stavrinos et al., 2013). Liang and Zeger (1986) were the first to use this technique
to model repeated observations and showed that the GEE method is robust to
misspecification of the correlation structure but Giuffre et al. (2007) and Ballinger (2004)
demonstrated that utilizing the true data correlation structure in safety modeling results in
higher estimation precision. In spite of all this research on the effects of temporal
correlations in crash data, consequences arising from the omission of the serial
correlation are still not completely understood.

The longitudinal negative binomial model developed in the second part of this
study presents an application of the GEE method to model several years of crash
frequency data in Missouri. This analysis first determines the temporal correlation
structure in the data, proceeds with the analysis, and finally validates the correlation
structure used in the analysis as an appropriate structure in this type of data. During the
analysis, several data-related obstacles had to be addressed including the
multicollinearity, sufficiency of the within-cluster observations, and the confounding
effects. Interaction of the major crash contributing factors with the area type was also
examined to evaluate whether crash causes behave differently from rural to urban areas.

The results of this model were then compared with a traditional NB model using the chi-



square values of the estimated model parameters and the cumulative residual (CURE)
plots. Details of this part of the study are presented in the section “Paper I1”.

The results of the second section provide a better understanding of the true factors
that affect the occurrence of crashes. The third part of this study is also involved in
improvements of the crash evaluation model. Crashes are usually caused by several
factors related to drivers’ behavior, vehicles, highway design, and environmental
conditions. Geographic location and the climatic environment, particularly seasonal
weather can be a major factor that contributes to the occurrence of crashes (Garber and
Hoel, 2008b). There are few studies in the crash evaluation realm dealing with the
seasonal effects of crashes, but to the best knowledge of the author, no in-depth analysis
of the seasonality of crash causes has been conducted. Some examples of the previous
studies on the seasonality effects include the works of Carson and Mannering (2001),
Hilton et al. (2011), Ahmed et al. (2011), Yu et al. (2013a), and Yang et al. (2013) that
have shown that with a better understanding of the crash causes over different times of
the year, policy-makers can improve the safety of specific roadway segments according
to the seasonal weather patterns and that different traffic management strategies should
be designed based on seasons.

The objective of the analysis in the third paper is to further investigate the
seasonal effects on crash causality factors by developing a longitudinal negative binomial
model using ten years of crash data on six main interstate highways of Missouri. This
analysis uses generalized estimating equation (GEE) technique to develop the model. The
interaction of the main variables with the seasonal indicators were examined in the model
to gain a better understanding of the change in the effect of crash causes over different
seasons in a year. The effects of interventions made by the Missouri Strategic Highway
Safety Plan (MSHSP) over the years 2005-2011 is also investigated. The detailed results
of this analysis (presented in the section “Paper III"’) can help in developing policies
regarding highway safety countermeasures with insight on the effects of seasonal changes

on roadway fatality factors.



PAPER

I. SAFETY EFFECT OF MISSOURI’S STRATEGIC HIGHWAY SAFETY PLAN
- MISSOURTI’S BLUEPRINT FOR SAFER ROADWAYS

ABSTRACT

This study systematically evaluates the changes in motor vehicle crashes that
occurred on the Missouri interstate highway system following the implementation of
Missouri’s Strategic Highway Safety Plan (MSHSP) between 2004 and 2007. The
MSHSP implemented crash injury reduction strategies in enforcement, education,
engineering, and public policy. Empirical Bayesian methods are commonly used to
evaluate the effects of any change in safety as a result of countermeasures. This study
presents a simple new approach to evaluating the effects of Missouri’s safety plans on
roadway crashes. For crash data associated with traffic and roadway characteristics,
negative binomial regression models were developed for the before-through-change
conditions using a variable that is set to zero for pre-implementation years and gradually
increases over the implementation years to reach a plateau at the conclusion of the safety
plans. The models developed for the various collision types and crash severities were
used to estimate the expected number of crashes at roadway segments in 2008, assuming
with and without the implementation of MSHSP. This procedure estimated significant
reductions of 10% in the overall number of crashes and a 30% reduction for fatal crashes.
Reductions in the number of different collision types were estimated to be 18-37%. The
theoretical results indicate that the MSHSP was a successful policy in reducing the
number of crashes and decreasing fatalities by reducing the most severe collision types
like head-on crashes. The results are also consistent with many international studies and
suggest that the safety strategic plans should be promoted as an effective treatment for
highways.

Keywords: negative binomial, before-after study, Missouri blueprint, strategic highway
safety plan, MSHSP



1. INTRODUCTION

In 2004, a partnership of Missouri safety advocates, including law enforcement
agencies, health care providers, government agencies, and others formed the Missouri
Coalition for Roadway Safety (MCRS). This group worked with regional safety
coalitions to implement the first strategic highway safety plan, titled Missouri’s Blueprint
for Safer Roadways. The potentially life-saving and injury reduction strategies in
Missouri’s Blueprint were crucial in the areas of education, enforcement, engineering,
and public policy. Some of these strategies included the increase in public education and
information on traffic safety, expanding roadway shoulders, installation of centerline and
shoulder rumble strips, and roadway visibility features such as pavement markings, signs,
lighting, etc., removing fixed objects along roadside right of way, and improving curve
recognition through the use of signs, markings, and pavement treatments.

The primary emphasis area of the program aimed to reduce the number and
severity of serious crash types with a specific focus on run-off-road crashes, crashes
involving horizontal curves, head-on crashes, collisions with trees or poles, and
intersection crashes (/). The long-range goal of the program was to reach 1000 or fewer
fatalities by 2008 which was achieved a year early, when the total number of fatalities
was reduced to 992 in 2007. Between 2005 and 2007, the death rate per 100 million
vehicle miles of travel dropped from 1.8 to 1.4 and 21% fewer lives were lost on
Missouri highways (2). These safety improvements resulted from the implementation of
the MSHSP (1, 2). The present study theoretically examines the effect of implementation
of the Missouri’s Blueprint for Safer Roadways on the nature and magnitude of crash
frequency of various collision types and their severity. The next section presents a review
of the previous studies in the literature of highway safety. The paper then describes the
approach used in this study along with an introduction to the data set used. The results of

the study and the conclusions follow in the next sections.



2. BACKGROUND

Highway safety analysts use regression models for purposes such as establishing
relationships between motor vehicle crashes and incorporating factors such as traffic and
geometric characteristics of the roadway, predicting values or screening variables (3).
Lord and Mannering (4) have documented a considerable amount of research work
devoted to the development and application of new and innovative models for analyzing
count data. According to Zou et al. (5), due to the over-dispersion in crash data, the
negative binomial (NB) model is probably the most frequently used statistical model in
various types of highway safety studies for developing crash prediction models. Shankar
et al. (6) conducted a negative binomial multivariate analysis of roadway geometrics and
weather-related effects. Their work presents a basis for a comprehensive before-and-after
analysis of the effectiveness of safety improvements.

Developing quantitative relations to relate various safety improvement plans to
crash rates and severities provides the information required to choose between the cost
and the benefit of better transportation networks, and also helps in prioritizing the safety
improvement projects. Many studies have been conducted in the past decades
investigating the effect of improvement programs on facilities such as rail-highway grade
crossings (7), highway segments (8-/0), and intersections (11, 12).

Researchers have also used the Empirical Bayes (EB) method (/3) for conducting
observational before-after studies to evaluate the effect of engineering countermeasures
on safety. This procedure is often used to properly account for the regression to the mean
while normalizing for differences in traffic volume and other factors between the before
and after periods. Persaud et al. (/4) used the EB procedure to examine the reduction of
opposing direction crashes after installation of rumble strips along the centerlines of
undivided rural two-lane roads. Bayesian inference methods have also been used in many
recent studies to predict crash occurrences (135, 16). Miaou et al. (/7) and Ahmed et al.
(1/8) employed the Hierarchical Bayes model to estimate traffic crashes. Shively et al.
(19) employed a Bayesian nonparametric estimation procedure in their study. Huang and
Abdel-Aty (20) also proposed a hierarchical structure to deal with multilevel traffic safety

data. Persaud and Lyon (27) conducted extensive research on the EB methodology and its



statistical application in before-after studies. According to them, there is a need to
evaluate the safety effect of roadway improvements that may impact crash frequency, and
the EB methodology produces valid results that are substantially different than those
produced by more traditional methods. What requires exploration is whether or not it is
worth the effort of using a sophisticated methodology such as the EB method in which (a)
the relative complexity of the methodology requires analysts with considerable training
and experience, and (b) the data needs can be extensive (21).

The more conventional alternatives to the EB method, involving a simple before—
after comparison of crash counts or rates, with or without a comparison or control group,
are appealing in that they are relatively easy to apply. These alternative methods,
however, are loaded with challenges (27): the comparison group needs to be similar to
the treatment group in all of the possible factors that could influence safety, and the
assumption that the comparison group is unaffected by the treatment is difficult to test
and can be unreasonable in some situations.

This study presents a simple new approach to evaluate the effects of MSHSP on
Missouri Interstate highway crashes. Using six years of data, including the safety
program implementation years (2005 through 2007), negative binomial crash frequency
models were developed for predicting the crash frequency for 2008. The prediction
models are developed in a way that will address the regression to the mean concern that
prevails in such models. The predicted crash frequency with and without the
improvements was compared statistically to determine the effect of MSHSP. The models
represent a mix of urban and rural environments and were developed for various collision
types and crash severities to investigate the safety improvements by estimating the

expected number of crashes under different scenarios.

3. METHODOLOGY

The safety of an improved segment of the roadway in general should be estimated
by mixing information of causal factors such as traffic flow, type of traffic control
devices, geometric properties, etc. (7). The objective of this study is to develop statistical

models of the crash frequency for all the interstate highways of Missouri. This study



estimates six different crash frequency models that will predict (/) total crash frequency
(all crash types), (2) head-on crash frequency, (3) rear-end crash frequency, (4)
sideswipe-same direction crash frequency, (5) sideswipe-opposite direction crash
frequency, and (6) angle crash frequency. Additionally, two separate models are
developed for the only fatal and only non-fatal crashes. The dependent variable in all
models is the crash count with a discrete non-negative integer nature, and Poisson
regression is the first natural choice for modeling such data (22-25); however, a major
limitation of the Poisson model is that it constrains the variance of dependent variables to
be equal to its mean. When the variance of the data is not equal to the mean (which is
usually the case in most of the crash frequency data), the variance of the model
coefficients tend to be underestimated, which results in biased estimates. Negative
binomial models have been extensively used in literature to overcome this limitation by
relaxing the condition of ‘variance = mean’ in standard Poisson models (5).

If the length of segment ‘i’ (Li) and the crash observation time interval for
segment ‘1’ (t;) for various segments are different, the observed number of crashes on the
segment ‘1’ is proportional to the L; and t;. Length and duration of the observation are
commonly called to be offset variables as their coefficients are restricted to be one and
not estimated (26). In this study, since all the segments are measured over one year, the
only offset variable used was the segment length. To describe the formulation of the
negative binomial model, the Poisson model for crash counts is first reviewed; according
to the Poisson distribution the probability of ‘n’ crashes occurring on segment ‘i’ during

time period j’ is:

=My 3™
e Ai i

nl-j!

P(ny) = (1

Where A;; is the expected number of crashes on segment ‘i’ during time interval j’.

Given the vector of incorporating factors, 4;; can be estimated by the equation:

Where ‘X’ is a vector of affecting variables and ‘B’ is a vector of estimable coefficients.
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An additional stochastic component ‘€’ is introduced to the link function by
assuming ‘e®> Gamma distributed (with mean ‘u’ and variance ‘a’) resulting in the

Poisson-Gamma model (also called the negative binomial model, NB) (6, 24, 27, 28):
lnAU =Xl]ﬁ+gl] (3)

An additional parameter ‘a’ allows the variance to differ from the mean and will

result in the following mean-variance relationship:
var(nij) = E[Tlu] [1 + CZE[TIU]] = ,Lll(l + a,ui) (4)

If ‘a’ is equal to zero, the negative binomial reduces to Poisson, and if it is
significantly different from zero, the data is either over-dispersed or under-dispersed.
Using the Poisson distribution for crash count modeling, the probability of n crashes

occurring on segment ‘i’ during time period °j’ is:

_T(6+n;)( 6 ? Ay \"
P(n;;) = F@hm!<9+3;><9+iﬁ> ¥

Where 8 = 1/a, and T'(.) is a value of gamma function. 4;; can be estimated using the

maximum likelithood estimation (MLE) procedure. The likelihood function for the

negative binomial model is:

N T 0 N
_ re+n;)[ o Aij
L(%ij) = 1_[ H r(e)n;! |6+ ,11-,-] le + Aijl (6)

i=1 j=1

Where ‘T’ is the last time interval of the crash count data and ‘N’ is the number of
roadway segments. Maximizing this function results in the estimation of ‘f’ and ‘a’ (in
equations 2 and 3). Using a variable that is set to zero for pre-implementation years and
gradually increases over the implementation years (2005 through 2007) to reach a plateau
of one at the conclusion of the safety plans and the crash data associated with traffic and
roadway characteristics, negative binomial regression models were developed for the

before-through-change conditions.
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The reduction in the crash frequency after the implementation of the safety plans
relative to the frequency values prior to this implementation could be attributed to the
simple phenomenon of regression to the mean. If the reduction in the crash frequencies
was detected using a model that uses before and after values, then associating this
reduction with the implementation of the safety measures may be misleading. Our
approach, however, did not merely look at before and after figures or model the change
using a dummy variable, but instead utilized a continuous variable named “transition” in
the NB model of the analysis to account for the plan implementation through the years.
This variable was assigned the value of zero prior to the commencement of the
improvements and gradually increased from zero to one, exactly over the implementation
period in such a way that its value coincided, approximately, with the proportion of safety
features that were completed at a given time. For the years after the completion of the
improvements, this variable was kept constant at 1.0, suggesting 100% implementation.
The plan included actions such as widening roadway shoulders, installation of centerline
and shoulder rumble strips, etc. This study is an attempt to statistically examine the
effects of the MSHSP implementation. The transition variable turned out to be highly
significant with a negative sign for its coefficient estimate, indicating a close correlation
between the reduction in crash frequency and the rate of completion of the safety
features. Hence, the likelihood that this reduction reflects a regression to the mean is very

low.

4. DATA ANALYZED

The Missouri Department of Transportation (MoDOT) portal of safety
investigation provided access to the crash data base for all the recorded years of data. The
crash data consists of all severity types of motor-vehicle crashes (fatal, disabling injury,
minor injury, and property damage only crashes) at 17 interstate highways in the state of
Missouri from 2002 to 2007. Some of the major characteristics of the highways are
presented in Table 1. These highways, with an overall length of about 1200 miles, were
classified as divided highways located either in urban or rural areas (65% in rural areas

and 35% in urban areas). The total number of crashes in the data set analyzed was
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167,783 crashes, out of which 37% occurred in rural areas and 63% in urban areas. The
rate of crash (number of crashes per mile and number of crashes per vehicle) for a
segment in each year is shown in column 2 of the table along with the total number of

crashes on all interstate highways presented in column 3.

Table 1. Descriptive statistics of segment properties of interstate highways in Missouri

Crash/mile, Total Number Percent
AADT PSR
Year  Crash/1000 car*  number of of lanes commercial
(min-max) (min-max)
(min-max) crashes (min-max) (min-max)
2002  0-241,0-4 18955 1985-101594  1-7 19.3-66.4 0.041-0.582"
2003  0-293,0-4 19581 1867-98485 1-7 17.4-37.4 0.041-0.406
2004  0-293,0-4 19343 1919-109420  1-6 18.9-37.3 0.046-0.582
2005  0-328,0-4 19101 1865-109573  2-6 24-39.6 0.045-0.582
2006  0-500, 0-3 18922 1874-114753 1-6 23.4-37.5 0.049-0.582
2007  0-333,0-4 19308 1893-115901 1-6 22.9-37.6 0.049-0.622

« Minimum rate for all the segments during each year was zero

«% This high value of truck percentage probably represents the night time at specific sections of the highways with low traffic

The explanatory variables used in this analysis are number of lanes, lane width
(min. 10 ft to max. 18 ft), shoulder width (min. 3 ft to max. 12 ft), average annual daily
traffic (AADT), speed limit, congestion index, pavement serviceability rate (PSR), and
truck percentage. Other factors such as weather information, roadway conditions, and
drivers’ characteristics could not be aggregated for the entire state and yearly level for
analysis. PSR is equal to two times the ride number plus the pavement condition index.
Ride number is an index derived from controlled measurements of longitudinal profile in
the wheel tracks and correlated with rideability of a pavement using a scale of 0 to 5, with
5 being perfect and 0 being impassable. Pavement condition index is a numerical rating
of the pavement condition that ranges from 0 to 100 with 0 being the worst possible
condition and 100 being the best possible condition. More information on the indices of
ride number and pavement condition index can be found on the standards ASTM D6433-
07 (29) and ASTM E1489-08 (30) respectively. The higher the value of PSR, the higher

the pavement serviceability. Congestion index presents the level of congestion. It is
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calculated by incorporating the level of service of the roadway, AADT, and number of
lanes. A higher value of congestion index indicates a higher level of congestion.

Variables selected for model development depended on the quality of the data
provided, the purpose of the variables, and the significance of those variables in
calculating the crash count. More than 6000 segments with an average length of 2.2 miles
were identified over the six years of roadway data. MoDOT chose the beginning and
ending points of the segments based on the geometric and traffic properties of the
segments and were included in roadway segments database.

When a regressor is nearly a linear combination of other regressors in the model,
the affected estimates are unstable and have high standard errors. This problem is called
collinearity or multicollinearity (31). It is a good idea to find out which variables are
nearly collinear with which other variables and remove them from the analysis. Two
variables, “congestion index rate” and “pavement index,” in the initial dataset were

b

highly multicollinear with “congestion index” and “PSR” respectively. They were
removed from the analysis. A multicollinearity diagnostic was conducted in SAS using
PROC REG with the options COLLIN (32). Belsley et al. (37) suggest that in the results
of collinearity diagnostics, when the value of ‘condition index’ is larger than 100, the
estimates might have a fair amount of numerical error. The values of ‘condition index’

(1113

were found as 161.08 and 5210.034 for “pavement index” and ““congestion index rate”

respectively.

5. RESULTS

Generalized linear model was used to model the crash counts on the Missouri
interstate highway segments using a negative binomial link function. A summary of the
parameter estimates and their standard errors for the NB models developed in this
study are presented in Table 2. The results indicate that for almost all of the models the
variables lane, width, shoulder width, and PSR were not statistically significant factors in
crash occurrences.

The signs of the parameter estimates make sense: number of lanes has a negative

sign for all models, indicating that higher number of travel lanes reduces the number of
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crashes. This is in contrast with some of the previous studies that found higher number of
lanes associated with higher risk of crashes (33-36). They used both AADT/n, where n =
number of lanes, and n in their studies. We used AADT and n. So, in our study, the
coefficient of n stands for the effect of increasing the number of lanes while holding
AADT constant for that segment. In other studies ( e.g. Abdel-Aty and Radwan (33) and
Milton and Mannering (36)), increasing n means increasing the total AADT for the
segment. Therefore, the negative sign of the coefficient of n in our study implies that
increasing the number of lanes while keeping AADT constant enhances safely. In other
studies, increasing n implies that not only are we increasing the number of lanes, but we
are also increasing the amount of traffic. Hence, the positive sign of the coefficient makes
sense for these other studies. The natural logarithm of AADT has a positive sign for all

models, which indicates a higher number of crashes with higher traffic volume.

Table 2. Parameter estimates and their standard errors for the different negative binomial

models
Q) ~—
= a
= = 3 = g = 3 2 2 S
— 9] = = S o A - 5] 2 o =
o o S s = < o X 5 £ 7
3 : 2 g 2E £ % E: oz 2B &
= =) < | o = 7] o] &
Models for all collision types combined
.. -8.6195 -0.1483 0.03 -0.0163 1.2857 -0.0416 0.0275 -0.0014 -3.0067 -0.1372
All severities
(D=1.1777) 0.7035)  (0.0276)  (0.0271)  (0.0098)  (0.0528)  (0.0036)  (0.0407)  (0.0061)  (0.1981)  (0.0553)
-18.5471 -0.2567 -0.048 0.0042 1.7118 -0.001 0.1751 0.0104 -3.0752 -0.4763
Only fatal
(®=1.7012) (1.5354)  (0.0475)  (0.0513)  (0.0181)  (0.1176)  (0.0068)  (0.0743)  (0.0108)  (0.3890)  (0.0968)
-8.5948 -0.1478 0.0295 -0.0163 1.2863 -0.0419 0.0259 -0.0019 -3.0193 -0.1307

Only nonfatal
(D=1.1812) (0.7052) (0.0276) (0.0271) (0.0098) (0.0529) (0.0036) (0.0407) (0.0061) (0.1984) (0.0554)

Models for all severity levels combined

Head on 308784 -0.5973 0.0574 0.0669 2.6216 0.0048 0335 00217 -1.1127  -0.6067
(9=9.5631) (47084)  (0.1431)  (0.1396)  (0.0553)  (0.3552)  (0.0212)  (0.2122)  (0.0315)  (1.1768)  (0.2968)
Rear end 165226 -0.3263 200088 00193  2.0702 00449 0.1544 -0.0001 47338 03175
(®=1.7502) (1.0727)  (0.0372)  (0.0348)  (0.0131)  (0.0857)  (0.0048)  (0.0556)  (0.0081)  (0.2825)  (0.0744)
Sideswipe 30.6095  -0.7841 02722 00652 2.9805 20.0047 0239 0.0161 35892 -0.5271
?g)rfzgg;‘gg) (7.8961)  (0.2326)  (0.3013)  (0.0816)  (0.5859)  (0.0330)  (0.3256)  (0.0527)  (2.0097)  (0.4692)
Sideswipe 239352 -0.5014  0.0085 200137 2.669 -0.0483 04197 20.0007 34065 -0.2656
Z’gﬂoﬁzgg' (1.2394)  (0.0395)  (0.0348)  (0.0136)  (0.1007)  (0.0052)  (0.0581)  (0.0080)  (0.3146)  (0.0765)
Angle 232943 03038 -0.0198  -0.0241 2351 200276 03661 0.0095 31084 02812

(D=1.5897) (1.4463)  (0.0447)  (0.0416)  (0.0157)  (0.1164)  (0.0061)  (0.0683)  (0.0093)  (0.3733)  (0.0875)

- Bold numbers indicate significance at 95% confidence level, and italic numbers at 90% confidence level.

- @ represents the estimated dispersion parameter.
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Speed limit has a negative sign for all the models developed; indicating higher
speed limits decrease the number of crashes. The sign can be explained as: these models
do not indicate if the crash happened in an urban or rural area; it is therefore reasonable
to state that fewer crashes occur in the rural areas as a result of lesser traffic, and rural
areas have higher speed limit. The speed limit is another way to capture the changes in
the number of crashes as a result of a change in type of area. The congestion index was
also found to have a positive sign on models where it is a significant factor. This
indicates that a higher number of crashes occur with more congestion, which is very
similar to AADT. Percent commercial has a negative sign and was found to be
significant, which indicates that higher percentage of heavy vehicles in the traffic mix
results in fewer crashes. This indicates that drivers in general take caution around heavy
vehicles. It was also found that the percentage of heavy vehicles had the highest effect on
the reduction of rear-end crashes.

The transition variable was designated in the model to capture the effects of the
safety strategies during the years 2005 through 2007. This factor was found to be
statistically significant at 95% level of confidence and have a negative sign on all the
models developed. The negative sign of the estimate indicates a reduction in the number
of crashes during the implementation years, 2005 - 2007. The estimated values for this
parameter indicates that the safety improvement strategies were mostly effective in
reducing the fatal crashes compared to nonfatal crashes and in reducing the head-on
crashes (leading cause of fatal crashes), compared to the other types of collisions (see the
spider chart in Figure 1). The effect on crash type sideswipe-same direction is not shown
in the figure as it was not found to be significant. A clear connection between the two
findings can be observed from Figure 1; head-on collisions are the most severe types of
crashes that result in fatalities.

The transition variable was used with four continuous quantitative levels from 0
before 2005, and then 0.25 to 0.75 from 2005 to 2007 for each year. It was used to
investigate the predicted values of crashes in 2008, assuming with/without safety
improvements, and the predicted numbers for different models were compared. shows the
mean, standard deviation, min, max, and sum of the predicted crash counts in an

interstate roadway segment for the year 2008, assuming there were/were not safety
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improvements implemented on the interstate highways. Comparing the “without”
condition with the “with” condition, a drop can be observed in all the measures shown in
Figure 2 presents a clear illustration of the percent reduction in the expected value of the
number of crashes for 2008 as a result of the safety improvement program. It can be
observed that the highest reduction (highest safety improvement effect) was 30% for
only-fatal crashes. In terms of the collision type, the safety enhancement strategies had
the highest effect on head-on crashes. This type of crash specifically results in high
fatalities and the goal of the MSHSP was to reduce the number of fatal crashes. It was
also found that the highway safety improvements result in a reduction of 18-33% in the
number of other collision types including rear-end, sideswipe same- and opposite-

direction, and angle crashes.

All severities
0.7 -

Side swipe opposite |-~
direction NN

Figure 1. Graphical comparison of the effect of safety improvements on the crash models
developed (values represent the estimate for the transition variable for each model).

Table 3, indicating the safety enhancing effects of the Missouri Blueprint
strategies. It can also be observed that the maximum number of crashes included rear-end
and sideswipe-same direction crashes. Figure 2 presents a clear illustration of the percent
reduction in the expected value of the number of crashes for 2008 as a result of the safety

improvement program. It can be observed that the highest reduction (highest safety
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improvement effect) was 30% for only-fatal crashes. In terms of the collision type, the
safety enhancement strategies had the highest effect on head-on crashes. This type of
crash specifically results in high fatalities and the goal of the MSHSP was to reduce the
number of fatal crashes. It was also found that the highway safety improvements result in
a reduction of 18-33% in the number of other collision types including rear-end,

sideswipe same- and opposite-direction, and angle crashes.

Table 3. Comparison of the predicted crash count properties for 2008 with/without safety

improvements
E E - = -
E = 2 E z = = = = = =
o = = > < z E = E z z
2 g g g 8 5 E g 5 £ £
= = = = =] =
= = = A 7] = = = S 7 7]

Models for all collision types combined

All severities 9.590 8.652 23.186 20919 0.04815 0.04344 188.175 169.774 10453.12 9430.98
Only fatal 0.148  0.103 0.163 0.114 0.00083 0.00058 0.986 0.689 161.35 112.88
Only nonfatal 9.576  8.682 23317 21.139 0.04706 0.04266 189.527 171.830 10438.02 9463.39

Models for all severity levels combined

Head on 0011 0.007 0017 00l 946E-06  6.00E-06 0.168 0.106 12.90 8.18
Rear end 5668 4467 16520 13.020  0.001695  0.001335 183230  144.405 617820  4869.07
Sideswipe 0.005 0.003 0009 0006 7.56E-07  5.09E-07 0.100 0.067 5.96 4.01
same dir.

(S)’;‘[lfs(;’ivr‘pe 2325 1905 7.629 6251  0.000216  0.000177  114.669 93.958 253522 2077.33
Angle 0445 0361 0949 0768  0.00021 0.00017 10.942 8.861 486.10  393.67

* “without” and “with” indicates that model estimates for 2008 are determined assuming without and with safety improvements

respectively
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Percent reduction in E(y;) for 2008
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Figure 2. Percent reduction in the expected number of crashes predicted in 2008 as a
result of safety improvement strategies.

6. CONCLUSIONS AND RECOMMENDATIONS

The objective of this study was to use a simple new approach to evaluate the
effects of Missouri’s Strategic Highway Safety Plan (MSHSP) on the number of crashes
that occurred on the Missouri Interstate highways. Through the years 2004 to 2007, the
MSHSP was implemented in enforcement, education, engineering, and public policy.
Using a continuous variable through the implementation years, negative binomial
regression models were developed and used to estimate the expected number of crashes
in 2008 with and without the implementation of MSHSP. The results show that this
safety enhancement program was able to reach its primary goal, i.e. to reduce the number
and severity of serious injury crash types.

The study found a significant reduction of 10% for all crash severities combined
and 30% for only fatal crashes. These strategies had the highest effect on the fatal crashes

and particularly on the head-on crashes that result the most fatalities (/, 2). It was also
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found that the highway safety improvements result in a reduction of 18-37% in the
number of different collision types. The results from the model indicate that the MSHSP
was a successful policy in reducing the overall number of crashes and decreasing the
fatalities by decreasing the most severe injury crash types. The results are also consistent
with many international studies and suggest that the safety strategic plans should be
promoted as an effective treatment for highway crash fatalities (37, 38). However, further
analysis of particular SHSP implementation effectiveness that focus on the specific
emphasis areas identified in the SHSP is warranted in future studies to obtain a more
detailed understanding of how the implementation of specific safety measures affect
safety. Provided the specific implementation data on the highways are available, future
studies will consider examination of the effect of safety improvement plans (such as

‘adding median barrier’) on the type and injury severity of crashes.
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II. CRASH FREQUENCY MODELING USING NEGATIVE BINOMIAL
MODELS: AN APPLICATION OF GENERALIZED ESTIMATING EQUATION
TO LONGITUDINAL DATA

ABSTRACT

The prediction of crash frequency models can be improved when several years of
crash data are utilized, instead of three to five years of data most commonly used in
research. Crash data, however, generates multiple observations over the years that can be
correlated. This temporal correlation affects the estimated coefficients and their variances
in commonly used crash frequency models (such as negative binomial (NB), Poisson
models, and their generalized forms). Despite the obvious temporal correlation of
crashes, research analyses of such correlation have been limited and the consequences of
this omission are not completely known. The objective of this study is to explore the
effects of temporal correlation in crash frequency models at the highway segment level.

In this paper, a negative binomial model has been developed using a generalized
estimating equation (GEE) procedure that incorporates the temporal correlations amongst
yearly crash counts. The longitudinal model employs an autoregressive correlation
structure to compare to the more traditional NB model, which uses a Maximum
Likelihood Estimation (MLE) method that cannot accommodate temporal correlations.
The GEE model with temporal correlation was found to be superior compared to the
MLE model, as it does not underestimate the variance in the coefficient estimates, and it
provides more accurate and less biased estimates. Furthermore, an autoregressive
correlation structure was found to be an appropriate structure for longitudinal type of data
used in this study. Ten years (2002 - 2011) of Missouri Interstate highway crash data
have been utilized in this paper. The crash data comprises of traffic characteristics and

geometric properties of highway segments.

Keywords: generalized estimation equation, longitudinal analysis, temporal correlation,

crash frequency model, autocorrelation, autoregressive
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1. INTRODUCTION

Crash analysis research in general has focused on the estimation of traditional
crash prediction models such as negative binomial (NB) and Poisson regression models
and their generalized forms due to their relatively good fit to the crash (Shankar et al.,
1995; Poch and Mannering, 1996; Abdel-Aty and Radwan, 2000; Savolainen and Tarko,
2005; Mojtaba Ale Mohammadi et al., 2014a). Such crash prediction models take into
account the crash frequency of a transportation facility (unit of analysis), such as an
intersection or highway segment as a function of traffic flow and other crash-related
factors. In these predictions, a greater amount of crash data, i.e. years of data, adds up to
the reliability of the model estimates by reducing the standard errors (Lord and Persaud,
2000); However, the same unit generates multiple observations over the years that might
be correlated due to unobserved effects related to specific entities that remain constant
over time (Park and Lord, 2009; Castro et al., 2012; Bhat et al., 2014; Mannering and
Bhat, 2014; Zou et al., 2014). In fact, these unobserved effects create a serial correlation
in the repeated observations from the same unit over the years. Serial correlation in
longitudinal data is an important issue, as it violates the independence assumptions on
unobserved error terms in Poisson and/or NB crash frequency models, and creates
inefficiency in the coefficient estimations and bias (underestimation) in estimation of
standard error (Ulfarsson and Shankar, 2003; Washington et al., 2011; Dupont et al.,
2013; Mohammadi et al., 2013; Bhat et al., 2014; Xiong et al., 2014).

Marginal models appear to be the most appropriate models for handling the
temporal correlation, such as the work of Maher and Summersgill (1996) that uses an
iterative solution based on the method of “constructed variables” presented by
McCullagh and Nelder (1989). However, the extent and type of temporal correlation
requires prior information that is not always known to the analyst (Lord and Persaud,
2000). Ulfarsson and Shankar (2003) tried to address the unit-specific serial correlation
issue by using negative multinomial (NM) models in panel data and comparing the
results with NB and random-effect negative binomial (RENB) model estimates. They
showed that when there is correlation in the segment specific observations, the NM

model is a much better fit compared to NB and RENB models. Dong, Richards, et al.
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(2014) developed multivariate random parameter models to account for the correlated
crash frequency data as a result of unobserved heterogeneity. However, the model
estimation methodology —the full Bayesian method— is complex, and the implementation
and transferability of the method is not straightforward. Other research studies have been
conducted in road safety analysis to account for such correlations in longitudinal data, yet
consequences of the omission of the serial correlation are still not completely known. The
most recent studies using longitudinal crash data include the work conducted by
Venkataraman et al. (2014) to develop random parameter negative binomial models to
investigate heterogeneity in crash means and the effects of interchange type on crash
frequency.

Negative binomial models with a trend variable have also been used to study
crash data with temporal correlation (Lord and Persaud, 2000; Noland et al., 2008;
Quddus, 2008; Chi et al., 2012). Wang and Abdel-Aty (2006) used the technique of
generalized estimating equations (GEE) to model rear-end crash frequencies at signalized
intersections in order to account for the temporal and/or spatial correlation. GEE treats
each highway segment as a cluster whose crash frequency observations have a temporal
correlation over multiple years. In statistical terms, GEE captures the correlation
incorporated in the error terms for model estimation. Hanley et al. (2003) showed that the
use of GEE has the advantage of producing reasonably accurate standard errors and
confidence intervals, especially when there are many subjects and few events. Hutchings
et al. (2003) compared the performance of GEE with logistic regression by examining the
change in parameter and variance estimates and the statistical significance of the
independent variables. They found a lower number of significant variables when using
the GEE method, and so recommended the use of nested structure models and GEE for
analyzing motor vehicle crashes. H. L. Chang et al. (2006) applied the GEE procedure in
a study of the effectiveness of drivers’ license revocation and its impact on offenders in
Taiwan. Lenguerrand et al. (2006) used multilevel logistic models (MLM), GEE, and
logistic models (LM) to analyze hierarchical correlated crash data structure and found
that both GEE and LM underestimate the parameters and confidence intervals, making

MLM the most efficient model followed by GEE and LM models.
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Lord and Mahlawat (2009) used GEE method with an autoregressive (AR)
correlation structure to investigate the effect of a small sample size and low mean value
of crash frequency on the reliability of the inverse dispersion parameter estimate. They
found that the standard errors of the models’ coefficients are larger when the serial
correlation is accounted for in the modeling process. Méndez et al. (2010) used both
logistic regression and GEE models (with exchangeable correlation structure) to study the
relationship of a car’s registration year and its crashworthiness. Peng et al. (2012) also
utilized the GEE method with an exchangeable correlation structure to study the
relationship between drivers’ inattention and their inability in lane keeping. Stavrinos et
al. (2013) used a GEE Poisson regression to study the impact of various distractions on
driving behavior. Since the GEE models are not based on maximum likelihood estimation
(MLE), they used a Chi-square test to estimate the significance of the variables. Giuffre
et al. (2013) studied the concepts of dispersion and correlation in yearly crash frequency
data and presented a quasi-Poisson model in a GEE framework to incorporate both the
dispersion and temporal correlation. In comparing the GEE with the COM-Poisson
regression model, they recommended the use of GEE whenever it is handy. GEE
procedure is robust against misspecification of the correlation structure in the response
variable, but in that case, one may lose significant model efficiency and cause a
misleading interpretation of the results, which in turn affects the reliability of the final
safety estimation (Giuffre et al., 2013).

The examples outlined above illustrate how GEE is not actually a regression
model, but rather a method used to estimate models for data characterized by serial
correlation. Throughout this paper, the models with temporal correlation that use GEE
procedure are referred to as the GEE models. Unlike the traditional marginal models, the
GEE models can handle temporal or other forms of correlation, even if the extent and
type of correlation is unknown. However, Giuffre et al. (2007) demonstrated that utilizing
data correlation structure in safety modeling results in higher estimation precision.
Although they have acknowledged that GEE models generally are robust to
misspecification of the correlation structure (Liang and Zeger, 1986), and researchers
believe the true correlation structure is important only when marginal models are

estimated by using data with missing values, but when the specified structure does not
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incorporate all of the information on the correlation of measurements within the subjects,
loss of efficiency in estimates can be expected Ballinger (2004).

The objective of this paper is to present an application of GEE for developing a
longitudinal negative binomial model that incorporates the temporal correlation of
repeatedly measured crash counts over 10 years (2002-2011). For this purpose, the
presence of an AR correlation structure, (AR(1), i.e. autoregressive with lag 1) in the
longitudinal data was first determined by the Durbin-Watson test and then validated by
the results. In this paper, a traditional NB model, namely a MLE model, was also
developed and the results were compared with the GEE estimation results. This approach,
however, assumes that there is no unaccounted unobserved heterogeneity correlated with
crash-related covariates that creates a fake autoregressive correlation among the observed
crash frequencies over the years. The remainder of the paper presents the technique of
GEE approach followed by description of the crash data used. Results and findings are

then followed by conclusions of the study.

2. METHODOLOGY

To measure the influence of different factors that change every year, crash data
was grouped into clusters (each highway segment acts as a cluster), with crash frequency
observations made over time in the same cluster tending to be more alike than
observations across clusters. That means a segment is a cluster within which the crash
frequencies are correlated over several years. This temporal correlation creates
difficulties for traditional frequency model estimations (Ulfarsson and Shankar, 2003;
Mannering and Bhat, 2014). While standard maximum-likelihood analysis specifies the
full conditional distribution of the dependent variable, quasi-likelihood analysis
postulates a relationship between the expected value of the response variable (crash
frequency), the covariates, and between the conditional mean and variance of the
response variable (Gill, 2001; Zorn, 2001). GEE is classified as a multinomial analogue
of a quasi-likelihood function that offers different approaches to handle serial correlations

(see Fitzmaurice et al. (1993) for details).
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Zeger and Liang (1986) first used the GEE technique by extending the approach
of generalized linear model to correlated data in the context of repeated observations over
time. Consider a model of crash frequency observations at a highway segment i during
time t (Y;;) and k covariates (X;;), where i indexes the N clusters (highway segments)
and t indexes the T repeated measurements (time points), a function h can be defined to

specify the relationship between Y; and X; (Zorn, 2001):

i = E(Y;) = h(X,8) 1
where,

W;: expected value of the crash frequency at segment i, (Y;),i = 1,2,...,N
p: k x 1 vector of estimable parameters
X;:t X k matrix of covariates for segmenti (i = 1,2,...N,t = 1,2,...T).

The variance of Y; is specified as a function g of the mean y;:

Vi=gW)/d @

where,

V;: variance of ¥; and

¢: scale parameter.

The quasi-likelihood estimate of § is then the solution to a set of k “quasi-score”

differential equations (Zeger and Liang, 1986; Zorn, 2001):

N
UeB) = Y DIV~ ) =0 3)
where, =

(ADY/2R; () (A /2
Di = w/B.Vi = d:x

A;: T x T diagonal matrices with g(p;) as the t'" diagonal element,
R;(a): a T X T matrix of the working correlations across time for a given Y;, and
a: a vector of unknown parameters with a specific structure (according to the type of
correlation structure).

The GEE estimator results can be obtained by substituting Equation (4) into
Equation (3). In the resulting equation, it can be seen that GEE is an extension of the

generalized linear model (GLM) approach, and that it reduces to the GLM when T equals
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1 (Zorn, 2001). To solve GEE, every element of the correlation matrix R; is required to
be known; although, it is not always possible to know the exact correlation type for the
repeated measurements. To overcome this issue, the use of a “working” matrix V for the
correlation matrix V; based on the correlation matrix R; was proposed by Liang and

Zeger (1986). The estimate of § is then found from the following differential equation:

N
Up(B) = z DIV (Y — ) =0 )
i=1

The covariance matrix of §§ is given by

N N
Z D; V7 'D; z DV D;
i=1 i=1

Equations 5 and 6 provide almost always consistent estimates of § even with an

-1 -1

()

N
cov(p) = o2 z DV v,V D,
i=1

inadequate estimate of the correlation matrix V;. Therefore, the confidence interval for 8
will be correct and there is no need to know the type of temporal correlation, even when
the covariance matrix is specified incorrectly. However, to assume that f is an accurate
estimate of 3, the observation for each roadway segment should be known with no
missing observations, otherwise, it will result in biased coefficient estimates (Lord and
Persaud, 2000).

The potential positive autocorrelation in crash frequency data was examined by
the Durbin-Watson (DW) test. This test statistically examines if the residuals from a
regression model are independent. The null hypothesis is that there is no autocorrelation
(p = 0), and the alternate hypothesis is that the autocorrelation is positive (p > 0). The

test statistic can be calculated as:

_ Yiea(e; —e;_q)? (6)
- n 2

i=1€i
Where, e; = y; — 9; and y; and J; are the observed and predicted values of the

d

response variable for segment i, respectively. The d statistic becomes smaller as the
serial correlations increase. For the crash data set used, the DW test statistic was found to
be 0.5235 with 6849 degrees of freedom for the order 1 lag of autocorrelation and the

null hypothesis was rejected at a significance level of 0.01, indicating the presence of a
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positive autocorrelation. As mentioned earlier, what is perceived as temporal correlation
in the crash data might be induced (infected) by the effects of unobserved heterogeneities
that vary across years with a slow trend (Ulfarsson and Shankar, 2003). In this study, all
the covariates in the models are considered at the highway segment level and assumed
that there are no unobserved heterogeneity effects on the considered covariates of the
model. This is a true assumption if the values of the working correlation matrix across
time do not change drastically with a change in the analysis time period. In this study,
different analysis periods were considered to determine the correlation matrices: A) three
years (2002 — 2004), B) seven years (2002 — 2008), and C) ten years (2002 — 2011).
Obtaining similar values of serial correlation from these analysis periods will provide
evidence of the existence of a disinfected temporal correlation that can be addressed by
the GEE method. In such conditions, one expects that the values of the parameter
estimates and their level of significance will also be very similar to each other, no matter
the number of years of data used for the longitudinal analysis. Table 1 shows the working
correlation matrices for the AR correlation structure and the value of working correlation
assuming an exchangeable correlation structure. The 1% to 3™ rows in each column of the
table shows the AR correlations (lag 0 to lag 3) for the three time periods, respectively. It
can be observed that the correlation values for each lag are very similar to each other.
This indicates that an AR correlation structure can be reliably used to address the

temporal serial correlation.

Table 1. Correlation values for the autoregressive Type 1 and exchangeable structure
A) 3 years, 2002-2004, Exchangeable working correlation = 0.7245
B) 7 years, 2002-2008, Exchangeable working correlation = 0.7651
C) 10 years, 2002-2011, Exchangeable working correlation = 0.7552

Working Correlation Matrix for autoregressive type 1 correlation structure

Lag0 Lagl Lag2 Lag3
Period A 1 0.7462 0.5569 N/A
Period B 1 0.7836 0.6140 0.4811
Period C 1 0.7537 0.5681 0.4281

N/A indicates non-applicability of the AR correlation for the lag in corresponding column for that analysis period
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In this paper, an AR(1) (autoregressive with lag 1) correlation structure was used
in the GEE procedure (Zorn, 2001; Allison, 2012). This correlation structure indicates
that two observations within a segment made close in time tend to be more correlated
than two observations made far apart in time from the same segment. There are other
correlation structures, such as an exchangeable structure that specifies, for each segment,
the temporal correlations are equal across the years. And an independent structure that
forces the cross-time correlation to be zero for each segment for which, the GEE
estimation reduces to ordinary MLE, so the estimated coefficients would be the same as
those for traditional NB model. For detailed information about various correlation

structures, refer to the work published by Hardin and Hilbe (2007).

The GENMOD procedure with a REPEATED option in SAS V.9.3 was used to
follow the GEE procedure and develop the model of interest (SAS, 2008; Allison, 2012).
Two goodness-of-fit indices --quasi-likelihood under the independent model criterion
(QIC), and its sample version, called QICu-- were also found to determine the reliability
of the coefficients estimates. As GEE is a quasi-likelihood-based method, Pan (2001)
suggested using the QIC which is equivalent to the AIC in evaluating competitive

models’ fit. QIC is defined as
QIC(R) = —2Q(B(R), ¢) + 2trace(Q,;Vy) )

where, Q (ﬁ (R), gl)) is the quasi-likelihood function under the independent working
correlation assumption, evaluated with the parameter estimates under the working
correlation of interest R, ,[?(R), 0 ; 1s the inverse of the model-based covariance estimate
and V is the robust covariance estimate. The underlying principle of QIC is comparable
to AIC. The first term of QIC (refer to Equation 5) is the quasi-likelihood computed using
a specified working correlation structure, which corresponds to the likelihood estimation
equivalent of the AIC and likewise the second term is the penalty which serves similar
effect as the second term in computing AIC (Hardin and Hilbe, 2007). Hardin and Hilbe
(2007) also suggested the use of QICu to approximate QIC. However, QICu cannot be
applied to select the working correlation matrix R, as the presumption of QICu is that the

specification of working correlation is correct. QICu is defined as
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QIC,(R) = —2Q(B(R),¢) + 2p (8)

where, p is the number of regression parameters. Similar to the concept of AIC, the
smaller the QIC and QICu are, the better the fit of the model. The importance of the above
measures of goodness-of-fit is significant when comparing different models (e.g. with
different correlation structures). This study also utilizes the chi-square values of the
estimated model parameters and the cumulative residual (CURE) plots to investigate the
quality of fit and compare the GEE models with the common negative binomial model

(Hauer and Bamfo, 1997; Lord and Persaud, 2000).

3. CRASH DATA

3.1. Data Description

The Missouri Department of Transportation (DOT) portal of safety investigation
provided access to the accident data base for all of the recorded years of data. The data
consists of all levels of crash severity for motor-vehicle crashes (fatal to property-
damage-only accidents) at 17 interstate highways in the state of Missouri from 2002 to
2011. Table 2 presents the major yearly characteristics of these highways. The highways
with a total length of about 1200 miles were classified as divided highways (65% in rural
areas and 35% in urban areas). The total number of crashes in the data set analyzed was
167,783 crashes, out of which 37% occurred in rural areas and 63% in urban areas. The
rate of crash (per mile, per vehicle) for a segment in each year is shown in Column 2 of
Table 2, with the total number of crashes on all interstate highways presented in Column
3.

The initial explanatory variables considered for this analysis were the area type
(urban or rural), number of lanes, lane width (min of 10 ft. to max of 18 ft.), shoulder
width (min O ft. to max of 15 ft.), AADT (Annual Average Daily Traffic), speed limit
(55, 60, 65, and 70 mph), PSR (pavement serviceability rate), PCI (pavement condition
index), CIR (congestion index rate), and percentage of commercial vehicles (truck
percentage). These variables were selected for model development depending on the
quality of the data provided, function of the variables, and the significance of those

variables in calculating the crash frequency.
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PSR is equal to two times the Ride number plus the PCI. The Ride number is an
index derived from controlled measurements of longitudinal profile in the wheel tracks
correlated with rideability of a pavement using a scale of 0 to 5, with 5 being perfect and
0 being impassable. The PCI is a numerical rating of the pavement condition that ranges
from 0 to 100, with 0 being the worst possible condition and 100 being the best possible
condition. More information on the indices of the Ride number and PCI can be found on
the standards ASTM D6433-07 (ASTM-D6433-07, 2007) and ASTM E1489-08 (ASTM-
E1489-08, 2008), respectively. A higher value of PSR indicates a higher serviceability of
the pavement. The CIR presents the congestion level, calculated by incorporating the
level of service of the highway, AADT, and number of lanes. A higher value of this

variable is a sign of a higher level of congestion.

Table 2. Descriptive statistics of segment properties of Missouri interstates (2002-2011)

Year  Number of crashes, Number Annual Average Number of  Pavement Percent commercial
per segment of crashes,  Daily Traffic (AADT) lanes (min-  Serviceability Rate =~ (min-mean-max)
(min-mean-max) Total (min-mean-max) mean- max) (min-mean-max)

2002 0-17.5-347 18955 1985-29477-101594 2-2.6-7 19.3-32.1-66.4 0.041-0.215-0.582"

2003 0-18.1-361 19581 1867-29467-98485 2-2.6-7 17.4-32.3-37.4 0.041-0.208-0.406

2004 0-17.9-131 19343 1919-29861-109420 2-2.6-6 18.9-32.1-37.3 0.046-0.229-0.582

2005  0-17.5-150 19101 1865-29933-109573 2-2.6-6 24.0-33.0-39.6 0.045-0.234-0.582

2006  0-17.3-176 18922 1874-30418-114753 2-2.5-6 23.4-34.1-37.5 0.049-0.234-0.582

2007  0-19.0-168 19308 1893-31446-115901 2-2.6-6 22.9-34.1-37.6 0.049-0.229-0.622

2008  0-16.9-121 18474 1920-30301-115182 2-2.6-6 24.9-33.5-37.0 0.049-0.228-0.582

2009  0-17.3-133 17823 1955-30678-107689 2-2.7-6 26.3-33.4-37.0 0.034-0.234-0.582

2010  0-17.0-149 17900 830-30335-106612 2-2.7-6 18.4-30.7-36.8 0.050-0.230-0.674

2011 0-16.5-188 17742 813-30158-105546 2-2.7-6 19.9-31.1-37.5 0.050-0.224-0.674

* This high value of truck percentage probably represents night time at specific segments of the highways with low traffic

More than 6000 segments, with an average length of 2.2 miles, were identified
over the 10 years of crash data. The Missouri DOT determined the segmentation, i.e.,
chose the beginning and ending points of the segments based on the homogeneity of the
geometric (number of lanes, lane width, etc.) and traffic properties (AADT) of segments.
Other segment properties that are recorded in the segmentation database take the value of
that property that prevails throughout the majority of the segment. That is, for example, if
the majority of a segment has pavement type A and the rest is type B, the value for the
pavement type of that segment is recorded as type A. Therefore, one cannot say for

certain that a segment is homogenous in terms of all the variables throughout the length
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of the segment. Some of the pavement-related variables that were in the original dataset
include: shoulder type, surface type, PSR, and pavement index out of which, only the
continuous variable PSR was considered in this study. If the geometric or traffic
characteristic of a segment changed for any year, that segment was identified as a new
segment with new sets of properties for the rest of the years until it undergoes another
change in the deterministic homogenous properties. The crash related databases can be
accessed through Missouri DOT’s virtual private network that requires coordination with
the transportation planning section.

Figure 1 depicts the total number of crashes occurred on the interstate highways
of Missouri during 2002 to 2011. Only those highways with the most variation in crashes
are shown in the chart. It can be observed that there is not much variation in the number
of crash statistics over the years, which might imply there is correlation in crash
frequency observations. Interstate-70, 1-44, and 1-270 have the highest total number of
crashes per year amongst the highways. For similar studies that have used several years
of data with consideration of the correlation amongst the repeated observations, the
interested reader is referred to Guo et al. (2010a), Venkataraman et al. (2011), Castro et

al. (2012), Venkataraman et al. (2013), and Venkataraman et al. (2014).
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Figure 1. Total number of crashes on a selected few of the interstate highways of
Missouri with most variation. (legend presents the name of the interstate highways, e.g.
44 indicates interstate 44)
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3.2. Multicollinearity

Variables that were involved in multicollinearity were removed from the analysis.
When a regressor variable is nearly a linear combination of other regressors in the model,
the affected estimates are unstable and have high standard errors. This problem is called
collinearity or multicollinearity. It is beneficial to find out which sets of variables are
multicollinear and withdraw one variable from each set (Washington et al., 2011). In this
study, in addition to the Pearson’s correlation coefficient, variance inflation factor (VIF),
tolerance, and condition index (CI) were also used for detecting multicollinearity (Littell
et al., 2002). Table 3 presents the Pearson’s correlation coefficient between the suspected
variables, VIF, and Tolerance values. The approach used in the analysis follows that of

Belsley et al. (2005).

Table 3. Pearson correlation coefficients and collinearity diagnostics

Pearson Correlation Coefficients Collinearity Diagnostics
Parameter PSR PCI' CIRY Percent commercial VIF! Tolerance
PSR 1 0.99994  0.01968 0.0976 7.653 0.13066
PCI 0.99994 1 0.01959 0.09764 6.261 0.15971
CIR 0.01968  0.01959 1 0.64054 8745.4 0.0001143
Percent commercial 0.0976 0.09764  0.64054 1 8745.4 0.0001143

TPSR, PCT, and CIR stand for pavement serviceability rate, pavement condition index, and congestion index rate, respectively
1 VIF represents the variance inflation factor
Note: Bold values are statistically significant at 9% level of confidence

The Pearson correlation coefficient between the PCI and PSR is almost 1. Also,
CI values of 5210 and 161 were found in the analysis, indicating that there is a group of
multicollinear variables in the dataset including the variable PCI. Belsley et al. (2005)
suggest that, when this number is larger than 100, the estimates might have a fair amount
of numerical error. The VIF value for CIR is as high as 8745, which is much higher than
10 and, according to Kutner et al. (2004), an indication of multicollinearity. Percent
commercial also has a high VIF value which probably indicates collinearity with the CIR.
The variables PCI and CIR were removed from the analysis and a multicollinearity

diagnosis was rerun, with no sign of multicollinearity was observed.
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3.3. Sample Size

As this study uses the GEE method, the number of observations for each class of
crash incorporating categorical factors within each year should be examined (Maas and
Hox, 1999; Hutchings et al., 2003). For the sake of brevity, the frequency tables for each
factor at each step of this process are not included in the paper. However, the detailed
results of this examination for the variables shoulder width, PSR, number of lanes, and
speed limit can be found elsewhere (Mohammadi, 2014).

In order to verify the sufficiency of the sample size for analysis, the variable
shoulder width was examined within each year for the number of observations in each
class. Assuming 60 observations as a sufficient number in each class (Mancl and
DeRouen, 2001), it was observed that the shoulder width classes except 10 ft. (with 86%
of the observations) lacked enough observations. The observations for the various classes
of shoulder width were categorized into three groups according to its mean (9.4814) and
standard deviation, SD (1.5622): A) less than mean — SD, B) between mean — SD and
mean + SD, and C) more than mean + SD. This categorization also did not work as
groups A and C still lacked enough data within the majority of the years considered.
Further, the 25®, 50, and 75" percentiles (used to group observations in sufficient
numbers) did not resolve the problem, as all three percentile values had the same value,
10 ft. Therefore, it was decided to remove the variable shoulder width from the analysis.

PSR, which is a factor related to the PCI, is a continuous variable and the only
way to verify the sufficiency of observations was to categorize the observations
according to its mean value (32.474) and standard deviation (2.640). In order to obtain an
optimal categorization (with at least 60 observations within each year), three classes of

PSR were defined in the following format:

e Class 1, “PSR < (mean — 0.3 x SD) = 24.55”,
e Class 2, “(mean — 0.3 x SD) < PSR < (mean + 0.3 x SD)”, and
e Class 3, “(mean + 0.3 x SD) < PSR”.

The number of observations categorized by number of lanes was then tabulated to
verify the sufficiency of observations in each class. It was observed that the categories

equal to 4, 5, 6, and 7 lanes lacked enough observations. For this reason, it was decided to
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combine these groups into one category of number of lanes which include more than
three (nolanes>3). Therefore, three groups of nolanes were determined as follows:
nolanes=2, nolanes=3, and nolanes>3. Similar to the other variables, speed limit (SL) was
also examined for the number of observations in each class per year and the inspection
showed that few groupings (6 out of 40 groups with observations in the range of 41 to 53)
lack enough observations for some years. The variable speed limit was nevertheless used
in the model, as the shortage in the number of observations was relatively minor.
3.4. Confounding Effects and Variable Specification

The possible confounding effect of the classes of number of lanes, and speed limit
(SL) with the variable area type (urban or rural) was examined. Table 4 presents the
distribution of the number of observations for number of lanes and speed limit classes
within each area type. The top and bottom row for each combination presents the actual
number and percentage of the observations (e.g. 915 segments were observed in the
urban areas with speed limit of 55 mph that consists 13.9% of all the observed segments

in the dataset).

Table 4. Number and percentage of observations within area types, by number of lanes

and speed limit

Number of Lanes Speed Limit (mph)
Area type
3 >3 Total 55 60 65 70 Total

2463 39 - 2502 0 28 14 2459 2501
Rural

362 057 - 36.8 0 0.43 0.21 3735 37.99

1641 1474 1188 4303 915 1194 913 1060 4082
Urban

241 21.7 175 632 13.9 18.14 13.87 16.1 62.01
Total 4104 1513 1188 6805 915 1222 927 3519 6583

ota
603 222 175 100 139 1856 14.08 53.46 100

For rural areas, highways with only two or three lanes were observed in the data.
Moreover, only 39 observations were found for number of lanes equal to three. Two
analyses were conducted: 1) rural segments with three lanes were deleted from the
dataset, and 2) the 39 rural segments with three lanes were combined with rural segments

with two lanes rather than delete these observations. Since no significant change was
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observed in the estimates, it was decided to keep the 39 observations combined with the
observations with two lanes. For urban areas, sufficient data were found for each class.
For the speed limit classes, it was observed that the rural area lacks a sufficient
number of observations in the SL classes of 55, 60, and 65 mph, while 98.32% of the
rural segments have a speed limit of 70 mph. This issue was not observed in the urban
category. One might suspect that there is confounding amongst the variables speed limit,
number of lanes, and area type. To investigate this issue, several different analyses were
conducted using these newly defined categories to examine the effect of each variable
when fitted simultaneously as classification variables. Since there were confounding
effects, some of the effects and their interactions could not be estimated. Such
estimability issues arising out of confounding are to be expected. As a solution, it was
decided to define new dummy variables, and each represents one of the area X
nolanes X SL interactions. Three groupings were chosen for the three nolanes
categories of two, three, and more than three lanes, four SL categories of 55, 60, 65, and
70 mph, with the exception that there was no observation for the rural areas with speed
limit 55 mph across all categories of nolanes. Table 5 presents these dummy variables
along with the number of observations for each category. The three parts of the dummy
variables indicate the area type, number of lanes, and speed limit criteria, respectively.
There are overall 12 categories defined for urban and six categories for the rural area

segments.

The group in rural area with three lanes and speed limit of 60 mph (rural 3 60)
had zero observations, and therefore was not used in the model. The rural category with
two lanes and speed limit of 70 mph (rural 2 70) was used as the base condition in the
model. The other categories in the rural area type did not have the target value of 60
observations, but were retained to avoid removing the data. The soundness of this
decision was double-checked by running two models —one with and another without the
small-sized rural variables— and comparison of the two models. All the dummy variables
in the rural category were not found to be significant variables in the model. In other
words, these categories did not result in statistically different effects from the base

condition represented by rural 2 70. This might be because of the small number of
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observations that exist in those categories. Therefore, all of those rural categories were

lumped together with the rural 2 70 group.

Table 5. List of the dummy variables considered for the analysis

Variable! (Obs.)? Definition

Urban_2 55 (699) 1, if area = Urban, number of lanes = 2, and speed limit = 55 mph, 0 otherwise

Urban_2_60 (180) 1, if area = Urban, number of lanes = 2, and speed limit = 60 mph, 0 otherwise

Urban_2_65 (261) 1, if area = Urban, number of lanes = 2, and speed limit = 65 mph, 0 otherwise

Urban_2_70 (877) 1, if area = Urban, number of lanes = 2, and speed limit = 70 mph, 0 otherwise

Urban_3 55 (415) 1, if area = Urban, number of lanes = 3, and speed limit = 55 mph, 0 otherwise

Urban_3 60 (323) 1, if area = Urban, number of lanes = 3, and speed limit = 60 mph, 0 otherwise

Urban_3 65 (484) 1, if area = Urban, number of lanes = 3, and speed limit = 65 mph, 0 otherwise

Urban_3 70 (140) 1, if area = Urban, number of lanes = 3, and speed limit = 70 mph, 0 otherwise

Urban_3p_55° (216) 1, if area = Urban, number of lanes > 3, and speed limit = 55 mph, 0 otherwise

Urban_3p 60 (691) 1, if area = Urban, number of lanes > 3, and speed limit = 60 mph, 0 otherwise

Urban_3p_65 (168) 1, if area = Urban, number of lanes > 3, and speed limit = 65 mph, 0 otherwise

Urban_3p_70 (143) 1, if area = Urban, number of lanes > 3, and speed limit = 70 mph, 0 otherwise

Rural_2_60 (28) 1, if area = Rural, number of lanes = 2, and speed limit = 60 mph, 0 otherwise

Rural 2 65 (12) 1, if area = Rural, number of lanes = 2, and speed limit = 65 mph, 0 otherwise

Rural 2 70! 2422) 1, if area = Rural, number of lanes = 2, and speed limit = 70 mph, 0 otherwise
2 (2422) P p

Rural_3_60 0) 1, if area = Rural, number of lanes = 3, and speed limit = 60 mph, 0 otherwise

Rural_3_65 ) 1, if area = Rural, number of lanes = 3, and speed limit = 65 mph, 0 otherwise

Rural 3 70 (37) 1, if area = Rural, number of lanes = 3, and speed limit = 70 mph, 0 otherwise

1. Dummy variables were defined in this format due to confounding effects of the incorporating variables. Variables in bold were used
in the final model.

2. The values in the parentheses present the number of observations for the corresponding variable.

3. 3p means 3-plus indicating more than 3 lanes.

Finally, to incorporate the impact of the main variables on crash count differently
in urban and rural road segments, a new dummy variable, “area”, was defined and was set
to be zero for rural (base category) and one for urban. The interactions of this variable

with the other main factors of the model were considered to be included in the model as:

AREADT = Area X InAADT;
AREACOMMERCIAL = Area X Percentcommercial;
AREAWIDTH = Area X Lanewidth;
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AREAPSR = Area X PSR;

The interaction term AREAWIDTH term gave rise to a complicated convergence
iteration process that did not satisfy the convergence criterion. Investigating the number
of observations per lane width category for the rural and urban areas revealed that, since
only three of seven lane width classes were observed in the rural area, estimation of the
complete set of interaction effects was not possible with the available data. Therefore,
this term was removed from the model. The interaction term AREAPSR was not found to
be statistically significant in any of the two GEE and MLE models and so was also
removed from the analysis. However, the main factors that were not found to be
statistically significant but were involved in a significant interaction term were left to
remain in the model. That is, the “conditional effects” of the main factors that were not
statistically significant remained in the model to correctly interpret the interaction
parameters (Nelder, 1977; Cox, 1984). Although, the dummy variable “area” was not
used in the model as it was confounded by the combinatory dummy variables (see Table
5). Table 6 presents the name and definition of the continuous and categorical variables

used in this study.

Table 6. List of the continuous and classification variables considered for the analysis

Variable Definition

Continuous variables

LnAADT Natural logarithm of the annual average daily traffic in vehicle per day.
Percentcommercial The annual average percentage of trucks or heavy vehicles.

Lanewidth The width of the highway lane in feet.

Areadt The interaction between two variables “Area”’ and “LnAADT”.
Areacommercial The interaction between two variables “Area” T and “Percentcommercial”.

Classification variable

PSRclass Classification of PSR, an index for pavement serviceability rate:
e PSRclass =1 when PSR <24.55
e  PSRclass =2 when 24.55 < PSR <40.39
e PSRclass =3 when 40.39 < PSR

1 “Area”=0 for rural, and =1 for urban areas; though, it was not used in the model due to confounding effect with combinatory dummy

variables (see Table 5)
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4. RESULTS AND DISCUSSION

4.1. Model estimates and comparisons

Two models were developed, an autoregressive type 1 (AR1) GEE model
incorporating temporal correlation and a traditional NB (MLE model). A negative
binomial distribution was used to specify the error structure; however, In the GEE model,
the crash frequency for each year was used as a separate observation (a dependent
variable), to be modeled by the crash covariates. Table 7 presents the results of the
estimates and standard errors of the coefficients for the GEE and MLE models along with
the QIC and QICu values for the GEE model. The signs of the parameter estimates make
sense, however, interpreting these signs may not be completely accurate, as some
variables were not found to be significant in the GEE model. A primary objective of this
study is also to find out whether factors that are found to be statistically significant in
MLE model are truly significant.

The natural logarithm of AADT has a positive sign for both models that indicates
a higher number of crashes with higher traffic volume. PSRclass was not found to be a
statistically significant factor in any of the models, except lower classes of PSR in the
MLE model. Observing the trend of the PSRclass estimates reveals that higher classes of
PSR (better pavement) results in comparatively lower crash frequency. Truck percentage
(percentcommercial) was not found to be a significant factor in the GEE model, but it
was found to be significant with a negative value of estimate in the MLE model,
indicating that more heavy vehicles result in fewer crashes. This indicates that drivers are
generally more cautious when they see or are traveling close to large vehicles. According
to Carson and Mannering (2001), the reduction in crash frequency due to this factor
might also relate to the reduction in speed that heavy vehicles have on the traffic stream.
Lao et al. (2014) also found similar results of the effect of truck percentage on rear-end
crash occurrences.

Lanewidth was only found to be significant in the MLE model, with a positive
sign indicating that a higher lane width increases the likelihood of crash occurrence,
which may seem counterintuitive. (For example, see the works of Li et al. (2008), Manuel

et al. (2014), who found a result inconsistent with this study). According to Martens et al.
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(1997), possible explanation may be that the drivers show improved lane-keeping and
reduce their speed when the lane widths decrease. Similar results to this study regarding
the effect of lane width have been found by other researchers (Aguero-Valverde and
Jovanis, 2009; Dong, Clarke, Richards, et al., 2014; Dong, Clarke, Yan, et al., 2014).
These contradictory findings indicate that further investigation of this issue may be
required.

The interaction of the area type and the LnAADT (areadt) was found to be
statistically significant in both models with a negative sign. This indicates that the effects
of LnAADT in urban areas are smaller than that for rural areas. This estimate actually
adjusts for the effect of LnAADT on the crash frequency depending on the area ty